
Novikov’s Conjecture

Jonathan Rosenberg

Abstract We describe Novikov’s “higher signature conjecture,” which dates back
to the late 1960s, as well as many alternative formulations and related problems.
The Novikov Conjecture is perhaps the most important unsolved problem in
high-dimensional manifold topology, but more importantly, variants and analogues
permeate many other areas of mathematics, from geometry to operator algebras to
representation theory.

1 Origins of the Original Conjecture

The Novikov Conjecture is perhaps the most important unsolved problem in the
topology of high-dimensional manifolds. It was first stated by Sergei Novikov, in
various forms, in his lectures at the International Congresses of Mathematicians in
Moscow in 1966 and in Nice in 1970, and in a few other papers [85–88]. For an
annotated version of the original formulation, in both Russian and English, we refer
the reader to [37]. Here we will try instead to put the problem in context and explain
why it might be of interest to the average mathematician. For a nice book-length
exposition of this subject, we recommend [66]. Many treatments of various aspects
of the problem can also be found in the many papers in the collections [38, 39].

For the typical mathematician, the most important topological spaces are smooth
manifolds, which were introduced by Riemann in the 1850s. However, it took about
100 years for the tools for classifying manifolds (except in dimension 1, which is
trivial, and dimension 2, which is relatively easy) to be developed. The problem is
that manifolds have no local invariants (except for the dimension); all manifolds of
the same dimension look the same locally. Certainly many different manifolds were
known, but how can one tell whether or not the known examples are “typical”? How
can one distinguish one manifold from another?
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With big leaps forward in topology in the 1950s, it finally became possible to
answer these questions, at least in part. Here were a few critical ingredients:

1. the development of the theory of Reidemeister and Whitehead torsion and the
related notion of “simple homotopy equivalence” (see [77] for a good survey of
all of this);

2. the theory of characteristic classes of vector bundles, developed by Chern, Weil,
Pontrjagin, and others;

3. the notion of cobordism, introduced by Thom [112], who also provided a method
for computing it;

4. the Hirzebruch signature theorem sign.M/ D hL .M/; ŒM�i [54], giving a
formula for the signature of an oriented closed manifold M4k (this is the algebraic
signature of the nondegenerate symmetric bilinear form .x; y/ 7! hx [ y; ŒM�i on
H2k coming from Poincaré duality), in terms of a certain polynomial L .M/ in
the rational Pontrjagin classes of the tangent bundle.

Using just these ingredients, Milnor [74] was able to show that there are at
least 7 different diffeomorphism classes of 7-manifolds homotopy equivalent to S7.
(Actually there are 28 diffeomorphism classes of such manifolds, as Milnor and
Kervaire [65] showed a bit later.) This and the major role played by items 2 and
4 on the above list1 came as a big surprise, and showed that the classification of
manifolds, even within a “standard” homotopy type, has to be a hard problem.

The final two ingredients came just a bit later. One was Smale’s famous
h-cobordism theorem, which was the main ingredient in his proof [109] of the
high-dimensional Poincaré conjecture in the topological category. (In other words,
if Mn is a smooth compact n-manifold, n � 5, homotopy equivalent to Sn, then
M is homeomorphic to Sn, even though it may not be diffeomorphic to it.) But
from the point of view of the general manifold classification program, Smale’s
important contribution was a criterion for telling when two manifolds really are
diffeomorphic to one another. An h-cobordism between compact manifolds M and
M0 is a compact manifold with boundary W, such that @W D MtM0 and such that W
has deformation retractions down to both M and M0. The h-cobordism theorem [76]
says that if dim M D dim M0 � 5 and if M, M0, and W are simply connected, then W
is diffeomorphic to M � Œ0; 1�, and in particular, M and M0 are diffeomorphic. The
advantage of this is that diffeomorphisms between different manifolds are usually
very hard to construct directly; it is much easier to construct an h-cobordism.

If one dispenses with simple connectivity, then an h-cobordism between M and
M0 need not be diffeomorphic to a product M � Œ0; 1�. However, the s-cobordism
theorem, due to Barden, Mazur, and Stallings, with simplifications due to Kervaire

1Spheres have stably trivial tangent bundle and no interesting cohomology, so one’s first guess
might be that the theory of vector bundles and the signature theorem might be irrelevant to studying
homotopy spheres. Milnor, however, showed that one can construct lots of manifolds with the
homotopy type of a 7-sphere as unit sphere bundles in rank-4 vector bundles over S4. He also
showed that the signature of an 8-manifold bounded by such a manifold yields lots of information
about the homotopy sphere.
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[64], says that the h-cobordisms themselves are classifiable by the Whitehead
torsion �.W; M/, which takes values in the Whitehead group Wh.�/, where
� D �1.M/, and all values in Wh.�/ can be realized by h-cobordisms. (The
Whitehead group is the quotient of the algebraic K-group K1.Z�/ by its “obvious”
subgroup f˙1g � �ab.) Thus an h-cobordism is a product if Wh.�/ D 0, which is
the case for � free abelian, and in fact is conjectured to be the case if � is torsion-
free. But for � finite, for example, Wh.�/ is a finitely generated group of rank
r � q, where r is the number of irreducible real representations of � , and q is the
number of irreducible rational representations of � [77, Theorem 6.2]. This number
r � q is usually positive (for example, when � is finite cyclic, it vanishes only if
j�j D 1; 2; 3; 4; or 6). Bass and Murthy have even shown [8] that there are finitely
generated abelian groups � for which Wh.�/ is not finitely generated.

The last major ingredient for the classification of manifolds is the method of
surgery. Surgery on an n-manifold Mn means cutting out a neighborhood Sk � Dn�k

of a k-sphere Sk ,! M (with trivial normal bundle) and replacing it by DkC1 �
Sn�k�1, which has the same boundary. This can be used to modify a manifold
without changing its bordism class, and was first introduced by Milnor [75] and
Wallace [117].

With the help of all of these techniques, Browder [20, 21] and Novikov
[81, 82] finally introduced a general methodology for classifying manifolds in high
dimensions. The method gave complete results for simply connected manifolds
in dimensions � 5, and only partial information in dimensions 3 and 4, which
have their own peculiarities we won’t discuss here. With the help of additional
contributions by Sullivan [111], Novikov [86], and above all, Wall [115], this
method grew into what we know today as surgery theory, codified by Wall in
his book [116], which originally appeared in 1970. There are now fairly good
expositions of the theory, for example in Ranicki’s books [94, 95], in the book by
Kreck and Lück [66], in the first half of Weinberger’s book [119], and in Browder’s
colloquium lectures from 1977 [22], so we won’t attempt to compete by going into
details, which anyway would take far too many pages. Instead we will just outline
enough of the ideas to set the stage for Novikov’s conjecture.

As we indicated before, surgery theory addresses the uniqueness question for
manifolds: given (closed and connected, say) manifolds M and M0 of the same
dimension n, when are they diffeomorphic (or homeomorphic)? It also addresses
an existence question: given a connected topological space X (say a finite CW
complex), when is it homotopy equivalent to a (closed) manifold?

A few necessary conditions are evident from a first course in topology. If M
and M0 are diffeomorphic, then certainly they are homotopy equivalent, and so
they have the same fundamental group � . Furthermore, if a finite connected CW
complex X has the homotopy type of a closed manifold, then it has to satisfy
Poincaré duality, even in the strong sense of (possibly twisted) Poincaré duality
of the universal cover with coefficients in Z� . Homotopy equivalences preserve
homology and cohomology groups and cup products, so an orientation-preserving
homotopy equivalence also preserves the signature (in dimensions divisible by 4

when the signature is defined). However, these conditions are not nearly enough.
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For one thing, for a homotopy equivalence to be homotopic to a diffeomorphism
(or even a homeomorphism), it has to be simple, i.e., to have vanishing torsion in
Wh.�/. Depending on the fundamental group � , this may or may not be a serious
restriction.

But the most serious conditions involve characteristic classes of the tangent
bundle. Via a very ingenious argument using surgery theory and the Hirzebruch
signature theorem, Novikov [83, 84] showed that the rational Pontrjagin classes
of the tangent bundle of a manifold are preserved under homeomorphisms.2

(Incidentally, Gromov [45, Sect. 7] has given a totally different short argument for
this.) The rational Pontrjagin classes do not have to be preserved under homotopy
equivalences. So if ' W M ! M0 is a homotopy equivalence not preserving rational
Pontrjagin classes, it cannot be homotopic to a homeomorphism.

In the simply connected case, this is (modulo finite ambiguity) just about all:
if M0 ! M is an orientation-preserving homotopy equivalence of closed simply
connected oriented manifolds, the rational Pontrjagin classes of M0 have to satisfy
the constraint hL .M0/; ŒM0�i D sign.M0/ D sign.M/ imposed by the Hirzebruch
signature theorem, but otherwise they are effectively unconstrained (assuming the
dimension of the manifold is at least 5).3 And if the map does preserve rational
Pontrjagin classes, then there are only finitely many possibilities for M0 up to
diffeomorphism.

When M is not simply connected, the situation is appreciably more complicated.
Suppose one wants to check if two n-manifolds M and M0 are diffeomorphic. As
we indicated before, that means we need to have a simple homotopy equivalence
' W M0 ! M. If ' were homotopic to a diffeomorphism, it would preserve the
classes of the tangent bundles, so it’s convenient to assume that ' has been promoted
to a normal map ' W .M0; �0/ ! .M; �/. Here � and �0 are the stable normal bundles
defined via the Whitney embedding theorem: if k is large enough (n C 1 suffices),
then M and M0 have embeddings into Euclidean space R

nCk, and any two such
embeddings are isotopic, so the isomorphism class of the normal bundle � or �0 for
such an embedding is well defined. (Because of the Thom-Pontrjagin construction,
it’s better to work with the normal bundle than with the tangent bundle, but they
contain the same information.) Being a normal map means that ' has been extended
to a bundle map from �0 to �, which we can assume is an isomorphism on fibers.
The idea of trying to show that M and M0 are diffeomorphic is to start with a normal
bordism from ' to idM , i.e., a manifold WnC1 with boundary M t M0 and a map
˚ W W ! M � Œ0; 1� restricting to ' and to idM on the two boundary components,
and with a compatible map of bundles, and then to try to modify .W; ˚/ by surgery

2The same does not hold for the torsion part of the Pontrjagin classes, as one can see from
calculations with lens spaces [87, Sect. 3].
3A precise statement to this effect may be found in [31, Theorem 6.5]. It says for example that if M
is a closed simply connected manifold and dim M is not divisible by 4, then for any set of elements
xj 2 H4j.M;Q/, 1 � j � �

dim M
4

˘
, there is a positive integer R such that for any integer m, there is

a homotopy equivalence of manifolds 'm W M0

m ! M such that pj.M0

m/ D '�

m

�
pj.M/ C m R xj

�
.
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to make it into an s-cobordism. Once this is accomplished, then M and M0 are
diffeomorphic by the s-cobordism theorem. It turns out that doing the surgery is not
difficult until one gets up to the middle dimension (if n C 1 is even) or the “almost
middle” dimension

�
nC1

2

˘
(if n C 1 is odd). At this point a surgery obstruction

appears, taking its value in a group LnC1.Z�/ constructed purely algebraically out
of quadratic forms on Z� . (Roughly speaking, the L-groups are groups of stable
equivalence classes of forms on finitely generated projective or free Z�-modules,
and the type of the form—symmetric, skew-symmetric, etc.—depends only on the
value of n mod 4. The original construction may be found in [116].) The existence
problem (telling if one can find a manifold homotopy equivalent to a given finite
complex with Poincaré duality) works in a very similar way, just down in dimension
by 1, and the surgery obstruction in that case takes its values in Ln.Z�/.

Ultimately, the result of this surgery process is to prove that there is a surgery
exact sequence for computation of the structure set S .M/, the set of (simple)
homotopy equivalences ' W M0 ! M, where M0 is a smooth compact manifold,
modulo equivalence. We say that two such maps ' W M0 ! M and '0 W M00 ! M
are equivalent if there is a commuting diagram

M′

∼=

M

M′′

′

.

The surgery exact sequence then takes the form

· · · a Ln+1(Zp (M))
h

j

j

(M) a Ln(Zp) . (1)

Here N .M/ is the set of normal invariants, the normal bordism classes of all normal
maps ' W .M0; �0/ ! .M; �/ (not necessarily homotopy equivalences as before)
modulo linear automorphisms of �. This can also be identified with homotopy
classes of maps from M into a classifying space called G=O. If one works instead
in the PL or the topological category, the same sequence (1) is valid, but G=O is
replaced by G=PL or G=Top, which are easier to deal with,4 and in fact look a lot
like BO, the classifying space for real K-theory. The natural maps G=O ! G=PL !
G=Top are rational homotopy equivalences. The map � W S .M/ ! N .M/ sends a
homotopy equivalence ' W M0 ! M to the associated normal data.

The groups L�.Z�/ are 4-periodic, and only depend on the fundamental group
and some “decorations” which we are suppressing here, which only affect the
torsion. The map ˛ W N .M/ ! Ln.Z�/ takes the bordism class of a normal map
' W .M0; �0/ ! .M; �/ to its associated surgery obstruction. When this vanishes,
exactness of (1) says we can lift ' to an element of S .M/, or in other words, we

4Once the dimension is bigger than 4!
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can do surgery to convert it to a homotopy equivalence. The dotted arrow from
LnC1.Z�/ to S .M/ signifies that the surgery group operates on S .M/ (which is
just a pointed set, not a group) and that two elements of the structure set have the
same normal invariant if and only if they lie in the same orbit for the action of
LnC1.Z�/.

The exact sequence (1) is closely related to an algebraic surgery exact sequence

� � � ! LnC1.Z�/ ! Sn.M/ ! Hn.M;L.Z//
A�! Ln.Z�/ (2)

constructed in [93, 95], where the map A, called the assembly map, corresponds to
local-to-global passage. We will come back to this later.

For most groups � , the L-groups L�.Z�/ are not easy to calculate, so a lot of
the literature on surgery theory emphasizes things related to the exact sequence (1)
which don’t rely on explicit calculation of all the groups. For example, sometimes
one can compare two related surgery problems, or rely on other invariants, such as
�- and �-invariants for finite groups. These (as well as direct calculation from (1))
show that there are infinitely many manifolds with the homotopy type of RP4kC3,
k � 1. In fact, it’s shown in [27] that in dimension 4k C 3, k � 1, any closed
manifold M with torsion in its fundamental group has infinitely many distinct
manifolds simple homotopy-equivalent to it.

Now we are ready to explain Novikov’s conjecture. We can rewrite the Hirze-
bruch signature theorem as saying that for a closed connected oriented manifold
M, the 0-degree component of L .M/ \ ŒM� in H0.M;Q/ Š Q coincides with
sign M, which is preserved by orientation-preserving homotopy equivalences. The
components of L .M/ \ ŒM� in other degrees have no such invariance property, and
knowing them is equivalent to knowing the rational Pontrjagin classes. However,
Novikov discovered in [83] (see [31, Theorem 2.1 and its proof] for a simplified
version of his argument) that if �1.M/ Š Z, then the degree-1 component of
L .M/ \ ŒM� is also an oriented homotopy invariant. This theorem is the simplest
special case of Novikov’s conjecture.

Definition 1.1. Let M be a closed connected oriented manifold, and let � be a
countable discrete group (usually taken to be the fundamental group of M). Let B�

be a classifying space for � , a CW complex with contractible universal cover and
fundamental group � , and let f W M ! B� be a continuous map. (Up to homotopy,
it’s determined by the induced homomorphism �1.M/ ! � .) The associated higher
signature of M is f�.L .M/ \ ŒM�/ 2 H�.B�;Q/.

Conjecture 1.2 (Novikov’s Conjecture). Any higher signature f�.L .M/ \
ŒM�/ 2 H�.B�;Q/ is always an oriented homotopy invariant. In other words,
if M and M0 are closed connected oriented manifolds and if ' W M0 ! M is

(continued)
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Conjecture 1.2 (continued)
an orientation-preserving homotopy equivalence and f W M ! B� , then

f�.L .M/ \ ŒM�/ D .f ı '/�.L .M0/ \ ŒM0�/ 2 H�.B�;Q/:

The utility of the conjecture can be illustrated by an example.

Problem 1.3. Classify smooth compact 5-manifolds homotopy equivalent to
CP

2 � S1. (Note: the diffeomorphism classification of smooth 4-manifolds
homotopy equivalent to CP

2 is not known, since surgery breaks down in the
smooth category in dimension 4. It is known by work of Freedman [41] that up to
homeomorphism, there are exactly two closed topological 4-manifolds homotopy
equivalent to CP

2, but for the “exotic” one, the product with S1 does not have a
smooth structure.)

Proof. Suppose M is a smooth closed manifold of the homotopy type of CP2 � S1.
There is a smooth map f W M ! S1 inducing an isomorphism on �1, and we can take
this to be the map f W M ! B� , � D Z, for the case of the conjecture proven by
Novikov himself. So the conjecture implies that if K D f �1.pt/, the inverse image
of a regular value of f , then K has signature 1. This fixes the first Pontrjagin class
of M. Furthermore, K being a smooth 4-manifold with signature 1, it is in the same
oriented bordism class as CP2. From this we can get a normal bordism W6 between
M (with its stable normal bundle �) and CP

2 � S1 (with its stable normal bundle �).
We plug into the surgery machine and try to do surgery to convert this to an h-
cobordism (and thus automatically an s-cobordism, since Wh.Z/ D 0). The surgery
obstruction lives in L6.ZŒZ�/. This group turns out to be Z=2 (coming from the
image of the Arf invariant in L6.Z/ Š Z=2). So there are not a lot of possibilities.
In fact one can show by studying the continuation of the sequence (1) to the left
that M is diffeomorphic to CP

2 � S1. But note that the key ingredient in the whole
argument is the Novikov Conjecture, which pins down the first Pontrjagin class. ut

2 Methods of Proof

Work on the Novikov Conjecture began almost as soon as the conjecture was for-
mulated. Roughly speaking, methods fall into three different categories: topological,
analytic, and algebraic. The topological approach began with Novikov’s own work
on the free abelian case of the conjecture, which we already mentioned in the case
� D Z, and which only uses transversality and basic homology theory. This method
was generalized in work of Kasparov, Farrell-Hsiang, and Cappell [23, 33, 58],
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who used codimension-one splitting methods to deal with free abelian and poly-
Z groups, and certain kinds of amalgamated free products.

Subsequent topological approaches to the conjecture have been based on con-
trolled topology (if you like, a blend of analysis and topology since it amounts
to topology with ı-" estimates) or on various methods in stable homotopy theory.
There is a lot more in this area than we can possibly summarize here, but it is
discussed in detail in [37], which includes a long bibliography.

The analytic approach began with the important contribution of Lusztig [72].
The key idea here is to realize the higher signature of Definition 1.1 as the index
of a family of elliptic operators, just as Atiyah and Singer [2, Sect. 6] had reproven
Hirzebruch’s signature theorem by realizing the signature as the index of a certain
elliptic operator, now universally called the signature operator. (This is just the
operator d C d� operating on differential forms, but with a grading on the forms
coming from the Hodge �-operator.) A major step forward from the work of Lusztig
came with the work of Mishchenko [78, 79] and Kasparov [57, 61, 62], who realized
that one could generalize this construction by using “noncommutative” families of
elliptic operators, based on a C�-algebra completion C�.�/ of the algebraic group
ring C� . Underlying this method was the idea [79, 99] that because of the inclusions
Z� ,! C� ,! C�.�/, there is a natural map Ln.Z�/ ! Ln.C�.�//, and that
because the spectral theorem enables one to diagonalize quadratic forms over a C�-
algebra, the L-groups and topological K-groups of a C�-algebra essentially coincide.
As we will see in the next section, the analytic approach to the Novikov conjecture
is the one that has attracted the most recent attention, though there is still plenty of
work being done on topological and algebraic methods.

Algebraic approaches to proving the Novikov conjecture depend on a finer
understanding of the surgery exact sequence (1) and the L-groups. For a homotopy
equivalence of manifolds ' W M0 ! M, the difference '�.L .M0/\ŒM0�/�.L .M/\
ŒM�/ 2 H�.M;Q/ is basically �.ŒM0 ! M�/ ˝Z Q in (1). The Novikov conjecture
says that this should vanish when we apply f�, f W M ! B� . Since we could also
apply (1) with M replaced by B� (at least if B� can be chosen to be a manifold—
but there is a way of getting around this), exactness in (1) shows that the Novikov
Conjecture is equivalent to rational injectivity of the map ˛ in (1), when we replace
M by B� .

More precisely, we need to make use of an idea of Quinn [91], that the L-groups
are the homotopy groups of a spectrum:

Ln.Z�/ D �n.L�.Z�//

and that the map ˛ in the surgery exact sequence (1) comes from an assembly map
which is the induced map on homotopy groups of a map of spectra

AM W MC ^ L�.Z/ ! L�.Z�/:

This map factors (via f W M ! B�) through a similar map



Novikov’s Conjecture 385

A� W B�C ^ L�.Z/ ! L�.Z�/: (3)

If A� in (3) induces a rational injection on homotopy groups, then the Novikov
Conjecture follows from exactness of (1). On the other hand, if A� is not rationally
injective, then one can construct an M and a higher signature for it that is not
homotopy invariant. So the Novikov Conjecture is reduced to a statement which
at least in principle is purely algebraic, as Ranicki in [93, 95] gives a purely
algebraic construction of the surgery spectra and of the map A� , leading to the exact
sequence (2).5

3 Variations on a Theme

One of the most interesting features of the Novikov Conjecture is that it is closely
related to a number of other useful conjectures. Some of these are known to be true,
some are known to be false, and most are also unsolved. But even the ones that are
false are false for somewhat subtle reasons, and still carry some “element of truth.”
Here we mention a number of these related conjectures and something about their
status.

Conjecture 3.1 (Borel’s Conjecture). Any two closed aspherical (i.e., hav-
ing contractible universal covers) manifolds M and M0 with the same
fundamental group are homeomorphic. In fact, any homotopy equivalence
' W M0 ! M of such manifolds is homotopic to a homeomorphism.

This conjecture is known to have been posed informally by Armand Borel,
before the formulation of Novikov’s Conjecture, and was motivated by the Mostow
Rigidity Theorem. It amounts to a kind of topological rigidity for aspherical mani-
folds. Note that if M is aspherical with fundamental group � and n D dim M � 5,
then we can take M D B� , and Borel’s conjecture amounts to saying that in the
surgery sequence (1) in the topological category, S .M/ is just a single point, or
by exactness, the assembly map A� is an equivalence. This implies the Novikov
Conjecture for � , but is stronger.

Incidentally, it is known now that the analogue of Borel’s Conjecture,
but with homeomorphism replaced by diffeomorphism, is false. The simplest

5It turns out that (2) coincides with the analogue of (1) in the topological, rather than smooth,
category, but the difference between these is rather small since all homotopy groups of Top=O are
torsion.
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counterexample is with M D T7, the 7-torus. Since a torus is parallelizable, Wall
pointed out in [116, Sect. 15A] that the set of smooth structures on Tn compatible
with the standard PL structure is parameterized by ŒTn; PL=O� (for n � 5). It is
known that the classifying space PL=O is 6-connected and that (for j � 7) its
jth homotopy group can be identified with the group ‚j of smooth homotopy j-
spheres.6 Since ‚7 Š Z=28 by [65, 74], the differentiable structures on T7 are
parameterized by ŒT7; PL=O� Š ŒT7; K.‚7; 7/� Š H7.T7; ‚7/ Š Z=28 and there
are 28 different differentiable structures on T7. A series of counterexamples with
negative curvature to the smooth Borel conjecture was constructed in [34, 35].

The fundamental group � of an aspherical manifold M (even if noncompact) has
to be torsion-free, since if g 2 � has finite order k > 1, it would act freely on
the universal cover eM, and eM=hgi would be a finite-dimensional model for BZ=k,
contradicting the fact that Z=k has homology in all positive odd dimensions. So
Conjecture 3.1 can’t apply to groups with torsion. In fact, the result of [27] shows
that for groups with torsion, A� in (3) is never an equivalence. We will come back
to this shortly.

However, we have already mentioned the role of the Whitehead group, which
comes from the algebraic K-theory of Z� , in studying manifolds with fundamental
group � . An important conjecture which we have already mentioned is:

Conjecture 3.2 (Vanishing of Whitehead Groups). If � is torsion-free,
then Wh.�/ D 0.

Note that if Conjecture 3.2 fails and � is the fundamental group of a closed
manifold M, then by the s-cobordism theorem, there is an h-cobordism W with
@W D M t .�M0/ which is not a product, and we have a homotopy equivalence
M0 ! M which is not simple, hence Borel’s Conjecture, Conjecture 3.1, fails for M.

More generally, one can ask what one can say about the algebraic K-theory of Z�

in all degrees. Loday [69] constructed an assembly map B�C ^ K.Z/ ! K.Z�/,
and this being an equivalence would say that all of the algebraic K-theory of Z�

comes in some sense from homology of � and K-theory of Z. This is known in some
cases—for � free abelian, it follows from the “Fundamental Theorem of K-theory.”
The assembly map being an equivalence in degrees � 1 for torsion-free groups
� and R D Z implies Conjecture 3.2. The analogue of Novikov’s Conjecture for
K-theory is

6The group operation is the connected sum; inversion comes from reversing the orientation.
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Conjecture 3.3 (Novikov Conjecture for K-Theory). Let R D Z;Q;

R; or C and let � be a discrete group. Then the assembly map
B�C ^ K.R/ ! K.R�/ induces an injection of rational homotopy
groups.

Conjecture 3.3 was proved (with R D Z, the most important case) for groups �

with finitely generated homology in [16]. It was also proved (without rationalizing)
in [25], when � is a discrete, cocompact, torsion-free discrete subgroup of a
connected Lie group. Subsequently, Carlsson and Pedersen [26] proved it (without
rationalizing) for any group � for which there is a finite model for B� , such
that the universal cover E� of B� admits a contractible metrizable �-equivariant
compactification X such that compact subsets of E� become small near the
“boundary” X X E� . This was recently improved [92] to the case where there is a
finite model for B� and � has finite decomposition complexity, which is a tameness
condition on � viewed as a metric space with the word length metric (for some finite
generating set).

As we have already mentioned, for groups with torsion, the assembly map
A� of (3) is never an equivalence. For similar reasons, one also can’t expect the
K-theory assembly map to be an equivalence for groups with torsion. The correct
replacement seems to be the following.7

Conjecture 3.4 (Farrell-Jones Conjecture). Let � be a discrete group and
let F be its family of virtually cyclic subgroups (subgroups that contain a
cyclic subgroup of finite index). Such subgroups are either finite or else admit
a surjection with finite kernel onto either Z or the infinite dihedral group
.Z=2/ � .Z=2/. Let EF .�/ denote the universal �-space with isotropy in F .
This is a contractible �-CW-complex X with all isotropy groups in F (for
the �-action) and with XH contractible for each H 2 F . It is known to be
uniquely defined up to �-homotopy equivalence. Then the assembly maps

H�� .EF .�/IL.Z// ! L.Z�/ and H�� .EF .�/IK.R// ! K.R�/ (4)

are isomorphisms for R D Z;Q;R; or C.

7Just for the experts: one needs to use the �1 decoration on the L-spectra here.
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When � is torsion-free, (4) is just the assembly map (3) or its K-theory version,
and the conjecture says that the assembly map is an equivalence. Conjecture 3.4
implies Conjectures 3.1, 1.2, and 3.3, even for groups with torsion, as well as
Conjecture 3.2. More details on Conjecture 3.4 may be found in [70], in [66,
Chaps. 19–24], or in [71]. The K-theory version of the conjecture has been proven
in [7] for fundamental groups of manifolds of negative curvature and in [6] for
hyperbolic groups, and both the K-theory and L-theory versions have been proven
for certain groups acting on trees in [5, 107] and for cocompact lattice subgroups of
Lie groups in [4]. Split injectivity of (4) has been proved for groups with finite
quotient finite decomposition complexity (a condition weaker than that of [92])
in [63]. Rational injectivity of (4) holds under much weaker conditions; see for
example [30].

Another variation on the Novikov Conjecture is to consider the situation where a
finite group G acts on a manifold, and one wants to study G-equivariant invariants
of M. Under suitable circumstances, one finds that the fundamental group of M
leads to a certain extra amount of equivariant topological rigidity. To formulate
the analogue of Conjecture 1.2, one needs a substitute for the homology L-class
L .M/ \ ŒM�. The easiest way to formulate this is in K-homology, since Kasparov
[59, 60], following ideas of Atiyah and Singer, showed that an elliptic differential
operator D on M naturally leads to a K-homology class ŒD� 2 K�.M/ (see also [50]
for an exposition), and when D is G-invariant, the class naturally lives in KG� .M/.
The image of ŒD� in KG� .pt/ D R.G/ under the map induced by M ! pt is the
equivariant index indG D 2 R.G/ in the sense of Atiyah and Singer. When D is
the signature operator, L .M/ \ ŒM� is basically (except for some powers of 2, not
important here) the Chern character of ŒD� 2 K�.M/, and so if f W M ! B� , the
higher signature of Definition 1.1, is basically the Chern character of f�.ŒD�/. That
motivates the following.

Conjecture 3.5 (Equivariant Novikov Conjecture [105]). Let M be a
closed oriented manifold admitting an action of a finite group G, and suppose
f W M ! X is a G-equivariant smooth map to a finite G-CW complex which
is G-equivariantly aspherical (i.e., XH is aspherical for all subgroups H of
G). Let ' W M0 ! M be a G-equivariant map of closed G-manifolds which,
non-equivariantly, is a homotopy equivalence. Then if ŒDM� and ŒDM0 � denote
the equivariant K-homology classes of the signature operators on M and M0,
respectively,

f�.ŒDM�/ D .f ı '/�.ŒDM0 �/ 2 KG� .X/:
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Various generalizations and applications to rigidity theorems are possible (see for
example [36, 104]), but we won’t go into details here. Conjecture 3.4 was proven in
[105] for X a closed manifold of nonpositive curvature and in [43] for X a Euclidean
building, in both cases with G acting by isometries.

4 New Directions

The conjectures we discussed in Sect. 3 are fairly directly linked to the original
Novikov Conjecture, and it is easy to see how they are connected with topological
rigidity of highly connected manifolds. But in this section, we will discuss a number
of other conjectures which grew out of work on Novikov’s Conjecture but which
go somewhat further afield, to the point where the connection with the original
conjecture may not be immediately obvious. However, we will try to explain the
relationships as we go along.

We have already mentioned the assembly map and the Farrell-Jones Conjecture
(Conjecture 3.4), which gives a conjectural calculation of the L-groups L�.Z�/ for
a discrete group � . However, work on Novikov’s Conjecture by analytic techniques
(see Sect. 2) already required passing from the integral group ring to the complex
group ring (this only affects 2-torsion in the L-groups) and then completing C� to a
C�-algebra. For C�-algebras, L-theory is basically the same as topological K-theory,
and even for real C�-algebras, they agree after inverting 2 [99, Theorem 1.11].
So it’s natural to ask if assembly can be used to compute the topological K-
theory of C�.�/. For the full group C�-algebra this seems to be impossible, but
for the reduced group C�-algebra C�

r .�/,8 the completion of C� for its action on
L2.�/, there is a good guess for a purely topological calculation of K�.C�

r .�//.
(Here K� denotes topological K-theory for Banach algebras, which satisfies Bott
periodicity. This is much more closely related to L-theory, which is 4-periodic,
than is algebraic K-theory in the sense of Quillen.) This guess is given by the
Baum-Connes Conjecture, originally formulated in [9, 10] and further refined in
[11] (see also [47] for a nice quick survey). The conjecture applies to far more
than just discrete groups; it applies to locally compact groups, to such groups
“with coefficients” (i.e., acting on a C�-algebra), and even to groupoids [113]. In
its greatest generality the conjecture is known to be false [48], though a patch
which might repair it has been proposed [13]. However, the original version of
the conjecture is still open, though the literature on the conjecture has grown to
more than 300 items. To avoid having to talk about Kasparov’s KK-theory, we will
omit discussion of the conjecture with coefficients, and will just stick to the original
conjecture for groups.

8It is known that the natural map C�.�/ � C�

r .�/ is an isomorphism if and only if � is amenable.
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Conjecture 4.1 (Baum-Connes Conjecture). Let G be a second countable
locally compact group, and let C�

r .G/ denote the completion of L1.G/ for its
action by left convolution on L2.G/. Then there is a natural assembly map

	 W KG� .EG/ ! K�.C�
r .G//;

where EG is the universal proper G-space (a contractible space on which
G acts properly), and this map is an isomorphism. If G has no nontrivial
compact subgroups, then the assembly map simplifies to

	 W K�.BG/ ! K�.C�
r .G//:

Proposition 4.2. Conjecture 4.1 implies Conjecture 1.2.

Proof. For this we take G D � to be discrete and countable. For simplicity, we
also work with the periodic L-theory spectra instead of the connective ones. (The
difference only affects the bottom of the surgery sequence (1).) If � is torsion-
free, the domain of 	 is K�.B�/ D H�.B� IKtop/. But after inverting 2, Ktop is
just a direct sum of two copies of L.Z/, one of them shifted in degree by 2. So if
Conjecture 4.1 holds for � and � is torsion-free, we have the commuting diagram

H•(Bp;L(Z))⊗Q
Ap L•(Zp)⊗Q

L•(C∗
r (p))⊗Q

∼=
H•(Bp;Ktop)⊗Q ∼=

m
K•(C∗

r (p))⊗Q.
(5)

Diagram (5) immediately implies that the rational L-theory assembly map A� [the
same map as the map induced on rational homotopy groups by (3)] is injective.

If � is not torsion-free, then E� and E� are not the same,9 but there is always a
�-equivariant map E� ! E� . Thus we need only replace (5) by the diagram

9In the extreme case where � is a torsion group, E� D pt, while if � is nontrivial, E� is necessarily
infinite dimensional.
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H•(B ;L(Z))⊗Q

Ap

Hp• ( p;L(Z))⊗Q L•(Zpp )⊗Q

L•(C∗
r (p))⊗Q

∼=

H•(Bp;Ktop)⊗Q
a Hp• ( p;Ktop)⊗Q ∼=

m
K•(C∗

r (p))⊗Q.
(6)

Since points in E� have finite isotropy, and since the �-map � � �=
 , 
 a finite
subgroup of � , induces the map Z ,! R.
/ on equivariant K-homology, a spectral
sequence argument shows that the bottom left map ˛ in (6) is injective, and so by a
diagram chase, A� is injective. ut
Thus Conjecture 4.1 (for the case of discrete groups) implies Conjecture 1.2.
However, Conjecture 4.1 for non-discrete groups is also quite interesting and
important. There are two main reasons for this:

1. There are “change of group methods” that enable one to pass from results for
a group to results for a closed subgroup. Many of the significant early results
on Novikov’s Conjecture were proved by considering discrete groups � that
embed in a Lie group (or p-adic Lie group) and then using these change of group
methods to pass from the Lie group to the discrete subgroup.

2. The Baum-Connes Conjecture for connected Lie groups (also known as the
Connes-Kasparov Conjecture) and the same conjecture for p-adic groups are both
quite interesting in their own right, and say a lot about representation theory. For
an introduction to this topic, see [11, 47]. For some of the more significant results,
see [14, 67, 110, 118]. For recent applications to harmonic analysis on reductive
groups, see [3, 73, 90, 102].

Another direction arising out of both the controlled topology and the analytic
approaches to Novikov’s Conjecture leads to the so-called coarse Baum-Connes
Conjecture [49, 96, 120]. This conjecture deals with the large-scale geometry of
metric spaces X of bounded geometry (think of complete Riemannian manifolds
with curvature bounds, or of finitely generated groups with a word-length metric).
Roughly speaking, the coarse Novikov Conjecture says that indices of generalized
elliptic operators capture all of the coarse (i.e., “large-scale”) rational homology of
such a space X.

Conjecture 4.3 (Coarse Baum-Connes and Novikov). Let X be a uni-
formly contractible locally compact complete metric space of bounded

(continued)
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Conjecture 4.3 (continued)
geometry, in which all metric balls are compact. Let KX�.X/ be the coarse K-
homology of X (the direct limit of the K-homologies of successively coarser
Rips complexes) and let C�.X/ be the C�-algebra of locally compact, finite
propagation operators on X. Then Roe defined a natural assembly map

	 W KX�.X/ ! K�.C�.X//: (7)

The coarse Baum-Connes Conjecture is that 	 is an isomorphism; the coarse
Novikov Conjecture is that 	 is rationally injective.

Positive results on Conjecture 4.3 may be found in [28, 29, 40, 42, 49, 96,
114, 120].

However, it is known that the conjecture fails in various situations [32, 48, 121],
especially if one drops the bounded geometry assumption.

The coarse Baum-Connes conjecture implies the Novikov conjecture under mild
conditions. To see this, suppose for example that there is a compact metrizable
model Y for B� , and let X D E� be its universal covering. Then there is a
commutative diagram

K∗(Bp)
a

tr∼=

K∗(C∗
r (p))

tr

p∗(KX∗(X)hp)
mhp

p∗(K∗(C∗(X))hp),

where ˛ is usual Baum-Connes assembly, 	 is as in Conjecture 4.3, h� denotes
homotopy fixed points, and tr is a transfer map. Then 	 being an isomorphism
implies that 	h� is an isomorphism, and so we get a splitting for ˛. Refinements
of this argument, as well as generalizations of the coarse Baum-Connes conjecture,
may be found in [80].

Thinking of C�
r .�/ as being (up to Morita equivalence) the same thing as the

fixed points of � on C�.X/ also gives rise to a nice way of relating the surgery
exact sequence (2) to the Baum-Connes assembly map. This was accomplished in
the series of papers [51–53, 89], which set up a natural transformation from the
surgery sequence to a long exact sequence where the C�-algebraic assembly map
corresponds to the L-theory assembly map in the original sequence. This gives an
even more direct connection between coarse Baum-Connes and surgery theory.

Other “new directions” from Novikov’s Conjecture arise from replacing the
higher signature of Definition 1.1 with other sorts of “higher indices.” For example,
an important case is obtained by replacing L .M/ with bA .M/, the total bA class.



Novikov’s Conjecture 393

This is again a certain polynomial in the rational Pontrjagin class, and has the
property that when M is a spin manifold, bA .M/ \ ŒM� is the Chern character of
the class ŒD� defined by the Dirac operator on M. (Here the reader doesn’t need
to know much about the Dirac operator D except for the fact that it’s an elliptic
first-order differential operator canonically defined on a Riemannian manifold with
a spin structure.) It was pointed out by Lichnerowicz [68] that when M is closed and
has positive scalar curvature, then the spectrum of D must be bounded away from 0,
and thus ind.D/ D h bA .M/; ŒM�i has to vanish. When M is not simply connected, a
major strengthening of this is possible:

Conjecture 4.4 (Gromov-Lawson Conjecture [46]). Let M be a connected
closed spin Riemannian manifold of positive scalar curvature, let � be a
discrete group, and let f W M ! B� be a continuous map (determined up
to homotopy by a homomorphism �1.M/ ! �). Then the higher bA-genus
f�. bA .M/ \ ŒM�/ 2 H�.B�;Q/ vanishes.

This conjecture is still open in general, but it is known to be closely related to
Novikov’s Conjecture. For example, it was shown in [97] that Conjecture 4.4 is true
whenever the K-theory assembly map K�.B�/ ! K�.C�

r .�// is rationally injective,
and thus a fortiori whenever Conjecture 4.1 holds. It also can be deduced from
certain cases of Conjecture 4.3, by a descent argument similar to the one above.
The Lichnerowicz argument also applies to complete noncompact spin manifolds
M of uniformly positive scalar curvature, and when Conjecture 4.3 holds, one gets
obstructions to existence of such metrics living in K�.C�.X// whenever there is a
coarse map M ! X.

Conjecture 4.4 can be refined to conjectures about necessary and sufficient
conditions for positive scalar curvature. Here we just mention a few of several
possible versions. For these it’s necessary to go beyond ordinary homology and
to consider KO-homology, the homology theory dual to the (topological) K-theory
of real vector bundles. This theory is 8-periodic and has coefficient groups KOj D Z

when j is divisible by 4 (this part is detected by the Chern character to ordinary
homology), Z=2 when j � 1; 2 .mod 8/, 0 otherwise. The class ŒD� of the Dirac
operator on a spin manifold M lives in KOn.M/, n D dim.M/. While the actual
operator D depends on a choice of a Riemannian metric, the class ŒD� 2 KOn.M/

does not, so that the following conjecture makes sense.
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Conjecture 4.5 (Gromov-Lawson-Rosenberg Conjecture). Let M be a
connected closed spin manifold with fundamental group � and Dirac operator
DM, and let f W M ! B� be the classifying map for the universal cover. Let
A W KO�.B�/ ! KO�.C�

r .�// be the assembly map in real K-theory. Then
M admits a Riemannian metric of positive scalar curvature if and only if
A ı f�.ŒDM�/ D 0 in KOn.C�

r .�//, n D dim M � 5.

The restriction to n � 5 is needed only to use surgery methods to construct a
metric of positive scalar curvature when the obstruction vanishes; it is not needed
to show that there is a genuine obstruction to positive scalar curvature when
A ı f�.ŒDM�/ ¤ 0, which was proven in [98]. For the next conjecture, we need to
introduce a choice of Bott manifold, a geometric representative for Bott periodicity
in KO-homology. This is a simply connected closed spin manifold Bt8 of dimension
8 with h bA .Bt8/; ŒBt8�i D 1. It may be chosen to be Ricci flat. Since scalar curvature
is additive on Riemannian products, Bt8 being Ricci flat implies that taking a product
with the Bott manifold does not change the scalar curvature.

Conjecture 4.6 (Stable Gromov-Lawson-Rosenberg Conjecture). Let M
be a connected closed spin manifold with fundamental group � and Dirac
operator DM, and let f W M ! B� be the classifying map for the universal
cover. Let Bt8 be a Bott manifold as above. Then M stably admits a Rieman-

nian metric of positive scalar curvature, in the sense that M �
k

‚ …„ ƒ
Bt8 � � � � � Bt8

admits such a metric for some k, if and only if A ı f�.ŒDM�/ D 0 in
KOn.C�

r .�//, n D dim M.

There are simple implications

Conj: 4.5 ) Conj: 4.6; Conj: 4.6 C injectivity of A ) Conj: 4.4:

The (very strong) Conjecture 4.5 is known to hold for especially nice groups, such as
free abelian groups [98], hyperbolic groups of low dimension [55], and finite groups
with periodic cohomology [18], but it fails in general [55, 108]. Conjecture 4.6
is weaker, and holds for all the known counterexamples to Conjecture 4.5. It was
formulated and proven for finite groups in [103]. Subsequently, Stolz [unpublished]
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showed that it follows from the Baum-Connes Conjecture, Conjecture 4.1. For a
survey on this entire field, see [100].

The last “new direction” we would like to discuss here comes from replacing the
higher signature in Novikov’s Conjecture by the higher Todd genus or the higher
elliptic genus. This seems to be quite relevant for understanding the interaction
between topological invariants and algebraic geometry invariants for algebraic
varieties defined over C.

The Todd class T .M/ is still another polynomial in characteristic classes, this
time the rational Chern classes of a complex (or almost complex) manifold. Suppose
for simplicity that M is a smooth projective variety over C, viewed as a complex
manifold via an embedding into some complex projective space. The Hirzebruch
Riemann-Roch Theorem then says that

hT .M/; ŒM�i D �.M;OM/ D
nX

jD0

.�1/j dim Hj.M;OM/; (8)

where OM is the structure sheaf of M, the sheaf of germs of holomorphic functions,
and n is the complex dimension of M. The right-hand side of (8) is called the
arithmetic genus. (The original definition of the latter by algebraic geometers like
Severi turned out to be .�1/n.�.M;OM/ � 1/, but the normalization here is a bit
more convenient.) The left-hand side of (8) is called the Todd genus, and is known
to be a birational invariant.10 Once again, if one has a map f W M ! B� , then we
can define the associated higher Todd genus as f�.T .M/ \ ŒM�/ 2 H�.B�;Q/.

Conjecture 4.7 (Algebraic Geometry Novikov Conjecture [101]). Let M
be a smooth complex projective variety, and let f W M ! B� be a continuous

map (for the topology of M as a complex manifold). Let M0 '
�� M be

a birational map. Then the corresponding higher Todd genera agree, i.e.,

f�.T .M/ \ ŒM�/ D .f ı '/�.T .M0/ \ ŒM0�/ 2 H�.B�;Q/:

Note the obvious similarity with Conjecture 1.2. However, unlike Novikov’s
original conjecture, this statement is actually a theorem [15, 19]. That follows from

10Recall that two varieties are said to be birationally equivalent if there are rational maps between
them which are inverses of each. Since rational maps do not have to be everywhere defined (this
is why we denote rational maps below by dotted lines), two varieties are birationally equivalent if
and only if they have Zariski-open subsets which are isomorphic as varieties.
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the fact that if M0 '
�� M is a birational map, then '�.ŒDM0 �/ D ŒDM� 2

K0.M/, where ŒDM� denotes the K-homology class of the Dolbeault operator,
whose Chern character is T .M/ \ ŒM�.11 The corresponding statement for the
signature operator is not true; a homotopy equivalence does not have to preserve
the class of the signature operator. (However, the mod 8 reduction of this class is
preserved [106].)

However, there is another similarity with Novikov’s Conjecture which is pointed
out in [101]. By [112, Théorème IV.17], ˝�, the graded ring of cobordism classes of
oriented manifolds, is, after tensoring with Q, a polynomial ring in the classes of the
complex projective spaces CP2k, k 2 N. Then if I� is the ideal in ˝� generated by all
ŒM� � ŒM0� with M and M0 homotopy equivalent (in a way preserving orientation),
Kahn [56] proved that ˝�=I� Š Q, with the quotient map identified with the
Hirzebruch signature. Similarly, ˝U� , the graded ring of cobordism classes of almost
complex manifolds, is, after tensoring with Q, a polynomial ring in the classes of
all complex projective spaces, and the quotient of ˝U� by the ideal generated by all
ŒM��ŒM0� with M and M0 birationally equivalent smooth projective varieties is again
Q, this time with the quotient map identifiable with the Todd genus.

These results effectively say that, up to multiples, the signature is the only
homotopy-invariant genus on oriented manifolds, and the arithmetic genus is
the only birationally invariant genus on smooth projective varieties. But if one
considers manifolds with large fundamental group, the situation changes. By [101,
Theorem 4.1], a linear functional on ˝�.B�/ ˝ Q that is an oriented homotopy
invariant must come from the higher signature, and by [101, Theorem 4.3], a linear
functional on ˝U� .B�/ ˝ Q that is a birational invariant must (under a certain
technical condition satisfied in many cases) come from the higher Todd genus.

Finally, the papers [17, 24, 44] consider still more analogues of higher genera
with the Todd genus replaced by the elliptic genus. The result of [17] is particularly
nice; it is the exact analogue of Conjecture 4.7, but with the Todd genus replaced
by the elliptic genus and with birational equivalence replaced by K-equivalence
(a birational equivalence preserving canonical bundles).

Acknowledgements Work on this paper was partially supported by the United States National
Science Foundation, grant number 1206159. I would like to thank Greg Friedman, Daniel
Kasprowski, Andrew Ranicki, and Shmuel Weinberger for useful feedback on an earlier draft of
this paper.

11It takes a bit of work to make sense of '� here, since ' may not be everywhere defined, but this
can be done. The point is that by the factorization theorem for birational maps [1], we can factor '

into a sequence of blow-ups and blow-downs, and '� is clearly defined for a blow-down (since it
is a continuous map) and is an isomorphism in this case by the Baum-Fulton-MacPherson variant
of Grothendieck-Riemann-Roch [12]. In the case of a blow-up, let '� be given by the inverse of
the map induced by the reverse blow-down.
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