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Preface

John Forbes Nash, Jr. and Michael Th. Rassias

Learn from yesterday, live for today, hope for tomorrow.
The important thing is not to stop questioning.

– Albert Einstein (1879–1955)

It has become clear to the modern working mathematician that no single researcher,
regardless of his knowledge, experience, and talent, is capable anymore of overview-
ing the major open problems and trends of mathematics in its entirety. The breadth
and diversity of mathematics during the last century has witnessed an unprecedented
expansion.

In 1900, when David Hilbert began his celebrated lecture delivered before the
International Congress of Mathematicians in Paris, he stoically said:

Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a
glance at the next advances of our science and at the secrets of its development during future
centuries? What particular goals will there be toward which the leading mathematical spirits
of coming generations will strive? What new methods and new facts in the wide and rich
field of mathematical thought will the new centuries disclose?

Perhaps Hilbert was among the last great mathematicians who could talk about
mathematics as a whole, presenting problems which covered most of its range at
the time. One can claim this, not because there will be no other mathematicians
of Hilbert’s caliber, but because life is probably too short for one to have the
opportunity to expose himself to the allness of the realm of modern mathematics.
Melancholic as this thought may sound, it simultaneously creates the necessity and
aspiration for intense collaboration between researchers of different disciplines.
Thus, overviewing open problems in mathematics has nowadays become a task
which can only be accomplished by collective efforts.

The scope of this volume is to publish invited survey papers presenting the status
of some essential open problems in pure and applied mathematics, including old
and new results as well as methods and techniques used toward their solution. One
expository paper is devoted to each problem or constellation of related problems.
The present anthology of open problems, notwithstanding the fact that it ranges
over a variety of mathematical areas, does not claim by any means to be complete,
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vi Preface

as such a goal would be impossible to achieve. It is, rather, a collection of
beautiful mathematical questions which were chosen for a variety of reasons. Some
were chosen for their undoubtable importance and applicability, others because
they constitute intriguing curiosities which remain unexplained mysteries on the
basis of current knowledge and techniques, and some for more emotional reasons.
Additionally, the attribute of a problem having a somewhat vintage flavor was also
influential in our decision process.

The book chapters have been contributed by leading experts in the corresponding
fields. We would like to express our deepest thanks to all of them for participating
in this effort.

Princeton, NJ, USA John F. Nash, Jr.
April, 2015

Michael Th. Rassias
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A Farewell to “A Beautiful Mind and a Beautiful
Person”

Michael Th. Rassias

Having found it very hard to resign myself to John F. Nash’s sudden and so tragic
passing, I postponed writing my commemorative addendum to our jointly composed
preface until this compilation of papers on open problems was almost fully ready for
publication. Now that I have finally built up my courage for coming to terms with
John Nash’s demise, my name, which joyfully adjoins his at the end of the above
preface, now also stands sadly alone below the following bit of reminiscence from
my privileged year as his collaborator and frequent companion.

It all started in September 2014, in one of the afternoon coffee/tea meetings
that take place on a daily basis in the common room of Fine Hall, the building
housing the Mathematics Department of Princeton University. John Nash silently
entered the room, poured himself a cup of decaf coffee and then sat alone in a chair
close by. That was when I first approached him and had a really pleasant chat about
problems in the interplay of game theory and number theory. From that day onwards,
our discussions became ever more frequent, and we eventually decided to prepare
this volume Open Problems in Mathematics. The day we made this decision, he
turned to me and said with his gentle voice, “I don’t want to be just a name on the
cover though. I want to be really involved.” After that, we met almost daily and
discussed for several hours at a time, examining a vast number of open problems in
mathematics ranging over several areas. During these discussions, it became even
clearer to me that his way of thinking was very different from that of almost all
other mathematicians I have ever met. He was thinking in an unconventional, most
creative way. His quick and distinctive mind was still shining bright in his later
years.

This volume was practically almost ready before John and Alicia Nash left in
May for Oslo, where he was awarded the 2015 Abel Prize from the Norwegian
Academy of Science and Letters. We had even prepared the preface of this volume,
which he was so much looking forward to see published. Our decision to include
handwritten signatures, as well, was along the lines of the somewhat vintage flavor
and style that he liked.

John Nash was planning to write a brief article on an open problem in game
theory, which was the only problem we had not discussed yet. He was planning

ix



x A Farewell to “A Beautiful Mind and a Beautiful Person”

to prepare it and discuss about it after his trip to Oslo. Thus, he never got the
opportunity to write it. On this note, and notwithstanding my ‘last-minute’ invi-
tation, Professor Eric Maskin generously accepted to contribute a paper presenting
an important open problem in cooperative game theory.

With this opportunity, I would also like to say just a few words about the man
behind the mathematician. In the famous movie A Beautiful Mind, which portrayed
his life, he was presented as a really combative person. It is true that in his early
years he might have been, having also to battle with the demons of his illness.
Being almost 60 years younger than him, I had the chance to get acquainted with
his personality in his senior years. All the people who were around him, including
myself, can avow that he was a truly wonderful person. Very kind and disarmingly
simple, as well as modest. This is the reason why, among friends at Princeton, I
used to humorously say that the movie should have been called A Beautiful Mind
and a Beautiful Person. What was certainly true though was the dear love between
John and Alicia Nash, who together faced and overcame the tremendous challenges
of John Nash’s life. It is somehow a romantic tragedy that fate bound them to even
leave this life together.

In history, one can say that among the mathematicians who have reached
greatness, there are some—a selected few—who have gone beyond greatness to
become legends. John Nash was one such legend.

The contributors of papers and myself cordially dedicate this volume to the
memory and rich mathematical legacy of John F. Nash, Jr.

Princeton, NJ, USA Michael Th. Rassias



Introduction
John Nash: Theorems and Ideas

Misha Gromov

Nash was not building big theories, he did not attempt to dislodge old concepts
and to promote new ones, he didn’t try to be paradoxical.

Nash was solving classical mathematical problems, difficult problems, some-
thing that nobody else was able to do, not even to imagine how to do it.

His landmark theorem of 1956—one of the main achievements of mathematics
of the twentieth century–reads:

All Riemannian manifolds X can be realised as smooth submanifolds in Euclidean spaces
R

q, such that the smoothness class of the submanifold realising an X in R
q equals that of

the Riemannian metric g on X and where the dimension q of the ambient Euclidean space
can be universally bounded in terms of the dimension of X.1

And as far as C1-smooth isometric embeddings f W X ! R
q are concerned, there

is no constraint on the dimension of the Euclidean space except for what is dictated
by the topology of X:

Every C1-smooth n-dimensional submanifold X0 in R
q for q � nC1 can be deformed (by a

C1-isotopy) to a new C1-position such that the induced Riemannian metric on X0 becomes
equal to a given g.2

At first sight, these are natural classically looking theorems. But what Nash
has discovered in the course of his constructions of isomeric embeddings is far
from “classical”—it is something that brings about a dramatic alteration of our
understanding of the basic logic of analysis and differential geometry. Judging from

M. Gromov
IHÉS, 36 route de Chartres, 41990 Bures-sur-Yvette, France

e-mail: gromov@ihes.fr
1This was proven in the 1956 paper for Cr-smooth metrics, r D 3; 4; : : : ;1; the existence of
real analytic isometric embeddings of compact manifolds with real analytic Riemannian metrics
to Euclidean spaces was proven by Nash in 1966.
2Nash proved this in his 1954 paper for q � n C 2, where he indicated that a modification of his
method would allow q D n C 1 as well. This was implemented in a 1955 paper by Nico Kuiper.
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xii Introduction John Nash: Theorems and Ideas

the classical perspective, what Nash has achieved in his papers is as impossible as
the story of his life.

Prior to Nash, the following two heuristic principles, vaguely similar to the
first and the second laws of thermodynamics, have been (almost?) unquestionably
accepted by analysts:

1. Conservation of Regularity. The smoothness of solutions f of a “natural”
functional, in particular a differential, equation D.f / D g is determined by the
equation itself but not by a particular class of functions f used for the proof of
the existence of solutions.

2. Increase of Irregularity. If some amount of regularity of potential solutions f of
our equations has been lost, it cannot be recaptured by any “external means,”
such as artificial smoothing of functions.

Instances of the first principle can be traced to the following three Hilbert’s
problems:

5th: Continuous groups are infinitely differentiable, in fact, real analytic.
19th: Solutions of “natural” elliptic PDE are real analytic.
Also Hilbert’s formulation of his 13th problem on

non-representability of “interesting” functions in many variables
by superpositions of continuous functions in fewer variables

is motivated by this principle:

continuous, real analytic

as far as superpositions of functions are concerned.
Nash C1-isometric embedding theorem shattered the conservation of regularity

idea: the system of differential equations that describes isometric immersions f W
X ! R

q may have no analytic or not even C2-smooth solution f .
But, according to Nash’s 1954 theorem, if q > dim.X/, and if X is diffeomorphic,

to R
n, n < q, or to the n-sphere, then, no matter what Riemannian metric g you are

given on this X, there are lots of isometric C1-embeddings X ! R
q.3

Now, look at an equally incredible Nash’s approach to more regular, say C1-
smooth, isometric embeddings. The main lemma used by Nash, his implicit (or
inverse) function theorem, may seem “classical” unless you read the small print:

Let D W F! G be a C1-smooth non-linear differential operator between spaces
F and G of C1-sections of two vector bundles over a manifold X.

3In the spirit of Nash but probably independently, the continuous , real analytic equivalence for
superpositions of functions was disproved by Kolmogorov in 1956; yet, in essence, Hilbert’s 13th
problem remains unsolved: are there algebraic (or other natural) functions in many variables that
are not superpositions of real analytic functions in two variables?

Also, despite an enormous progress, “true” Hilbert’s 19th problem remains widely open: what
are possible singularities of solutions of elliptic PDE systems, such as minimal subvarieties and
Einstein manifolds.
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If the linearization L D Lf0 .f / of D at a point f0 2 F is invertible at
g0 D D.f0/ 2 G by a differential operator linear in g, say M D Mf0 .g/, then
D is also invertible (by a nonlinear non-differential operator) in a (small fine) C1-
neighborhood of D.f0/ 2 G.

You must be a novice in analysis or a genius like Nash to believe anything like
that can be ever true and/or to have a single nontrivial application.

First of all, who has ever seen inversions of differential operators again by
differential ones?

And second of all, how on earth can D be inverted by means of M when both
operators, being differential, increase irregularity?

But Nash writes down a simple formula for a linearized inversion M for
the metric inducing operator D , and he suggests a compensation for the loss of
regularity by the use of smoothing operators.

The latter may strike you as realistic as a successful performance of perpetuum
mobile with a mechanical implementation of Maxwell’s demon. . . unless you start
following Nash’s computation and realize to your immense surprise that the
smoothing does work in the hands of John Nash.

This, combined with a few ingenious geometric constructions, leads to C1-
smooth isometric embeddings f W X ! R

q for q D 3n3=2C O.n2/, n D dim.X/:
Besides the above, Nash has proved a few other great theorems, but it is his work

on isometric immersions that opened a new world of mathematics that stretches in
front of our eyes in yet unknown directions and still waits to be explored.



P ‹D NP

Scott Aaronson

Abstract In 1950, John Nash sent a remarkable letter to the National Security
Agency, in which—seeking to build theoretical foundations for cryptography—he

all but formulated what today we call the P
‹D NP problem, and consider one of

the great open problems of science. Here I survey the status of this problem in
2016, for a broad audience of mathematicians, scientists, and engineers. I offer a
personal perspective on what it’s about, why it’s important, why it’s reasonable
to conjecture that P ¤ NP is both true and provable, why proving it is so hard,
the landscape of related problems, and crucially, what progress has been made in
the last half-century toward solving those problems. The discussion of progress
includes diagonalization and circuit lower bounds; the relativization, algebrization,
and natural proofs barriers; and the recent works of Ryan Williams and Ketan
Mulmuley, which (in different ways) hint at a duality between impossibility proofs
and algorithms.

1 Introduction

Now my general conjecture is as follows: for almost all sufficiently complex types of
enciphering, especially where the instructions given by different portions of the key interact
complexly with each other in the determination of their ultimate effects on the enciphering,
the mean key computation length increases exponentially with the length of the key, or in
other words, the information content of the key . . . The nature of this conjecture is such that
I cannot prove it, even for a special type of ciphers. Nor do I expect it to be proven.—John
Nash, 1950 [171]

In 1900, David Hilbert challenged mathematicians to design a “purely mechan-
ical procedure” to determine the truth or falsehood of any mathematical statement.

For a more recent version of this survey, with numerous corrections and revisions as well as new
material, the reader is invited to visit http://www.scottaaronson.com/papers/pvsnp.pdf

S. Aaronson (�)
Department of Computer Science, University of Texas, Austin, USA
e-mail: scott@scottaaronson.com

© Springer International Publishing Switzerland 2016
J.F. Nash, Jr., M.Th. Rassias (eds.), Open Problems in Mathematics,
DOI 10.1007/978-3-319-32162-2_1
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2 S. Aaronson

That goal turned out to be impossible. But the question—does such a procedure
exist, and why or why not?—helped launch three related revolutions that shaped the
twentieth century: one in math and science, as reasoning itself became a subject of
mathematical analysis; one in philosophy, as the results of Gödel, Church, Turing,
and Post showed the limits of formal systems and the power of self-reference; and
one in technology, as the electronic computer achieved, not all of Hilbert’s dream,
but enough of it to change the daily experience of most people on earth.

The P
‹D NP problem is a modern refinement of Hilbert’s 1900 question. The

problem was explicitly posed in the early 1970s in the works of Cook and Levin,
though versions were stated earlier—including by Gödel in 1956, and as we see

above, by John Nash in 1950. In plain language, P
‹D NP asks whether there’s

a fast procedure to answer all questions that have short answers that are easy to
verify mechanically. Here one should think of a large jigsaw puzzle with (say) 101000

possible ways of arranging the pieces, or an encrypted message with a similarly
huge number of possible decrypts, or an airline with astronomically many ways of
scheduling its flights, or a neural network with millions of weights that can be set
independently. All of these examples share two key features:

(1) a finite but exponentially-large space of possible solutions; and
(2) a fast, mechanical way to check whether any claimed solution is “valid.” (For

example, do the puzzle pieces now fit together in a rectangle? Does the proposed
airline schedule achieve the desired profit? Does the neural network correctly
classify the images in a test suite?)

The P
‹D NP question asks whether, under the above conditions, there’s a general

method to find a valid solution whenever one exists, and which is enormously faster
than just trying all the possibilities one by one, from now till the end of the universe,
like in Jorge Luis Borges’ Library of Babel.

Notice that Hilbert’s goal has been amended in two ways. On the one hand,
the new task is “easier” because we’ve restricted ourselves to questions with only
finitely many possible answers, each of which is easy to verify or rule out. On the
other hand, the task is “harder” because we now insist on a fast procedure: one that
avoids the exponential explosion inherent in the brute-force approach.

Of course, to discuss such things mathematically, we need to pin down the
meanings of “fast” and “mechanical” and “easily checked.” As we’ll see, the

P
‹D NP question corresponds to one natural choice for how to define these

concepts, albeit not the only imaginable choice. For the impatient, P stands for
“Polynomial Time,” and is the class of all decision problems (that is, infinite sets of
yes-or-no questions) solvable by a standard digital computer—or for concreteness,
a Turing machine—using a polynomial amount of time. By this, we mean a number
of elementary logical operations that is upper-bounded by the bit-length of the input
question raised to some fixed power. Meanwhile, NP stands for “Nondeterministic
Polynomial Time,” and is the class of all decision problems for which, if the answer
is “yes,” then there is a polynomial-size proof that a Turing machine can verify in
polynomial time. It’s immediate that P � NP, so the question is whether this con-
tainment is proper (and hence P ¤ NP), or whether NP � P (and hence P D NP).
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1.1 The Importance of P
‹D NP

Before getting formal, it seems appropriate to say something about the significance

of the P
‹D NP question. P

‹D NP, we might say, shares with Hilbert’s original
question the character of a “math problem that’s more than a math problem”: a
question that reaches inward to ask about mathematical reasoning itself, and also
outward to everything from philosophy to natural science to practical computation.

To start with the obvious, essentially all the cryptography that we currently use
on the Internet—for example, for sending credit card numbers—would be broken if
P D NP (and if, moreover, the algorithm were efficient in practice, a caveat we’ll

return to later). Though he was writing 21 years before P
‹D NP was explicitly

posed, this is the point Nash was making in the passage with which we began.
The reason is that, in most cryptography, the problem of finding the decryption

key is an NP search problem: that is, we know mathematically how to check whether
a valid key has been found. The only exceptions are cryptosystems like the one-
time pad and quantum key distribution, which don’t rely on any computational
assumptions (but have other disadvantages, such as the need for huge pre-shared
keys or for special communication hardware).

The metamathematical import of P
‹D NP was also recognized early. It was

articulated, for example, in Kurt Gödel’s now-famous 1956 letter to John von

Neumann, which sets out what we now call the P
‹D NP question. Gödel wrote:

If there actually were a machine with [running time] � Kn (or even only with � Kn2)
[for some constant K independent of n], this would have consequences of the greatest
magnitude. That is to say, it would clearly indicate that, despite the unsolvability of the
Entscheidungsproblem, the mental effort of the mathematician in the case of yes-or-no
questions could be completely [added in a footnote: apart from the postulation of axioms]
replaced by machines. One would indeed have to simply select an n so large that, if the
machine yields no result, there would then also be no reason to think further about the
problem.

Expanding on Gödel’s observation, some modern commentators have explained

the importance of P
‹D NP as follows. It’s well-known that P

‹D NP is one of the
seven Clay Millennium Problems (alongside the Riemann Hypothesis, the Yang-
Mills mass gap, etc.), for which a solution commands a million-dollar prize [66].

But even among those problems, P
‹D NP has a special status. For if someone

discovered that P D NP, and if moreover the algorithm was efficient in practice,
that person could solve not merely one Millennium Problem but all seven of them—
for she’d simply need to program her computer to search for formal proofs of the
other six conjectures.1 Of course, if (as most computer scientists believe) P ¤ NP,

1Here we’re using the observation that, once we fix a formal system (say, first-order logic plus the
axioms of ZF set theory), deciding whether a given statement has a proof at most n symbols long
in that system is an NP problem, which can therefore be solved in time polynomial in n assuming
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a proof of that would have no such world-changing implications, but even the fact
that such a proof could rule out those implications underscores the enormity of what
we’re asking.

I should be honest about the caveats. While theoretical computer scientists

(including me!) have not always been above poetic flourish, P
‹D NP is not

quite equivalent to the questions of “whether human creativity can be automated,”
or “whether anyone who can appreciate a symphony is Mozart, anyone who can
recognize a great novel is Jane Austen.” Apart from the obvious point that no purely
mathematical question could fully capture these imponderables, there are also more
specific issues.

For one thing, while P
‹D NP has tremendous relevance to artificial intelligence,

it says nothing about the differences, or lack thereof, between humans and machines.
Indeed, P ¤ NP would represent a limitation on all classical digital computation,
one that might plausibly apply to human brains just as well as to electronic
computers. Nor does P ¤ NP rule out the possibility of robots taking over the
world. To defeat humanity, presumably the robots wouldn’t need to solve arbitrary
NP problems in polynomial time: they’d merely need to be smarter than us, and to
have imperfect heuristics better than the imperfect heuristics that we picked up from
a billion years of evolution! Conversely, while a proof of P D NP might hasten

a robot uprising, it wouldn’t guarantee one. For again, what P
‹D NP asks is not

whether all creativity can be automated, but only that creativity whose fruits can be
quickly checked by computer programs that we know how to write.

To illustrate, suppose we wanted to program a computer to create new Mozart-
quality symphonies and Shakespeare-quality plays. If P D NP, and the algorithm
were efficient in practice, then that really would imply that these feats could be
reduced to a seemingly-easier problem, of programming a computer to recognize
such symphonies and plays when given them. And interestingly, P D NP might
also help with the recognition problem: for example, by letting us train a neural
network that reverse-engineered the expressed aesthetic preferences of hundreds of
human experts. But how well that neural network would perform is an empirical
question outside the scope of mathematics.

1.2 Objections to P
‹D NP

After modest exposure to the P
‹D NP problem, many people come up with what

they consider an irrefutable objection to its phrasing or importance. Since the same
objections tend to recur, in this section I’ll collect the most frequent ones and make
some comments about them.

P D NP. We’re also assuming that the other six Clay conjectures have ZF proofs that are not
too enormous: say, 1012 symbols or fewer, depending on the exact running time of the assumed
algorithm. In the case of the Poincaré Conjecture, this can almost be taken to be a fact, modulo the
translation of Perelman’s proof [179] into the language of ZF.
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1.2.1 The Asymptotic Objection

Objection P
‹D NP talks only about asymptotics—i.e., whether the running time

of an algorithm grows polynomially or exponentially with the size n of the question
that was asked, as n goes to infinity. It says nothing about the number of steps needed
for concrete values of n (say, a thousand or a million), which is all anyone would
ever care about in practice.

Response It was realized early in the history of computer science that “number of
steps” is not a robust measure of hardness, because it varies too wildly from one
machine model to the next (from Macs to PCs and so forth), and also depends
heavily on low-level details of how the problem is encoded. The asymptotic
complexity of a problem could be seen as that contribution to its hardness that
is clean and mathematical, and that survives the vicissitudes of technology. Of
course, real-world software design requires thinking about many non-asymptotic
contributions to a program’s efficiency, from compiler overhead to the layout of the
cache (as well as many considerations that have nothing to do with efficiency at all).
But any good programmer knows that the asymptotics matter as well.

More specifically, many people object to theoretical computer science’s equation
of “polynomial” with “efficient” and “exponential” with “inefficient,” given that
for any practical value of n, an algorithm that takes 1:0000001n steps is clearly
preferable to an algorithm that takes n1000 steps. This would be a strong objection,
if such algorithms were everyday phenomena. Empirically, however, computer
scientists found that there is a strong correlation between “solvable in polynomial
time” and “solvable efficiently in practice,” with most (but not all) problems in P that
they care about solvable in linear or quadratic or cubic time, and most (but not all)
problems outside P that they care about requiring cn time via any known algorithm,
for some c significantly larger than 1. Furthermore, even when the first polynomial-
time algorithm discovered for some problem takes (say) n6 or n10 time, it often
happens that later advances lower the exponent, or that the algorithm runs much
faster in practice than it can be guaranteed to run in theory. This is what happened,
for example, with linear programming, primality testing, and Markov Chain Monte
Carlo algorithms.

Having said that, of course the goal is not just to answer some specific question

like P
‹D NP, but to learn the truth about efficient computation, whatever it might

be. If practically-important NP problems turn out to be solvable in n1000 time but
not in n999 time, or in 1:0000001n time, then so be it. From this perspective, one

could argue that P
‹D NP simply serves as a marker of ignorance: in effect we are

saying, “if we can’t even answer this, then surely we can’t answer the more refined
questions either.”
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1.2.2 The Polynomial-Time Objection

Objection But why should we draw the border of efficiency at the polynomial
functions, as opposed to any other class of functions—for example, functions upper-
bounded by n2, or functions of the form nlogc n (called quasipolynomial functions)?

Response There is a good theoretical answer to this: it’s because polynomials
are the smallest class of functions that contain the linear functions, and that are
closed under basic operations like addition, multiplication, and composition. For
this reason, they are the smallest class that ensures that we can compose “efficient
algorithms” a constant number of times, and still get an algorithm that is efficient
overall. For the same reason, polynomials are also the smallest class that ensures that
our “set of efficiently solvable problems” is independent of the low-level details of
the machine model.

Having said that, much of algorithms research is about lowering the order of
the polynomial, for problems already known to be in P; and theoretical computer
scientists do use looser notions like quasipolynomial time whenever they are needed.

1.2.3 The Kitchen-Sink Objection

Objection P
‹D NP is limited, because it talks only about discrete, deterministic

algorithms that find exact solutions in the worst case—and also, because it ignores
the possibility of natural processes that might exceed the limits of Turing machines,
such as analog computers, biological computers, or quantum computers.

Response For every assumption mentioned above, there is now a major branch
of theoretical computer science that studies what happens when one relaxes
the assumption: for example, randomized algorithms, approximation algorithms,
average-case complexity, and quantum computing. I’ll discuss some of these
branches in Sect. 5. Briefly, though, there are deep reasons why many of these

ideas are thought to leave the original P
‹D NP problem in place. For example,

according to the P D BPP conjecture (see Sect. 5.4.1), randomized algorithms yield
no more power than P, while careful analyses of noise, energy expenditure, and the
like suggest that the same is true for analog computers (see [3]). Meanwhile, the
famous PCP Theorem and its offshoots (see Sect. 3) have shown that, for many NP
problems, there cannot even be a polynomial-time algorithm to approximate the
answer to within a reasonable factor, unless P D NP.

In other cases, new ideas have led to major, substantive strengthenings of the P ¤
NP conjecture (see Sect. 5): for example, that there exist NP problems that are hard
even on random inputs, or hard even for a quantum computer. Of course, proving
P ¤ NP itself is a prerequisite to proving any of these strengthened versions.

There’s one part of this objection that’s so common that it requires some separate
comments. Namely, people will say that even if P ¤ NP, in practice we can
find almost always find good enough solutions to the problems we care about, for
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example by using heuristics like simulated annealing or genetic algorithms, or by
using special structure or symmetries in real-life problem instances.

Certainly there are cases where this assumption is true. But there are also
cases where it’s false: indeed, the entire field of cryptography is about making the
assumption false! In addition, I believe our practical experience is biased by the fact
that we don’t even try to solve search problems that we “know” are hopeless—yet
that wouldn’t be hopeless in a world where P D NP (and where the algorithm was
efficient in practice). For example, presumably no one would try using brute-force
search to look for a formal proof of the Riemann Hypothesis one billion lines long or
shorter, or a 10-megabyte program that reproduced most of the content of Wikipedia
within a reasonable time (possibly needing to encode many of the principles of
human intelligence in order to do so). Yet both of these are “merely” NP search
problems, and things one could seriously contemplate in a world where P D NP.

1.2.4 The Mathematical Snobbery Objection

Objection P
‹D NP is not a “real” math problem, because it talks about

Turing machines, which are arbitrary human creations, rather than about “natural”
mathematical objects like integers or manifolds.

Response The simplest reply is that P
‹D NP is not about Turing machines at all,

but about algorithms, which seem every bit as central to mathematics as integers
or manifolds. Turing machines are just one particular formalism for expressing
algorithms, as the Arabic numerals are one particular formalism for integers. And
crucially, just like the Riemann Hypothesis is still the Riemann Hypothesis in base-
17 arithmetic, so essentially every formalism for deterministic digital computation
ever proposed gives rise to the same complexity classes P and NP, and the same
question about whether they are equal. (This observation is known as the Extended
Church-Turing Thesis.)

This objection might also reflect lack of familiarity with recent progress in
complexity theory, which has drawn on Fourier analysis, arithmetic combinatorics,
representation theory, algebraic geometry, and dozens of other subjects about
which yellow books are written. Furthermore, in Sect. 6.6, we’ll see Geometric
Complexity Theory (GCT), a breathtakingly ambitious program for proving P ¤
NP that throws almost the entire arsenal of modern mathematics at the problem,
including geometric invariant theory, plethysms, quantum groups, and Langlands-
type correspondences. Regardless of whether GCT’s specific conjectures pan out,
they illustrate in detail how progress toward proving P ¤ NP will plausibly involve
deep insights from many parts of mathematics.

1.2.5 The Sour Grapes Objection

Objection P
‹D NP is so hard that it’s impossible to make anything resembling

progress on it, at least at this stage in human history—and for that reason, it’s
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unworthy of serious effort or attention. Indeed, we might as well treat such questions
as if their answers were formally independent of set theory, as for all we know they
are (a possibility discussed further in Sect. 3.1).

Response One of the main purposes of this survey is to explain what we know

now, relevant to the P
‹D NP problem, that we didn’t know 10 or 20 or 30

years ago. It’s true that, if “progress” entails having a solution already in sight,
or being able to estimate the time to a solution, I know of no progress of that
kind! But by the same standard, one would have to say there was no “progress”
toward Fermat’s Last Theorem in 1900—even as mathematicians, partly motivated
by Fermat’s problem, were laying foundations of algebraic number theory that did
eventually lead to Wiles’s proof. In this survey, I’ll try to convey how, over the last
few decades, insights about circuit lower bounds, relativization and arithmetization,
pseudorandomness and natural proofs, the “duality” between lower bounds and
algorithms, the permanent and determinant manifolds, and more have transformed
our understanding of what a P ¤ NP proof could look like.

I should point out that, even supposing P
‹D NP is never solved, it’s already

been remarkably fruitful as an “aspirational” or “flagship” question, helping to
shape research in algorithms, cryptography, learning theory, derandomization,
quantum computing, and other things that theoretical computer scientists work
on. Furthermore, later we’ll see examples of how seemingly-unrelated progress in
some of those other areas, unexpectedly ended up tying back to the quest to prove
P ¤ NP.

1.2.6 The Obviousness Objection

Objection It is intuitively obvious that P ¤ NP. For that reason, a proof of
P ¤ NP—confirming that indeed, we can’t do something that no reasonable person
would ever have imagined we could do—gives almost no useful information.

Response This objection is perhaps less common among mathematicians than
others, since were it upheld, it would generalize to almost all of mathematics! Like
with most famous unsolved math problems, the quest to prove P ¤ NP is “less
about the destination than the journey”: there might or might not be surprises in the
answer itself, but there will certainly be huge surprises (indeed, there already have
been huge surprises) along the way. More concretely: to make a sweeping statement
like P ¤ NP, about what polynomial-time algorithms can’t do, will require an
unprecedented understanding of what they can do. This will almost certainly entail
the discovery of many new polynomial-time algorithms, some of which could
have practical relevance. In Sect. 6, we will see many more subtle examples of
the “duality” between algorithms and impossibility proofs, with progress on each
informing the other.

Of course, to whatever extent you regard P D NP as a live possibility, the
Obviousness Objection is not open to you.
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1.2.7 The Constructivity Objection

Objection Even if P D NP, the proof could be nonconstructive—in which case it
wouldn’t have any of the amazing implications discussed in Sect. 1.1, because we
wouldn’t know the algorithm.

Response A nonconstructive proof that an algorithm exists is indeed a theoretical
possibility, though one that has reared its head only a few times in the history of
computer science.2 Even then, however, once we knew that an algorithm existed, we
would have a massive inducement to try to find it. The same is true if, for example,
the first proof of P D NP only gave an n1000 algorithm, but we suspected that an n2

algorithm existed.3

1.3 Further Reading

There were at least four previous major survey articles about P
‹D NP: Michael

Sipser’s 1992 “The History and Status of the P versus NP Question” [207];
Stephen Cook’s 2000 “The P versus NPProblem” [66], which was written for
the announcement of the Clay Millennium Prize; Avi Wigderson’s 2006 “P,

2The most celebrated examples of nonconstructive proofs that algorithms exist all come from
the Robertson-Seymour graph minors theory, one of the great achievements of twentieth-century
combinatorics (for an accessible introduction, see for example Fellows [75]). The Robertson-
Seymour theory typically deals with parameterized problems: for example, “given a graph G,
decide whether G can be embedded on a sphere with k handles.” In those cases, typically a
fast algorithm Ak can be abstractly shown to exist for every value of k. The central problem is
that each Ak requires hard-coded data—in the above example, a finite list of obstructions to the
desired embedding—that no one knows how to find given k, and whose size might also grow
astronomically as a function of k. On the other hand, once the finite obstruction set for a given k

was known, one could then use it to solve the problem for any graph G in time O
�
jGj3

�
, where

the constant hidden by the big-O depended on k.
Robertson-Seymour theory also provides a few examples of non-parameterized problems that

are abstractly proved to be in P but with no bound on the exponent, or abstractly proved to be
O
�
n3
�

or O
�
n2
�

but with no bound on the constant. Thus, one cannot rule out the possibility that
the same would happen with an NP-complete problem, and Donald Knuth [131] has explicitly
speculated that P D NP will be proven in that way. To me, however, it is unclear whether he
speculates this because there is a positive reason for thinking it true, or just because it would be
cool and interesting if it was true.
3As an amusing side note, there is a trick called Levin’s universal search [141], in which one
“dovetails” over all Turing machines M1;M2; : : : (that is, for all t, runs M1; : : : ;Mt for t steps
each), halting when and if any Mi has outputs a valid solution to one’s NP search problem. If
we know P D NP, then we know this particular algorithm will find a valid solution, whenever
one exists, in polynomial time—because clearly some Mi does so, and all the machines other than
Mi increase the total running time by “only” a polynomial factor! With more work, one can even
decrease this to a constant factor. Admittedly, however, the polynomial or constant factor will be
so enormous as to negate this algorithm’s practical use.
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NP, and Mathematics—A Computational Complexity Perspective”[232]; and Eric
Allender’s 2009 “A Status Report on the P versus NP Question” [21]. All four
are excellent, so it’s only with trepidation that I add another entry to the crowded
arena. I hope that, if nothing else, this survey shows how much has continued to
occur. I cover several major topics that either didn’t exist a decade ago, or existed
only in much more rudimentary form: for example, the algebrization barrier, “ironic
complexity theory” (including Ryan Williams’s NEXP 6� ACC result), the “chasm
at depth three” for the permanent, and the Mulmuley-Sohoni Geometric Complexity
Theory program.

The seminal papers that set up the intellectual framework for P
‹D NP, posed

it, and demonstrated its importance include those of Edmonds [74], Cobham [65],
Cook [67], Karp [122], and Levin [141]. See also Trakhtenbrot [223] for a survey
of Soviet thought about perebor, as brute-force search was referred to in Russian in
the 1950s and 60s.

The classic text that introduced the wider world to P, NP, and NP-completeness,
and that gave a canonical (and still-useful) list of hundreds of NP-complete prob-
lems, is Garey and Johnson [86]. Some recommended computational complexity
theory textbooks—in rough order from earliest to most recent, in the material they
cover—are Sipser [208], Papadimitriou [175], Schöning [199], Moore and Mertens
[155], and Arora and Barak [27]. Surveys on particular aspects of complexity theory
will be recommended where relevant throughout the survey.

Those seeking a nontechnical introduction to P
‹D NP might enjoy Lance

Fortnow’s charming book The Golden Ticket [80], or his 2009 popular article for
Communications of the ACM [79]. My own Quantum Computing Since Democritus
[6] gives something between a popular and a technical treatment.

2 Formalizing P
‹D NP and Central Related Concepts

The P
‹D NP problem is normally phrased in terms of Turing machines: a theoretical

model of computation proposed by Alan Turing in 1936, which involves a one-
dimensional tape divided into discrete squares, and a finite control that moves back
and forth on the tape, reading and writing symbols. For a formal definition, see, e.g.,
Sipser [208] or Cook [66].

In this survey, I won’t define Turing machines, for the simple reason that if you
know any programming language—C, Java, Python, etc.—then you already know
something that’s equivalent to Turing machines for our purposes. More precisely,
the Church-Turing Thesis holds that virtually any model of digital computation one
can define will be equivalent to Turing machines, in the sense that Turing machines
can simulate that model and vice versa. A modern refinement, the Extended Church-
Turing Thesis, says that moreover, these simulations will incur at most a polynomial
overhead in time and memory. If we accept this, then there’s a well-defined notion
of “solvable in polynomial time by a digital computer,” which is independent of
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the low-level details of the computer’s architecture: the instruction set, the rules for
accessing memory, etc. This licenses us to ignore those details. The main caveats
here are that

(1) the computer must be classical, discrete, and deterministic (it’s not a quantum
computer, an analog device, etc., nor can it call a random-number generator or
any other external resource), and

(2) there must be no a-priori limit on how much memory the computer can address,
even though any program that runs for finite time will only address a finite
amount of memory.4;5

We can now define P and NP, in terms of Turing machines for concreteness—
but, because of the Extended Church-Turing Thesis, the reader is free to substitute
other computing formalisms such as Lisp programs, �-calculus, stylized assembly
language, or cellular automata.

A language is a set of binary strings, L � f0; 1g�, where f0; 1g� is the set of
all binary strings of all (finite) lengths. Of course a language can be infinite, even
though every string in the language is finite. One example is the language consisting
of all palindromes: for instance, 00, 11, 0110, 11011, etc., but not 001 or 1100. A
more interesting example is the language consisting of all binary encodings of prime
numbers: for instance, 10, 11, 101, and 111, but not 100.

A binary string x 2 f0; 1g�, for which we want to know whether x 2 L, is called
an instance of the general problem of deciding membership in L. Given a Turing
machine M and an instance x, we let M .x/ denote M run on input x (say, on a tape
initialized to � � � 0#x#0 � � � , or x surrounded by delimiters and blank or 0 symbols).
We say that M .x/ accepts if it eventually halts and enters an “accept” state, and we
say that M decides the language L if for all x 2 f0; 1g�,

x 2 L() M .x/ accepts:

The machine M may also contain a “reject” state, which M enters to signify that
it has halted without accepting. Let jxj be the length of x (i.e., the number of bits).
Then we say M is polynomial-time if there exists a polynomial p such that M .x/
halts, either accepting or rejecting, after at most p .jxj/ steps, for all x 2 f0; 1g�.

4The reason for this caveat is that, if a programming language were inherently limited to (say)
64K of memory, there would be only finitely many possible program behaviors, so in principle we
could just cache everything in a giant lookup table. Many programming languages do impose a
finite upper bound on the addressable memory, but they could easily be generalized to remove this
restriction (or one could consider programs that store information on external I/O devices).
5I should stress that, once we specify which computational models we have in mind—Turing
machines, Intel machine code, etc.—the polynomial-time equivalence of those models is typically
a theorem, though a rather tedious one. The “thesis” of the Extended Church-Turing Thesis, the
part not susceptible to proof, is that all other “reasonable” models of digital computation will also
be equivalent to those models.
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Now, P, or Polynomial-Time, is the class of all languages L for which there
exists a Turing machine M that decides L in polynomial time. Also, NP, or
Nondeterministic Polynomial-Time, is the class of languages L for which there
exists a Turing machine M, and a polynomial p, such that for all x 2 f0; 1g�,

x 2 L () 9w 2 f0; 1gp.jxj/ M .x;w/ accepts:

In other words, NP is the class of languages L for which, whenever x 2 L,
there exists a polynomial-size “witness string” w, which enables a polynomial-time
“verifier” M to recognize that indeed x 2 L. Conversely, whenever x 62 L, there must
be no w that causes M .x;w/ to accept.

There is an earlier definition of NP, which explains its ungainly name. Namely,
we can define a nondeterministic Turing machine as a Turing machine that “when
it sees a fork in the road, takes it”: that is, that is allowed to transition from
a single state at time t to multiple possible states at time t C 1. We say that a
machine “accepts” its input x, if there exists a list of valid transitions between states,
s1 ! s2 ! s3 ! � � � , that the machine could make on input x that terminates in
an accepting state sAccept. The machine “rejects” if there is no such accepting path.
The “running time” of such a machine is the maximum number of steps taken along
any path, until the machine either accepts or rejects. We can then define NP as the
class of all languages L for which there exists a nondeterministic Turing machine
that decides L in polynomial time. It is clear that NP, so defined, is equivalent to
the more intuitive verifier definition that we gave earlier. In one direction, if we
have a polynomial-time verifier M, then a nondeterministic Turing machine can
create paths corresponding to all possible witness strings w, and accept if and only
if there exists a w such that M .x;w/ accepts. In the other direction, if we have a
nondeterministic Turing machine M0, then a verifier can take as its witness string w
a description of a claimed path that causes M0 .x/ to accept, then check that the path
indeed does so.

Clearly P � NP, since an NP verifier M can just ignore its witness w, and try to
decide in polynomial time whether x 2 L itself. The central conjecture is that this
containment is strict.

Conjecture 1. P ¤ NP.

2.1 NP-Completeness

A further concept, not part of the statement of P
‹D NP but central to any discussion

of it, is NP-completeness. To explain this requires a few more definitions. An oracle
Turing machine is a Turing machine that, at any time, can submit an instance x to
an “oracle”: a device that, in a single time step, returns a bit indicating whether x
belongs to some given language L. An oracle that answers all queries consistently
with L is called an L-oracle, and we write ML to denote the (oracle) Turing machine
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Fig. 1 P, NP, NP-hard, and
NP-complete

M with L-oracle. We can then define PL, or P relative to L, as the class of all
languages L0 for which there exists an oracle machine M such that ML decides
L0 in polynomial time. If L0 2 PL, then we also write L0 �T

P L, which means
“L0 is polynomial-time Turing-reducible to L.” Note that polynomial-time Turing-
reducibility is indeed a partial order relation (i.e., it is transitive and reflexive).

A language L is NP-hard (technically, NP-hard under Turing reductions6) if
NP � PL. Informally, NP-hard means “at least as hard as any NP problem”: if we
had a black box for an NP-hard problem, we could use it to solve all NP problems in
polynomial time. Also, L is NP-complete if L is NP-hard and L 2 NP. Informally,
NP-complete problems are the hardest problems in NP. (See Fig. 1.)

A priori, it is not completely obvious that NP-hard or NP-complete problems
even exist. The great discovery of theoretical computer science in the 1970s was
that hundreds of problems of practical importance fall into these classes: indeed,
what is unusual is to find a hard NP problem that is not NP-complete.

More concretely, consider the following languages:

• 3SAT is the language consisting of all encodings of Boolean formulas ' over
n variables, which consist of ANDs of “3-clauses” (i.e., ORs of up to three
variables or their negations), such that there exists at least one assignment that
satisfies '. Here is an example, for which one can check that there’s no satisfying
assignment:

.x _ y _ z/ ^ .x _ y _ z/ ^ .x _ y/ ^ .x _ y/ ^ .y _ z/ ^ .y _ z/

6In practice, often one only needs a special kind of Turing reduction called a many-one reduction
or Karp reduction, which is a polynomial-time algorithm that maps every yes-instance of L0 to a
yes-instance of L, and every no-instance of L0 to a no-instance of L. The additional power of Turing
reductions—to make multiple queries to the L-oracle (with later queries depending on the outcomes
of earlier ones), post-process the results of those queries, etc.—is needed only in a minority of
cases. Nevertheless, for conceptual simplicity, throughout this survey I’ll talk in terms of Turing
reductions.
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• HAMILTONCYCLE is the language consisting of all encodings of undirected
graphs, for which there exists a cycle that visits each vertex exactly once (a
Hamilton cycle).

• TSP (Traveling Salesperson Problem) is the language consisting of all encodings
of ordered pairs hG; ki, such that G is a graph with positive integer weights, k is
a positive integer, and G has a Hamilton cycle of total weight at most k.

• CLIQUE is the language consisting of all encodings of ordered pairs hG; ki, such
that G is an undirected graph, k is a positive integer, and G contains a clique with
at least k vertices.

• SUBSETSUM is the language consisting of all encodings of positive integer tuples
ha1; : : : ; ak; bi, for which there exists a subset of the ai’s that sums to b.

• 3COL is the language consisting of all encodings of undirected graphs G that are
3-colorable (that is, the vertices of G can be colored red, green, or blue, so that
no two adjacent vertices are colored the same)

All of these languages are easily seen to be in NP. The famous Cook-Levin
Theorem says that one of them—3SAT—is also NP-hard, and hence NP-complete.

Theorem 2 (Cook-Levin Theorem [67, 141]). 3SAT is NP-complete.

A proof of Theorem 2 can be found in any theory of computing textbook (for
example, [208]). Here I’ll confine myself to saying that Theorem 2 can be proved in
three steps, each of them routine from today’s standpoint:

(1) One constructs an artificial language that is “NP-complete essentially by
definition”: for example,

L D ˚�hMi ; x; 0s; 0t
� W 9w 2 f0; 1gs suchthatM .x;w/ acceptsin � t steps

�
;

where hMi is a description of the Turing machine M.
(2) One then reduces L to the CIRCUITSAT problem, where we are given as input

a description of a Boolean circuit C built of AND, OR, and NOT gates, and
asked whether there exists an assignment x 2 f0; 1gn for the input bits such
that C .x/ D 1. To do that, in turn, is more like electrical engineering than
mathematics: given a Turing machine M, one simply builds up a Boolean logic
circuit that simulates the action of M on the input .x;w/ for t time steps, whose
size is polynomial in the parameters jhMij, jxj, s, and t, and which outputs 1 if
and only if M ever enters its accept state.

(3) Finally, one reduces CIRCUITSAT to 3SAT, by creating a new variable for
each gate in the Boolean circuit C, and then creating clauses to enforce that
the variable for each gate G equals the AND, OR, or NOT (as appropriate)
of the variables for G’s inputs. For example, one can express the constraint
a ^ b D c by

.a _ c/ ^ .b _ c/ ^ �a _ b _ c
�
:
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One then constrains the variable for the final output gate to be 1, yielding a
3SAT instance ' that is satisfiable if and only if the CIRCUITSAT instance was
(i.e., iff there existed an x such that C .x/ D 1).

Note that the algorithms to reduce L to CIRCUITSAT and to 3SAT—i.e., to convert
M to C and C to '—run in polynomial time (actually linear time), so we do indeed
preserve NP-hardness. Also, the reason for the 3 in 3SAT is simply that a Boolean
AND or OR gate has one output bit and two input bits, so it relates three bits in total.
The analogous 2SAT problem turns out to be in P.

Once one knows that 3SAT is NP-complete, “the floodgates are open.” One can
then prove that countless other NP problems are NP-complete by reducing 3SAT to
them, and then reducing those problems to others, and so on. The first indication of
how pervasiveness NP-completeness really was came from Karp [122] in 1972. He
showed, among many other results:

Theorem 3 (Karp [122]). HAMILTONCYCLE, TSP, CLIQUE, SUBSETSUM, and
3COL are all NP-complete.

Today, so many combinatorial search problems have been proven NP-complete
that, whenever one encounters a new such problem, a useful rule of thumb is that
it’s “NP-complete unless it has a good reason not to be”!

Note that, if any NP-complete problem is in P, then all of them are, and P D NP.
Conversely, if any NP-complete problem is not in P, then none of them are, and
P ¤ NP.

One application of NP-completeness is to reduce the number of logical quanti-
fiers needed to state the P ¤ NP conjecture. Let PT be the set of all polynomial-
time Turing machines, and given a language L, let L .x/ D 1 if x 2 L and L .x/ D 0
otherwise. Then a “naïve” statement of P ¤ NP would be

9L 2 NP 8M 2 PT 9x M .x/ ¤ L .x/ :

(Here, by quantifying over all languages in NP, we really mean quantifying over all
verification algorithms that define such languages.) Once we know that 3SAT (for
example) is NP-complete, we can state P ¤ NP as simply:

8M 2 PT 9x M .x/ ¤ 3Sat .x/ :

In words, we can pick any NP-complete problem we like; then P ¤ NP is equivalent
to the statement that that problem is not in P.

2.2 Other Core Concepts

A few more concepts give a fuller picture of the P
‹D NP question, and will be

referred to later in the survey. In this section, we restrict ourselves to concepts that

were explored in the 1970s, around the same time as P
‹D NP itself was formulated,
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and that are covered alongside P
‹D NP in any undergraduate textbook. Other

important concepts, such as nonuniformity, randomness, and one-way functions,
will be explained as needed in Sect. 5.

2.2.1 Search, Decision, and Optimization

For technical convenience, P and NP are defined in terms of languages or “decision
problems,” which have a single yes-or-no bit as the desired output (i.e., given an
input x, is x 2 L?). To put practical problems into this decision format, typically
we ask something like: does there exist a solution that satisfies the following list
of constraints? But of course, in real life we don’t merely want to know whether
a solution exists; we want to find a solution whenever there is one! And given the
many examples in mathematics where explicitly finding an object is harder than
proving its existence, one might worry that this would also occur here. Fortunately,
though, shifting our focus from decision problems to search problems doesn’t

change the P
‹D NP question at all, because of the following classic observation.

Proposition 4. If P D NP, then for every language L 2 NP (defined by a
verifier M), there is a polynomial-time algorithm that actually finds a witness
w 2 f0; 1gp.n/ such that M .x;w/ accepts, for all x 2 L.

Proof. The idea is to learn the bits of an accepting witness w D w1 � � �wp.n/ one by
one, by asking a series of NP decision questions. For example:

• Does there exist a w such that M .x;w/ accepts and w1 D 0?

If the answer is “yes,” then next ask:

• Does there exist a w such that M .x;w/ accepts, w1 D 0, and w2 D 0?

Otherwise, next ask:

• Does there exist a w such that M .x;w/ accepts, w1 D 1, and w2 D 0?

Continue in this manner until all p .n/ bits of w have been set. (This can also be
seen as a binary search on the set of all 2p.n/ possible witnesses.) �

Note that there are problems for which finding a solution is believed to be
much harder than deciding whether one exists. A classic example, as it happens,
is the problem of finding a Nash equilibrium of a matrix game. Here Nash’s
theorem guarantees that an equilibrium always exists, but an important 2006 result
of Daskalakis et al. [71] gave evidence that there is no polynomial-time algorithm
to find an equilibrium.7 The upshot of Proposition 4 is just that search and decision
are equivalent for the NP-complete problems.

7Technically, Daskalakis et al. showed that the search problem of finding a Nash equilibrium is
complete for a complexity class called PPAD. This could be loosely interpreted as saying that the



P
‹D NP 17

In practice, perhaps even more common than search problems are optimization
problems, where we have some efficiently-computable cost function, say C W
f0; 1gn ! ˚

0; 1; : : : ; 2p.n/
�
, and the goal is to find a solution x 2 f0; 1gn that

maximizes C .x/. Fortunately, we can always reduce optimization problems to
search and decision problems, by simply asking to find a solution x such that
C .x/ � K, and doing a binary search to find the largest K for which such an x
still exists. So again, if P D NP then all NP optimization problems are solvable
in polynomial time. On the other hand, it is important to remember that, while “is
there an x such that C .x/ � K?” is an NP question, “does maxx C .x/ D K?” and
“does x� maximize C .x/?” are presumably not NP questions, because no single x
is a witness to a yes-answer.

More generally, the fact that decision, search, and optimization all hinge on the

same P
‹D NP question has meant that many people—including experts—freely

abuse language by referring to search and optimization problems as “NP-complete.”
Strictly they should call such problems NP-hard, while reserving “NP-complete” for
suitable associated decision problems.

2.2.2 The Twilight Zone: Between P and NP-complete

We say a language L is NP-intermediate if L 2 NP, but L is neither in P nor
NP-complete. One might hope, not only that P ¤ NP, but that there would be
a dichotomy, with all NP problems either in P or else NP-complete. However, a
classic result by Ladner [135] rules that possibility out.

Theorem 5 (Ladner [135]). If P ¤ NP, then there exist NP-intermediate lan-
guages.

While Theorem 5 is theoretically important, the NP-intermediate problems that it
yields are extremely artificial (requiring diagonalization to construct). On the other
hand, as we’ll see, there are also problems of real-world importance—particularly
in cryptography and number theory—that are believed to be NP-intermediate, and a
proof of P ¤ NP could leave the status of those problems open. (Of course, a proof
of P D NP would mean there were no NP-intermediate problems, since every NP
problem would then be both NP-complete and in P.)

2.2.3 coNP and the Polynomial Hierarchy

Let L D f0; 1g� n L be the complement of L: that is, the set of strings not in L. Then
the complexity class

problem is “as close to NP-hard as it could possibly be, subject to Nash’s theorem showing why
the decision version is trivial.”
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coNP WD ˚L W L 2 NP
�

consists of the complements of all languages in NP. Note that this is not the same as
NP, the set of all non-NP languages! Rather, L 2 coNP means that whenever x … L,
there’s a short proof of non-membership that can be efficiently verified.

A natural question is whether NP is closed under complement: that is, whether
NP D coNP. If P D NP, then certainly P D coNP, and hence NP D coNP also.
On the other hand, we could imagine a world where NP D coNP even though
P ¤ NP. In that world, there would always be short proofs of unsatisfiability (or
of the nonexistence of cliques, Hamilton cycles, etc.), but those proofs could be
intractable to find. A generalization of the P ¤ NP conjecture says that this doesn’t
happen:

Conjecture 6. NP ¤ coNP.

A further generalization of P, NP, and coNP is the polynomial hierarchy PH.
Defined by analogy with the arithmetic hierarchy in computability theory, PH is an
infinite sequence of classes whose zeroth level equals P, and whose kth level (for
k � 1) consists of all problems that are in PL or NPL or coNPL, for some language
L in the .k � 1/st level. More succinctly, we write †P

0 D P, and

�P
k D P†

P
k�1 ; †P

k D NP†
P
k�1 ; …P

k D coNP†
P
k�1

for all k � 1.8 A more intuitive definition of PH is as the class of languages that are
definable using a polynomial-time predicate with a constant number of alternating
universal and existential quantifiers: for example, L 2 …P

2 if and only if there exists
a polynomial-time machine M and polynomial p such that for all x,

x 2 L () 8w 2 f0; 1gp.jxj/ 9z 2 f0; 1gp.jxj/ M .x;w; z/ accepts:

NP is then the special case with just one existential quantifier, over witness strings w.
If P D NP, then the entire PH “recursively unwinds” down to P: for example,

†P
2 D NPNP D NPP D NP D P:

Moreover, one can show that if †P
k D …P

k or †P
k D †P

kC1 for any k, then all the
levels above the kthcome “crashing down” to †P

k D …P
k . On the other hand, a

collapse at the kth level isn’t known to imply a collapse at any lower level. Thus,
we get an infinite sequence of stronger and stronger conjectures: first P ¤ NP,
then NP ¤ coNP, then †P

2 ¤ …P
2 , and so on. In the limit, we can conjecture the

following:

8In defining the kth level of the hierarchy, we could also have given oracles for …P
k�1 rather than

†P
k�1: it doesn’t matter. Note also that “an oracle for complexity class C” should be read as “an

oracle for any C-complete language L.”
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Conjecture 7. All the levels of PH are distinct—i.e., the infinite hierarchy is strict.

This is a generalization of P ¤ NP that many computer scientists believe, and
that has many useful consequences that aren’t known to follow from P ¤ NP itself.

It’s also interesting to consider NP \ coNP, which is the class of languages that
admit short, easily-checkable proofs for both membership and non-membership.
Here is yet another strengthening of the P ¤ NP conjecture:

Conjecture 8. P ¤ NP \ coNP.

Of course, if NP D coNP, then the P
‹D NP\coNP question becomes equivalent

to the original P
‹D NP question. But it’s conceivable that P D NP \ coNP even if

NP ¤ coNP (Fig. 2).

2.2.4 Factoring and Graph Isomorphism

As an application of these concepts, let’s consider two languages that are suspected
to be NP-intermediate. First, FAC—a language variant of the factoring problem—
consists of all ordered pairs of positive integers hN; ki such that N has a nontrivial
divisor at most k. Clearly a polynomial-time algorithm for FAC can be converted
into a polynomial-time algorithm to output the prime factorization (by repeatedly
doing binary search to peel off N’s smallest divisor), and vice versa. Second,
GRAPHISO—that is, graph isomorphism—consists of all encodings of pairs of
undirected graphs hG;Hi, such that G Š H. It’s easy to see to see that FAC and
GRAPHISO are both in NP.

More interestingly, FAC is actually in NP \ coNP. For one can prove that
hN; ki …FAC by exhibiting the unique prime factorization of N, and showing that
it only involves primes greater than k.9 But this has the striking consequence that
factoring cannot be NP-complete unless NP D coNP. The reason is the following.

Fig. 2 The polynomial
hierarchy

9This requires one nontrivial result, that every prime number has a succinct certificate—or in other
words, that primality testing is in NP [180]. Since 2002, it is even known that primality testing is
in P [14].
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Proposition 9. If any NP\coNP language is NP-complete, then NP D coNP, and
hence PH collapses to NP.

Proof. Suppose L 2 NP \ coNP. Then PL � NP \ coNP, since one can prove the
validity of every answer to every query to the L-oracle (whether the answer is ‘yes’
or ‘no’). So if NP � PL, then NP � NP \ coNP and hence NP D coNP. �

GRAPHISO is not quite known to be in NP\ coNP. However, it has been proven
to be in NP \ coNP under a plausible assumption about pseudorandom generators
[130]—and even with no assumptions, Boppana, Håstad, Zachos [49] proved the
following.

Theorem 10 ([49]). If GRAPHISO is NP-complete, then PH collapses to ΣP
2 .

As this survey was being written, Babai [32] announced the following break-
through result.

Theorem 11 (Babai [32]). GRAPHISO is solvable in npolylog n time.

Of course, this gives even more dramatic evidence that GRAPHISO is not NP-
complete: if it was, then all NP problems would be solvable in npolylog n time as
well.

2.2.5 Space Complexity

PSPACE is the class of languages L decidable by a Turing machine that uses a
polynomial number of bits of space or memory, with no restriction on the number
of time steps. Certainly P � PSPACE, since in t time steps, a serial algorithm can
access at most t memory cells. More generally, it is not hard to see that P � NP �
PH � PSPACE, but none of these containments have been proved to be strict.
The following conjecture—asserting that polynomial space is strictly stronger than
polynomial time—is perhaps second only to P ¤ NP itself in notoriety.

Conjecture 12. P ¤ PSPACE.

If P ¤ NP, then certainly P ¤ PSPACE as well, but the converse is not known.
One can also define a nondeterministic variant of PSPACE, called NPSPACE.

But a 1970 result called Savitch’s Theorem [197] shows that actually PSPACE D
NPSPACE.10 The reasons for this are extremely specific to space, and do not seem
to suggest any avenue to proving P D NP, the analogous statement for time.

10A further surprising result from 1987, called the Immerman-Szelepcsényi Theorem [110, 218],
says that NSPACE .f .n// D coNSPACE .f .n// for every “reasonable” memory bound f .n/. (By
contrast, Savitch’s Theorem produces a quadratic blowup when simulating nondeterministic space
by deterministic space, and it remains open whether that blowup can be removed.) This further
illustrates how space complexity behaves differently than we expect time complexity to behave.
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2.2.6 Counting Complexity

Given an NP search problem, besides asking whether a solution exists, it is also
natural to ask how many solutions there are. To capture this, in 1979 Valiant [226]
defined the class #P (pronounced “sharp-P”) of combinatorial counting problems.
Formally, a function f W f0; 1g� ! N is in #P if and only if there is a polynomial-
time Turing machine M, and a polynomial p, such that for all x 2 f0; 1g�,

f .x/ D
ˇ̌
ˇ
n
w 2 f0; 1gp.jxj/ W M .x;w/ accepts

oˇ̌
ˇ :

Note that, unlike P, NP, and so on, #P is not a class of languages (i.e., decision
problems). However, there are two ways we can compare #P to language classes.
The first is by considering P#P: that is, P with a #P oracle. We then have NP �
P#P � PSPACE, as well as the following highly non-obvious inclusion, called
Toda’s Theorem.

Theorem 13 (Toda [222]). PH � P#P.

The second way is by considering a complexity class called PP (Probabilistic
Polynomial-Time). PP can be defined as the class of languages L � f0; 1g� for
which there exist #P functions f and g such that for all inputs x 2 f0; 1g�,

x 2 L() f .x/ � g .x/ :

It is not hard to see that NP � PP � P#P. More interestingly, one can use binary
search to show that PPP D P#P, so in that sense PP is “almost as strong as #P.”

In practice, given any known NP-complete problem (3SAT, CLIQUE, SUB-
SETSUM, etc.), the counting version of that problem (denoted #3SAT, #CLIQUE,
#SUBSETSUM, etc.) will be #P-complete. Indeed, it is open whether there is any
NP-complete problem that violates that rule. However, the converse is false: for
example, the problem of deciding whether a graph has a perfect matching is in
P, but Valiant [226] showed that counting the number of perfect matchings is #P-
complete.

The #P-complete problems are believed to be “genuinely much harder” than the
NP-complete problems, in the sense that—in contrast to the situation with PH—
even if P D NP we would still have no idea how to prove P D P#P. On the other
hand, we do have the following nontrivial result.

Theorem 14 (Stockmeyer [212]). Suppose P D NP. Then in polynomial time, we
could approximate any #P function to within a factor of 1˙ ", for any " D 1=nO.1/.

2.2.7 Beyond Polynomial Resources

Of course, one can consider many other time and space bounds besides polynomial.
Before entering into this, I should offer a brief digression on the use of asymptotic
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notation in theoretical computer science, since such notation will also be used later
in the survey.

• f .n/ is O .g .n// if there exist nonnegative constants A;B such that f .n/ �
Ag .n/C B for all n (i.e., g is an asymptotic upper bound on f ).

• f .n/ is �.g .n// if g .n/ is O .f .n// (i.e., g is an asymptotic lower bound on f ).
• f .n/ is ‚.g .n// if f .n/ is O .g .n// and g .n/ is O .f .n// (i.e., f and g grow at

the same asymptotic rate).
• f .n/ is o .g .n// if for all positive A, there exists a B such that f .n/ � Ag .n/C B

for all n (i.e., g is a strict asymptotic upper bound on f ).

Now let TIME .f .n// be the class of languages decidable in O .f .n// time,
let NTIME .f .n// be the class decidable in nondeterministic O .f .n// time—
that is, with a witness of size O .f .n// that is verified in O .f .n// time—and
let SPACE .f .n// be the class decidable in O .f .n// space.11 We can then write
P DSk TIME

�
nk
�

and NP DSk NTIME
�
nk
�

and PSPACE DSk SPACE
�
nk
�
. It

is also interesting to study the exponential versions of these classes:

EXP D
[

k

TIME
�
2nk
�
;

NEXP D
[

k

NTIME
�
2nk
�
;

EXPSPACE D
[

k

SPACE
�
2nk
�
:

Note that by “exponential,” here we mean not just 2O.n/, but 2p.n/ for any polyno-
mial p.

Along with P � PSPACE, there is another fundamental relation between time
and space classes:

Proposition 15. PSPACE � EXP.

Proof. Consider a deterministic machine whose state can be fully described by p .n/
bits of information (e.g., the contents of a polynomial-size Turing machine tape,
plus a few extra bits for the location and internal state of tape head). Clearly such a
machine has at most 2p.n/ possible states. Thus, after 2p.n/ steps, either the machine
has halted, or else it has entered an infinite loop and will never accept. So to decide
whether the machine accepts, it suffices to simulate it for 2p.n/ steps. �

11Unlike P or PSPACE, classes like TIME
�
n2
�
, SPACE

�
n3
�
, etc. can be sensitive to whether we

are talking about Turing machines, RAM machines, or some other model of computation. But in
any case, one can simply fix one of those models any time the classes are mentioned in this survey,
and nothing will go wrong.
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More generally, we get an infinite interleaved hierarchy of deterministic, nonde-
terministic, and space classes:

P � NP � PSPACE � EXP � NEXP � EXPSPACE � � � �

There is also a “higher-up” variant of the P ¤ NP conjecture, which not surprisingly
is also open:

Conjecture 16. EXP ¤ NEXP.

We can at least prove a close relationship between the P
‹D NP and

EXP
‹D NEXP problems, via a trick called “padding” or “upward translation”:

Proposition 17. If P D NP, then EXP D NEXP.

Proof. Let L 2 NEXP, and let its verifier run in 2p.n/ time for some polynomial p.
Then consider the language

L0 D
n
x02

p.jxj/ W x 2 L
o
;

which consists of the inputs in L, but “padded out with an exponential number of
trailing zeroes.” Then L0 2 NP, since verifying that x 2 f0; 1gn is in L takes 2p.n/

time, which is linear in nC 2p.n/ (the length of x02
p.jxj/

). So by assumption, L0 2 P
as well. But this means that L 2 EXP, since given x 2 f0; 1gn, we can simply
pad x out with 2p.n/ trailing zeroes ourselves, then run the algorithm that takes time
polynomial in nC 2p.n/. �

For the same reason, if P D PSPACE, then EXP D EXPSPACE. On the other
hand, padding only works in one direction: as far as anyone knows today, we could
have P ¤ NP even if EXP D NEXP.

To summarize, P
‹D NP is just the tip of an iceberg; there seems to be an

extremely rich structure both below and above the NP-complete problems. Until
we can prove P ¤ NP, however, most of that structure will remain conjectural.

3 Beliefs About P
‹D NP

Just as Hilbert’s question turned out to have a negative answer, so too in this
case, most computer scientists conjecture that P ¤ NP: that there exist rapidly
checkable problems that are not rapidly solvable, and for which brute-force search
is close to the best that one can do. This is not a unanimous opinion. At least
one famous computer scientist, Donald Knuth [131], has professed a belief that
P D NP, while another, Richard Lipton [148], professes agnosticism. Also, in a
poll of mathematicians and theoretical computer scientists conducted by William
Gasarch [87] in 2002, there were 61 respondents who said P ¤ NP, but also 9
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who said P D NP. Admittedly, it can be hard to tell whether declarations that
P D NP are meant seriously, or are merely attempts to be contrarian. However,
we can surely agree with Knuth and Lipton that we are far from understanding the
limits of efficient computation, and that there are further surprises in store.

In this section, I’d like to explain why, despite our limited understanding, many
of us feel roughly as confident about P ¤ NP as we do about (say) the Riemann
Hypothesis, or other conjectures in math—not to mention empirical sciences—that
most experts believe without proof.12

The first point is that, when we ask whether P D NP, we are not asking whether
heuristic optimization methods (such as SAT-solvers) can sometimes do well in
practice; or whether there are sometimes clever ways to avoid exponential search. If
you believe, for example, that there is any cryptographic one-way function—that is,
any transformation of inputs x ! f .x/ that is easy to compute but hard to invert—
then that is enough for P ¤ NP. Such an f need not have any “nice” mathematical
structure (like the discrete logarithm function); it could simply be, say, the evolution
function of some arbitrary cellular automaton.

It is sometimes claimed that, when we consider P
‹D NP, there is a “symmetry of

ignorance”: yes, we have no idea how to solve NP-complete problems in polynomial
time, but we also have no idea how to prove that impossible, and therefore anyone is
free to believe whatever they like. In my view, however, what breaks the symmetry
is the immense, well-known difficulty of proving lower bounds. Simply put: even
if we suppose P ¤ NP, I don’t believe there’s any great mystery about why a
proof has remained elusive. A rigorous impossibility proof is often a tall order, and
many times in history—e.g., with Fermat’s Last Theorem, the Kepler Conjecture,
or the problem of squaring the circle—such a proof was requested centuries before
mathematical understanding had advanced to the point where it became a realistic
possibility! And as we’ll see in Sects. 4 and 6, today we know something about the
difficulty of proving even “baby” versions of P ¤ NP; about the barriers that have
been overcome and the others that remain to be.

By contrast, if P D NP, then there is, at least, a puzzle about why the whole
software industry, over half a century, has failed to uncover any promising leads for,
say, a fast algorithm to invert arbitrary one-way functions (just the algorithm itself,
not necessarily a proof that it works). The puzzle is heightened when we realize
that, in many real-world cases—such as linear programming, primality testing, and
network routing—fast methods to handle a problem in practice did come decades
before a full theoretical understanding of why the methods worked.

Another reason to believe P ¤ NP comes from the hierarchy theorems, which
we’ll meet in Sect. 6.1. Roughly speaking, these theorems imply that “most” pairs
of complexity classes are unequal; the problem, in most cases, is simply that we

12I like to joke that, if computer scientists had been physicists, we’d simply have declared P ¤ NP
to be an observed law of Nature, analogous to the laws of thermodynamics. A Nobel Prize would
even be given for the discovery of that law. (And in the unlikely event that someone later proved
P D NP, a second Nobel Prize would be awarded for the law’s overthrow.)
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can’t prove this for specific pairs! For example, in the chain of complexity classes
P � NP � PSPACE � EXP, we know that P ¤ EXP, which implies that at least
one of P ¤ NP, NP ¤ PSPACE, and PSPACE ¤ EXP must hold. So we might say:
given the provable reality of a rich lattice of unequal complexity classes, one needs
to offer a special argument if one thinks two classes collapse, but not necessarily if
one thinks they’re different.

To my mind, however, the strongest argument for P ¤ NP involves the thousands
of problems that have been shown to be NP-complete, and the thousands of other
problems that have been shown to be in P. If just one of these problems had
turned out to be both NP-complete and in P, that would have immediately implied
P D NP. Thus, one could argue, the P ¤ NP hypothesis has had thousands
of opportunities to be “falsified by observation.” Yet somehow, in every case, the
NP-completeness reductions and the polynomial-time algorithms conspicuously
avoid meeting each other—a phenomenon that I once described as the “invisible
fence” [7].

This phenomenon becomes particularly striking when we consider approxima-
tion algorithms for NP-hard problems, which return not necessarily an optimal
solution but a solution within some factor of optimal. To illustrate, there is a simple
polynomial-time algorithm that, given a 3SAT instance ', finds an assignment that
satisfies at least a 7=8 fraction of the clauses.13 Conversely, in 1997 Johan Håstad
[105] proved the following striking result.

Theorem 18 (Håstad [105]). Suppose there is a polynomial-time algorithm that,
given as input a satisfiable 3SAT instance ', outputs an assignment that satisfies at
least a 7=8C " fraction of the clauses, where " > 0 is any constant. Then P D NP.

Theorem 18 is one (strong) version of the PCP Theorem [29, 30], which is
considered one of the crowning achievements of theoretical computer science. The
PCP Theorem yields many other examples of “sharp NP-completeness thresholds,”
where as we numerically adjust the required solution quality, an optimization
problem undergoes a sudden “phase transition” from being in P to being NP-
complete. Other times there is a gap between the region of parameter space known
to be in P and the region known to be NP-complete. One of the major aims of
contemporary research is to close those gaps, for example by proving the so-called
Unique Games Conjecture [127].

We see a similar “invisible fence” if we shift our attention from approximation
algorithms to Leslie Valiant’s program of “accidental algorithms” [227]. The latter
are polynomial-time algorithms, often for planar graph problems, that exist for

13Strictly speaking, this is for the variant of 3SAT in which every clause must have exactly three
literals, rather than at most three.

Also note that, if we allow the use of randomness, then we can satisfy a 7=8 fraction of the
clauses in expectation by just setting each of the n variables uniformly at random! This is because
a clause with three literals has 23 � 1 D 7 ways to be satisfied, and only one way to be unsatisfied.
A deterministic polynomial-time algorithm that’s guaranteed to satisfy at least 7=8 of the clauses
requires only a little more work.
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certain parameter values but not for others, for reasons that are utterly opaque
if one doesn’t understand the strange cancellations that the algorithms exploit. A
prototypical result is the following:

Theorem 19 (Valiant [227]). Let PLANAR3SAT be a special case of 3SAT in which
the bipartite graph of clauses and variables is a planar graph. Now consider the
following problem: given an instance of PLANAR3SAT which is monotone (i.e.,
has no negations), and in which each variable occurs twice, count the number of
satisfying assignments mod k. This problem is in P for k D 7, but is NP-hard under
randomized reductions for k D 2.14

Needless to say (because otherwise you would have heard!), in not one of these
examples have the “P region” and the “NP-complete region” of parameter space
been discovered to overlap. For example, in Theorem 19, the NP-hardness proof
just happens to fail if we ask about the number of solutions mod 7, the very case for
which an algorithm is known. If P D NP then this is, at the least, an unexplained
coincidence. If P ¤ NP, on the other hand, then it makes perfect sense.

3.1 Independent of Set Theory?

Since the 1970s, there has been speculation that P ¤ NP might be independent
(that is, neither provable or disprovable) from the standard axiom systems for
mathematics, such as Zermelo-Fraenkel set theory. To be clear, this would mean
that either

(1) P ¤ NP, but that fact could never be proved (at least not in our usual formal
systems), or else

(2) a polynomial-time algorithm for NP-complete problems does exist, but it can
never be proven to work, or to halt in polynomial time.

Because P ¤ NP is a purely arithmetical statement (a …2-sentence), it can’t
simply be excised from mathematics, as some formalists would do with (say) the
Continuum Hypothesis or the Axiom of Choice. A polynomial-time algorithm for
3Sat either exists or it doesn’t! But that doesn’t imply that we can prove which.

In 2003, I wrote a survey article [1] about whether P
‹D NP is formally

independent, which somehow never got around to offering any opinion about the
likelihood of that eventuality! So for the record: I regard the independence of
P D NP as a farfetched possibility, as I do for the Riemann hypothesis, Goldbach’s
conjecture, and other unsolved problems of “ordinary” mathematics. At the least,

I’d say that the independence of P
‹D NP has the status right now of a “free-floating

speculation” with little or no support from past mathematical experience.

14Indeed, a natural conjecture would be that the problem is NP-hard under randomized reductions
for all k ¤ 7, but this remains open (Valiant, personal communication).
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There have been celebrated independence results over the past century, but as far
as I know they all fall into four classes:

(1) Independence of statements that are themselves about formal systems: for
example, that assert their own unprovability in ZF set theory, or ZF’s consis-
tency. This is the class produced by Gödel’s incompleteness theorems.

(2) Independence of statements in transfinite set theory, such as the Axiom of
Choice (AC) and the Continuum Hypothesis (CH). Unlike “ordinary” mathe-
matical statements—P ¤ NP, the Riemann hypothesis, etc.—the set-theoretic
ones can’t be rephrased in the language of elementary arithmetic; only questions
about their provability from various axiom systems are arithmetical. For that
reason, one can question whether AC, CH, and so on need to have definite truth-
values at all, independent of the axiom system. In any case, the independence
of set-theoretic principles seems different in kind, and less “threatening,” than
the independence of arithmetical statements.15

(3) Independence from “weak” systems, which don’t encompass all accepted
mathematical reasoning. Goodstein’s Theorem [91], and the non-losability of
the Kirby-Paris hydra game [129] are two examples of interesting arithmetical
statements that can be proved using small amounts of set theory (or ordinal
induction), but not within Peano arithmetic.

(4) Independence from ZF of strange combinatorial statements, which (alas) would
never have been studied if not for their independence. Harvey Friedman [84]
has produced striking examples of such statements.

Of course, it’s possible that P ¤ NP is unprovable, but that that fact itself will
forever elude proof: indeed, maybe the question of the independence of P ¤ NP is
itself independent of set theory, and so on ad infinitum! But one can at least say
that, if P ¤ NP (or for that matter, the Riemann hypothesis, Goldbach’s conjecture,
etc.) were proven independent of ZF, it would be an unprecedented development:
probably history’s first example of an independence result that didn’t fall into one
of the four classes above.16

The proof of independence would also have to be unlike any known inde-
pendence proof. Ben-David and Halevi [39] noticed that the techniques used to
prove statements such as Goodstein’s Theorem independent of Peano arithmetic,
actually prove independence from the stronger theory PAC…1: that is, Peano
arithmetic plus the set of all true arithmetical…1-sentences (sentences with a single

15Note also that, by the Shoenfield absoluteness theorem [202], one’s beliefs about the Axiom of
Choice, the Continuum Hypothesis, or other statements proven independent of ZF via forcing can
have no effect on the provability of arithmetical statements such as P ¤ NP.
16If a …1-sentence like the Goldbach Conjecture or the Riemann Hypothesis were known to be
independent of ZF, then it would also be known to be true, since any counterexample would have
a trivial finite proof! On the other hand, we could also imagine, say, the Goldbach Conjecture
being proven equivalent to the consistency of ZF, in which case we could say only that either ZF
is consistent and Goldbach is true but ZF doesn’t prove either, or else ZF proves anything. In any
case, none of this directly applies to P ¤ NP, which is a …2-sentence.
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universal quantifier and no existential quantifiers). However, if P ¤ NP could be
proven independent of PAC…1, that would mean that no …1-sentence implying
P ¤ NP could hold. And thus, for example, NP-complete problems would have
to be solvable in nf .n/ time for all computable functions f , no matter how slowly
growing. We would “almost” have P D NP.

As Sect. 6 will discuss, there are various formal barriers—including the rel-
ativization, algebrization, and natural proofs barriers—that explain why certain
existing techniques cannot be powerful enough to prove P ¤ NP. These barriers can
be interpreted, literally, as proofs that P ¤ NP is formally unprovable from certain
sets of axioms: namely, axioms that capture, or at least come close to capturing,
the power of the techniques in question (relativizing, algebrizing, or naturalizing
techniques) [28, 112, 190]. In all these cases, however, the axiom sets are known
not to capture all techniques in complexity theory: there are existing results that go
beyond these axiom sets (albeit, only a few that go beyond all of them at once). Thus,
these barriers indicate gaps in our current techniques, rather than in the foundations
of mathematics.

4 Why Is Proving P ¤ NP Difficult?

Let’s suppose that P ¤ NP. Then given the disarming simplicity of the statement,
why is proving it so difficult? As mentioned above, complexity theorists have
identified three technical barriers, called relativization [34], natural proofs [191],
and algebrization [10], that any proof of P ¤ NP will need to overcome. They’ve
also shown that it’s possible to surmount each of these barriers, though there are
few results that surmount all of them simultaneously. The barriers will be discussed
alongside progress toward proving P ¤ NP in Sect. 6.

However, one can also say something more conceptual, and possibly more
illuminating, about the meta-question of why it’s so hard to prove hardness. In my
view, the central reason why proving P ¤ NP is hard is simply that, in case after
case, there are amazingly clever ways to avoid brute-force search, and the diversity
of those ways rivals the diversity of mathematics itself. And even if, as I said in
Sect. 3, there seems to be an “invisible electric fence” separating the NP-complete
problems from the slight variants of those problems that are in P—still, almost any
argument anyone can imagine for why the NP-complete problems are hard would,
if it worked, also apply to the variants in P.

To illustrate, we saw in Sect. 2.1 that 3SAT is NP-complete. We also saw that
2SAT, which is like 3SAT except with two variables per clause rather than three, is
in P: indeed, 2SAT is solvable in linear time. Other variants of satisfiability that are
in P include HORNSAT (where each clause is an OR of arbitrary many non-negated
variables and at most one negated variable), and XORSAT (where each clause is a
linear equation mod 2, such as x2 ˚ x7 ˚ x9 � 1 .mod 2/).

Likewise, even though it’s NP-complete to decide whether a given graph is
3-colorable, one can decide in linear time whether a graph is 2-colorable. Also,
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even though SUBSETSUM is NP-complete, one can easily decide whether there’s a
subset of a1; : : : ; ak summing to b in time that’s nearly linear in a1 C � � � C ak. In
other words, if each ai is required to be encoded in “unary” notation (that is, as a list
of ai ones) rather than in binary, then SUBSETSUM is in P.

As a more interesting example, finding the maximum clique in a graph is NP-
complete, as are finding the minimum vertex cover, the chromatic number, and so
on. Yet in the 1960s, Edmonds [74] famously showed that the maximum matching—
that is, the largest set of edges no two of which share a vertex—can be found in P.
To a casual observer, matching doesn’t look terribly different from the other graph
optimization problems, but it is different.

Or consider linear, semidefinite, and convex programming. These techniques
yield hundreds of optimization problems that “seem at first like they should be
NP-complete,” yet are solvable in P. A few examples are finding maximum flows,
finding equilibria of two-player zero-sum games, training linear classifiers, and
optimizing over quantum states and unitary transformations.17

We can also give examples of “shocking” algorithms for problems that are clearly
in P. Most famously, the problem of multiplying two n	n matrices, C D AB, seems
like it should “obviously” require 
 n3 steps: 
 n steps for each of the n2 entries of
the product matrix C. But in 1968, Strassen [214] discovered an algorithm that takes
only O

�
nlog2 7

�
steps. There has since been a long sequence of further improvements,

culminating in the O
�
n2:376

�
algorithm by Coppersmith and Winograd [70], and its

recent improvements to O
�
n2:374

�
by Stothers [213] and to O

�
n2:373

�
by Vassilevska

Williams [230]. Thus, letting ! be the matrix multiplication exponent (i.e., the least

17I won’t have much to say about linear or semidefinite programming in this survey, so perhaps
this is as good a place as any to mention that today, we know a great deal about the impossibility
of solving NP-complete problems in polynomial time by formulating them as “natural” linear
programs. This story starts in 1987, with a preprint by Swart [217] that claimed to prove P D
NP by reducing the Traveling Salesperson Problem to a linear program with n8 variables and
constraints. Swart’s preprint inspired a landmark paper by Yannakakis [244] (making it possibly
the most productive failed P D NP proof in history!), in which Yannakakis showed that there
is no “symmetric” linear program with no.n/ variables and constraints that has the “Traveling
Salesperson Polytope” as its projection onto a subset of the variables. This ruled out Swart’s
approach. Yannakakis also showed that the polytope corresponding to the maximum matching
problem has no symmetric LP of subexponential size, but the polytope for the minimum spanning
tree problem does have a polynomial-size LP. In general, expressibility by such an LP is sufficient
for a problem to be in P, but not necessary.

Later, in 2012, Fiorini et al. [76] substantially improved Yannakakis’s result, getting rid of
the symmetry requirement. There have since been other major results in this direction: in 2014,
Rothvoß[194] showed that the perfect matching polytope requires exponentially-large LPs (again
with no symmetry requirement), while in 2015, Lee, Raghavendra, and Steurer [140] extended
many of these lower bounds from linear to semidefinite programs.

Collectively, these results rule out one “natural” approach to proving P D NP: namely, to start
from famous NP-hard optimization problems like TSP, and then find a polynomial-size linear or
semidefinite program that projects onto the polytope whose extreme points are the valid solutions.
Of course, we can’t yet rule out the possibility that linear or semidefinite programs could help
prove P D NP in some more indirect way (or via some NP-hard problem other than the specific
ones that were studied); ruling that out seems essentially tantamount to proving P ¤ NP itself.
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! such that n 	 n matrices can be multiplied in n!Co.1/ time), all we know today
is that ! 2 Œ2; 2:373�. Some computer scientists conjecture that ! D 2; but in any
case, just like with attempts to prove P ¤ NP, an obvious obstruction to proving
! > 2 is that the proof had better not yield ! D 3, or even a “natural-looking”
bound like ! � 2:5.

The breadth of clever polynomial-time algorithms might seem like a trite
observation, incommensurate with the challenge of explaining why it’s so hard to
prove P ¤ NP. Yet we have evidence to the contrary. Over the decades, there have
been hundreds of flawed ‘proofs’ announced for P ¤ NP. The announcement that
received the most attention, including coverage in The New York Times and other
major media outlets, was that of Deolalikar [73] in 2010. But in every such case that
I’m aware of, the proof could ultimately be rejected on the ground that, if it worked,
then it would also yield superpolynomial lower bounds for problems known to be
in P.

With some flawed P ¤ NP proofs, this is easy to see: for example, perhaps
the author proves that 3SAT must take exponential time, by some argument that’s
fearsome in technical details, but that ultimately boils down to “there are 2n possible
assignments to the variables, and clearly any algorithm must spend at least one step
rejecting each of them.” A general-purpose refutation of such arguments is simply
that, if they worked, then they’d work equally well for 2SAT. Alternatively, one
could point out that, as we’ll see in Sect. 5.1, it’s known how to solve 3SAT in 1:3n

time. So a P ¤ NP proof had better not imply a �.2n/ lower bound for 3SAT.
In the case of Deolalikar’s P ¤ NP attempt [73], the details were more

complicated, but the bottom line ended up being similar. Deolalikar appealed to
certain statistical properties of the set of satisfying assignments of a random 3SAT

instance. The claim was that, for reasons having to do with logical definability, those
statistical properties precluded 3SAT from having a polynomial-time algorithm.
During an intense online discussion, however, skeptics pointed out that random
XORSAT—which we previously mentioned as a satisfiability variant in P—gives
rise to solution sets indistinguishable from those of random 3SAT, with respect to
the properties Deolalikar was using (see for example [229]). This implied that there
must be one or more bugs in the proof, though it still left the task of finding them
(which was also done).

None of this means that proving P ¤ NP is impossible. A priori, it might also
have been hard to imagine a proof of the unsolvability of the halting problem,
but of course we know that such a proof exists. As we’ll see in Sect. 6.1, a
central difference between the two cases is that methods from logic—namely,
diagonalization and self-reference—worked to prove the unsolvability of the halting
problem, but there’s a precise sense in which these tricks can’t work (at least not
by themselves) to prove P ¤ NP. A related difference comes from the quantitative
character of P ¤ NP: somehow, any proof will need to explain why (say) a 1:00001n

or 2
p

n algorithm for 3SAT is impossible, even though a 1:3n algorithm exists. In
some sense, this need to make fine quantitative distinctions—to say that, yes, brute-
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force search can be beaten, but only by this much for this problem and by that much
for that one—puts a lower bound on the sophistication of any P ¤ NP proof.

5 Strengthenings of the P ¤ NP Conjecture

I’ll now survey various strengthenings of the P ¤ NP conjecture, which are
often needed for applications to cryptography, quantum computing, fine-grained
complexity, and elsewhere. Some of these strengthenings will play a role when,
in Sect. 6, we discuss the main approaches to proving P ¤ NP that have been tried.

5.1 Different Running Times

There has been a great deal of progress on beating brute-force search for many NP-
complete problems, even if the resulting algorithms still take exponential time. For
example, the following was shown by Schöning.

Theorem 20 (Schöning [198]). There is a randomized algorithm that solves 3SAT

in O.1:3n/ time.

For many NP-complete problems like HAMILTONCYCLE, for which the obvious
brute-force algorithm takes 
 nŠ time, it is also possible to reduce the running time
to O .2n/, or sometimes even to O .cn/ for some c < 2, through clever dynamic
programming.

How far can these algorithms be pushed? For example, is it possible that
3SAT could be solvable in 2O.

p
n/ time, as various NP-intermediate problems like

FACTORING are known to be? An important conjecture called the Exponential Time
Hypothesis, or ETH, asserts that the answer is no:

Conjecture 21 (Exponential Time Hypothesis). Any deterministic algorithm for
3SAT takes �.cn/ steps, for some constant c > 1.

The ETH is an ambitious strengthening of P ¤ NP, one that has found many
applications in recent years. Often, for example, assuming the ETH, it can be
shown that some particular polynomial-time or quasipolynomial-time algorithm
is optimal (i.e., that its exponent can’t be improved), whereas nothing similar is
known assuming only P ¤ NP. One example is the problem of computing the
edit distance between two strings, or the minimum number of insertions, deletions,
and replacements needed to transform one string to the other. Here a quadratic-time
algorithm has long been known, while in a recent breakthrough, Backurs and Indyk
[33] proved that algorithm to be essentially optimal assuming the ETH. A second
example is the problem of approximating the value of a two-prover “free game”:
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here Aaronson et al. [9] gave an nO.log n/ algorithm, and also proved that algorithm
essentially optimal assuming the ETH.

5.2 Nonuniform Algorithms and Circuits

P
‹D NP asks whether there is a single algorithm that, for each input size n, solves an

NP-complete problem like 3SAT in time polynomial in n. But one could also allow a
different algorithm for each input size: for example, imagine a clever approach that
yielded a speedup for n D 1000 but was swamped by constant factors for n D 100,
another approach that worked for n D 10; 000 but not n D 1000, and so on. To
formalize this notion, let P=poly be the class of languages L for which there exists
a polynomial-time Turing machine M, as well as an infinite set of “advice strings”
a1; a2; : : :, where an is p .n/ bits long for some polynomial p, such that for all n and
all x 2 f0; 1gn, we have

M .x; an/ accepts() x 2 L:

An equivalent way to define P=poly is as the class of languages recognized by a
family of polynomial-size circuits: that is, networks of Boolean logic gates (such
as AND, OR, NOT), with the input bits x1; : : : ; xn at the bottom and with a bit
determining whether x 2 L at the top, where the network can be different for each
input length n.18 The size of such a circuit is simply the number of logic gates in it.
P=poly is a nonuniform generalization of P: certainly P � P=poly, but there is no
containment in the other direction.19

Now, the nonuniform version of the P ¤ NP conjecture is the following.

Conjecture 22. NP 6� P=poly.

If P D NP, then certainly NP � P=poly, but the converse need not hold. About
the closest we have to a converse is the Karp-Lipton Theorem [123]:

Theorem 23. If NP � P=poly, then PH collapses to ΣP
2 .

Proof. Consider a complete problem for …P
2 : say, “for all x 2 f0; 1gp.n/, does

there exist a y 2 f0; 1gp.n/ such that A .x; y/ accepts?”, for some polynomial p and
polynomial-time algorithm A. Assuming NP � P=poly, we can solve that problem
in †P

2 as follows:

18Despite the term “circuit,” which comes from electrical engineering, circuits in theoretical
computer science are always free of cycles; they proceed from the inputs to the output via layers
of logic gates.
19This is a rare instance where the non-containment can actually be proved: for example, any unary
language (i.e., language of the form f0n W n 2 Sg) is clearly in P=poly, but there is an uncountable
infinity of such languages, so almost all of them cannot be in P.
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• “Does there exist a circuit C such that for all x, the algorithm A .x;C .x//
accepts?”

For if NP � P=poly and 8x9yA .x; y/ is true, then clearly there exists a
polynomial-size circuit C that takes x as input, and outputs a y such that A .x; y/
accepts. So we can simply use the existential quantifier in our†P

2 algorithm to guess
a description of that circuit.

We conclude that, if NP � P=poly, then …P
2 � †P

2 (and by symmetry, †P
2 �

…P
2 ). But this is known to cause a collapse of the entire polynomial hierarchy to

†P
2 . �

In summary, while most complexity theorists conjecture that NP 6� P=poly, as
far as we know it is a stronger conjecture than P ¤ NP. Indeed, it is even plausible
that future techniques could prove P ¤ NP without proving NP 6� P=poly: for
example, as we will discuss in Sect. 6.1, we can currently prove P ¤ EXP, but
cannot currently prove EXP 6� P=poly, or even NEXP 6� P=poly. Despite this, as
we will see in Sect. 6, most of the techniques that have been explored for proving
P ¤ NP, would actually yield the stronger result NP 6� P=poly if they worked. For

that reason, P=poly plays a central role in work on the P
‹D NP question.

There is one other aspect of circuit complexity that will play a role later in this
survey, and that is depth. The depth of a circuit simply means the length of the
longest path from an input bit to the output bit—or, if we think of the logic gates
as organized into layers, then the number of layers. There is a subclass of P=poly
called NC1 (the NC stands for “Nick’s Class,” after Nick Pippenger) which consists
of all languages that are decided by a family of circuits that have polynomial size
and also depth O .log n/.20 One can also think of NC1 as the class of problems
solvable in logarithmic time (nonuniformly) using a polynomial number of parallel
processors. It is conjectured that P 6� NC1 (that is, not all efficient algorithms can
be parallelized), but alas, even showing that NEXP 6� NC1 remains open at present.

Another way to define NC1 is as the class of languages decidable by a family of
polynomial-size Boolean formulas. In theoretical computer science, a formula just
means a circuit where every gate has fanout 1 (that is, where a gate cannot have its
output fed as input to multiple other gates). To see the equivalence: in one direction,
by replicating subcircuits wherever necessary, clearly any circuit of depth d and size
s can be “unraveled” into a formula of depth d and size at most 2ds, which is still
polynomial in n if d D O .log n/ and s D nO.1/. In the other direction, there is an
extremely useful fact proved by Brent [52], called “depth reduction.”

Proposition 24 (Brent [52]). Given any Boolean formula of size S, there is an
equivalent formula of size SO.1/ and depth O .log S/.21

20Note that, if each logic gate depends on at most 2 inputs, then log2 n is the smallest depth that
allows the output to depend on all n input bits.
21Bshouty, Cleve, and Eberly [53] showed that the size of the depth-reduced formula can even be
taken to be O

�
S1C"

�
, for any constant " > 0.
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Because of Proposition 24, the minimum depth D of any formula for a Boolean
function f is simply ‚.log S/, where S is the minimum size of any formula for f .
For circuits, by contrast, size and depth are two independent variables, which might
in general be related only by D � S � 2D.

5.3 Average-Case Complexity

If P ¤ NP, that means that there are NP problems for which no Turing machine
succeeds at solving all instances in polynomial time. But often, especially in
cryptography, we need more than that. It would be laughable to advertise a
cryptosystem on the grounds that there exist messages that are hard to decode! Thus,
it is natural to ask whether there are NP problems that are hard “in the average case”
or “on random instances,” rather than merely in the worst case. More pointedly, does
the existence of such problems follow from P ¤ NP, or is it a different, stronger
assumption?

The first step is to clarify what we mean by a “random instance.” For some
NP-complete problems, it makes sense to ask about a uniform random instance:
for example, we can consider 3SAT with n variables and m D ˛n uniformly-
random clauses (for some constant ˛), or 3COLORING on an Erdös-Rényi random
graph. In those cases, the difficulty tends to vary wildly with the problem and
the precise distribution. With 3SAT, for example, if the clause/variable ratio ˛ is
too small, then random instances are trivially satisfiable, while if ˛ is too large,
then they are trivially unsatisfiable. But there is a “sweet spot,” ˛ � 4:25, where
random 3SAT undergoes a phase transition from satisfiable to unsatisfiable, and
where the difficulty seems to blow up accordingly. Even at the threshold, however,
random 3SAT might still be much easier than worst-case 3SAT: the breakthrough
“survey propagation algorithm” [50] can solve random 3SAT quickly, even for ˛
extremely close to the threshold.22 More generally, there has been a great deal
of work on understanding particular distributions over instances, often using tools
from statistical physics (for an accessible introduction, see for example Moore and
Mertens [155]). Unfortunately, there are almost no known reductions among these
sorts of distributional problems, which would let us say that if one of them is hard
then so is another. The reason is that almost any imaginable reduction from problem
A to problem B will map a random instance of A to an extremely special, non-
random instance of B.

This means that, if we want to pick random instances of NP-complete problems
and be confident they are hard, then we might need carefully-tailored distributions.
Levin [142], and Li and Vitányi [143], observed that there exists a “universal
distribution” D with the remarkable property that any algorithm that fails on any
instance, will also fail with high probability with respect to instances drawn from D.

22But making matters more complicated still, survey propagation fails badly on random 4SAT.
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Briefly, one constructs D by giving each string x 2 f0; 1g� a probability proportional
to 2�K.x/, where K .x/ is the Kolmogorov complexity of x: that is, the number of bits
in the shortest computer program whose output is x. One then argues that, given
any algorithm A, one can design a short computer program that brute-force searches
for the first instances on which A fails—and for that reason, if there are any such
instances, then D will assign them a high probability.

In this construction, the catch is that there is no feasible way actually to sample
instances from the magical distribution D. Thus, given a family of distributions
D D fDngn, where Dn is over f0; 1gn, call D efficiently samplable if there exists
a Turing machine that takes as input a positive integer n and a uniformly random
string r 2 f0; 1gp.n/ (for some polynomial p), and that outputs a sample from Dn

in time polynomial in n.23 Then the real question, one might say, is whether any
NP-complete problems are hard on average with respect to efficiently samplable
distributions. More formally, does the following conjecture hold?

Conjecture 25 (NP Hard on Average). There exists a language L 2 NP, as well
as an efficiently samplable family of distributions D D fDngn, such that for all
polynomial-time algorithms A, there exists an n such that

Pr
x�Dn

ŒA .x/ D L .x/� < 0:51:

Here L .x/ 2 f0; 1g denotes the characteristic function of L.

It is a longstanding open problem whether P ¤ NP implies Conjecture 25.
There are NP-intermediate problems—one famous example being the discrete
logarithm problem—that are known to have the remarkable property of worst-
case/average-case equivalence. That is, any polynomial-time algorithm for these
problems that works on (say) 10% of instances implies a polynomial-time algorithm
for all instances; and conversely, if the problem is hard at all then it is hard on
average. However, despite decades of work, no one has been able to show worst-
case/average-case equivalence for any NP-complete problem (with respect to any
efficiently samplable distribution), and there are known obstacles to such a result.
For details, see for example the survey by Bogdanov and Trevisan [47].

5.3.1 Cryptography and One-Way Functions

One might hope that, even if we cannot base secure cryptography solely on the
assumption that P ¤ NP, at least we could base it on Conjecture 25. But there is
one more obstacle. In cryptography, we do not merely need NP problems for which
it is easy to generate hard instances: rather, we need NP problems for which it is
easy to generate hard instances, along with secret solutions to those instances. This

23We could also allow sampling from some distribution close to Dn, but we will ignore that
complication here.



36 S. Aaronson

motivates the definition of a one-way function (OWF), perhaps the central concept
of modern cryptography. Let f D ffngn be a family of functions, with fn W f0; 1gn !
f0; 1gp.n/ for some polynomial p. Then we call f a one-way function family if

(1) fn is computable in time polynomial in n, but
(2) fn is hard to invert: that is, for all polynomial-time algorithms A and all

polynomials q,

Pr
x�f0;1gn

Œfn .A .fn .x/// D fn .x/� <
1

q .n/
:

We then make the following conjecture.

Conjecture 26. There exists a one-way function family.

Conjecture 26 is stronger than Conjecture 25, which in turn is stronger than P ¤
NP. Indeed, it is not hard to show the following.

Proposition 27. Conjecture 26 holds if and only if there exists a fast way to gener-
ate hard random 3SAT instances with “planted solutions”: that is, an efficiently
samplable family of distributions D D fDngn over .'; x/ pairs, where ' is a
satisfiable 3SAT instance and x is a satisfying assignment to ', such that for all
polynomial-time algorithms A and all polynomials q,

Pr
'�Dn

ŒA .'/ finds a satisfying assignment to '� <
1

q .n/
:

Proof. Given a one-way function family f , we can generate a hard random 3SAT

instance with a planted solution by choosing x 2 f0; 1gn uniformly at random,
computing fn .x/, and then using the Cook-Levin Theorem (Theorem 2) to construct
a 3SAT instance that encodes the problem of finding a preimage of fn .x/. Conversely,
given a polynomial-time algorithm that takes as input a positive integer n and a
random string r 2 f0; 1gp.n/ (for some polynomial p), and that outputs a hard 3SAT

instance 'r together with a planted solution xr to 'r, the function fn .r/ WD 'r will
necessarily be one-way (since inverting fn would let us find a satisfying assignment
to 'r). �

Conjecture 26 turns out to suffice for building most of the ingredients of private-
key cryptography, notably including pseudorandom generators [106] and pseudo-
random functions [88]. Furthermore, while Conjecture 26 is formally stronger than
P ¤ NP, Proposition 27 suggests that the two conjectures are conceptually similar:
“all we are asking for” is a hard NP problem, together with a fast way to generate
hard solved instances of it.

This contrasts with the situation for public-key cryptography—i.e., the kind of
cryptography that does not require any secrets to be shared in advance, and which
is used for sending credit-card numbers over the web. To create a secure public-key
cryptosystem, one needs something even stronger than Conjecture 26: for example,
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a trapdoor OWF,24 which is an OWF with the additional property that it becomes
easy to invert if one is given a secret “trapdoor” string generated along with the
function. We do, of course, have candidates for secure public-key cryptosystems,
which are based on problems such as factoring, discrete logarithms (over both
multiplicative groups and elliptic curves), and finding short nonzero vectors in
lattices. To date, however, all public-key cryptosystems require “sticking one’s neck
out,” and conjecturing the hardness of some specific NP-intermediate problem,
something with much more structure than any known NP-complete problem. In
other words, for public-key cryptography, today one needs additional conjectures
that go fundamentally beyond P ¤ NP, or even the existence of OWFs.

5.4 Randomized Algorithms

Even assuming P ¤ NP, we can still ask whether NP-complete problems can
be solved in polynomial time with help from random bits. This is a different
question than whether NP is hard on average: whereas before we were asking about
algorithms that solve most instances (with respect to some distribution), now we are
asking about algorithms that solve all instances, for most choices of some auxiliary
random numbers.

Historically, algorithm designers have often resorted to randomness, to deal with
situations where most choices that an algorithm could make are fine, but any specific
choice will lead to terrible behavior on certain inputs. For example, in Monte Carlo
simulation, used throughout science and engineering, one estimates the volume of
a high-dimensional object by just sampling random points, and then checking what
fraction of them lie inside.

A second example concerns primality testing: that is, deciding the language

PRIMES D fN W N is a binary encoding of a prime numberg :

In modern cryptosystems such as RSA, it is just as important that primality testing
be easy as that the related factoring problem be hard. In the 1970s, Rabin [181] and
Solovay and Strassen [210] showed how to decide PRIMES in time polynomial in
log N (i.e., the number of digits of N). The small catch was that their algorithms
were randomized: in addition to N, they required a second input r; and for each N,
the algorithms were guaranteed to succeed for most r’s but not all of them. Miller
[154] also proposed a deterministic polynomial-time algorithm for PRIMES, but
could only prove the algorithm correct assuming the Extended Riemann Hypothesis.
Finally, after decades of work on the problem, in 2002 Agrawal, Kayal, and Saxena
[14] gave an unconditional proof that PRIMES is in P. In other words, if one only

24There are closely-related objects, such as “lossy” trapdoor OWFs (see [178]), that also suffice
for building public-key cryptosystems.
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cares about testing primality in polynomial time, and not about the degree of the
polynomial, then randomness was never needed after all.

A third example concerns the problem of polynomial identity testing (PIT). Here
we are given as input a circuit or formula, composed of addition and multiplication
gates, that computes a polynomial p W F ! F over a finite field F. The question is
whether p is the identically-zero polynomial—that is, whether the identity p .x/ D 0
holds. If deg .p/ � jFj, then the Fundamental Theorem of Algebra immediately
suggests a way to solve this problem: simply pick an x 2 F uniformly at random
and check whether p .x/ D 0. Since a nonzero polynomial p can vanish on at
most deg .p/ points, the probability that we will “get unlucky” and choose one of
those points is at most deg .p/ = jFj. To this day, no one knows of any deterministic
approach that achieves similar performance,25 and derandomizing PIT is considered
one of the frontier problems of theoretical computer science. For details, see for
example the survey of Shpilka and Yehudayoff [205].

5.4.1 BPP and Derandomization

What is the power of randomness more generally? Can every randomized algorithm
be derandomized, as ultimately happened with PRIMES? To explore these issues,
complexity theorists study several randomized generalizations of the class P. We
will consider just one of them: Bounded-Error Probabilistic Polynomial-Time, or
BPP, is the class of languages L � f0; 1g� for which there exists a polynomial-time
Turing machine M, as well as a polynomial p, such that for all inputs x 2 f0; 1gn,

Pr
r2f0;1gp.n/

ŒM .x; r/ D L .x/� � 2

3
:

In other words, for every x, the machine M must correctly decide whether x 2 L
“most of the time” (that is, for most choices of r). Crucially, here we can easily
replace the constant 2=3 by any other number between 1=2 and 1, or even by a
function like 1 � 2�n. So for example, if we wanted to know x 2 L with 0:999999
confidence, then we’d simply run M several times, with different independent values
of r, and then output the majority vote among the results.

It is clear that P � BPP � PSPACE; more interestingly, Sipser [206] and
Lautemann [139] proved that BPP is contained in†P

2 \…P
2 (that is, the second level

of PH). The Rabin-Miller and Solovay-Strassen algorithms imply that PRIMES 2
BPP.

25At least, not for arbitrary polynomials computed by small formulas or circuits. A great deal
of progress has been made derandomizing PIT for restricted classes of polynomials. In fact, the
deterministic primality test of Agrawal et al. [14] was based on a derandomization of one extremely
special case of PIT.
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Today, most complexity theorists conjecture that what happened to PRIMES can
happen to all of BPP:

Conjecture 28. P D BPP.

The reason for this conjecture is that it follows from the existence of good enough
pseudorandom generators, which we could use to replace the random string r in any
BPP algorithm M by deterministic strings that “look random, as far as M can tell.”
Furthermore, work in the 1990s showed that, if we grant certain extremely plausible
lower bounds on circuit size, then these pseudorandom generators exist. Perhaps the
most striking result along these lines is that of Impagliazzo and Wigderson [115]:

Theorem 29 (Impagliazzo-Wigderson [115]). Suppose there exists a language
decidable in 2n time, which requires nonuniform circuits of size 2�.n/. Then P D
BPP.

Of course, if P D BPP, then the question of whether randomized algorithms can

efficiently solve NP-complete problems is just the original P
‹D NP question in a

different guise. Ironically, however, the “obvious” approach to proving P D BPP is
to prove a strong circuit lower bound—and if one knew how to do that, perhaps one
could prove P ¤ NP as well!

Even if we don’t assume P D BPP, it’s easy to show that deterministic
nonuniform algorithms (see Sect. 5.2) can simulate randomized algorithms:

Proposition 30 (Adleman [11]). BPP � P=poly.

Proof. Let the language L be decided by a BPP algorithm that uses p .n/ random
bits. Then by using q .n/ D O .n � p .n// random bits, running the algorithm O .n/
times with independent random bits each time, and outputting the majority answer,
we can push the probability of error on any given input x 2 f0; 1gn from 1=3 down
to (say) 2�2n. Thus, the probability that there exists an x 2 f0; 1gn on which the
algorithm errs is at most 2n

�
2�2n

� D 2�n. This means, in particular, that there must

be a fixed choice for the random string r 2 f0; 1gq.n/ that causes the algorithm to
succeed on all x 2 f0; 1gn. So to decide L in P=poly, we simply “hardwire” that r as
the advice. �

By combining Theorem 23 with Proposition 30, we immediately obtain that if
NP � BPP, then the polynomial hierarchy collapses to the second level. So the

bottom line is that the NP � BPP question is likely identical to the P
‹D NP

question, but is extremely tightly related even if not.

5.5 Quantum Algorithms

The class BPP might not exhaust what the physical world lets us efficiently
compute, with quantum computing an obvious contender for going further. In 1993,
Bernstein and Vazirani [42] defined the complexity class BQP, or Bounded-Error
Quantum Polynomial-Time, as a quantum-mechanical generalization of BPP.
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(Details of quantum computing and BQP are beyond the scope of this survey, but
see [6, 172].) Bernstein and Vazirani, along with Adleman et al. [12], also showed
some basic containments:

P � BPP � BQP � PP � P#P � PSPACE:

In 1994, Shor [203] famously showed that the factoring and discrete logarithm
problems are in BQP—and hence, that a scalable quantum computer, if built, could
break almost all currently-used public-key cryptography. To design his quantum
algorithms, Shor had to exploit extremely special properties of factoring and discrete
logarithm, which are not known to hold for NP-complete problems.

The quantum analogue of the P
‹D NP question is the question of whether NP �

BQP: that is, can quantum computers solve NP-complete problems in polynomial
time?26 Most quantum computing researchers conjecture that the answer is no:

Conjecture 31. NP 6� BQP.

Naturally, there is little hope of proving Conjecture 31 at present, since any proof
would imply P ¤ NP! We do not even know today how to prove conditional
statements (analogous to what we have for BPP and P=poly): for example, that
if NP � BQP then PH collapses. On the other hand, it is known that, if a fast
quantum algorithm for NP-complete problems exists, then in some sense it will
have to be extremely different from Shor’s or any other known quantum algorithm.
For example, if we ignore the structure of NP-complete problems, and just consider
the abstract task of searching an unordered list, then quantum computers can provide
at most a square-root speedup over the classical running time [40]. This implies that
there exists an oracle A such that NPA 6� BQPA. Note that the square-root speedup
is actually achievable, using Grover’s algorithm [97]. For most NP-complete
problems, however, the fastest known quantum algorithm will be obtained by simply
layering Grover’s algorithm on top of the fastest known classical algorithm, yielding
a quadratic speedup but no more.27 So for example, as far as anyone knows today,
even a quantum computer would need 2�.n/ time to solve 3SAT.

26One can also consider the QMA-complete problems, which are a quantum generalization of the
NP-complete problems themselves (see [48]), but we will not pursue that here.
27One can artificially design an NP-complete problem with a superpolynomial quantum speedup
over the best known classical algorithm by, for example, taking the language

L D ˚
0'0 � � � 0 j ' is a satisfiable 3Sat instance of size n0:01

�[
f1x j x is a binary encoding of a positive integer with an odd number of distinct prime factorsg :

Clearly L is NP-complete, and a quantum algorithm can decide L in O
�

cn0:01
�

time for some c,

whereas the best known classical algorithm will take exp .n/ time.
Conversely, there are also NP-complete problems with no significant quantum speedup

known—say, because the best known classical algorithm is based on dynamic programming,
and it’s unknown how to combine that with Grover’s algorithm. A candidate example is the
Traveling Salesman Problem, which is solvable in O .2n poly .n// time using the Held-Karp
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Of course, one can also wonder whether the physical world might provide com-
putational resources even beyond quantum computing (based on black holes? closed
timelike curves? modifications to quantum mechanics?), and if so, whether those
resources might enable the polynomial-time solution of NP-complete problems.
Such speculations are beyond the scope of this article, but see for example [3].

6 Progress

One common view among mathematicians is that questions like P
‹D NP, while

undoubtedly important, are just too hard to make any progress on in the present
state of mathematics. It’s true that we seem to be nowhere close to a solution, but
in this section, I’ll build a case that the extreme pessimistic view is unwarranted.
I’ll explain what genuine knowledge I think we have, relevant to proving P ¤ NP,
that we didn’t have thirty years ago or in some cases ten years ago. One could argue
that, if P ¤ NP is a distant peak, then all the progress has remained in the foothills.
On the other hand, scaling the foothills has already been highly nontrivial, so anyone
who wants to work on P ¤ NP had better get acquainted with what’s been done.

More concretely, I’ll tell a story here of the interaction between lower bounds
and barriers: on the one hand, actual successes in proving superpolynomial or
exponential lower bounds in interesting models of computation; but on the other,
explanations for why the techniques used to achieve those successes don’t extend to
prove P ¤ NP. We’ll see how the barriers influence the next generation of lower
bound techniques, which are sometimes specifically designed to evade the barriers,
or evaluated on their potential to do so.

With a single exception—namely, the Mulmuley-Sohoni Geometric Complexity
Theory program—I’ll restrict my narrative to ideas that have already had definite
successes in proving limits on computation, beyond what had previously been
known. The drawback of this choice is that in many cases, the ideas that are concrete
enough to have worked for something, are also concrete enough that we understand
why they can’t work for P ¤ NP! My defense is that this section would be
unmanageably long, if it had to cover every idea about how P ¤ NP might someday
be proved.

I should, however, at least mention some important approaches to lower bounds
that will be missing from my subsequent narrative. The first is descriptive complex-
ity theory; see for example the book of Immerman [111] for a good introduction.
Descriptive complexity characterizes many complexity classes in terms of their
logical expressive power: for example, P corresponds to sentences expressible in
first-order logic with linear order and a least fixed point; NP to sentences expressible
in existential second-order logic; PSPACE to sentences expressible in second-order

dynamic programming algorithm [107], whereas Grover’s algorithm seems to yield only the worse
bound O.

p
nŠ/.
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logic with transitive closure; and EXP to sentences expressible in second-order
logic with a least fixed point. The hope is that characterizing complexity classes
in this way, with no explicit mention of resource bounds, will make it easier to
see which are equal and which different. There is one major piece of evidence for
this hope: namely, descriptive complexity played an important role in the proof by
Immerman [110] that nondeterministic space is closed under complement (though
the independent proof by Szelepcsényi [218] of the same result did not use these
ideas). Descriptive complexity theory has not yet led to new separations.

The second approach is lower bounds via communication complexity. Given a
Boolean function f W f0; 1gn ! f0; 1g, consider the following communication game:
Alice receives an x such that f .x/ D 0, Bob receives an input x such that f .x/ D 1,
and their goal is to agree on an index i 2 f1; : : : ; ng such that xi ¤ yi. Let Cf be the
communication complexity of this game: that is, the minimum number of bits that
Alice and Bob need to exchange to win the game, if they use an optimal protocol
(and where the communication cost is maximized over all x; y pairs). Then in 1990,
Karchmer and Wigderson [121] showed the following remarkable connection.

Theorem 32 (Karchmer-Wigderson [121]). For any f , the minimum depth of any
Boolean circuit for f is equal to Cf .

Combined with Proposition 24 (depth-reduction for formulas), Theorem 32
implies that every Boolean function f requires formulas of size at least 2Cf :
in other words, communication lower bounds imply formula-size lower bounds.
Since communication complexity is a well-established area of theoretical computer
science with many strong lower bounds (see for example the book by Kushilevitz
and Nisan [134]), one might therefore hope that lower-bounding the communication
cost of the “Karchmer-Wigderson game” would be a viable approach to proving
NP 6� NC1 or P 6� NC1, either of which would constitute a huge step toward
P ¤ NP.

See Sect. 6.2.2 for Karchmer and Wigderson’s applications of a similar connec-
tion to monotone formula-size lower bounds. Also see Aaronson and Wigderson
[10] for further connections between communication complexity and computational
complexity—including even a “communication complexity lower bound” that if true
would imply P ¤ NP. Of course, the question is whether these translations merely
shift the difficulty of complexity class separations to a superficially different setting,
or whether they set the stage for genuinely new insights.

The third approach is lower bounds via derandomization. In Sect. 5.4.1, we
discussed the discovery in the 1990s that, if sufficiently strong circuit lower bounds
hold, then P D BPP: that is, every randomized algorithm can be made deterministic
with only a polynomial slowdown. In the early 2000s, it was discovered that
converse statements often hold as well: that is, derandomizations of randomized
algorithms imply circuit lower bounds. Probably the most-cited result along these
lines is that of Kabanets and Impagliazzo [118]:
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Theorem 33 ([118]). Suppose the polynomial identity testing problem from
Sect. 5.4 is in P. Then either NEXP 6� P=poly, or else the permanent function
has no polynomial-size arithmetic circuits (see Sect. 6.5.1).

As usual, the issue is that it is not clear whether we should interpret this
result as giving a plausible path toward proving circuit lower bounds (namely, by
derandomizing PIT), or simply as explaining why derandomizing PIT will be hard
(namely, because doing so will imply circuit lower bounds)!

The fourth approach could be called lower bounds via “innocent-looking”
combinatorics problems. Here is an example: given an n 	 n matrix A, say over
the finite field F2, call A rigid if not only does A have rank �.n/, but any matrix
obtained by changing O

�
n1=10

�
entries in each row of A also has rank �.n/. It is

easy to show, via a counting argument, that almost all matrices A 2 F
n�n
2 are rigid.

On the other hand, Valiant [224] made the following striking observation in 1977: if
we manage to find any explicit example of a rigid matrix, then we also get an explicit
example of a Boolean function that cannot be computed by any circuit of linear size
and logarithmic depth.

For another connection in the same spirit, given a 3-dimensional tensor A 2
F

n�n�n
2 , let the rank of A be the smallest r such that A can be written as the sum

of r rank-one tensors (that is, tensors of the form tijk D xiyjzk). Then it is easy
to show, via a counting argument, that almost all tensors A 2 F

n�n�n
2 have rank

�
�
n2
�
. On the other hand, Strassen [215] observed in 1973 that, if we find any

explicit example of a 3-dimensional tensor with rank r, then we also get an explicit
example of a Boolean function with circuit complexity �.r/. 28 Alas, proving that
any explicit matrix is rigid, or that any explicit tensor has superlinear rank, have
turned out to be staggeringly hard problems—as perhaps shouldn’t surprise us, given
the implications for circuit lower bounds!

The rest of the section is organized as follows:

• Section 6.1 covers logical techniques, which typically fall prey to the relativiza-
tion barrier.

• Section 6.2 covers combinatorial techniques, which typically fall prey to the
natural proofs barrier.

• Section 6.3 covers “hybrid” techniques (logic plus arithmetization), many of
which fall prey to the algebrization barrier.

28Going even further, Raz [184] proved in 2010 that, if we manage to show that any explicit d-
dimensional tensor A W Œn�d ! F has rank at least nd.1�o.1//, then we’ve also shown that the n � n
permanent function has no polynomial-size arithmetic formulas. It’s easy to construct explicit d-

dimensional tensors with rank nbd=2c, but the current record is an explicit d-dimensional tensor

with rank at least 2nbd=2c C n � O .d log n/ [18].
Note that, if we could show that the permanent had no nO.log n/-size arithmetic formulas, that

would imply Valiant’s famous Conjecture 66: that the permanent has no polynomial-size arithmetic
circuits. However, Raz’s technique seems incapable of proving formula-size lower bounds better
than n�.log log n/.
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• Sections 6.4 covers “ironic complexity theory” (as exemplified by the recent
work of Ryan Williams), or the use of nontrivial algorithms to prove circuit lower
bounds.

• Section 6.5 covers arithmetic circuit lower bounds, which probably fall prey to
arithmetic variants of the natural proofs barrier (though this remains disputed).

• Section 6.6 covers Mulmuley and Sohoni’s Geometric Complexity Theory

(GCT), an audacious program to tackle P
‹D NP and related problems by

reducing them to questions in algebraic geometry and representation theory (and
which is also an example of “ironic complexity theory”).

Note that, for the approaches covered in Sects. 6.4 and 6.6, no formal barriers are
yet known.

6.1 Logical Techniques

In the 1960s, Hartmanis and Stearns [102] realized that, by simply “scaling down”
Turing’s diagonalization proof of the undecidability of the halting problem, one can
at least prove some separations between complexity classes. In particular, one can
generally show that more of the same resource (time, memory, etc.) lets one decide
more languages than less of that resource. Here is a special case of their so-called
Time Hierarchy Theorem.

Theorem 34 (Hartmanis-Stearns [102]). P ¤ EXP.

Proof. Let

L D f.hMi ; x; 0n/ W M .x/ halts in at most 2n stepsg :

Clearly L 2 EXP. On the other hand, suppose by contradiction that L 2 P. Then
there is some polynomial-time Turing machine A such that A .z/ accepts if and only
if z 2 L. Let A run in p .nC jhMij C jxj/ time. Then using A, we can easily produce
another machine B that does the following:

• Takes input .hMi ; 0n/.
• Runs forever if M .hMi ; 0n/ halts in at most 2n steps; otherwise halts.

Note that, if B halts at all, then it halts after only p .2nC 2 jhMij/ D nO.1/ steps.
Now consider what happens when B is run on input .hBi ; 0n/. If B .hBi ; 0n/

runs forever, then B .hBi ; 0n/ halts. Conversely, if B .hBi ; 0n/ halts, then for all
sufficiently large n, it halts in fewer than 2n steps, but that means that B .hBi ; 0n/

runs forever. So we conclude that B, and hence A, cannot have existed. �

More broadly, the same argument shows that there are languages decidable in
O
�
n2
�

time but not in O .n/ time, in O
�
n3
�

time but not in O
�
n2
�

time, and so on for
almost every natural pair of runtime bounds. (Technically, we have TIME .f .n// ¤
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TIME .g .n// for every f ; g that are time-constructible—that is, there exist Turing
machines that run for f .n/ and g .n/ steps given n as input—and that are separated
by more than a log n multiplicative factor.) Likewise, the Space Hierarchy Theorem
shows that there are languages decidable in O .f .n// space but not in O .g .n//
space, for all natural f .n/  g .n/. Cook [68] also proved a hierarchy theorem
for the nondeterministic time classes, which will play an important role in Sect. 6.4:

Theorem 35 (Nondeterministic Time Hierarchy Theorem [68]). For all time-
constructible f ; g such that f .nC 1/ D o .g .n//, we haveNTIME .f .n// ¤
NTIME .g .n//.

One amusing consequence of the hierarchy theorems is that we know, for exam-
ple, that P ¤ SPACE .n/, even though we don’t know either that P 6� SPACE .n/ or
that SPACE .n/ 6� P! For suppose by contradiction that P D SPACE .n/. Then
by a padding argument (cf. Proposition 17), P would also contain SPACE

�
n2
�
,

and therefore equal SPACE
�
n2
�
. But then we’d have SPACE .n/ D SPACE

�
n2
�
,

violating the Space Hierarchy Theorem.
In summary, there really is an infinite hierarchy of harder and harder computable

problems. Complexity classes don’t collapse in the most extreme ways imaginable,
with (say) everything solvable in linear time.

6.1.1 Circuit Lower Bounds Based on Counting

A related idea—not exactly “diagonalization,” but counting arguments made
explicit—can also be used to show that certain problems cannot be solved by
polynomial-size circuits. This story starts with Claude Shannon [201], who made
the following fundamental observation in 1949.

Proposition 36 (Shannon [201]). There exists a Boolean function f W f0; 1gn !
f0; 1g, on n variables, such that any circuit to compute f requires at least �.2n=n/
logic gates. Indeed, almost all Boolean functions on n variables (that is, a 1� o .1/
fraction of them) have this property.29

Proof. There are 22
n

different Boolean functions f on n variables, but only

TX
tD1

 
n

2

! 
nC 1
2

!
� � �
 

nC t � 1
2

!
< .nC T/2T

different Boolean circuits with n inputs and at most T NAND gates. Since each
circuit can only represent one function, and since .nC T/2T D o

�
22

n�
when T D

o .2n=n/, it follows by a counting argument (i.e., the pigeonhole principle) that some

29With some effort, Shannon’s lower bound can be shown to be tight: that is, every n-variable
Boolean function can be represented by a circuit of size O .2n=n/. (The obvious upper bound is
O .n2n/.)
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f must require a circuit with T D �.2n=n/ NAND gates—and indeed, that almost
all of the 22

n
possible f ’s must have this property. The number of AND, OR, and

NOT gates required is related to the number of NAND gates by a constant factor, so
is also �.2n=n/. �

Famously, Proposition 36 shows that there exist Boolean functions that require
exponentially large circuits—in fact, that almost all of them do—yet it fails to
produce a single example of such a function! It tells us nothing whatsoever about
3SAT or CLIQUE or any other particular function that might interest us. In that
respect, it is similar to Shannon’s celebrated proof that almost all codes are good
error-correcting codes, which also fails to produce a single example of such a
code. Just like, in the decades after Shannon, the central research agenda of coding
theory was to “make Shannon’s argument explicit” by finding specific good error-
correcting codes, so too the agenda of circuit complexity has been to “make
Proposition 36 explicit” by finding specific functions that provably require large
circuits.

In some cases, the mere fact that we know, from Proposition 36, that hard
functions exist lets us “bootstrap” to show that particular complexity classes must
contain hard functions. Here is an example of this.

Theorem 37. EXPSPACE 6� P=poly.

Proof. Let n be sufficiently large. Then by Proposition 36, there exist functions
f W f0; 1gn ! f0; 1g with circuit complexity at least c2n=n, for some constant c > 0.
Thus, if we list all the 22

n
functions in lexicographic order by their truth tables, there

must be a first function in the list, call it fn, with circuit complexity at least c2n=n.
We now define

L WD
[
n�1
fx 2 f0; 1gn W fn .x/ D 1g :

Then by construction, L … P=poly. On the other hand, enumerating all n-variable
Boolean functions, calculating the circuit complexity of each, and finding the first
one with circuit complexity at least c2n=n can all be done in exponential space.
Hence L 2 EXPSPACE. �

There is also a “scaled-down version” of Theorem 37, proved in the same way:

Theorem 38. For every fixed k, there is a language in PSPACE that does not have
circuits of size nk.30

By being a bit more clever, Kannan [120] lowered the complexity class in
Theorem 37 from EXPSPACE to NEXPNP.

Theorem 39 (Kannan [120]). NEXPNP 6� P=poly.

30Crucially, this will be a different language for each k; otherwise we would get PSPACE 6�
P=poly, which is far beyond our current ability to prove.
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Proof. First, we claim that EXPNPNP 6� P=poly. The reason is simply a more careful
version of the proof of Theorem 37: in EXPNPNP

, we can do an explicit binary search
for the lexicographically first Boolean function fn W f0; 1gn ! f0; 1g such that every
circuit of size at most (say) c2n=n disagrees with fn on some input x. (Such an fn
must exist by a counting argument.)

Next, suppose by contradiction that NEXPNP � P=poly. Then certainly NP �
P=poly. By the Karp-Lipton Theorem (Theorem 23), this implies that PH D †P

2 , so
in particular PNPNP D NPNP. By upward translation (as in Proposition 17), this in
turn means that EXPNPNP D NEXPNP. But we already know that EXPNPNP

does not
have polynomial-size circuits, and therefore neither does NEXPNP. �

Amusingly, if one works out the best possible lower bound that one can get from
Theorem 39 on the circuit complexity of a language in NEXPNP, it turns out to be
half-exponential: that is, a function f such that f .f .n// grows exponentially. Such
functions exist, but have no closed-form expressions.

Directly analogous to Theorem 38, a “scaled-down” version of the proof of
Theorem 39 shows that, for every fixed k, there is a language in †P

2 D NPNP that
does not have circuits of size nk.

In Sect. 6.3, we will discuss slight improvements to these results that can be
achieved with algebraic methods. Nevertheless, it (sadly) remains open even to show
that NEXP 6� P=poly, or that there is a language in NP that does not have linear-
sized circuits.

6.1.2 The Relativization Barrier

The magic of diagonalization, self-reference, and counting arguments is how
abstract and general they are: they never require us to “get our hands dirty” by
understanding the inner workings of algorithms or circuits. But as was recognized
early in the history of complexity theory, the price of generality is that the logical
techniques are extremely limited in scope.

Often the best way to understand the limits of a proposed approach for proving
a statement S, is to examine what else besides S the approach would prove if
it worked—i.e., which stronger statements S0 the approach “fails to differentiate”
from S. If any of the stronger statements are false, then the approach cannot prove S
either.

That is exactly what Baker et al. [34] did for diagonalization in 1975, when they
articulated the relativization barrier. Their central insight was that almost all the
techniques we have for proving statements in complexity theory—such as C � D
or C 6� D, where C and D are two complexity classes—are so general that, if they
work at all, then they actually prove CA � DA or CA 6� DA for all possible oracles A.
In other words: if all the machines that appear in the proof are enhanced in the same
way, by being given access to the same oracle, the proof is completely oblivious to
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that change, and goes through just as before. A proof with this property is said to
“relativize,” or to hold “in all possible relativized worlds” or “relative to any oracle.”

Why do so many proofs relativize? Intuitively, because the proofs only do things
like using one Turing machine M1 to simulate a second Turing machine M2 step-
by-step, without examining either machine’s internal structure. In that case, if M2 is
given access to an oracle A, then M1 can still simulate M2 just fine, provided that M1

is also given access to A, in order to simulate M2’s oracle calls.
To illustrate, the reader might want to check that the proofs of Theorems 37, 38,

and 39 can be straightforwardly modified to show that, more generally:

• PA ¤ EXPA for all oracles A.
• EXPSPACEA 6� PA=poly.

Alas, Baker, Gill, and Solovay then observed that no relativizing technique can

possibly resolve the P
‹D NP question. For, unlike (say) P

‹D EXP or the unsolv-

ability of the halting problem, P
‹D NP admits “contradictory relativizations”: there

are some oracle worlds where P D NP, and others where P ¤ NP. For that reason,
any proof of P ¤ NP will need to “notice,” at some point, that there are no oracles
in “our” world: it will have to use techniques that fail relative to certain oracles.

Theorem 40 (Baker-Gill-Solovay [34]). There exists an oracle A such that PA D
NPA, and another oracle B such that PB ¤ NPB.

Proof Sketch. To make PA D NPA, we can just let A be any PSPACE-complete
language. Then it is not hard to see that PA D NPA D PSPACE.

To make PB ¤ NPB, we can (for example) let B be a random oracle, as observed
by Bennett and Gill [41]. We can then, for example, define

L D ˚0n W the first 2n bits of B contain a run of n consecutive 10s
�
:

Clearly L 2 NPB. By contrast, one can easily that L … PB with probability 1 over
B: in this case, there really is nothing for a deterministic Turing machine to do but
brute-force search, requiring exponentially many queries to the B oracle. �

We also have the following somewhat harder result.

Theorem 41 (Wilson [243]). There exists an oracle A such that NEXPA �
PA=poly, and such that every language in NPA has linear-sized circuits with A-
oracle gates (that is, gates that query A).

In other words, any proof even of NEXP 6� P=poly—that is, of a circuit lower
bound just “slightly” beyond those that have already been proven—will require non-
relativizing techniques. One can likewise show that non-relativizing techniques will
be needed to make real progress on many of the other open problems of complexity
theory (such as proving P D BPP).

If the relativization barrier seems too banal, the way to appreciate it is to try to
invent techniques, for proving inclusions or separations among complexity classes,
that fail to relativize. It’s harder than it sounds! A partial explanation for this was
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given by Arora et al. [28], who reinterpreted the relativization barrier in logical
terms. From their perspective, a relativizing proof is simply any proof that “knows”
about complexity classes, only through axioms that assert the classes’ closure
properties, as well as languages that they do contain (for example, P contains the
empty language; if L1 and L2 are both in P, then so are Boolean combinations like L1
and L1\L2). These axioms can be shown to imply statements such as P ¤ EXP. But
other statements, like P ¤ NP, can be shown to be independent of the axioms, by
constructing models of the axioms where those statements are false. One constructs
those models by using oracles to “force in” additional languages—such as PSPACE-
complete languages, if one wants a world where P D NP—which the axioms might
not require to be contained in complexity classes like P and NP, but which they
don’t prohibit from being contained, either. The conclusion is that any proof of
P ¤ NP will need to appeal to deeper properties of the classes P and NP, properties
that don’t follow from these closure axioms.

6.2 Combinatorial Lower Bounds

Partly because of the relativization barrier, in the 1980s attention shifted to combi-
natorial approaches: that is, approaches where one tries to prove superpolynomial
lower bounds on the number of operations of some kind needed to do something,
by actually “rolling up one’s sleeves” and delving into the messy details of what
the operations do (rather than making abstract diagonalization arguments). These
combinatorial approaches enjoyed some spectacular successes, some of which
seemed at the time like they were within striking distance of proving P ¤ NP.
Let us discuss some examples.

6.2.1 Proof Complexity

Suppose we are given a 3SAT formula ', and we want to prove that ' has
no satisfying assignments. One natural approach to this is called resolution: we
repeatedly pick two clauses of ', and then “resolve” the clauses (or “smash them
together”) to derive a new clause that logically follows from the first two. This is
most useful when one of the clauses contains a non-negated literal x, and the other
contains the corresponding negated literal x. For example, from the clauses .x _ y/
and .x _ z/, it is easily seen that we can derive .y _ z/. The new derived clause can
then be added to the list of clauses, and used as an input to future resolution steps.

Now, if we ever derive the empty clause . /—say, by smashing together .x/
and .x/—then we can conclude that our original 3SAT formula ' must have been
unsatisfiable. For in that case, ' entails a clause that’s not satisfied by any setting
of variables. Another way to say this is that resolution is a sound proof system.
By doing an induction on the number of variables in ', it’s not hard to show that
resolution is also complete:
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Proposition 42. Resolution is a complete proof system for the unsatisfiability of
kSAT. In other words, given any unsatisfiable kSAT formula ', there exists some
sequence of resolution steps that produces the empty clause.

So the key question about resolution is just how many resolution steps are needed
to derive the empty clause, starting from an unsatisfiable formula '. If that number
could be upper-bounded by a polynomial in the size of ', it would follow that NP D
coNP. If, moreover, an appropriate sequence of resolutions could actually be found
in polynomial time, it would follow that P D NP.

On the other hand, when one proves completeness by induction on the number
of variables n, the only upper bound one gets on the number of resolution steps is
2n. And indeed, in 1985, Haken proved the following celebrated result.

Theorem 43 (Haken [101]). There exist kSAT formulas, involving nO.1/ variables
and clauses, for which any resolution proof of unsatisfiability requires at least 2�.n/

resolution steps. An example is a kSAT formula that explicitly encodes the “nth
Pigeonhole Principle”: that is, the statement that is no way to map n C 1 pigeons
into n holes, without mapping two pigeons to the same hole.

Haken’s nontrivial proof formalized the intuition that any resolution proof of the
Pigeonhole Principle will ultimately be stuck “reasoning locally”: “let’s see, if I put
this pigeon there, and that one there . . . darn, it still doesn’t work!” Such a proof has
no ability to engage in higher-level reasoning about the total number of pigeons.

Since Haken’s breakthrough, there have been many other exponential lower
bounds on the sizes of unsatisfiability proofs, typically for proof systems that
generalize resolution in some way (see Beame and Pitassi [36] for a good survey).
These, in turn, often let us prove exponential lower bounds on the running
times of certain kinds of algorithms. For example, there is a widely-used class
of kSAT algorithms called DPLL (Davis-Putnam-Logemann-Loveland) algorithms
[72], which are based on pruning the search tree of possible satisfying assignments.
DPLL algorithms have the property that, if one looks at the search tree of their
execution on an unsatisfiable kSAT formula ', one can read off a resolution proof
that ' is unsatisfiable. From that fact, together with Theorem 43, it follows that there
exist kSAT formulas (for example, the Pigeonhole Principle formulas) for which any
DPLL algorithm requires exponential time.

In principle, if one could prove superpolynomial lower bounds for arbitrary
proof systems (constrained only by the proofs being checkable in polynomial
time), one would get P ¤ NP, and even NP ¤ coNP! However, perhaps this
motivates turning our attention to lower bounds on circuit size, which tend to be
somewhat easier than the analogous proof complexity lower bounds, and which—
if generalized to arbitrary Boolean circuits—would “merely” imply P ¤ NP and
NP 6� P=poly, rather than NP ¤ coNP.
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6.2.2 Monotone Circuit Lower Bounds

Recall, from Sect. 5.2, that if we could merely prove that any family of Boolean
circuits to solve some NP problem required a superpolynomial number of AND,
OR, and NOT gates, then that would imply P ¤ NP, and even the stronger result
NP 6� P=poly (that is, NP-complete problems are not efficiently solvable by
nonuniform algorithms).

Now, some NP-complete languages L have the interesting property being
monotone: that is, changing an input bit from 0 to 1 can change the answer from
x … L to x 2 L, but never from x 2 L to x … L. An example is the CLIQUE

language: say, the set of all encodings of n-vertex graphs G, as adjacency matrices
of 0s and 1s, such that G contains a clique on at least

p
n vertices. It’s not hard to see

that one can decide any such language using a monotone circuit: that is, a Boolean
circuit of AND and OR gates only, no NOT gates. For the CLIQUE language, for
example, a circuit could simply consist of an OR of

� np
n

�
ANDs, one for each

possible clique. It thus becomes interesting to ask what are the smallest monotone
circuits for monotone NP-complete languages.

In 1985, Alexander Razborov, then a graduate student, astonished the complexity
theory world with the following result.

Theorem 44 (Razborov [187]). Any monotone circuit for CLIQUE requires at least
n�.log n/ gates.

Subsequently, Alon and Boppana [25] improved this, to show that any
monotone circuit to detect a clique of size 
 .n= log n/2=3 must have size

exp
�
�
�
.n= log n/1=3

��
. I won’t go into the proof of Theorem 44 here, but it uses

beautiful combinatorial techniques, including (in modern versions) the Erdös-Rado
sunflower lemma.

The significance of Theorem 44 is this: if we could now merely prove that any
circuit for a monotone language can be made into a monotone circuit without much
increasing its size, then we’d immediately get P ¤ NP and even NP 6� P=poly.
And indeed, this was considered a potentially-viable approach to proving P ¤ NP
for some months. Alas, the approach turned out to be a dead end, for the following
reason.

Theorem 45 ([188, 220]). There are monotone languages even in P that require
exponentially-large monotone circuits. An example is the MATCHING language,
consisting of all adjacency-matrix encodings of n-vertex graphs that admit a
matching on at least 
 .n= log n/2=3 vertices. This language requires monotone

circuits of size exp
�
�
�
.n= log n/1=3

��
.

Thus, while Theorem 44 stands as a striking example of the power of combina-
torics to prove circuit lower bounds, ultimately it tells us not about the hardness
of NP-complete problems, but only about the weakness of monotone circuits.
Theorem 45 implies that, even if we are trying to compute a monotone Boolean
function (such as the MATCHING function), allowing ourselves the non-monotone
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NOT gate can yield an exponential reduction in circuit size. Alas, Razborov’s
techniques break down completely as soon as a few NOT gates are available.31

I should also mention lower bounds on monotone depth. In the STCON (s; t-
connectivity) problem, we’re given as input the adjacency matrix of an undirected
graph, and asked whether or not there is a path between two designated vertices
s and t. By using their connection between circuit depth and communication
complexity (see Sect. 6), Karchmer and Wigderson [121] were able to prove that any
monotone circuit for STCON requires �

�
log2 n

�
depth—and as a consequence, that

any monotone formula for STCON requires n�.log n/ size. Since STCON is known to
have monotone circuits of polynomial size, this implies in particular that monotone
formula size and monotone circuit size are not polynomially related.

6.2.3 Small-Depth Circuits and the Random Restriction Method

Besides restricting the allowed gates (say, to AND and OR only), there’s a second
natural way to “hobble” a circuit, and thereby potentially make it easier to prove
lower bounds on circuit size. Namely, we can restrict the circuit’s depth, the number
of layers of gates between input and output. If the allowed gates all have a “fanin”
of 1 or 2 (that is, they all take only 1 or 2 input bits), then clearly any circuit that
depends nontrivially on all n of the input bits must have depth at least log2 n. On the
other hand, if we allow gates of unbounded fanin—for example, ANDs or XORs or
MAJORITYs on unlimited numbers of inputs—then it makes sense to ask what can
be computed even by circuits of constant depth. Constant-depth circuits are very
closely related to neural networks, which also consist of a small number of layers
of “logic gates” (i.e., the neurons), with each neuron allowed to have very large
“fanin”—i.e., to accept input from many or all of the neurons in the previous layer.

If we don’t also restrict the number of gates or neurons, then it turns out that
every function can be computed in small depth:

Proposition 46. Every Boolean function f W f0; 1gn ! f0; 1g can be computed by
an unbounded-fanin, depth-3 circuit of size O .n2n/: namely, by an OR of ANDs of
input bits and their negations.

Proof. We simply need to check whether the input, x 2 f0; 1gn, is one of the z’s
such that f .z/ D 1:

31Note that, if we encode the input string using the so-called dual-rail representation—in which
every 0 is represented by the 2-bit string 01, and every 1 by 10—then the monotone circuit
complexities of CLIQUE, MATCHING, and so on do become essentially equivalent to their non-
monotone circuit complexities, since we can push all the NOT gates to the bottom layer of the
circuit using de Morgan’s laws. Unfortunately, Razborov’s lower bound techniques also break
down under dual-rail encoding.
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Similarly, in typical neural network models, every Boolean function can be
computed by a network with 
 2n neurons arranged into just two layers.

So the interesting question is what happens if we restrict both the depth and the
number of gates or neurons. More formally, let AC0 be class of languages L �
f0; 1g� for which there exists a family of circuits fCngn�1, one for each input size n,
such that:

(1) Cn .x/ outputs 1 if x 2 L and 0 if x … L, for all n and x 2 f0; 1gn.
(2) Each Cn consists of unbounded-fanin AND and OR gates, as well as NOT gates.
(3) There is a polynomial p such that each Cn has at most p .n/ gates.
(4) There is a constant d such that each Cn has depth at most d.

Clearly AC0 is a subclass of P=poly; indeed we recover P=poly by omitting
condition (4). Now, one of the major triumphs of complexity theory in the 1980s
was to understand AC0, as we still only dream of understanding P=poly. It’s not just
that we know NP 6� AC0; rather, it’s that we know in detail which problems are and
aren’t in AC0 (even problems within P), and exactly how many gates are needed
for each given depth d. As the most famous example, let PARITY be the language
consisting of all strings with an odd number of ‘1’ bits. Then:

Theorem 47 (Ajtai [16], Furst-Saxe-Sipser [85]). PARITY is not in AC0.

While the original lower bounds on the size of AC0 circuits for PARITY were only
slightly superpolynomial, Theorem 47 was subsequently improved by Yao [245] and
then by Håstad [103], the latter of whom gave an essentially optimal result: namely,
any AC0 circuit for PARITY of depth d requires at least 2�.n

1=.d�1// gates.
The first proofs of Theorem 47 used what is called the method of random

restrictions. In this method, we assume by contradiction that we have a size-s, depth-
d, unbounded-fanin circuit C for our Boolean function—say, the PARITY function.
We then randomly fix most of the input bits to 0 or 1, while leaving a few input
bits unfixed. What we hope to find is that the random restriction “kills off” an entire
layer of gates—because any AND gate that takes even one constant 0 bit as input
can be replaced by the constant 0 function, and likewise, any OR gate that takes
even one 1 bit as input can be replaced by the constant 1 function. Thus, any AND
or OR gate with a large fanin is extremely likely to be killed off; gates with small
fanin might not be killed off, but can be left around to be dealt with later. We then
repeat this procedure, randomly restricting most of the remaining unfixed bits, in
order to kill off the next higher layer of AND and OR gates, and so on through all
d layers. By the time we are done, we have reduced C to a shadow of its former
self: specifically, to a circuit that depends on only a constant number of input bits.
Meanwhile, even though only a tiny fraction of the input bits (say, n1=d of them)
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remain unfixed, we still have a nontrivial Boolean function on those bits: indeed, it
is easy to see that any restriction of the PARITY function to a subset S of bits will
either be PARITY itself, or else NOT(PARITY). But a circuit of constant size clearly
can’t compute a Boolean function that depends on 
 n1ld input bits. This yields our
desired contradiction.

At a high level, there were three ingredients needed for the random restriction
method to work. First, the circuit needed to built out of AND and OR gates, which
are likely to get killed off by random restrictions. The method would not have
worked if the circuit contained unbounded-fanin MAJORITY gates (as a neural
network does), or even unbounded-fanin XOR gates. Second, it was crucial that the
circuit depth d was small, since we needed to shrink the number of unfixed input
variables by a large factor d times, and then still have unfixed variables left over. It
turns out that random restriction arguments can yield some lower bound whenever

d D o
�

log n
log log n

�
, but not beyond that. Third, we needed to consider a function, such

as PARITY, that remains nontrivial even after the overwhelming majority of input
bits have been randomly fixed to 0 or 1. The method wouldn’t have worked, for
example, for the n-bit AND function (which is unsurprising, since the AND function
does have a depth-1 circuit, consisting of a single AND gate!).

The original proofs for PARITY … AC0 have been generalized and improved
on in many ways. For example, Linial et al. [144] examined the weakness of
AC0 circuits from a different angle: “turning lemons into lemonade,” they gave
a quasipolynomial-time algorithm to learn arbitrary AC0 circuits with respect to
the uniform distribution over inputs. Also, proving a conjecture put forward by
Linial and Nisan [145] (and independently Babai), Braverman [51] showed that AC0

circuits cannot distinguish the outputs of a large range of pseudorandom generators
from truly random strings.

Meanwhile, Håstad [103] showed that for every d, there are functions computable
by AC0 circuits of depth d that require exponentially many gates for AC0 circuits of
depth d � 1. This implies that there exists an oracle relative to which PH is infinite.
Improving that result, Rossman, Servedio, and Tan [193] very recently showed that
the same functions Håstad had considered require exponentially many gates even
to approximate using AC0 circuits of depth d � 1. This implies that PH is infinite
relative to a random oracle with probability 1, resolving a 30-year-old open problem.

The random restriction method has also had other applications in complexity
theory, besides to AC0. Most notably, it’s been used to prove polynomial lower
bounds on formula size. The story of formula-size lower bounds starts in 1961 with
Subbotovskaya [216], who used random restrictions to show that the n-bit PARITY

function requires formulas of size �
�
n1:5

�
. Later Khrapchenko [128] improved this

to �
�
n2
�
, which is tight.32 Next, in 1987, Andreev [26] constructed a different

32Assume for simplicity that n is a power of 2. Then x1 ˚ � � � ˚ xn can be written as y ˚ z, where
y WD x1 ˚ � � � ˚ xn=2 and z WD xn=2C1 ˚ � � � ˚ xn. This in turn can be written as .y ^ z/_ .y ^ z/.
Expanding recursively now yields a size-n2 formula for PARITY, made of AND, OR, and NOT
gates.
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Boolean function in P that could be shown, again using random restrictions, to
require formulas of size n2:5�o.1/. This was subsequently improved to n2:55�o.1/ by
Impagliazzo and Nisan [114], to n2:63�o.1/ by Paterson and Zwick [176], and finally

to n3�o.1/ by Håstad [104] and to �
�

n3

.log n/2.log log n/3

�
by Tal [219]. Unfortunately,

the random restriction method seems fundamentally incapable of going beyond
�
�
n3
�
. On the other hand, for Boolean circuits rather than formulas, we still have

no lower bound better than linear for any function in P (or for that matter, in NP).!

6.2.4 Small-Depth Circuits and the Polynomial Method

For our purposes, the most important extension of Theorem 47 was achieved by
Smolensky [209] and Razborov [189] in 1987. Let AC0 Œm� be the class of languages
decidable by a family of constant-depth, polynomial-size, unbounded-fanin circuits
with AND, OR, NOT, and MOD-m gates (gates output 1 if their number of ‘1’ input
bits is divisible by m, and 0 otherwise). Then Smolensky and Razborov extended
the class of circuits for which lower bounds can be proven from AC0 to AC0 Œp�,
whenever p is prime.

Theorem 48 (Smolensky [209], Razborov [189]). Let p and q be distinct primes.
Then MODq, the set of all strings with Hamming weight divisible by q, is not in

AC0 Œp�. Indeed, any AC0 Œp� circuit for MODq of depth d requires 2�.n
1=2d/ gates.

As a corollary, the MAJORITY function is also not in AC0 Œp�, and also requires
2�.n

1=2d/ gates to compute using AC0 Œp� circuits of depth d.

It is not hard to show that AC0 Œp� D AC0
�
pk
�

for any k � 1, and thus, one also
gets lower bounds against AC0 Œm�, whenever m is a prime power.

The proof of Theorem 48 uses the so-called polynomial method. Here one
argues that, if a function f can be computed by a constant-depth circuit with AND,
OR, NOT, and MOD-p gates, then f can also be approximated by a low-degree
polynomial over the finite field Fp. One then shows that a function of interest, such
as the MODq function (for q ¤ p), can’t be approximated by any such low-degree
polynomial. This provides the desired contradiction.

The polynomial method is famously specific in scope: it’s still not known how
to generalize the method even to AC0 Œm� circuits, where m is not a prime power.
The reason why it breaks down there is simply that there are no finite fields of non-
prime-power order. And thus, to take an example, it’s still open whether the n-bit
MAJORITY function has a constant-depth, polynomial-size, unbounded-fanin circuit
consisting of AND, OR, NOT, and MOD-6 gates (or even entirely of MOD-6 gates)!

Stepping back, it’s interesting to ask whether the constant-depth circuit lower
bounds evade the relativization barrier explained in Sect. 6.1.2. There’s some
disagreement about whether it’s even sensible to feed oracles to tiny complexity
classes such as AC0 (see Allender and Gore [22] for example). However, to whatever
extent it is sensible, the answer is that these lower bounds do evade relativization.
For example, if by

�
AC0

�A
, we mean AC0 extended by “oracle gates” that query A,
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then it’s easy to construct an A such that
�
AC0

�A D PA: for example, any A that
is P-complete under AC0-reductions will work. On the other hand, we know from
Theorem 47 that AC0 ¤ P in the “real,” unrelativized world.

6.2.5 The Natural Proofs Barrier

Despite the weakness of AC0 and AC0 Œm� circuits, the progress on lower bounds for
them suggested what seemed to many researchers like a plausible path to proving
NP 6� P=poly, and hence P ¤ NP. That path is simply to generalize the random
restriction and polynomial methods further and further, to get lower bounds for
more and more powerful classes of circuits. The first step, of course, would be to
generalize the polynomial method to handle AC0 Œm� circuits, where m is not a prime
power. Then one could handle what are called TC0 circuits: that is, constant-depth,
polynomial-size, unbounded-fanin circuits with MAJORITY gates (or, as in a neural
network, threshold gates, which output 1 if a certain weighted affine combination of
the input bits exceeds 0, and 0 otherwise). Next, one could aim for polynomial-size
circuits of logarithmic depth: that is, the class NC1. Finally, one could push all the
way to polynomial-depth circuits: that is, the class P=poly.

Unfortunately, we now know that this path hits a profound barrier at TC0, if not
earlier—a barrier that explains why the random restriction and polynomial methods
haven’t taken us further toward a proof of P ¤ NP. Apparently this barrier was
known to some experts in the 1980s, but it was first articulated in print in 1993 by
Razborov and Rudich [191], who called it the natural proofs barrier.

The basic insight is that combinatorial techniques, such as the method of random
restrictions, do more than advertised: in some sense, they do too much for their own
good. In particular, not only do they let us show that certain specific functions, like
PARITY, are hard for AC0; they even let us certify that a random function is hard
for AC0. Indeed, such techniques give rise to an algorithm, which takes as input the
truth table of a Boolean function f W f0; 1gn ! f0; 1g, and which has the following
two properties.

(1) “Constructivity.” The algorithm runs in time polynomial in the size of f ’s truth
table (that is, polynomial in 2n).

(2) “Largeness.” If f is chosen uniformly at random, then with probability at least
1=nO.1/ over f , the algorithm certifies that f is hard (i.e., that f is not in some
circuit class C, such as AC0 in the case of the random restriction method).

If a lower bound proof gives rise to an algorithm satisfying (1) and (2), then
Razborov and Rudich call it a natural proof. In many cases, it’s not entirely obvious
that a lower bound proof is natural, but with some work one can show that it is. To
illustrate, in the case of the random restriction method, the algorithm could check
that f has a large fraction of its Fourier mass on high-degree Fourier coefficients, or
that f has high “average sensitivity” (that is, if x and y are random inputs that differ
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only in a single bit, then with high probability f .x/ ¤ f .y/). These tests have the
following three properties:

• They are easy to perform, in time polynomial in the truth table size 2n.
• A random function f will pass these tests with overwhelming probability (that is,

such an f will “look like PARITY” in the relevant respects).
• The results of Linial, Mansour, and Nisan [144] show that any f that passes

these tests remains nontrivial under most random restrictions, and for that reason,
cannot be in AC0.

But now, twisting the knife, Razborov and Rudich point out that any natural
lower bound proof is self-defeating, in that it yields an efficient algorithm to solve
some of the same problems that we’d set out to prove were hard. More concretely,
suppose we have a natural lower bound proof against the circuit class C. Then
by definition, we also have an efficient algorithm A that, given a random Boolean
function f W f0; 1gn ! f0; 1g, certifies that f … C with at least 1=nO.1/ probability
over f . But this means that C cannot contain very strong families of pseudorandom
functions: namely, functions f W f0; 1gn ! f0; 1g that are indistinguishable from
“truly” random functions, even by algorithms that can examine their entire truth
tables and use time polynomial in 2n.

Why not? Because A can never certify f … C if f is a pseudorandom function,
computable in C. But A certifies f … C with 1=nO.1/ probability over a truly random f .
Thus, A serves to distinguish random from pseudorandom functions with non-
negligible33 bias—so the latter were never really pseudorandom at all.

To recap, we’ve shown that, if there’s any natural proof that any function is
not in C, then all Boolean functions computable in C can be distinguished from
random functions by 2O.n/-time algorithms. That might not sound so impressive,
since 2O.n/ is a lot of time. But a key observation is that, for most of the circuit
classes C that we care about, there are families of pseudorandom functions ffsgs on
n bits that are conjectured to require 2p.n/ time to distinguish from truly random
functions, where p .n/ is as large a polynomial as we like (related to the length of
the random “seed” s). It follows from results of Naor and Reingold [170] that in
TC0 (constant-depth, polynomial-size threshold circuits), there are functions that
can’t be distinguished from random functions in 2O.n/ time, unless the factoring
and discrete logarithm problems are solvable in O

�
2n"
�

time for every " > 0. (For

comparison, the best known algorithms for these problems take roughly 2n1=3 time.)
Likewise, Banerjee et al. [35] showed that in TC0, there are functions that can’t be
distinguished from random in 2O.n/ time, unless noisy systems of linear equations
can be solved in O

�
2n"
�

time for every " > 0.
It’s worth pausing to let the irony sink in. Razborov and Rudich are pointing out

that, as we showed certain problems (factoring and discrete logarithm) to be harder
and harder via a natural proof, we’d simultaneously show those same problems to
be easier and easier! Indeed, any natural proof showing that these problems took

33In theoretical computer science, the term non-negligible means lower-bounded by 1=nO.1/.
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at least t .n/ time, would also show that they took at most roughly 2t�1.n/ time. As
a result, no natural proof could possibly show these problems take more than half-
exponential time: that is, time t .n/ such that t .t .n// grows exponentially.

Here, perhaps, we are finally face-to-face with a central conceptual difficulty of

the P
‹D NP question: namely, we’re trying to prove that certain functions are hard,

but the problem of deciding whether a function is hard is itself hard, according to
the very sorts of conjectures that we’re trying to prove.34

Of course, the natural proofs barrier didn’t prevent complexity theorists from
proving strong lower bounds against AC0. But the result of Linial et al. [144] can be
interpreted as saying that this is because AC0 is not yet powerful enough to express
pseudorandom functions. When we move just slightly higher, to TC0 (constant-
depth threshold circuits), we do have pseudorandom functions under plausible
hardness assumptions, and—not at all coincidentally, according to Razborov and
Rudich—we no longer have strong circuit lower bounds. In that sense, natural proofs
explains almost precisely why the progress toward proving P ¤ NP via circuit
complexity stalled where it did. The one complication in the story is the AC0 Œm�
classes, for which we don’t yet have strong lower bounds (though see Sect. 6.4),
but also don’t have pseudorandom function candidates. For those classes, it’s still
possible that natural proofs could succeed.

As Razborov and Rudich themselves stressed, the take-home message is not
that we should give up on proving P ¤ NP. In fact, since the beginning of
complexity theory, we’ve had at least one technique that easily evades the natural
proofs barrier: namely, diagonalization (the technique used to prove P ¤ EXP;
see Sect. 6.1)! The reason why diagonalization evades the barrier is that it zeroes
in on a specific property of the function f being lower-bounded—namely, the fact
that f is EXP-complete, and thus able to simulate all P machines—and thereby
avoids the trap of arguing that “f is hard because it looks like a random function.”
Of course, diagonalization is subject to the relativization barrier (see Sect. 6.1.2),
so the question still stands of how to evade relativization and natural proofs
simultaneously; we’ll return to that question in Sect. 6.3.

More broadly, there are many cases in mathematics where we can prove that
some object O of interest to us has a property P, even though we have no hope of
finding a general polynomial-time algorithm to decide whether any given object has
property P, or even to certify a large fraction of objects as having property P. In
such cases, often we prove that O has property P by exploiting special symmetries
in O—symmetries that have little to do with why O has property P, but everything
to do with why we can prove it has the property. As an example, a random graph is
an expander graph (that is, a graph on which a random walk mixes rapidly) with
overwhelming probability. But since the general problem of deciding whether a

34Technically, the problem of distinguishing random from pseudorandom functions is equivalent to
the problem of inverting one-way functions, which is not quite as strong as solving NP-complete
problems in polynomial time—only solving average-case NP-complete problems with planted
solutions. For more see Sect. 5.3.
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graph is an expander is NP-hard, if we want a specific graph G that’s provably
an expander, typically we need to construct G with a large amount of symmetry:
for example, by taking it to be the Cayley graph of a finite group. Similarly, even
though we expect that there’s no general efficient algorithm to decide if a Boolean
function f is hard,35 given as input f ’s truth table, we might be able to prove that
certain specific f ’s (for example, NP- or #P-complete ones) are hard by exploiting
their symmetries. Geometric Complexity Theory (see Sect. 6.6) is the best-known
development of that particular hope for escaping the natural proofs barrier.

But GCT is not the only way to use symmetry to evade natural proofs. As a
vastly smaller example, I [2, Appendix 10] proved an exponential lower bound
on the so-called manifestly orthogonal formula size of a function f W f0; 1gn !
f0; 1g that outputs 1 if the input x is a codeword of a linear error-correcting
code, and 0 otherwise. Here a manifestly orthogonal formula is a formula over
x1; : : : ; xn; x1; : : : ; xn consisting of OR and AND gates, where every OR must be
of two subformulas over the same set of variables, and every AND must be of
two subformulas over disjoint sets of variables. My lower bound wasn’t especially
difficult, but what’s notable about it took crucial advantage of a symmetry of linear
error-correcting codes: namely, the fact that any such code can be recursively
decomposed as a disjoint union of Cartesian products of smaller linear error-
correcting codes. My proof thus gives no apparent insight into how to certify that
a random Boolean function has manifestly orthogonal formula size exp .n/, and
possibly evades the natural proofs barrier (if there is such a barrier in the first place
for manifestly orthogonal formulas).

Another proposal for how one could use symmetry to evade the natural proofs
barrier comes from a beautiful 2010 paper by Allender and Koucký [24] (see also
Allender’s survey [20]). These authors show that, if one wanted to prove that certain
specific NC1 problems were not in TC0, thereby establishing the breakthrough
separation TC0 ¤ NC1, it would suffice to show that those problems had no TC0

circuits of size n1C", for any constant " > 0. To achieve this striking “bootstrap,”
from an n1C" lower bound to a superpolynomial one, Allender and Koucký exploit
the self-reducibility of the NC1 problems in question, the fact that they can be
reduced to smaller instances of themselves. Crucially, this self-reducibility would
not hold for a random function. For this reason, the proposed lower bound method
has at least the potential to evade the natural proofs barrier. Indeed, it’s not even
totally implausible that a natural proof could yield an n1C" lower bound for TC0

35The problem, given as input the truth table of a Boolean function f W f0; 1gn ! f0; 1g,
of computing or approximating the circuit complexity of f is called the Minimum Circuit Size
Problem (MCSP). It is a longstanding open problem whether or not MCSP is NP-hard; at any rate,
there are major obstructions to proving it NP-hard with existing techniques (see Kabanets and Cai
[117] and Murray and Williams [169]). On the other hand, MCSP cannot be in P (or BPP) unless
there are no cryptographically-secure pseudorandom generators. At any rate, what is relevant to
natural proofs is just whether there is an efficient algorithm to certify a large fraction of Boolean
functions as being hard, which is a weaker requirement than solving MCSP.
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circuits, with the bootstrapping from n1C" to superpolynomial the only non-natural
part of the argument.36

6.3 Arithmetization

In the previous sections, we saw that there are logic-based techniques (like
diagonalization) that suffice to prove P ¤ EXP and NEXPNP 6� P=poly, and that
indeed evade the natural proofs barrier, but that are blocked from proving P ¤ NP
by the relativization barrier. Meanwhile, there are combinatorial techniques (like
random restrictions) that suffice to prove circuit lower bounds against AC0 and
AC0 Œp�, and that evade the relativization barrier, but that are blocked from proving
lower bounds against P=poly (and hence, from proving P ¤ NP) by the natural
proofs barrier.

This situation raises a question: couldn’t we simply combine techniques that
evade relativization but not natural proofs, with techniques that evade natural proofs
but not relativization, in order to evade both? As it turns out, we can.

6.3.1 IP D PSPACE

The story starts with a dramatic development in complexity theory around 1990,
though not one that obviously bore on P ¤ NP or circuit lower bounds. In the
1980s, theoretical cryptographers became interested in so-called interactive proof
systems, which are protocols where a computationally-unbounded but untrustworthy
prover (traditionally named Merlin) tries to convince a skeptical polynomial-time
verifier (traditionally named Arthur) that some mathematical statement is true, via a
two-way conversation, in which Arthur can randomly generate challenges and then
evaluate Merlin’s answers to them.

More formally, let IP (Interactive Proof) be the class of all languages L � f0; 1g�
for which there exists a probabilistic polynomial-time algorithm for Arthur with the
following properties. Arthur receives an input string x 2 f0; 1gn (which Merlin also
knows), and then generates up to nO.1/ challenges to send to Merlin. Each challenge
is a string of up to nO.1/ bits, and each can depend on x, on Arthur’s internal random
bits, and on Merlin’s responses to the previous challenges. (We also allow Arthur, if
he likes, to keep some random bits hidden, without sending them to Merlin—though

36Allender and Koucký’s paper partly builds on 2003 work by Srinivasan [211], who showed
that, to prove P ¤ NP, one would “merely” need to show that any algorithm to compute weak
approximations for the MAXCLIQUE problem takes �

�
n1C"

�
time, for some constant " > 0.

The way Srinivasan proved this striking statement was, again, by using a sort of self-reduciblity:
he showed that, if there’s a polynomial-time algorithm for MAXCLIQUE, then by running that
algorithm on smaller graphs sampled from the original graph, one can solve approximate versions
of MAXCLIQUE in n1Co.1/ time.
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surprisingly, this turns out not to make any difference [90].) We think of Merlin as
trying his best to persuade Arthur that x 2 L; at the end, Arthur decides whether to
accept or reject Merlin’s claim. We require that for all inputs x:

• If x 2 L, then there is some strategy for Merlin (i.e., some function determining
which message to send next, given x and the sequence of challenges so far37)
that causes Arthur to accept with probability at least 2=3 over his internal
randomness.

• If x … L, then regardless of what strategy Merlin uses, Arthur rejects with
probability at least 2=3 over his internal randomness.

Clearly IP generalizes NP: indeed, we recover NP if we get rid of the interaction
and randomness aspects, and just allow a single message from Merlin, which Arthur
either accepts or rejects. In the other direction, it’s not hard to show that IP �
PSPACE.38

The question asked in the 1980s was: does interaction help? how much bigger
is IP than NP? It was observed that IP contains at least a few languages that aren’t
known to be in NP, such as graph non-isomorphism. This is so because of a simple,
famous, and elegant protocol [89]: given two n-vertex graphs G and H, Arthur can
pick one of the two uniformly at random, randomly permute its vertices, then send
the result to Merlin. He then challenges Merlin: which graph did I start from, G or
H? If G © H, then Merlin, being computationally unbounded, can easily answer
this challenge by solving graph isomorphism. If, on the other hand, G Š H, then
Merlin sees the same distribution over graphs regardless of whether Arthur started
from G or H, so he must guess wrongly with probability 1=2.

Despite such protocols, the feeling in the late 1980s was that IP should be only
a “slight” extension of NP. This feeling was buttressed by a result of Fortnow and
Sipser [83], which said that there exists an oracle A such that coNPA 6� IPA, and
hence, any interactive protocol even for coNP (e.g., for proving Boolean formulas
unsatisfiable) would require non-relativizing techniques.

Yet in the teeth of that oracle result, Lund et al. [151] showed nevertheless that
coNP � IP “in the real world”—and not only that, but P#P � IP. This was quickly
improved by Shamir [200] to the following striking statement:

Theorem 49 ([151, 200]). IP D PSPACE:

Theorem 49 means, for example, that if a computationally-unbounded alien came
to Earth, it could not merely beat us in games of strategy like chess—rather, the

37We can assume without loss of generality that Merlin’s strategy is deterministic, since Merlin is
computationally unbounded, and any convex combination of strategies must contain a deterministic
strategy that causes Arthur to accept with at least as great a probability as the convex combination
does.
38This is so because a polynomial-space Turing machine can treat the entire interaction between
Merlin and Arthur as a game, in which Merlin is trying to get Arthur to accept with the largest
possible probability. The machine can then evaluate the exponentially large game tree using depth-
first recursion.
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alien could mathematically prove to us, via a short conversation and to statistical
certainty, that it knew how to play perfect chess. Theorem 49 has been hugely
influential in complexity theory for several reasons, but one reason was that it
illustrated, dramatically and indisputably, that the relativization barrier need not
inhibit progress.

So how was this amazing result achieved, and why does the proof fail relative
to certain oracles? The trick is what we now call arithmetization. This means that
we take a Boolean formula or circuit—involving, for example, AND, OR, and
NOT gates—and then reinterpret the Boolean gates as arithmetic operations over
some larger finite field Fp. More concretely, the Boolean AND (x ^ y) becomes
multiplication (xy), the Boolean NOT becomes the function 1 � x, and the Boolean
OR (x _ y) becomes x C y � xy. Note that if x; y 2 f0; 1g, then we recover the
original Boolean operations. But the new operations make sense even if x; y … f0; 1g,
and they have the effect of lifting our Boolean formula or circuit to a multivariate
polynomial over Fp. Furthermore, the degree of the polynomial can be upper-
bounded in terms of the size of the formula or circuit.

The advantage of this lifting is that polynomials, at least over large finite fields,
have powerful error-correcting properties that are unavailable in the Boolean case.
These properties ultimately derive from the Fundamental Theorem of Algebra:
a nonzero, degree-d univariate polynomial has at most d roots. As a consequence, if
q; q0 W Fp ! Fp are two degree-d polynomials that are unequal (and d � p), then
with high probability, their inequality can be seen by querying them at a random
point:

Pr
x2Fp

�
q .x/ D q0 .x/

� � d

p
:

Let me now give a brief impression of how one proves Theorem 49, or at least the
simpler result coNP � IP. Let ' .x1; : : : ; xn/ be, say, a 3SAT formula that Merlin
wants to convince Arthur is unsatisfiable. Then Arthur first lifts ' to a multivariate
polynomial q W Fn

p ! Fp, of degree d � j'j (where j'j is the size of '), over the
finite field Fp, for some p 2n. Merlin’s task is equivalent to convincing Arthur of
the following equation:

X
x1;:::;xn2f0;1g

q .x1; : : : ; xn/ D 0:

To achieve this, Merlin first sends Arthur the coefficients of a univariate polynomial
q1 W Fp ! Fp. Merlin claims that q1 satisfies

q1 .x1/ D
X

x2;:::;xn2f0;1g
q .x1; x2; : : : ; xn/ ; (1)

and also satisfies q1 .0/C q1 .1/ D 0. Arthur can easily check the latter equation for
himself. To check Eq. (1), Arthur picks a random value r1 2 Fp for x1 and sends it
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to Merlin. Then Merlin replies with a univariate polynomial q2, for which he claims
that

q2 .x2/ D
X

x3;:::;xn2f0;1g
q .r1; x2; x3; : : : ; xn/ :

Arthur checks that q2 .0/ C q2 .1/ D q1 .r1/, then picks a random value r2 2 Fp

for x2 and sends it to Merlin, and so on. Finally, Arthur checks that qn is indeed the
univariate polynomial obtained by starting from the arithmetization of ', then fixing
x1; : : : ; xn�1 to r1; : : : ; rn�1 respectively. The Fundamental Theorem of Algebra
ensures that, if Merlin lied at any point in the protocol, then with high probability at
least one of Arthur’s checks will fail.

Now, to return to the question that interests us: why does this protocol escape
the relativization barrier? The short answer is: because if the Boolean formula
' involved oracle gates, then we wouldn’t have been able to arithmetize '. By
arithmetizing ', we did something “deeper” with it, more dependent on its structure,
than simply evaluating ' on various Boolean inputs (which would have continued
to work fine had an oracle been involved). Arithmetization made sense because '
was built out of AND and OR and NOT gates, which we were able to reinterpret
arithmetically. But how would we arithmetically reinterpret an oracle gate?

6.3.2 Hybrid Circuit Lower Bounds

To recap, PSPACE � IP is a non-relativizing inclusion of complexity classes. But
can we leverage that achievement to prove non-relativizing separations between
complexity classes, with an eye toward P ¤ NP? Certainly, by combining IP D
PSPACE with the Space Hierarchy Theorem (which implies SPACE

�
nk
� ¤

PSPACE for every fixed k), we get that IP 6� SPACE
�
nk
�

for every fixed k.
Likewise, by combining IP D PSPACE with Theorem 38 (that PSPACE does not
have circuits of size nk for fixed k), we get that IP doesn’t have circuits of size nk

either. Furthermore, both of these separations can be shown to be non-relativizing,
using techniques from [56]. But can we get more interesting separations?

The key to doing so turns out to be a beautiful corollary of the IP D PSPACE
theorem. To state the corollary, we need one more complexity class: MA (Merlin-
Arthur) is a probabilistic generalization of NP. It’s defined as the class of languages
L � f0; 1g� for which there exists a probabilistic polynomial-time verifier M, and a
polynomial p, such that for all inputs x 2 f0; 1g�:

• If x 2 L then there exists a witness string w 2 f0; 1gp.jxj/ such that M .x;w/
accepts with probability at least 2=3 over its internal randomness.

• If x … L, then M .x;w/ rejects with probability at least 2=3 over its internal
randomness, for all w.
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Clearly MA contains NP and BPP. It can also be shown that MA � †P
2 \…P

2

and that MA � PP, where PP is the counting class from Sect. 2.2.6. Now, here’s
the corollary of Theorem 49:

Corollary 50. If PSPACE � P=poly, then PSPACE D MA.

Proof. Suppose PSPACE � P=poly, let L 2 PSPACE, and let x be an input in L.
Then as an MA witness proving that x 2 L, Merlin simply sends Arthur a description
of a polynomial-size circuit C that simulates the PSPACE prover, in an interactive
protocol that convinces Arthur that x 2 L. (Here we use one additional fact about
Theorem 49, beyond the mere fact that IP D PSPACE: that, in the protocol,
Merlin can run a PSPACE algorithm to decide which message to send next.) Then
Arthur simulates the protocol, using C to compute Merlin’s responses to his random
challenges, and accepts if and only if the protocol does. Hence L 2 MA. �

Likewise:

Corollary 51. If P#P � P=poly, then P#P D MA.

(Again, here we use the observation that, in the protocol proving that P#P � IP,
Merlin can run a P#P algorithm to decide which message to send next.)

Let’s now see how we can use these corollaries of IP D PSPACE to prove new
circuit lower bounds. Let MAEXP be “the exponential-time version of MA,” with a
2p.n/-size witness that can be probabilistically verified in 2p.n/ time: in other words,
the class that is to MA as NEXP is to NP. Then:

Theorem 52 (Buhrman-Fortnow-Thierauf [56]). MAEXP 6� P=poly:

Proof. Suppose by contradiction that MAEXP � P=poly. Then certainly PSPACE �
P=poly, which means that PSPACE D MA by Corollary 50. By a padding argument
(see Proposition 17), this means that EXPSPACE D MAEXP. But we already saw in
Theorem 37 that EXPSPACE 6� P=poly, and therefore MAEXP 6� P=poly as well. �

Note in particular that if we could prove MA D NP, then we would also have
MAEXP D NEXP by padding, and hence NEXP 6� P=poly by Theorem 52. This
provides another example of how derandomization can lead to circuit lower bounds,
a theme mentioned in Sect. 6.

A second example involves the class PP.

Theorem 53 (Vinodchandran [231]). For every fixed k, there is a language in PP
that does not have circuits of size nk.

Proof. Fix k, and suppose by contradiction that PP has circuits of size nk. Then
in particular, PP � P=poly, so PPP D P#P � P=poly, so P#P D PP D MA by
Corollary 51. But we noted in Sect. 6.1 that †P

2 does not have circuits of size nk.
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And †P
2 � P#P by Toda’s Theorem (Theorem 13), so P#P doesn’t have circuits of

size nk either. Therefore neither does PP.39 �

As a final example, Santhanam [195] showed the following (we omit the proof).

Theorem 54 (Santhanam [195]). For every fixed k, there is an MA “promise
problem”40 that does not have circuits of size nk.

The above results clearly evade the natural proofs barrier, because they give
lower bounds against strong circuit classes such as P=poly, or the set of all size-
nk circuits for fixed k. This is not so surprising when we observe that the proofs
build on the simpler results from Sect. 6.1, which already used diagonalization to
evade the natural proofs barrier.

What is more interesting is that these results also evade the relativization barrier.
Of course, one might guess as much, after noticing that the proofs use the non-
relativizing IP D PSPACE theorem. But to show rigorously that the circuit lower
bounds themselves fail to relativize, one needs to construct oracles relative to which
the circuit lower bounds are false. This is done by the following results, whose
somewhat elaborate proofs we omit:

Theorem 55 (Buhrman-Fortnow-Thierauf [56]). There exists an oracle A such
that MAA

EXP � PA=poly.

Theorem 56 (Aaronson [4]). There exists an oracle A relative to which all lan-
guages in PP have linear-sized circuits.

The proofs of both of these results also easily imply that there exists an oracle
relative to which all MA promise problems have linear-sized circuits.

The bottom line is that, by combining non-relativizing results like IP D PSPACE
with non-naturalizing results like EXPSPACE 6� P=poly, we can prove interesting
circuit lower bounds that neither relativize nor naturalize. So then why couldn’t we
keep going, and use similar techniques to prove NEXP 6� P=poly, or even P ¤ NP?
Is there a third barrier, to which even the arithmetization-based lower bounds are
subject?

39Actually, for this proof one does not really need either Toda’s Theorem, or the slightly-nontrivial
result that †P

2 does not have circuits of size nk. Instead, one can just argue directly that at any
rate, P#P does not have circuits of size nk, using a slightly more careful version of the argument of
Theorem 37. For details see Aaronson [4].
40In complexity theory, a promise problem is a pair of subsets…YES;…NO 	 f0; 1g� with…YES \
…NO D ¿. An algorithm solves the problem if it accepts all inputs in …YES and rejects all inputs
in…NO. Its behavior on inputs neither in…YES nor…NO (i.e., inputs that “violate the promise”) can
be arbitrary. A typical example of a promise problem is: given a Boolean circuit C, decide whether
C accepts at least 2=3 of all inputs x 2 f0; 1gn or at most 1=3 of them, promised that one of those
is true. This problem is in BPP (or technically, PromiseBPP). The role of the promise here is to
get rid of those inputs for which random sampling would accept with probability between 1=3 and
2=3, violating the definition of BPP.
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6.3.3 The Algebrization Barrier

In 2008, Avi Wigderson and I [10] showed that, alas, there is a third barrier.
In particular, while the arithmetic techniques used to prove IP D PSPACE do
evade relativization, they crash up against a modified version of relativization
that is “wise” to those techniques. We called this modified barrier the algebraic
relativization or algebrization barrier. We then showed that, in order to prove
P ¤ NP—or for that matter, even to prove NEXP 6� P=poly, or otherwise go even
slightly beyond the results of Sect. 6.3.2—one would need techniques that evade the
algebrization barrier (and also, of course, evade natural proofs).

In more detail, we can think of an oracle as just an infinite collection of Boolean
functions, fn W f0; 1gn ! f0; 1g for each n. Now, by an algebraic oracle, we mean
an oracle that provides access not only to fn for each n, but also to a low-degree
extension efn W Fn ! F of fn over some large finite field F. This extension must have
the property that efn .x/ D fn .x/ for all x 2 f0; 1gn, and it must be a polynomial of
low degree—say, at most 2n. But such extensions always exist, and querying them
outside the Boolean cube f0; 1gn might help even for learning about the Boolean
part fn.

The point of algebraic oracles is that they capture what we could do if we had a
formula or circuit for fn, and were willing to evaluate it not only on Boolean inputs,
but on non-Boolean ones as well, in the manner of IP D PSPACE. In particular, we
saw in Sect. 6.3.1 that, given (say) a 3SAT formula ', we can “lift” ' to a low-degree
polynomial Q' over a finite field F by reinterpreting the AND, OR, and NOT gates
in terms of field addition and multiplication. So if we’re trying to capture to power
of arithmetization relative to an oracle function fn, then it stands to reason that we
should also be allowed to lift fn.

Once we do so, we find that the non-relativizing results based on arithmetization,
such as IP D PSPACE, relativize with respect to algebraic oracles (or “algebrize”).
That is:

Theorem 57. IPeA D PSPACEeA for all algebraic oracleseA. Likewise, PSPACEeA �
PeA=poly implies PSPACEeA D MAeA for all algebraic oracles eA, and so on for all
the interactive proof results.

The intuitive reason is that, any time (say) Arthur needs to arithmetize a formula
' containing A-oracle gates in an interactive protocol, he can handle non-Boolean
inputs to the A-oracle gates by callingeA.

As a consequence of Theorem 57, the circuit lower bounds of Sect. 6.3.2 are

algebrizing as well: for example, for all algebraic oracles eA, we have MAeAEXP 6�
PeA=poly, and PPeA does not have size-nk circuits witheA-oracle gates.

Admittedly, the original paper of Aaronson and Wigderson [10] only managed
to prove a weaker version of Theorem 57. It showed, for example, that for all

algebraic oracles eA, we have PSPACEA � IPeA, and MAeAEXP 6� PA=poly. As a
result, it had to define algebrization in a convoluted way, where some complexity
classes received the algebraic oracle eA while others received only the “original”
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oracle A, and which received which depended on what kind of result one was
talking about (e.g., an inclusion or a separation). Shortly afterward, Impagliazzo,
Kabanets, and Kolokolova [112] managed to fix this defect of algebrization,
proving Theorem 57 even when all classes receive the same algebraic oracle eA,
but only at the cost of jettisoning Aaronson and Wigderson’s conclusion that any
proof of NEXP 6� P=poly will require non-algebrizing techniques. Very recently,
Aydınlıoğlu and Bach [174] showed how to get the best of both worlds, with a
uniform definition of algebrization and the conclusion about NEXP vs. P=poly.

In any case, the main point of [10] was that to prove P ¤ NP, or otherwise go
further than the circuit lower bounds of Sect. 6.3.2, one will need non-algebrizing
techniques: techniques that fail to relativize in a “deeper” way than IP D PSPACE
fails to relativize. Let us see why this is true for P ¤ NP.

Theorem 58 (Aaronson-Wigderson [10]). There exists an algebraic oracle eA
such that PeA D NPeA. As a consequence, any proof of P ¤ NP will require non-
algebrizing techniques.

Proof. We can just let A be any PSPACE-complete language, and then let eA be
its unique extension to a collection of multilinear polynomials over F (that is,
polynomials in which no variable is ever raised to a higher power than 1). The
key observation is that the multilinear extensions are themselves computable in
PSPACE. So we get a PSPACE-complete oracle eA, which collapses P and NP for
the same reason as in the original argument of Baker et al. [34] (see Theorem 40).
�

Likewise, Aaronson and Wigderson [10] showed that any proof of P D NP,
or even P D BPP, would need non-algebrizing techniques. They also proved the
following somewhat harder result, whose proof we omit.

Theorem 59 ([10]). There exists an algebraic oracle eA such that NEXPeA �
PeA=poly. As a consequence, any proof of NEXP 6� P=poly will require non-
algebrizing techniques.

Note that this explains almost exactly why progress stopped where it did:
MAEXP 6� P=poly can be proved with algebrizing techniques, but NEXP 6� P=poly
cannot be.

I should mention that Impagliazzo et al. [112] gave a logical interpretation of
algebrization, extending the logical interpretation of relativization given by Arora et
al. [28]. In particular, Impagliazzo et al. show that the algebrizing statements can be
seen as all those statements that follow from “algebrizing axioms for computation,”
which include basic closure properties, and also the ability to lift any Boolean
computation to a larger finite field. Statements like P ¤ NP are then provably
independent of the algebrizing axioms.
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6.4 Ironic Complexity Theory

There is one technique that has had some striking recent successes in proving circuit
lower bounds, and that bypasses the natural proofs, relativization, and algebrization
barriers. This technique might be called “ironic complexity theory.” It uses the
existence of surprising algorithms in one setting to show the nonexistence of
algorithms in another setting. It thus reveals a “duality” between upper and lower
bounds, and reduces the problem of proving impossibility theorems to the much
better-understood task of designing efficient algorithms.41

At a conceptual level, it is not hard to see how algorithms can lead to lower
bounds. For example, suppose someone discovered a way to verify arbitrary
exponential-time computations efficiently, thereby proving NP D EXP. Then as
an immediate consequence of the Time Hierarchy Theorem (P ¤ EXP), we would
get P ¤ NP. As another example, suppose someone discovered that every language
in P had linear-size circuits. Then P D NP would imply that every language in PH
had linear-size circuits—but since we know that is not the case (see Sect. 6.1), we
could again conclude that P ¤ NP. Conversely, if someone proved P D NP, that
wouldn’t be a total disaster for lower bounds research: at least it would immediately
imply EXP 6� P=poly (via EXP D EXPNPNP

), and the existence of languages of P
and NP that don’t have linear-size circuits!

Examples like this can be multiplied, but there is an obvious problem with
them: they each show a separation, but only assuming a collapse that is considered
extremely unlikely to happen. However, recently researchers have managed to use
surprising algorithms that do exist, and collapses that do happen, to achieve new
lower bounds. In this section I’ll give two examples.

6.4.1 Time-Space Tradeoffs

At the moment, no one can prove that solving 3SAT requires more than linear time
(let alone exponential time!), on realistic models of computation like random-access
machines.42 Nor can anyone prove that solving 3SAT requires more than O .log n/
bits of memory. But the situation is not completely hopeless: at least we can prove
there’s no algorithm for 3SAT that uses both linear time and logarithmic memory!
Indeed, we can do better than that.

A bit of background: just as one can scale PSPACE up to EXPSPACE and
so on, one can also scale PSPACE down to LOGSPACE, which the class of
languages L decidable by a Turing machine that uses only O .log n/ bits of read/write

41Indeed, the hybrid circuit lower bounds of Sect. 6.3.2 could already be considered examples of
ironic complexity theory. In this section, we discuss other examples.
42On unrealistic models such as one-tape Turing machines, one can prove up to �

�
n2
�

lower
bounds for 3SAT and many other problems (even recognizing palindromes), but only by exploiting
the fact that the tape head needs to waste a lot of time moving back and forth across the input.



P
‹D NP 69

memory, in addition to a read-only memory that stores the n-bit input itself. We
have LOGSPACE � P, for the same simple reason why PSPACE � EXP (see
Proposition 15). We also have LOGSPACE ¤ PSPACE by the Space Hierarchy
Theorem. On the other hand, no one has proven even that LOGSPACE ¤ NP.

Now, a “time-space tradeoff theorem” shows that any algorithm to solve some
problem must use either more than T time or else more than S space. Let me state
perhaps the canonical time-space tradeoff theorem for 3SAT (though it’s since been
improved):

Theorem 60 (Lipton-Viglas [149]). No random-access machine can solve 3SAT

simultaneously in n
p
2�" time and no.1/ space, for any " > 0.

Here, a “random-access machine” means a machine that can access an arbitrary
memory location in O .1/ time, as usual in practical programming. This makes
Theorem 60 stronger than one might have assumed: it holds not merely for
unrealistically weak models such as Turing machines, but for realistic models as
well. Also, again, “no.1/ space” means that we get the n-bit 3SAT instance itself in a
read-only memory, and also get no.1/ bits of auxiliary read/write memory.

While Theorem 60 is obviously a far cry from P ¤ NP, it does rely essentially
on 3SAT being NP-complete: we don’t yet know how to prove analogous results
for matching, linear programming, or other natural problems in P.43 This makes
Theorem 60 fundamentally different from (say) the PARITY … AC0 result of
Sect. 6.2.3.

Let DTISP .T; S/ be the class of languages decidable by an algorithm, running
on a RAM machine, that uses O .T/ time and O .S/ space. Then Theorem 60 can be
stated more succinctly as

3Sat … DTISP
�

n
p
2�"; no.1/

�

for all " > 0.
At a high level, Theorem 60 is proved by assuming the opposite, and then deriv-

ing stranger and stranger consequences until one ultimately gets a contradiction with
the Nondeterministic Time Hierarchy Theorem (Theorem 35). There are three main
ideas that go into how one does this. The first idea is a tight version of the Cook-
Levin Theorem (Theorem 2). In particular, one can show, not merely that 3SAT is
NP-complete, but that 3SAT is complete for NTIME .n/ (that is, nondeterministic

43On the other hand, by proving size-depth tradeoffs for so-called branching programs, researchers
have been able to obtain time-space tradeoffs for certain special problems in P. Unlike the 3SAT

tradeoffs, the branching program tradeoffs involve only slightly superlinear time bounds; on the
other hand, they really do represent a fundamentally different way to prove time-space tradeoffs,
one that makes no appeal to NP-completeness, diagonalization, or hierarchy theorems. As one
example, in 2000 Beame et al. [37], building on earlier work by Ajtai [17], used branching
programs to prove the following: there exists a problem in P, based on binary quadratic forms,
for which any RAM algorithm (even a nonuniform one) that uses n1��.1/ space must also use
�
�
n � p

log n= log log n
�

time.
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linear-time on a RAM machine) under nearly linear-time reductions. That means
that, to prove Theorem 60, it suffices to prove a non-containment of complexity
classes:

NTIME .n/ 6� DTISP
�

n
p
2�"; no.1/

�

for all " > 0.
The second idea is called “trading time for alternations.” Consider a deterministic

computation that runs for T steps and uses S bits of memory. Then we can “chop the
computation up” into k blocks, B1; : : : ;Bk, of T=k steps each. The statement that the
computation accepts is then equivalent to the statement that there exist S-bit strings
x0; : : : ; xk, such that

(i) x0 is the computation’s initial state,
(ii) for all i 2 f1; : : : ; kg, the result of starting in state xi�1 and then running for

T=k steps is xi, and
(iii) xk is an accepting state.

We can summarize this as

DTISP .T; S/ � †2TIME

	
SkC T

k



;

where the †2 means that we have two alternating quantifiers: an existential
quantifier over x1; : : : ; xk, followed by a universal quantifier over i. Choosing k WDp

T=S to optimize the bound then gives us

DTISP .T; S/ � †2TIME
�p

TS
�
:

So in particular,

DTISP
�

nc; no.1/
�
� †2TIME

�
nc=2Co.1/

�
:

The third idea is called “trading alternations for time.” If we assume by way of
contradiction that

NTIME .n/ � DTISP
�

nc; no.1/
�
� TIME .nc/ ;

then in particular, for all b � 1, we can remove the inner quantifier to get

†2TIME
�
nb
� � NTIME

�
nbc
�
:

So putting everything together, if we consider a constant c > 1, and use padding
(as in Proposition 17) to talk about NTIME

�
n2
�

rather than NTIME .n/, then the
starting assumption that 3SAT is solvable in nc�" time and no.1/ space implies that
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NTIME
�
n2
� � DTISP

�
n2c; no.1/

�

� †2TIME
�

ncCo.1/
�

� NTIME
�

nc2Co.1/
�
:

But if c2 < 2, then this contradicts the Nondeterministic Time Hierarchy Theorem
(Theorem 35). This completes the proof of Theorem 60. Notice that the starting
hypothesis about 3SAT was applied not once but twice, which was how the final
running time became nc2 .

Later, using a more involved argument, Fortnow and van Melkebeek [81]
improved Theorem 60, to show that 3SAT can’t be solved by a RAM machine

using n��" time and no.1/ space, where � D 1Cp
5

2
� 1:618 is the golden ratio.

Subsequently Williams [234] improved the time bound in this result to n
p
3�",

and then [235] to n2 cos�=7�", with the help of computer search for the optimal
sequence of “moves” in an alternation-trading argument. In 2012, however, Buss
and Williams [63] showed that no alternation-trading proof can possibly improve
that exponent beyond the peculiar constant 2 cos�=7 � 1:801. There have been
many related time-space tradeoff results, including for #P-complete and PSPACE-
complete problems, but I won’t cover them here (see van Melkebeek [152] for a
survey).

Alternation-trading has had other applications in complexity theory, other than
to time-space tradeoffs. In particular, it played a key role in a celebrated 1983 result
of Paul et al. [177], whose statement is tantalizingly similar to P ¤ NP.

Theorem 61 (Paul et al. [177]). TIME .n/ ¤ NTIME .n/, if we define these
classes using multiple-tape Turing machines.

In this case, the key step was to show, via a clever combinatorial argument
involving “pebble games,” that for multi-tape Turing machines, deterministic linear
time can be simulated in †4TIME .f .n//, for some f that’s slightly sublinear. This,
combined with the assumption TIME .n/ D NTIME .n/, is then enough to produce
a contradiction with a time hierarchy theorem.

What can we say about barriers? All the results mentioned above clearly evade
the natural proofs barrier, because they ultimately rely on diagonalization, and

(more to the point) because classes like TIME .n/ and DTISP
�

n
p
2; no.1/

�
contain

plausible pseudorandom function candidates. Whether they evade the relativization
barrier (let alone algebrization) is a trickier question; it depends on subtle details of
the oracle access mechanism. There are some definitions of the classes TIME .n/A,
DTISP .T; S/A, and so on under which these results relativize, and others under
which they don’t: for details, see for example Moran [156].

On the definitions that cause these results not to relativize, the explanation for
how is that the proofs “look inside” the operations of a RAM machine or a multi-
tape Turing machine just enough for something to break down if certain kinds
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of oracle calls are present. To illustrate, in the proof of Theorem 60 above, we
nondeterministically guessed the complete state of the machine at various steps in
its execution, taking advantage of the fact that the state was an no.1/-bit string. This
wouldn’t have worked had there been an n-bit query written onto an oracle tape
(even if the oracle tape were write-only). Likewise, in the proof of Theorem 61,
the combinatorial pebble arguments use specific properties of multi-tape Turing
machines that might fail for RAM machines, let alone for oracle machines.

Because their reasons for failing to relativize have nothing to do with lifting
to large finite fields, I conjecture that, with a suitable oracle access mechanism,
Theorems 60 and 61 would also be non-algebrizing. But this remains to be shown.

6.4.2 NEXP 6� ACC

In Sect. 6.2.4, we saw how Smolensky [209] and Razborov [189] managed to prove
strong lower bounds against the class AC0 Œp�, or constant-depth, polynomial-size
circuits of AND, OR, NOT, and MOD p gates, where p is a prime. This left the
frontier of circuit lower bounds as AC0 Œm�, where m is a composite. Slightly more
ambitiously, we could hope for lower bounds against a complexity class called
ACC, which consists of all languages decidable by constant-depth, polynomial-size
circuits with AND, OR, NOT, and MOD m gates for any m (where we can mix
multiple m’s in the same circuit).

Meanwhile, we saw in Sect. 6.3 how Buhrman et al. [56] proved that MAEXP 6�
P=poly, but how this cannot be extended even to NEXP 6� P=poly using algebrizing
techniques. Indeed, it remains open even to prove NEXP 6� TC0.

This state of affairs—and its continuation for decades—helps to explain why
many theoretical computer scientists were electrified when Ryan Williams proved
the following in 2011.

Theorem 62 (Williams [242]). NEXP 6� ACC.

If we compare it against the ultimate goal of proving NP 6� P=poly, Theorem 62
looks almost laughably weak: it shows only that Nondeterministic Exponential
Time, a class vastly larger than NP, is not in ACC, a circuit class vastly smaller
than P=poly. But a better comparison is against where we were before. The proof
of Theorem 62 was noteworthy not only because it defeats all the known barriers
(relativization, algebrization, and natural proofs), but also because it brings together
almost all known techniques in Boolean circuit lower bounds, including diagonal-
ization, the polynomial method, interactive proof results, and ironic complexity
theory. So it is worth at least sketching the elaborate proof, so we can see how a
lower bound at the current frontier operates. (For further details, I recommend two
excellent expository articles by Williams himself [236, 240].)

At a stratospherically high level, the proof of Theorem 62 is built around the
Nondeterministic Time Hierarchy Theorem, following a program that Williams had
previously laid out in [238]. More concretely, we assume that NTIME .2n/ � ACC.
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We then use that assumption to show that NTIME .2n/ D NTIME
�
2n=nk

�
for some

positive k: a slight speedup of nondeterministic machines, but enough to achieve a
contradiction with Theorem 35.

How do we use the assumption NTIME .2n/ � ACC to violate the Nondeter-
ministic Time Hierarchy Theorem? The key to this—and this is where “ironic
complexity theory” enters the story—is a faster-than-brute-force algorithm for a
problem called ACCSAT. Here we are given as input a description of ACC circuit
C, and want to decide whether there exists an input x 2 f0; 1gn such that C .x/ D 1.
The core of Williams’s proof is the following straightforwardly algorithmic result.

Lemma 63 (Williams [242]). There is a deterministic algorithm that solves ACC-
SAT, for ACC circuits of depth d with n inputs, in 2n��.nı/ time, for some constant
ı > 0 that depends on d.

The proof of Lemma 63 is itself a combination of several ideas. First, one appeals
to a powerful structural result of Yao [246], Beigel-Tarui [38], and Allender-Gore
[23] from the 1990s, which shows that functions in ACC are representable in terms
of low-degree polynomials.

Lemma 64 ([23, 38, 246]). Let f W f0; 1gn ! f0; 1g be computable by an ACC
circuit of size s and depth d. Then f .x/ can be expressed as g .p .x//, where p W
f0; 1gn ! N is a polynomial of degree logO.1/ s that is a sum of exp

�
logO.1/ s

�

monomials with coefficients of 1, and g W N! f0; 1g is some efficiently computable
function. (Here the constant in the big-O depends on d.)

The proof of Lemma 64 uses some elementary number theory, and is closely
related to the polynomial method from Sect. 6.2.4, by which one shows that any
AC0 Œp� function can be approximated by a low-degree polynomial over the finite
field Fp.44

Next, one devises a faster-than-brute-force algorithm that, given a function
g .p .x// as above, decides whether there exists an x 2 f0; 1gn such that g .p .x// D 1.
The first step is to give an algorithm that constructs a table of all 2n values of p .x/,
for all the 2n possible values of x, in

�
2n C sO.1/

�
nO.1/ time, rather than the O .2ns/

time that one would need naïvely. (In other words, this algorithm uses only nO.1/

time on average per entry in the table, rather than O .s/ time—an improvement if s
is superpolynomial.) Here there are several ways to go: one can use a fast rectangular
matrix multiplication algorithm due to Coppersmith [69], but one can also just use
a dynamic programming algorithm reminiscent of the Fast Fourier Transform.

Now, by combining this table-constructing algorithm with Lemma 64, we can
immediately solve ACCSAT, for an ACC circuit of size s D 2no.1/

, in 2nnO.1/ time,
which is better than the O .2ns/ time that we would need naïvely. However, this still
isn’t good enough to prove Lemma 63, which demands a 2n��.nı/ algorithm. So

44Interestingly, both the polynomial method and the proof of Lemma 64 are also closely related to
the proof of Toda’s Theorem (Theorem 13), that PH 	 P#P.
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there is a further trick: given an ACC circuit C of size nO.1/, one first “shaves off”
nı of the n variables, building a new ACC circuit C0 that takes as input the n � nı

remaining variables, and that computes the OR over all 2nı possible assignments to
the nı shaved variables.45 The new circuit C0 has size 2O.nı/, so one can construct
the table, and thereby solve ACCSAT for C0 (and hence for C), in time 2n��.nı/.

Given Lemma 63, as well as the starting assumption NTIME .2n/ � ACC, there
is still a lot of work to do to prove that NTIME .2n/ D NTIME

�
2n=nk

�
. Let me

summarize the four main steps:

(1) One first uses a careful, quantitative version of the Cook-Levin Theorem
(Theorem 2), to reduce the problem of simulating an NTIME .2n/ machine to a
problem called SUCCINCT3SAT. In that problem, one is given a circuit C whose
truth table encodes an exponentially large 3SAT instance ', and the problem is
to decide whether or not ' is satisfiable.

(2) One next appeals to a result of Impagliazzo, Kabanets, and Wigderson [113],
which says that if NEXP � P=poly, then the satisfying assignments for satisfi-
able SUCCINCT3SAT instances can themselves be constructed by polynomial-
size circuits.

(3) One massages the result (2) to get a conclusion about ACC: very roughly
speaking, if NEXP � ACC, then given any satisfiable SUCCINCT3SAT instance
ˆ, there is an equivalent instance ˆ0 in which the circuit C is an ACC circuit.
Furthermore, a satisfying assignment for ˆ0 can itself be constructed by an
ACC circuit W; and the problems of verifying that ˆ and ˆ0 are equivalent,
and that W does indeed encode a satisfying assignment for ˆ0, can be solved in
slightly less than 2n time nondeterministically, if we use the fact (Lemma 63)
that ACCSAT is solvable in 2n��.nı/ time. Note that in this argument (which is
the most complicated part of the proof), one uses the assumption NEXP � ACC
not just once but several times.

(4) Putting everything together, we get that NTIME .2n/ machines can be reduced
to SUCCINCT3SAT instances, which can then (assuming NEXP � ACC, and
using the ACCSAT algorithm) be decided in NTIME

�
2n=nk

�
for some pos-

itive k. But that contradicts the Nondeterministic Time Hierarchy Theorem
(Theorem 35).

Let me mention some improvements and variants of Theorem 62. Already in
his original paper [242], Williams noted that the proof actually yields a stronger
result, that NTIME .2n/ has no ACC circuits of “third-exponential” size: that is,
size f .n/ where f .f .f .n/// grows exponentially. He also gave a second result,
that TIME .2n/NP—that is, deterministic exponential time with an NP oracle—has
no ACC circuits of size 2no.1/

. More recently, Williams has extended Theorem 62
to show that NTIME .2n/ =1 \ coNTIME .2n/ =1 (where the =1 denotes 1 bit of

45Curiously, this step can only be applied to the ACC circuits themselves, which of course allow
OR gates. It cannot be applied to the Boolean functions of low-degree polynomials that one derives
from the ACC circuits.
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nonuniform advice) does not have ACC circuits of size nlog n [239], and also to show
that even ACC circuits of size nlog n with threshold gates at the bottom layer cannot
compute all languages in NEXP [241].

At this point, it’s appropriate to make some general remarks about the proof of
Theorem 62 and the prospects for pushing it further. First of all, why did this proof
only yield lower bounds for functions in the huge complexity class NEXP, rather
than EXP or NP or even P? The short answer is that, in order to prove that a class C
is not in ACC via this approach, we need to use the assumption C � ACC to violate a
hierarchy theorem for C-like classes. However, there’s a bootstrapping problem: the
mere fact that C has small ACC circuits doesn’t imply that we can find those circuits
in a C-like class, in order to obtain the desired contradiction. When C D NEXP, we
can use the nondeterministic guessing power of the NTIME classes simply to guess
the small ACC circuits for NEXP, but even when C D EXP this approach seems to
break down.

A second question is: what in Williams’s proof was specific to ACC? Here the
answer is that the proof used special properties of ACC in one place only: namely,
in the improved algorithm for ACCSAT (Lemma 63). This immediately suggests
a possible program to prove NEXP 6� C for larger and larger circuit classes C.
For example, let TC0SAT be the problem where we are given as input a TC0 circuit
C (that is, a neural network, or constant-depth circuit of threshold gates), and we
want to decide whether there exists an x 2 f0; 1gn such that C .x/ D 1. Then if we
could solve TC0SAT even slightly faster than brute force—say, in O

�
2n=nk

�
time

for some positive k—Williams’s results would immediately imply NEXP 6� TC0.46

Likewise, recall from Sect. 2.1 that CIRCUITSAT is the satisfiability problem for
arbitrary Boolean circuits. If we had an O

�
2n=nk

�
algorithm for CIRCUITSAT, then

Williams’s results would imply the long-sought NEXP 6� P=poly.
A third question is: how does the proof of Theorem 62 evade the known barriers?

Because of the way the algorithm for ACCSAT exploits the structure of ACC circuits,
we shouldn’t be surprised if the proof evades the relativization and algebrization
barriers. And indeed, using the techniques of Wilson [243] and of Aaronson and
Wigderson [10], one can easily construct an oracle A such that NEXPA � ACCA,

and even an algebraic oracle eA such that NEXPeA � ACCeA, thereby showing
that NEXP 6� ACC is a non-relativizing and non-algebrizing result. Meanwhile,
because it uses diagonalization (in the form of the Nondeterministic Time Hierarchy
Theorem), we might say that the proof of Theorem 62 has the “capacity” to evade
natural proofs. On the other hand, as we alluded to in Sect. 6.2.5, it’s not yet clear
whether ACC is powerful enough to compute pseudorandom functions—and thus,
whether it even has a natural proofs barrier to evade! The most we can say is that if
ACC has a natural proofs barrier, then Theorem 62 evades it.

46Very recently, Kane and Williams [119] managed to give an explicit Boolean function that
requires depth-2 threshold circuits with �

�
n3=2= log3 n

�
gates. However, their argument does not

proceed via a better-than-brute-force algorithm for depth-2 TC0SAT; the latter problem appears to
remain open.
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Given everything we saw in the previous sections, a final question arises: is there
some fourth barrier, beyond relativization, algebrization, and natural proofs, which
will inherently prevent even Williams’s techniques from proving P ¤ NP, or even
(say) NEXP 6� TC0? One reasonable answer is that this question is premature: in
order to identify the barriers to a given set of techniques, we first need to know
formally what the techniques are—i.e., what properties all the theorems using those
techniques have in common—but we can’t know that until the techniques have had
a decade or more to solidify, and there are at least three or four successful examples
of their use. Another answer is that yes, there is (or might be) an obvious “barrier”
to the continuation of Williams’s program. This barrier is that a faster-than-brute-
force algorithm for TC0SAT, let alone for more general problems like CIRCUITSAT,
might simply not exist. If there’s some threshold of expressive power in a circuit,
beyond which brute-force search really does become the fastest possible algorithm
for circuit satisfiability, then ironic complexity theory (or at least this incarnation of
it) will run out of the irony that it needs as fuel.

Even if so, though, I see Theorem 62 as having contributed something important
to the quest to prove P ¤ NP, by demonstrating just how much nontrivial work
can get done, and how many barriers can be overcome, along the way to applying a
1960s-style hierarchy theorem. Williams’s result makes it possible to imagine that,
in the far future, P ¤ NP might be proved by assuming the opposite, then deriving
stranger and stranger consequences using thousands of pages of mathematics barely
comprehensible to anyone alive today—and yet still, the coup de grâce will be a
diagonalization argument, barely different from what Turing did in 1936.

6.5 Arithmetic Complexity Theory

Besides Turing machines and Boolean circuits acting on bits, there’s another kind of
computation that has enormous relevance to the attempt to prove P ¤ NP. Namely,
we can consider computer programs that operate directly on elements of a field,
such as the reals or complexity. Perhaps the easiest way to do this is via arithmetic
circuits, which take as input a collection of elements x1; : : : ; xn of a field F,47 and
whose operations consist of adding or multiplying any two previous elements—
or any previous element and any scalar from F—to produce a new F-element.
We then consider the minimum number of operations needed to compute some
polynomial g W Fn ! F, as a function of n. For concreteness, one can think of
F as the reals R, although we are most interested in algorithms that work over any
F, and that compute g as a formal polynomial, rather than as just a function over a
particular F.48

47I’ll restrict to fields here for simplicity, but one can also consider (e.g.) rings.
48To clarify, 0 and 2x are equal as functions over the finite field F2, but not equal as formal
polynomials.
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At first glance, arithmetic circuits seem more powerful than Boolean circuits,
because they have no limit of finite precision: for example, an arithmetic circuit
could multiply � and e in a single time step. From another angle, however,
arithmetic circuits are weaker, because they have no facility (for example) to extract
individual bits from the binary representations of the F elements: they can only
manipulate them as F elements. In general, the most we can say is that, if an
input has helpfully been encoded using the elements 0; 1 2 F only, then an
arithmetic circuit can simulate a Boolean one, by using x ! 1 � x to simulate
NOT, multiplication to simulate Boolean AND, and so on. But for arbitrary inputs,
such a simulation might be impossible.

Thus, arithmetic circuits represent a different kind of computation: or rather, a
generalization of the usual kind, since we can recover ordinary Boolean computation
by setting F D F2. A major reason to focus on arithmetic circuits is that it
often seems easier—or better, less absurdly hard!—to understand circuit size in the
arithmetic setting than in the Boolean one. The usual explanation given for this is
the so-called “yellow books argument”: arithmetic complexity brings us closer to
continuous mathematics, about which we have centuries’ worth of deep knowledge
(e.g., algebraic geometry and representation theory) that’s harder to apply in the
Boolean case.

One remark: in the rest of the section, I’ll talk exclusively about arithmetic
circuit complexity: that is, about nonuniform arithmetic computations, and the
arithmetic analogues of questions such as NP versus P=poly (see Sect. 5.2). But
it’s also possible to develop a theory of arithmetic Turing machines, which (roughly
speaking) are like arithmetic circuits except that they’re uniform, and therefore need
loops, conditionals, memory registers, and so on. See the book of Blum, Cucker,
Shub, and Smale (BCSS) [46] for a beautiful exposition of this theory. In the BCSS

framework, one can ask precise analogues of the P
‹D NP question for Turing

machines over arbitrary fields F, such as R or C, recovering the “ordinary, Boolean”

P
‹D NP question exactly when F is finite. At present, no implications are known

among the P
‹D NP, the PR

‹D NPR, and the PC

‹D NPC questions, although it’s
known that PC ¤ NPC implies NP 6� P=poly (see for example Bürgisser [57,
Chap. 8]).49

The problems of proving PR ¤ NPR and PC ¤ NPC are known to be closely
related to the problem of proving arithmetic circuit lower bounds, which we’ll
discuss in the following sections. I can’t resist giving one example of a connection,
due to BCSS [46]. Given a positive integer n, let � .n/ be the number of operations
in the smallest arithmetic circuit that takes the constant 1 as its sole input, and
that computes n using additions, subtractions, and multiplications. For example, we
have

49The central difference between the PR

‹D NPR and PC

‹D NPC questions is simply that, because
R is an ordered field, one defines Turing machines over R to allow comparisons (<;
) and
branching on their results.
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• � .2/ D 1 via 1C 1,
• � .3/ D 2 via 1C 1C 1,
• � .4/ D 2 via .1C 1/2, . . .

Also, let �� .n/ be the minimum of � .kn/ over all positive integers k.

Theorem 65 (BCSS [46]). Suppose �� .nŠ/ grows faster than .log n/O.1/. Then
PC ¤ NPC.50

6.5.1 Permanent Versus Determinant

The central problem studied in arithmetic complexity theory—if you like, the
arithmetic analogue of the NP vs. P=poly problem—is the permanent versus
determinant problem. The problem concerns the following two functions of an n	n
matrix X 2 F

n�n:

Per .X/ D
X
	2Sn

nY
iD1

xi;	.i/;

Det .X/ D
X
	2Sn

.�1/sgn.	/
nY

iD1
xi;	.i/:

Despite the similarity of their definitions—they are identical apart from the
.�1/sgn.	/—the permanent and determinant have some dramatic differences. The
determinant is computable in polynomial time, for example by using Gaussian
elimination. (Indeed, the determinant is computable in O .n!/ time, where
! 2 Œ2; 2:373� is the matrix multiplication exponent; see Sect. 4.) The determinant
has many other interpretations—for example, the product of X’s eigenvalues, and
the volume of the parallelepiped spanned by its row vectors—giving it a central role
in linear algebra and geometry.

By contrast, Valiant [226] proved in 1979 that the permanent is #P-complete.
Thus, a polynomial-time algorithm for the permanent would imply even more than
P D NP: it would yield an efficient algorithm, not merely to solve NP-complete
problems, but even to count how many solutions they have. In some sense, the
#P-completeness of the permanent explains why Per, unlike Det, has no simple
geometric or linear-algebraic interpretations: if such interpretations existed, then
presumably they would imply P D P#P.

In the arithmetic model, there exist arithmetic circuits of size O
�
n3
�
, and even

size O .n!/, that compute Det .X/ as a formal polynomial in the entries of X, and
that work over an arbitrary field F. By contrast, Valiant conjectured the following.

50In later work, Bürgisser [59] showed that the same conjecture about �� .nŠ/ (called the �-
conjecture) would also imply Valiant’s Conjecture 66, that the permanent has no polynomial-size
arithmetic circuits.
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Conjecture 66 (Valiant’s Conjecture). Any arithmetic circuit for Per .X/ requires
size superpolynomial in n, over any field of characteristic other than 2.51;52

Bürgisser [58] showed that, if Conjecture 66 fails over any field of positive
characteristic, or if it fails over any field of characteristic zero and the Generalized
Riemann Hypothesis holds, then P#P � P=poly, and hence NP � P=poly.53 (The
main difficulty in proving this result is just that an arithmetic circuit might have very
large constants hardwired into it.) On the other hand, no converses to this result
is currently known. It’s conceivable, for example, that we could have P D P#P

for some “inherently Boolean” reason, even if the permanent required arithmetic
circuits of exponential size. To put it another way, proving Conjecture 66 could serve
as an “arithmetic warmup”—some would even say an “arithmetic prerequisite”—to
proving Boolean separations such as P#P 6� P=poly and P ¤ NP.

Better yet, Conjecture 66 turns out to be implied by (and nearly equivalent to) an
appealing mathematical conjecture, which makes no direct reference to computation
or circuits. Let’s say that the n 	 n permanent linearly embeds into the m 	 m
determinant, if it is possible to express Per .X/ (for an n 	 n matrix X 2 F

n�n)
as Det .L .X//, where L .X/ is an m 	 m matrix each of whose entries is an affine
combination of the entries of X. Then let D .n/ be the smallest m such that the n	 n
permanent linearly embeds into the m 	 m determinant.

Grenet [92] showed that D .n/ � 2n. By contrast, the best current lower bound on
D .n/ is quadratic, and was proved by Mignon and Ressayre [153] in 2004, following
a long sequence of linear lower bounds:

Theorem 67 (Mignon and Ressayre [153]). D .n/ � n2=2.

(Actually, Mignon and Ressayre proved Theorem 67 only for fields of character-
istic 0. Their result was then extended to all fields of characteristic other than 2 by
Cai et al. [64] in 2008.)

The basic idea of the proof of Theorem 67 is to consider the Hessian matrix of
a polynomial p W FN ! F, or the matrix of second partial derivatives, evaluated at
some particular point X0 2 F

N :

Hp .X0/ WD

0
BBB@

@2p
@x21
.X0/ � � � @2p

@x1@xN
.X0/

:::
: : :

:::
@2p

@xN@x1
.X0/ � � � @2p

@x2N
.X0/

1
CCCA :

51Fields of characteristic 2, such as F2, are a special case: there, the permanent and determinant
are equivalent, so in particular Per .X/ has polynomial-size arithmetic circuits.
52In the literature, Conjecture 66 is often called the VP ¤ VNP conjecture, with VP and VNP
being arithmetic analogues of P and NP respectively. I won’t use that terminology in this survey,
for several reasons: (1) VP is arguably more analogous to NC than to P, (2) VNP is arguably
more analogous to #P than to NP, and (3) Conjecture 66 is almost always studied as a nonuniform
conjecture, more analogous to NP 6� P=poly than to P ¤ NP.
53Indeed, #P would even have polynomial-size circuits of depth logO.1/ n.
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Here we mean the “formal” partial derivatives of p: even if F is a finite field,
one can still symbolically differentiate a polynomial over F, to produce new
polynomials over smaller sets of variables. In general, when we’re trying to lower-
bound the difficulty of computing a polynomial p, a common technique in arithmetic

complexity is to look at various partial derivatives @kp
@xi1 ���@xik

—and in particular, at
the dimensions of vector spaces spanned by those partial derivatives, or the ranks
of matrices formed from them—and then argue that, if p had a small circuit (or
formula, or whatever), then those dimensions or ranks couldn’t possibly be as high
as they are.

In the case of Theorem 67, one proves the following two statements:

(1) If p is the permanent, of an n 	 n matrix of N D n2 indeterminates, then there
exists a point X0 2 F

N such that rank
�
Hp .X0/

� D N.
(2) If p is the determinant of an m 	 m matrix of affine functions in the N

indeterminates, then rank
�
Hp .X/

� � 2m for every X.

Combining these, one gets m � n2=2, if p is both the n 	 n permanent and an
m 	 m determinant.

So to summarize, the “blowup” D .n/ in embedding the permanent into the
determinant is known to be at least quadratic and at most exponential. The huge gap
here becomes a bit less surprising, once one knows that D .n/ is tightly connected
to the arithmetic circuit complexity of the permanent. In particular, recall that a
formula is just a circuit in which every gate has a fanout of 1. Then Valiant [225]
showed the following:

Theorem 68 (Valiant [225]). D .n/ � F .n/ C 1, where F .n/ is the size of the
smallest arithmetic formula for the n 	 n permanent.

Thus, if we could prove that D .n/ grew faster than any polynomial, we’d have
shown that the permanent has no polynomial-size formulas. But heightening the
interest still further, Valiant et al. [228] showed that in the arithmetic world, there’s
a surprisingly tight connection between formulas and circuits:

Theorem 69 (Valiant et al. [228]). If a degree-d polynomial has an arithmetic
circuit of size s, then it also has an arithmetic formula of size .sd/O.log d/.

Theorem 69 implies that C .n/ � D .n/O.log n/, where C .n/ is the size of the
smallest arithmetic circuit for the n 	 n permanent. This means that, if we could
prove that D .n/ grew not only superpolynomially but faster than nO.log n/, we’d
also have shown that C .n/ grew superpolynomially, thereby establishing Valiant’s
Conjecture 66.

But lower-bounding D .n/ is not merely sufficient for proving Valiant’s Conjec-
ture; it’s also necessary! For recall that the n	n determinant has an arithmetic circuit
of size O

�
n3
�
, and even O .n!/. So we get the following chain of implications:

D .n/ > nO.log n/ H) F .n/ > nO.log n/ (by Theorem 68)
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H) C .n/ > nO.1/ (by Theorem 69; this is Valiant’s Conjecture 66)

H) D .n/ > nO.1/.by thenO.1/ arithmetic circuit for determinant)

H) F .n/ > nO.1/ (by Theorem 68).

Today, a large fraction of the research aimed at proving P ¤ NP is aimed, more
immediately, at proving Valiant’s Conjecture 66 (see Agrawal [13] for a survey
focusing on that goal). The hope is that, on the one hand, powerful tools from
algebraic geometry and other fields can be brought to bear on Valiant’s problem,

but on the other, that solving it could provide insight about the original P
‹D NP

problem.

6.5.2 Arithmetic Circuit Lower Bounds

I won’t do justice in this survey to the now-impressive body of work motivated
by Conjecture 66; in particular, I’ll say little about proof techniques. Readers who
want to learn more about arithmetic circuit lower bounds should consult Shpilka
and Yehudayoff [205, Chap. 3] for an excellent survey circa 2010, or Saraf [196]
for a 2014 update. Briefly, though, computer scientists have tried to approach
Conjecture 66 much as they’ve approached NP 6� P=poly, by proving lower bounds
against more and more powerful arithmetic circuit classes. In that quest, they’ve
had some notable successes (paralleling the Boolean successes), but have also run
up against some major differences from the Boolean case.

For starters, just as Razborov [187] and others considered monotone Boolean
circuits, one can also consider monotone arithmetic circuits (over fields such as R

or Q), in which all coefficients need to be positive. Since the determinant involves
�1 coefficients, it doesn’t make sense to ask about monotone circuits for Det .X/,
but one can certainly ask about the monotone circuit complexity of Per .X/. And
already in 1982, Jerrum and Snir [116] proved the following arithmetic counterpart
of Razborov’s Theorem 44:

Theorem 70 (Jerrum and Snir [116]). Any monotone circuit for Per .X/ requires
size 2�.n/.

As another example, just as computer scientists considered constant-depth
Boolean circuits (the classes AC0, ACC, TC0, and so on), so we can also consider
constant-depth arithmetic circuits, which are conventionally denoted †…, †…†,
etc. to indicate whether they represent a multivariate polynomial as a sum of
products, a sum of product of sums, etc. It’s trivial to prove exponential lower
bounds on the sizes of depth-two (†…) circuits: that just amounts to lower-bounding
the number of monomials in a polynomial. More interesting is the following result:
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Theorem 71 (Grigoriev and Karpinski [93], Grigoriev and Razborov [94]).
Over a finite field, any †…† circuit for Det .X/ requires size 2�.n/. (Indeed, this
is true even for circuits representing Det .X/ as a function.)

Curiously, over infinite fields, the best lower bound that we have is still a much
weaker one, due to Shpilka and Wigderson [204]:

Theorem 72 (Shpilka and Wigderson [204]). Over infinite fields, any †…†

circuit for Det .X/ requires size �
�
n4= log n

�
.

Theorems 71 and 72 are stated for the determinant, although they have analogues
for the permanent. In any case, these results certainly don’t succeed in showing that
the permanent is harder than the determinant.

The situation is better when we restrict the fanin of the multiplication gates. In
particular, by a †…Œa�†…Œb� circuit, let’s mean a depth-4 circuit where every inner
multiplication gate has fanin at most a, and every bottom multiplication gate has
fanin at most b. Then in 2013, Gupta et al. [99] proved the following.

Theorem 73 (Gupta et al. [99]). Any †…ŒO.
p

n/�†…Œ
p

n� circuit for Per .X/ or
Det .X/ requires size 2�.

p
n/.

Subsequently, Kayal et al. [126] proved a size lower bound of n�.
p

n/ for such
circuits, though not for the permanent or determinant but for a different explicit
polynomial.

The situation is also better when we restrict to homogeneous arithmetic circuits.
These are circuits where every gate is required to compute a homogeneous
polynomial: that is, one where all the monomials have the same degree. Here Nisan
and Wigderson [173] established the following in 1997.

Theorem 74 (Nisan and Wigderson [173]). Over any field, any homogeneous
†…† circuit for Det .X/ requires size 2�.n/.

Going further, in 2014 Kayal et al. [125] gave an explicit polynomial for which
any homogeneous †…†… circuit requires size n�.

p
n/.

It’s natural to wonder: why are we stuck talking about depth-3 and depth-4
arithmetic circuits? Why couldn’t we show that the permanent and determinant have
no constant-depth arithmetic circuits of subexponential size, just like Theorem 47
and its successors showed that PARITY has no constant-depth Boolean circuits of
subexponential size? After all, wasn’t the whole point of arithmetic complexity that
it was supposed to be easier than Boolean complexity?

In 2008, Agrawal and Vinay [15] gave a striking answer to these questions;
they called their answer “the chasm at depth four.” In particular, building on the
earlier work of Valiant et al. [228] (Theorem 69), Agrawal and Vinay showed that,
if we managed to prove strong enough lower bounds for depth-4 arithmetic circuits,
then we’d also get superpolynomial lower bounds for arbitrary arithmetic circuits!
Here’s one special case of their result:
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Theorem 75 (Agrawal and Vinay [15]). Suppose that Per .X/ requires depth-4
arithmetic circuits (even homogeneous ones) of size 2�.n/. Then Per .X/ requires
arithmetic circuits of superpolynomial size, and Valiant’s Conjecture 66 holds.

Subsequently, Koiran [133] and Tavenas [221] showed that Valiant’s Conjecture
would follow, not merely from a 2�.n/ size lower bound for homogeneous depth-
4 circuits computing the permanent, but from any size lower bound better than
n�.

p
n/. In an even more exciting development, Gupta et al. [98] reduced the depth

from four to three (though only for fields of characteristic 0, and no longer allowing
homogeneity):

Theorem 76 (Gupta et al. [98]). Suppose that Per .X/ requires depth-3 arithmetic
circuits of size more than n�.

p
n/, over fields of characteristic 0. Then Per .X/

requires arithmetic circuits of superpolynomial size, and Valiant’s Conjecture 66
holds.

These results can be considered extreme versions of the depth reduction of Brent
[52] (see Proposition 24). I should mention that all of these results hold, not just for
the permanent, but for any homogeneous polynomial of degree nO.1/. In particular,
by applying their depth reduction “in the opposite direction” for the determinant,
Gupta et al. [98] were able to show that there exist depth-3 arithmetic circuits of
size nO.

p
n/ for Det .X/. This provides an interesting counterpoint to the result of

Nisan and Wigderson [173] (Theorem 74), which showed that size 2�.n/ is needed
for the determinant if we restrict to depth-3 homogeneous circuits.

There are yet other results in this vein, which give yet other tradeoffs. But perhaps
we should step back from the flurry of theorems and try to summarize the situation.
After decades of research in arithmetic circuit complexity, we now have lower
bounds of the form n�.

p
n/ on the sizes of depth-3 and depth-4 arithmetic circuits

computing explicit polynomials (subject to various technical restrictions). On the
other hand, we also have a deep explanation for why the progress has stopped at the
specific bound n�.

p
n/: because any lower bound even slightly better than that would

already prove Valiant’s Conjecture, that the permanent is superpolynomially harder
than the determinant! It’s as if, in arithmetic complexity, we reach a terrifying
precipice—beyond which we can no longer walk but need to fly—sooner than we
do in the Boolean case. And around 2014, we learned exactly where that precipice
is and walked right up to it, but we still haven’t jumped.

In this connection, it’s worth pointing out that, with the exception of Theorem 67
by Mignon and Ressayre [153], none of the results in this section actually
differentiate the permanent from the determinant: that is, none of them prove a
lower bound for Per .X/ better than the analogous lower bound known for Det .X/.
Eventually, of course, any proof of Valiant’s Conjecture will need to explain why
the permanent is harder than the determinant, which is one of the main motivations
for the Mulmuley-Sohoni program (see Sect. 6.6).

Let me end this section by discussing two striking results of Ran Raz that didn’t
quite fit into the narrative above. The first result is a superpolynomial lower bound
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on the sizes of multilinear formulas. An arithmetic formula is called multilinear
if the polynomial computed by each gate is a multilinear polynomial (that is,
no variable is raised to a higher power than 1). Notice that the permanent and
determinant are both multilinear polynomials. For that reason, they can be computed
by multilinear formulas, and it makes sense to ask about the size of the smallest such
formulas.

In a 2004 breakthrough, Raz [182] proved the following.

Theorem 77 (Raz [182]). Any multilinear formula for Per .X/ or Det .X/ requires
size n�.log n/.54

What made Theorem 77 a breakthrough was that there was no restriction on the
formula’s depth. The proof was via the random restriction method from Sect. 6.2.3,
combined with the idea (common in arithmetic complexity) of using matrix rank as
a progress measure. In more detail, let p W f0; 1gn ! R be a polynomial computed
by a small multilinear formula: for simplicity, we’ll take p’s inputs to be Boolean.
Then basically, one randomly partitions p’s input variables into two small sets X D
fx1; : : : ; xkg and Y D fy1; : : : ; ykg, and a large set Z of size n� 2k. (Here one should
imagine, say, k D n1=3.) One then randomly fixes the variables in Z to 0’s or 1’s,
while leaving the variables in X and Y unfixed. Next, one defines a matrix M 2
R
2k�2k

, whose rows are indexed by the 2k possible assignments to X, whose columns
are indexed by the 2k possible assignments to Y , and whose .X;Y/ entry equals
p .X;Y;Z/. Finally, one proves the following two statements:

• With high probability, M has rank much smaller than 2k. This is the hard part of
the proof: one uses the assumption that p has a small multilinear formula, and
then argues by induction on the formula.

• If p represents the function f of interest to us (say, the permanent or determinant),
then rank .M/ D 2k with certainty.

Together, these yield the desired contradiction, showing that f can’t have had a
small multilinear formula after all.

It seems likely that the lower bound in Theorem 77 could be improved from
n�.log n/ all the way up to 2�.n/, but this remains open. Raz and Yehudayoff [185]
did manage to prove an exponential lower bound for constant-depth multilinear
formulas computing the permanent or determinant; and in a separate work [186],
they also proved a 2�.n/ lower bound for “non-cancelling” multilinear formulas
computing an explicit polynomial f (not the permanent or determinant). Here “non-
cancelling”—a notion that I defined in [2]—basically means that nowhere in the
formula are we allowed to add two polynomials that “almost perfectly” cancel each
other out, leaving only a tiny residue.

54An immediate corollary is that any multilinear circuit for Per .X/ or Det .X/ requires depth
�
�
log2 n

�
.
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Of course, just like with the arithmetic circuit lower bounds discussed earlier, so
far all the known multilinear formula lower bounds fail to distinguish the permanent
from the determinant.

The second result of Raz’s concerns so-called elusive functions. Given a polyno-
mial curve f W C ! C

n, Raz calls f elusive if f is not contained in the image of
any polynomial mapping g W Cn�1 ! C

n of degree 2. He then proves the following
striking theorem.

Theorem 78 (Raz [183]). Suppose there exists an elusive function whose coeffi-
cients can be computed in polynomial time. Then Per .X/ requires arithmetic circuits
of superpolynomial size, and Valiant’s Conjecture 66 holds.

Arguably, this makes Valiant’s Conjecture look even more like a question of
pure algebraic geometry than it did before! As evidence that the “elusive function”
approach to circuit lower bounds is viable, Raz then constructed an explicit f that
was elusive in a weak sense, which was already enough to imply the following new
lower bound:

Theorem 79 (Raz [183]). For every r, there is an explicit polynomial p with n
variables and degree O .r/, such that any depth-r arithmetic circuit for p (over any
field) requires size n1C�.1=r/.

6.5.3 Arithmetic Natural Proofs?

In Sect. 6.5.2, we saw arithmetic circuit lower bounds that, again and again, seem to
go “right up to the brink” of proving Valiant’s Conjecture, but then stop short. Given
this, it’s natural to wonder what the barriers are to further progress in arithmetic
complexity, and how they relate to the barriers in the Boolean case.

We’ve already discussed one obvious barrier, which is that eventually we need
techniques that work for the permanent but fail for the determinant. It might also be
interesting to define an arithmetic analogue of the relativization barrier (Sect. 6.1.2).
To my knowledge, this hasn’t been done, but my guess is that in the arithmetic
setting, the natural choices for oracles would look a lot like the algebraic oracles
studied by Aaronson and Wigderson [10] (see Sect. 6.3.3). With a notion of “oracle”
in hand, one could probably show that most arithmetic circuit lower bounds require
arithmetically non-relativizing techniques. On the other hand, this wouldn’t be much
of an obstruction, since even the results discussed in Sect. 6.5.2 should already evade
the relativization barrier, for the same reason as those of Sects. 6.2.3 and 6.2.4.

In the rest of this section, I’d like to discuss the contentious question of whether
or not arithmetic circuit complexity faces a natural proofs barrier, in the sense of
Razborov and Rudich [191]. Recall from Sect. 6.2.5 that a circuit lower bound proof
is called natural if, besides proving that the specific function f of interest to us is not
in a circuit class C, the proof also provides a polynomial-time algorithm A that takes
as input a function’s truth table, and that certifies a 1=nO.1/ fraction of all functions
as not belonging to C. Such an A can be used to distinguish functions in C from
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random functions with non-negligible bias. Meanwhile, the class C has a natural
proofs barrier if C contains pseudorandom function families, which cannot be so
distinguished from random functions, and whose existence is therefore incompatible
with the existence of A.

In the arithmetic setting, presumably we’d call a proof natural if it yields a
polynomial-time algorithm55 that takes as input, say, the complete output table
of a homogeneous degree-d polynomial p W Fn ! F over a finite field F, and
that certifies a 1=nO.1/ fraction of all such polynomials as not belonging to the
arithmetic circuit class C. Also, we’d say that C has a natural proofs barrier
if C contains pseudorandom polynomial families. By this, we mean families of
homogeneous degree-d polynomials, ps W Fn ! F, that no jFjO.n/-time algorithm
can distinguish from uniformly-random homogeneous degree-d polynomials with
non-negligible bias. (We can no longer talk about uniformly-random functions, since
an algorithm can easily ascertain, for example, that ps is a degree-d polynomial.) By
exactly the same logic as in the Boolean case, if C is powerful enough to compute
pseudorandom polynomials, then no natural proof can show that a polynomial is not
in C.

Now, one point that’s not disputed is that all the arithmetic circuit lower bounds
discussed in Sect. 6.5.2 are natural in the above sense. I didn’t say much about how
the lower bounds are proved, but as mentioned in Sect. 6.5.1, arithmetic circuit
lower bounds generally proceed by finding some parameter ˛ .p/ associated with
a polynomial p—say, the rank of its Hessian matrix, or the dimension of a vector
space spanned by p’s partial derivatives—to use as a “progress measure.” The proof
then argues that

(1) ˛ .p/ is large for the specific polynomial p of interest to us (say, the permanent
or determinant), but

(2) every gate added to our circuit or formula can only increase ˛ .p/ by so much,

thereby implying that p requires many gates. Furthermore, virtually any progress
measure ˛ that’s a plausible choice for such an argument—and certainly the
ones used in the existing result—will be computable in jFjO.n/ time, and will be
maximized by a random polynomial p of the appropriate degree. Alas, this implies
that the argument is natural! If the circuit class C has a natural proofs barrier, then
no such argument can possibly prove p … C.

The only part that’s controversial is whether arithmetic circuit classes do have
a natural proofs barrier. To show that they did, we’d need plausible candidates for
pseudorandom polynomials—e.g., homogeneous degree-d polynomials p W Fn ! F

that actually have small arithmetic circuits, but that look to any efficient test just
like random homogeneous polynomials of degree d. The trouble is that, while
cryptographers know a great deal about how to construct pseudorandom functions,

55For simplicity, here I’ll assume that we mean an “ordinary” (Boolean) polynomial-time
algorithm, though one could also require polynomial-time algorithms in the arithmetic model.
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the accepted constructions are all “inherently Boolean”; they don’t work in the
setting of low-degree polynomials over a finite field.

Thus, to take one example, the work of Goldreich, Goldwasser, and Micali
(GGM) [88], combined with that of Håstad et al. [106], shows how to build a
pseudorandom function family starting from any one-way function (see Sect. 5.3.1).
And indeed, Razborov and Rudich [191] used a variant of the GGM construction
in their original paper on natural proofs. However, if we try to implement the GGM
construction using arithmetic circuits—say, using multiplication for the AND gates,
1 � x for the NOT gates, etc.—we’ll find that we’ve produced an arithmetic circuit
of nO.1/ depth, which computes a polynomial of exp

�
nO.1/

�
degree: far too large.

As I mentioned in Sect. 6.2.5, if we’re willing to assume the hardness of specific
cryptographic problems, then there are also much more direct constructions of
pseudorandom functions, which produce circuits of much lower depth. In particular,
there’s the construction of Naor and Reingold [170], which is based on factoring
and discrete logarithm; and that of Banerjee et al. [35], which is based on noisy
systems of linear equations. Unfortunately, examination of these constructions
reveals that they, too, require treating the input as a string of bits rather than of finite
field elements. So for example, the Naor-Reingold construction involves modular
exponentiation, which of course goes outside the arithmetic circuit model, where
only addition and multiplication are allowed.

At this point I can’t resist stating my own opinion, which is that the issue here is
partly technical but also partly social. Simply put: Naor-Reingold and Banerjee et al.
are taken to be relevant to natural proofs, because factoring, discrete logarithm, and
solving noisy systems of linear equations have become accepted by the community
of cryptographers as plausibly hard problems. Since real computers use Boolean
circuits, and since in practice one normally needs pseudorandom functions rather
than polynomials, cryptographers have had extremely little reason to study pseu-
dorandom low-degree polynomials that are computed by small arithmetic circuits
over finite fields. If they had studied that, though, it seems entirely plausible that
they would’ve found decent candidates for such polynomials, and formed a social
consensus that they indeed seem hard to distinguish from random polynomials.

Motivated by that thought, in a 2008 blog post [5], I offered my own candidate
for a pseudorandom family of polynomials, ps W Fn ! F, which are homogeneous
of degree d D nO.1/. My candidate was simply this: motivated by Valiant’s result
[225] that the determinant can express any arithmetic formula (Theorem 68), take
the random seed s to encode d2 uniformly-random linear functions, Li;j W Fn ! F

for all i; j 2 f1; : : : ; dg. Then set

ps .x1; : : : ; xn/ WD Det

0
B@

L1;1 .x1; : : : ; xn/ � � � L1;d .x1; : : : ; xn/
:::

: : :
:::

Ld;1 .x1; : : : ; xn/ � � � Ld;d .x1; : : : ; xn/

1
CA :

My conjecture is that, at least when d is sufficiently large, a random ps drawn
from this family should require exp

�
d�.1/

�
time to distinguish from a random
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homogeneous polynomial of degree d, if we’re given the polynomial p W Fn ! F

by a table of jFjn values. If d is a large enough polynomial in n, then exp
�
d�.1/

�
is

greater than jFjO.n/, so the natural proofs barrier would apply.
So far there’s been little study of this conjecture, with the exception of a 2012

paper by Kayal [124], which proved the following.

Theorem 80 (Kayal [124]). Let d � pn, and suppose we’re given black-box
access to a degree-d polynomial p W Fn ! F, which is promised to be the permanent
or determinant of a d 	 d matrix of linear forms. Then there exists a randomized,
nO.1/-time algorithm to reconstruct the linear forms.

If we don’t need to reconstruct the linear forms, but only break my pseudorandom
polynomial candidate, then the results of Mignon and Ressayre [153] (Theorem 67)
let us push the range where the algorithm works all the way up to d � n=

p
2. It’s

not known what happens for larger d.
Of course, if our goal is to prove P ¤ NP or NP 6� P=poly, then perhaps the

whole question of arithmetic natural proofs is ultimately beside the point. For to
prove NP 6� P=poly, we’ll need to become experts at overcoming the natural proofs
barrier in any case: either in the arithmetic world, or if not, then when we move
from the arithmetic world back to the Boolean one.

6.6 Geometric Complexity Theory

I’ll end this survey with some extremely high-level remarks about Geometric
Complexity Theory (GCT): a breathtakingly ambitious program to prove P ¤ NP
and related conjectures using algebraic geometry and representation theory. This
program has been pursued since the late 1990s primarily by Ketan Mulmuley,
though with important contributions by Milind Sohoni and others.

I like to describe GCT as “the string theory of computer science.” Like string
theory, GCT has the aura of an intricate theoretical superstructure from the far
future, impatiently being worked on today despite our inability to test some key
premises. Both theories have attracted interest partly because of “miraculous coin-
cidences” (for string theory, these include anomaly cancellations and the prediction
of gravitons; for GCT, exceptional properties of the permanent and determinant,
and remarkable algorithms to compute the multiplicities of irreps). Both have been
described as beautiful, deep, compelling, and even “the only game in town” (not
surprisingly, a claim disputed by the fans of rival ideas!). And like with string theory,
there’s scarcely any part of modern mathematics that’s not known or believed to be
relevant to GCT.56

For both string theory and GCT, however, the central problem has been to say
something novel and verifiable about the real-world phenomena that motivated the

56Although so far, I haven’t seen a conjectured role for topology or logic in GCT.
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theory in the first place, and to do so in a way that depends essentially on the theory’s
core tenets (rather than on inspirations or analogies, or on incidental fragments of
the theory). For string theory, that would mean making confirmed predictions or
(e.g.) explaining the masses and generations of the elementary particles; for GCT, it
would mean proving new circuit lower bounds. Indeed, proponents of both theories
freely admit that one might spend one’s entire career on the theory, without living
to see a payoff of that kind.57

GCT is not an easy subject, and I don’t pretend to be an expert. Part of the
difficulty is inherent, while part of it is that the primary literature on GCT is not
optimized for beginners: it contains a profusion of new ideas, extended analogies,
speculations, theorems, speculations given acronyms and then referred to as if they
were theorems, and advanced mathematics assumed as background, all in papers
and manuscripts that cite each other in spaghetti fashion, making it difficult to track
down where a given claim is proved.

Mulmuley regards the beginning of GCT as a 1997 paper of his [158], which
used algebraic geometry to prove a circuit lower bound for the classic MAXFLOW

problem. In MAXFLOW, we’re given as input a description of an n-vertex directed
graph G, with nonnegative integer weights on the edges (called capacities), along
with designated source and sink vertices s and t, and a nonnegative integer w (the
target). The problem is to decide whether w units of a liquid can be routed from
s to t, with the amount of liquid flowing along an edge e never exceeding e’s
capacity. The MAXFLOW problem is famously in P,58 but the known algorithms
are inherently serial, and it remains open whether they can be parallelized. More
concretely, is MAXFLOW in NC1, or some other small-depth circuit class? Note
that any proof of MAXFLOW … NC1 would imply the spectacular separation
NC1 ¤ P. Nevertheless, Mulmuley [158] managed to prove a strong lower bound
for a restricted class of circuits, which captures almost all the MAXFLOW algorithms
known in practice.

Theorem 81 (Mulmuley [158]). Consider an arithmetic circuit for MAXFLOW,
which takes as input the integer capacities and the integer target w.59 The gates,
which all have fanin 2, can perform integer addition, subtraction, and multiplication
(C;�;	) as well as integer comparisons (D;�; <). A comparison gate returns the
integer 1 if it evaluates to “true” and 0 if it evaluates to “false.” The circuit’s final

57Furthermore, just as string theory didn’t predict what new data there has been in fundamental
physics in recent decades (e.g., the dark energy), so GCT played no role in, e.g., the proof of
NEXP 6� ACC (Sect. 6.4.2), or the breakthrough lower bounds for small-depth circuits computing
the permanent (Sect. 6.5.2). In both cases, to point this out is to hold the theory to a high and
probably unfair standard, but also, ipso facto, to pay the theory a compliment.
58MAXFLOW can easily be reduced to linear programming, but Ford and Fulkerson [78] also gave
a much faster and direct way to solve it, which can be found in any undergraduate algorithms
textbook. There have been further improvements since.
59We can assume, if we like, that G, s, and t are hardwired into the circuit. We can also allow
constants such as 0 and 1 as inputs, but this is not necessary, as we can also generate constants
ourselves using comparison gates and arithmetic.
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output must be 1 if the answer is “yes” and 0 if the answer is “no.” Direct access to
the bit-representations of the integers is not allowed, nor (for example) are the floor
and ceiling functions.

Any such circuit must have depth �
�p

n
�
. Moreover, this holds even if the

capacities are restricted to be O
�
n2
�
-bit integers.

Similar to previous arithmetic complexity lower bounds, the proof of Theorem 81
proceeds by noticing that any small-depth arithmetic circuit separate the yes-
instances from the no-instances via a small number of low-degree algebraic surfaces.
It then appeals to results from algebraic geometry (e.g., the Milnor-Thom Theorem)
to show that, for problems of interest (such as MAXFLOW), no such separation
by low-degree surfaces is possible. As Mulmuley already observed in [158], the
second part of the argument would work just as well for a random problem. So
we get a natural proof in the Razborov-Rudich sense (Sect. 6.2.5), meaning that the
same technique can’t possibly work to prove NC1 ¤ P: it must break down when
arbitrary bit operations are allowed. Nevertheless, for Mulmuley, Theorem 81 was
strong evidence that algebraic geometry provides a route to separating complexity
classes.

The central papers on GCT, written between 2001 and 2013, are as follows:

• GCT1 [167] by Mulmuley and Sohoni, which already contains almost all of the
main ideas, and should be read (perhaps along with GCT6) before attempting the
others.

• GCT2 [168], by Mulmuley and Sohoni, which has further technical results about
representation-theoretic obstructions, and which conjectures that the orbit clo-
sures relevant to GCT are essentially captured by their representation-theoretic
data.

• GCT3 [166], by Mulmuley, Narayanan, and Sohoni, which gives an efficient
algorithm, based on linear programming, to decide the positivity of Littlewood-
Richardson coefficients. Bürgisser and Ikenmeyer [60] later gave a combinatorial
algorithm for the same problem.

• GCT4 [45], by Blasiak, Mulmuley, and Sohoni, which gives a “positive formula”
for certain Kronecker coefficients (putting the computation of those coefficients
in #P).

• GCT5 [165] by Mulmuley, which gives a conditional derandomization of
Noether’s Normalization Lemma, a subject of perhaps tangential relevance to the
rest of the GCT program. Forbes and Shpilka [77] later gave an unconditional
version of the same result.

• GCT6 [162] by Mulmuley, which steps back and revisits the basics of GCT in
a somewhat more philosophical way, explaining what Mulmuley calls “the Flip”
(and what this survey called “ironic complexity theory”), and arguing the need
for explicit obstructions.

• GCT7 [159] and GCT8 [160] by Mulmuley, which give conjectures about
quantum groups that, if true, would yield positive formulas for certain plethysm
problems (again, putting those problems in #P).
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Readers seeking a less overwhelming introduction can try Mulmuley’s overviews
in Communications of the ACM [164] or in Journal of the ACM [163]; or lecture
notes and other materials on Mulmuley’s GCT website [157]; or surveys by Regan
[192] or Landsberg [137] (the latter is for geometers, not computer scientists). In my
view, however, perhaps the most beginner-friendly exposition of GCT yet written is
contained in Joshua Grochow’s Ph.D. thesis [95, Chap. 3]. Indeed, some readers
might want to put my survey down at this point and read Grochow’s thesis instead.

6.6.1 From Complexity to Algebraic Geometry

So, what is GCT? It’s easiest to understand GCT as a program to prove Valiant’s
Conjecture 66—that is, to show that any affine embedding of the n 	 n permanent
over C into the m 	 m determinant over C requires (say) m D 2n�.1/ , and hence,
that the permanent requires exponential-size arithmetic circuits. GCT also includes
an even more speculative program to prove Boolean lower bounds, such as NP 6�
P=poly and hence P ¤ NP. However, if one accepts the premises of GCT in the
first place (e.g., the primacy of algebraic geometry for circuit lower bounds), then
one might as well start with the permanent versus determinant problem, since that’s
where the core ideas of GCT come through the most clearly.

The first observation Mulmuley and Sohoni make is that Valiant’s Conjecture 66
can be translated into an algebraic-geometry conjecture about orbit closures. In
more detail, consider a group G that acts on a set V: in the examples that interest
us, G will be a group of complex matrices, while V will be a high-dimensional
vector space over C (e.g., the space of all homogeneous degree-n polynomials over
some set of variables). Then the orbit of a point v 2 V , denoted Gv, is the set
fg � v W g 2 Gg. Also, the orbit closure of x, denoted Gv, is the closure of Gv in
the usual complex topology. It contains all the points that can be arbitrarily well
approximated by points in Gv.

To be more concrete, let G D GLm2 .C/ be the general linear group: the group
of all invertible m2 	 m2 complex matrices. Also, let V be the vector space of all
homogeneous degree-m complex polynomials over m2 variables; the variables are
labeled x1;1; : : : ; xm;m, and we’ll think of them as the entries of an m 	 m matrix
X. (Recall that a homogeneous polynomial is one where all the monomials have the
same degree m; restricting to them lets GCT talk about linear maps rather than affine
ones.) Then G acts on V in an obvious way: for all matrices A 2 G and polynomials
p 2 V , we can set .A � p/ .x/ WD p .Ax/. Indeed, this action is a group representation:
each A 2 G acts linearly on the coefficients of p, so we get a homomorphism from
G to the linear transformations on V .

Now, we’d like to interpret both the m 	 m determinant and the n 	 n permanent
(n � m) as points in V , in order to phrase the permanent versus determinant
problem in terms of orbit closures. For the determinant, this is trivial: Detm is a
degree-m homogeneous polynomial over the xij’s. The n	n permanent, on the other
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hand, is a lower-degree polynomial over a smaller set of variables. GCT solves that
problem by considering the so-called padded permanent,

Per�
m;n .X/ WD xm�n

m;m Pern .Xjn/ ;

where Xjn denotes the top-left n 	 n submatrix of X, and xm;m is just some entry of
X that’s not in Xjn. This is a homogeneous polynomial of degree m.

Let 
Det;m WD G � Detm be the orbit closure of the m 	 m determinant, and let

Per;m;n WD G � Per�

m;n be the orbit closure of the padded n 	 n permanent. I can now
state the central conjecture that GCT, in its current incarnation, seeks to prove.

Conjecture 82 (Mulmuley-Sohoni Conjecture). If m D 2no.1/
, then for all suffi-

ciently large n we have Per�
m;n … 
Det;m, or equivalently 
Per;m;n 6� 
Det;m. In other

words, the padded permanent is not in the orbit closure of the determinant.

Mulmuley and Sohoni’s first major observation is that a proof of Conjecture 82
(or indeed, any lower bound on m better than n�.log n/) would imply a proof of
Valiant’s Conjecture:

Proposition 83 ([167]). Suppose there’s an affine embedding of the n	n permanent
into the m 	 m determinant: i.e.,D .n/ � m, in the notation of Sect. 6.5.1. Then
Per�

m;n 2 
Det;m.

Let me make two remarks about Proposition 83. First, for the proposition to
hold, it’s crucial that we’re talking about the orbit closure, not just about the orbit.
It’s easy to see that Per�

m;n … G � Detm—for example, because every element of
G � Detm is irreducible (can’t be factored into lower-degree polynomials), whereas
the padded permanent is clearly reducible. But that tells us only that there’s no
invertible linear transformation of the variables that turns the determinant into the
padded permanent, not that there’s no linear transformation at all. In GCT, linear
changes of variable play the role of reductions—so, while the orbit of f plays the
role of the “f -complete problems,” it’s the orbit closure that plays the role of the
complexity class of functions reducible to f .60

60More broadly, I’ve found, there are many confusing points about GCT whose resolutions require
reminding ourselves that we’re talking about orbit closures, and not only about orbits. For example,
the plan of GCT is ultimately to show, roughly speaking, that the n � n permanent has “too little
symmetry” to be embedded into the m � m determinant, unless m is much larger than n. But in that
case, what about (say) a random arithmetic formula f of size n, which has no nontrivial symmetries,
but which clearly can be embedded into the .n C 1/� .n C 1/ determinant, by Theorem 68? Even
though this f clearly isn’t characterized by its symmetries, mustn’t the embedding obstructions
for f be a strict superset of the embedding obstructions for the permanent—since f ’s symmetries
are a strict subset of the permanent’s symmetries—and doesn’t that give rise to a contradiction?
According to Mulmuley (personal communication), the solution to the apparent paradox is that this
argument would be valid if we were talking only about orbits, but it’s not valid for orbit closures.
With orbit closures, the set of obstructions doesn’t depend in a simple way on the symmetries of
the original function, so that it’s possible that an obstruction for the permanent would fail to be an
obstruction for f .
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The second remark is that, despite their similarity, it’s unknown whether
Conjecture 82 is equivalent to Valiant’s conjecture that the permanent requires affine
embeddings into the determinant of size D .n/ > 2no.1/

. The reason is that, as far as
anyone knows, there might be points in the orbit closure of the determinant that
aren’t in its “endomorphism orbit” (that is, the set of polynomials that have not-
necessarily-invertible linear embeddings into the determinant) In complexity terms,
these points would be homogeneous degree-m polynomials that can be arbitrarily
well approximated by determinants of m 	 m matrices of linear functions, but not
represented exactly.

See Grochow [95] for further discussion of both issues.

6.6.2 Characterization by Symmetries

So far, it seems like all we’ve done is restated Valiant’s Conjecture in a more abstract
language and slightly generalized it. But now we come to the central insight of GCT,
which is that the permanent and determinant are both special, highly symmetric
functions, and we can leverage that fact to learn more about their orbit closures than
we could if they were arbitrary functions. For starters, Per .X/ is symmetric under
permuting X’s rows or columns, transposing X, and multiplying the rows or columns
by scalars that multiply to 1. That is, we have

Per .X/ D Per
�
XT
� D Per .PXQ/ D Per .AXB/ (2)

for all permutation matrices P and Q, and all diagonal matrices A and B such that
Per .A/ Per .B/ D 1. The determinant has an even larger symmetry group: we have

Det .X/ D Det
�
XT
� D Det .AXB/ (3)

for all matrices A and B such that Det .A/Det .B/ D 1.
But there’s a further point: it turns out that the permanent and determinant are

both uniquely characterized (up to a constant factor) by their symmetries, among
all homogeneous polynomials of the same degree. More precisely:

Theorem 84. Let p be any degree-m homogeneous polynomial in the entries of
X 2 C

m�m that satisfies p .X/ D p .PXQ/ D p .AXB/ for all permutation matrices
P;Q and diagonal A;B with Per .A/ Per .B/ D 1. Then p .X/ D ˛ Per .X/ for some
˛ 2 C. Likewise, let p be any degree-m homogeneous polynomial in the entries of
X 2 C

m�m that satisfies p .X/ D p .AXB/ for all A;B with Det .A/Det .B/ D 1.
Then p .X/ D ˛Det .X/ for some ˛ 2 C.61

61Note that we don’t even need to assume the symmetry p .X/ D p
�
XT
�
; that comes as a free

byproduct. Also, it might seem like “cheating” that we use the permanent to state the symmetries
that characterize the permanent, and likewise for the determinant. But we’re just using the
permanent and determinant as convenient ways to specify which matrices A;B we want, and could
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Theorem 84 is fairly well-known in representation theory; see Grochow [95,
Propositions 3.4.3 and 3.4.5] for an elementary proof, using Gaussian elimination
for the determinant and even simpler considerations for the permanent. Notice that
we’re not merely saying that any polynomial p with the same symmetry group as
the permanent is a multiple of the permanent (and similarly for the determinant),
but rather that any p whose symmetry group contains the permanent’s is a multiple
of the permanent.

In a sense, Theorem 84 is the linchpin of the entire GCT program. Among
other things, it’s GCT’s answer to the question of how it will overcome the
natural proofs barrier. For notice that, if we picked a degree-m homogeneous
polynomial at random, it almost certainly wouldn’t be uniquely characterized by
its symmetries, as the permanent and determinant are.62 Thus, if a proof that the
permanent is hard relies on symmetry-characterization, we need not fear that the
same proof would work for a random homogeneous polynomial, and thereby give
us a way to break arithmetic pseudorandom functions (Sect. 6.5.3). While this isn’t
mentioned as often, Theorem 84 should also let GCT overcome the relativization
and algebrization barriers, since (for example) a polynomial that was #PA-complete
for some oracle A, rather than #P-complete like the permanent was, would not have
the same symmetries as the permanent itself.

6.6.3 The Quest for Obstructions

Because the permanent and determinant are characterized by their symmetries, and
because they satisfy another technical property called “partial stability,” Mulmuley
and Sohoni observe that a field called geometric invariant theory can be used to get
a handle on their orbit closures. I won’t explain the details of how this works (which
involve something called Luna’s Étale Slice Theorem [150]), but will just state the
punchline.

Given a set S � C
N , define R ŒS�, or the coordinate ring of S, to be the vector

space of all complex polynomials q W CN ! C, with two polynomials identified if
they agree on all points x 2 S. Then we’ll be interested in RDet WD R Œ
Det;m� and
RPer WD R Œ
Per;m;n�: the coordinate rings of the orbit closures of the determinant and

the padded permanent. In this case, N D �m2Cm�1
m

�
is the dimension of the vector

space of homogeneous degree-m polynomials over m2 variables. So the coordinate
rings are vector spaces of polynomials over N variables: truly enormous objects.

Next, let q W CN ! C be one of these “big” polynomials, whose inputs are
the coefficients of a “small” polynomial p (such as the permanent or determinant).
Then we can define an action of the general linear group, G D GLm2 .C/, on q, via
.A � q/ .p .x// WD q .p .Ax// for all A 2 G. In other words, we take the action of G on

give slightly more awkward symmetry conditions that avoided them. (This is especially clear for
the permanent, since if A is diagonal, then Per .A/ is just the product of the diagonal entries.)
62See Grochow [95, Proposition 3.4.9] for a simple proof of this, via a dimension argument.
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the “small” polynomials p that we previously defined, and use it to induce an action
on the “big” polynomials q. Notice that this action fixes the coordinate rings RDet

and RPer (i.e., just shifts their points around), simply because the action of G fixes
the orbit closures 
Det;m and 
Per;m;n themselves. As a consequence, the actions on G
on RDet and RPer give us two representations of the group G: that is, homomorphisms
that map the elements of G to linear transformations on the vector spaces RDet and
RPer respectively. Call these representations �Det and �Per respectively.

Like most representations, �Det and �Per can be decomposed uniquely into
direct sums of irreducible representations, or “irreps” (which are not further
decomposable). In particular, let � W G ! C

k�k be any irrep of G. Then � occurs
with some nonnegative integer multiplicity, call it �Det .�/, in �Det, and with some
possibly different multiplicity, call it �Per .�/, in �Per. We’re now ready for the
theorem that sets the stage for the rest of GCT.

Theorem 85 (Mulmuley-Sohoni [167]). Suppose there exists an irrep � such that
�Per .�/ > �Det .�/. Then Per�

m;n … 
Det;m: that is, the padded permanent is not in
the orbit closure of the determinant.

Note that Theorem 85 is not an “if and only if”: even if Per�
m;n … 
Det;m, there’s

no result saying that the reason must be representation-theoretic. In GCT2 [168],
Mulmuley and Sohoni conjecture that the algebraic geometry of 
Det;m is in some
sense completely determined by its representation theory, but if true, that would
have to be for reasons rather specific to 
Det;m (or other “complexity-theoretic” orbit
closures).

If �Per .�/ > �Det .�/, then Mulmuley and Sohoni call � an obstruction to
embedding the permanent into the determinant. Any obstruction would be a witness
to the permanent’s hardness: if one likes, it would prove that the m	m determinant
has “too much symmetry” to express the padded n	 n permanent, unless m is much
larger than n. From this point forward, GCT is focused entirely on the hunt for such
an obstruction.

A priori, one could imagine proving nonconstructively that an obstruction �must
exist, without actually finding the obstruction. However, Mulmuley and Sohoni
emphatically reject that approach. They want not merely any proof of Conjecture 82,
but an “explicit” proof: that is, one that yields an algorithm that actually finds an
obstruction �witnessing Per�

m;n … 
Det;m, in time polynomial in m and n. Alas, as you
might have gathered, the representations �Det and �Per are fearsomely complicated
objects—so even if we accept for argument’s sake that obstructions should exist, we
seem a very long way from algorithms to find them in less than astronomical time.63

For now, therefore, Mulmuley and Sohoni argue that the best way to make
progress toward Conjecture 82 is to work on more and more efficient algorithms

63In principle, �Det and �Per are infinite-dimensional representations, so an algorithm could search
them forever for obstructions without halting. On the other hand, if we impose some upper bound
on the degrees of the polynomials in the coordinate ring, we get an algorithm that takes “merely”
doubly- or triply-exponential time.
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to compute the multiplicities of irreps in complicated representations like �Det and
�Per. The hope is that, in order to design those algorithms, we’ll be forced to acquire
such a deep understanding that we’ll then know exactly where to look for a � such
that �Per .�/ > �Det .�/. So that’s the program that they’ve pursued for the last
decade, for example in GCT 3, 4, 7, and 8 [45, 159, 160, 166].

The central idea here—that the path to proving P ¤ NP will go through
discovering new algorithms, rather than through ruling them out—is GCT’s version
of “ironic complexity theory,” discussed in Sect. 6.4. What I’ve been calling “irony”
in this survey, Mulmuley calls “The Flip” [161]: that is, flipping lower-bound
problems into upper-bound problems, which we have a far better chance of solving.

Stepping back from the specifics of the GCT program, Mulmuley’s view is that,
before we prove (say) NP 6� P=poly, a natural intermediate goal is to find an
algorithm A that takes a positive integer n as input, runs for nO.1/ time (or even
exp

�
nO.1/

�
time), and then outputs a proof that 3SAT instances of size n have

no circuits of size m, for some superpolynomial function m. Such an algorithm
wouldn’t immediately prove NP 6� P=poly, because we might still not know
how to prove that A succeeded for every n. Even so, it would clearly be a titanic
step forward, since we could run A and check that it did succeed for every n we
chose, perhaps even for n’s in the billions. At that point, we could say either that
NP 6� P=poly, or else that NP � P=poly only “kicks in” at such large values of n as
to have few or no practical consequences. Furthermore, Mulmuley argues, we’d then
be in a much better position to prove NP 6� P=poly outright, since we’d “merely”
have to analyze A, whose very existence would obviously encode enormous insight
about the problem, and prove that it worked for all n.64

Mulmuley and others have indeed made progress in discovering efficient algo-
rithms to the compute multiplicities of irreps, though the state-of-the-art is still
extremely far from what Mulmuley conjectures is possible. To give an example,
a Littlewood-Richardson coefficient is the multiplicity of a given irrep in a tensor
product of two irreps of the general linear group GLn .C/. In GCT3 [166], Mulmuley
et al. observed that a result of Knutson and Tao [132] implies that one can use
linear programming, not necessarily to compute Littlewood-Richardson coefficients
in polynomial time, but at least to decide whether they’re positive or zero.65

Bürgisser and Ikenmeyer [60] later gave a faster polynomial-time algorithm for
the same problem; theirs was purely combinatorial and based on maximum flow.
Note that, even if we only had efficient algorithms for positivity, those could still
be useful for finding so-called occurrence obstructions: that is, irreps � such that

64A very loose analogy: well before Andrew Wiles proved Fermat’s Last Theorem [233], that
xn Cyn D zn has no nontrivial integer solutions for any n � 3, number theorists knew a reasonably
efficient algorithm that took an exponent n as input, and that (in practice, in all the cases that
were tried) proved FLT for that n. Using that algorithm, in 1993—just before Wiles announced his
proof—Buhler et al. [55] proved FLT for all n up to 4 million.
65As pointed out in Sect. 2.2.6, there are other cases in complexity theory where deciding positivity
is much easier than exact counting: for example, deciding whether a graph has at least one perfect
matching (counting the number of perfect matchings is #P-complete).
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�Per .�/ > 0 even though �Det .�/ D 0. Thus, the “best-case scenario” for GCT is
that the permanent’s hardness can be witnessed not just by any obstructions, but by
occurrence obstructions.

In many cases, we don’t even know yet how to represent the multiplicity of
an irrep as a #P function: at best, we can represent it as a difference between
two #P functions. In those cases, the current research effort in GCT aims to give
“positive formulas” for the multiplicities: in other words, to represent them as sums
of exponentially many nonnegative terms, and thereby place their computation in #P
itself. The hope is that a #P formula could be a first step toward a polynomial-time
algorithm to decide positivity. To illustrate, Blasiak et al. achieved this for “two-
row Kronecker coefficients” in GCT4 [45]. For other kinds of irreps, the quest for
positive formulas has led to extremely deep waters, involving (for example) quantum
groups and conjectured generalizations of the Riemann Hypothesis over finite fields.
I won’t go into this here, but see GCT7 [159] and GCT8 [160] for this part of the
story.

6.6.4 GCT and P
‹D NP

Suppose—let’s dream—that everything above worked out perfectly. That is, sup-
pose GCT led to the discovery of explicit obstructions for embedding the padded
permanent into the determinant, and thence to a proof of Valiant’s Conjecture 66.
How would GCT go even further, to prove P ¤ NP?

The short answer is that Mulmuley and Sohoni [167] defined an NP function
called E, as well as a P-complete66 function called H, and showed them to be
characterized by symmetries in only a slightly weaker sense than the permanent and
determinant are. The E and H functions aren’t nearly as natural as the permanent
and determinant, but they suffice to show that P ¤ NP could in principle be proven
by finding explicit representation-theoretic obstructions, which in this case would
be representations associated with the orbit of E but not with the orbit of H. Alas,
because E and H are functions over a finite field Fq rather than over C, the relevant
algebraic geometry and representation theory would all be over finite fields as well.
This leads to mathematical questions even less well-understood (!) than the ones
discussed earlier, providing some additional support for the intuition that proving
P ¤ NP should be “even harder” than proving Valiant’s Conjecture.

For illustration, let me now define Mulmuley and Sohoni’s E function. Let X0
and X1 be two n 	 n matrices over the finite field Fq. Also, given a binary string
s D s1 � � � sn, let Xs be the n	 n matrix obtained by choosing the ith column from X0
if si D 0 or from X1 if si D 1 for all i 2 f1; : : : ; ng. We then set

66A language L is called P-complete if (1) L 2 P, and (2) every L0 2 P can be reduced to L by
some form of reduction weaker than arbitrary polynomial-time ones (LOGSPACE reductions are
often used for this purpose).
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F .X0;X1/ WD
Y

s2f0;1gn

Det .Xs/ ;

and finally set

E .X0;X1/ WD 1 � F .X0;X1/
q

to obtain a function in f0; 1g. Testing whether E .X0;X1/ D 1 is clearly an NP
problem, since an NP witness is a single s such that Det .Xs/ D 0. Furthermore,
Gurvits [100] showed that, at least over Z, testing whether F .X0;X1/ D 0 is NP-
complete. Interestingly, it’s not known whether E itself is NP-complete—though of
course, to prove P ¤ NP, it would suffice to put any NP problem outside P, not
necessarily an NP-complete one.

The main result about E (or rather F) is the following:

Theorem 86 (see Grochow [95, Proposition 3.4.6]). Let p W F2n2
q ! Fq be any

homogeneous, degree-n2n polynomial in the entries of X0 and X1 that’s divisible by
Det .X0/Det .X1/, and suppose every linear symmetry of F is also a linear symmetry
of p. Then p .X0;X1/ D ˛F .X0;X1/ for some ˛ 2 Fq.

The proof of Theorem 86 involves some basic algebraic geometry. Even setting
aside GCT, it would be interesting to know whether the existence of a plausibly-hard
NP problem that’s characterized by its symmetries had direct complexity-theoretic
applications.

One last remark: for some complexity classes, such as BQP, we currently lack
candidate problems characterized by their symmetries, so even by the speculative
standards of this section, it’s unclear how GCT could be used to prove (say) P ¤
BQP or NP 6� BQP.

6.6.5 Reports from the Trenches

Within the past few years, there’s been surprisingly rapid progress on connecting
GCT to mainstream complexity theory; reproving known lower bounds using GCT
or “GCT-like” methods; and investigating the truth or falsehood of some of GCT’s
main hypotheses. Let me mention a few highlights.

First, it’s now known that the central property of the permanent and determi-
nant that GCT seeks to exploit—namely, their characterization by symmetries—
does indeed have complexity-theoretic applications. In particular, Mulmuley [161]
observed that one can use the symmetry-characterization of the permanent to give
a different, and in many ways nicer, proof of the classic result of Lipton [146] that
the permanent is self-testable: that is, given a circuit C that’s alleged to compute
Per .X/, in randomized polynomial time one can either verify that C .X/ D Per .X/
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for most matrices X, or else find a counterexample where C .X/ ¤ Per .X/.67

Subsequently, Kayal [124] took Mulmuley’s observation further by exploiting
symmetry-characterization more heavily. Recall Kayal’s Theorem 80: that when
d � pn, there’s a randomized polynomial-time algorithm to decide whether a
given degree-d polynomial p (to which we have black-box access) is the permanent
or determinant of a d 	 d matrix of affine functions fij, and if so, to find suitable
fij’s. Now, in the same paper [124], Kayal also showed that if q is an arbitrary
polynomial, then deciding whether there exist A and b such that p .x/ D q .AxC b/
is NP-hard. So what is it about the permanent and determinant that made the
problem so much easier? The answer is their symmetry-characterization, along with
more specific properties of the Lie algebras of the stabilizer groups of Per and
Det.

For more about the algorithmic consequences of symmetry-characterization,
see for example Grochow [95, Chap. 4], who also partially derandomized Kayal’s
algorithm and applied it to other problems such as matrix multiplication. In my
view, an exciting challenge right now is to use the symmetry-characterization of
the permanent, or perhaps of the E function from Sect. 6.6.4, to prove other new
complexity results—not necessarily circuit lower bounds—that hopefully evade the
relativization and algebrization barriers.

In a second recent development, we now know that nontrivial circuit lower
bounds—albeit, not state-of-the-art ones—can indeed be proved by finding
representation-theoretic obstructions, just as GCT proposed. Recall from Sect. 6
that the rank of a 3-dimensional tensor A 2 F

n�n�n is the smallest r such that A
can be written as the sum of r rank-one tensors, tijk D xiyjzk. If F is a continuous
field like C, then we can also define the border rank of A to be the smallest r
such that A can be written as the limit of rank-r tensors. It’s known that border
rank can be strictly less than rank.68 Border rank was introduced in 1980 by Bini
et al. [44] to study matrix multiplication algorithms: indeed, one could call that the
first appearance of orbit closures in computational complexity, decades before GCT.

More concretely, the n	 n matrix multiplication tensor, say over C, is defined to
be the 3-dimensional tensor Mn 2 C

n2�n2�n2 whose .i; j/ ; .j; k/ ; .i; k/ entries are all
1, and whose remaining n6 � n3 entries are all 0. In 1973, Strassen [215] proved a
key result connecting the rank of Mn to the complexity of matrix multiplication:

Theorem 87 (Strassen [215]). The rank of Mn equals the minimum number of
nonscalar multiplications in any arithmetic circuit that multiplies two n	n matrices.

67This result of Lipton’s provided the germ of the proof that IP D PSPACE; see Sect. 6.3.1.
Mulmuley’s test improves over Lipton’s by, for example, requiring only nonadaptive queries to

C rather than adaptive ones.
68A standard example is the 2�2�2 tensor whose .2; 1; 1/, .1; 2; 1/, and .1; 1; 2/ entries are all 1,
and whose 5 remaining entries are all 0. One can check that this tensor has a rank of 3 but border
rank of 2.
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As an immediate corollary, the border rank of Mn lower-bounds the arithmetic
circuit complexity of n 	 n matrix multiplication. Bini [43] showed, moreover,
that the exponent ! of matrix multiplication is the same if calculated using rank
or border rank—so in that sense, the two are asymptotically equal.

In a tour-de-force, in 2004 Landsberg [136] proved that the border rank of
M2 is 7, using non-GCT differential geometry methods. A corollary was that any
procedure to multiply two 2	2matrices requires at least 7 nonscalar multiplications,
precisely matching the upper bound discovered by Strassen [214] in 1969. (The
trivial upper bound is 8 multiplications.)

I can now state what Bürgisser and Ikenmeyer [61] used GCT to achieve in 2013.

Theorem 88 (Bürgisser and Ikenmeyer [61]). There are representation-theoretic
(GCT) occurrence obstructions that witness that the border rank of Mn is at least
3
2
n2 � 2.

By comparison, the state-of-the-art lower bound on the border rank of matrix
multiplication, obtained using non-GCT methods, is the following.

Theorem 89 (Landsberg and Ottaviani [138]). The border rank of Mn is at least
2n2 � n.

Of course, since both lower bounds are still quadratic, neither of them shows that
matrix multiplication requires more than 
 n2 time, but it’s interesting to see how
the best current GCT and non-GCT bounds compare.

Meanwhile, another recent insight is that most known circuit lower bounds
can be put into a “broadly GCT-like” format. In an elegant 2014 paper, Grochow
[96] showed that the AC0 and AC0 Œp� lower bounds of Sects. 6.2.3 and 6.2.4, the
embedding lower bound of Mignon and Ressayre (Theorem 67), the lower bounds
for small-depth arithmetic circuits and multilinear formulas of Sect. 6.5.2, and many
other results can each be seen as constructing a separating module: that is, a
“big polynomial” that takes as input the coefficients of an input polynomial, that
vanishes for all polynomials in some complexity class C, but that doesn’t vanish
for a polynomial q for which we’re proving that q … C. Interestingly, the lower
bounds that don’t fit into this format—such as MAEXP 6� P=poly (Theorem 52)
and NEXP 6� ACC (Theorem 62)—essentially all use diagonalization as a key
ingredient. Grochow’s result is an important unification, and it sounds like an
impressive success for GCT. On the other hand, it’s important to understand that
Grochow didn’t show that the known circuit lower bounds yield representation-
theoretic obstructions: only that they yield separating modules. In other words, we
might say, Grochow showed that the known circuit lower bounds fit into an abstract
construal of the “GCT program,” but not that they fit into its really meaty part, into
the part that makes GCT a program.

A third development, just in 2015, is that we now have some initial results
from actual searches for irreps that could serve as obstructions to embedding the
permanent into the determinant. Unfortunately, not all the news is encouraging.
For example, Ikenmeyer and Panova [109] have shown that “rectangular Kronecker
coefficients” can’t be used to give occurrence obstructions separating 
Per;m;n from
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Det;m. In other words, there’s a large class of irreps such that, if they occur at
least once in the padded permanent representation �Per, then they also occur at least
once in the determinant representation �Det. Likewise, Bürgisser, Ikenmeyer, and
Hüttenhain [62] have shown that any occurrence obstructions separating 
Per;m;n

from 
Det;m must be “holes” of a certain monoid, further limiting where to look.
It’s entirely possible that these negative results are artifacts of “looking under the
lamp-post”—i.e., only at those irreps � for which one can actually calculate today
whether �Per .�/ and �Det .�/ are nonzero—but the worry is that irreps � such that
�Det .�/ D 0 might be incredibly rare, in which case occurrence obstructions could
be hard to find if they even exist.

On the positive side, Ikenmeyer, Mulmuley, and Walter [108] have shown that
there are superpolynomially many Kronecker coefficients that do vanish, thereby
raising hope that occurrence obstructions might exist after all. Notably, they
proved this result by first giving a #P formula for the relevant class of Kronecker
coefficients, thereby illustrating the GCT strategy of first looking for algorithms and
only later looking for the obstructions themselves.

6.6.6 The Lessons of GCT

Unsurprisingly, expert opinion is divided about GCT’s prospects. Some feel that
GCT does little more than take complicated questions and make them even more
complicated. Others feel it’s a perfectly natural and reasonable approach—maybe
even the only extant approach that stands a chance—and that the complication is
an inevitable byproduct of finally grappling with the real issues. Of course, one
can also “cheer GCT from the sidelines” without feeling prepared to work on it
oneself, particularly given the unclear prospects for any computer-science payoff in
the foreseeable future. (Mulmuley once told me he thought it would take a hundred
years until GCT led to major complexity class separations, and he’s the optimist!)

Personally, I’d call myself a qualified fan of GCT, in much the same way and
for the same reasons that I’m a qualified fan of string theory. I think all complexity
theorists should learn about GCT—for one thing, because it has deep general lessons
for the quest to prove P ¤ NP, even if it ends up not succeeding, or not succeeding
as Mulmuley envisioned. This section is devoted to what I believe those lessons are.

A first lesson is that we can in principle evade the relativization, algebrization,
and natural proofs barriers by using the existence of complete problems with
special properties: as a beautiful example, the property of being “characterized by
symmetries,” which the permanent and determinant both enjoy. A second lesson is
that “ironic complexity theory” has even further reach than one might have thought:
one could use the existence of surprisingly fast algorithms, not merely to show that
certain complexity collapses would violate hierarchy theorems, but also to help
find certificates that problems are hard. A third lesson is that there’s at least one
comprehensible route by which a circuit lower bound proof would need to know
about huge swathes of “traditional, continuous” mathematics, as many computer
scientists have long suspected (or feared!).
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But none of those lessons really gets at how GCT changed my own thinking about

P
‹D NP. One of the most striking features of GCT is that, even as the approach

stands today, it “knows” about various nontrivial problems in P, such as maximum
flow and linear programming (because they’re involved in deciding whether the
multiplicities of irreps are nonzero). We knew, of course, that any proof of P ¤ NP
would need to “know” that linear programming, matching, and so on are in P and are
therefore different from 3SAT. (Indeed, that’s one way to express the main difficulty

of the P
‹D NP problem.) So the fact that GCT knows about all these polynomial-

time algorithms seems both impressive and reassuring. But what’s strange is that
GCT seems to know the upper bounds, not the lower bounds—the power of the
algorithms, but not their limitations! In other words, consider a hypothetical proof
of P ¤ NP using GCT. If we ignore the details, and look from a distance of a
thousand miles, the proof seems to be telling us not: “You see how weak P is? You
see all these problems it can’t solve?” but rather, “You see how strong P is? You
see all these amazing, nontrivial problems it can solve?” The proof would seem to
building up an impressive case for the wrong side of the argument!

One response would be to point out that this is math, not a political debate, and
leave it at that. But perhaps one can do better. Let A be a hypothetical problem, like
matching or linear programming, that’s in P for a nontrivial reason, and that’s also
definable purely in terms of its symmetries, as the permanent and determinant are.
Then we can define an orbit closure 
A, which captures all problems reducible to A.
By assumption, 
A must be contained in 
P, the orbit closure corresponding to a
P-complete problem, such as Mulmuley and Sohoni’s H function (see Sect. 6.6.4).
And hence, there must not be any representation-theoretic obstruction to such a
containment. In other words, if we were to compute the multiplicities m1;m2; : : : of
all the irreps in the representation associated with 
A, as well as the multiplicities
n1; n2; : : : of the irreps associated with 
P, we’d necessarily find that mi � ni for
all i.

Furthermore, by the general philosophy of GCT, once we had our long-sought
positive formulas for these multiplicities (based on nonstandard quantum groups,
the Riemann hypothesis, silly putty, herbal shampoo, or whatever), we might well
be able to use those formulas to prove the above inequalities.

Now let’s further conjecture—following GCT2 [168]—that the orbit closures 
A

and 
P are completely captured by their representation-theoretic data. In that case,
by showing that there’s no representation-theoretic obstruction to 
A � 
P, we
would have proved, nonconstructively, that there exists a polynomial-time algorithm
for A! And for that reason, we shouldn’t be surprised if the algorithmic techniques
that are used to solve A (matching, linear programming, or whatever) have already
implicitly appeared in getting to this point. Indeed, we should be worried if they
didn’t appear.69

69It would be interesting to find a function in P, more natural than the P-complete H function,
that’s completely characterized by its symmetries, and then try to understand explicitly why there’s
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More broadly, Mulmuley has repeatedly stressed that P ¤ NP is a “universal
mathematical statement”: it says there’s no polynomial-time algorithm for 3SAT,
no matter which area of math we tried to use to construct such an algorithm. And
therefore, after we find that an easy “opening gambit”—like the diagonalization
used to proved the unsolvability of the halting problem—doesn’t work, we shouldn’t
be shocked if nearly every area of math ends up playing some role in the proof.

Now, a natural reaction to this observation would be, not awe at the profundity of

P
‹D NP, but rather complete despair. Since math is infinite, and since the possible

“ideas for polynomial-time algorithms” are presumably unbounded, why doesn’t

the “universality” of P
‹D NP mean that the task of proving could go on forever?

At what point, according to the GCT philosophy, can we ever say “enough! we’ve
discovered enough polynomial-time algorithms; now we’re ready to flip things
around and proceed to proving P ¤ NP”?

The point I want to make is that the earlier considerations about 
A and 
P
immediately suggest an answer to this question. Namely, we’re ready to stop when
we’ve discovered nontrivial polynomial-time algorithms, not for all problems in
P, but for all problems in P that are characterized by their symmetries. For let B
be a problem in P that isn’t characterized by symmetries. Then the orbit closure

B is contained in 
P, and if we could prove that 
B � 
P, then we would’ve
nonconstructively shown the existence of a polynomial-time algorithm for B. But
our hypothetical P ¤ NP proof doesn’t need to know about that. For since B isn’t
characterized by symmetries, the GCT arguments aren’t going to be able to prove

B � 
P anyway.

The above would seem to motivate a thorough investigation of which functions
in P (or NC1, etc.) can be characterized by their symmetries. If GCT is going to
work at all, then the set of such functions, while presumably infinite, ought to be
classifiable into a finite number of families. The speculation suggests itself that these
families might roughly correspond to the different algorithmic techniques: Gaussian
elimination, matching, linear programming, polynomial factorization, etc., and of
course whatever other techniques haven’t yet been discovered. As a concrete first
step toward these lofty visions, it would be interesting to find some example of a
function in P that’s characterized by its symmetries, like the determinant is, and
that’s in P only because of the existence of nontrivial polynomial-time algorithms
for (say) matching or linear programming.

6.6.7 Reservations

The reader might have gotten the impression, from the last section, that I think GCT

is the most important advance on P
‹D NP ever made. In this section I’ll set out a

few of my reservations.

no representation-theoretic obstruction to that function’s orbit closure being contained in 
P—
something we already know must be true.
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First, it remains unclear whether we’ll be able to use representation theory, in
the foreseeable future, not merely to prove Valiant’s Conjecture or P ¤ NP, but
to prove any new lower bound: for example, EXP 6� ACC, or the permanent
requiring arithmetic formulas of size�

�
n4
�
, or really anything that would convince

skeptics of GCT’s power. I regard this as possible, and Grochow’s demonstration
[96] that most existing circuit lower bounds can be phrased in vaguely GCT-like
ways is evidence for it. On the other hand, if we want “full GCT”—meaning not just
separating modules, but specifically representation-theoretic obstructions—then it’s
also possible that the program is so challenging that getting it to work for anything
is as hard as getting it to work for Valiant’s Conjecture. In practice, I predict that
there will be a rush among theoretical computer scientists to learn GCT when, and
only when, it’s used to prove some impressive new lower bound that had foiled other
approaches.

Second, the story of the border rank of the matrix multiplication tensor, set
out in Sect. 6.6.5, gives me pause, because it raises the possibility that even if
representation-theoretic obstructions do exist, proving their existence will be even
harder than proving complexity class separations in some more direct way. One
possible “failure mode” for GCT is that, after centuries of struggle, mathematicians
and computer scientists finally prove Valiant’s Conjecture and P ¤ NP—and then,
after further centuries of struggle, it’s shown that GCT could’ve proven these results
as well (but only with quantitatively weaker bounds).

Third, there are major aspects of complexity theory that GCT seems not to
capture. For example, we saw in Sect. 6.6.5 that diagonalization—which despite
reports of its demise, has reliably shown up in one lower bound after another
over the decades, from the Time Hierarchy Theorem to time-space tradeoffs to
NEXP 6� ACC—seems to elude the GCT framework. A related point is that GCT,
as it stands, has no way to take advantage of uniformity: for example, no way to
prove P ¤ NP, without also proving the stronger result NP 6� P=poly. However,
given that we can prove P ¤ EXP but can’t even prove NEXP 6� TC0, it seems
conceivable that uniformity could help in proving P ¤ NP.

But perhaps my most important reservation is with a central argument that
Mulmuley has offered for GCT in recent years [161, 163, 164]. His argument is

that, even if GCT isn’t literally the only way forward on P
‹D NP, still, the choice of

GCT to go after explicit obstructions is in some sense provably unavoidable—and
furthermore, GCT is the “simplest” approach to finding the explicit obstructions,
so Occam’s Razor all but forces us to try GCT first. I completely agree that GCT
represents a natural attack plan. It’s something to try. But I don’t think we have
any theorem that can support the interpretation that GCT’s choices are inevitable, or
“basically” inevitable. And I can easily envision that progress will come by freely
“mixing and matching” GCT ideas with non-GCT ones.

In more detail, we can identify at least four major successive decisions that GCT
makes:

(1) To prove P ¤ NP, we should start by proving Valiant’s Conjecture 66.
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(2) To prove Valiant’s Conjecture, the natural approach is to prove Conjecture 82,
about orbit closures.

(3) To prove Conjecture 82, the natural approach is to find explicit representation-
theoretic embedding obstructions.

(4) To find those obstructions, we should start by finding faster algorithms (or
algorithms in lower complexity classes) to learn about the multiplicities of
irreps.

All four decisions are reasonable, but not one is obvious. And of course, even
if every proposition in a list has high probability individually (or high probability
conditioned on its predecessors), their conjunction could have probability close to
zero!

As we saw in Sect. 6.5, decision (1) predates GCT by decades, so there’s no
need to revisit it here. Meanwhile, decision (2) seems to involve only a small
strengthening of what needs to be proved, in return for a large gain in elegance.
But there’s plenty to question about decisions (3) and (4).

Regarding (3): we saw, in Sect. 6.6.5, that even if a given embedding of orbit
closures is impossible, the reason might simply not be reflected in representation
theory—and even if it is, it might be harder to prove that there’s a representation-
theoretic obstruction than that there’s some other obstruction, and one might get
only a weaker lower bound that way. At least, that’s what seems to be true so far with
the border rank of the matrix multiplication tensor. This would especially be an issue
if it turned out that occurrence obstructions were rare or nonexistent, so that finding
representation-theoretic obstructions would require counting the multiplicities of
irreps and comparing them (rather than just checking whether the multiplicities are
zero).

But let me concentrate on (4). Is it clear that we must, in Mulmuley’s words, “go
for explicitness”: that is, look for an efficient algorithm that takes a specific n and m
as input, and tries to find a witness that it’s impossible to embed the padded n 	 n
permanent into the m	m determinant? Why not just look directly for a proof, which
(if we found it) would work for arbitrary n and m D nO.1/?

Mulmuley’s argument for explicitness rests on what he calls the “flip theorems”
[161]. These theorems, in his interpretation, assert that any successful approach to
circuit lower bounds (not just GCT) will yield explicit obstructions as a byproduct.
And thus, all GCT is doing is bringing into the open what any proof of Valiant’s
Conjecture or NP 6� P=poly will eventually need to confront anyway.

Let me now state some of the flip theorems. First, building on a 1996 learning
algorithm of Bshouty et al. [54], in 2003 Fortnow, Pavan, and Sengupta showed that,
if NP-complete problems are hard at all, then there must be short lists of instances
that cause all small circuits to fail.

Theorem 90 (Fortnow et al. [82]). Suppose NP 6� P=poly. Then for every n and
k, there’s a list of 3SAT instances '1; : : : ; '`, of length at most ` D nO.1/, such
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that every circuit C of size at most nk fails to decide at least one 'i in the list.
Furthermore, such a list can be found in the class BPPNP.70

Atserias [31] showed that, in the statement of Theorem 90, we can also swap the
NP oracle for an oracle for the circuit C itself: in other words, the list '1; : : : ; '` can
also be found in the class BPPC.

Likewise, if the permanent is hard, then there must be short lists of matrices that
cause all small arithmetic circuits to fail—and here the lists are much easier to find
than they are in the Boolean case.

Theorem 91 (Mulmuley [161, 163]). Suppose Valiant’s Conjecture 66 holds (i.e.,
the permanent has no polynomial-size arithmetic circuits, over finite fields F with
jFj  n). Then for every n and k, there’s a list of matrices A1; : : : ;A` 2 F

n�n, of
length at most ` D nO.1/, such that for every arithmetic circuit C of size at most
nk, there exists an i such that C .Ai/ ¤ Per .Ai/. Indeed, a random list A1; : : : ;A`
will have that property with 1 � o .1/ probability. Furthermore, if polynomial
identity testing has a black-box derandomization,71 then such a list can be found
in deterministic nO.1/ time.

While not hard to prove, Theorems 90 and 91 are conceptually interesting: they
show that the entire hardness of 3SAT and of the permanent can be “concentrated”
into a small number of instances. My difficulty is that this sort of “explicit obstruc-
tion” to computing 3SAT or the permanent, seems barely related to the sorts of
explicit obstructions that GCT is seeking. The obstructions of Theorems 90 and 91
aren’t representation-theoretic; they’re simply lists of hard instances. Furthermore,
a list like '1; : : : ; '` or A1; : : : ;A` is not an easy-to-verify witness that 3SAT or the
permanent is hard, because we’d still need to check that the list worked against all
of the exponentially many nO.1/-sized circuits. Having such a list reduces a two-
quantifier (…P

2 ) problem to a one-quantifier (NP) problem, but it still doesn’t put the
problem in P—and we have no result saying that if, for example, the permanent is
hard, then there must be obstructions that can be verified in nO.1/ time. Perhaps the
best we can say is that, if we proved the permanent was hard, then we’d immediately
get, for every n, an “obstruction” that could be both found and verified in 0 time
steps! But for all we know, the complexity of finding provable obstructions could
jump from exp

�
nO.1/

�
to 0 as our understanding improved, without ever passing

through nO.1/.
Thus, I find, GCT’s suggestion to look for faster obstruction-finding (or

obstruction-recognizing) algorithms is a useful guide, a heuristic, a way to organize

70In fact, the list can be found in the class ZPPNP, where ZPP stands for Zero-Error Probabilistic
Polynomial-Time. This means that, whenever the randomized algorithm succeeds in constructing
the list, it’s certain that it’s done so.
71The polynomial identity testing problem was defined in Sect. 5.4. Also, by a “black-box
derandomization,” we mean a deterministic polynomial-time algorithm that outputs a hitting
set: that is, a list of points x1; : : : ; x` such that, for all small arithmetic circuits C that don’t
compute the identically-zero polynomial, there exists an i such that C .xi/ ¤ 0. What makes the
derandomization “black-box” is that the choice of x1; : : : ; x` doesn’t depend on C.
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our thoughts about how on earth we’re going to find, say, an irrep � that blocks the
embedding of the permanent into the determinant. But it’s not the only possible way
forward.

7 Conclusions

Some will say that this survey’s very length, the bewildering zoo of approaches and
variations and results and barriers that it covered, is a sign that no one has any real

clue about the P
‹D NP problem—or at least, that I don’t. Among those who think

that, perhaps someone will write a shorter survey that points unambiguously to the
right way forward!

But it’s also possible that the business of proving brute-force search unavoidable
seems complicated because it is complicated—because the reasons why brute-force
search can be avoided in specific cases are as diverse as mathematics itself, and
because here (unlike, say, for the halting problem), an argument ruling out all those
reasons must be similarly deep and wide-ranging. I confess to limited sympathy for
the idea that someone will just set aside everything that’s already known, think hard
about the structural properties of the sets of languages accepted by deterministic and
nondeterministic polynomial-time Turing machines, and find a property that holds
for one set but not the other, thereby proving P ¤ NP. For I keep coming back to
the question: if a hands-off, aprioristic approach sufficed for P ¤ NP, then why did
it apparently not suffice for all the weaker separations that we’ve surveyed here?

At the same time, I hope our tour of the progress in lower bounds has made

the case that there’s no reason (yet!) to elevate P
‹D NP to some plane of

metaphysical unanswerability, or assume it to be independent of the axioms of
set theory, or anything like that. The experience of complexity theory, including
the superpolynomial lower bounds that people did manage to prove after struggle

and effort, is consistent with P
‹D NP being “merely a math problem”—albeit, a

math problem that happens to be well beyond the current abilities of civilization,
much like the solvability of the quintic in the 1500s, or Fermat’s Last Theorem
in the 1700s. When we’re faced with such a problem, a natural response is to
want to deepen our understanding of the entire subject (in this case, algorithms and
computation) surrounding the problem—not merely because that’s a prerequisite to
someday capturing the famous beast, but because regardless, the new knowledge
gained along the way will hopefully find uses elsewhere. In our case, modern
cryptography, quantum computing, and parts of machine learning could all be seen

as flowers that bloomed in the garden of P
‹D NP.

Obviously I don’t know how P ¤ NP will ultimately be proved—if I did, this
would be a very different survey! It seems plausible that a successful approach
would yield the stronger result NP 6� P=poly (i.e., that it wouldn’t take advantage
of uniformity); that it would start by proving Valiant’s Conjecture (i.e., that the
algebraic case would precede the Boolean one); and that it would draw on many
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core areas of mathematics, but none of these things are even close to certain. The
only prediction I feel confident in making is that the idea of “ironic complexity
theory”—i.e., of a profound duality between upper and lower bounds, where the way
to prove that there’s no fast algorithm for problem A is to discover fast algorithms
for problems B, C, and D—is here to stay. As we saw, ironic complexity theory
is at the core of the GCT program, but it’s also at the core of Williams’s proof of
NEXP 6� ACC, which in other respects is about as far from GCT as possible. The
natural proofs barrier also provides a sort of contrapositive to ironic complexity,
showing how the nonexistence of efficient algorithms is often what prevents us from
proving lower bounds. If 3SAT is ever placed outside P, I’m willing to bet that the
proof will place many other problems inside P—or at any rate, in smaller complexity
classes than previously known.

So, if we take an optimistic attitude (optimistic about proving intractability!),
then which breakthroughs should we seek next? What’s on the current horizon?
There are hundreds of possible answers to that question—we’ve already encoun-
tered some in this survey—but if I had to highlight a few:

• Prove lower bounds against nonuniform TC0—for example, by finding a better-
than-brute-force algorithm for the neural network satisfiability problem.72

• Prove a lower bound better than nbd=2c on the rank of an explicit d-dimensional
tensor, or construct one of the many other algebraic or combinatorial objects
(rigid matrices, elusive functions, etc.) that are known to imply new circuit lower
bounds.

• Advance proof complexity to the point where we could, for example, prove a
superpolynomial lower bound on the number of steps needed to convert some
n-input, polynomial-size Boolean circuit C into some equivalent circuit C0,
via moves that each swap out a size-O .1/ subcircuit for a different size-O .1/
subcircuit with identical input/output behavior.73

• Prove a superpolynomial lower bound on the number of 2-qubit quantum
gates needed to implement some explicit n-qubit unitary transformation U.
(Remarkably, as far as anyone knows today, one could succeed at this without
needing to prove any new classical circuit lower bound. On the other hand, it’s
plausible that one would need to overcome a unitary version of the natural proofs
barrier.)

72In 1999, Allender [19] showed that the permanent, and various other natural #P-complete
problems, can’t be solved by LOGTIME-uniform TC0 circuits: in other words, constant-depth
threshold circuits for which there’s an O .log n/-time algorithm to output the ith bit of their
description, for any i. Indeed, these problems can’t be solved by LOGTIME-uniform TC0 circuits
of size f .n/, where f is any function that can yield an exponential when iterated a constant number
of times. The proof uses a hierarchy theorem, it would be interesting to know whether it relativizes.
73Examples are deleting two successive NOT gates, or applying de Morgan’s laws. By the
completeness of Boolean algebra, one can give local transformation rules that suffice to convert
any n-input Boolean circuit into any equivalent circuit using at most exp .n/ moves.

From talking to experts, this problem seems closely related to the problem of proving
superpolynomial lower bounds for so-called Frege proofs, but is possibly easier.
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• Clarify whether ACC has a natural proofs barrier, and prove ACC lower bounds
for problems in EXP or below.

• Clarify whether there’s an arithmetic natural proofs barrier, or something else
preventing us from crossing the “chasm at depth three.”

• Prove any lower bound on D .n/, the determinantal complexity of the n 	 n
permanent, better than Mignon and Ressayre’s �

�
n2=2

�
.

• Derandomize polynomial identity testing—or failing that, prove some derandom-
ization theorem that implies a strong new circuit lower bound.

• Discover a new class of polynomial-time algorithms, especially but not only for
computing the multiplicities of irreps.

• Pinpoint additional special properties of 3SAT or the permanent that could be
used to evade the natural proofs barrier, besides the few that are already known,
such as symmetry-characterization and the ability to simulate machines in a
hierarchy theorem.

• Prove any interesting new lower bound by finding a representation-theoretic
obstruction to an embedding of orbit closures.

• Perhaps my favorite challenge: find new, semantically-interesting ways to “hob-
ble” the classes of polynomial-time algorithms and polynomial-size circuits,
besides the ways that have already been studied, such as restricted mem-
ory, restricted circuit depth, monotone gates only, arithmetic operations only,
and restricted families of algorithms (such as DPLL and certain linear and
semidefinite programming relaxations). Any such restriction that one discovers
is effectively a new slope that one can try to ascend up the P ¤ NP mountain,
possibly gentler than the previous slopes.

Going even further on a limb, I’ve long wondered whether massive computer
search could give any insight into complexity lower bound questions, beyond the
relatively incidental ways it’s been used for this purpose already (e.g., [237]). For
example, could we feasibly discover the smallest arithmetic circuits to compute
the permanents of 4 	 4 and 5 	 5 and 6 	 6 matrices? And if we did, would
examination of those circuits yield any clues about what to prove for general n?
The conventional wisdom has always been “no” to both questions. For firstly, as far
as anyone knows today, the computational complexity of such a search will grow
not merely exponentially but doubly exponentially with n (assuming the optimal
circuits that we’re trying to find grow exponentially themselves), and examination
of the constants suggests that n D 4 might already be out of reach. And secondly,
even if we knew the optimal circuits, they’d tell us nothing about the existence or
nonexistence of clever algorithms that start to win only at much larger values of n.
After all, many of the theoretically efficient algorithms that we know today only
overtake the naïve algorithms for n’s in the thousands or millions.74

74There are even what Richard Lipton has termed “galactic algorithms” [147], which beat their
asymptotically-worse competitors, but only for values of n that likely exceed the information stor-
age capacity of the galaxy or the observable universe. The currently-fastest matrix multiplication
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Fig. 3 Known inclusion
relations among 21 of the
complexity classes that
appear in this survey

These arguments have force. Even so, I think we should be open to the possibility
that someday, advances in raw computer power, and especially theoretical advances
that decrease the effective size of the search space, might change the calculus and
open up the field of “experimental complexity theory.” One way that could happen
would be if breakthroughs in GCT, or some other such program, brought the quest
for “explicit obstructions” (say, to the 1000 	 1000 permanent having size-1020

circuits) within the range of computer search, if still not within the range of the
human mind.

Or of course, the next great advance might come from some direction that I didn’t
even mention here, whether because no one grasps its importance yet or simply
because I don’t. But regardless of what happens, the best fate this survey could
possibly enjoy would be to contribute, in some tiny way, to making itself outdated.

Appendix: Glossary of Complexity Classes

To help you remember all the supporting characters in the ongoing soap opera
of which P and NP are the stars, this appendix contains short definitions of the
complexity classes that appear in this survey, with references to the sections where
the classes are discussed in more detail. For a fuller list, containing over 500 classes,
see for example my Complexity Zoo [8]. All the classes below are classes of
decision problems—that is, languages L � f0; 1g�. The known inclusion relations
among many of the classes are also depicted in Fig. 3.

algorithms might fall into this category, although the constants don’t seem to be known in enough
detail to say for sure.
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…P
2 : coNPNP, the second level of the polynomial hierarchy (with universal
quantifier in front). See Sect. 2.2.3.

†P
2 : NPNP, the second level of the polynomial hierarchy (with existential quanti-
fier in front). See Sect. 2.2.3.

AC0: The class decidable by a nonuniform family of polynomial-size, constant-
depth, unbounded-fanin circuits of AND, OR, and NOT gates. See Sect. 6.2.3.

AC0 Œm�: AC0 enhanced by MOD m gates, for some specific value of m (the case
of m a prime power versus a non-prime-power are dramatically different). See
Sect. 6.2.4.

ACC: AC0 enhanced by MOD m gates, for every m simultaneously. See
Sect. 6.4.2.

BPP: Bounded-Error Probabilistic Polynomial-Time. The class decidable by a
polynomial-time randomized algorithm that errs with probability at most 1=3 on
each input. See Sect. 5.4.1.

BQP: Bounded-Error Quantum Polynomial-Time. The same as BPP except that
we now allow quantum algorithms. See Sect. 5.5.

coNP: The class consisting of the complements of all languages in NP. Complete
problems include unsatisfiability, graph non-3-colorability, etc. See Sect. 2.2.3.

DTISP .f .n/ ; g .n//: See Sect. 6.4.1.

EXP: Exponential-Time, or
S

k TIME
�
2nk
�

. Note the permissive definition of

“exponential,” which allows any polynomial in the exponent. See Sect. 2.2.7.

EXPSPACE: Exponential-Space, or
S

k SPACE
�
2nk
�

. See Sect. 2.2.7.

IP: Interactive Proofs, the class for which a “yes” answer can be proven (to
statistical certainty) via an interactive protocol in which a polynomial-time
verifier Arthur exchanges a polynomial number of bits with a computationally-
unbounded prover Merlin. Turns out to equal PSPACE [200]. See Sect. 6.3.1.

LOGSPACE: Logarithmic-Space, or SPACE .log n/. Note that only read/write
memory is restricted to O .log n/ bits; the n-bit input itself is stored in a read-
only memory. See Sect. 6.4.1.

MA: Merlin-Arthur, the class for which a “yes” answer can be proven to statistical
certainty via a polynomial-size message from a prover (“Merlin”), which the
verifier (“Arthur”) then verifies in probabilistic polynomial time. Same as NP
except that the verification can be probabilistic. See Sect. 6.3.2.

MAEXP: The exponential-time analogue of MA, where now Merlin’s proof can be
2nO.1/

bits long, and Arthur’s probabilistic verification can also take 2nO.1/
time.

See Sect. 6.3.2.
NC1: The class decidable by a nonuniform family of polynomial-size Boolean

formulas—or equivalently, polynomial-size Boolean circuits of fanin 2 and depth
O .log n/. The subclass of P=poly that is “highly parallelizable.” See Sect. 5.2.

NEXP: Nondeterministic Exponential-Time, or
S

k NTIME
�
2nk
�

. The exponential-

time analogue of NP. See Sect. 2.2.7.
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NP: Nondeterministic Polynomial-Time, or
S

k NTIME
�
nk
�
. The class for which

a “yes” answer can be proven via a polynomial-size witness, which is verified by
a deterministic polynomial-time algorithm. See Sect. 2.

NTIME .f .n//: Nondeterministic f .n/-Time. The class for which a “yes” answer
can be proven via an O .f .n//-bit witness, which is verified by a deterministic
O .f .n//-time algorithm. Equivalently, the class solvable by a nondeterministic
O .f .n//-time algorithm. See Sect. 2.2.7.

P: Polynomial-Time, or
S

k TIME
�
nk
�
. The class solvable by a deterministic

polynomial-time algorithm. See Sect. 2.
P#P: P with an oracle for #P problems (i.e., for counting the exact number of

accepting witnesses for any problem in NP). See Sect. 2.2.6.
P=poly: P enhanced by polynomial-size “advice strings” fangn, which depend

only on the input size n but can otherwise be chosen to help the algorithm as
much as possible. Equivalently, the class solvable by a nonuniform family of
polynomial-size Boolean circuits (i.e., a different circuit is allowed for each input
size n). See Sect. 5.2.

PH: The Polynomial Hierarchy. The class expressible via a polynomial-time
predicate with a constant number of alternating universal and existential quan-
tifiers over polynomial-size strings. Equivalently, the union of †P

1 D NP,
…P
1 D coNP, †P

2 D NPNP, …P
2 D coNPNP, and so on. See Sect. 2.2.3.

PP: Probabilistic Polynomial-Time. The class decidable by a polynomial-time
randomized algorithm that, for each input x, guesses the correct answer with
probability greater than 1=2. Like BPP but without the bounded-error (1=3
versus 2=3) requirement, and accordingly believed to be much more powerful.
See Sect. 2.2.6.

PSPACE: Polynomial-Space, or
S

k SPACE
�
nk
�
. See Sect. 2.2.5.

SPACE .f .n//: The class decidable by a serial, deterministic algorithm that uses
O .f .n// bits of memory (and possibly up to 2O.f .n// time). See Sect. 2.2.7.

TC0: AC0 enhanced by MAJORITY gates. Also corresponds to “neural networks”
(polynomial-size, constant-depth circuits of threshold gates). See Sect. 6.2.5.

TIME .f .n//: The class decidable by a serial, deterministic algorithm that uses
O .f .n// time steps (and therefore, O .f .n// bits of memory). See Sect. 2.2.7.
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From Quantum Systems to L-Functions:
Pair Correlation Statistics and Beyond

Owen Barrett, Frank W. K. Firk, Steven J. Miller,
and Caroline Turnage-Butterbaugh

Abstract The discovery of connections between the distribution of energy levels
of heavy nuclei and spacings between prime numbers has been one of the most
surprising and fruitful observations in the twentieth century. The connection
between the two areas was first observed through Montgomery’s work on the
pair correlation of zeros of the Riemann zeta function. As its generalizations and
consequences have motivated much of the following work, and to this day remains
one of the most important outstanding conjectures in the field, it occupies a central
role in our discussion below. We describe some of the many techniques and results
from the past sixty years, especially the important roles played by numerical and
experimental investigations, that led to the discovery of the connections and progress
towards understanding the behaviors. In our survey of these two areas, we describe
the common mathematics that explains the remarkable universality. We conclude
with some thoughts on what might lie ahead in the pair correlation of zeros of
the zeta function, and other similar quantities.

1 Introduction

Montgomery’s pair correlation conjecture posits that zeros of L-functions behave
similarly to energy levels of heavy nuclei. The bridge between these fields is random
matrix theory, a beautiful subject which has successfully modeled a large variety
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of diverse phenomena (see [7, 87] for a great example of how varied the systems
can be). It is impossible in a short chapter to cover all the topics and connections;
fortunately there is no need as there is an extensive literature. Our goal is therefore
to briefly describe the history of the subject and the correspondences, concentrating
on some of the main objects of interest and past successes, ending with a brief tour
through a subset of current work and a discussion of some of the open questions
in mathematics. We are deliberately brief in areas that are well known or are
extensively covered in the literature, and instead dwell at greater lengths on the
inspiration from and interpretation through physics (see for example Sect. 2.6), as
these parts of the story are not as well known but deserve to be (both for historical
reasons as well as the guidance they can offer).

To this end, we begin with a short introduction to random matrix theory and a
quick description of the main characters studied in this chapter. We then continue
in Sect. 2 with a detailed exposition of the historical development of random matrix
theory in nuclear physics in the 1950s and 1960s. We note the pivotal role played
by the nuclear physics experimentalists in gathering data to support the theoretical
conjectures; we will see analogues of these when we get to the work in the
1970s and 1980s on zeros of L-functions in Sect. 3.5. One of our main purposes
is in fact to highlight the power of experimental data, be it data from a lab or a
computer calculation, and show how attempts to explain such results influence the
development and direction of subjects. We then shift emphasis to number theory
in Sect. 3, and see how studies on the class number problem led Montgomery to
his famous pair correlation conjecture for the zeros of the Riemann zeta function.
This and related statistics are the focus of the rest of the chapter; we describe
what they are, what progress has been made (theoretically and numerically), and
then turn to some open questions. Most of these open questions involve how the
arithmetic of L-functions influences the behavior; remarkably the main terms in a
variety of problems are independent of the finer properties of L-functions, and it is
only in lower order terms (or, equivalently, in the rates of convergence to the random
matrix theory behavior) that the dependencies on these properties surface. We then
conclude in Sect. 4 with current questions and some future trends.

1.1 The Early Days: Statistics and Biometrics

Though our main characters will be energy levels of nuclei and zeros of L-functions,
the story of random matrix theory begins neither with physics nor with mathematics,
but with statistics and biometrics. In 1928 John Wishart published an article
titled The Generalised Product Moment Distribution in Samples from a Normal
Multivariate [150] in Biometrika (see [149] for a history of the journal, which we
briefly recap). The journal was founded at the start of the century by Francis Galton,
Karl Pearson, and Walter Weldon for the study of statistics related to biometrics. In
the editors’ introduction in the first issue (see also [149]), they write:
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It is intended that Biometrika shall serve as a means not only of collecting or publishing
under one title biological data of a kind not systematically collected or published elsewhere
in any other periodical, but also of spreading a knowledge of such statistical theory as may
be requisite for their scientific treatment.

The question of interest for Wishart was that of estimating covariance matrices.
The paper begins with a review of work to date on samples from univariate
and bivariate populations, and issues with the determination of correlation and
regression coefficients. After summarizing some of the work and formulas from
Fisher, Wishart writes:

The distribution of the correlation coefficient was deduced by direct integration from this
result. Further, K. Pearson and V. Romanovsky, starting from this fundamental formula,
were able to deal with the regression coefficients. Pearson, in 1925, gave the mean value
and standard deviation of the regression coefficient, while Romanovsky and Pearson, in the
following year, published the actual distribution.

After talking about the new problems that arise when dealing with three or more
variates, he continues:

What is now asserted is that all such problems depend, in the first instance, on the
determination of a fundamental frequency distribution, which will be a generalisation of
Eq. (1.2). It will, in fact, be the simultaneous distribution in samples of the n variances
(squared standard deviations) and the n.n�1/

2
product moment coefficients. It is the purpose

of the present paper to give this generalised distribution, and to calculate its moments up to
the fourth order. The case of three variates will first be considered in detail, and thereafter a
proof for the general n-fold system will be given.

In his honor the distribution of the sample covariance matrix (arising from a
sample from a multivariate normal distribution) is called the Wishart distribution.
More specifically, if we have an n	p matrix X whose rows are independently drawn
from a p-variate mean 0 normal distribution, the Wishart distribution is the density
of the p 	 p matrices XTX.

Several items are worth noting here. First, we have an ensemble (a collection)
of matrices whose entries are drawn from a fixed distribution; in this case there
are dependencies among the entries. Second, these matrices are used to model
observable quantities of interest, in this case covariances. Finally, in his article
he mentions an earlier work of his (published in the Memoirs of the Royal
Meteorological Society, volume II, pages 29–37, 1928) which experimentally
confirmed some of the results discussed, thus showing the connections between
experiment and theory which play such a prominent role later in the story also
played a key role in the founding.

It was not until almost thirty years later that random matrix theory, in the hands
and mind of Wigner, bursts onto the physics scene, and then it will be almost
another thirty years more before the connections with number theory emerge. Before
describing these histories in detail, we end the introduction with a very quick tour
of some of the quantities and objects we’ll meet.
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1.2 Cast of Characters: Nuclei and L-functions

The two main objects we study are energy levels of heavy nuclei on the physics
side, and zeros of the Riemann zeta function (or more generally L-functions) on
the number theory side, especially Montgomery’s pair correlation conjecture and
related statistics. We give a full statement of the pair correlation conjecture, and
results towards its proof, in Sect. 3.2. Briefly, given an ordered sequence of events
(such as zeros on the critical line, eigenvalues of Hermitian matrices, energy levels
of heavy nuclei) one can look at how often a difference is observed. The remarkable
conjecture is that these very different systems exhibit similar behavior.

We begin with a review of some facts about the these areas, from theories for
their behavior to how experimental observations were obtained which shed light on
the structures, and then finish the introduction with some hints at the similarities
between these two very different systems. Parts of that section, as well as much
of Sect. 2, are expanded with permission from the survey article [50] written by
two of the authors of this chapter for the inaugural issue of the open access journal
Symmetry. The goal of that article was similar to this chapter, though there the main
quantity discussed was Wigner’s semi-circle law and not pair correlation.

Many, if not all, of the other survey articles in the subject concentrate on the
mathematics and ignore the experimental physics. When writing the survey [50] the
authors deliberately sought a balance, with the intention of sharing and elaborating
on that vantage again in a later work to give a wider audience a more complete
description of the development of the subjects, as other approaches are already
available in the literature. We especially recommend to the reader Goldston’s
excellent survey article Notes on pair correlation of zeros and prime numbers (see
[64]) for an extended, detailed technical discussion; the purpose of this chapter is
to complement this and other surveys by highlighting other aspects of the story,
especially how Montgomery’s work on the pair correlation of zeros of �.s/ connects,
through random matrix theory, a central object of study in number theory to our
understanding of the physics of heavy nuclei.

1.2.1 Atomic Theory and Nuclei

Experiments and experimental data played a crucial role in our evolving understand-
ing of the atom. For example, Ernest Rutherford’s gold foil experiment (performed
by Hans Geiger and Ernest Marsden) near the start of the twentieth century
demonstrated that J. J. Thomson’s plum pudding model of an atom with negatively
charged electrons embedded in a positively charged region was false, and that the
atom had a very small positively charged nucleus with the electrons far away. These
experiments involved shooting alpha particles at thin gold foils. Alpha particles
are helium atoms without the electrons and are thus positively charged. While
this positive charge was responsible for disproving the plum pudding model, such
particles could not deeply probe the positively charged nucleus due to the strong
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repulsion from like charges. To make further progress into the structure of the
atom in general, and the nucleus in particular, another object was needed. A great
candidate was the neutron (discovered by Chadwick in 1932); as it did not have a
net charge, the electric force would play an immensely smaller role in its interaction
with the nucleus than it did with the alpha particles.

The earliest studies of neutron induced reactions showed that the total neutron
cross section1 for the interaction of low-energy (electron-volt, eV) neutrons with
a nucleus is frequently much greater than the geometrical area presented by the
target nucleus to the incident neutron [44]. It was also found that the cross section
varies rapidly as a function of the bombarding energy of the incident neutron. The
appearance of these well-defined resonances in the neutron cross section is the most
characteristic feature of low energy nuclear reactions.

In general, the low energy resonances were found to be closely spaced (spacing
� 10 eV in heavy nuclei), and to be very narrow (widths � 0:1 eV). These facts
led Niels Bohr to introduce the compound nucleus model [15] that assumes the
interaction between an incoming neutron and the target nucleus is so strong that
the neutron rapidly shares its energy with many of the target nucleons. The nuclear
state that results from the combination of incident neutron and target nucleus may
therefore last until sufficient energy again resides in one of the nucleons for it to
escape from the system. This is a statistical process, and a considerable time may
elapse before it occurs. The long lifetime of the state (� ) (on a nuclear timescale)
explains the narrow width ( ) of the resonance.2 Also, since many nucleons are
involved in the formation of a compound state, the close spacing of the resonances
is to be expected since there are clearly many ways of exciting many nucleons.
The qualitative model outlined above has formed the basis of most theoretical
descriptions of low-energy, resonant nuclear reactions [11].

If a resonant state can decay in a number of different ways (or channels), we
can ascribe a probability per unit time for the decay into a channel, c, which can be
expressed as a partial width �c. The total width is the sum of the partial widths,
i.e., � DPc �c.

The appearance of well-defined resonances occurs in heavy nuclei (mass number
A � 100, say) for incident neutron energies up to about 100 keV, and in light nuclei
up to neutron energies of several MeV. As the neutron bombarding energies are
increased above these energies, the total cross sections are observed to become
smoother functions of neutron energy [81]. This is due to two effects: firstly,

1 A total neutron cross section is defined as

Number of events of all types per unit time per nucleus

Number of incident neutrons per unit time per unit area
;

and has the dimensions of area (the standard unit is the barn, 10�24 cm2).
2The width,  , is related to the lifetime, � , by the uncertainty relation  D h=2�� , where h is
Planck’s constant. The finite width (lack of energy definition) is due to the fact that a resonant
state can decay by emitting a particle, or radiation, whereas a state of definite energy must be a
stationary state.
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the level density (i.e., the number of resonances per unit energy interval) increases
rapidly as the excitation energy of the compound nucleus is increased, and secondly,
the widths of the individual resonances tend to increase with increasing excitation
energy so that, eventually, they overlap. The smoothed-out cross sections provide
useful information on the average properties of resonances. One of the most
significant features of these cross sections is the appearance of gross fluctuations
that have been interpreted in terms of the single-particle nature of the neutron-
nucleus interaction [92]. These giant resonances form one of the main sources
of experimental evidence for introducing the successful optical model of nuclear
reactions. This model represents the interaction between a neutron and a nucleus
in terms of the neutron moving in a complex potential well [118] in which the
imaginary part allows for the absorption of the incident neutron.

Experimental results show that, on increasing the bombarding energy above
about 5MeV, a different reaction mechanism may occur. For example, the energy
spectra of emitted nucleons frequently contain too many high-energy nucleons
compared with the predictions of the compound nucleus model. The mechanism no
longer appears to be one in which the incident neutron shares its energy with many
target nucleons but is one in which the neutron interacts with a single nucleon or,
at most, a few nucleons. Such a mechanism is termed a direct interaction, which is
defined as a nuclear reaction in which only a few of the available degrees of freedom
of the system are involved [6].

The optical model, mentioned above, is an important example of a direct
interaction that takes place even at low bombarding energies. The incident neutron
is considered to move in the mean nuclear potential of all the nucleons in the target.
This model also has been used to account for anomalies in the spectra of gamma-
rays resulting from thermal neutron capture [89, 91].

At even higher bombarding energies, greater than 50MeV, say, the mechanism
becomes clearer in the sense that direct processes are the most important. The
reactions then give information on the fundamental nucleon-nucleon interaction;
these studies and their interpretation are, however, outside the scope of the present
discussion.

When a low-energy neutron (energy < 10 keV, say) interacts with a nucleus
the excitation energy of the compound nucleus is greatly increased by the neu-
tron binding energy that typically ranges from 5 to 10MeV. In the late 1950s,
experimental methods were developed for measuring low-energy neutrons with
resolutions of a few electron-volts. This meant that, for the first time in any physical
system, it became possible to study the fine structure of resonances at energies
far above the ground state of the system. The relevant experimental methods are
discussed in Sect. 2. Important information was thereby obtained concerning the
properties that characterizes the resonances such as their peak cross sections, elastic
scattering widths, and adjacent spacing. The results were used to test the predictions
of various nuclear models used to describe the interactions. These models ranged
from the Fermi Gas Model, a quantized version of classical Statistical Mechanics
and Thermodynamics [10], to the sophisticated Nuclear Shell Model [11]. In the
mid-1950s, all Statistical Mechanics Models predicted that the spacing distribution
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of nearest-neighbor resonances of the same spin and parity in a heavy nucleus
(mass number A � 100, say) was an exponential distribution. By 1956, the
experimental evidence on the spacing distribution of s-wave resonances in a number
of heavy nuclei indicated a lack of very closely-spaced resonances, contradicting
the predictions of an exponential distribution [71]. By 1960, two research groups
[48, 124] showed, unequivocally, that the spacing distribution of resonances up to
an energy of almost 2 keV followed the prediction of the random matrix model
surmised by Wigner in 1956 [147]; in his model the probability of a zero spacing
is zero! It is a model rooted in statistics, which interestingly is where our story on
random matrix theory began!

1.2.2 L-Functions and Their Zeros

There are many excellent introductions, at a variety of levels, to number theory and
L-functions. We assume the reader is familiar with the basics of the subject; for more
details see among others [27, 39, 70, 82, 106, 129]. The discussion below is a quick
review and is an abridgement (and slight expansion) of [50], which has additional
details.

The primes are the building blocks of number theory: every integer can be written
uniquely as a product of prime powers. Note that the role played by the primes
mirrors that of atoms in building up molecules. One of the most important questions
we can ask about primes is also one of the most basic: how many primes are there
at most x? In other words, how many building blocks are there up to a given point?

Euclid proved over 2000 years ago that there are infinitely many primes; so, if
we let �.x/ denote the number of primes at most x, we know limx!1 �.x/ D 1.
Though Euclid’s proof is still used in courses around the world (and gives a growth
rate on the order of log log x), one can obtain much better counts on �.x/.

The prime number theorem states that the number of primes at most x is
Li.x/C o.Li.x//, where Li.x/ D R x

2
dt= log t and for x large, Li.x/ is approximately

x= log x, and f .x/ D o.g.x// means limx!1 f .x/=g.x/ D 0. While it is possible to
prove the prime number theorem elementarily [43, 128], the most informative proofs
use complex numbers and complex analysis, and lead to the fascinating connection
between number theory and nuclear physics. One of the most fruitful approaches to
understanding the primes is to understand properties of the Riemann zeta function,
�.s/, which is defined for Re.s/ > 1 by

�.s/ DD
1X

nD1

1

ns
I (1.1)

the series converges for Re.s/ > 1 by the integral test. By unique factorization, we
may also write �.s/ as a product over primes. To see this, use the geometric series
formula to expand .1 � p�s/�1 as

P1
kD0 p�ks and note that n�s occurs exactly once

on each side (and clearly every term from expanding the product is of the form n�s
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for some n). This is called the Euler product of �.s/, and is one of its most important
properties:

�.s/ D
1X

nD1

1

ns
D

Y
p prime

	
1 � 1

ps


�1
: (1.2)

Initially defined only for Re.s/ > 1, using complex analysis the Riemann zeta
function can be meromorphically continued to all of C, having only a simple pole
with residue 1 at s D 1. It satisfies the functional equation

�.s/ D 1

2
s.s � 1/

� s

2

�
�� s

2 �.s/ D �.1 � s/: (1.3)

One proof is to use the Gamma function,  .s/ D R1
0

e�tts�1dt. A simple change of
variables gives

Z 1

0

x
1
2 s�1e�n2�xdx D 

� s

2

�
=ns� s=2: (1.4)

Summing over n represents a multiple of �.s/ as an integral. After some algebra
we find


� s

2

�
�.s/ D

Z 1

1

x
1
2 s�1!.x/dxC

Z 1

1

x� 1
2 s�1!

	
1

x



dx; (1.5)

with !.x/ DP1
nD1 e�n2�x. Using Poisson summation, we see

!

	
1

x



D �1

2
C�1

2
x
1
2 C x

1
2 !.x/; (1.6)

which yields

�� 1
2 s

� s

2

�
�.s/ D 1

s.s � 1/ C
Z 1

1

.x
1
2 s�1 C x� 1

2 s� 1
2 /!.x/dx; (1.7)

from which the claimed functional equation follows.
The distribution of the primes is a difficult problem; however, the distribution of

the positive integers is not and has been completely known for quite some time! The
hope is that we can understand

P
n 1=ns as this involves sums over the integers, and

somehow pass this knowledge on to the primes through the Euler product.
Riemann [123] (see [19, 39] for an English translation) observed a fascinating

connection between the zeros of �.s/ and the error term in the prime number
theorem. As this relation is the starting point for our story on the number theory
side, we describe the details in some length. One of the most natural things to do
to a complex function is to take contour integrals of its logarithmic derivative; this
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yields information about zeros and poles, and we will see later in (1.17) that we can
get even more information if we weigh the integral with a test function. There are
two expressions for �.s/; however, for the logarithmic derivative it is clear that we
should use the Euler product over the sum expansion, as the logarithm of a product
is the sum of the logarithms. Let

ƒ.n/ D
(

log p if n D pr for some integer r

0 otherwise:
(1.8)

We find

�0.s/
�.s/

D �
X

p

log p � p�s

1 � p�s
D �

1X
nD1

ƒ.n/

ns
(1.9)

(this is proved by using the geometric series formula to write .1 � p�s/�1 asP1
kD0 1=ps, collecting terms and then using the definition of ƒ.n/). Moving the

negative sign over and multiplying by xs=s, we find

1

2� i

Z

.c/
��

0.s/
�.s/

xs

s
ds D 1

2� i

Z

.c/

X
n
x

ƒ.n/
� x

n

�s ds

s
; (1.10)

where we are integrating over some line Re.s/ D c > 1. The integral on the right
hand side is 1 if n < x and 0 if n > x (by choosing x non-integral, we do not need
to worry about x D n), and thus gives

P
n
xƒ.n/. By shifting contours and keeping

track of the poles and zeros of �.s/, the residue theorem implies that the left hand
side is

x �
X

�W�.�/D0

x�

�
I (1.11)

the x term comes from the pole of �.s/ at s D 1 (remember we count poles with a
minus sign), while the x�=� term arises from zeros; in both cases we must multiply
by the residue, which is x�=� (it can be shown that �.s/ has neither a zero nor a pole
at s D 0). Some care is required with this sum, as

P
1=j�j diverges. The solution

involves pairing the contribution from � with �; see for example [27].
The Riemann zeta function vanishes whenever � is a negative even integer;

we call these the trivial zeros. These terms contribute
P1

kD�1 x�2k=.2k/ D � 1
2

log.1 � x�2/. This leads to the following beautiful formula, known as the explicit
formula:

x �
X

�WRe.�/2.0;1/
�.�/D0

x�

�
� 1
2

log.1 � x�2/ D
X
n
x

ƒ.n/ (1.12)
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If we write n as pr, the contribution from all pr pieces with r � 2 is bounded by
2x1=2 log x for x large, thus we really have a formula for the sum of the primes at
most x, with the prime p weighted by log p. Through partial summation, knowing
the weighted sum is equivalent to knowing the unweighted sum.

We can now see the connection between the zeros of the Riemann zeta function
and counting primes at most x. The contribution from the trivial zeros is well-
understood, and is just � 1

2
log.1 � x�2/. The remaining zeros, whose real parts are

in Œ0; 1�, are called the non-trivial or critical zeros. They are far more important
and more mysterious. The smaller the real part of these zeros of �.s/, the smaller
the error. Due to the functional equation, however, if �.�/ D 0 for a critical zero
� then �.1 � �/ D 0 as well. Thus the ‘smallest’ the real part can be is 1/2. This
is the celebrated Riemann Hypothesis (RH), which is probably the most important
mathematical aside ever in a paper. Riemann [19, 39, 123] wrote (translated into
English; note when he talks about the roots being real, he’s writing the roots as
1=2C i� , and thus � 2 R is the Riemann Hypothesis):

One now finds indeed approximately this number of real roots within these limits, and it is
very probable that all roots are real. Certainly one would wish for a stricter proof here; I
have meanwhile temporarily put aside the search for this after some fleeting futile attempts,
as it appears unnecessary for the next objective of my investigation.

Though not mentioned in the paper, Riemann had developed a terrific formula
for computing the zeros of �.s/, and had checked (but never reported!) that the first
few were on the critical line Re.s/ D 1=2. His numerical computations were only
discovered decades later when Siegel was looking through Riemann’s papers.

RH has a plethora of applications throughout number theory and mathematics;
counting primes is but one of many. The prime number theorem is in fact equivalent
to the statement that Re.�/ < 1 for any zero of �.s/, and was first proved
independently by Hadamard [69] and de la Vallée Poussin [28] in 1896. Each proof
crucially used results from complex analysis, which is hardly surprising given that
Riemann had shown �.x/ is related to the zeros of the meromorphic function �.s/.
It was not until almost 50 years later that Erdös [43] and Selberg [128] obtained
elementary proofs of the prime number theorem (in other words, proofs that did not
use complex analysis, which was quite surprising as the prime number theorem was
known to be equivalent to a statement about zeros of a meromorphic function). See
[62] for some commentary on the history of elementary proofs. It is clear, however,
that the distribution of the zeros of the Riemann zeta function will be of primary (in
both senses of the word!) importance.

The Riemann zeta function is the first of many similar functions that we can
study. We assume the reader has seen L-functions before; in addition to the surveys
mentioned earlier, see also the introductory remarks in [83, 127]. We can examine,
for the real part of s sufficiently large,

L.s; f / WD
1X

nD1

af .n/

ns
I (1.13)
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of course, while we can create such a function for any sequence faf .n/g of sufficient
decay, only certain choices will lead to useful objects whose zeros encode the
solution to questions of arithmetic interest. For example, if we chose af arising from
Dirichlet characters we obtain information about primes in arithmetic progression,
while taking af .p/ to count the number of solutions to an elliptic curve y2 D
x3 C Ax C B modulo p yields information about the rank of the group of rational
solutions.

Our previous analysis, where many of our formulas are due to taking the
logarithmic derivative and computing a contour integral, suggests that we insist that
an Euler product hold:

L.s; f / D
1X

nD1

af .n/

ns
D

Y
p prime

Lp.s; f /: (1.14)

Further, we want a functional equation relating the values of the completed
L-function at s and 1� s, which allows us to take the series expansion that originally
converges only for real part of s large and obtain a function defined everywhere:

ƒ.s; f / D L1.s; f /L.s; f / D �fƒ.1 � s; f /; (1.15)

where �f , the sign of the functional equation, is of absolute value 1, and

Lp.s; f / D
dY

jD1

�
1 � ˛f Ij.p/p�s

��1

L1.s; f / D AQs
nY

jD1

� s

2
C ˛f Ij

�
; (1.16)

with A ¤ 0 a complex number, Q > 0, ˛f Ij � 0 and
Pn

jD1 ˛f Ij.p/� D af .p�/. For
‘nice’ L-functions, it is believed that the Generalized Riemann Hypothesis (GRH)
holds: All non-trivial zeros real part equal to 1/2.

We end our introduction to our main number theoretic objects of interest by
noting that (1.12) is capable of massive generalization, not just to other L-functions
but we can multiply (1.9) by a nice test function �.s/ instead of the specific function
xs=s. The result of this choice is to have a formula that relates sums of � at zeros
of our L-function to sums of the Fourier transform of � at the primes. For example
(see Sect. 4 of [83]) one can show

X
�

�
� �
2�

log R
�
D A

log R
� 2

X
p

1X
�D1

af .p
�/b�

	
log p�

log R



log p

p�=2 log R
; (1.17)
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where R is a free scaling parameter chosen for the problem of interest, A D
2b�.0/ log QCPn

jD1 Aj with

Aj D
Z 1

�1
 

	
˛f Ij C 1

4
C 2� ix

log R



�.x/dx (1.18)

and the Fourier transform is defined by

b�.y/ WD
Z 1

�1
�.x/e�2� ixydx: (1.19)

1.2.3 From the Hilbert-Pólya Connection to Random Matrix Theory

As stated earlier, the Generalized Riemann Hypothesis asserts that the non-trivial
zeros of the an L-function are of the form � D 1=2 C i�� with �� real. Thus
it makes sense to talk about the distribution between adjacent zeros. Around
1913, Pólya conjectured that the �� are the eigenvalues of a naturally occurring,
unbounded, self-adjoint operator, and are therefore real.3 Later, Hilbert contributed
to the conjecture, and reportedly introduced the phrase ‘spectrum’ to describe the
eigenvalues of an equivalent Hermitian operator, apparently by analogy with the
optical spectra observed in atoms. This remarkable analogy pre-dated Heisenberg’s
Matrix Mechanics and the Hamiltonian formulation of Quantum Mechanics by more
than a decade.

Not surprisingly, the Hilbert-Pólya conjecture was considered so intractable that
it was not pursued for decades, and random matrix theory remained in a dormant
state. To quote Diaconis [31]:

Historically, random matrix theory was started by statisticians [150] studying the corre-
lations between different features of population (height, weight, income. . . ). This led to
correlation matrices with .i; j/ entry the correlation between the ith and jth features. If the
data were based on a random sample from a larger population, these correlation matrices
are random; the study of how the eigenvalues of such samples fluctuate was one of the first
great accomplishments of random matrix theory.

Diaconis [32] has given an extensive review of random matrix theory from
the perspective of a statistician. A strong argument can be made, however, that
random matrix theory, as we know it today in the physical sciences, began
in a formal mathematical sense with the Wigner surmise [147] concerning the
spacing distribution of adjacent resonances (of the same spin and parity) in the
interactions between low-energy neutrons and nuclei, which we describe in great
detail in Sect. 2.

3If v is an eigenvector with eigenvalue � of a Hermitian matrix A (so A D A� with A� the complex
conjugate transpose of A, then v�.Av/ D v�.A�v/ D .Av/�v); the first expression is �jjvjj2
while the last is �jjvjj2, with jjvjj2 D v�v D P jvij2 non-zero. Thus � D �, and the eigenvalues
are real. This is one of the most important properties of Hermitian matrices, as it allows us to order
the eigenvalues.
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2 The ‘Birth’ of Random Matrix Theory in Nuclear Physics

Below we discuss some of the history of investigations of the nucleus, concentrating
on the parts that led to the introduction of random matrix theory to the subject. As
mentioned earlier, this section is expanded with permission from [50]. Our goal is
to provide the reader with both sides of the coin, highlighting the interplay between
theory and experiment, and building the basis for applications to understanding
zeros of L-functions; we have chosen to spend a good amount of space on
these experiments and conjectures as these are less-well known to the general
mathematician than the later parts of our story.

While other methods have since been developed, random matrix theory was the
first to make truly accurate, testable predictions. The general idea is that the behavior
of zeros of L-functions are well-modeled by the behavior of eigenvalues of certain
matrices. This idea had previously been successfully used to model the distribution
of energy levels of heavy nuclei (some of the fundamental papers and books on the
subject, ranging from experiments to theory, include [18, 29, 37, 38, 48, 51, 52, 54,
57, 63, 71, 72, 78, 98–100, 106, 119, 136, 143–148]). We describe the development
of random matrix theory in nuclear physics below, and then delve into more of the
details of the connection between the two subjects.

2.1 Neutron Physics

The period from the mid-1930s to the late 1970s was the golden age of neutron
physics; widespread interest in understanding the physics of the nucleus, coupled
with the need for accurate data in the design of nuclear reactors, made the
field of neutron physics of global importance in fundamental physics, technology,
economics, and politics. In Sect. 1.2.1 we introduced some of the early models for
nuclei, and discussed some of the original experiments. In this section we describe
later work where better resolution was possible. Later we will show how a similar
perspective and chain of progress holds in studies of zeros of the Riemann zeta
function! Thus the material here, in addition to being of interest in its own right,
will also provide a valuable vantage for study of arithmetic objects.

In the mid-1950s, a discovery was made that turned out to have far-reaching
consequences beyond anything that those working in the field could have imagined.
For the first time, it was possible to study the microstructure of the continuum in a
strongly-coupled, many-body system, at very high excitation energies. This unique
situation came about as the result of the following facts.

• Neutrons, with kinetic energies of a few electron-volts, excite states in compound
nuclei at energies ranging from about five million electron-volts to almost
ten million electron-volts—typical neutron binding energies. Schematically,
see Fig. 1.
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Fig. 1 An energy-level
diagram showing the location
of highly-excited resonances
in the compound nucleus
formed by the interaction of a
neutron, n, with a nucleus of
mass number A. Nature
provides us with a narrow
energy region in which the
resonances are clearly
separated, and are observable

Region of broad,
overlapping
resonances

Narrow region of
interest ~ 50keV

Neutron binding
energy ~ 5 MeV

Ground state of
target nucleus, A

Ground state of
compound nucleus, A + 1

Neutron inelastic
scattering

Neutron elastic
scattering

• Low-energy resonant states in heavy nuclei (mass numbers greater than about
100) have lifetimes in the range 10�14–10�15 s, and therefore they have widths
of about 1 eV. The compound nucleus loses all memory of the way in which
it is formed. It takes a relatively long time for sufficient energy to reside in a
neutron before being emitted. This is a highly complex, statistical process. In
heavy nuclei, the average spacing of adjacent resonances is typically in the range
from a few eV to several hundred eV.

• Just above the neutron binding energy, the angular momentum barrier restricts
the possible range of values of total spin of a resonance, J (J = I + i + l, where I
is the spin of the target nucleus, i is the neutron spin, and l is the relative orbital
angular momentum). This is an important technical point.

• The neutron time-of-flight method provides excellent energy resolution at
energies up to several keV. (See Firk [47] for a review of time-of-flight
spectrometers.)

The speed vn of a neutron can be determined by measuring the time tn that it takes
to travel a measured distance ` in free space. Using the standard result of special
relativity, the kinetic energy of the neutron can be deduced using the equation

En D E0Œ.1 � v2n=c2/�1=2 � 1�
D E0Œ.1 � `2=t2nc2/�1=2 � 1�; (2.1)
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where E0 � 939:553MeV is the rest energy of the neutron and c � 2:997925 � 108
m/s is the speed of light.

If the units of energy are MeV, and those of length and time are meters and
nanoseconds, then

En D 939:553Œ.1 � 11:126496`2=t2n/
�1=2 � 1� MeV: (2.2)

It is frequently useful to rearrange this equation to give the ratio tn=` for a given
energy, En:

tn=` D 3:3356404=
p
1 � .939:553=.En C 939:553//2: (2.3)

Typical values for this ratio are 72.355 ns/m for En D 1MeV and 23.044 ns/m for
En D 10MeV.

At energies below 1 MeV, the non-relativistic approximation to (2.3) is adequate:

.tn=`/NR D
p

E0=2Enc2 D 72:298=
p

En �s=m: (2.4)

In the eV-region, it is usual to use units of �s/m: a 1 eV neutron travels 1m in
72:3�s. At non-relativistic energies, the energy resolution �E at an energy E is
simply:

�E � 2E�t=tE; (2.5)

where �t is the total timing uncertainty, and tE is the flight time for a neutron of
energy E.

In 1958, the two highest-resolution neutron spectrometers in the world had total
timing uncertainties �t � 200 ns. For a flight-path length of 50 m the resolution
was �E � 3 eV at 1 keV.

In 238UC n, the excitation energy is about 5 MeV; the effective resolution for a
1 keV-neutron was therefore

�E=Eeffective � 6 � 10�7 (2.6)

(at 1 eV, the effective resolution was about 10�11).
Two basic broadening effects limit the sensitivity of the method.

1. Doppler broadening of the resonance profile due to the thermal motion of the
target nuclei; it is characterized by the quantity ı � 0:3

p
E=A (eV), where A is

the mass number of the target. If E D 1 keV and A D 200, ı � 0:7 eV, a value
that may be ten times greater than the natural width of the resonance.

2. Resolution broadening of the observed profile due to the finite resolving power
of the spectrometer. For a review of the experimental methods used to measure
neutron total cross sections see Firk and Melkonian [49]. Lynn [95] has given a
detailed account of the theory of neutron resonance reactions.
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In the early 1950s, the field of low-energy neutron resonance spectroscopy was
dominated by research groups working at nuclear reactors. They were located at
National Laboratories in the United States, the United Kingdom, Canada, and the
former USSR. The energy spectrum of fission neutrons produced in a reactor is
moderated in a hydrogenous material to generate an enhanced flux of low-energy
neutrons. To carry out neutron time-of-flight spectroscopy, the continuous flux from
the reactor is “chopped” using a massive steel rotor with fine slits through it. At the
maximum attainable speed of rotation (about 20; 000 rpm), and with slits a few
thousandths-of-an-inch in width, it is possible to produce pulses each with a duration
approximately 1�s. The chopped beams have rather low fluxes, and therefore the
flight paths are limited in length to less than 50 m. The resolution at 1 keV is then
�E � 20 eV, clearly not adequate for the study of resonance spacings about 10 eV.

In 1952, there were only four accelerator-based, low-energy neutron spectrom-
eters operating in the world. They were at Columbia University in New York
City, Brookhaven National Laboratory, the Atomic Energy Research Establish-
ment, Harwell, England, and at Yale University. The performances of these early
accelerator-based spectrometers were comparable with those achieved at the reactor-
based facilities. It was clear that the basic limitations of the neutron-chopper
spectrometers had been reached, and therefore future developments in the field
would require improvements in accelerator-based systems.

In 1956, a new high-powered injector for the electron gun of the Harwell electron
linear accelerator was installed to provide electron pulses with very short durations
(typically less than 200 ns) [51]. The pulsed neutron flux (generated by the (� , n)
reaction) was sufficient to permit the use of a 56m flight path; an energy resolution
of 3 eV at 1 keV was achieved.

At the same time, Professors Havens and Rainwater (pioneers in the field of
neutron time-of-flight spectroscopy) and their colleagues at Columbia University
were building a new 385MeV proton synchrocyclotron a few miles north of the
campus (at the Nevis Laboratory). The accelerator was designed to carry out
experiments in meson physics and low-energy neutron physics (neutrons generated
by the (p, n) reaction). By 1958, they had produced a pulsed proton beam with
duration of 25 ns, and had built a 37m flight path [30, 124]. The hydrogenous
neutron moderator generated an effective pulse width of about 200 ns for 1 keV-
neutrons. In 1960, the length of the flight path was increased to 200m, thereby
setting a new standard in neutron time-of-flight spectroscopy [56].

2.2 The Wigner Surmise

At a conference on Neutron Physics by Time-of-Flight, held in Gatlinburg, Ten-
nessee on November 1st and 2nd, 1956, Professor Eugene Wigner (Nobel Laureate
in Physics, 1963) presented his surmise regarding the theoretical form of the spacing
distribution of adjacent neutron resonances (of the same spin and parity) in heavy
nuclei. At the time, the prevailing wisdom was that the spacing distribution had a
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Poisson form (see, however, [68]). The limited experimental data then available
was not sufficiently precise to fix the form of the distribution (see [78]). The
following quotation, taken from Wigner’s presentation at the conference, introduces
the concept of random matrices in Physics, for the first time:

Perhaps I am now too courageous when I try to guess the distribution of the distances
between successive levels. I should re-emphasize that levels that have different J-values
(total spin) are not connected with each other. They are entirely independent. So far,
experimental data are available only on even-even elements. Theoretically, the situation is
quite simple if one attacks the problem in a simple-minded fashion. The question is simply
‘what are the distances of the characteristic values of a symmetric matrix with random
coefficients?’
We know that the chance that two such energy levels coincide is infinitely unlikely.

We consider a two-dimensional matrix,

	
a11 a12
a21 a22



, in which case the distance between two

levels is
q
.a11 � a22/2 C 4a212. This distance can be zero only if a11 D a22 and a12 D 0.

The difference between the two energy levels is the distance of a point from the origin, the
two coordinates of which are .a11 � a22/ and a12. The probability that this distance is S
is, for small values of S, always proportional to S itself because the volume element of the
plane in polar coordinates contains the radius as a factor. . . .
The probability of finding the next level at a distance S now becomes proportional to SdS.
Hence the simplest assumption will give the probability

�

2
�2 exp

�
��
4
�2S2

�
SdS (2.7)

for a spacing between S and S C dS.
If we put x D �S D S=hSi, where hSi is the mean spacing, then the probability distribution
takes the standard form

p.x/dx D �

2
x exp

���x2=4
�

dx; (2.8)

where the coefficients are obtained by normalizing both the area and the mean to unity.

The form of the Wigner surmise had been previously discussed by Wigner [143],
and by Landau and Smorodinsky [88], but not in the spirit of random matrix theory.

The Wigner form, in which the probability of zero spacing is zero, is strikingly
different from the Poisson form

p.x/dx D exp.�x/dx (2.9)

in which the probability is a maximum for zero spacing. The form of the Wigner
surmise had been previously discussed by Wigner himself [143], and by Landau
and Smorodinsky [88], but not in the spirit of random matrix theory.

It is interesting to note that the Wigner distribution is a special case of a general
statistical distribution, named after Professor E. H. Waloddi Weibull (1887–1979),
a Swedish engineer and statistician [142]. For many years, the distribution has been
in widespread use in statistical analyses in industries such as aerospace, automotive,
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electric power, nuclear power, communications, and life insurance.4 The distribution
gives the lifetimes of objects and is therefore invaluable in studies of the failure
rates of objects under stress (including people!). The Weibull probability density
function is

Wei.xI k; �/ D k

�

� x

�

�k�1
exp

��.x=�/k� (2.10)

where x � 0, k > 0 is the shape parameter, and � > 0 is the scale parameter. We
see that Wei.xI 2; 2=p�/ D p.x/, the Wigner distribution. Other important Weibull
distributions are given in the following list.

• Wei.xI 1; 1/ D exp.�x/ the Poisson distribution;
• Wei.xI 2; �/ D Ray.�/, the Rayleigh distribution;
• Wei.xI 3; �/ is approximately a normal distribution.5

For Wei.xI k; �/, the mean is � .1C .1=k//, the median is � log.2/1=k, and the
mode is �.k � 1/1=k=k1=k, if k > 1. As k!1, the Weibull distribution has a sharp
peak at �. Historically, Frechet introduced this distribution in 1927, and Nuclear
Physicists often refer to the Weibull distribution as the Brody distribution [18].

At the time of the Gatlinburg conference, no more than 20 s-wave neutron
resonances had been clearly resolved in a single compound nucleus and therefore
it was not possible to make a definitive test of the Wigner surmise. Immediately
following the conference, Harvey and Hughes [71], and their collaborators, working
at the fast-neutron-chopper-groups at the high flux reactor at the Brookhaven
National Laboratory, and at the Oak Ridge National laboratory, gathered their own
limited data, and all the data from neutron spectroscopy groups around the world,
to obtain the first global spacing distribution of s-wave neutron resonances. Their
combined results, published in 1958, showed a distinct lack of very closely spaced
resonances, in agreement with the Wigner surmise.

By late 1959, the experimental situation had improved, greatly. At Columbia
University, two students of Professors Havens and Rainwater completed their Ph.D.
theses; one, Rosen [124], studied the first 55 resonances in 238U C n up to 1 keV,
and the other, Desjardins [30], studied resonances in two silver isotopes (of different
spin) in the same energy region. These were the first results from the new high-
resolution neutron facility at the Nevis cyclotron.

At Harwell, Firk et al. [48] completed their study of the first 100 resonances in
238U C n at energies up to 1:8 keV; their measurement of the total neutron cross

4In fact, one of the authors has used Weibull distributions to model run production in major league
baseball, giving a theoretical justification for Bill James’ Pythagorean Won-Loss formula [103].
5Obviously this Weibull cannot be a normal distribution, as they have very different decay rates
for large x, and this Weibull is a one-sided distribution! What we mean is that for 0 
 x 
 2 this
Weibull is well approximated by a normal distribution which shares its mean and variance, which
are (respectively)  .4=3/ � 0:893 and  .5=3/�  .4=3/2 � 0:105.
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Fig. 2 High resolution studies of the total neutron cross section of 238U, in the energy range
400–1800 eV. The vertical scale (in units of “barns”) is a measure of the effective area of the target
nucleus

section for the interaction 238U C n in the energy range 400–1800 eV is shown in
shown in Fig. 2.

When this experiment began in 1956, no resonances had been resolved at
energies above 500 eV. The distribution of adjacent spacings of the first 100
resonances in the single compound nucleus, 238U C n, ruled out an exponential
distribution and provided the best evidence (then available) in support of Wigner’s
proposed distribution.

Over the last half-century, numerous studies have not changed the basic findings.
At the present time, almost 1000 s-wave neutron resonances in the compound
nucleus 239U have been observed in the energy range up to 20 keV. The latest
results, with their greatly improved statistics, are shown in Fig. 3 [29].
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Fig. 3 A Wigner distribution fitted to the spacing distribution of 932 s-wave resonances in the
interaction 238U C n at energies up to 20 keV

2.3 Some Nuclear Models

It is interesting to note that, during the 1950s and 1960s, the study of the spacing
distribution of neutron-induced resonances was far from the main stream of research
in nuclear physics; almost all research was concerned with fundamental questions
associated with nuclear structure and not with quantum statistical mechanics. The
newly-discovered Shell Model [90, 97] of nuclei, and developments such as the
Collective Model [14, 121] were popular, and quite rightly so, when the successes
of these models in accounting for the observed energies, spins and parities, and
magnetic moments of nuclear states, particularly in light nuclei (mass numbers <
20, say) were considered.

These models were not able to account for the spacing distributions in heavy
nuclei (mass numbers A > 150); the complex nature of so many strongly interacting
nucleons prevented any detailed analysis. However, the treatment of such complex
problems had been considered in the mid-1930s, before the advent of the Shell-
Model. The Fermi Gas Model and other approaches based upon quantum versions
of classical statistical mechanics and thermodynamics, were introduced, particularly
by Bethe [10]. The Fermi Gas Model treats the nucleons as non-interacting spin- 1

2

particles in a confined volume of nuclear size. This, of course, seems at variance
with the known strong interaction between pairs of nucleons. However, the argument
is made that the nuclear gas is completely degenerate and therefore, because of the
Pauli exclusion principle, the nucleons can be considered free! The model was the
first to predict the energy-dependence of the density of states in the nuclear system.
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The number of states that are available to a freely moving particle in a volume V
(the nuclear volume) that has a linear momentum in the range p to pC dp is

dn D .4�V=h3/p2dp: (2.11)

This leads to

n D .V=3�2h3/p3max; (2.12)

where the result has been doubled because of the twofold spin degeneracy of the
nucleons. The “Fermi energy” EF corresponds to the maximum momentum:

EF D p2max=2mNucleon: (2.13)

The level density �.E�/ at an excitation energy E� predicted by the model is

�.E�/ D �.0/ exp
�
2
p

aE�
�
; (2.14)

where a is given by the equation

E� D a.kT/2 (2.15)

in which k is Boltzmann’s constant and T is the absolute temperature. The above
expression for the level density is for states of all spins and parities.

In practical cases, E� is about 6 MeV for low- energy neutron interactions; this
value leads to the following ratio for the mean level spacing at E� D 6MeV and at
E� D 0 (the ground state):

hD.6 MeV/i=hD.0/i � 4 � 10�8: (2.16)

For hD.0/i D 100 keV (a practical value), the mean level spacing at E� D 6MeV
is� 4 � 10�3 eV, which is more than three orders-of-magnitude smaller than typical
values observed in heavy nuclei.

Many refinements of the model were introduced over the years; the models take
into account spin, parity, and nucleon pairing effects. A frequently used refined
form is

�.E�; J/ D �.E�; 0/.2J C 1/ exp
��.J.J C 1//=2	2� ; (2.17)

where 	 is called the “spin-cut-off parameter”; the value of 	2 is typically about 10.
The predicted spacing distributions for two values of 	 , and their comparison with
a Wigner and an exponential distribution is shown in Fig. 4.
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Fig. 4 The spacing
distribution of adjacent levels
of the same spin and parity
follows a Wigner distribution.
For a completely random
distribution of levels (in both
spin and parity) the
distribution function is
exponential. The distributions
for random superpositions of
several sequences (each of
which is of a Wigner form
with a characteristic spin and
parity) are, for level densities
given by (2.17) and 	 D 1

and 3, found to approach the
exponential distribution
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2.4 The Optical Model

In 1936, Ostrofsky et. al. [118] introduced a model of nuclear reactions that
employed a complex nuclear potential to account for absorption of the incoming
nucleon. Later, Feshbach et al. [45] introduced an important development of the
model that helped further our understanding of the average properties of parameters
used to describe nuclear reactions at low energies.

The following discussion provides insight into the physical content of their
model. Consider the plane-wave solutions of the Schrödinger equation:

d2�

dx2
C .2m=h2/ŒEC V0 C iW�� D 0; � D exp.˙ikx/; (2.18)

where the C sign indicates outgoing waves and the � sign indicates incoming
waves. The wave number, k is complex:

k D
p
.2m=h2/Œ.EC V0/C iW�; (2.19)

which can be written

k D kR C KIM: (2.20)

For W < .EC V0/ (a reasonable assumption) we have

kR D 1=� �
p
.2m=h2/.EC V0/

KIM D ŒW=.EC V0/�.k=2/: (2.21)
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Taking typical practical values E D 10MeV, V0 D 40MeV and W D 10MeV, the
wave numbers are kR � 1:5fm � 1 and KIM � kR=10 � 0:15fm�1.

We see that the outgoing solution of the wave equation is

� D exp .ikRx/ exp .�KIMx/ ; (2.22)

which represents an exponentially attenuated wave. The wave number KIM is
effectively an attenuation coefficient. The “decay length” associated with the
probability function j�j2 is the “mean free path”:

ƒ D 1=2KIM D .EC V0/=WkR: (2.23)

Using the above values for the energies, we obtain ƒ � 3:2fm. This value is
of nuclear dimension, and supports the underlying hypothesis of the Compound
Nucleus Model.

If the mean spacing of energy levels of a particle of mass m inside the compound
nucleus is hDi, and its wave number is K, then the particle covers a distance

d � .h=hDi/..hK=2�m/ D .h2K/=.2�mhDi/ (2.24)

inside the nucleus at an average speed hvi � hK=2�m before it is emitted (or before
another indistinguishable particle is emitted). At an excitation energy of 10 MeV,
a mean level spacing hDi � 40 eV, and a mean lifetime h=hDi � 10�16 s are
predicted. These are reasonable values, considering the crudeness of the model.

The level density and level widths increase as the neutron bombarding energy
increases; an energy region is therefore reached in which the levels completely
overlap. Cross section measurements then provide information on the average
properties of the levels and, in particular, on the neutron strength function [92]
defined as

S D h��ni2=hDi (2.25)

in which D h��ni2 is the average reduced neutron width and hDi is the average
spacing. For s-wave neutrons, �2�n D 2ka�n, where k is the neutron wave number,
a is the nuclear radius, and �n is the neutron width of the level �.

The average absorption cross section h	absi may be obtained by averaging over
the collision function U [92]. The following expressions are then obtained:

1 � jhUij2 D 2� .h�ni=hDi/
h	absi D .�=k2/g

�
1 � jhUij2

�
; (2.26)

where g is a statistical “spin weighting factor”.
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The term 1 � jhUij2 is directly related to the cross section for the formation of a
compound nucleus [45] which is, in turn, proportional to the strength function. The
importance of studying the spacing distribution of resonances, of a given spin and
parity, originated in recognizing that the value of hDi, the average spacing, appears
as the denominator in the fundamental strength function.

2.5 Further Developments

The first numerical investigation of the distribution of successive eigenvalues
associated with random matrices was carried out by Porter and Rozenzweig in
the late 1950s [120]. They diagonalized a large number of matrices where the
elements are generated randomly but constrained by a probability distribution. The
analytical theory developed in parallel with their work: Mehta [98], Mehta and
Gaudin [100], and Gaudin [57]. At the time it was clear that the spacing distribution
was not influenced significantly by the chosen form of the probability distribution.
Remarkably, the n 	 n distributions had forms given almost exactly by the original
Wigner 2 	 2 distribution.

The linear dependence of p.x/ on the normalized spacing x (for small x) is a direct
consequence of the symmetries imposed on the Hamiltonian matrix, H.hij/. Dyson
[37] discussed the general mathematical properties associated with random matrices
and made fundamental contributions to the theory by showing that different results
are obtained when different symmetries are assumed for H. He introduced three
basic distributions; in Physics, only two are important, they are:

• the Gaussian Othogonal Ensemble (GOE) for systems in which rotational
symmetry and time-reversal invariance holds (the Wigner distribution): p.x/ D
.�=2/ x exp

��.�=4/x2�;
• the Gaussian Unitary Ensemble (GUE) for systems in which time-reversal

invariance does not hold (French et. al. [54]): p.x/ D .32=�2/x2 exp.�.�=4/x2/.
The mathematical details associated with these distributions are given in [98].

The impact of these developments was not immediate in nuclear physics.
At the time, the main research endeavors were concerned with the structure of
nuclei–experiments and theories connected with Shell-, Collective-, and Unified
models, and with the nucleon-nucleon interaction. The study of quantum statistical
mechanics was far removed from the mainstream. Almost two decades went by
before random matrix theory was introduced in other fields of physics (see, for
example, Bohigas et al. [16] and Alhassid [1]).
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2.6 Lessons from Nuclear Physics

We have discussed at great length the connections between nuclear physics and
number theory, with random matrix theory describing the behavior in these two very
different fields. Before we analyze in great detail the success it has had in modeling
the zeros of L-functions, it’s worth taking a few moments to create a dictionary
comparing these two subjects.

In nuclear physics the main object of interest is the nucleus. It is a many-bodied
system governed by complicated forces. We are interested in studying the internal
energy levels. To do so, we shoot neutrons (which have no net charge) at the nucleus,
and observe what happens. Ideally we would be able to send neutrons of any energy
level; unfortunately in practice we can only handle neutrons whose energies are in
a certain band. The more energies at our disposal, the more refined an analysis is
possible. Finally, there is a remarkable universality from heavy nucleus to heavy
nucleus, where the distribution of spacings between adjacent energy levels depends
weakly on the quantum numbers.

Interestingly, there are analogues of all these quantities on the number theory
side. The nucleus is replaced by an L-function, which is built up as an Euler product
of many factors of arithmetic interest. We are interested in the zeros of this function.
We can glean information about them by using the explicit formula, (1.17). We first
choose an even Schwartz test function � whose Fourier transform b� has compact
support. The explicit formula relates sums of � at the zeros of the L-function
to weighted sums of b� at the primes. Thus the more functions b� where we can
successfully execute the sums over the primes, the more information we can deduce
about the zeros. Unfortunately, in practice we can only evaluate the prime sums forb�
with small support (if we could do arbitraryb�, we could take a sequence converging
to the constant function 1, whose inverse Fourier transform would be a delta spike at
the origin and thus tell us what is happening there). Similar to the weak dependence
on the quantum numbers, the answers for many number theory statistics depend
weakly on the Satake parameters (whose moments are the Fourier coefficients in
the series expansion of the L-function). In particular, the spacing between adjacent
zeros is independent of the distribution of these parameters, though other statistics
(such as the distribution of the first zero or first few zeros above the central point)
fall into several classes depending on their distribution.

We collect these correspondences in the table below. While the structures studied
in the two fields are very different, we can unify the presentations. In both settings
we study the spacings between objects. While there are exact rules that govern
their behavior, these are complicated. We gain information through interactions of
test objects with our system; as we can only analyze these interactions in certain
windows, we gain only partial information on the items of interest.

We end by extracting some lessons from nuclear physics for number theory.
The first is the importance of using the proper test function, or related to that the
proper statistic. In the gold-foil experiments (1908 to 1913) positively charged alpha
particles, which are helium nuclei, were used. Because they have a net positive
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Item Nuclear physics Number theory

Object Nucleus L-function

Events Energy levels Zeros

Probe Neutron (no net charge) Test function � (Schwartz)

Restriction Neutron’s energy Supp.b�/
Individuality Quantum numbers Satake parameters

charge, they are repelled by the nucleus they are probing. With the discovery of the
neutron in 1932, physicists had a significantly better tool for studying the nucleus.
As the machinery improved, more and more neutron energy levels were available,
which led to sharper resolutions of the internal structure. We see variants of these on
the number theory side, from restrictions on the test function to the consequences of
increasing support. For example, when Wigner made his bold conjectures the data
was not sufficiently detailed to rule out Poissonian behavior; that was not done until
later when better experiments were carried out. Similar situations arise in number
theory, where some statistics are consistent with multiple models and only by
increasing the support are we able to determine the true underlying behavior. Finally,
while there is a remarkable universality in behavior of the zeros, as for statistics
such as adjacent spacings or n-level correlations the exact form of the L-function
coefficients do not matter, these distributions do affect the rate of convergence to
the random matrix theory predictions, as well as govern other statistics.

3 From Class Numbers to Pair Correlation
and Random Matrix Theory

The discovery that the pair correlation of the zeros of the Riemann zeta function
(and other statistics of its zeros, and the zeros of other L-functions) are related
to eigenvalues of random matrix ensembles has its beginnings with one of the
most challenging problems in analytic number theory: the class number problem.
Hugh Montgomery’s investigation into the vertical distribution of the nontrivial
zeros of �.s/ arose during his work with Weinberger [108] on the class number
problem. We give a short introduction to this problem to motivate Montgomery’s
subsequent work on the differences between zeros of �.s/. We assume the reader
is familiar with the basics of algebraic number theory and L-functions; an excellent
introduction is Davenport’s classic Multiplicative Number Theory [27]. For those
wishing a more detailed and technical discussion of the class number problem
and its history, see [61, 62]. We then continue with a discussion of Montgomery’s
work on pair correlation, followed by the work of Odlyzko and others on spacings
between adjacent zeros. After introducing the number theory motivation and results,
we reveal the connection to random matrix theory, and conclude with a discussion
of the higher level correlations, other related statistics, and open problems.
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As there are too many areas of current research to describe them all in detail in a
short article, we have chosen to concentrate on two major areas: the main terms for
the n-level correlations, and the lower order terms; thus we do not describe many
other important areas of research, such as the determination of moments or value
distribution. The main terms are believed to be described by random matrix theory;
however, the lower order terms depend on subtle arithmetic of the L-functions, and
there we can see different behavior. The situation is very similar to that of the Central
Limit Theorem, and we will describe these connections and viewpoints in greater
detail below.

3.1 The Class Number Problem

Let K D Q.
p�q/ be the imaginary quadratic field associated to the negative

fundamental discriminant �q. Here we have that �q is congruent to 1 .mod4/ and
square-free or �q D 4m, where m is congruent to 2 or 3 .mod4/ and square-free.
The class number of K, denoted h.�q/, is the size of the group of ideal classes of K.
When h.�q/ D 1, the ring of integers of K, denoted OK , has unique factorization.
Such an occurrence (the class number one problem, discussed below) is rare, and
the class number h.�q/ may be thought of as a measure on the failure of unique
factorization in OK .

One of the most difficult problems in analytic number theory is to estimate
the size of h.�q/ effectively. Gauss [58] showed that h.�q/ is finite and further
conjectured that h tends to infinity as �q runs over the negative fundamental
discriminants. This conjecture was proved by Heilbronn [75] in 1934. Thus, while
it is settled that there are only finitely many imaginary quadratic fields with a
given class number h.�q/, an obvious question remains: can we list all imaginary
quadratic fields K with a given class number h.�q/? This is the class number
problem.

One may easily deduce an upper bound on h.�d/ via Dirichlet’s class number
formula. For <.s/ > 1, let L.s; 
�q/ denote the Dirichlet L-function

L.s; 
�q/ WD
1X

nD1


�q.n/

ns
; (3.1)

where 
�q.n/ is the Kronecker symbol associated to the fundamental discrimi-
nant �q. In order to prove the equidistribution of primes in arithmetic progression,
Dirichlet derived the class number formula,

h.�q/ D w
p

q

2�
L.1; 
�q/; (3.2)
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where w denotes the number of roots of unity of K D Q.
p�q/:

w D

8̂
<̂
ˆ̂:

2 if q > 4

4 if q D 4
6 if q D 3:

(3.3)

Dirichlet needed to show L.1; 
�q/ ¤ 0, which is immediate from the class number
formula as h.�q/ � 1. This connection between class numbers and zeros of
L-functions is almost 200 years old, and illustrates how knowledge of zeros of
L-functions yields information on a variety of important problems.

Instead of using the class number formula to prove non-vanishing of L-functions,
we can use results on the size of L-functions to obtain bounds on the class number.
Combining (3.2) with that fact that L.1; 
�q/ � log q, it follows that h.�q/ �p

q log q. On the other-hand, Siegel [132] proved that for every " > 0 we have
L.1; 
�q/ > c."/q�", where c."/ is a constant depending on " that is not numerically
computable for small ". Upon inserting this lower bound in (3.2), it follows that
h.�q/ c."/q1=2�"; however this does not help us solve the class number problem
because the implied constant is ineffective.6 Computing an effective lower bound
on h.�q/ is very difficult task.

The class number one problem was eventually solved independently by Heegner
[74], Stark [133] and Baker [8]. For h.�d/ D 2, the class number problem was
solved independently by Stark [134], Baker [9] and Montgomery and Weinberger
[108]. In 1976, Goldfeld [59, 60] showed that if there exists an elliptic curve E
whose Hasse-Weil L-function has a zero at the central point s D 1 of order at least
three, then for any " > 0, we have h.�q/ > c";E log.j � qj/1�", where the constant
c";E is effectively computable. In other words, Goldfeld proved that if there exists
an elliptic curve whose Hasse-Weil L-function has a triple zero at s D 1, then the
class number problem is reduced to a finite amount of computations. In 1983, Gross
and Zagier [66] showed the existence of such an elliptic curve. Combining this deep
work of Gross-Zagier with a simplified version of Goldfield’s argument to reduce
the amount of necessary computations, Oesterlé [115] produced a complete list of
imaginary quadratic fields with h.�q/ D 3: To date, the class number problem is
resolved for all 1 � h.�q/ � 100. (In addition to the previous references, see Arnon
[4], Arnon et al. [5], Wanger [140] and Watkins [141].)

6In other words, while the above is enough to prove that the class number tends to infinity, we
cannot use that argument to produce an explicit constant Qn for each n so that we could assert
that the class number is at least n if q � Qn. One of the best illustrations of the importance of
effective constants is the following joke: There is a constant T0 such that if all the non-trivial zeros
of �.s/ in the critical strip up to height T0 are on the critical line, then they all are and the Riemann
Hypothesis is true; in other words, it suffices to check up to a finite height! To see this, if the
Riemann Hypothesis is true we may take T0 to be 0, while if it is false we take T0 to be 1 more than
the height of the first exemption. We have therefore shown a constant exists, but such information
is completely useless!
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Combining their work with results of Stark [134] and Lehmer et al. [93],
Montgomery and Weinberger gave a complete proof for the class number two
problem. Their proof is based on the curious Deuring-Heilbronn phenomenon,
which implies that if h.�d/ < d1=4�ı then the low-lying nontrivial zeros of many
quadratic Dirichlet L-functions are on the critical line, at least up to some height
depending on d, ı, and the L-functions. For an overview of the Deuring-Heilbronn
phenomenon, see the survey article by Stopple [135]. Montgomery and Weinberger
also establish that if the class number is a bit smaller, then one can show that these
nontrivial zeros on the critical line are very evenly spaced. Moreover, more precise
information about the vertical distribution of these zeros would imply an effective
lower bound on h.�d/. Montgomery and Weinberger write:

Let � D 1=2 C i� and �0 D 1=2 C i� 0 be consecutive zeros on the critical line of an
L-function L.s; 
/, where 
 is a primitive character .modk/. Put

�.K/ D min
1

2�
j� � � 0j log K; (3.4)

where the minimum is over all k 
 K, all 
 .modk/, and all � D 1=2C i� of L.s; 
/ with
j� j 
 1. In this range the average of j� � � 0j is 2�= log k, so trivially lim sup�.K/ 
 1.
Presumably �.K/ tends to 0 as K increases; if this could be shown effectively then the
effective lower bound h > d1=4�" would follow. In fact the weak inequality �.K/ < 1=4�ı
for K > K0 implies that h > d.1=2/ı�" for d > C.K0; "/; the function C.K0; "/ can be made
explicit. Even �.K/ < 1

2
� ı has striking consequences.

3.2 Montgomery’s Pair Correlation of the Zeros of �.s/

We have seen that the class number problem is related to another very difficult
question in analytic number theory: What is the vertical distribution of the zeros
of the Riemann zeta function (and general L-functions) on the critical line?

Given an increasing sequence f˛ng1nD1 and a box B � R
n�1, the n-level

correlation is defined by

lim
N!1

#
˚�
˛j1 � ˛j2 ; : : : ; ˛jn�1 � ˛jn

� 2 B; ji ¤ jk
�

N
: (3.5)

The pair correlation is the case n D 2, and through combinatorics knowing all the
correlations yields the spacing between adjacent events (see for example [99]). In
1973, Montgomery [107] was able to partially determine the behavior for the pair
correlation of zeros of the Riemann zeta function, �.s/, which led to new results on
the number of simple zeros of �.s/ and the existence of gaps between zeros of �.s/
that are closer together than the average. One of the most striking contributions in
Montgomery’s paper, however, is his now famous pair correlation conjecture. We
first state his conjecture and then discuss related work on spacings between adjacent
zeros in the next subsection; after these have been described in detail we then revisit
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these problems and describe the connections with random matrix theory in Sect. 3.5.
See [25] for more on connections between spacings of zeros of �.s/ and the class
number.

Conjecture 1 (Montgomery’s Pair Correlation Conjecture). Assume the Riemann
hypothesis, and let �; � 0 denote the imaginary parts of nontrivial zeros of �.s/. For
fixed 0 < a < b <1,

lim
T!1

#f�; � 0 W 0 � �; � 0 � T; 2�a.log T/�1 � � � � 0 � 2�b.log T/�1g
T
2�

log T

D
Z b

a
1 �

	
sin�u

�u


2
du: (3.6)

Thus Montgomery’s pair correlation conjecture is the statement that the pair
correlation of the zeros of �.s/ is

1 �
	

sin�u

�u


2
: (3.7)

Notice that the factor 1 � .sin�u=�u/2 suggests a ‘repulsion’ between the
zeros of �.s/. The notion that the zeros cannot be too close to one another was
also revealed in the aforementioned work of Montgomery and Weinberger as a
consequence of the Deuring-Heilbronn phenomenon.

To arrive at his conjecture, Montgomery introduced the function

F.x;T/ D
X

0<�;� 0
T

xi.��� 0/w.� � � 0/; (3.8)

where w.u/ is a weight function given by w.u/ D 4=.4 C u2/. Let F.˛/ denote
F.x;T/ with x set as x D T˛; then

F.˛/ D F.˛;T/ D
	

T

2�
log T


�1 X
0
�;� 0
T

Ti˛.��� 0/w.� � � 0/; (3.9)

where ˛ and T � 2 are real. F.˛/ is a real, even function. Let r.u/ 2 L1, and define
its Fourier transform by

Or.˛/ D
Z 1

�1
r.u/e2� i˛udu: (3.10)

The function r is a test function that replaces the ‘box’ in the statement of the pair
correlation Conjecture 1. One notable item about Montgomery’s pair correlation
conjecture is that there is no restriction on the length of the interval Œa; b�; the
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difference b � a is permitted to be arbitrarily small. In the language of smooth
test functions, this translates to permitting arbitrarily large support on the Fourier
transform Or.

If Or.˛/ 2 L1, then upon multiplying (3.9) by Or.˛/ and integrating, we deduce

X
0<�;� 0
T

r

	
.� 0��/ log T

2�
w.� 0��/





	

T

2�
log T


Z 1

�1
Or.˛/F.˛/d˛ (3.11)

as T tends to infinity. If the Riemann hypothesis is true, the asymptotic (3.11)
connects the pair correlation of �.s/ to the function F.˛/ given in (3.9). Montgomery
proceeded to prove an important special case of Conjecture 1 for a class of test
functions with Fourier transform supported in .�1; 1/.
Theorem 1 (Montgomery’s Theorem). Assume the Riemann hypothesis. For real
˛, T � 2, let F.˛/ be defined by (3.9). Then F.˛/ is real, and F.˛/ D F.�˛/. If
T > T0.�/ then F.˛/ � �� for all ˛. For fixed ˛ satisfying 0 � ˛ < 1 we have

F.˛/ D ˛ C o.1/C T�2˛ log T.1C o.1// (3.12)

uniformly for 0 � ˛ < 1 as T tends to infinity.

Thus, for any function r.u/ 2 L1 with Fourier transform Or.˛/ supported in
.�1; 1/, one can use (3.12) to evaluate the sums appearing in (3.11). For ˛ � 1,
Montgomery further conjectured, with heuristic arithmetic justification, that

F.˛/ D 1C o.1/ uniformlyinboundedintervalsasT !1: (3.13)

This conjecture, combined with (3.12) gives a complete picture of the function F.˛/,
which led Montgomery to make his pair correlation conjecture.

3.3 Proof of Montgomery’s Pair Correlation Conjecture
for Restricted a; b

We now provide greater detail about Montgomery’s original proof [107, Sect. 3,
pp. 187–191] of his theorem (Theorem 1). The point of entry is an explicit formula
due to him.

The role of explicit formulæ cannot be overstated when working with �.s/
or L-functions, as these formulæ unlock the multiplicative structure implicit in
the Euler product, usually via the argument principal applied to the logarithmic
derivative. Assuming the Riemann hypothesis, and writing critical zeros of �.s/ as
1=2C i� and � real, with 1 < 	 < 2 and x � 1, Montgomery proved that
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.2	 � 1/
X
�

xiy

�
	 � 1

2

�2 C .t � �/2

D � x�1=2
 X

n
x

ƒ.n/
� x

n

�1�	Cit C
X
n>x

ƒ.n/
� x

n

�	Cit
!

C x1=2�	Cit.log � C O	 .1//C O	 .x
1=2��1/; (3.14)

where � D jtj C 2 and the implied constants depend only on 	 .

Proof (Proof of Montgomery’s Theorem (Theorem 1); [107, Sect. 3, pp. 187–191]).
Placing 	 D 3=2 in (3.14), and letting L.x; t/ and R.x; t/ denote the left and right
sides, respectively, we now wish to evaluate the second moments of both sides; i.e.R T
0
jL.x; t/j2 dt,

R T
0
jR.x; t/j2 dt. The reason to do this is that, as we will see, F.˛/

falls out of the second moment of the left side, and we end up with something
tractable for the second moment of the right side. Thus the equation of the two
moments gives us an identity for F.˛/.

By showing the contribution of those ordinates � above height T is O.log3 T/,
Montgomery obtained

Z T

0

jL.x; t/j2 dt D 4
X
0<�
T
0<� 0
T

xi.��� 0/

Z T

0

dt

.1C .t � y/2/.1C .t � � 0/2/
CO.log3 T/:

(3.15)

Note that the range of integration may be extended to all of R at a penalty no greater
in magnitude than O.log2 T/; we then have

Z T

0

jL.x; t/j2 dt D 4
X
0<�
T
0<� 0
T

xi.��� 0/

Z 1

�1
dt

.1C .t � y/2/.1C .t � � 0/2/
CO.log3 T/I

(3.16)

it then follows from the residue calculus that the definite integral evaluates to w.� �
� 0/�=2 and

Z T

0

jL.x; t/j2 dt D 2�
X
0<�
T
0<� 0
T

xi.��� 0/w.� � � 0/C O.log3 T/: (3.17)

Putting x D T˛ yields

Z T

0

jL.x; t/j2 dt D F.˛/T log T C O.log3 T/: (3.18)
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The non-negativity of the left side of (3.18) gives the statement in Theorem 1 of the
positivity of F.˛/. (The evenness of F.˛/ follows from the fact that � and � 0 may
be interchanged in the definition (3.9).) It then falls to evaluate

R T
0
jR.x; t/j2 dt. First,

Z T

0

ˇ̌
x�1Cit log �

ˇ̌2
dt D T

x2
.log2 T C O.log T// (3.19)

for all x � 1;T � 2. Montgomery then applied a quantitative version of Parseval’s
identity for Dirichlet series to find

Z T

0

ˇ̌
ˇ̌
ˇ
X

n

ann�it

ˇ̌
ˇ̌
ˇ
2

dt D
X

n

janj2 .T C O.n//: (3.20)

Applying (3.20) to the explicit formula (3.14), we find

1

x

Z T

0

ˇ̌
ˇ̌
ˇ
X
n
x

ƒ.n/
� x

n

��1=2Cit C
X
n>x

ƒ.n/
� x

n

�3=2Cit
ˇ̌
ˇ̌
ˇ
2

dt

D 1

x

X
n
x

ƒ.n/2
� x

n

��1
.T C O.n/C 1

x

X
n>x

ƒ.n/2
� x

n

�3
.T C O.n//

D T.log xC O.1//C O.x log x/; (3.21)

where the last line follows from the prime number theorem with error term. It then
follows from simple estimation of the error terms and a more delicate application of
Cauchy-Schwarz that

Z T

0

jR.T˛; t/j2 dt D ..1C o.1//T�2˛ log T C ˛ C o.1//T log T; (3.22)

uniformly for 0 � ˛ � 1 � �. Combining (3.18) and (3.22) yields Montgomery’s
theorem. ut

We end this section by describing the heuristic evidence that led Montgomery
to conjecture (3.13) on the behavior of F.˛/ for ˛ > 1. The argument above for
proving Montgomery’s conjecture for 0 � ˛ < 1 fails for ˛ > 1, since error terms
such as in (3.21) and those arising from Cauchy-Schwarz and the last line of (3.14)
are no longer dominated by the main term.

Examining the sum over primes from the explicit formula (3.14) with 	 D 3=2,

X
n
x

ƒ.n/
� x

n

��1=2Cit C
X
n>x

ƒ.n/
� x

n

�3=2Cit
; (3.23)
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the expected value is seen by the prime number theorem to be

2x1�it

�
1
2
C it

� �
3
2
� it

� : (3.24)

From the proof of Montgomery’s theorem we have, with F.x;T/ as in (3.8), that

F.x;T/ D 1

2�x

Z T

0

ˇ̌
ˇ̌
ˇ
X
n
x

ƒ.n/
� x

n

��1=2Cit C
X
n>x

ƒ.n/
� x

n

�3=2Cit

� 2x1�it

�
1
2
C it

� �
3
2
� it

�
ˇ̌
ˇ̌
ˇ
2

dtC o.T log T/I (3.25)

it follows that we would like to know the size of

Z T

0

ˇ̌
ˇ̌
ˇ
1

x

X
n
x

ƒ.n/n1=2�it C x
X
n>x

ƒ.n/n�3=2�it � 2x1=2�it

�
1
2
C it

� �
3
2
� it

�
ˇ̌
ˇ̌
ˇ
2

dt: (3.26)

Montgomery proceeded to multiply out and integrate term-by-term, finding that the
non-diagonal is non-neglectable. He collected terms in the form of sums of the sort

X
n
y

ƒ.n/ƒ.nC h/I (3.27)

invoking the Hardy-Littlewood k-tuple conjecture for 2-tuples with a strong error
term, (3.27) should be� y. This would give

F.x;T/ 
 T

2�
log T (3.28)

in x � T � x2�� , and there is little reason to expect the behavior to change for
bounded ˛ � 2. On this basis, Montgomery made his conjecture (3.13).

3.4 Spacings Between Adjacent Zeros

Motivated by Montgomery’s pair correlation conjecture on the zeros of the Riemann
zeta function, starting in the late 1970s Andrew Odlyzko began a large-scale
computation of zeros of �.s/ high in the critical strip. The average spacing between
zeros of �.s/ at height T in the critical strip is on the order of 1= log T; thus as we go
higher and higher we have more and more zeros in regions of fixed size, and there
is every reason to hope that, after an appropriate normalization, a limiting behavior
exists.
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The story of computing zeta zeros goes back to Riemann himself. As mentioned
in Sect. 1.2.2, in his one paper on the zeta function [123], Riemann states the
Riemann hypothesis (RH) in passing. He used a formula now known as the
Riemann-Siegel formula to compute a few zeros of �.s/ up to a height of probably no
greater than 100 in the critical strip; though he did not mention these computations
in the paper, the role of these computations was important in the development
of mathematics and mirror the role played by the calculation of energy levels in
nuclear physics in illuminating the internal structure of the nucleus. The formula
was actually lost for almost 70 years, and did not enter the mathematics literature
until Siegel was reading Riemann’s works [131]. Siegel’s role in understanding,
collecting, and interpreting Riemann’s notes should not be underestimated, since
the expertise and insight needed to infer the ideas behind the notes was great.

The development of the Riemann-Siegel formula proceeds along the purely
classical lines of complex analysis. Riemann had a formula for �.s/ valid for all
s 2 C; namely,

�.s/ D  .1 � s/

2� i

Z

C

.�x/s

ex � 1 �
dx

x
; (3.29)

where C is the contour that starts at C1, traverses the real axis towards the origin,
circles the origin once with the positive orientation about 0, and then retraces its
path along the real axis toC1.

By splitting off some finite sums from the contour integral above, Riemann
arrived at the formula

�.s/ D
NX

nD1

1

ns
C �1=2�s 

�
s
2

�


�
1
2
.1 � s/

�
MX

nD1

1

n1�s

�  .1 � s/

2� i

Z

CM

.�x/se�Nx

ex � 1 � dx

x
; (3.30)

where here s 2 C, N;M 2 N are arbitrary, and CM is the contour that traces from
C1 to .2M C 1/� , circles the line jsj D .2M C 1/� once with positive orien-
tation, and then returns to C1, thereby enclosing the poles ˙2� iM;˙2� i.M �
1/; : : : ;˙2� i, and the singularity at 0. This formula for �.s/ can be regarded as
an approximate functional equation, where the remainder is expressed explicitly in
terms of the contour integral over CM . The main task in developing the Riemann-
Siegel formula then falls to estimating the contour integral over CM using the
saddle-point method.

Prior to Siegel’s work, in 1903 Gram showed that the first 10 zeros of �.s/ lie on
the critical line, and showed that these 10 were the only zeros up to height 50. The
development of the above, along with a cogent narrative of Riemann, Siegel, and
Gram’s contributions, may be found in Edwards [39].

In almost every decade in the last century, mathematicians have set new records
for computations of critical zeros of �.s/. Alan Turing brought the computer to
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bear on the problem of computing zeta zeros for the first time in 1950, when,
as recounted by Hejhal and Odlyzko [77], Turing used the Manchester Mark 1
Electronic Computer, which had 25,600 bits of memory and punched its output on
teleprint tape in base 32, to verify every zero up to height 1540 in the critical strip
(he found there are 1104 such zeros). Turing also introduced a simplified algorithm
to compute zeta zeros now known as Turing’s method. Turing published on his
computer computations and his new algorithm for the first time in 1953 [139].

Following Turing, the computation of zeros of �.s/ took off thanks to the
increasing power of the computer. At this time, the first 1013 nontrivial zeros of
�.s/, tens of billions of nontrivial zeros around the 1023 and 1024, and hundreds
of nontrivial zeros near zero number 1032 are known to lie on the critical line.
Additionally, new algorithms by Schönhage and Odlyzko, and by Schönhage,
Heath-Brown, and Hiary have sped up the verification of zeta zeros.

However, the aforementioned projects for numerically checking that zeros of �.s/
lay on the critical line were not concerned with accurately recording the height
along the critical line of the zeros computed; only with ensuring the zeros had real
part exactly 1=2. This changed in the late 1970s with a series of computations by
Andrew Odlyzko, who was motivated not only by the Riemann Hypothesis but also
by Montgomery’s pair correlation conjecture.

Rather than verify consecutive zeros starting from the critical point, Odlyzko was
interested in starting his search high up in the critical strip, in the hope that near zero
number 1012, the behavior of �.s/ would be closer to its asymptotic behavior. For,
as Montgomery’s pair correlation conjecture is a statement about the limit as one’s
height in the critical strip passes to infinity, one would wish to know the ordinates
of many consecutive zeta zeros in the regime where �.s/ is behaving asymptotically
if one wished to test the plausibility of the conjecture.

As he explains [110], his first computations [109] were in a window around zero
number 1012, and were done on a Cray supercomputer using the Riemann-Siegel
formula. These computations motivated Odlyzko and Arnold Schönhage to develop
a faster algorithm for computing zeros [111, 114], which was implemented in the
late 1980s and was subsequently used to compute several hundred million zeros near
zero number 1020 and some near number 2 � 1020, as seen in [112, 113].

3.5 Number Theory and Random Matrix Theory Successes

After its introduction as a conjecture in the late 1950s to describe the energy levels
of heavy nuclei, random matrix theory experienced successes on both the numerical
and the experimental fronts. The theory was beautifully developed to handle a large
number of statistics, and many of these predictions were supported as more and
more data on heavy nuclei became available. While there was significant theoretical
progress (see, among others, [37, 38, 57, 98, 100, 143–148]), there were some gaps
that were not resolved until recently. For example, while the density of normalized
eigenvalues in matrix ensembles (Wigner’s semi-circle law) was known for all
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ensembles where the entries were chosen independently from nice distributions, the
spacings between adjacent normalized eigenvalues resisted proof until this century
(see, among others, [41, 42, 137, 138]).

The fact that random matrix theory also had a role to play in number theory
only emerged roughly twenty years after Wigner’s pioneering investigations. The
cause of the connection was a chance encounter between Hugh Montgomery and
Freeman Dyson at the Institute for Advanced Study at Princeton. As there are now
many excellent summaries and readable surveys of their meeting, early years and
statistics (see in particular [73] for a Hollywoodized version), and the story is now
well known, we content ourselves with a quick summary. For more, see among
others [20, 21, 31, 32, 82, 84–86, 106].

As described in Sect. 3.1, Montgomery was interested in the class number, which
led him to study the pair correlation of zeros of the Riemann zeta function. Given an
increasing sequence f˛ng1nD1 and a box B � R

n, the n-level correlation is defined by

lim
N!1

#
˚�
˛j1 � ˛j2 ; : : : ; ˛jn�1 � ˛jn

� 2 B; ji ¤ jk
�

N
I (3.31)

the pair correlation is the case n D 2, and through combinatorics knowing all the
correlations yields the spacing between adjacent events. Montgomery was partially
able to determine the behavior for the pair correlation. When he told Dyson his
result, Dyson recognized it as the pair correlation function of eigenvalues of random
Hermitian matrices in a Gaussian Unitary Ensemble, GUE.

This observation was the beginning of a long and fruitful relationship between
the two areas. At first it appeared that the GUE was the only family of matrices
needed for number theory, as there was remarkable universality seen in statistics.
This ranged from work by Hejhal [76] on the 3-level correlation of the zeros of �.s/
and Rudnick and Sarnak [127] on the n-level correlation of general automorphic
L-functions, to Odlyzko’s [109, 110] striking experiments on spacings between
adjacent normalized zeros. In all cases the behavior agreed with that of the GUE.

In particular, Odlyzko’s computations of high zeta zeros showed that, high
enough along the critical line, the empirical distribution of nearest-neighbor spac-
ings for zeros of �.s/ becomes more or less indistinguishable from that of
eigenvalues of random matrices from the Gaussian Unitary Ensemble, or GUE.
The agreement with the first million zeros is poor, but the agreement near zero
number 1012 is close, near perfect near zero number 1016, and even better near zero
number 1020. These results provide massive evidence for Montgomery’s conjecture,
and vindicate Odlyzko’s choice of starting his search high along the critical line;
see Fig. 5.

In all of these investigations, however, the statistics studied are insensitive to the
behavior of finitely many zeros. This is a problem, as certain zeros of L-functions
play an important role. The most important of these are those of elliptic curve
L-functions. Numerical computations on the number of points on elliptic curves
modulo p led to the Birch and Swinnerton-Dyer conjecture. Briefly, this states that
the order of vanishing of the L-function at the central point equals the geometric
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Fig. 5 Probability density of the normalized spacings ın. Solid line: GUE prediction. Scatterplot:
empirical data based on Odlyzko’s computation of a billion zeros near zero #1:3 � 1016. (From
Odlyzko [110, Fig. 1, p. 4])

rank of the Mordell-Weil group of rational solutions. The theorems on n-level
correlations and spacings between adjacent zeros are all limiting statements; we
may remove finitely many zeros without changing these limits. Thus these quantities
cannot detect what is happening at the central point.

Unfortunately for those who were hoping to distinguish between different
symmetry groups, Katz and Sarnak [84, 85] showed in the nineties that the n-level
correlations of the scaling limits of the classical compact groups are all the same
and equal that of the GUE. Thus when we were saying number theory agreed with
GUE we could instead have said it agreed with unitary, symplectic or orthogonal
matrices.

This led them to develop a new statistic that would be sensitive to finitely
many zeros in general, and the important ones near the central point in particular.
The resulting quantity is the n-level density. We assume the Generalized Riemann
Hypothesis (GRH) for ease of exposition, so given an L.s; f / all the zeros are of the
form 1=2C i�jIf with �jIf real. The statistics are still well-defined if GRH fails, but
we lose the interpretation of ordered zeros and connections with nuclear physics.
For more detail on these statistics see the seminal work by Iwaniec et al. [83], who
introduced them (or [2] for an expanded discussion).

Let �j even Schwartz functions such that the Fourier transforms

b�j.y/ WD
Z 1

�1
�j.x/e

�2� ixydx (3.32)
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are compactly supported, and set �.x/ DQn
jD1 �j.xj/. The n-level density for f with

test function � is

Dn.f ; �/ D
X

j1;:::;jn
j`¤jm

�1
�
Lf �j1If

� � � ��n
�
Lf �jnIf

�
; (3.33)

where Lf is a scaling parameter which is frequently related to the conductor. Given
a family F D [NFN of L-functions with conductors tending to infinity, the n-level
density Dn.F ; �;w/ with test function � and non-negative weight function w is
defined by

Dn.F ; �;w/ WD lim
N!1

P
f 2FN

w.f /Dn.f ; �/P
f 2FN

w.f /
: (3.34)

Katz and Sarnak [84, 85] conjecture that as the conductors tend to infinity, the n-
level density of zeros near the central point in families of L-functions agree with the
scaling limits of eigenvalues near 1 of classical compact groups. Determining which
classical compact group governs the symmetry is one of the hardest problems in the
subject, though in many cases through analogies with a function field analogue one
has a natural candidate for the answer, arising from the monodromy group. Unlike
the n-level correlations, the different classical compact groups all have different
scaling limits. As the test functions are Schwartz and of rapid decay, this statistics
is sensitive to the zeros at the central point. While it was possible to look at just one
L-function when studying correlations, that is not the case for the n-level density.
The reason is that while one L-function has infinitely many zeros, it only has a
finite number within a small, bounded window of the central point (the size of the
window is a function of the analytic conductor). We always need do perform some
averaging; for the n-level correlations each L-function gives us enough zeros high
up on the critical line for such averaging, while for the n-level density we must move
horizontally and look at a family of L-functions. While the exact definition of family
is still a work in progress, roughly it is a collection of L-functions coming from a
common process. Examples include Dirichlet characters, elliptic curves, cuspidal
newforms, symmetric powers of GL.2/ L-functions, Maass forms on GL.3/, and
certain families of GL.4/ and GL.6/ L-functions; see for example [2, 3, 35, 36, 40,
46, 53, 55, 67, 79, 80, 83, 85, 94, 101, 105, 116, 117, 122, 125, 126, 151, 152]. This
correspondence between zeros and eigenvalues allows us, at least conjecturally, to
assign a definite symmetry type to each family of L-functions (see [36, 130] for
more on identifying the symmetry type of a family).

There are many other quantities that can be studied in families. Instead of looking
at zeros, one could look at values of L-functions at the central point, or moments
along the critical line. There is an extensive literature here of conjectures and results,
again with phenomenal agreement between the two areas. See for example [22].
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4 Future Trends and Questions in Number Theory

The results above are just a small window of the great work that has been done
with number theory and random matrix theory. Our goal above is not to write a
treatise, but to quickly review the history and some of the main results, setting the
stage for some of the problems we think will drive progress in the coming decades.
As even that covers too large an area, we have chosen to focus on a few problems
with a strong numeric component, where computational number theory is providing
the same support and drive to the subject as experimental physics did years before.
There are of course many other competing models for L-functions. One is the Ratios
Conjectures of Conrey et al. [23, 24, 26]. Another excellent candidate is Gonek,
Hughes and Keating’s hybrid model [65], which combines random matrix theory
with arithmetic by modeling the L-function as a partial Hadamard product over the
zeros, which is modeled by random matrix theory, and a partial Euler product, which
contains the arithmetic.

In all of the quantities studied, we have agreement (either theoretical or exper-
imental) of the main terms with the main terms of random matrix theory in an
appropriate limit. A natural question to ask is how this agreement is reached; in other
words, what is the rate of convergence, and what affects this rate? In the interest of
space we assume in parts of this section that the reader is familiar with the results
and background material from [83, 127], though we describe the results in general
enough form to be accessible to a wide audience.

4.1 Nearest Neighbor Spacings

We first look at spacing between adjacent zeros, where Odlyzko’s work has shown
phenomenal agreement for zeros of �.s/ and eigenvalues of the GUE ensemble.
We plot the difference between the empirical and ‘theoretical,’ or ‘expected’ GUE
spacings in Fig. 6. In his paper [110], Odlyzko writes: Clearly there is structure in
this difference graph, and the challenge is to understand where it comes from.

Recently, compelling work of Bogomolny et al. [12] provides a conjectural
answer for the source of the additional structure in the form of lower-order terms
in the pair correlation function for �.s/. Though the main term is all that appears in
the limit (where Montgomery’s conjecture applies), the lower-order terms contribute
to any computation outside the limit, and would therefore influence any numerical
computations like those of Odlyzko. By comparing a conjectural formula for the
two-point correlation function of critical zeros of �.s/ of roughly height T due
to Bogomolny and Keating in [13] with the known formula for the two-point
correlation function for eigenvalues of unitary matrices of size N, Bogomolny et.
al. deduce a recipe for picking a matrix size that will best model the lower-order
terms in the two-point correlation function, and conjecture that it will be the best
choice for all correlation functions, and therefore the nearest-neighbor spacing.
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Fig. 6 Probability density of the normalized spacings ın. Difference between empirical distribu-
tion for a billion zeros near zero #1:3 � 1016, as computed by Odlyzko, and the GUE prediction.
(From Odlyzko [110, Fig. 2, p. 5])

More recently yet, Dueñez et al. [33, 34] have applied techniques of Bogomolny
et. al. and others to studying lower-order terms in the behavior of the lowest zeros
of L-functions attached to elliptic curves. Their results are currently being extended
to other L-functions by the first and third named authors here and their colleagues.

4.2 n-Level Correlations and Densities

The results of the studies on spacings between zero suggest that, while the arithmetic
of the L-function is not seen in the main term, it does arise in the lower order terms,
which determine the rate of convergence to the random matrix theory predictions.
Another great situation where this can be seen is through the n-level correlations and
the work of Rudnick and Sarnak [127]. They proved that the n-level correlations
of all cuspidal automorphic L-functions L.s; �/ have the same limit (at least in
suitably restricted regions). Briefly, the source of the universality in the main term
comes from the Satake parameters in the Euler product of the L-function, whose
moments are the coefficients in the series expansion. In their Remark 3 they write
(all references in the quote are to their paper):

The universality (in �) of the distribution of zeros of L.s; �/ is somewhat surprising, the
reason being that the distribution of the coefficients a�.p/ in (1.6), as p runs over primes, is
not universal. For example, for degree-two primitive L-functions, there are two conjectured
possible limiting distributions for the a�.p/’s: Sato-Tate or uniform distribution (with a
Dirac mass term). As the degree increases, the number of possible limit distributions
increases rapidly. However, it is a consequence of the theory of the Rankin-Selberg
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L-functions (developed by Jacquet, Piatetski-Shapiro, and Shalika for m > 3) that all these
limiting distributions have the same second moment (at least under hypothesis (1.7)). It is
the universality of the second moment that is eventually responsible for the universality in
Theorems 1.1 and 1.2. For the case of pair correlation (n D 2), this is reasonably evident;
for n > 2 it was (at least for us) unexpected, and it has its roots in a key feature of “diagonal
pairings” that emerges as the main term in the asymptotics of Rn.T; f ; h/.

Similar results are seen in the n-level densities. There we average the Satake
parameters over a family of L-function, and in the limit as the conductors tend to
infinity only the first and second moments contribute to the main term (at least under
the assumption of the Ramanujan conjectures for the sizes of these parameters).
The first moment controls the rank at the central point, and the second moment
determines the symmetry type (see [36, 130]). For example, families of elliptic
curves with very different arithmetic (complex multiplication or not, or different
torsion structures) have the same limiting behavior but have different rates of
convergence to that limiting behavior. This can be seen in terms of size one over
the logarithm of the conductor; while these terms vanish as the conductors tend
to infinity, they are present for finite values. See [102, 104] for several examples
(as well as [96], where interesting biases are observed in lower order terms of the
second moments in the families).

4.3 Conclusion

The number theory results above may be interpreted in a framework similar to that
of the Central Limit Theorem. There, if we have ‘nice’ independent identically
distributed random variables, their normalized sum (standardized to have mean zero
and variance 1) converges to the standard normal distribution. The remarkable fact is
the universality, and that the limiting distribution is independent of the shape of the
distribution. We quickly review why this is the case and then interpret our number
theory results in a similar vein.

Given a distribution with finite mean and variance, we can always perform a
linear change of variables to study a related quantity where now the mean is zero
and the variance one. Thus, the first moment where the shape of the distribution is
noticeable is the third moment (or the fourth if the distribution is symmetric about
the mean). In the proof of the Central Limit Theorem through moment generating
functions or characteristic functions, the third and higher moments do not survive in
the limit. Thus their effect is only on the rate of convergence to the limiting behavior
(see the Berry-Esseen theorem), and not on the convergence itself.

The situation is similar in number theory. The higher moments of the Satake
parameters (which control the coefficients of the L-functions) again surface only in
terms which vanish in the limit, and their effect therefore is seen only in the rate of
convergence.
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This suggests several natural questions. We conclude with two below, which we
feel will play a key role in studies in the years to come. These two questions provide
a nice mix, with the first related to the main term and the second related to the rate
of convergence.

• Is Montgomery’s pair correlation true for all boxes (or test functions)?
What about the n-level correlations, both for �.s/ and cuspidal automorphic
L-functions? Note agreement with random matrix theory for all these statistics
implies the conjectures on spacings between adjacent zeros.

• For a given L-function (if we are studying n-level correlations) or a family of
L-functions (if we are studying n-level densities), how does the arithmetic enter?
Specifically, what are the possible lower order terms? How are these affected by
properties of the L-functions? If we use Rankin-Selberg convolution to create
new L-functions, how is the arithmetic of the lower order terms here a function
of the arithmetic of the constituent pieces?

There are numerous resources and references for those wishing to pursue these
questions further. For the n-level correlations, the starting point are the papers
[76, 107, 127], while for the n-level densities it is [83–85].
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The Generalized Fermat Equation

Michael Bennett, Preda Mihăilescu, and Samir Siksek

Abstract We survey approaches to solving the generalized Fermat equation

xp C yq D zr

in relatively prime integers x; y and z, and integers p; q and r � 2.

1 Le Roy est mort: Vive le Roy

Pythagoras’ formula was purportedly kept secret within the closed circle of his
initiates—but, as with any fact of nature, it became eventually widely known:
the squares of the cathetes sum to the square of the hypotenuse. In the spirit
of arithmetic, spread eight centuries later by Diophantus of Alexandria, one may
instead phrase this statement in terms of integral solutions of the equation

x2 C y2 D z2; withx; y; z 2 N and gcd.x; y; z/ D 1; (1)

or, equivalently, ask for the coordinates of all rational points on the unit circle. All
these are variants of the problem appearing in the second book of Diophantus, in
the chapter numbered VIII—often quoted accordingly as Diophantus II.VIII. We
nowadays call the solutions to Eq. (1) Pythagorean triples. Already in Diophantus
one finds parametrizations for these solutions, given by
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x D 2uvI y D u2 � v2I z D u2 C v2; (2)

where u and v are positive integers. This fact is easy to verify in one direction; the
proof that all triples are parametrized in this form is one of the most popular of
ancient mathematics and is widely taught to this day.

The work of Diophantus on Arithmetic, a collection of 12 volumes written in
Greek, was lost for centuries. Only in the late sixteenth century were half of these
books, namely I–III and VIII–X, rediscovered in the form of a later Byzantine
transcription. These were translated into latin by Bombelli, and then subsequently
published in Basel by Xylander. It was through the annotated translation of Gaspard
Bachet from 1621 that the Arithmetica finally received a wide diffusion, capturing
the interest of mathematicians of the epoch. Among them, Fermat, a lawyer from
Toulouse, was particularly impressed by the beauty of Diophantus’ solution to (1).
It is on the margin of the text to Diophantus’ Problem II.VIII that Fermat wrote in
1634 his historical note concerning a short proof of the fact that the equation

xn C yn D zn; with x; y; z 2 N and gcd.x; y; z/ D 1; (3)

has no solution for n > 2, a proof which the margin of Bachet’s book was
insufficiently large to contain.

The assertion, henceforth bearing the name Fermat’s Last Theorem—hereafter
denoted FLT for concision—remained an open problem for more than three
centuries. Attempts to prove FLT led to some of the most significant developments
in mathematics of the past three hundred years; it is fair to say that it is one of the
problems that has generated the most mathematics in history. The first systematic
approach, initiated by Kummer in the mid nineteenth century, was based on the
theory of algebraic number fields and in particular cyclotomic fields. The conjecture
was finally proved in 1994 by Wiles, with the help of Taylor, building on a series
of ideas and results, due to Hellegouarch, Frey, Serre and Ribet, that connect the
Fermat equation to elliptic curves, modular forms and Galois representations.

Even before Wiles announced his proof, various generalizations of Fermat’s Last
Theorem had already been considered, to equations of the shape

Axp C Byq D Czr;

for fixed integers A;B and C. In the case where A D B D C D 1, for reasons we
discuss later, we focus our attention on the equation

xp C yq D zr; with x; y; z 2 N; gcd.x; y; z/ D 1 and
1

p
C 1

q
C 1

r
< 1: (4)

Perhaps the only solutions to this equation are those currently known; i.e. those with
.x; y; z; p; q; r/ coming from the solution to Catalan’s equation 1p C 23 D 32, and
from the following nine identities:
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25 C 72 D 34; 73 C 132 D 29; 27 C 173 D 712; 35 C 114 D 1222;

177 C 762713 D 210639282; 14143 C 22134592 D 657; 92623 C 153122832 D 1137;

438 C 962223 D 300429072 and 338 C 15490342 D 156133:

In the mid 1990s, Andrew Beal, a graduate in mathematics with computational
interests, in the course of carrying out calculations related to Fermat’s equation
and its variations, noted that the solutions listed here all have the property that
minfp; q; rg D 2 and made what is now termed the Beal conjecture, that there are
no non-trivial solutions to (4), once we assume that minfp; q; rg � 3. A prize for
the solution to this problem now amounts to one million U.S. dollars. Other names
attached to conjectures about Eq. (4) include the Fermat–Catalan conjecture and the
Tijdeman–Zagier conjecture.

As we shall see, the few particular cases of these conjectures that have been
investigated may well support the hope that this new generalization of Pythagoras’
initial equation will also stimulate fascinating new mathematics.

Our main focus for the rest of the paper will be to describe two approaches to
proving results about Eq. (4). The first of these is essentially a generalization of the
cyclotomic methods that proved successful for Catalan’s equation. The second is the
adaptation of Wiles’ proof of Fermat’s Last Theorem to handle many special cases
of Eq. (4).

2 Cyclotomic Approaches and Their Limitations

Let us start by noticing that in both Eqs. (3) and (4) one may assume all exponents
to be prime: indeed, if there is a solution with non-prime exponents, by raising
the variables to some power, one obtains a solution with prime exponents. It thus
suffices to consider this case and show that it leads to no non-trivial solutions. By an
elementary observation, sometimes attributed to Euler, we have that

G WD gcd

	
x˙ y;

xp ˙ yp

x˙ y




is a divisor of p, provided that the integers x; y are coprime.1 In this section, we will
focus our attention on the special case of (4), given by the Fermat-Catalan equation

xp C yp D zq; with x; y; z 2 N and gcd.x; y; z/ D 1; (5)

where one may hope to apply cyclotomic theory in a way somewhat analogous to
that of the Fermat equation. Equation (5) also serves as a generalization of the binary
Catalan equation

xp � yq D 1 (6)

1One verifies this by letting t D x ˙ y and x D t � y, as well as using the fact that .t; y/ D 1.
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which also resisted solution for more than a century (and was finally solved by the
second author, eight years after Wiles’ remarkable proof of Fermat’s Last Theorem).
Here binary refers to the presence of only two unknowns in this equation, a fact
which facilitates an analytic approach to bounding the possible solutions.

Assuming that either (3) or (5) has a non-trivial solution for the prime p—or
the prime pair .p; q/—one distinguishes the cases when G D 1 and G D p. The
case where p − xyz has traditionally been termed the First Case of FLT, or FLT1; we
retain this designation for the Fermat–Catalan equation. If G D p and thus p j xyz,
one may assume, in Eq. (3) at least, that p j z. It is further easy to show that, in this
case,

p2 − xp ˙ yp

x˙ y
:

Since the Fermat equation is homogeneous, the assumption that x; y and z are
pairwise coprime is straightforward—otherwise one could divide by the common
divisor in a solution and obtain one in coprime integers. In the case of (5), however,
with a little work, one can always construct infinitely many “trivial” solutions for
which x; y and z fail to be coprime.

2.1 History of “Fermat’s Last Theorem”

As is well known, Fermat left no published proof of his conjecture. He did, however,
provide a beautiful argument in the biquadratic or quartic case. To be precise, he
considered the more general equation

x4 C y4 D z2 (7)

and, using some astute manipulation of Pythagorean triples, proved that if .x; y; z/ is
a non-trivial solution of (7) in, say, positive integers, then one can construct a further
positive solution .x0; y0; z0/ of the same equation, in which z0 < z. By repeating the
procedure one eventually finds a solution with z0 D 1, which implies that x0 �y0 D 0, a
contradiction. This was the first instance of the method of infinite descent in number
theory. Euler gave a proof of the cubic case using such an argument; Gauss gave later
an alternative proof using congruences. Although elementary, both methods require
quite intricate computations and are not easy to memorize. We provide here a short
elementary proof, which uses some more recent ideas, that date back to Wieferich
and Furtwängler2:

2The second author found this proof, confronted with the own incapacity to recall the details of the
classical proofs, for a seminar. It is possible that the proof may have been known, but we found no
reference to it in the literature
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Lemma 1. The equation x3 C y3 C z3 D 0 has no non-trivial integer solutions.

Proof. Assume that .x; y; z/ is a non-trivial solution in coprime integers. Let

� D �1C
p�3
2

be a third root of unity and E D ZŒ�� be the ring of Eisenstein integers, which is a
Euclidean ring. We assume first that 3 − xyz, so that both xC y; and x2� xyC y2 are
cubes, say xC y D s3, and

.xC �y/ D .aC b�/3

is the cube of a principal ideal. Exactly one of x; y; z must be even—we shall thus
assume that y D 2v is even. Since the units of E are the sixth roots of unity, there is
some ı 2< �� > such that

ı.xC y�/ D .aC b�/3 D a3 C b3 C 3ab�.aC b�/

D a3 C b3 � 3ab2 C 3ab.a � b/�:

If ı D ˙1, then comparing coefficients implies that y � 0 mod 3, contradicting our
assumption. We thus have that

xC y� D ˙�c.aC b�/3; with c D ˙1 :

We have chosen y � 0 mod 2, whereby x��c � w3 mod 2E for some w D ˙.aC
b�/ 2 E . But x � xC y D s3 mod 2, whence we may conclude that

��c � .w=s/3 mod 2 :

The ideal p WD .2/ � E is prime; let � W E ! F22 be the natural projection. Since
c 6� 0 mod 3, it follows that �.w=s/ 2 F22 is a primitive ninth root of unity, an
impossibility. It remains, then, to consider the case where 3 j xyz; we may suppose,
without loss of generality, that 3 j z. Appealing to (9), we find that there is a root of

unity ı such that .˛/ D ı
�

xCy�
1��

�
D .aC b�/3 and xC y D 9s3. Since 1��

1�� D ��,

we obtain after dividing the previous identity by its complex conjugate, that there is
another root of unity, say ı0, such that

xC y�

xC y�
D 2x � yC y

p�3
2x � y � y

p�3 D ı
0 �
	

aC b�

aC b�


3
� ı0 mod 3

p�3 � E : (8)
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If 2x 6� y mod 3, letting y0 � y=.2x � y/ mod 3, the last identities imply that

1C y0p�3
1 � y0p�3 � ı

0 mod 3
p�3 � E ;

whence

y0 � y � 0 mod 3 ;

contradicting the assumption that 3 j z and gcd.x; y; z/ D 1. Finally, suppose that
2x � y D �3d. Inserting this value into (8) yields

d
p�3C y

d
p�3 � y

� ı0 mod 3
p�3 � E ;

whereby ı0 D �1 and d � 0 mod 3. Then 2x � y � x C y � 0 mod 9. Summing
these two congruences, we find 3x � 0 mod 9, and thus 3 j x, a contradiction which
completes the proof.

ut
After Euler and Gauss, the quintic and septic cases of FLT were solved with
contributions from Dirichlet, Lamé, Legendre and Cauchy. In his proof of the quintic
case, Dirichlet distinguished the cases p − xyz and p j xyz, using descent for the
proof of the second case. Lamé announced in 1841 a full proof of the general case
of FLT. Unfortunately, his proof relied implicitly upon the (incorrect) assumption
that the integers of the form

˛ D
p�2X
kD0

ak�
k ;

with ak 2 Z and � a pth root of unity, form a ring with unique factorization. Kummer
demonstrated that this assumption is, in general, false and that the smallest prime for
which it fails is p D 23. In order to circumvent this difficulty, Kummer proceeded
with an investigation of divisibility in the rings of algebraic integers of the pth
cyclotomic field, and introduced the notion of ideal numbers, a larger group in which
unique factorization was recovered. This work, stemming from a desire to attack the
Fermat problem, led, in the following decades, to the theory of ideals and the work
of Dedekind, giving rise to the fundamental results underlying what we presently
know as algebraic number theory.

If p is an arbitrary odd prime, we let K D QŒ�� denote the pth cyclotomic
extension. The algebraic integers of this field are O.K/ D ZŒ�� and the ideals of
this ring factorize uniquely as products of prime ideals. If I is the semigroup of
ideals and P the one of principal ideals, i.e. ideals generated by single elements,
the quotient C .K/ D I=P is a finite abelian multiplicative group, the class group.
The prime p is called regular, if p does not divide the size h.K/ D jC .K/j of the
class group, and irregular otherwise. With respect to the Fermat equation, we have
in ZŒ�� one of the following factorizations:
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xp D .xC y/ �
	

xp C yp

xC y



D .xC y/ �

p�1Y
cD1
.xC y�c/; or

zp D p.xC y/ �
	

xp C yp

p.xC y/



D p.xC y/ �

p�1Y
cD1

	
xC y�c

1 � �


;

in case of FLT1 or FLT2, respectively. In either situation, writing ˛ D xC�y
.1��/e , with

e D 0 in the first case and e D 1 in the second, one finds that ˛ is coprime to p.xCy/
and is, in fact, a pth power, albeit not one of an algebraic integer of K, but rather of
the ideal A D .˛; z/. We thus have

.˛/ D Ap and NK=Q.˛/ D zp

pe.xC y/
: (9)

We note at this point that, in the case of the Fermat-Catalan equation, the same
construction leads again to .˛/ D Aq. Using the connection between class groups
and factorization of ideals, Kummer proved his fundamental result on Fermat’s
Conjecture:

Theorem 1 (Kummer). Equation (3) has no solutions for regular primes p > 2.

For regular primes, it follows from (9) that there exists a � 2 ZŒ�� such that
.˛/ D .�/p is the pth power of a principal ideal. Starting from this, the proof of
FLT1 is relatively simple. For the second case, however, Kummer appealed to a
sophisticated variant of infinite descent in the real field K

C � K—the method bears
currently his name, Kummer descent. A modern, complete proof of this result can
be found in the book of Washington [36], Chapter IX. One finds in Rassias’ lovely
introductory work for undergraduates [26], on page 147, more biographical details
of Kummer’s life.

Kummer’s work was followed by a century of active research on the Fermat
equation, which led to the establishment of a large number of conditions known to
imply the truth of the Fermat Conjecture—see e.g. Ribenboim’s famous survey [27].
However, before Wiles’s breakthrough, there were only two known results known
to hold for infinitely many exponents, namely the “elementary” proof [34] given by
Terjanian in 1977 for the fact that (3) has no solution for even exponents n > 2 with
n − xy, as well as the deep analytic proof of Adelman, Fouvry and Heath-Brown,
which showed that FLT1 holds for infinitely many primes.3

3One would expect, for various reasons, that regular primes occur more frequently than irregular
ones. If we knew this, since it has been proved that there are infinitely many irregular primes,
Kummer’s result would already imply that there are infinitely many primes p for which FLT holds.
However no proof of the fact that the set of regular primes is infinite is known, even now.
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There are, however, a number of results of interest on FLT that were established
via cyclotomic methods before Wiles’ proof. We review here a few of the most
important of them:

(i) Wieferich and then Mirimanoff and Furtwängler proved that if FLT1 has a non-
trivial solution, then

ap�1 � 1 mod p2; fora 2 f2; 3g: (10)

Variations on this theme were treated during the following decades by, among
others, Morichima, Lehmer, Skula, Granville and Monagan, the last two of
these eventually proving that if FLT1 had non-trivial solutions, then (10) holds
for all primes a � 89. With this Granville and Monagan were able to prove
that FLT1 has no solutions for

p < 714; 591; 416; 091; 389:

(ii) Eichler proved that if FLT1 has non-trivial solutions, then the p-rank of the
p-part of the class group A WD C .QŒ��/p of the pth cyclotomic field is
necessarily large, namely p�rk.Ap/ � pp � 1. He thus improved upon an
earlier result of Krasner, who had proved that if FLT1 had solutions and p >
n0 D .45Š/88, then the Bernoulli numbers Bp�1�2i; i D 1; 2; : : : ; b.log p/1=3c
had numerators divisible by p; this implies in particular that p�rk.Ap/ �
b.log p/1=3c.

(iii) In the first half of the twentieth century, Harry Schulz Vandiver wrote
extensively on Fermat’s equation, partially fixing some gaps in earlier proofs
of Kummer (and leaving a number of gaps himself, which were fixed only at
the end of the century). We present below his main result as part of Theorem 2.

Bearing in mind the fact that the Fermat Conjecture has been proved, it is still
of interest to analyze other approaches which may provide alternative proofs of
this Theorem. There are currently two primes known, for which the Wieferich
condition (10) is satisfied with a D 2; none are known with a D 3. If one admits
the heuristic assumption that the vanishing of a Fermat quotient

'p.a/ � ap�1 � 1
p

mod p

has probability 1=p, one may expect on average O.log log.X// primes p < X for
which the quotient 'p.a/ D 0 for some fixed a < p. However, the same heuristic
argument suggests that one can find at most one prime for which two or more Fermat
quotients vanish simultaneously. One may formulate the following:

Conjecture 1. There exists a constant c � 2 such that for every prime p 2 N there
are less than c values a 2 f2; 3; : : : ; p � 2g with 'p.a/ D 0.

If c < 87, this conjecture implies FLT1.
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Concerning the criteria in group (ii), Washington provides in [36] heuristic
arguments suggesting that

p�rk.Ap/� O.log.p//

for all primes. The Theorem of Eichler would imply FLT1 even if a rather weaker
conjecture holds:

Conjecture 2. There is an integer a > 2 such that for all primes p, the p part of the
class group of the pth cyclotomic field has rank p�rk.Ap/ < p1=a.

We have mentioned above that there are infinitely many irregular primes. The
first of these were discovered by Kummer, the smallest one being p D 37. However,
if one instead considers the largest real subfield contained in K, which is K

C D
QŒ� C ��, the class number hC of this field is apparently much smaller and seems
to never be divisible by p. Kummer was the first to suggest, in a letter to Kronecker
from 1852 (see [23]), that this fact might hold for all p. The fact played an important
role in many of the papers of Vandiver, who was seemingly unaware of Kummer’s
letter. The assumption that p − hC

p D jC .K�/jp is therefore called the Kummer-
Vandiver Conjecture, or simply the Vandiver Conjecture. The conjecture has also
deep implications in K-theory; it has been verified numerically for all primes
p < 227. We should mention, however, that there are specialists who accept some
heuristic arguments which suggest that the Conjecture might have counterexamples
that are as scarce as the Wieferich primes. If this were true, there might be as many
as log log.X/ primes p < X for which the conjecture is false. Those who believe
the Vandiver Conjecture are guided by the fact that there are numerous striking and
rather improbable consequences to p j hC

p , and therefore the heuristic assumption
that the value of the residue hC

p mod p is uniformly distributed may be false.
In the context of Fermat’s Last Theorem, two additional conditions of a rather

specialized nature play a role; we formulate them also as assumptions: they have
been computationally verified to hold within the same range as the Kummer–
Vandiver Conjecture.

Assumption C. Assume that the exponent of Ap is p, whereby the p-part of the
class group of the pth cyclotomic field is annihilated by p:

Assumption D. Assume that all the units ı 2 ZŒ�pC �p�
� for which there exists an

algebraic integer � 2 ZŒ�p C �p� such that ı � �p mod p2ZŒ�p C �p� are global pth
powers.

With these definitions, the following theorem holds:

Theorem 2. Suppose that the Kummer–Vandiver Conjecture holds. If, additionally,
Assumption C holds, then FLT1 has no solutions. If, instead, Assumption D holds,
then FLT2 has no solutions.

The first of these claims dates back to Vandiver, who, however supposed only that
p − hC

p and had not noticed the necessity of Assumption C. The correct statement
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was discovered by Sitaraman [32] in 1995. The second part of the theorem, together
with its proof, are due to Kummer. We note that Theorem 2 provides the only known
cyclotomic criterium which implies that there are no solutions to FLT2.

2.2 The Catalan Equation

Due to results of Victor Lebesgue (1853) and Chao Ko (1962), which eliminated
the cases of even exponents, the Catalan Conjecture was reduced to proving that
xp � yq D 1 has no solution with odd prime exponents (which are easily seen to
be distinct). By considering cyclotomic factorizations, similar to the ones in (9),
one obtains four cases. Cassels proved in 1962 that if (6) has a solution with odd
exponents, then p j y and q j x, while

xp � 1
p.x � 1/ D v

q

for some rational integer v. One may define

˛ D x � �
1 � � and A D .˛; y/ ;

whence the analogue of Eq. (9) is .˛/ D Aq.
Catalan’s conjecture now follows from a combination of analytic methods with

algebraic properties of cyclotomic fields. We present a brief exposition of some
of the ideas that made this proof possible. Denoting by G the Galois group
Gal.QŒ�p�=Q/, one notices that the group ring FqŒG� acts on the class a of the ideal
A; in other words, linear combinations of the type � D P

	2G n	 � 	; in which the
integers n	 are identified with their remainders modulo q, will act on the class a
according to a� D Q

	2G 	.a/
n	 . Since aq D 1, we see that it suffices to consider

nq 2 Fq. We call an element � 2 FqŒG� an annihilator of a if a� D 1.
Suppose that we are able to find a non-trivial annihilator .1 C j/� 2 FqŒG�—

here we denote the restricted action of complex conjugation to K by j 2 G, so for
instance aj D a. Then ˛� D .�/q, for some � 2 K

C; the equality between principal
ideals translates into an identity between algebraic numbers, involving an unknown
unit ": ˛� D " � �q. Assume additionally, that there is a further � 0 2 FqŒG� such that
"�

0 2 .K�/q. Given this, one is able to prove, using additional arguments about the
structure of units in K, that there is a number � 2 ZŒ�C�� such that .x��/� �� 0 D �q:
note that we eliminated the denominator of ˛! That these favourable assumptions
situation can be shown to occur follows from an important theorem of Francisco
Thaine [35] (which also leads to a cyclotomic proof of the Main Conjecture of one
dimensional Iwasawa Theory).
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Continuing, one now finds a multiple  DP	2G r		 2 FqŒG� of � � � 0 such thatP
	2G r	 D hq for some h � p�1

2
, leading to the following equation

� D xh.1 � �=x/ =q:

The fact that � 2 R has the important advantage that the rapidly converging binomial
series expansion of the expression

.1 � �=x/ =q D
Y
	2G

.	.1 � �=x//r	 =q (11)

will in fact converge to �=xh (rather than to some number that differs from �=xh by a
qth root of unity, as would be true generally). With this, we obtain � D xhg.1=x/C
F.1=x/, with g 2 KŒX� being a polynomial of degree h and F.T/ 2 KŒŒT�� a power
series. Finally, appealing to some lower bounds on A which were obtained by Hyyrö,
one can eventually show that, under the given arithmetic conditions, F.1=x/ D 0.
We thus have � D xhg.1=x/, which leads to an arithmetic contradiction, completing
the proof of Catalan’s Conjecture.

2.3 The Fermat: Catalan Equation

As previously mentioned, in the case that .x; y; z/ is a non-trivial solution to the
Fermat-Catalan equation (5) with odd exponents p and q, if we let ˛ D xC�y

.1��/e and
A D .˛; z/—where e D 1 if p j z and e D 0 otherwise, then we have Aq D .˛/, a
situation which is reminiscent of both the Fermat and the Catalan equations, and a
starting point for cyclotomic investigations of (5).

In this direction, the second author has tried to adapt the proof of Kummer’s
Theorem to the case of Eq. (5). It would take too long to explain here the main points
in which this equation differs from (3), necessitating the introduction of additional
methods. Let us only mention that it is possible to restrict our attention to six cases,
depending on whether or not p or q divide any of the factors of x � y � z � .x ˙ y/.
After proving a generalization of Kummer’s descent to the p � qth cyclotomic field,
it was often possible to either discard cases, or reduce them to conditions about
the vanishing of some Fermat quotient—e.g. 2q�1 � 1 mod q2 or pq�1 mod q2.
This approach succeeds in five cases. Unfortunately, in the sixth case, all classical
Kummerian methods apparently fail. As a consequence, the second author was
unable to find conditions on p and q which imply that (5) has no solutions. By
symmetry, a set of such conditions could however be derived for the rational
Catalan equation, i.e. the Eq. (6) in which x; y 2 Q is allowed. Note that, after
clearing denominators, this equation is equivalent to

Xp C Ypq C Zq D 0 ;
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which may be viewed as a “symmetrized Fermat—Catalan” equation.
This first attempt to apply cyclotomic methods thus appears to confirm the

somewhat pessimistic expectation that they are not sufficient for solving Eq. (5) in
any generality.

3 Fermat’s Last Theorem

In the previous section, we discussed the cyclotomic approach to the Fermat
equation and its potential limitations. We now sketch the approach of Hellegouarch,
Frey, Serre and Ribet which culminated in Wiles’ proof of Fermat’s Last Theorem.

Theorem 3 (Wiles [37]). The only integer solutions to the Fermat equation

xn C yn D zn

with n � 3 satisfy xyz D 0.

Recall that we call a solution trivial if xyz D 0, otherwise it is called non-trivial.
Thus the theorem states that all solutions to the Fermat equation are trivial. As we
have seen, the theorem is true for exponents n D 3 and 4. Thus it is sufficient to
show, for primes p � 5, that all solutions to

xp C yp C zp D 0 (12)

are trivial. Of course, if .x; y; z/ is a solution, we may by scaling suppose that
gcd.x; y; z/ D 1; we call such a solution primitive. The purpose of this section is
to sketch the proof of Fermat’s Last Theorem and the ideas leading to it. The proof
is based on three main pillars:

(i) Mazur’s Theorem on irreducibility of Galois representations of elliptic curves;
(ii) The modularity theorem, due to Wiles, Breuil, Conrad, Diamond and Taylor;

(iii) Ribet’s level lowering theorem.

Explaining these pillars will involve a detour into some of the most fascinating areas
of modern number theory: elliptic curves, Galois representations, modular forms
and modularity.

3.1 Elliptic Curves

There are many possible definitions of an elliptic curve. Let K be a field. An elliptic
curve over K is a curve of genus 1 defined over K with a distinguished K-point.
An alternative definition is: an elliptic curve over K is a 1-dimensional abelian
variety over K. The simplest (though conceptually least enlightening) definition is:
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an elliptic curve E over K is a smooth curve in P
2 given by an equation of the form

E W y2zC a1xyzC a3yz2 D x3 C a2x
2zC a4xz2 C a6z

3;

with a1, a2, a3, a4 and a6 2 K. This in fact is a curve of genus 1, and the
distinguished K-point is .x W y W z/ D .0 W 1 W 0/. If the characteristic of K is
not 2 or 3, then we can transform to a much simpler model given in A

2 by

E W Y2 D X3 C aX C b; (13)

where a and b 2 K. We call this equation a Weierstrass model. Let

� D �16.4a3 C 27b2/

which we call the discriminant of E (this is �16 times the discriminant of the
polynomial on the right-hand side). The requirement that E is smooth is equivalent
to the assumption that � ¤ 0. The distinguished K-point is now the ‘point at
infinity’, which we denote by 1 or O . Given a field L � K, the set of L-points
on E is given by

E.L/ D f.x; y/ 2 L2 W y2 D x3 C axC bg [ fOg:

It turns out that the set E.L/ has the structure of an abelian group with O as the
identity element. The group structure is easy to describe geometrically: three points
P1, P2, P3 2 E.L/ add up to the identity element if and only if there is a line `
defined over L meeting E in P1, P2, P3 (with multiplicities counted appropriately).
The fact that E.L/ is an abelian group (where the group operation has a geometric
interpretation) ties in with the fact that E is an abelian variety.

Theorem 4 (The Mordell–Weil Theorem). Let K be a number field and E an
elliptic curve over K. Then E.K/ is a finitely generated abelian group.

When K is a number field we refer to the group E.K/ as the Mordell–Weil group of
E over K.

Example 1. As an example, consider the Fermat degree 3 equation over Q:

x3 C y3 D z3: (14)

Viewed as a curve in P
2, this is in fact a curve of genus 1. Let us choose the point

.1 W �1 W 0/ to be the distinguished point. We now transform this into a Weierstrass
model using the transformation

Y D 36.x � y/

xC y
; X D 12z

xC y
; (15)
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so that a solution to Eq. (14) corresponds to a rational point on the elliptic curve

E W Y2 D X3 � 432:

The solution .1 W �1 W 0/ to (14) corresponds to the point1 D O on E. The model
E is the elliptic curve denoted by 27A in Cremona’s tables [8]. The group E.Q/ has
rank zero and, in fact,

E.Q/ ' Z=3Z:

Indeed,

E.Q/ D fO; .36; 12/; .36;�12/g

where in the group law on E we have

2 � .36; 12/ D .36;�12/ and 3 � .36; 12/ D O :

Thus the degree 3 Fermat equation (14) has exactly three solutions, and we may
obtain these by taking the three points belonging to E.Q/ and transferring them back
to the model (14) using (15). Doing this, we find that the three solutions to (14) are
.1 W �1 W 0/, .1 W 0 W 1/ and .0 W 1 W 0/—that is, just the trivial solutions.

Example 2. One can similarly transform the equation

y2 D x4 C z4 (16)

into the elliptic curve

E W Y2 D X3 � 4X

which has Mordell–Weil group

E.Q/ D fO; .0; 0/; .2; 0/; .�2; 0/g ' Z=2Z 	 Z=2Z

and use this information to deduce that the only solutions to (16) are the trivial ones.

It turns out that the proofs by Fermat and Euler of the degree 4 and degree 3 cases of
Fermat’s Last Theorem are simply special cases of what are now standard Mordell–
Weil group computations.

The degree p Fermat equation (12), viewed as defining a curve in P
2, has genus

.p�1/.p�2/=2, and thus does not define an elliptic curve for p � 5. We do mention
in passing the following celebrated theorem of Faltings.
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Theorem 5 (Faltings [13]). Let C be a curve of genus � 2 over a number field K.
Then C.K/ is finite.

Faltings’ theorem tells us that for each p � 5 the Fermat equation (12) has finitely
many primitive solutions. Faltings’ theorem is ineffective, in the sense that the proof
does not yield an algorithm that is guaranteed to find all solutions.

3.2 Modular Forms

Let k and N be positive integers. We define

�0.N/ D
�	

a b
c d



2 SL2.Z/ W c � 0 .mod N/

�
:

It is easy to see that �0.N/ is a subgroup of SL2.Z/ of finite index. Let H be the
complex upper-half plane

H D fz 2 C W Im.z/ > 0g:

The group �0.N/ acts on H via fractional linear transformations

	
a b
c d



W H! H; z 7! azC b

czC d
:

The quotient Y0.N/ D �0.N/nH has the structure of a non-compact Riemann
surface. This has a standard compactification denoted X0.N/ and the difference
X0.N/ � Y0.N/ is a finite set of points called the cusps. In fact the Riemann surface
X0.N/ has the structure of an algebraic curve defined over Q and is an example of
what is known as a modular curve.

A modular form f of weight k and level N is a function f W H! C that satisfies
the following conditions

(i) f is holomorphic on H;
(ii) f satisfies the property

f

	
azC b

czC d



D .czC d/kf .z/; (17)

for all z 2 H and . a b
c d / 2 �0.N/;

(iii) f extends to a function that is holomorphic at the cusps.

Observe that . 1 10 1 / 2 �0.N/. Thus by (ii), the function f satisfies f .z C 1/ D f .z/.
Letting q.z/ D exp.2� iz/, we see, from the periodicity, that f must have a Fourier
expansion
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f .z/ D
X
n�N0

cnqn

for some integer N0. In fact, one of the cusps is the cusp at i1 which we can think
of as being arbitrarily high up on the imaginary axis. Note that q.i1/ D 0. We see
that for f to be holomorphic at the cusp i1 we require cn D 0 for n < 0. Thus we
may write

f .z/ D
X
n�0

cnqn: (18)

It turns out that the set of modular forms of weight k and level N, denoted by Mk.N/,
is a finite-dimensional vector space over C.

A cusp form of weight k and level N is a modular form f of weight k and level N
that vanishes at all the cusps. As q.i1/ D 0 we see in particular that a cusp form
must satisfy c0 D 0. The cusp forms naturally form a subspace of Mk.N/ which we
denote by Sk.N/. Of particular interest are the weight 2 cusp forms of level N: these
can be interpreted as regular differentials on the modular curves X0.N/. It follows
that the dimension of S2.N/ as a C-vector space is equal to the genus of the modular
curve X0.N/.

There is a natural family of commuting operators Tn W S2.N/ ! S2.N/ (with
n � 1) called the Hecke operators. The eigenforms of level N are the weight 2
cusp forms that are simultaneous eigenvectors for all the Hecke operators. Such an
eigenform is called normalized if c1 D 1 and thus its Fourier expansion has the form

f D qC
X
n�1

cnqn:

3.3 Modularity

Let E be an elliptic curve over Q. Such an elliptic curve has a model of the form

E W y2 C a1xyC a3y D x3 C a2x
2 C a4xC a6; (19)

where the ai 2 Z, and a (non-zero) discriminant �E which is an integer given by
a complicated polynomial expression in terms of the ai. It is possible to change the
model by carrying out a suitable linear substitution in x, y, and we generally work
with a minimal model: that is one where the ai 2 Z with discriminant having the
smallest possible absolute value. Associated to E is another, more subtle, invariant
called the conductor NE which we shall not define precisely, but we merely point
that it is a positive integer sharing the same prime divisors as the discriminant; that
it measures the ‘bad behavior’ of the elliptic curve E modulo primes; and that it can
be computed easily through Tate’s algorithm [31, Chap. IV].
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Now let p − �E be a prime. Then we can reduce the Eq. (19) to obtain an elliptic
curve QE over Fp. The set QE.Fp/ is an abelian group as before, but now necessarily
finite, and we denote its order by # QE.Fp/. Let

ap.E/ D pC 1 � # QE.Fp/:

We are now ready to state a version of the modularity theorem due to Wiles, Breuil,
Conrad, Diamond and Taylor [6, 37]. This remarkable theorem was previously
known as the Taniyama–Shimura conjecture.

Theorem 6 (The Modularity Theorem). Let E be an elliptic curve over Q with
conductor N. There exists a normalized eigenform f D qCP cnqn of weight 2 and
level N such that cn 2 Z for all n, and if p − �E is prime then cp D ap.E/.

In fact, for an eigenform f the Fourier coefficients are determined by the coefficients
cp with prime indices. Thus from the elliptic curve E we can construct the Fourier
expansion of the corresponding eigenform f . What is astonishing is that f then
satisfies the transformation properties (17).

Example 3. We consider the following elliptic curve E over Q:

E W y2 C y D x3 � x2 � 10x � 20:
This has conductor 11, the smallest possible conductor, and discriminant �115. The
space S2.11/ is 1-dimensional. Naturally every non-zero element of S2.11/ is an
eigenform (i.e. an eigenvector for the Hecke operators), and we take as our basis the
unique normalized eigenform which has the following Fourier expansion:

f .z/ D q � 2q2 � q3 C 2q4 C q5 C 2q6 � 2q7 � � � �
According to the modularity theorem the eigenform f corresponds to the elliptic
curve E and we may check a few of the coefficients to convince ourselves that this
is the case. For example,

QE.F2/ D fO; .0; 0/; .0; 1/; .1; 0/; .1; 1/g :
It follows that a2.E/ D 2 C 1 � #E.F2/ D �2 agrees with the coefficient c2 D
�2 for q2 in the Fourier expansion for f . The reader can easily verify the relation
ap.E/ D cp for the primes p D 3, 5 and 7.

3.4 Galois Representations

Let E be an elliptic curve over C. The structure of the abelian group E.C/ is
particularly easy to describe. There is a discrete lattice ƒ � C of rank 2 (that is, as
an abelian group ƒ ' Z

2) depending on E, and an isomorphism

E.C/ ' C=ƒ: (20)
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Let p be a prime. By the p-torsion of E.C/ we mean the subgroup

EŒp� D fQ 2 E.C/ W pQ D 0g:

It follows from (20) that

EŒp� ' .Z=pZ/2: (21)

This can be viewed as 2-dimensional Fp-vector space.

Example 4. Let

E W y2 D x3 C x: (22)

It turns out that the corresponding lattice isƒ D ZCZi. The p-torsion subgroup of
C=ƒ is

�
aC bi

p
Cƒ W a; b D 0; : : : ; p � 1

�
:

The reader will see that this a 2-dimensional Fp-vector space with basis 1=p C ƒ
and i=pCƒ.

Now let E be an elliptic curve over Q. Then we may view E as an elliptic curve
over C, and with the above definitions obtain an isomorphism EŒp� ' .Z=pZ/2.
However, in this setting the points of EŒp� have algebraic coordinates, and are
acted on by GQ WD Gal.Q=Q/, the absolute Galois group of the rational numbers.
Via the isomorphism (21), the group GQ acts on .Z=pZ/2. As noted, the latter is
a 2-dimensional Fp-vector space. We obtain a 2-dimensional representation that
depends on the elliptic curve E and the prime p:

�E;p W GQ ! GL2.Fp/: (23)

Example 5. We continue looking at the elliptic curve (22) but now regard it as an
elliptic curve over Q. The 2-torsion subgroup is

EŒ2� D fO; .0; 0/; .i; 0/; .�i; 0/g:

Recall that O is the identity element. The three other elements of EŒ2� are points of
order 2. Moreover, they satisfy the additional relation

.0; 0/C .i; 0/C .�i; 0/ D O:

We can see this from the geometric description of the group law: the three points on
the left-hand side are the intersection of the line y D 0 with E. As 2 � .�i; 0/ D O ,
we have that .�i; 0/ D �.i; 0/ and thus
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.�i; 0/ D .0; 0/C .i; 0/:

We now see that EŒ2� is an F2-vector space with basis .0; 0/ and .i; 0/. Let us now
use this to write down �E;2 explicitly. Let 	 2 GQ. Then 	.i/ D i or 	.i/ D �i.
Suppose first that 	.i/ D i. Then

	.0; 0/ D .	.0/; 	.0// D .0; 0/; 	.i; 0/ D .	.i/; 	.0// D .i; 0/:

As 	 leaves our chosen basis fixed, we have

�E;2.	/ D
	
1 0

0 1



2 GL2.F2/:

Suppose instead that 	.i/ D �i. Then

	.0; 0/ D .	.0/; 	.0// D .0; 0/; 	.i; 0/ D .	.i/; 	.0// D .�i; 0/ D .0; 0/C.i; 0/:

Thus the action of 	 with respect to our chosen basis is given by the matrix

�E;2.	/ D
	
1 1

0 1



2 GL2.F2/:

We record the image of the representation �E;2:

�E;2.GQ/ D
�	
1 0

0 1



;

	
1 1

0 1


�
:

We note that the representation �E;2 is reducible, in the sense that all elements of the

image share a common eigenvector

	
1

0



.

We return to our general setting of an elliptic curve E over Q and a prime p. We
say that the representation �E;p is reducible if the matrices of the image �E;p.GQ/

share some common eigenvector. Otherwise we say that �E;p is irreducible.
We have now given enough definitions to be able to state Mazur’s theorem; this is

often considered as historically the first step in the proof of Fermat’s Last Theorem.

Theorem 7 (Mazur [24]).

(i) Let E be an elliptic curve over Q and p > 163 be prime. Then �E;p is irreducible.
(ii) Let E be an elliptic curve over Q with full 2-torsion (that is EŒ2� � E.Q/) and

let p � 5 be prime. Then �E;p is irreducible.

It turns out that an elliptic curve E over Q such that �E;p is reducible corresponds
to a rational point on the modular curve X0.p/ that is not a cusp. Mazur proved
his theorem by determining the rational points on this infinite family of curves.
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In a sense, Mazur’s theorem is not unlike Fermat’s Last Theorem, which is also a
statement about the rational points on an infinite family of curves.

We mention in passing the relationship between reducible mod p representations
and isogenies. An isogeny of elliptic curves E, E0 is a non-constant map � W
E ! E0 defined by algebraic equations that take the point at infinity on E to the
point at infinity on E0. A non-trivial consequence of the Riemann–Roch theorem
is that isogenies respect the group law, and so are in a sense algebro-geometric
homomorphisms. A p-isogeny is an isogeny � W E ! E0 such that the kernel
of � has order p. Let E be defined over Q. Then the existence of an p-isogeny
� W E! E0 defined over Q is equivalent to the representation �E;p being reducible.
In fact, if Q is a non-zero element of the kernel of �, then Q is a non-zero eigenvector
for all the elements of the image of �E;p. We can restate (i) of Mazur’s theorem as
saying that an elliptic curve E defined over Q has no p-isogenies for p > 163.

3.5 Ribet’s Level Lowering Theorem

Let E be an elliptic curve over Q. We saw above that, for each prime p, the curve
E gives rise to a mod p Galois representation �E;p W GQ ! GL2.Fp/. Let f be an
eigenform. Deligne and Serre showed that such an f gives rise, for each prime p,
to a Galois representation �f ;p W GQ ! GL2.Fpr /, where r � 1 depends on f . If
E corresponds to f via the Modularity theorem (Theorem 6) then, unsurprisingly,
�E;p 
 �f ;p (the two representations are isomorphic). Thus the representation �E;p
is modular in the sense that it arises from a modular eigenform. Recall that if f
corresponds to E via modularity, then the conductor of E is equal to the level of f .
Sometimes it is possible to replace f by another eigenform of smaller level which
has the same mod p representation. This process is called level lowering. We now
state a special case of Ribet’s level lowering theorem. Ribet’s theorem is in fact part
of Serre’s modularity conjecture [29] that was proved by Khare and Wintenberger
[20, 21].

Theorem 8 (Ribet’s Level Lowering Theorem [28]). Let E be an elliptic curve
over Q with minimal discriminant � and conductor N. Let p � 3 be prime.
Suppose

(i) the curve E is modular;
(ii) the mod p representation �E;p is irreducible.

Let

Np D N
. Y

`jjN;
p j ord`.�/

`: (24)

Then �E;p 
 �g;p for some eigenform g of weight 2 and level Np.
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Of course we now know, thanks to the Modularity theorem (Theorem 6) that
all elliptic curves over Q are modular. Thus condition (i) in Ribet’s theorem is
automatically satisfied. But we still include it for historical interest.

We can make the relationship �E;p 
 �g;p in Ribet’s theorem more explicit. Write
g D q CPn�1 dnqn for the Fourier expansion of g. It turns out that the dn belong
to the ring of integers OK of a number field K that depends on g. The relationship
�E;p 
 �g;p is equivalent to the existence of a prime ideal P of OK that divides pOK

such that aq.E/ � dq .mod P/ for all primes q − Np.

Example 6. Consider the elliptic curve

E W y2 D x3 � x2 � 77xC 330

with Cremona reference 132B1. Cremona’s database [8] gives us the minimal
discriminant and conductor

� D 24 	 310 	 11; N D 22 	 3 	 11: (25)

The database also tells us that the only isogeny the curve E has is a 2-isogeny. Thus
�E;p is irreducible for p � 3. We apply Ribet’s Theorem with p D 5. From the above
recipe (24) for the level we find that Np D 44. It is possible to check that �E;p 
 �g;p
where g is the following eigenform has weight 2 and level 44:

g D qC q3 � 3q5 C 2q7 � 2q9 � q11 C � � � :

All the coefficients of g belong to Z. We tabulate aq.E/ and the coefficients dq for
primes q < 50. The reader will note that the relationship aq.E/ � dq .mod 5/ holds
for all primes q in the range except for q D 3 which does divide N.

q 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

aq.E/ 0 �1 2 2 �1 6 �4 �2 �8 0 0 �6 0 10 0

dq 0 1 �3 2 �1 �4 6 8 �3 0 5 �1 0 �10 0

3.6 The Proof of Fermat’s Last Theorem

We are now able to sketch a proof of Fermat’s Last Theorem. Suppose p � 5
is prime, and x, y and z are non-zero pairwise coprime integers such that
xp C yp C zp D 0. We may reorder .x; y; z/ so that y is even and xp � �1 .mod 4/.
We let E be the following elliptic curve which depends on the solution .x; y; z/:

E W Y2 D X � .X � xp/ � .X C yp/: (26)
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The curve E is called the Frey–Hellegouarch curve. The minimal discriminant and
conductor of E are:

� D x2py2pz2p

28
; N D

Y
`j�
`:

The choice 2 j y and xp � �1 .mod 4/ ensures that 2 jj N.
We now consider �E;p. The 2-torsion subgroup for E is

EŒ2� D fO; .0; 0/; .xp; 0/; .�yp; 0/g:

Note that EŒ2� � E.Q/. As p � 5 we know by Mazur’s theorem (Theorem 7)
that �E;p is irreducible. Moreover E is modular by the Modularity theorem.
The hypotheses of Ribet’s theorem are satisfied. We compute Np D 2 using the
recipe in (24). It follows that �E;p 
 �g;p where g has weight 2 and level 2. A simple
computation shows that there are no eigenforms of weight 2 and level 2. This
contradiction completes the proof of Fermat’s Last Theorem.

Some Historical Remarks In the early 1970s, Hellegouarch (e.g. [19]) had the
idea of associating to a non-trivial solution of the Fermat equation the elliptic
curve (26); he noted that the number field generated by its p-torsion subgroup
EŒp� has surprisingly little ramification. In the early 1980s, Frey [18] observed
that this elliptic curve enjoys certain remarkable properties that should rule out
its modularity. Motivated by this, in 1985 Serre [29] made precise his modularity
conjecture and showed that it implies Fermat’s Last Theorem. Serre’s remarkable
paper also uses several variants of the Frey–Hellegouarch curve to link modularity
to other Diophantine problems. Ribet announced his level-lowering theorem 1987,
thereby proving that modularity of the Frey–Hellegouarch curve implies Fermat’s
Last Theorem. The proof of the Modularity theorem was completed around 1999
by Breuil, Conrad, Diamond and Taylor [6]. A semistable elliptic curve is one
with squarefree conductor. We note from (25) that the Frey–Hellegouarch curve is
semistable. In 1994 Wiles [37], with some help from Taylor [33], proved modularity
of semistable elliptic curves over Q, thereby proving Fermat’s Last Theorem.

4 The (More) Generalized Fermat Equation

We now return to the generalized Fermat equation

xp C yq D zr; (27)

where x; y and z are integers, and the exponents p; q and r are (potentially distinct)
positive integers. We restrict our attention to primitive solutions, i.e. those with
gcd.x; y; z/ D 1, since, without such a restriction, it is easy to concoct uninteresting
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solutions in a fairly trivial fashion. Indeed, if we assume, say, that p; q and r are
pairwise relatively prime, then we can choose integers u; v and w such that

uqr � �1 .mod p/; vpr � �1 .mod q/ and wpq � �1 .mod r/:

If we are given any integers a; b and c with aC b D c, multiplying this equation by
auqrbvprcwpq, we thus have that

�
a.uqrC1/=pbvrcwq

�p C �aurb.vprC1/=qcwp
�q D �auqbvpc.wpqC1/=r

�r
:

We call .p; q; r/ the signature of Eq. (27). The behaviour of primitive solutions
depends fundamentally upon the size of the quantity

	.p; q; r/ D 1

p
C 1

q
C 1

r
;

in particular, whether 	.p; q; r/ > 1, 	.p; q; r/ D 1 or 	.p; q; r/ < 1. If we set

 D 	.p; q; r/ � 1, then 
 is the Euler characteristic of a certain stack associated
to Eq. (27). It is for this reason that the cases 	.p; q; r/ > 1, 	.p; q; r/ D 1 and
	.p; q; r/ < 1 are respectively termed spherical, parabolic and hyperbolic.

4.1 The Spherical Case �.p; q; r/ > 1

In this case, we may assume that .p; q; r/ is one of .2; 2; r/, .2; q; 2/, .2; 3; 3/,
.2; 3; 4/, (2; 4; 3/ or .2; 3; 5/. In each of these situations, the (infinitely many)
relatively prime integer solutions to (27) come in finitely many two parameter
families (the canonical model to bear in mind here is that of Pythagorean triples); in
the (most complicated) .2; 3; 5/ case, there are precisely 27 such families, as proved
by Johnny Edwards [11] in 2004 via an elegant application of classical invariant
theory. In the case .p; q; r/ D .2; 4; 3/, by way of example, we find that the relatively
prime solutions x; y and z satisfy one of the following four parametrizations:

8
<
:

x D 4ts.s2 � 3t2/.s4 C 6t2s2 C 81t4/.3s4 C 2t2s2 C 3t4/;
y D ˙.s2 C 3t2/.s4 � 18t2s2 C 9t4/;
z D .s4 � 2t2s2 C 9t4/.s4 C 30t2s2 C 9t4/;

where s 6� t .mod 2/ and 3 − s,

8<
:

x D ˙.4s4 C 3t4/.16s8 � 408t4s4 C 9t8/;
y D 6ts.4s4 � 3t4/;
z D 16s8 C 168t4s4 C 9t8;
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where t is odd and 3 − s,

8<
:

x D ˙.s4 C 12t4/.s8 � 408t4s4 C 144t8/;
y D 6ts.s4 � 12t4/;
z D s8 C 168t4s4 C 144t8;

where s � ˙1 .mod 6/, or

8
ˆ̂̂̂
<̂
ˆ̂̂̂
:̂

x D 2.s4 C 2ts3 C 6t2s2 C 2t3sC t4/.23s8 � 16ts7 � 172t2s6 � 112t3s5

�22t4s4 � 112t5s3 � 172t6s2 � 16t7sC 23t8/;
y D 3.s � t/.sC t/.s4 C 8ts3 C 6t2s2 C 8t3sC t4/;
z D 13s8 C 16ts7 C 28t2s6 C 112t3s5 C 238t4s4

C112t5s3 C 28t6s2 C 16t7sC 13t8;

where s 6� t .mod 2/ and s 6� t .mod 3/. Here, s and t are relatively prime integers.
Details on these parametrizations (and much more besides) can be found in Cohen’s
exhaustive work [7].

4.2 The Parabolic Case �.p; q; r/ D 1

If we have 	.p; q; r/ D 1, then, up to reordering,

.p; q; r/ D .2; 6; 3/; .2; 4; 4/; .4; 4; 2/; .3; 3; 3/ or .2; 3; 6/:

As in Examples 1 and 2, each equation now corresponds to an elliptic curve of
rank 0 over Q; the only primitive non-trivial solution comes from the signature
.p; q; r/ D .2; 3; 6/, corresponding to the Catalan solution 32 � 23 D 1.

4.3 The Hyperbolic Case �.p; q; r/ < 1

It is the hyperbolic case, with 	.p; q; r/ < 1, where most of our interest lies. Here,
we are now once again considering the equation and hypotheses (4). As mentioned
previously, it is expected that the only solutions to (4) are with .x; y; z; p; q; r/
corresponding to the identity 1p C 23 D 32, for p � 6, or to

25 C 72 D 34; 73 C 132 D 29; 27 C 173 D 712; 35 C 114 D 1222;

177 C 762713 D 210639282; 14143 C 22134592 D 657; 92623 C 153122832 D 1137;

438 C 962223 D 300429072 and 338 C 15490342 D 156133:
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A less ambitious conjecture would be that (4) has at most finitely many solutions
(where we agree to count those coming from 1pC 23 D 32 only once). In the rest of
this section, we will discuss our current knowledge about this equation.

4.4 The Theorem of Darmon and Granville

What we know for sure in the hyperbolic case, is that, for a fixed signature .p; q; r/,
the number of solutions to Eq. (4) is at most finite:

Theorem 9 (Darmon and Granville [9]). If A;B;C; p; q and r are fixed positive
integers with

1

p
C 1

q
C 1

r
< 1;

then the equation

Axp C Byq D Czr

has at most finitely many solutions in coprime non-zero integers x; y and z.

Proof. The proof by Darmon and Granville is extremely elegant and we cannot
resist giving a brief sketch. The hypothesis 1=p C 1=q C 1=r < 1 is used to show
the existence of a cover � W D ! P

1 that is ramified only above 0, 1, 1,
where the curve D has genus � 2. Moreover, this cover has the property that the
ramification degrees above 0 are all divisors of p, above 1 are all divisors of q, and
above1 are all divisors of r. Now let .x; y; z/ be a non-trivial primitive solution to
the equation Axp C Byp D Czr. The above properties of the cover � imply that
the points belonging to the fiber ��1.Axp=Czr/ are defined over a number field
K that is unramified away from the primes dividing 2ABCpqr. It follows from a
classical theorem of Hermite that there are only finitely many such number fields
K. Moreover, by Faltings’ theorem, for each possible K there are only finitely many
K-points on D. It follows that the equation Axp C Byp D Czr has only finitely many
primitive solutions.

It is worth noting that the argument used in the proof is ineffective, due to its
dependence upon Faltings’ theorem; it is not currently known whether or not there
exists an algorithm for finding all rational points on an arbitrary curve of genus � 2.
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4.5 A Brief Survey of What We Know

What we would really like to do goes rather further than what the theorem of
Darmon and Granville tells us. Indeed, we would like to obtain finiteness results for
Eq. (4) where we allow the exponent triples .p; q; r/ to range over infinite families.
In the following tables, we list all known (as of 2015) instances where Eq. (4) has
been completely solved. For references to the original papers we recommend the
exhaustive survey [4]. The first table collects all known infinite families treated to
date:

.p; q; r/ Reference(s)

.n; n; n/ Wiles, Taylor-Wiles

.n; n; k/; k 2 f2; 3g Darmon-Merel, Poonen

.2n; 2n; 5/ Bennett

.2; 4; n/ Ellenberg, Bennett-Ellenberg-Ng, Bruin

.2; 6; n/ Bennett-Chen, Bruin

.2; n; 4/ Bennett-Skinner, Bruin

.2; n; 6/ Bennett-Chen-Dahmen-Yazdani

.3j; 3k; n/; j; k � 2 Immediate from Kraus

.3; 3; 2n/ Bennett-Chen-Dahmen-Yazdani

.3; 6; n/ Bennett-Chen-Dahmen-Yazdani

.2; 2n; k/; k 2 f9; 10; 15g Bennett-Chen-Dahmen-Yazdani

.4; 2n; 3/ Bennett-Chen-Dahmen-Yazdani

.2j; 2k; n/; j; k � 5prime;n 2 f3; 5; 7; 11; 13g Anni-Siksek

Our second table lists “sporadic” triples where the solutions to (4) have been
determined, and infinite families of exponent triples where the .p; q; r/ satisfy
certain additional local conditions.

.p; q; r/ Reference(s)

.3; 3; n/� Chen-Siksek, Kraus, Bruin, Dahmen

.2; 2n; 3/� Chen, Dahmen, Siksek

.2; 2n; 5/� Chen

.2m; 2n; 3/� Bennett-Chen-Dahmen-Yazdani

.2; 4n; 3/� Bennett-Chen-Dahmen-Yazdani

.3; 3n; 2/� Bennett-Chen-Dahmen-Yazdani

.2; 3; n/; n 2
f6; 7; 8; 9; 10; 15g

Poonen-Schaefer-Stoll, Bruin, Zureick-Brown, Siksek, Siksek-Stoll

.3; 4; 5/ Siksek-Stoll

.5; 5; 7/; .7; 7; 5/ Dahmen-Siksek
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The asterisk here refers to conditional results. For instance, in case .p; q; r/ D
.3; 3; n/, we have no solutions if either 3 � n � 109, or n � ˙2 modulo 5, or
n � ˙17 modulo 78, or

n � 51; 103; 105 .modulo 106/;

or for n (modulo 1296) one of

43; 49; 61; 79; 97; 151; 157; 169; 187; 205; 259; 265; 277; 295; 313; 367; 373; 385; 403;

421; 475; 481; 493; 511; 529; 583; 601; 619; 637; 691; 697; 709; 727; 745; 799; 805;

817; 835; 853; 907; 913; 925; 943; 961; 1015; 1021; 1033; 1051; 1069; 1123;

1129; 1141; 1159; 1177; 1231; 1237; 1249; 1267; 1285:

The results mentioned here have been proved by essentially two distinct methods.
For a number of fixed triples, the problem has been reduced (via arguments similar
to those of Darmon and Granville, or otherwise) to one of determining Q-rational
points on certain curves of genus 2 or higher. These points were subsequently found
via Chabauty-type methods and appeal to a version of the Mordell-Weil sieve. In
each case where Eq. (4) has been solved for an infinite family of triples .p; q; r/,
however, a different approach has been utilized, relying upon Frey–Hellegouarch
curves and connections between them and modular forms.

5 The Modular Approach and the Generalized
Fermat Equation

It is natural to ask if the proof of Fermat’s Last Theorem can be adapted to
resolve (4), at least for certain signatures .p; q; r/. Roughly speaking a Frey–
Hellegouarch curve is an elliptic curve E over Q, attached to a solution of a
Diophantine equation satisfying two conditions:

(i) the discriminant of E has the form A �Bp where A is a known (small) integer and
p is a prime;

(ii) every prime q j B divides the conductor exactly once.

Examining the recipe (24) in Ribet’s theorem the reader will note that the level Np

depends only on the known quantity A. For example, in the proof of Fermat’s Last
Theorem, A is a power of 2 and the level Np D 2.

Alas, only a few signatures have workable Frey–Hellegouarch curves. In the
following table we record some of the known ones.

These and similar Frey–Hellegouarch curves have been used to prove many of
the results surveyed in Sect. 4.5.
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Equation Frey–Hellegouarch Curve

ap C bp D c2 Y2 D X3 C 2cX2 C apX

ap C bp D c3 Y2 D X3 C 3cX2 � 4bp

a3 C b3 D cp Y2 D X3 C 3.a � b/X2 C 3.a2 � ab C b2/X

a2 C b3 D cp Y2 D X3 C 3bX C 2a

5.1 A Sample Signature: .p; p; 2/

To illustrate the approach we look specifically at the equation xpCyp D z2 where p �
7 is prime. Here we follow the paper of Darmon and Merel [10] who showed that
the only primitive solutions are .˙1;�1; 0/, .1; 0;˙1/, .0; 1;˙1/. Let .x; y; z/ D
.a; b; c/ be a primitive solution satisfying ab ¤ 0. As in the preceding table, we
associate to this the Frey–Hellegouarch curve

E W Y2 D X3 C 2cX2 C apX:

This is modular by Theorem 6. By a variant of Mazur’s theorem (Theorem 7) the
mod p representation �E;p is irreducible. Now an application of the Ribet’s theorem
shows that �E;p 
 �g;p where g is an eigenform of weight 2 and level 32. This is
where we diverge from the proof of Fermat’s Last Theorem: there is an eigenform
of weight 2 and level 32. It turns however that this eigenform is rather special as
it corresponds to an elliptic curve with complex multiplication. It follows from this
fact that �g;p W GQ ! GL2.Fp/ is not surjective. To complete the resolution of the
equation xpC yp D z2, Darmon and Merel needed to show that if ab ¤ �1 then �E;p
is in fact surjective and hence cannot be isomorphic to �g;p. To do this, they showed
that if �E;p is not surjective then it gives rise to a rational point on one of a family of
certain modular curves, and completed the proof by determining the rational points
on this family. This last step is somewhat similar to the proof of Mazur’s theorem.

6 Modularity over Number Fields

Even when we are interested in Diophantine equations in rational integer unknowns,
factorization arguments often force us to consider Diophantine equations where the
coefficients or unknowns lie in a number field. Consider for example the equation

a4 C b2 D cp; gcd.a; b; c/ D 1 (28)

where the exponent p is prime. This equation is not known to have a Frey–
Hellegouarch curve defined over Q. We can, however, factor the left-hand side as
.a2C bi/.a2� bi/ where i D p�1. It is not hard to show using the arithmetic of the
Gaussian ring ZŒi� that
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a2 C bi D ˛p; a2 � bi D ˛p:

where ˛ 2 ZŒi� and ˛ is its conjugate. Eliminating b we obtain the equation

˛p C ˛p D 2a2:

This is an .p; p; 2/ equation. However, unlike the equations we met in Sect. 5.1,
some of the unknowns belong to ZŒi�. We ignore this uncomfortable fact for now and
simply imitate the approach in the previous section to associate a Frey–Hellegouarch
curve to this equation. The Frey–Hellegouarch curve is

E W y2 D x3 C 2ax2 C 2˛px (29)

which has discriminant 29.˛˛2/p. We note that the discriminant is close to being
a perfect pth power. To solve our original generalized Fermat equation (28) with
signature .4; 2; p/ and unknowns belonging to Z, we need to consider an elliptic
curve that is defined over Q.i/. It is natural to ask how much of modularity and
level lowering carry over to the setting of number fields. If we ask these questions
for elliptic curves over general number fields then the answers are conjectural with
almost no satisfactory theorems. However there are two situations where there are
satisfactory theorems and these have been applied to certain generalized Fermat
equations: Q-curves and elliptic curves over totally real fields.

6.1 Q-Curves

A Q-curve is an elliptic curve E over a number field K that is isogenous to all its
conjugates. The Frey curve (29) is an example of a Q-curve: it is defined over the
number field Q.i/ and it happens to be isogenous to its conjugate y2 D x3C 2ax2C
2˛px (the conjugate is obtained simply by conjugating the coefficients of the elliptic
curve).

A consequence of the proof of Khare and Wintenberger of Serre’s modularity
conjecture is that Q-curves are modular. The modularity of the Q-curve E given
by (29) was used by Ellenberg [12] and by the first author, Ellenberg and Ng [5] to
completely solve a4Cb2 D cp showing in fact that there are no non-trivial primitive
solutions with n � 4 (here n does not have to be prime). The first author and Chen
[3] have used modularity of Frey–Hellegouarch Q-curves to show that the equation
a2 C b6 D cn has no non-trivial solutions with gcd.a; b; c/ D 1 and n � 3.
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6.2 Elliptic Curves over Totally Real Fields

A number field K of degree n has n embeddings into the complex numbers �j W
K ,! C with j D 1; : : : ; n. For example if K D Q.�/ is a number field of degree
n, then � is the root of an irreducible degree n polynomial with rational coefficients.
Such a polynomial has n distinct complex roots �1; : : : ; �n, and the embedding �j
satisfies �j.�/ D �j. The embedding �j is real if �j.K/ � R. Equivalently if �j 2 R.
If all the embeddings are real then we say that K is a totally real (number) field. An
example of a totally real field is the cubic field K D Q.�/ where � D �7 C ��1

7 .
Here � is a root of the polynomial x3 C x2 � 2x � 1. The roots �j of the polynomial
are 2 cos.2� j=7/ with j D 1, 2, 3 which are all real.

Elliptic curves over totally real fields are conjecturally expected to be modular
in the sense that they correspond to what are known as Hilbert modular forms
(the classical modular forms of Sect. 3.2 are a special case of Hilbert modular
forms). There has been substantial progress towards proving modularity for elliptic
curves over totally real fields thanks to the work of Barnet-Lamb, Breuil, Diamond,
Gee, Geraghty, Kisin, Skinner, Wiles and many others (many of these results in
fact integrate level lowering with modularity). Building on this work, modularity
of elliptic curves over real quadratic fields was recently proved by Freitas, Le
Hung and Siksek [14]. To solve Diophantine problems via Frey curves that are
defined over totally real fields one needs not only modularity and level lowering,
but also irreducibility theorems for mod p representations of elliptic curves. Over
the rationals, as we saw in Sect. 3.4, this is provided by Mazur’s theorem. No such
theorem is known over any number field other than Q. However Frey curves are
almost semistable and this fact can usually be used [17] together with the celebrated
uniform boundedness theorem of Merel [25] to supply the required irreducibility
result.

As an example we mention the equation

a2` C b2m D cp; gcd.a; b; c/ D 1: (30)

studied by Anni and Siksek [1]. Here `, m � 5 and p � 3 are primes. A complicated
factorization argument is used to reduce this to a Fermat equation with signature
.`; `; `/ with coefficients and unknowns belonging to the totally real field Q.�p C
��1

p /. The corresponding Frey curves over this field are shown to be modular using
the above-mentioned works for p D 3, 5, 7, 11 and 13. This is then used to show
that the only solutions to (30) are the trivial ones.

7 A Way Forward: Darmon’s Program

The Frey–Hellegouarch approach used in the proof of Fermat’s Last Theorem and
in the resolution of many other equations (as sketched in previous sections) attaches
an elliptic curve to a hypothetical solution of the equation in question and then uses
modularity to make deductions about this solution. It is natural to ask:



The Generalized Fermat Equation 203

(i) Are there geometric objects other than elliptic curves that are somehow
modular?

(ii) If so, can these be used as an alternative, perhaps to add flexibility and tackle
generalized Fermat equations for which no Frey–Hellegouarch elliptic curve is
known?

An abelian variety is a connected and projective algebraic group. Roughly
speaking this means that it is defined by algebraic equations in projective space
and carries a group structure (that happens to be abelian). An abelian variety has a
dimension d � 1, and abelian varieties of dimension 1 are simply elliptic curves.
Are abelian varieties over Q modular? The answer should be ‘yes’, except that the
precise meaning of word modular in this generality is not yet resolved.

An abelian variety of dimension d is said to be of GL2-type if its endomorphism
ring is an order in a number field of degree d. A Theorem of Khare and Wintenberger
[20] states that abelian varieties of GL2-type over Q are modular in a very precise
sense (that is in fact very close to that of elliptic curves in Sect. 3.3). Abelian
varieties of GL2-type over totally real fields are expected to be modular in the sense
that they correspond to Hilbert modular forms. Darmon exploits this idea to attack
the equation xpCyp D zr, where p and r are primes and gcd.x; y; z/ D 1 as usual. He
attaches a hypothetical non-trivial solution to an abelian variety of GL2-type over
the totally real field Q.�r C ��1

r /. Using this he proves several beautiful theorems
about possible solutions, though all are dependent on yet unproven conjectures.
The biggest obstruction to Darmon’s program is the absence of a Mazur-style
irreducibility theorem for mod p representations of abelian varieties of GL2-type.

The Darmon program holds the greatest promise for further substantial progress
on the generalized Fermat equation. Just as Frey’s original work was the spark that
led to the formulation of Serre’s modularity conjecture, and the proofs of Ribet’s
theorem and the Modularity theorem, so we hope that Darmon’s program will
supply the impetus for new theorems for abelian varieties of GL2-type that in turn
allow us to make deductions about the generalized Fermat equation.
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The Conjecture of Birch and Swinnerton-Dyer

John Coates

Abstract The conjecture of Birch and Swinnerton-Dyer is one of the principal
open problems of number theory today. Since it involves exact formulae rather than
asymptotic questions, it has been tested numerically more extensively than any other
conjecture in the history of number theory, and the numerical results obtained have
always been in perfect accord with every aspect of the conjecture. The present article
is aimed at the non-expert, and gives a brief account of the history of the conjecture,
its precise formulation, and the partial results obtained so far in support of it.

1 History

The written history of the arithmetic of elliptic curves can be traced back at least to
Arab manuscripts of over 1000 years ago, which were concerned with the problem
of finding which positive integers are the areas of right-angled triangles, all of
whose sides have rational length (traditionally, such positive integers are called
congruent numbers). For example, 5 is a congruent number because it is the area of
a right-angled triangle, whose sides have lengths 9/6, 40/6, 41/6. In fact no smaller
congruent number was discovered by the ancients. It is easily seen that a positive
integer N is a congruent number if and only if there is a point .x; y/, with x and y
rational numbers, and y ¤ 0, on the curve

(1.1) y2 D x3 � N2x:

In the seventeenth century, Fermat gave the first proof that 1 is not a congruent
number, by introducing his method of infinite descent, and carrying it out on the
curve (1.1) with N D 1. Fermat also noted that an intermediate step in his proof
showed that, when n D 4, the curve xn C yn D zn has no solution in integers x; y; z
which are all non-zero, and presumably this is what led him to claim that the same
assertion holds for all n � 3. More generally, by an elliptic curve over a field F, we

J. Coates (�)
Emmanuel College, Cambridge CB2 3AP, UK
e-mail: jhc13@dpmms.cam.ac.uk

© Springer International Publishing Switzerland 2016
J.F. Nash, Jr., M.Th. Rassias (eds.), Open Problems in Mathematics,
DOI 10.1007/978-3-319-32162-2_4

207

mailto:jhc13@dpmms.cam.ac.uk


208 J. Coates

mean an irreducible non-singular projective algebraic curve of genus 1 defined over
F, which is endowed with a given F-rational point O. Any such curve has a plane
cubic model of the form

(1.2) y2 C a1xyC a3y D x3 C a2x
2 C a4xC a6 .ai 2 F/;

where O is now taken as the unique point at infinity (see, for example, [47]). Such an
elliptic curve E is an abelian variety of dimension 1, meaning that the set of all points
on such a curve with coordinates in some fixed extension field of F has a natural
algebraic abelian group structure, with O as the zero element. In 1922, Mordell
beautifully generalised Fermat’s infinite descent argument and proved that the group
of rational points on every elliptic curve defined over Q is always finitely generated
as an abelian group. However, the big mystery left open by Mordell’s proof was
whether or not the procedure of infinite descent always terminated in a finite number
of steps, thus enabling one to actually determine the group of rational points on the
curve. In practice, this always seems to be the case, but, in fact, it has never been
proven theoretically. The villain of the piece is a mysterious group, subsequently
called the Tate-Shafarevich group of the elliptic curve, which is defined by

X.E=Q/ D Ker.H1.Q;E/!
Y

H1.Qv;E//;

where v runs over all places of Q, and Qv is the completion of Q at v. This torsion
abelian group is always conjectured to be finite, but today we can still only prove
this under a very restrictive hypothesis discussed below.

The discoveries of Birch and Swinnerton-Dyer came as a great surprise to the
mathematical world when they first became public around 1962. Starting in the
autumn of 1958, they had carried out a series of brilliantly planned numerical
experiments on the early EDSAC computers in Cambridge, whose aim was to
uncover numerical evidence for the existence of some kind of analogue for elliptic
curves of the mysterious exact analytic formulae proven by Dirichlet for the class
numbers of binary quadratic forms, and powerfully extended to all quadratic forms
by Siegel. Even though Siegel’s work had been actively developed further for linear
algebraic groups around this time by Kneser, Tamagawa, Weil, and others, it was
Birch and Swinnerton-Dyer alone who first sought, and later found evidence for, an
analogue for elliptic curves. It surely is one of the great mysteries of number theory,
first uncovered by Birch and Swinnerton-Dyer, that purely arithmetic questions
about the determination of E.Q/ and X.E=Q/ for an elliptic curve E over Q seem
to be inextricably involved with the behaviour of the complex L-function of E.

In this survey article, we shall mainly discuss the conjecture of Birch and
Swinnerton-Dyer in the most important and down to earth case of elliptic curves
defined over Q. However, the conjecture extends without difficulty to abelian
varieties of arbitrary dimension defined over either a finite extension of Q, or over
a function field in one variable over a finite field (see [51]). To date, very little has
been proven about the conjecture for general abelian varieties of dimension > 1
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over number fields. However, for abelian varieties defined over a function field in
one variable over a finite field, the remarkable work of Artin and Tate [51] makes
great progress on the conjecture, apart from the mysterious question of the finiteness
of the analogue of the Tate-Shafarevich group.

2 L-Functions

Let E be any elliptic curve defined over Q. By a global minimal Weierstrass equation
for E, we mean any equation for E of the form (1.2), whose coefficients ai are all
integers, and whose discriminant � is as small as possible in absolute value (for the
definition of�, and other facts about the elementary geometry of elliptic curves see
[47]). Such equations are not unique, but we fix any one of them for the discussion
which follows. Like all the L-series of arithmetic geometry, the complex L-series
of E is defined by an Euler product. For each prime number p, define Np by letting
Np � 1 denote the number of solutions of the congruence

y2 C a1xyC a3y � x3 C a2x
2 C a4xC a6 mod p;

and then put

tp D pC 1 � Np:

If .p; �/ D 1, we have jtpj � 2pp by Hasse’s theorem. If p divides �, then tp D 1
if E has multiplicative reduction at p with tangents at the node defined over Fp,
tp D �1 if E has multiplicative reduction at p with tangents at the node not defined
over Fp, and tp D 0 when E had additive reduction at p. The complex L-series of E
is then defined by the Euler product

(2.1) L.E; s/ D
Y
pj�

�
1 � tpp�s

��1 Y
.p;�/D1

�
1 � tpp�s C p1�2s

��1
:

This Euler product defines a Dirichlet series

L.E; s/ D
1X

nD1
cnn�s;

where cp D tp for every prime p, and which converges in the half plane Re.s/ > 3
2
.

When Birch and Swinnerton-Dyer first began their calculations, it was only known
how to analytically continue this function to the entire complex plane when E has
complex multiplication (i.e. the ring of endomorphisms of E, which are defined over
C, is strictly bigger than Z), using ideas about Eisenstein series which go back to
Eisenstein and Kronecker, and which were subsequently developed systematically
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by Deuring [17]. To prove the analytic continuation for all E, we need the following
fundamental result, the essential idea behind the proof of which we owe to Wiles
[57] (see also [5]). The conductor C.E/ of E is the positive integer defined by

C.E/ D
Y
pj�

pfp ;

where fp D 1 if E has multiplicative reduction at p, and fp D 2C ıp for some integer
ıp � 0 if E has additive reduction at p. Moreover, in this latter case, ıp D 0 when

p � 5. Let �0.C.E// be the subgroup of SL2.Z/ consisting of all matrices

	
a b
c d




with c � 0 mod C.E/. Let H be the complex upper half plane, and put q D e2� i�

with � 2 H. Define

fE.�/ D
1X

nD1
cnqn:

Theorem 2.1. The holomorphic function fE.�/ is a primitive cusp form of weight 2
for �0.C.E//.

By a generalization of classical ideas of Hecke, this theorem not only proves that
L.E; s/ can be extended to an entire holomorphic function of s, but it also establishes
the following functional equation. Define

ƒ.E; s/ D C.E/s=2.2�/�s�.s/L.E; s/:

Corollary 2.2. The functionƒ.E; s/ can be extended to an entire function of s, and
satisfies the functional equation

(2.2) ƒ.E; s/ D wEƒ.E; 2 � s/;

where wE D ˙1.

The so called root number wE D ˙1 is important for us because we see immediately
from (2.2) that L.E; s/ has a zero at s D 1 of even or odd multiplicity, according as
wE D C1 or wE D �1. Moreover, the theory of L-functions shows that wE can
always be calculated as a product of purely local factors. For example, if E is taken
to be the curve (1.1) with N a square free positive integer, then wE D C1 when
N � 1; 2; 3 mod 8, and wE D �1 when N � 5; 6; 7 mod 8, whence, in particular,
L.E; s/ always has a zero at s D 1 whenever N � 5; 6; 7 mod 8.

We mention that one can, more generally, consider elliptic curves E which are
defined over some finite extension F of Q. Again the group of F-rational points
on E is a finitely generated abelian group, and again no algorithm has ever been
proven for infallibly determining this group, again thanks to our lack of knowledge
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of the finiteness of the Tate-Shafarevich group of such a curve. Of course, these
elliptic curves also have a complex L-series, which we now denote by L.E=F; s/,
which is defined in the region Re.s/ > 3=2 by an entirely analogous Euler product
to (2.1), but taken over all finite places of the field F. When E admits complex
multiplication, the analytic continuation and functional equation of L.E=F; s/ follow
immediately from Deuring’s theorem [17], which identifies L.E=F; s/with a product
of Hecke L-series with Grossencharacters. However, when E does not have complex
multiplication, our knowledge of the analytic continuation of L.E=F; s/ is still very
limited, with the most striking results established so far being proofs of this assertion
either when F is a real quadratic field [19], or when F is any finite extension of
Q which is contained in the cyclotomic Zp-extension of Q for any prime number
p [53].

3 The Birch-Swinnerton-Dyer Conjecture

We will now state the conjecture of Birch and Swinnerton-Dyer in both its weak and
strong form, and discuss the evidence for it in subsequent sections. The conjecture,
which was first published in [3], predicts a remarkable link between the arithmetic
of an elliptic curve E defined over Q, and the behaviour of its complex L-series
L.E; s/ at the point s D 1. Let gE denote the rank of E.Q/ (i.e. the Q-dimension of
E.Q/˝Z Q/. We define

Definition 3.1. rE is the order of the zero of L.E; s/ at s D 1.

Weak Birch-Swinnerton-Dyer Conjecture. For all elliptic curves E over Q, we
have

(3.1) rE D gE:

The full Birch-Swinnerton-Dyer conjecture is the weak Birch-Swinnerton-Dyer
conjecture, together with a purely arithmetic exact formula for the constant LE

defined by

(3.2) LE D lim
s!1

L.E; s/=.s � 1/rE :

This formula involves the following arithmetic invariants. Firstly, there is a regulator
term coming from the Neron-Tate height. If ˛ D m=n, with m and n relatively prime
integers, is any non-zero rational number, we define its height h.˛/ by h.˛/ D
log.max.jmj; jnj//, and put h.0/ D 0. Then Neron and Tate proved independently
(see [47], Chap. 8) that there is a unique function

Oh W E.Q/! R
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such that Oh.O/ D 0, and, as P runs over the non-zero points in E.Q/, we have
Oh.2P/ D 4Oh.P/ and jOh.P/ � h.x.P//j is bounded independent of P, where x.P/
denotes the x-coordinate of P in any fixed generalised Weierstrass equation (1.2).
Then the function on E.Q/ 	 E.Q/ defined by

Definition 3.2. hP;Qi D 1
2

�bh.P˚ Q/ �bh.P/ �bh.Q/
�

is biadditive. Moreover, we have Oh.P/ D 0 if and only if P is a torsion point in
E.Q/. If one uses, in addition, the fact that there are only finitely many points P in
E.Q/ with Oh.P/ � c for any constant c > 0, it follows, as was first remarked by
Cassels, that Oh induces a positive definite quadratic form on E.Q/˝Z R: Hence, for
any choice of gE independent points P1; : : : ;PgE in E.Q/, we always have that the
determinant dethPi;Pji is strictly positive. We then define R1.E/ D 1=#.E.Q/2/ if
gE D 0 and

Definition 3.3. R1.E/ D dethPi;Pji=ŒE.Q/ WPgE
iD1 ZPi�

2 if gE > 0:

We assume that we have fixed any global minimal Weierstrass equation for E, and
we define �E to be the least positive real period of the Neron differential on E,
which is given by

! D dx

2yC a1xC a3
:

The next subtle ingredient in the conjectural exact formula for LE are the so
called Tamagawa factors, which are purely local terms occurring for the prime at
infinity, and the finite primes q dividing the conductor C.E/ of E.

Definition 3.4. c1.E/ is equal to 1 or 2, according as the group of points E.R/ on
E with real coordinates has 1 or 2 connected components.

Next assume that q is any prime number dividing the conductor C.E/. Let Qq be the
completion of Q at q. Now, since q is a prime of bad reduction for E, the reduction
of E modulo q will be a cubic curve with a singular point, and we define E0.Qq/

to be the subgroup of E.Qq/ consisting of all points whose reduction modulo q is
non-singular. Since we are working with a generalised Weierstrass equation which
is minimal at q, the index of E0.Qq/ in E.Qq/ will be independent of the choice of
the Weierstrass equation.

Definition 3.5. For a prime q of bad reduction, cq.E/ D ŒE.Qq/ W E0.Qq/�.

In general, there is no simple formula for cq.E/, but Tate [50] gave an explicit
algorithm for computing cq.E/ from any generalised Weierstrass equation for E
which is minimal at q, and also proved:-

Lemma 3.6. If E has split multiplicative reduction at q, then cq.E/ D ordq.�/. For
all other primes q of bad reduction, cq.E/ � 4.

We can now at last state the full Birch-Swinnerton-Dyer conjecture.
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Full Birch-Swinnerton-Dyer Conjecture. We have rE D gE. Moreover, X.E=Q/
is finite, and the following exact formula is valid

(3.3)
LE

�E
D #.X.E=Q//R1.E/c1.E/

Y
qjC.E/

cq.E/:

Note that elliptic curves which are Q-isogenous have the same L-functions.
However, it is not at all obvious that the exact formula (3.3) being valid for an
elliptic curve implies that it is valid for any isogenous curve, but this was proven by
Cassels [8] and Tate [51].

We shall spend most of the rest of this article discussing the fragmentary
theoretical results proven so far, in the direction of both the weak and full Birch-
Swinnerton-Dyer conjecture. However, to illustrate immediately the limits of our
present knowledge, let us note three simple consequences of the conjecture which
have never been established for a single elliptic curve E over Q. Firstly, it has never
been proven that there exists an elliptic curve E defined over Q with rE � 4, even
though there are many examples of such E with gE � 4. Secondly, it has never been
proven that X.E=Q/ is finite for a single elliptic curve E with rE � 2. Thirdly,
it has never been proven that LE=.�ER1.E// is a rational number for a single E
with rE � 2.

The earliest numerical work in support of these conjectures is given in the papers
[3, 49]. Today, the numerical evidence in support of both the weak and full Birch-
Swinnerton-Dyer conjecture is overwhelming, and probably more extensive than
for any other conjecture in the history of mathematics. Access to the vast amount
of numerical data, which, to date, confirms experimentally every aspect of the
conjecture, can be made at the website www.lmfdb.org/EllipticCurve/Q (see also
the earlier book [15], which is available online on John Cremona’s homepage at
Warwick University). This website includes tables of all elliptic curves E over
Q with conductor C.E/ < 360; 000. There are 2,247,187 elliptic curves in this
table, lying in 1,569,126 Q-isogeny classes. All such curves have gE � 4, and in
fact there is only one curve in the table with gE D 4 (this curve has conductor
234,446). In addition, Miller, Stoll, and Creutz [14, 35, 36] have verified the full
Birch-Swinnerton-Dyer conjecture for all E defined over Q with C.E/ < 5000,
which have rE � 1. The analytic quantity LE can be computed numerically to great
accuracy irrespective of the value of rE, and the same is usually true for all quantities
occurring in the exact formula (3.3), except for the order of the Tate-Shafarevich
group of E. Even when X.E=Q/ is known to be finite, it is very difficult to actually
compute its true order arithmetically. However, even granted this difficulty, there is
one subtle sub-test of the order of X.E=Q/ as predicted by (3.3) being correct. As
we shall explain in the next section, an important theorem of Cassels [9] proves that
if X.E=Q/ is finite, then its order must be the square of an integer. Happily, in all
of the vast number of numerical examples computed to date, the formula (3.3) has
always produced a conjectural order for the Tate-Shafarevich group which is indeed
the square of an integer.

www.lmfdb.org/EllipticCurve/Q
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4 Parity Questions

The only deep general results known about the conjecture of Birch and Swinnerton-
Dyer, which do not involve in some fashion the hypothesis that the L-series of the
curve has a zero at s D 1 of order at most 1, are parity theorems of two kinds. As
always, E will be an elliptic curve defined over Q, and X.E=Q/ will denote its
Tate-Shafarevich group. If A is any abelian group and p a prime number, we write
A.p/ for the p-primary subgroup of A, and AŒp� for the kernel of multiplication by
p on A. Also, Adiv will denote the maximal divisible subgroup of A. The following
theorem is due to Cassels [9] and Tate [52].

Theorem 4.1. There is a canonical non-degenerate, alternating, bilinear form on
X.E=Q/=X.E=Q/div .

Corollary 4.2. For every prime p, the Fp-vector space given by the kernel of
multiplication by p on X.E=Q/=X.E=Q/div has even dimension.

Corollary 4.3. If p is a prime such that X.E=Q/.p/div D 0, then the order of
X.E=Q/.p/ is a square.

In particular, if X.E=Q/ is finite, its order must be a perfect square. We note
that, for every prime p, classical Galois cohomology shows that, for some integer
tE;p � 0, one has

X.E=Q/.p/ D .Qp=Zp/
tE;p ˚ JE;p;

where JE;p is a finite group. Plainly X.E=Q/.p/div D .Qp=Zp/
tE;p . Of course,

conjecturally tE;p D 0 for every prime p, but the only far weaker general known
result in this direction is the following parity theorem of the Dokchitser brothers
[16]. Recall that gE denotes the rank of E.Q/, and rE denotes the order of zero of
L.E; s/ at the point s D 1.

Theorem 4.4. For every prime number p, we have rE � gE C tE;p mod 2. In
particular, the parity of tE;p is independent of p.

As a simple application of this theorem, we see that if there did exist a square free
positive integer N with N � 5; 6; 7mod 8, which is not a congruent number, then
the p-primary subgroup of the Tate-Shafarevich of the elliptic curve (1.1) would
have to contain a copy of the divisible group Qp=Zp for every prime p, and so a
copy of Q=Z. We also note that the strong parity conjecture is the assertion that
rE � gE mod 2, but this has only been proven at present under the assumption that
rE � 1, when, as we shall see in the next section, we even have rE D gE, in accord
with the weak Birch-Swinnerton-Dyer conjecture.
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5 Main Results

As before, let E denote any elliptic curve defined over Q. Define the modular curve
X0.C.E// by

X0.C.E// D �0.C.E// n .H [ P
1.Q//;

where P
1.Q/ denotes the projective line over Q. Then X0.C.E// is the set of

complex points of a curve defined over Q, which we also denote by X0.C.E//.
Let Œ1 � denote the cusp 1 of this curve. The modularity Theorem 2.1 of Wiles
[5, 57], when combined with work of Shimura [46], shows that there exists an
elliptic curve E.fE/ defined over Q, which is a factor up to isogeny of the Jacobian
variety of X0.C.E//, and has the same L-series as the elliptic curve E. Hence, by
Faltings theorem [18], E and E.fE/ must be isogenous over Q, whence we obtain
the following result.

Theorem 5.1. There is a non-constant rational map defined over Q

(5.1) � W X0.C.E//! E

with �. Œ1 �/ D O.

The most important result to date in the direction of the conjecture of Birch
and Swinnerton-Dyer is the following theorem of Kolyvagin and Gross-Zagier (see
[23]). We again write rE and gE for the order of the zero of the complex L-series of
E at s D 1, and for the rank of E.Q/.

Theorem 5.2. If rE � 1, then rE D gE, and X.E=Q/ is finite.

The proof relies heavily on the earlier work of Gross-Zagier [24], relating the
canonical height of Heegner points to derivatives of L-functions, as well as on
Kolyvagin’s highly original notion of an Euler system [27]. Heegner points were
first discovered, in a special case, by Heegner in his celebrated paper [25], and it
was Birch and Stephens who first conjectured that they should be related to the
derivatives of L-series. We also note that the proof of the above theorem establishes
the following rationality result.

Theorem 5.3. If rE � 1, then LE=.�ER1.E// lies in Q.

When rE D 0, we know by Theorem 5.2 that gE D 0, whence R1.E/ D
1=#.E.Q//2, and Theorem 5.3 in this case is just a consequence of the classical
theory of modular symbols going back to the work of Hecke and others (see
[15]). However, when rE D 1, so that gE D 1 by Theorem 5.2, the assertion of
Theorem 5.3 can only be proven by using the Gross-Zagier theorem [24]. Moreover,
we stress that, contrary to what is often stated in the literature, we still cannot prove
the Birch-Swinnerton-Dyer conjectural exact formula for the order of X.E=Q/
under the hypothesis that rE � 1. Finally, we note that some special cases of
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Theorem 5.2 were proven earlier for elliptic curves with complex multiplication
by rather different methods, which make use of elliptic units rather than Heegner
points (see [12, 42–44]). In another direction, Zhang [59] has generalised the above
results to the Jacobian varieties of Shimura curves defined over totally real number
fields.

Theorem 5.2 has a surprising application to Gauss’ class number problem for
imaginary quadratic fields, as was discovered by Goldfeld [20] (see also [38]). If E
is an elliptic curve with gE � 3, Theorem 5.2 guarantees that necessarily rE > 1, and
so we must have that rE � 3 when wE D �1. It is usually easy to check numerically
that rE � 3 when gE D 3, and thus one can prove that there exist elliptic curves E
over Q with rE D 3. For example, rE D 3 for the curve

E W y2 C y D x3 � 7xC 3;

which has conductor C.E/ D 5077, and gE D 3. Goldfeld’s work then enables
one to give, for the first time, an explicit upper bound for the absolute value of the
discriminants of all imaginary quadratic fields having any prescribed class number.
The earlier work on this problem by Heilbronn and Siegel, while proving that the
class number of an imaginary quadratic field tends to infinity with the absolute value
of the discriminant of the field, was ineffective.

In view of Theorem 5.2, it is plainly an important problem to decide when the
hypothesis rE � 1 holds. In any particular numerical example, it is usually easy
to settle this question, but our knowledge of theoretical results is still very limited.
The most natural example of infinite families of elliptic curves defined over Q is
given by the family of quadratic twists of a fixed elliptic curve E. If M is the
discriminant of a quadratic field, E.M/ will denote the quadratic twist of E by the
extension Q.

p
M/=Q (in other words, E.M/ is the unique elliptic curve defined over

Q, which is not isomorphic to E over Q, but becomes isomorphic to E over Q.
p

M/).
It is not difficult to see that, in the family of all quadratic twists E.M/ of a given E
defined over Q, the root numbers wE.M/ D C1 and wE.M/ D �1 will each occur
half the time. A folklore conjecture (see [21]) asserts that amongst those quadratic
twists E.M/ with wE.M/ D C1 (respectively, with wE.M/ D �1), we should have
rE.M/ D 0 (respectively, rE.M/ D 1) outside a set of discriminants M of density
zero, but this has never been proven for a single elliptic curve E. However, the
papers [6] and [37] prove, by rather different methods, the important result that
there always exist infinitely many discriminants M such that rE.M/ D 0, and infinitely
many discriminants M such that rE.M/ D 1. From the point of view of diophantine
equations, there is great interest in establishing conditions on the prime factors of M
which guarantee that rE.M/ D 1, since E.M/.Q/ is infinite for such M by Theorem 5.2.
The first result in this direction is due to Heegner [25], and subsequently Birch [4]
generalised and reformulated it. We write Œ0 � for the zero cusp on the modular
curve X0.C.E//.

Theorem 5.4. Let E=Q be any elliptic such that �. Œ0 �/ is not contained in 2E.Q/,
and let p be any prime number such that p � 3mod 4, and every prime dividing
C.E/ splits in the imaginary quadratic field Q.

p�p/. Then rE.�p/ D 1, and so, in
particular, E.�p/.Q/ is infinite.
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Recently, Tian discovered a method for generalising this result to quadratic twists
by discriminants having an arbitrary prescribed number of prime factors, which he
first applied to the classical congruent number problem [55]. More generally, his
method yields the following theorem [13].

Theorem 5.5. Let E=Q be any elliptic curve such that (i) �. Œ0 �/ is not contained
in 2E.Q/, and (ii) there exists a good supersingular prime q with q � 1mod 4,
and with C.E/ a square modulo q. Then, for each integer k � 1, there exist
infinitely many square free discriminants M having exactly k prime factors, and
with .M;C.E// D 1, such that rE.M/ D 1, whence, in particular, E.M/.Q/ is infinite.

Finally, we mention a recent result proven by Bertolini, Darmon, and Rotger
[1], which is a key first step towards generalizing Theorem 5.2 to certain finite
Galois extensions of Q. Let � denote an odd, irreducible, 2-dimensional Artin
representation of the absolute Galois group of Q. As usual, we define L.E; �; s/
to be the Euler product attached to the tensor product of the Artin representation �
with the l-adic Tate module of E. Since both E and � are known to be modular, it
follows from the theory of modular forms that L.E; �; s/ is also entire.

Theorem 5.6. If L.E; �; 1/ ¤ 0, then � does not occur in E.F/ ˝Z C, where F is
the fixed field of the kernel of �.

Moreover, very recent work of Kings, Lei, Loeffler and Zerbes [29–31] constructs a
new Euler system, and they use it both to give another proof of Theorem 5.6, and,
in addition, to show that, when L.E; �; 1/ ¤ 0, the �-component of the p-primary
subgroup of the Tate-Shafarevich group of E over F is finite for most primes p.

6 The Exact Formula Prime by Prime

In this section, we will discuss the partial results which are known about the con-
jectural exact Birch-Swinnerton-Dyer formula for the order of the Tate-Shafarevich
group of an elliptic curve E=Q when we assume that rE � 1. Theorem 5.2 assures us
that, in this case, E.Q/ has rank rE, and X.E=Q/ is finite. We note that the order of
the torsion subgroup E.Q/ is easily determined, and has only one of 12 possibilities,
thanks to the beautiful work of Mazur [32]. However, the classical theory of descent
does not give a practical way to compute the order of the p-primary part of X.E=Q/
once p > 5, and the only techniques which work at present are p-adic methods
related to Iwasawa theory. In view of this, it is convenient to break the conjecture
up into a p-part for every prime number p. To simplify the notation, we define

Tam.E/ D c1.E/
Y

qjC.E/
cq.E/:



218 J. Coates

It is also convenient to put

L.alg/.E; 1/ D L.E; 1/=�E;

which we know lies in Q by Theorem 5.3. Then, for every prime number p, the
strong Birch-Swinnerton-Dyer conjecture predicts the following exact formula for
the order of the p-primary subgroup X.E=Q/.p/ of X.E=Q/ when rE D 0.

p-Part of the Birch-Swinnerton-Dyer Conjecture for Analytic Rank 0. Assume
that rE D 0: Then, for each prime p, we have

(6.1)
ordp.#.X.E=Q/.p/// D ordp.L

.alg/.E; 1//C 2ordp.#.E.Q/// � ordp.Tam.E//:

The strongest general result known about this p-part of the Birch and Swinnerton-
Dyer conjecture is for E with complex multiplication, and is proven using the Euler
system of elliptic units, combined with arguments from Iwasawa theory. The result
is due to Rubin [42], but also uses earlier work of Yager [58].

Theorem 6.1. Assume that rE D 0; and that E admits complex multiplication by an
order in an imaginary quadratic field K. If p is any prime which does not divide the
order of the group of roots of unity of K, then the p-part of the Birch-Swinnerton-
Dyer conjecture is valid for E.

As an example of this theorem, consider the modular curve A D X0.49/, which is
an elliptic curve with equation

A W y2 C xy D x3 � x2 � 2x � 1:

Take E D A.M/, with M D q1 : : : qr, where the qi are distinct primes, with
qi � 1mod 4 and qi � 3; 5; 6mod 7, for i D 1; : : : ; r. It is shown in [13] that
ord2.L.alg/.E; 1// D r � 1 for all r � 0. This proves that L.E; 1/ ¤ 0, and it is easy
to see that it establishes the 2-part of the Birch-Swinnerton-Dyer conjecture for E.
Hence, applying Theorem 6.1, we conclude that gE D 0, X.E=Q/ is finite, and the
exact Birch-Swinnerton-Dyer formula is valid for the order of X.E=Q/.

For elliptic curves without complex multiplication, the only way of attacking
the p-part of the conjecture of Birch and Swinnerton-Dyer when rE D 0 is by
considering the Iwasawa theory of E over the cyclotomic Zp-extension of Q.
We srecall that, for p any prime, the cyclotomic Zp-extension of Q, which we denote
by ˆ1, is the unique subfield of the field generated over Q by all p-power roots of
unity, whose Galois group � over Q is isomorphic to the additive group of Zp.
Mazur and Swinnerton-Dyer [36] were the first to prove the existence of a p-adic L-
function attached to E over ˆ1 when p is a prime of good ordinary reduction for E,
and to formulate a “main conjecture” relating this p-adic L-function to the �-module
given by the p1-Selmer group of E over ˆ1. As a special case of a more general
result, Schneider [45] showed that, for p any odd prime number where E has good
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ordinary reduction, this “main conjecture” would indeed imply the p-part of the
Birch-Swinnerton-Dyer conjecture for the order of X.E=Q/ when rE D 0. The first
major breakthrough in the direction of proving this main conjecture for odd good
ordinary primes p was made by Kato [26]. He proved the existence of a remarkable
new Euler system attached to E, and used it to prove a partial result in the direction
of the “main conjecture” for sufficiently large good ordinary primes p. Subsequently,
Skinner and Urban [48] have completed the proof of this “main conjecture” in many
cases, by combining Kato’s result with deep arguments from the theory of modular
forms. This leads to the following specific theorem [48] about the p-part of the
conjecture of Birch and Swinnerton-Dyer. Let Ep denote the Galois module of p-
division points on E, and let

�E;p W Gal.Q=Q/! Aut.Ep/ D GL2.Fp/

be the associated Galois representation.

Theorem 6.2. Assume that E does not admit complex multiplication, and that
rE D 0. Let p be any prime number such that (1) p ¤ 2; (2) E has good ordinary
reduction at p, (3) �E;p is surjective, and (4) there exists a prime q, where E has bad
multiplicative reduction, such that the Galois module Ep is ramified at q. Then the
p-part of the Birch-Swinnerton-Dyer conjecture is valid for E.

In particular, if E is semistable (i.e. E has multiplicative reduction at all primes of
bad reduction), and rE D 0, then this theorem establishes the p-part of the Birch-
Swinnerton-Dyer conjecture for all primes p � 11 of good ordinary reduction. For
primes p > 2 where E has good supersingular reduction and tp D 0, Wan [56]
uses quite different methods in Iwasawa theory to give a proof of the p-part of the
conjecture of Birch and Swinnerton-Dyer, assuming that rE D 0 and E is semistable.

One can also formulate the p-part of the conjecture of Birch and Swinnerton-
Dyer for every prime p when rE D 1.

p-Part of the Birch-Swinnerton-Dyer Conjecture for Analytic Rank 1. Assume
that rE D 1: Then, for each prime p, we have

(6.2) ordp.#.X.E=Q/.p/// D ordp.LE=.�ER1.E/// � ordp.Tam.E//:

When E admits complex multiplication and rE D 1, the work of Kobayashi [28],
Perrin-Riou [40], Pollak-Rubin [41], Rubin [42] establishes the following analogue
of Theorem 6.1.

Theorem 6.3. Assume that E admits complex multiplication and that rE D 1. Let
p be any odd prime where E has good reduction. Then the p-part of the Birch-
Swinnerton-Dyer conjecture is valid for E.

When E does not admit complex multiplication, we have the following recent
theorem of Zhang [60].
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Theorem 6.4. Assume that E does not admit complex multiplication, and that
rE D 1. Let p be any prime number such that (1) p � 5; (2) E has good ordinary
reduction at p, (3) �E;p is surjective, (4) there exist two primes qi.i D 1; 2/ of bad
multiplicative reduction for E such that the Galois module Ep is ramified at both
q1 and q2, and (5) If q is any prime of bad multiplicative reduction for E with
q � ˙1mod p, then Ep is ramified at q. Then the p-part of the Birch-Swinnerton-
Dyer conjecture is valid for E.

Finally, it is also interesting to note that Kato’s work [27], combined with
a theorem of Rohrlich [39], proves the following result, which was originally
conjectured by Mazur [33]. Let �p1 denote the group of all p-power roots of unity.

Theorem 6.5. For all primes p, the abelian group E.Q.�p1// is finitely generated.

7 A Numerical Example

Although this article is not directly concerned with the conjecture of Birch and
Swinnerton-Dyer for elliptic curves over number fields, I want to end by briefly
explaining a remarkable and naturally occurring numerical example, related to the
elliptic curves of conductor 11. We recall that 11 is the smallest conductor for an
elliptic curve defined over Q, and there are three isogenous curves of conductor 11
defined over Q. Two of these curves are given by

A1 W y2 C y D x3 � x2; A2 W y2 C y D x3 � x2 � 7820x � 263580;

and they are linked by a Q-isogeny  W A2 ! A1 of degree 25. It is well known that
A1.Q/ D Z=5Z; and A2.Q/ D 0. As was pointed out to me by Fisher and Matsuno,
the splitting field of the Galois representation given by the kernel of  , which we
denote by J, is the field Q.�5; r/, where �5 is the group of fifth roots of unity, and r
denotes any root of the abelian polynomial

x5 � 65x4 C 205x3 C 140x2 C 25xC 1:

Around the year 2000, Matsuno discovered that the complex L-series of either of
these two curves, when viewed as curves over J, has a zero of order 4 at s D 1. It
therefore became an interesting numerical challenge to show that the group of points
of either of these two curves with coordinates in J also has rank 4, as predicted by the
natural generalization of the weak Birch-Swinnerton-Dyer conjecture. Recently, S.
Donnelly (private communication) finally found four linearly independent points,
using the MAGMA system in Sydney University. I am very grateful to him for
providing the following data. Define E D A.5/1 to be the quadratic twist of A1 by
Q.
p
5/, so that C.E/ D 275. An equation for the curve E is given by
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y2 D x3 � 10800xC 1026000:

Then Donnelly discovered that there is a point in E.J/ with x-coordinate

(7.1) .1632096r4 � 106533648r3 C 363696696r2 C 134074044rC 8312592/=41323

and the conjugates of this point under the Galois group of Q.r/=Q span a subgroup
of rank 4 in E.Q.r//. Moreover, the torsion subgroup of E.Q.r// is trivial, and
it is very probable that E.Q.r// is generated by any four of the conjugates of
the point (7.1). Also, the Birch-Swinnerton-Dyer conjecture predicts that the Tate-
Shafarevich group of E over Q.r/ should be trivial. Note that E.J/ D A1.J/ becausep
5 2 J. It also seems very likely that A1.J/ is generated by any four of the

conjugates of the point (7.1), together with the point .0; 0/ of order 5. Obviously, J
is a subfield of the field F1 which is obtained by adjoining to Q the coordinates of
all 5-power division points on any of the three curves of conductor 11. At present,
these points found by Donnelly are the only known points of infinite order on the
curves of conductor 11 with coordinates in F1 (see [11]).
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An Essay on the Riemann Hypothesis

Alain Connes

Abstract The Riemann hypothesis is, and will hopefully remain for a long time,
a great motivation to uncover and explore new parts of the mathematical world.
After reviewing its impact on the development of algebraic geometry we discuss
three strategies, working concretely at the level of the explicit formulas. The first
strategy is “analytic” and is based on Riemannian spaces and Selberg’s work on the
trace formula and its comparison with the explicit formulas. The second is based on
algebraic geometry and the Riemann-Roch theorem. We establish a framework in
which one can transpose many of the ingredients of the Weil proof as reformulated
by Mattuck, Tate and Grothendieck. This framework is elaborate and involves
noncommutative geometry, Grothendieck toposes and tropical geometry. We point
out the remaining difficulties and show that RH gives a strong motivation to develop
algebraic geometry in the emerging world of characteristic one. Finally we briefly
discuss a third strategy based on the development of a suitable “Weil cohomology”,
the role of Segal’s  -rings and of topological cyclic homology as a model for
“absolute algebra” and as a cohomological tool.

1 Introduction

Let �.x/ WD #fp j p 2P; p < xg be the number of primes less than x with 1
2

added
when x is prime. Riemann [85] found for the counting function1

f .x/ WD
X 1

n
�.x

1
n /;

1Similar counting functions were already present in Chebyshev’s work.
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the following formula involving the integral logarithm function Li.x/ D R x
0

dt
log t ,

f .x/ D Li.x/ �
X
�

Li.x�/C
Z 1

x

1

t2 � 1
dt

t log t
� log 2 (1)

in terms2 of the non-trivial zeros � of the analytic continuation (shown as well as
two proofs of the functional equation by Riemann at the beginning of his paper) of
the Euler zeta function

�.s/ D
X 1

ns

Reading Riemann’s original paper is surely still the best initiation to the subject.
In his lecture given in Seattle in August 1996, on the occasion of the 100th
anniversary of the proof of the prime number theorem, Atle Selberg comments about
Riemann’s paper: [88]

It is clearly a preliminary note and might not have been written if L. Kronecker had not
urged him to write up something about this work (letter to Weierstrass, Oct. 26 1859). It
is clear that there are holes that need to be filled in, but also clear that he had a lot more
material than what is in the note.3 What also seems clear : Riemann is not interested in an
asymptotic formula, not in the prime number theorem, what he is after is an exact formula!

The Riemann hypothesis (RH) states that all the non-trivial zeros of � are on the
line 1

2
C iR. This hypothesis has become over the years and the many unsuccessful

attempts at proving it, a kind of “Holy Grail” of mathematics. Its validity is indeed
one of the deepest conjectures and besides its clear inference on the distribution of
prime numbers, it admits relations with many parts of pure mathematics as well as
of quantum physics.

It is, and will hopefully remain for a long time, a great motivation to uncover and
explore new parts of the mathematical world. There are many excellent texts on RH,
such as [10] which explain in great detail what is known about the problem, and the
many implications of a positive answer to the conjecture. When asked by John Nash
to write a text on RH,4 I realized that writing one more encyclopedic text would
just add another layer to the psychological barrier that surrounds RH. Thus I have
chosen deliberately to adopt another point of view, which is to navigate between
the many forms of the explicit formulas (of which (1) is the prime example) and
possible strategies to attack the problem, stressing the value of the elaboration of
new concepts rather than “problem solving”.

2More precisely Riemann writes
P

<.˛/>0

�
Li.x

1
2C˛i/C Li.x

1
2�˛i/

�
instead of

P
� Li.x�/ using

the symmetry � ! 1� � provided by the functional equation, to perform the summation.
3See [44, Chap. VII] for detailed support to Selberg’s comment.
4My warmest thanks to Michael Th. Rassias for the communication.
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• RH and algebraic geometry
We first explain the Riemann-Weil explicit formulas in the framework of adeles
and global fields in Sect. 2.1. We then sketch in Sect. 2.3 the geometric proof of
RH for function fields as done by Weil, Mattuck, Tate and Grothendieck. We then
turn to the role of RH in generating new mathematics, its role in the evolution of
algebraic geometry in the twentieth century through the Weil conjectures, proved
by Deligne, and the elaboration by Grothendieck of the notions of scheme and
of topos.

• Riemannian Geometry, Spectra and trace formulas
Besides the proof of analogues of RH such as the results of Weil and of Deligne,
there is another family of results that come pretty close. They give another
natural approach of RH using analysis, based on the pioneering work of Selberg
on trace formulas. These will be reviewed in Sect. 3 where the difficulty arising
from the minus sign in front of the oscillatory terms will be addressed.

• The Riemann-Roch strategy: A Geometric Framework
In Sect. 4, we shall describe a geometric framework, established in our joint work
with C. Consani, allowing us to transpose several of the key ingredients of the
geometric proof of RH for function fields recalled in Sect. 2.3. It is yet unclear if
this is the right set-up for the final Riemann-Roch step, but it will illustrate the
power of RH as an incentive to explore new parts of mathematics since it gives a
clear motivation for developing algebraic geometry in characteristic 1 along the
line of tropical geometry. This will take us from the world of characteristic p to
the world of characteristic 1, and give us an opportunity to describe its relation
with semi-classical and idempotent analysis, optimization and game theory,5

through the Riemann-Roch theorem in tropical geometry [3, 48, 82].
• Absolute Algebra and the sphere spectrum

The arithmetic and scaling sites which are the geometric spaces underlying
the Riemann-Roch strategy of Sect. 4 are only the semiclassical shadows of a
more mysterious structure underlying the compactification of SpecZ that should
give a cohomological interpretation of the explicit formulas. We describe in this
last section an essential tool coming from algebraic topology: Segal’s  -rings
and the sphere spectrum, over which all previous attempts at developing an
absolute algebra organize themselves. Moreover, thanks to the results of Hessel-
holt and Madsen in particular, topological cyclic homology gives a cohomology
theory suitable to treat in a unified manner the local factors of L-functions.

2 RH and Algebraic Geometry

I will briefly sketch here the way RH, once transposed in finite characteristic,
has played a determining role in the upheaval of the very notion of geometric
space in algebraic geometry culminating with the notions of scheme and topos

5One of the topics in which John Nash made fundamental contributions.
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due to Grothendieck, with the notion of topos offering a frame of thoughts of
incomparable generality and breadth. It is a quite remarkable testimony to the unity
of mathematics that the origin of this discovery lies in the greatest problem of
analysis and arithmetic.

2.1 The Riemann-Weil Explicit Formulas, Adeles
and Global Fields

Riemann’s formula (1) is a special case of the “explicit formulas” which establish
a duality between the primes and the zeros of zeta. This formula has been extended
by Weil in the context of global fields which provides a perfect framework for a
generalization of RH since it has been solved, by Weil, for all global fields except
number fields.

2.1.1 The Case of —

Let us start with the explicit formulas (cf. [9, 59, 83, 101, 103]). We start with a
function F.u/ defined for u 2 Œ1;1/, continuous and continuously differentiable
except for finitely many points at which both F.u/ and F0.u/ have at most a
discontinuity of the first kind,6 and such that, for some � > 0, F.u/ D O.u�1=2��/.
One then defines the Mellin transform of F as

˚.s/ D
Z 1

1

F.u/ us�1du (2)

The explicit formula then takes the form

˚.
1

2
/C ˚.�1

2
/ �

X
�2Zeros

˚.� � 1
2
/ D

X
p

1X
mD1

log p p�m=2F.pm/C (3)

C.�
2
C log�

2
/F.1/C

Z 1

1

t3=2F.t/ � F.1/

t.t2 � 1/ dt

where � D � 0.1/ is the Euler constant, and the zeros are counted with their
multiplicities i.e.

P
�2Zeros˚.� � 1

2
/ means

P
�2Zeros order.�/˚.� � 1

2
/.

6And at which the value of F.u/ is defined as the average of the right and left limits there.
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2.1.2 Adeles and Global Fields

By a result of Iwasawa [66] a field K is a algebraic number field, or an algebraic
function field of one variable over a finite constant field, if and only if there
exists a semi-simple (i.e. with trivial Jacobson radical [68]) commutative ring R
containing K such that R is locally compact, but neither compact nor discrete and K

is discrete and cocompact in R. This result gives a conceptual definition of what is
a “global field” and indicates that the arithmetic of such fields is intimately related
to analysis on the parent ring R which is called the ring of adeles of K [93, 102].
It is the opening door to a whole world which is that of automorphic forms and
representations, starting in the case of GL1 with Tate’s thesis [93] and Weil’s book
[102]. Given a global field K, the ring AK of adeles of K is the restricted product
of the locally compact fields Kv obtained as completions of K for the different
places v of K. The equality dax D jajdx for the additive Haar measure defines the
module Mod W Kv ! RC, Mod.a/ WD jaj on the local fields Kv and also as a group
homomorphism Mod W CK ! R

�C where CK D GL1.AK/=K
� is the idele class

group. The kernel of the module is a compact subgroup CK;1 � CK and the range
of the module is a cocompact subgroup Mod.K/ � R

�C. On any locally compact
modulated group, such as CK or the multiplicative groups K

�
v , one normalizes the

Haar measure d�u uniquely so that the measure of fu j 1 � juj � �g is equivalent
to log� when �!1.

2.1.3 Weil’s Explicit Formulas

As shown by Weil, in [103], adeles and global fields give the natural framework for
the explicit formulas. For each character 
 2 bCK;1 one chooses an extension Q
 to CK

and one lets Z Q
 be the set (with multiplicities and taken modulo the orthogonal of
Mod.K/, i.e. fs 2 C j qs D 1;8q 2 Mod.K/g) of zeros of the L-function associated
to Q
. Let then ˛ be a nontrivial character of AK=K and ˛ D Q

˛v its local factors.
The explicit formulas take the following form, with h 2 S .CK/ a Schwartz function
with compact support:

Oh.0/C Oh.1/ �
X


2cCK;1

X
Z

Q


Oh. Q
; �/ D
X
v

Z 0

K�

v

h.u�1/
j1 � uj d

�u (4)

where the principal value
R 0
K�

v
is normalized by the additive character ˛v (cf. [22,

Chap. II, Sect. 8.5, Theorem 2.44] for the precise notations and normalizations) and
for any character ! of CK one lets

Oh.!; z/ WD
Z

h.u/ !.u/ jujz d�u; Oh.t/ WD Oh.1; t/ (5)
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For later use in Sect. 4.1 we compare (3) with the Weil way (4) of writing the explicit
formulas. Let the function h be the function on CQ given by h.u/ WD juj� 1

2 F.juj/
(with F.v/ D 0 for v < 1). Then Oh.!; z/ D 0 for characters with non-trivial
restriction to CQ;1 D OZ�, while Oh.1; z/ D ˚.z � 1

2
/. Moreover note that for the

archimedean place v of K D Q one has, disregarding the principal values for
simplicity,

Z

K�

v

h.u�1/
j1 � uj d

�u D
Z

R�

h.u/

j1 � u�1j d
�u

D 1

2

Z 1

1

h.t/

	
1

j1 � t�1j C
1

j1C t�1j



dt

t
D
Z 1

1

t3=2F.t/

t.t2 � 1/dt

where the 1
2

comes from the normalization of the multiplicative Haar measure
of R

� viewed as a modulated group. In a similar way, the normalization of the
multiplicative Haar measure on Q

�
p shows that for the finite place associated to

the prime p one gets the term
P1

mD1 log p p�m=2F.pm/.

2.2 RH for Function Fields

When the module Mod.K/ of a global field is a discrete subgroup of R�C it is of the
form Mod.K/ D qZ where q is a prime power, and the field K is the function field
of a smooth projective curve C over the finite field Fq.

Already at the beginning of the twentieth century, Emil Artin and Friedrich Karl
Schmidt have generalized RH to the case of function fields. We refer to the text of
Cartier [16] where he explains how Weil’s definition of the zeta function associated
to a variety over a finite field slowly emerged, starting with the thesis of E. Artin
where this zeta function was defined for quadratic extensions of FqŒT�, explaining
F. K. Schmidt’s generalization to finite extensions of FqŒT� and the work of Hasse
on the Riemann hypothesis for elliptic curves over finite fields.

When the global field K is a function field, geometry comes to the rescue. The
problem becomes intimately related to the geometric one of estimating the number
N.qr/ WD # C.Fqr / of points of C rational over a finite extension Fqr of the field of
definition of C. The analogue of the Riemann zeta function is a generating function:
the Hasse-Weil zeta function

�C.s/ WD Z.C; q�s/; Z.C;T/ WD exp

0
@X

r�1
N.qr/

Tr

r

1
A (6)

The analogue of RH for �C was proved by André Weil in 1940. Pressed by the
circumstances (he was detained in jail) he sent a Comptes-Rendus note to E. Cartan
announcing his result. Friedrich Karl Schmidt and Helmut Hasse had previously
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been able to transpose the Riemann-Roch theorem in the framework of geometry
over finite fields and shown its implications for the zeta function: it is a rational
fraction (of the variable T) and it satisfies a functional equation. But it took André
Weil several years to put on solid ground a general theory of algebraic geometry
in finite characteristic that would justify his geometric arguments and allow him
to transpose the Hodge index theorem in the form due to the Italian geometers
Francesco Severi and Guido Castelnuovo at the beginning of the twentieth century.

2.3 The Proof Using Riemann-Roch on NC � NC

Let C be a smooth projective curve over the finite field Fq. The first step is to extend
the scalars from Fq to an algebraic closure NFq. Thus one lets

NC WD C˝Fq
NFq (7)

This operation of extension of scalars does not change the points over NFq, i.e. one
has NC. NFq/ D C. NFq/. The Galois action of the Frobenius automorphism of NFq raises
the coordinates of any point x 2 C. NFq/ to the qth power and this transformation
of C. NFq/ coincides with the relative Frobenius Frr WD FrC 	 Id of NC, where FrC

is the absolute Frobenius of C (which is the identity on points of the scheme and
the qth power map in the structure sheaf). The relative Frobenius Frr is NFq-linear by
construction and one can consider its graph in the surface X D NC 	 NFq

NC which is

the square of NC. This graph is the Frobenius correspondence � . It is important to
work over an algebraically closed field in order to have a good intersection theory.
This allows one to express the right hand side of the explicit formula (4) for the
zeta function �C as an intersection number D:�, where � is the diagonal in the
square and D DP

ak�
k is the divisor given by a finite integral linear combination

of powers of the Frobenius correspondence. The terms Oh.0/, Oh.1/ in the explicit
formula are also given by intersection numbers D:�j, where

�0 D e0 	 NC ; �1 D NC 	 e1 (8)

where the ej are points of NC. One then considers divisors on X up to the additive
subgroup of principal divisors i.e. those corresponding to an element f 2 K of
the function field of X. The problem is then reduced to proving the negativity of
D:D (the self-intersection pairing) for divisors of degree zero. The Riemann-Roch
theorem on the surface X gives the answer. To each divisor D on X corresponds
an index problem and one has a finite dimensional vector space of solutions
H0.X;O.D// over NFq. Let

`.D/ D dim H0.X;O.D// (9)
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The best way to think of the sheaf O.D/ is in terms of Cartier divisors, i.e. a global
section of the quotient sheaf K �=O�

X , where K is the constant sheaf corresponding
to the function field of X and OX is the structure sheaf. The sheaf O.D/ associated
to a Cartier divisor is obtained by taking the sub-sheaf of K whose sections on Ui

form the sub OX-module generated by f �1
i 2  .Ui;K �/ where the fi represent D

locally. One has a “canonical” divisor K and Serre duality

dim H2.X;O.D// D dim H0.X;O.K � D// (10)

Moreover the following Riemann-Roch formula holds

2X
0

.�1/jdim Hj.X;O.D// D 1

2
D:.D � K/C 
.X/ (11)

where 
.X/ is the arithmetic genus. All this yields the Riemann-Roch inequality

`.D/C `.K � D/ � 1

2
D:.D � K/C 
.X/ (12)

One then applies Lemma 1 to the quadratic form s.D;D0/ D D:D0 using the �j of (8).
One needs three basic facts [54]

1. If `.D/ > 1 then D is equivalent to a strictly positive divisor.
2. If D is a strictly positive divisor then

D:�0 C D:�1 > 0

3. One has �0:�1 D 1 and �j:�j D 0.

One then uses (12) to show (see [54]) that if D:D > 0 then after a suitable rescaling
by n > 0 or n < 0 one gets `.nD/ > 1 which shows that the hypothesis (2) of the
following simple Lemma 1 is fulfilled, and hence that RH holds for �C,

Lemma 1. Let s.x; y/ be a symmetric bilinear form on a vector space E (over Q

or R). Let �j 2 E, j 2 f0; 1g, be such that

1. s.�j; �j/ D 0 and s.�0; �1/ D 1.
2. For any x 2 E such that s.x; x/ > 0 one has s.x; �0/ ¤ 0 or s.x; �1/ ¤ 0.

Then one has the inequality

s.x; x/ � 2s.x; �0/s.x; �1/ ; 8x 2 E (13)

The proof takes one line but the meaning of this lemma is to reconcile the “naive
positivity” of the right hand side of the explicit formula (4) (which is positive when
h � 0 vanishes near u D 1) with the negativity of the left hand side needed to prove
RH (cf. Sect. 3.1 (17) below).
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At this point we see that it is highly desirable to find a geometric framework
for the Riemann zeta function itself, in which the Hasse-Weil formula (6), the
geometric interpretation of the explicit formulas, the Frobenius correspon-
dences, the divisors, principal divisors, Riemann-Roch problem on the curve
and the square of the curve all make sense.

Such a tentative framework will be explained in Sect. 4. It involves in partic-
ular the refinement of the notion of geometric space which was uncovered by
Grothendieck and to which we now briefly turn.

2.4 Grothendieck and the Notion of Topos

The essential ingredients of the proof explained in Sect. 2.3 are the intersection
theory for divisors on NC 	 NC, sheaf cohomology and Serre duality, which give
the formulation of the Riemann-Roch theorem. Both owe to the discovery of sheaf
theory by J. Leray and the pioneering work of J. P. Serre on the use of sheaves
for the Zariski topology in the algebraic context, with his fundamental theorem
comparing the algebraic and analytic frameworks. The next revolution came from
the elaboration by A. Grothendieck and M. Artin of etale `-adic cohomology.
It allows one to express the Weil zeta function of a smooth projective variety X
defined over a finite field Fq i.e. the function Z.X; t/ given by (6) with t D q�s

which continues to make sense in general, as an alternate product of the form

Z.X; t/ D
2 dimXY

jD0
det.1 � tF� j Hj. NXet;Q`//

.�1/jC1

(14)

where F� corresponds to the action of the Frobenius on the `-adic cohomology and
` is a prime which is prime to q. This equality follows from a Lefschetz formula for
the number N.qr/ of fixed points of the rth power of the Frobenius and when X D C
is a curve the explicit formulas reduce to the Lefschetz formula. The construction
of the cohomology groups Hj. NXet;Q`/ is indirect and they are defined as :

Hj. NXet;Q`/ D lim �
n

�
Hj. NXet;Z=`

n
Z/
�˝Z`

Q`

where NXet is the etale site of NX. Recently the etale site of a scheme has been refined
[4] to the pro-etale site whose objects no longer satisfy any finiteness condition.
The cohomology groups Hj. NXproet; NQ`/ are then directly obtained using the naive
interpretation (without torsion coefficients). One needs to pay attention in (14) to
the precise definition of F, it is either the relative Frobenius Frr or the Geometric
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Frobenius Frg which is the inverse of the Arithmetic Frobenius Fra. The product
Fra ı Frr D Frr ı Fra is the absolute Frobenius Fr which acts trivially on the `-adic
cohomology. To understand the four different incarnations of “the Frobenius” it is
best to make them explicit in the simplest example of the scheme Spec R where
R D NFqŒT� is the ring of polynomials P.T/ DP ajTj, aj 2 NFq

• Geometric Frobenius:
P

ajTj 7!P
a1=q

j Tj

• Relative Frobenius: P.T/ 7! P.Tq/

• Absolute Frobenius: P.T/ 7! P.T/q

• Arithmetic Frobenius:
P

ajTj 7!P
aq

j Tj

The motivation of Grothendieck for developing etale cohomology came from the
search of a Weil cohomology and the Weil conjectures which were solved by
Deligne in 1973 [37].

In his quest Grothendieck uncovered several key concepts such as those of
schemes and above all that of topos, see [2] and [78], in his own words:

C’est le thème du topos, et non celui des schémas, qui est ce “lit”, ou cette “rivière
profonde”, où viennent s’épouser la géométrie et l’algèbre, la topologie et l’arithmétique,
la logique mathématique et la théorie des catégories, le monde du continu et celui des
structures “discontinues” ou “discrètes”. Si le thème des schémas est comme le cœur
de la géométrie nouvelle, le thème du topos en est l’enveloppe, ou la demeure. Il est
ce que j’ai conçu de plus vaste, pour saisir avec finesse, par un même langage riche en
résonances géométriques, une “essence” commune à des situations des plus éloignées les
unes des autres, provenant de telle région ou de telle autre du vaste univers des choses
mathématiques.

3 Riemannian Geometry, Spectra and Trace Formulas

Riemannian Geometry gives a wealth of “spectra” of fundamental operators associ-
ated to a geometric space, such as the Laplacian and the Dirac operators.

3.1 The Selberg Trace Formula

In the case of compact Riemann surfaces X with constant negative curvature �1,
the Selberg trace formula [86], takes the following form where the eigenvalues of
the Laplacian are written in the form7 �n D �. 14 C r2n/. Let ı > 0, h.r/ be an
analytic function in the strip j=.r/j � 1

2
C ı and such that h.r/ D h.�r/ and with

.1C r2/1Cıjh.r/j being bounded. Then [60, 86, 87], with A the area of X,

7Where the argument of rn is either 0 or ��=2.
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X
h.rn/ D A

4�

Z 1

�1
tanh.�r/h.r/rdrC

X
fTg

log N.T0/

N.T/
1
2 � N.T/� 1

2

g.log N.T// (15)

where g is the Fourier transform of h, i.e. more precisely g.s/ D 1
2�

R1
�1 h.r/e�irsdr.

The log N.T/ are the lengths of the periodic orbits of the geodesic flow with
log N.T0/ being the length of the primitive one. Already in 1950–51, Selberg saw
the striking similarity of his formula with (3) which (cf. [60]) can be rewritten in the
following form, with h and g as above and the non-trivial zeros of zeta expressed in
the form � D 1

2
C i� ,

X
�

h.�/ D h.
i

2
/C h.� i

2
/C 1

2�

Z 1

�1
!.r/h.r/dr � 2

X
�.n/n� 1

2 g.log n/ (16)

where

!.r/ D  0



	
1

4
C i

r

2



� log�;

 0


.s/ D

Z 1

0

1 � ts�1

1 � t
dt � � ; 8s;<.s/ > 0

and �.n/ is the von-Mangoldt function with value log p for powers p` of primes
and zero otherwise. Moreover Selberg found that there is a zeta function which
corresponds to (15) in the same way that �.s/ corresponds to (16). The role of Hilbert
space is crucial in the work of Selberg to ensure that the zeros of his zeta function
satisfy the analogue of RH. This role of Hilbert space is implicit as well in RH which
has been reformulated by Weil as the positivity of the functional W.g/ defined as
both sides of (16). More precisely the equivalent formulation is that W.g ? g�/ � 0
on functions g which correspond to Fourier transforms of analytic functions h as
above (i.e. even and analytic in a strip j=zj � 1

2
C ı) where for even functions one

has g�.s/ WD g.�s/ D g.s/. Moreover by [11, 15], it is enough, using Li’s criterion
(cf. [11, 73]), to check the positivity on a small class of explicit real valued functions
with compact support. In fact for later purposes it is better to write this criterion as

RH () s.f ; f / � 0 ; 8f j
Z

f .u/d�u D
Z

f .u/du D 0 (17)

where for real compactly supported functions on R
�C, we let s.f ; g/ WD N.f ? Qg/

where ? is the convolution product on R
�C, Qg.u/ WD u�1g.u�1/, and

N.h/ WD
1X

nD1
�.n/h.n/C

Z 1

1

u2h.u/ � h.1/

u2 � 1 d�uCc h.1/ ; c D 1

2
.log�C�/ (18)

The Selberg trace formula has been considerably extended by J. Arthur and plays
a key role in the Langland’s program. We refer to [1] for an introduction to this vast
topic.
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3.2 The Minus Sign and Absorption Spectra

The Selberg trace formula [86, 87] for Riemann surfaces of finite area, acquires
additional terms which make it look e.g. in the case of X D H=PSL.2;Z/ (where H
is the upper half plane with the Poincaré metric) even more similar to the explicit
formulas, since the parabolic terms now involve explicitly the sum

2

1X
nD1

�.n/

n
g.2 log n/

Besides the square root in the �.n/ terms in the explicit formulas (16)

�2
1X

nD1

�.n/

n
1
2

g.log n/

there is however a striking difference which is that these terms occur with a
positive sign instead of the negative sign in (16), as discussed in [60, Sect. 12]. This
discussion of the minus sign was extended to the case of the semiclassical limit of
Hamiltonian systems in physics in [5, 6]. In order to get some intuition of what this
reveals, it is relevant to go back to the origin of spectra in physics, i.e. to the very
beginning of spectroscopy. It occurred when Joseph Von Fraunhofer (1787–1826)
could identify, using self-designed instruments, about 500 dark lines in the light
coming from the sun, decomposed using the dispersive power of a spectroscope
such as a prism (cf. Fig. 1). These dark lines constitute the “absorption spectrum”
and it took about 45 years before Kirchhoff and Bunsen noticed that several of
these Fraunhofer lines coincide (i.e. have the same wave length) with the bright
lines of the “emission” spectrum of heated elements, and showed that they could be
reobtained by letting white light traverse a cold gas. In his work on the trace formula
in the finite covolume case, Selberg had to take care of a superposed continuous
spectrum due to the presence of the non-compact cusps of the Riemann surface.

3.3 The Adele Class Space and the Explicit Formulas

I had the chance to be invited at the Seattle meeting in 1996 for the celebration of
the proof of the prime number theorem. The reason was the paper [12] (inspired
from [69]) in which the Riemann zeta function appeared naturally as the partition
function of a quantum mechanical system (BC system) exhibiting phase transitions.
The RH had been at the center of discussions in the meeting and I knew the
analogy between the BC-system and the set-up that V. Guillemin proposed in [56]
to explain the Selberg trace formula using the action of the geodesic flow on the
horocycle foliation. To a foliation is associated a von Neumann algebra [18], and
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Continuous spectrum

Emission spectrum

Absorption spectrum

Fig. 1 The three kinds of spectra occurring in spectroscopy: (1) The top one is the “continuous
spectrum” which occurs when white light is decomposed by passing through a prism. (2) The
middle one is the “emission spectrum” which occurs when the light emitted by a heated gas is
decomposed by passing through a prism and gives shining lines-a signature of the gas-over a
dark background. (3) The third one is the “absorption spectrum” which occurs when white light
traverses a cold gas and is then decomposed by passing through a prism. It appears as dark lines in
a background continuous spectrum. The absorption lines occur at the same place as the emission
lines

the horocycle foliation on the sphere bundle of a compact Riemann surface gives a
factor of type II1 on which the geodesic flow acts by scaling the trace. An entirely
similar situation comes canonically from the BC-system at critical temperature and
after interpreting the dual system in terms of adeles, I was led by this analogy to
consider the action of the idele class group of Q on the adele class space, i.e. the
quotient Q

�nAQ of the adeles AQ of Q by the action of Q
�. I knew from the

BC-system that the action of Q
�, which preserves the additive Haar measure, is

ergodic for this measure and gives the same factor of type II1 as the horocycle
foliation. Moreover the dual action scales the trace in the same manner.

Let K be a global field and CK D GL1.AK/=K
� the idele class group. The

module Mod W CK ! R
�C being proper with cocompact range, one sees that the

Haar measure on the Pontrjagin dual group of CK is diffuse. Since a point is of
measure 0 in a diffuse measure space there is no way one can see the absorption
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spectrum without introducing some smoothness on this dual which is done using a
Sobolev space L2ı.CK/ of functions on CK which (for fixed ı > 1) is defined as

jj�jj2 D
Z

CK

j�.x/j2 �.x/ d�x; �.x/ WD .1C log jxj2/ı=2 (19)

Definition 1. Let K be a global field, the adele class space of K is the quotient
XK D AK=K

� of the adeles of K by the action of K� by multiplication.

We then consider the codimension 2 subspace S .AK/0 of the Bruhat-Schwartz
space S .AK/ (cf. [13]) given by the conditions f .0/ D 0 ; R f dx D 0 The Sobolev
space L2ı.XK/0 is the separated completion of S .AK/0 for the norm with square

jjf jj2 D
Z

CK

j
X

q2K�

f .qx/j2 �.x/ jxjd�x (20)

Note that by construction all functions of the form f .x/ D g.x/ � g.qx/ for some
q 2 K

� belong to the radical of the norm (20), which corresponds to the operation
of quotient of Definition 1. In particular the representation of ideles on S .AK/

given by

.#.˛/�/.x/ D �.˛�1x/ 8˛ 2 GL1.AK/ ; x 2 AK (21)

induces a representation #a of CK on L2ı.XK/0. One has by construction a natural
isometry E W L2ı.XK/0 ! L2ı.CK/ which intertwines the representation #a with the
regular representation of CK in L2ı.CK/ multiplied by the square root of the module.
This representation restricts to the cokernel of the map E, which splits as a direct
sum of subspaces labeled by the characters of the compact group CK;1 D Ker Mod
and its spectrum in each sector gives the zeros of L-functions with Grössencharakter.
The shortcoming of this construction is in the artificial weight �.x/, which is needed
to see this absorption spectrum but only sees the zeros which are on the critical line
and where the value of ı artificially cuts the multiplicities of the zeros (cf. [19]).

This state of affairs is greatly improved if one gives up trying to prove RH but
retreats to an interpretation of the explicit formulas as a trace formula. One simply
replaces the above Hilbert space set-up by a softer one involving nuclear spaces
[80]. The spectral side now involves all non-trivial zeros and, using the preliminary
results of [14, 19, 20] one gets that the geometric side is given by:

Trdistr

	Z
h.w/#.w/d�w



D
X
v

Z

K�

v

h.w�1/
j1 � wj d

�w (22)

We refer to [19, 22, 80] for a detailed treatment. The subgroups K
�
v � CK D

GL1.AK/=GL1.K/ arise as isotropy groups. One can understand why the terms
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h.w�1/
j1 � wj occur in the trace formula by computing, formally as follows, the trace

of the scaling operator T D #w�1 when working on the local field Kv completion of
the global field K at the place v, one has

T�.x/ D �.wx/ D
Z

k.x; y/�.y/dy

so that T is given by the distribution kernel k.x; y/ D ı.wx � y/ and its trace is

Trdistr.T/ D
Z

k.x; x/ dx D
Z
ı.wx � x/ dx D 1

jw � 1j
Z
ı.z/ dz D 1

jw � 1j
When working at the level of adeles one treats all places on the same footing

and thus there is an overall minus sign in front of the spectral contribution. Thus the
Riemann spectrum appears naturally as an absorption spectrum from the adele class
space. As such, it is difficult to show that it is “real”. While this solves the problem
of giving a trace formula interpretation of the explicit formulas, there is of course
still room for an interpretation as an emission spectrum. However from the adelic
point of view it is unnatural to separate the contribution of the archimedean place.

4 The Riemann-Roch Strategy: A Geometric Framework

In this section we shall present a geometric framework which has emerged over the
years in our joint work with C. Consani and seems suitable in order to transpose the
geometric proof of Weil to the case of RH. The aim is to apply the Riemann-Roch
strategy of Sect. 2.3. The geometry involved will be of elaborate nature inasmuch as
it relies on the following three theories:

1. Noncommutative Geometry.
2. Grothendieck topoi.
3. Tropical Geometry.

4.1 The Limit q ! 1 and the Hasse-Weil Formula

In [91, cf. Sect. 6], C. Soulé, motivated by [79, cf. Sect. 1.5] and [38, 39, 70, 71,
92, 95], introduced the zeta function of a variety X over F1 using the polynomial
counting function N.x/ 2 ZŒx� associated to X. The definition of the zeta function is
as follows

�X.s/ WD lim
q!1

Z.X; q�s/.q � 1/N.1/; s 2 R (23)
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where Z.X; q�s/ denotes the evaluation at T D q�s of the Hasse-Weil exponential
series

Z.X;T/ WD exp

0
@X

r�1
N.qr/

Tr

r

1
A (24)

For instance, for a projective space P
n one has N.q/ D 1C qC : : :C qn and

�Pn.F1/.s/ D lim
q!1

.q � 1/nC1�Pn.Fq/.s/ D
1Qn

0.s � k/

It is natural to wonder on the existence of a “curve” C suitably defined over
F1, whose zeta function �C.s/ is the complete Riemann zeta function �Q.s/ D
��s=2 .s=2/�.s/ (cf. also [79]). The first step is to find a counting function N.q/
defined for q 2 Œ1;1/ and such that (23) gives �Q.s/. But there is an obvious
difficulty since as N.1/ represents the Euler characteristic one should expect that
N.1/ D �1 (since the dimension of H1 is infinite). This precludes the use of (23)
and also seems to contradict the expectation that N.q/ � 0 for q 2 .1;1/. As
shown in [23, 24] there is a simple way to solve the first difficulty by passing to the
logarithmic derivatives of both terms in Eq. (23) and observing that the Riemann
sums of an integral appear from the right hand side. One then gets instead of (23)
the equation:

@s�N.s/

�N.s/
D �

Z 1

1

N.u/ u�sd�u (25)

Thus the integral equation (25) produces a precise equation for the counting function
NC.q/ D N.q/ associated to C:

@s�Q.s/

�Q.s/
D �

Z 1

1

N.u/ u�sd�u (26)

One finds that this equation admits a solution which is a distribution and is given
with '.u/ WDPn<u n�.n/, by the equality

N.u/ D d

du
'.u/C �.u/ (27)

where �.u/ is the distribution which appears in the explicit formula (3),

Z 1

1

�.u/f .u/d�u D
Z 1

1

u2f .u/ � f .1/

u2 � 1 d�uC cf .1/ ; c D 1

2
.log� C �/
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The conclusion is that the distribution N.u/ is positive on .1;1/ and is given by

N.u/ D u � d

du

0
@X
�2Z

order.�/
u�C1

�C 1

1
AC 1 (28)

where the derivative is taken in the sense of distributions, and the value at u D 1 of

the term !.u/ D
X
�2Z

order.�/
u�C1

�C 1 is given by 1
2
C �

2
C log 4�

2
� �0.�1/

�.�1/ .

The primitive J.u/ D u2

2
�!.u/C u of N.u/ is an increasing function on .1;1/,

but tends to �1 when u ! 1C while its value J.1/ is finite (Fig. 2). The tension
between the positivity of the distribution N.q/ for q > 1 and the expectation that
its value N.1/ should be N.1/ D �1 is resolved by the theory of distributions: N
is finite as a distribution, but when one looks at it as a function its value at q D 1

is formally given by

N.1/ D 2 � lim
�!0

!.1C �/ � !.1/
�


 �1
2

E log E; E D 1

�
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Fig. 2 This represents a function J.u/ which is a primitive of the counting distribution N.u/.
This function is increasing and tends to �1 when u ! 1. The wiggly graph represents the
approximation of J.u/ obtained using the symmetric set Zm of the first 2m zeros, by

Jm.u/ D u2

2
�X

Zm

order.�/
u�C1

�C 1
C u

Note that J.u/ ! �1 when u ! 1C
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which is�1 and in fact reflects, when � ! 0, the density of the zeros. Note that this
holds independently of the choice of the principal value in the explicit formulas. This
subtlety does not occur for function fields K since their module Mod.K/ is discrete
so that distributions and functions are the same thing. There is one more crucial
nuance between the case K D Q and the function fields: the distribution �.u/ which
is the archimedean contribution to N.u/ in (27), does not fulfill the natural inequality
N.q/ � N.qr/ expected of a counting function. This is due to the terms j1� uj�1 in
the Weil explicit formula, which as explained in Sect. 2.1.3 contribute non-trivially
at the archimedean place, and indicate that the counting needs to take into account
an ambient larger space and transversality factors as in [56]. In fact, we have seen in
Sect. 3.3 that the noncommutative space of adele classes of a global field provides a
framework to interpret the explicit formulas of Riemann-Weil in number theory as
a trace formula, and that the geometric contributions give the right answer. In [24],
we showed that the quotient

XQ WD Q
�nAQ= OZ� (29)

of the adele class space Q
�nAQ of the rational numbers by the maximal compact

subgroup OZ� of the idele class group, gives by considering the induced action of
R

�C, the above counting distribution N.u/, u 2 Œ1;1/, which determines, using the
Hasse-Weil formula in the limit q ! 1, the complete Riemann zeta function. The
next step is to understand that the action of R�C on the space XQ is in fact the action
of the Frobenius automorphisms Fr� on the points of the arithmetic site—an object
of algebraic geometry—over RmaxC . To explain this we first need to take an excursion
in the exotic world of “characteristic one”.

4.2 The World of Characteristic 1

The key words here are: Newton polygons, Thermodynamics, Legendre transform,
Game theory, Optimization, Dequantization, Tropical geometry. One alters the basic
operation of addition of positive real numbers, replacing xCy by x_y WD max.x; y/.
When endowed with this operation as addition and with the usual multiplication, the
positive real numbers become a semifield R

maxC . It is of characteristic 1, i.e. 1_1 D 1
and contains the smallest semifield of characteristic 1, namely the Boolean semifield
B D f0; 1g. Moreover, RmaxC admits non-trivial automorphisms and one has

GalB.R
maxC / WD AutB.R

maxC / D R
�C; Fr�.x/ D x� ; 8x 2 R

maxC ; � 2 R
�C

thus providing a first glimpse of an answer to Weil’s query in [100] of an algebraic
framework in which the connected component of the idele class group would
appear as a Galois group. More generally, for any abelian ordered group H we let
Hmax D H [ f�1g be the semifield obtained from H by the max-plus construction,
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i.e. the addition is given by the max, and the multiplication byC. In particular Rmax

is isomorphic to R
maxC by the exponential map (cf. [49]). Historically, and besides

the uses of Rmax in idempotent analysis and tropical geometry which are discussed
below, an early use of Rmax occurred in the late fifties in the work of R. Cuninghame-
Green in Birmingham, who established the spectral theory of irreducible matrices
with entries in Rmax (cf. [34]) and in the sixties, in Leningrad, where Vorobyev
used the Rmax formalism in his work motivated by combinatorial optimization,
and proved a fundamental covering theorem. A systematic use of the Rmax algebra
was developed by the INRIA group at the beginning of the 80’s in their work on
the modelization of discrete event systems [17]. We refer to [49, 50] for a more
detailed history of the subject, and for overwhelming evidence of its relevance in
mathematics. We shall just give here a sample of this evidence starting by a really
early occurrence in the work of C.G.J. Jacobi8 and hoping to convince the reader
that it would be a mistake to dismiss this algebraic formalism and the analogy with
ordinary algebra as trivial.

4.2.1 Optimization, Jacobi

One of the early instances, around 1840, of the use of matrices over Rmax is the work
of Jacobi [67] on optimal assignment problems, where he states

Problema
Disponantur nn quantitates h.i/k quaecunque in schema Quadrati, ita ut habeantur n series
horizontales et n series verticales, quarum quaeque est n terminorum. Ex illis quantitatibus
eligantur n transversales, i.e. in seriebus horizontalibus simul atque verticalibus diversis
positae, quod fieri potest n! modis; ex omnibus illis modis quaerendus est is, qui summam
n numerorum electorum suppeditet maximam.

In other words, given a square matrix mik D h.i/k he looks for the maximum over
all permutations 	 of the quantity

P
mj	.j/. Using the algebraic rules of Rmax one

checks that he is in fact computing the analogue of the determinant for the matrix
mik. In fact the perfect definition of the determinant is more subtle and was obtained
in the work of Gondran-Minoux [53], instead of max

P
mj	.j/ where 	 runs over all

permutations, one uses the signature of permutations and considers the pair

.detC.mik/; det�.mik//; det˙.mik/ D max
X

sign.	/D˙
mj	.j/

The remarkable fact is that the Cayley-Hamilton theorem now holds, as the equality
of two terms PC.m/ D P�.m/ corresponding to the characteristic polynomial
P D .PC;P�/. Each of the terms P˙.m/ 2 Mn.Rmax/ is computed from the original
matrix m 2 Mn.Rmax/ using the rules of matrices with entries in Rmax which turn
Mn.Rmax/ into a semiring.

8I am grateful to S. Gaubert for pointing out this early occurrence.
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4.2.2 Idempotent Analysis

The essence of the theory of semiclassical analysis in physics rests in the compari-
son of quantum systems with their semiclassical counterpart, [5, 46, 55, 57, 58]. In
the eighties V. P. Maslov and his collaborators developed a satisfactory algebraic
framework which encodes the semiclassical limit of quantum mechanics. They
called it idempotent analysis. We refer to [72, 74] for a detailed account and just
mention briefly some salient features here. The source of the variational formula-
tions of mechanics in the classical limit is the behavior of sums of exponentials

X
e� Sj

„ 
 e� inf Sj
„ ; when „ ! 0

which are, when „ ! 0, dominated by the contribution of the minimum of S. The
starting observation is that one can encode this fundamental principle by simply
conjugating the addition of numbers by the power operation x 7! x� and passing to
the limit when � ! 0. The new addition of positive real numbers is

lim
�!0

�
x
1
� C y

1
�

�� D maxfx; yg D x _ y

and one recovers R
maxC as the natural home for semiclassical analysis. The super-

position principle of quantum mechanics, i.e. addition of vectors in Hilbert space,
now makes sense in the limit and moreover the “fixed point argument” proof of
the Perron-Frobenius theorem works over RmaxC and shows that irreducible compact
operators have one and only one eigenvalue,9 thus reconciling classical determinism
with the quantum variability. But the most striking discovery of this school of
Maslov, Kolokolstov and Litvinov [72, 74] is that the Legendre transform which
plays a fundamental role in all of physics and in particular in thermodynamics in the
nineteenth century, is simply the Fourier transform in the framework of idempotent
analysis!

The contact between the INRIA school and the Maslov school was established
in 92 when Maslov was invited in the Seminar of Jacques Louis Lions in College
de France. At the BRIMS HP-Labs workshop on Idempotency in Bristol (1994)
organized by J. Gunawardena, several of the early groups of researchers in the field
were there, and an animated discussion took place on how the field should be named.
The names max-plus, exotic, tropical, idempotent were considered, each one having
its defaults.

9As mentioned above, this result was obtained already for matrices in 1962 by R. Cuninghame-
Green.
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4.2.3 Tropical Geometry, Riemann-Roch Theorems
and the Chip Firing Game

The tropical semiring Nmin D N [ f1g with the operations min and C was
introduced by Imre Simon in [90] to solve a decidability problem in rational
language theory. His work is at the origin of the term “tropical” coined by Marco
schutzenberger and used in tropical geometry which is a vast subject, see e.g.
[45, 51, 77, 81]. We refer to [96] for an excellent introduction starting from the
sixteenth Hilbert problem. In its simplest form (cf. [48]) a tropical curve is given
by a metric graph  (i.e. a graph with a usual line metric on its edges). The
natural structure sheaf on  is the sheaf O of real valued functions which are
continuous, convex, piecewise affine with integral slopes. The operations on such
functions are given by the pointwise operations of Rmax-valued functions, i.e.
.f _ g/.x/ D f .x/_ g.x/ for all x 2  and similar for the product which is given by
pointwise addition. One also adjoins the constant �1 which plays the role of the
zero element in the semirings of sections. One proceeds as in the classical case with
the construction of the sheaf K of semifields of quotients and finds the same type of
functions as above but no longer convex. Cartier divisors make sense and one finds
that the order of a section f of K at a point x 2  is given by the sum of the (integer
valued) outgoing slopes. The conceptual explanation of why the discontinuities of
the derivative should be interpreted as zeros or poles is due to Viro, [97] who showed
that it follows automatically if one understands that10 the sum x _ x of two equal
terms in Rmax should be viewed as ambiguous with all values in the interval Œ�1; x�
on equal footing. In their work Baker and Norine [3] proved in the discrete set-up
of graphs (where g is the genus and K the canonical divisor) the Riemann-Roch
equality in the form

r.D/ � r.K � D/ D Deg.D/ � gC 1 (30)

where by definition r.D/ WD maxfk j H0.D � �/ ¤ f�1g ; 8� � 0; Deg.�/ D kg
and H0.D/ is the Rmax-module of global sections f of the associated sheaf OD i.e.
sections of K such that D C .f / � 0. The essence of the proof of [3] is that the
inequality Deg.D/ � g for a divisor implies H0.D/ ¤ f�1g. Once translated in
the language of the chip firing game (op.cit.), this fact is equivalent to the existence
of a winning strategy if one assumes that the total sum of dollars attributed to the
vertices of the graph is � g where g is the genus. We refer to [48, 82] for variants of
the above Riemann-Roch theorem, and to [8, 40, 84] for early occurrences of these
ideas in a different context (including sandpile models and parking functions!).

10As seen when using Rmax as the target of a valuation.
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4.3 The Arithmetic and Scaling Sites

4.3.1 The Arithmetic Site and Frobenius Correspondences

The arithmetic site [30, 31] is an object of algebraic geometry involving two elabo-
rate mathematical concepts: the notion of topos and of (structures of) characteristic
1 in algebra. A nice fact (cf. [52]) in characteristic 1 is that, provided the semiring
R is multiplicatively cancellative (i.e. equivalently if it injects in its semifield of
fractions) the map x 7! xn D Frn.x/ is, for any integer n 2 N

�, an injective
endomorphism Frn of R. One thus obtains a canonical action of the semigroup N

�
on any such R and it is thus natural to work in the topos cN� of sets endowed with an
action of N�.

Definition 2. The arithmetic site A D .cN�;Zmax/ is the topos cN� endowed with
the structure sheaf O WD Zmax viewed as a semiring in the topos using the action of
N

� by the Frobenius endomorphisms.

The topological space underlying the arithmetic site is the Grothendieck topos of
sets endowed with an action of the multiplicative monoïd N

� of non-zero positive
integers. As we have seen above the semifield R

maxC of tropical real numbers admits a
one parameter group of Frobenius automorphisms Fr�, � 2 R

�C, given by Fr�.x/ D
x� 8x 2 R

maxC . Using a straightforward extension in the context of semi-ringed topos
of the classical notion of algebraic geometry of a point over a ring, one then gets the
following result which gives the bridge between the noncommutative geometry and
topos points of view:

Theorem 1 ([30, 31]). The set of points of the arithmetic site A over R
maxC is

canonically isomorphic with XQ D Q
�nAQ= OZ�. The action of the Frobenius

automorphisms Fr� of RmaxC on these points corresponds to the action of the idele

class group on XQ D Q
�nAQ= OZ�.

The square of the arithmetic site is the topos bN�2 endowed with the structure
sheaf defined globally by the multiplicatively cancellative semiring associated to
the tensor square Zmin ˝B Zmin over the smallest Boolean semifield of characteristic
one. In this way one obtains the semiring whose elements are Newton polygons and
whose operations are given by the convex hull of the union and the sum. The points
of the square of the arithmetic site over RmaxC coincide with the product of the points
of the arithmetic site over RmaxC . Then, we describe the Frobenius correspondences
�.�/ as congruences on the square parametrized by positive real numbers � 2 R

�C.

The remarkable fact at this point is that while the arithmetic site is constructed
as a combinatorial object of countable nature it possesses nonetheless a
one parameter semigroup of “correspondences” which can be viewed as
congruences in the square of the site.
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In the context of semirings, the congruences i.e. the equivalence relations
compatible with addition and product, play the role of the ideals in ring theory.
The Frobenius correspondences �.�/, for a rational value of �, are deduced from
the diagonal of the square, which is described by the product structure of the
semiring, by composition with the Frobenius endomorphisms. We interpret these
correspondences geometrically, in terms of the congruence relation on Newton
polygons corresponding to their belonging to the same half planes with rational
slope �. These congruences continue to make sense also for irrational values of �
and are described using the best rational approximations of �, while different values
of the parameter give rise to distinct congruences. The composition of the Frobenius
correspondences is given for �; �0 2 R

�C such that ��0 … Q by the rule [30, 31]

�.�/ ı �.�0/ D �.��0/ (31)

The same equality still holds if � and �0 are rational numbers. When �; �0 are
irrational and ��0 2 Q one has

�.�/ ı �.�0/ D Id� ı �.��0/ (32)

where Id� is the tangential deformation of the identity correspondence.

4.3.2 The Scaling Site and Riemann-Roch Theorems

The Scaling Site OA , [33], is the algebraic geometric space obtained from the
arithmetic site A of [30, 31] by extension of scalars from the Boolean semifield B

to the tropical semifield R
maxC . The points of OA are the same as the points A .RmaxC /

of the arithmetic site over RmaxC . But OA inherits from its structural sheaf a natural
structure of tropical curve, in a generalized sense, allowing one to define the sheaf
of rational functions and to investigate an adequate version of the Riemann-Roch
theorem in characteristic 1. In [33], we tested this structure by restricting it to the
periodic orbits of the scaling flow, i.e. the points over the image of SpecZ under the
canonical morphism of toposes � W SpecZ ! A (cf. [31, Sect. 5.1]). We found
that for each prime p the corresponding circle of length log p is endowed with a
quasi-tropical structure which turns this orbit into the analogue Cp D R

�C=pZ of
a classical elliptic curve C

�=qZ. In particular rational functions, divisors, etc all
make sense. A new feature is that the degree of a divisor can now be any real
number. The Jacobian of Cp (i.e. the quotient J.Cp/ of the group of divisors of
degree 0 by principal divisors) is a cyclic group of order p � 1. For each divisor D
there is a corresponding Riemann-Roch problem with solution space H0.D/ and the
continuous dimension DimR.H0.D// of this Rmax-module is defined as the limit

DimR.H
0.D// WD lim

n!1 p�ndimtop.H
0.D/p

n
/ (33)
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where H0.D/p
n

is a natural filtration and dimtop.E / is the topological dimension of
an Rmax-module E . One has the following Riemann-Roch formula [33],

Theorem 2. (i) Let D 2 Div.Cp/ be a divisor with deg.D/ � 0. Then the limit
in (33) converges and one has DimR.H0.D// D deg.D/.

(ii) The following Riemann-Roch formula holds

DimR.H
0.D// � DimR.H

0.�D// D deg.D/ ; 8D 2 Div.Cp/

The appearance of arbitrary positive real numbers as continuous dimensions in
the Riemann-Roch formula is due to the density in R of the subgroup Hp � Q

of fractions with denominators a power of p. This outcome is the analogue in
characteristic 1 of what happens for modules over matroid C�-algebras and the type
II normalized dimensions as in [41].

At this point, what is missing is an intersection theory and a Riemann-Roch
theorem on the square of the arithmetic site. One expects that the right hand
side of the Riemann-Roch formula will be of the form 1

2
D:D D s.f ; f / when

the divisor D is of the form

D.f / D
Z
�.�/f .�/d��

Here f .�/ is a real valued function with compact support of the variable � 2 R
�C

and s.f ; f / is as in (17). More precisely D:D should be obtained as the intersection
number of D ı QD (defined using composition of correspondences) with the diagonal
� and hence as a suitably defined distributional trace as for the counting function
N.u/ of Sect. 4.1 so that 1

2
D.f /:D.f / D s.f ; f / with the notations of (17). So far

the Riemann-Roch formula in tropical geometry is limited to curves and there is
no Serre duality or good cohomological version of Hj for j ¤ 0, but in the above
context one can hope that a Riemann-Roch inequality of the type (12), i.e. of the
form

DimR.H
0.D//C DimR.H

0.�D// � 1

2
D:D

would suffice to apply the strategy of Sect. 2.3 to prove the key inequality (17)
(Table 1).
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Table 1 Here are a few entries in the analogy

C curve over Fq Arithmetic site A D .cN�;Zmax/ over B

Structure sheaf OC Structure sheaf Zmax

NC D C ˝Fq
NFq Scaling site OA D .Œ0;1/Ì N

�;O/ over Rmax
C

C. NFq/ D NC. NFq/ A .Rmax
C
/ D OA .Rmax

C
/

Galois action on C. NFq/ Galois action on A .Rmax
C
/

Structure sheaf O NC Structure sheaf O D Zmax Ő
BR

max
C

of NC D C ˝Fq
NFq piecewise affine convex functions, integral slopes

Sheaf K of rational functions NC Sheaf K of piecewise affine continuous functions

on NC D C ˝Fq
NFq with integral slopes

Cartier divisors D sections of K =O� Sections of K =O�

X D NC � NC OA � OA

D D P
ak�

k D D R
�.�/f .�/d��

Frobenius correspondence � correspondences �.�/

5 Absolute Algebra and the Sphere Spectrum

Even if the Riemann-Roch strategy of Sect. 4 happened to be successful, one should
not view the arithmetic and scaling sites for more than what they are, namely a
semiclassical shadow of a still mysterious structure dealing with compactifications
of SpecZ. An essential role in the unveiling of this structure should be played, for
the reasons briefly explained below, by the discovery made by algebraic topologists
in the 80’s (see [42]) that in their world of “spectra” (in their sense) the sphere spec-
trum is a generalized ring S which is more fundamental than the ring Z of integers,
while the latter becomes an S-algebra. Over the years the technical complications
of dealing with spaces “up to homotopy” have greatly been simplified, in particular
for the smash product of spectra. For the purpose of arithmetic applications, Segal’s
 -rings provide a very simple algebraic framework which succeeds to unify several
attempts pursued in recent times in order to define the meaning of “absolute
algebra”. In particular it contains the following three possible categories that had
been considered previously to handle this unification: namely the category M of
monoïds as in [24, 26, 35, 36], the category H of hyperrings of [25, 27, 28] and
finally the category S of semirings as in [21, 30, 31, 33]. Thanks to the work of
L. Hesselholt and I. Madsen briefly explained below in Sect. 5.2 one now has at
disposal a candidate cohomology theory in the arithmetic context: topological cyclic
homology.
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5.1 Segal’s � -Rings

Let  op be the small, full subcategory of the category of finite pointed sets whose
objects are the pointed finite sets11 kC WD f0; : : : ; kg, for k � 0. The object 0C
is both initial and final so that  op is a pointed category. The notion of a discrete
 -space, i.e. of a  -set is as follows:

Definition 3. A  -set F is a functor F W  op �! Sets� between pointed categories
from  op to the category of pointed sets.

The morphisms Hom op.M;N/ between two  -sets are natural transformations of
functors. The category Sets� of  -sets is a symmetric closed monoidal category
(cf. [42, Chap. II]). The monoidal structure is given by the smash product (denoted
X ^ Y) of  -sets which is a Day product. The closed structure property is shown
in [76] (cf. also [42, Theorem 2.1.2.4]). The specialization of Definition 2.1.4.1. of
[42] to the case of  -sets yields the following

Definition 4. A  -ring A is a  -set A W  op �! Sets� endowed with an
associative multiplication � W A ^ A ! A and a unit 1 W S ! A , where
S W  op �! Sets� is the inclusion functor.

Thus  -rings12 make sense and the sphere spectrum corresponds to the simplest
possible  -ring: S. One can then easily identify the category Sets� of  -sets with
the category Mod.S/ of S-modules. In [43], N. Durov developed a geometry over
F1 intended for Arakelov theory applications by using monads as generalizations of
classical rings. While in the context of [43] the tensor product Z˝F1 Z produces an
uninteresting output isomorphic to Z, we showed in [32] that the same tensor square,
re-understood in the theory of S-algebras, provides a highly non-trivial object. The
Arakelov compactification of SpecZ is endowed naturally with a structure sheaf
of S-algebras and each Arakelov divisor provides a natural sheaf of modules over
the structure sheaf. This new structure of SpecZ over S endorses a one parameter
group of weakly invertible sheaves whose tensor product rules are the same as the
composition rules (31), (32) of the Frobenius correspondences over the arithmetic
site [30, 31]. The category Mod.S/ of S-modules is not an abelian category and thus
the tools of homological algebra need to be replaced along the line of the Dold-Kan
correspondence, which for an abelian category A gives the correspondence between
chain complexes in � 0 degrees and simplicial objects i.e. objects of A �op

.

11Where 0 is the base point.
12Equivalently S-algebras.
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Table 2 Short dictionary
homology–homotopy

X 2 Ch�0.A / M 2 Mod.S/�
op

Hq.X/ �q.M/

Hq.f / W Hq.X/ ' Hq.Y/ �q.f / W �q.M/ ' �q.N/

quasi-isomorphism weak equivalence

fn W Xn
�! Yn Cofibration

+ projective cokernel (stable)

fn W Xn ! Yn Stable

surjective if n > 0 fibration

At this point one has the following simple but very important observation
that  -spaces should be viewed as simplicial objects in Sets� �Mod.S/,
so that homotopy theory should be considered as the homological algebra
corresponding to the “absolute algebra” taking place over S.

We refer to Table 2 for a short dictionary. The category of  -spaces is the central
tool of [42], while the relations between algebraic K-theory and topological cyclic
homology is the main topic.

5.2 Topological Cyclic Homology

As shown in [32] the various attempts done in recent times to develop “absolute
algebra” are all unified by means of the well established concept of S-algebra, i.e.
of  -rings. Moreover (cf. [42]) this latter notion is at the root of the theory of
topological cyclic homology which can be understood as cyclic homology over
the absolute base S, provided one uses the appropriate Quillen model category.
In particular, topological cyclic homology is now available to understand the
new structure of SpecZ using its structure sheaf and modules. The use of cyclic
homology in the arithmetic context is backed up by the following two results:

• At the archimedean places, and after the initial work of Deninger [38, 39] to
recast the archimedean local factors of arithmetic varieties [89] as regularized
determinants, we showed in [29] that cyclic homology in fact gives the correct
infinite dimensional (co)homological theory for arithmetic varieties. The key
operator � in this context is the generator of the �-operations �.k/ [75, 98, 99]
in cyclic theory. More precisely, the action u� of the multiplicative group R

�C
generated by � on cyclic homology, is uniquely determined by its restriction to
the dense subgroup Q

�C � R
�C where it is given by the formula

k�jHCn D �.k/ k�n ; 8n � 0; k 2 N
� � R

�C (34)
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Let X be a smooth, projective variety of dimension d over an algebraic number
field K and let �j1 be an archimedean place of K. Then, the action of the
operator � on the archimedean cyclic homology HCar (cf. [29]) of X� satisfies

Y
0
w
2d

L�.H
w.X/; s/.�1/w D det1. 12� .s ��/jHCar

od.X� /
/

det1. 12� .s ��/jHCar
ev.X� //

(35)

The left-hand side of (35) is the product of Serre’s archimedean local factors of
the complex L-function of X (cf.[89]). On the right-hand side, det1 denotes the
regularized determinant and one sets

HCar
ev.X�/ D

M
nD2k�0

HCar
n .X�/; HCar

od.X�/ D
M

nD2kC1�1
HCar

n .X�/

• L. Hesselholt and I. Madsen have shown (cf. e.g. [61–63]) that the de Rham-Witt
complex, an essential ingredient of crystalline cohomology (cf. [7, 65]), arises
naturally when one studies the topological cyclic homology of smooth algebras
over a perfect field of finite characteristic. One of the remarkable features in their
work is that the arithmetic ingredients such as the Frobenius and restriction maps
are naturally present in the framework of topological cyclic homology. Moreover
L. Hesselholt has shown [64] how topological periodic cyclic homology with its
inverse Frobenius operator may be used to give a cohomological interpretation
of the Hasse-Weil zeta function of a scheme smooth and proper over a finite field
in the form (cf. [64]):

�.X; s/ D det1. 12� .s ��/jTPod.X//

det1. 12� .s ��/jTPev.X//
(36)

The similarity between (35) and (36) (applied to a place of good reduction)
suggests the existence of a global formula for the L-functions of arithmetic
varieties, involving cyclic homology of S-algebras, and of a Lefschetz formula
in which the local factors appear from the periodic orbits of the action of R�C.

One of the stumbling blocks in order to reach a satisfactory cohomology theory
is the problem of coefficients. Indeed, the natural coefficients at a prime p for
crystalline cohomology are an extension of Qp and it is traditional to relate them
with complex numbers by an embedding of fields. Similarly, (36) uses an embedding
of the Witt ring W.Fq/ ! C. To an analyst it is clear that since such embeddings
cannot be measurable13 they will never be effectively constructed. This begs for
a better construction, along the lines of Quillen’s computation of the algebraic

13A measurable group homomorphism from Z
�

p to C
� cannot be injective.
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K-theory of finite fields, which instead would only involve the ingredient of the
Brauer lifting, i.e. a group injection of the multiplicative group of NFp as roots of
unity in C.

5.3 Final Remarks

The Riemann hypothesis has been extended far beyond its original formulation
to the question of localization of the zeros of L-functions. There are a number of
constructions of L-functions coming from three different sources, Galois represen-
tations, automorphic forms and arithmetic varieties. André Weil liked to compare
(cf. [10, Sect. 12] and also [104, vol. 1, p. 244–255 and vol. 2, p. 408–412]), the
puzzle of these three different writings to the task of deciphering hieroglyphics with
the help of the Rosetta Stone. In some sense the L-functions play a role in modern
mathematics similar to the role of polynomials in ancient mathematics, while the
explicit formulas play the role of the expression of the symmetric functions of
the roots in terms of the coefficients of the polynomial. If one follows this line of
thought, the RH should be seen only as a first step since in the case of polynomials
there is no way one should feel to have understood the zeros once one proves that
they are, say, real numbers. In fact Galois formulated precisely the problem as that of
finding all numerical relations between the roots of an equation, with the trivial ones
being given by the symmetric functions, while the others, when determined, will
reveal a complete understanding of the zeros as obtained, in the case of polynomials,
by Galois theory. In a fragment, page 103, of the complete works of Galois [47]
concerning the memoir of February 1830, he delivers the essence of his theory:

Remarquons que tout ce qu’une équation numérique peut avoir de particulier, doit provenir
de certaines relations entre les racines. Ces relations seront rationnelles c’est-à-dire qu’elles
ne contiendront d’irrationnelles que les coefficients de l’équation et les quantités adjointes.
De plus ces relations ne devront pas être invariables par toute substitution opérée sur les
racines, sans quoi on n’aurait rien de plus que dans les équations littérales. Ce qu’il importe
donc de connaître, c’est par quelles substitutions peuvent être invariables des relations entre
les racines, ou ce qui revient au même, des fonctions des racines dont la valeur numérique
est déterminable rationnellement.14

Acknowledgements I am grateful to J. B. Bost for the reference [94], to J. B. Bost, P. Cartier, C.
Consani, D. Goss, H. Moscovici, M. Th. Rassias, C. Skau and W. van Suijlekom for their detailed
comments, to S. Gaubert for his help in Sect. 4.2 and to Lars Hesselholt for his comments and for
allowing me to mention his forthcoming paper [64].

14In 2012 I had to give, in the French academy of Sciences, the talk devoted to the 200th anniversary
of the birth of Evariste Galois. On that occasion I read for the nC1th time the book of his collected
works and was struck by the pertinence of the above quote in the analogy with L-functions. In the
case of function fields one is dealing with Weil numbers and one knows a lot on their Galois theory
using results such as those of Honda and Tate cf. [94].
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Navier Stokes Equations: A Quick Reminder
and a Few Remarks

Peter Constantin

Abstract We describe briefly some mathematical problems related to the Navier-
Stokes and Euler equations.

1 Introduction

The incompressible Navier-Stokes equations model viscous Newtonian fluids and
can be viewed as an expression of Newton’s second law (mass times acceleration
equals force). In the simplest case, taking a fluid of unit density and considering
only forces resulting from interior friction and incompressibility, the equations take
the form

@tuC u � ru � ��uCrp D 0: (1)

Here u D u.x; t/ is the velocity of the fluid, u.x; t/ 2 R
d computed at the point

x 2 R
d and time t � 0, @tu is the time partial derivative and u � r is the first order

differential operator u � r DPd
jD1 uj.x; t/@xj . The Laplacian of u, �u, is multiplied

by the kinematic viscosity �, a positive constant. The gradient of the pressure p.x; t/,
rp completes the equations. On components, the equations are thus

@tui C uj@jui C @ip � ��ui D 0; i D 1; 2; : : : d: (2)

(We use the summation convention: repeated indices are summed.) The incompress-
ibility is the constraint

@iui D 0: (3)

The constraint (3) results in an equation for the pressure. We will say more about this
equation in the section about the pressure, but we mention already that the pressure
responds instantaneously to far away disturbances: it is a non-local term.
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The equation is usually studied in d D 2 or d D 3, and x may be restricted
to belong to some domain � � R

d, in which case the most common boundary
conditions are homogeneous Dirichlet

uj @� D 0: (4)

In the case � D R
d these are replaced by decay assumptions at spatial infinity,

expressed by requiring u to belong to an appropriate class of functions. There is
also a version in which R

d is replaced by the torus Td, that is the functions u and p
are required to be spatially periodic with the same period.

When the kinematic viscosity is set equal to zero the equations are called the
incompressible Euler equations

@tuC u � ruCrp D 0; r � u D 0: (5)

It is not possible to review even in passing the vast literature on Navier-Stokes and
Euler equations. In this paper I touch on very few selected topics related to regularity
of solutions and the inviscid limit. The relationship between the Euler equations [12]
and the Navier-Stokes equations is at the core of both subjects.

2 Vorticity

A point of view on the subject centers on the vorticity, the antisymmetric part of the
gradient of velocity, .ru/ � .ru/�. In three dimensions this can be written as the
vector valued function

! D r 	 u; (6)

and in two dimensions the vorticity can be viewed as a real scalar valued function,

! D @1u2 � @2u1: (7)

If we think of two dimensional flow as depending only on the variables x1; x2 in
three dimensional space with coordinates .x1; x2; x3/, and with zero velocity in the
third direction, then the vorticity is a vector whose direction is perpendicular to the
plane of .x1; x2; 0/ and whose signed magnitude is given by (7). The Navier-Stokes
equations can be written in terms of the vorticity

@t! C u � r! � ��! D ! � ru (8)
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and inverting (6) closes the system. The pressure disappeared. The nonlocality did
not: the velocity depends on the vorticity in a non-local fashion. In two dimensions
the vorticity equation is

@t! C u � r! � ��! D 0 (9)

and the difference between two and three dimensions appears clearly, because (9)
has important additional properties that are absent in (8). The right-hand side of (8)
is called the “stretching term” and is absent in (9). Consequently, in two dimensions
the vorticity has controlled magnitude: in the Euler equations, the distribution
function of vorticity is conserved, and hence all Lp norms do not change in time;
in the Navier-Stokes equations these norms are non-increasing functions of time.
The question of regularity of the Navier-Stokes and Euler equations can be decided
in terms of vorticity alone, and in two dimensions the decision is favorable. No
singularities can be formed from smooth beginnings. This happens not because of
some scaling subcriticality, but because of conservation laws in the Euler equations.
The conservation of magnitude of vorticity on particle paths in the 2D Euler
equations is a reflection of the coherence of the vorticity direction field. It is known
since Leray [27] that the 3D Navier-Stokes equations have weak solutions whose
gradients are square-summable in space-time. The Leray weak solutions retain
the basic information that follows from the energy balance of the Navier-Stokes
equations, namely that the kinetic energy is bounded in time,

u 2 L1.0;TIL2.R3//

and that the rate of dissipation of energy is square integrable in time

u 2 L2.0;TI PH1.R3//:

The latter is equivalent with the statement that

Z T

0

k!k2L2dt <1:

On the other hand, if a solution satisfies

Z T

0

k!k4L2dt <1

then no singularities can form from smooth initial data on the time interval Œ0;T�.
This fact can be easily proved: first, the assumed bound implies directly from the
evolution equation of vorticity a bound that gives

! 2 L1.0;TIL2.R3//;
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together with

! 2 L2.0;TIW1;2.R3//:

These bounds signify that the solution is a “strong” solution. Once being a strong
solution is established, then functional calculus inequalities can be used to control
higher derivatives.
The Leray solutions permit the definition of basic turbulence quantities, the energy
dissipation rate �, and the Kolmogorov length scale `K . The Kolmogorov scale is
the only quantity with units of length that can be formed with the energy dissipation
and viscosity,

`K D � 3
4 �� 1

4

where

� D �hjruj2i

is the energy dissipation rate per unit mass. It is believed that this length is the typical
length below which viscosity dominates. It is maybe appropriate here to discuss
dimensions and scaling. The velocity has dimensions of Œu� D LT�1, the kinematic
viscosity Œ�� D L2T�1. The energy per unit mass has then units L2T�2 and its rate
of dissipation (time derivative) has units Œ�� D L2T�3: Solving (as it were) for L
knowing Œ�� and Œ�� yields `K . The scaling invariance of the equations means that
if we change x 7! y D x

L , t 7! s D t
T , � 7! Q� D L2

T � then u.x; t/ D L
T v.

x
L ;

t
T /

obeys the Navier-Stokes equations with viscosity Q� if v.y; s/ obeyed Navier-Stokes
with viscosity �. If we fix the numerical value of � we can rescale solutions of
the same equation by keeping L2T�1 constant. The Reynolds number Re D UL

�

where U is a typical velocity and L a typical length is a nondimensional number that
helps organize solution classes. There is no deep mystery to this, but obviously, any
correct statement should maintain its correctness after rescaling. Behavior under
linear dilation is only one property of the equations. The nonlinear dynamical
regularities are deeper and harder to exploit.

Solutions of Navier-Stokes equations at high Reynolds numbers are studied
numerically and are believed to describe experimental situations. The phenomeno-
logically observed fact is that regions of high vorticity organize themselves in
coherent intense vortex tubes, separated by small distances proportional to the
Kolmogorov scale [22]. The phenomenological observations (by which we mean
both numerical and experimental) can be summarized as follows. During the time
evolution of turbulent three dimensional flow, strong coherent vortices form, and as
they stretch they become more intense narrow vortex tubes. These are distributed in
space in a disorganized manner. When two such intense vortex tubes approach each
other as to nearly collide, threatening to create thus a dynamic singularity in the
direction field of vorticity, they reconnect, performing thus a topological change,
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prohibited in smooth Euler solutions, but permitted in the viscous evolution. The
vorticity magnitude then (and there) locally decays. Several such events may occur.
Topological change (vortex reconnection) is a nonlinear regularizing mechanism
that might prevent singularity formation but it is difficult to formalize and to use in
rigorous mathematical arguments. It is known that in 3D Navier-Stokes equations,
if the direction of the vorticity

� D !

j!j
is locally well behaved (locally Lipschitz continuous in regions of high vorticity),
then no singularities can arise from smooth initial data. The regularization is due to a
geometric depletion of nonlinearity: if the direction of vorticity is coherent, then the
stretching term is no longer of the order of !2 but rather of the order `�1u!, where
l is the coherence length. We use vaguely the term “coherence” but in this context
it simply means “jr�j locally bounded”, and the coherence length is ` 
 jr�j�1.
The theorem of [14] was generalized both in what concerns integrability conditions
and geometric context [5, 23, 24]. The persistence for all time of a coherence length
of the vorticity however is not known. What is known is an average bound for weak
solutions:

�2
Z T

0

Z

R3

j!jjr�j2dxdt < E0

where E0 is proportional to the initial energy of the solution
R
R3
ju0j2dx [9]. This

bound says that, in regions of high vorticity, the direction of vorticity is coherent
on average. If the direction of vorticity is coherent, then no singularities can form.
There is a gap however between the sufficient condition on r� ensuring regularity
and the known average bound above.

The fact that infinite vorticity is needed in order to produce a blow up in the
Navier-Stokes equation is qualitatively similar to the situation in Euler equations,
where singularities cannot form from smooth initial data on a time interval Œ0;T�
if [2]

Z T

0

k!kL1 dt <1:

The amplification of vorticity by the inviscid vortex stretching mechanism can
conceivably be a route to regularity in Navier-Stokes equations.
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3 Velocity

Singularity formation in unforced Navier-Stokes equations in R
3 requires infinite

velocity. There is no such result for the Euler equations, without additional
assumptions about the nature of the blow up. In fact, this represents a marked
difference between the two equations. For Navier-Stokes equations, if

Z T

0

kuk2L1.R3/
dt <1

then no singularities can arise from smooth and localized data in the time interval
Œ0;T�. Or, if

sup
t2Œ0;T�

kukL3.R3/ <1

then no singularities can arise from smooth and localized data in the time interval
Œ0;T�. The sufficient condition involving kukL1.R3/ is easy to prove. In fact,
one integration by parts in the stretching term of the vorticity equation and
straightforward estimates show that this condition results in an a priori bound for
! 2 L1.0;TIL2.R3//\ L2.0;TIW1;2.R3//, and from then on we are in the case of
strong solutions.

By contrast, the sufficient condition involving kukL3.R3/ is hard to prove [19].
As is the case with the conditions involving vorticity, there are gaps between

these sufficient conditions and generally known results on the corresponding
quantities. For the L1 norm it is known that

Z T

0

kukL1.R3/ <1

and for the L3 norm it is known that

Z T

0

kuk4L3.R3/dt:

The first result was known for many years [21] (see also [10]). The second follows
by interpolation directly from the known Leray bounds and Morrey’s inequality. The
celebrated result of [6] bounds the Hausdorff dimension of the singular set of suit-
able weak solutions of the Navier-Stokes equations. These solutions are not known
to be unique. They are obtained as limits of good evolutionary approximations, they
exist for arbitrary long time and they have numerous interesting properties. The
singular set is the set in space-time where such a solution has infinite velocity.
Its dimension is at most 1. The dimension of the singular set at the first blow up
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time ought to be smaller. (The first blow up time is the putative time T whereR t
0
kuk2

L1.R3/
ds < 1 for t < T but

R T
0
kuk2

L1.R3/
ds D 1.) The singular set is

then the set of points x such that lim supy!x;s!T;s<T ju.y; s/j D 1.

4 Pressure

Singularity formation in unforced Navier-Stokes equations in R
3 requires infinite

pressure. Specifically, if

Z T

0

kpk2L3dt <1

then no singularity can arise, from smooth and localized initial data [4] in the time
interval Œ0;T�. Also if the pressure is bounded below

inf
0
t
T;x2R3

p > �1

then no singularities can occur in weak solutions [29]. Of course, the pressure
is actually defined only up to a constant, and these criteria require a convention
determining it. The pressure obeys a Poisson equation

��p D r � .u � ru/

and in the whole space we may assume that the pressure decays at infinity. Then a
natural choice for .��/�1 is convolution with the Green’s function for the whole
space, and that gives an explicit formula for the pressure in terms of the velocity.
Using the result that velocity bounded in u 2 L1.0;TIL3.R3// implies regularity,
it is easy to recover the result that the pressure bounded in p 2 L2.0;TIL3.R3//
implies regularity. Indeed, this follows from the inequality

d

3dt

Z

R3

juj3dxC �
Z

R3

jruj2jujdx �
ˇ̌
ˇ̌
Z

R3

pu � rjujdx

ˇ̌
ˇ̌

by standard manipulations (Hölder inequality, Morrey inequality). Because the
pressure controls the magnitude of velocity and because a Navier-Stokes blow up
requires the velocity to become infinite, the study of pressure is important for the
regularity problem. In fact, in the absence of pressure, or if the pressure would have
been a local function of velocity magnitude, then no singularities could arise in the
Navier-Stokes equations. The regularity criterion involving

R T
0
kuk2

L1.R3/
dt would

suggest that a condition like
R T
0
kpkL1.R3/ <1 would be a sufficient condition for

regularity.
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There exists an explicit, quasi-local decomposition of the pressure [11] using the
spherical averages

pr.x/ D
1

4�r2

Z

jx�yjDr
p.y/dS.y/;

at arbitrary r > 0. The pressure is expressed as

p.x/ D ˇr.x/C �r.x/

where ˇr is a local average of the pressure,

ˇr.x/ D 1

r

Z 2r

r
p�.x/d�:

The expression for �r.x/ is computed from integrals in the ball of radius 2r of
velocity increments

ızui.x/ D ui.xC z/ � ui.x/

squared:

�r.x/ D
Z

w

	 jzj
r



kij.z/.ızui.x//.ızuj.x//dz

where kij is symmetric in i; j, homogeneous of order �3 in the ball of radius one
around the origin, smooth away from the origin, and it is explicit. The weight w is
supported in Œ0; 2�, equals one for 0 � � � 1, and 2 � � on Œ1; 2�. The function �r

vanishes for the harmonic part of p, and is quadratically small in r:

k�rkLq.R3/ � Cr2kruk2L2q.R3/

for 1 � q � 1. On the other hand, the function ˇr obeys very strong bounds for
positive r:

kˇrkL1.R3/ � Cr�3kuk2L2.R3/;
krˇrkL1.R3/ � Cr�4kuk2L2.R3/:

These bounds follow from the equation for the pressure, using a kind of monotonic-
ity equation for a modified object

br.x/ D pr.x/C
1

4�r2

Z

jx�yjDr

	
y � x

jy � xj � u.y/

2

dS.y/:
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Bounds of the form

kˇrkLq.R3/ � Cqkuk2L2q.R3/

for 1 < q <1 are true for r D 0 as well, and follow from the Calderon-Zygmund
bounds on p. The bounds for ˇr are obviously sufficient for regularity. The bounds
on �r are not. The smallness of �r is remarkable though. For instance, it follows
from the well-known bound [11, 21]

Z T

0

k�uk 23
L2.R3/

dt <1

that

k�rkL3.R3/ � C.t/r2

holds almost everywhere in Œ0;T� with
R T
0

C.t/
1
3 dt depending only on the initial

energy ku0k2L2.R3/, T and �. A stronger form of smallness of �r is all that is needed
for regularity. Indeed, if there would exist r > 0 (independent of time, although this
requirement could be relaxed) and a constant C such that

u � r�r C �jruj2 C C � 0

pointwise, then we would deduce regularity. This condition is a form of the
requirement of the existence of positive r such that the local Reynolds number
at scale r is small. If this condition is assumed, then regularity follows from the
decomposition of the pressure at scale r, p D ˇr C �r because

Z T

0

ku � rˇrkL1.R3/dt

is a priori finite (for fixed positive r) and because the inequality

.@t C u � r � ��/ juj2 � F.t/

with
R T
0

F.t/dt <1 results in

ku.t/k2L1.R3/
� F.t/

by the maximum principle applied to ju.x; t/j2 � R t
0

F.s/ds.
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5 Zero Viscosity

Many of the interesting mathematical problems about Navier-Stokes and Euler
equations originate in the attempt to understand questions related to turbulence. One
of the basic tenets of turbulence is the non-vanishing of energy dissipation � in the
limit of high Reynolds numbers. The average energy dissipation of energy per unit
mass is an important parameter in turbulence theory, where the Kolmogorov energy
spectrum is given by

E.k/ D CK�
2
3 k� 5

3

in the inertial range. The power law is deduced on dimensional grounds. If the
answer depends only on the wave number k (which has dimensions of L�1) and
� (which has dimensions Œ�� D L2T�3), and if the answer is a product of powers,
E D �akb, then because the energy spectrum which has units of energy per wave
number, i.e. ŒE� D L3T�2 , equating powers of L and T we deduce the Kolmogorov
spectrum. The trouble with this argument is not that it is simplistic, but rather that
it gives the “right” result, for an astounding range of turbulent experiments and
numerical simulations. The constant CK is not dependent on Reynolds number.
Because � D �hjruj2i, no matter what interpretation we give to the average,
somehow the average gradient of velocity should saturate the nonzero bound, in
the limit of zero viscosity. This is termed by physicists “anomalous dissipation”.

There are two distinct approaches to the question of anomalous dissipation.
In the first, the limit of zero viscosity is taken on solutions of the initial value
problem with fixed initial data. Under appropriate conditions this leads to a solution
of the corresponding initial value problem of the Euler equation. This equation
conserves energy if solutions are smooth, but might dissipate energy if solutions are
not sufficiently smooth. This circle of ideas, and specifically the precise degree of
smoothness needed, goes by the name of “Onsager conjecture” [20]. This approach
is therefore about the initial value problem for the limit equations and it requires
lack of smoothness of solutions. The blow up problem is open for 3D incompressible
Euler equations, and this allows to envision the possibility of existence of dissipative
solutions arising from smooth initial data. Anomalous dissipation of energy can
be proven for incompressible 2D Euler equations as well, for very non-smooth
solutions, although in 2D non-smooth solutions cannot arise spontaneously from
smooth ones. The Onsager conjecture states roughly that energy is conserved on
solutions of Euler equations if they are smoother than C

1
3 , and that there are

solutions of the Euler equations with exactly C
1
3 smoothness which dissipate energy.

The first part of the statement is pretty much proved [7, 13]. Much progress has been
made on the second part of the statement [3, 18].

The second way of looking at the anomalous dissipation issue is to take long time
averages first, in order to achieve a “permanent regime” of the viscous equations,
and only then send the viscosity to zero. This procedure has the advantage of being
more appropriate to a turbulence setting which requires a statistical description.



Navier Stokes Equations: A Quick Reminder and a Few Remarks 269

Turbulence is generated at boundaries or through other forcing. Anomalous dis-
sipation is much harder to establish in this case. The difficulty is conceptual,
because it is necessary to produce long lived solutions that achieve an equilibrium
that is not obtained by the balance of forcing and viscosity, rather by the balance
of nonlinearity and forcing. In two dimensions if nonvanishing linear damping is
imposed then a dissipation anomaly cannot exist [16, 17].

The finite time relationship between the Navier-Stokes equations and Euler
equations is understood only for as long as the solutions of the Euler equations are
smooth, and only if no boundaries are present (i.e. Rd or Td, d D 2, or d D 3 under
the assumption of smoothness.) In these cases, if the Euler solution starting from a
smooth initial datum remains smooth on a time interval Œ0;T�, then there exists a
viscosity �0, depending on the Euler solution and on T , such that for all � � �0, the
solution of the Navier-Stokes equation with the same initial datum exists on Œ0;T�,
is smooth, and �-close in strong norms to the Euler solution [8, 25, 28].

In the case of boundaries, the mathematical problem is wide open, despite more
than a century of effort. The difficulty stems from the presence of boundary layers,
vanishingly small regions near the boundary where high gradients of the solutions
are concentrated. In many studies, a reference smooth Euler flow is supposed to
be known and used to set units of time and length. In other words, it is assumed
that a smooth Euler solution is given and has velocity of order one and derivatives
of order one. The classical Prandtl boundary layer length scale associated to the
Eulerian solution is of order

p
� and an asymptotic description based on this given

Euler flow is attempted. An asymptotic description of the Navier-Stokes equation,
based on a given “nearby” smooth Euler flow is difficult because the connection
between the imposed Euler flow and the Navier-Stokes equation is illusory near the
boundary.

It was shown by Kato [26] that if the rate of dissipation vanishes on a much
smaller scale,

lim
�!0

Z T

0

Z

dist.x@�/ <c�
�jru.�/j2dxdt D 0

for Navier-Stokes solutions with viscosity �, then inviscid limits solve the Euler
equation. In fact, in this case any weak limit of Navier-Stokes solutions is a weak
dissipative up to boundary [1] solution of the Euler equations. There are variants of
this sufficient condition ensuring convergence to an Eulerian solution which allow
for more singular behavior, if there are no turning points in the flow [15]. The
possibility of the inviscid limit to be a solution of the Euler equations exists, but
is very limited. In general, the behavior of the inviscid limit might fail to be purely
Eulerian. How does the laminar Eulerian picture break down (if indeed, as I suspect,
it does) is still a mystery. Much remains to be done.
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Plateau’s Problem

Jenny Harrison and Harrison Pugh

Abstract Plateau’s problem is not a single conjecture or theorem, but rather
an abstract framework, encompassing a number of different problems in several
related areas of mathematics. In its most general form, Plateau’s problem is to
find an element of a given collection C of “surfaces” specified by some boundary
constraint, which minimizes, or is a critical point of, a given “area” function
F W C ! R. In addition, one should also show that any such element satisfies
some sort of regularity, that it be a sufficiently smooth manifold away from a well-
behaved singular set. The choices apparent in making this question precise lead to
a great many different versions of the problem. Plateau’s problem has generated
a large number of papers, inspired new fields of mathematics, and given rise to
techniques which have proved useful in applications further afield. In this review
we discuss a few highlights from the past hundred years, with special attention to
papers of Federer, Fleming, Reifenberg and Almgren from the 1960s, and works by
several groups, including ourselves, who have made significant progress on different
aspects of the problem in recent years. A number of open problems are presented.

1 Introduction

Plateau’s problem has intrigued mathematicians and scientists alike for over 200
years. It remains one of the most accessible problems in mathematics, yet retains
a subtle difficulty in its formulation. Many different versions of Plateau’s problem
have been solved, but even today there are still important questions left unanswered,
and deep mysteries about the problem still remain.

Plateau’s problem was first posed by Lagrange, who in 1760 derived the minimal
surface equation and asked if one could find a surface of minimal area with
a prescribed boundary. The problem was later named after Plateau [74] who
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Fig. 1 Three surfaces meeting at a triple junction singularity

Fig. 2 Non-standard boundaries. (a) A wireframe as a boundary. (b) A non-closed boundary

undertook a physical study of soap films and characterized their properties, most
notably their singularities. It was actually Lebesgue who coined the term “Plateau’s
problem,” the crux of which was to describe these soap films in mathematical terms.
These objects do not behave like classical surfaces such as embedded, or even
immersed manifolds with branch points. Three sheets can come together along a
line and form what is known as a triple junctions (Fig. 1). Soap films can span wires
that are not cycles (Fig. 2). Some films are local area minimizers, yet can retract
onto their boundaries (Fig. 3).

The long journey towards a full understanding of these phenomena began with
a much simpler question about the existence of a function with prescribed values
on the boundary of a domain ˝ � R

2, such that the graph of the function on the
interior of ˝ is a minimal surface. This problem was studied by Weierstass and
Riemann and evolved into the classical theory of minimal surfaces. The next step
up in generality came with the study of surfaces defined as images of disks. Jesse
Douglas won the first Fields Medal for his solution, which proved the existence of
a minimally immersed disk in R

3 with a prescribed contour boundary. Many others
continued on with striking results of existence and regularity along the way, and the
Douglas-Plateau problem for surfaces with higher (non-infinite) genus in arbitrary
dimension and codimension was finally solved by Jost in 1985.
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Fig. 3 The Adams surface (a) retracts onto its boundary (b). The left portion of (a) is a triple
Möbius band (a “Y” cross an interval, glued along the ends with a 1=3 twist, see also Fig. 9b) and
the right portion is a classical Möbius band. They are joined by a bridge, so that the boundary is a
single Jordan curve

However, Fleming demonstrated the existence of a contour boundary which
bounds a minimal surface of infinite genus (Fig. 4). In 1960, Federer and Fleming
introduced objects known as integral currents which could model these somewhat
pathological surfaces. Their novel approach won them the Steele prize and helped
launch the modern study of geometric measure theory. They proved the existence
of an integral current with a given boundary which minimizes mass, a quantity
which can be thought of as area weighted by an integer multiplicity. It later became
known that in low enough dimension, their minimizing current corresponded to an
embedded minimal submanifold.

At the same time, Reifenberg thought of a completely different approach.
Building on results of Besicovitch and aided by Adams, he defined what it meant
for a surface to span a bounding set A using Čech homology. Using his theory, he
proved the existence of a surface with minimal area amongst those surfaces which
can be written as a nested union of manifolds whose boundaries converge to the
contour. These surfaces include non-orientable surfaces, as well as the example of
Fleming, amongst others. His work is considered to be a masterpiece and deeply
influenced several mathematicians, including Morrey, Almgren, Fomenko, as well
as ourselves.

Almgren proposed three approaches to Plateau’s problem. The first used varifolds
[4], which Young [93, 94] had discovered but called “generalized surfaces.” Integral
varifolds have a compactness theorem [2] which can be used to prove the existence
of a stationary varifold with smallest area. Integral varifolds model just about any
imaginable minimal surface, including the example of Adams (Fig. 3). However,
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Fig. 4 Fleming’s example of a minimal surface with infinite genus. (a) A minimal surface with
infinite genus. (b) The boundary wire can be made smooth except at a single point

Almgren did not prove that this smallest stationary varifold was the smallest among
a class of surfaces which also included non-stationary varifolds.

Almgren’s second approach [7] was an attempt to generalize Reifenberg’s results
to elliptic integrands. To read his paper requires expertise in methods of geometric
measure theory, varifolds, integral currents, and flat chains, for it blends them all. It
has some gaps, one of which seems serious (see [57] for more details.)

Almgren’s third and final approach [9] was to define a new class of surfaces
which later became known as quasiminimal sets, which, roughly speaking, have
a controllable increase of area under small deformations. Although he was unable
to prove an existence theorem of an area minimizer in this category, his regularity
results are of major importance.

The authors have recently announced the first solution to the full elliptic Plateau
problem [57]. Our proof of existence of minimizers builds upon classical measure
theory, and techniques of Reifenberg [77], Federer and Fleming [45]. Our proof
of regularity relies upon Almgren [9], although Reifenberg [78, 79] is closely
related. Spanning sets can be defined using homology, cohomology or homotopy.
An axiomatic approach without requiring any definition of a spanning set is also
provided. Our results carry over to ambient spaces of Lipschitz neighborhood
retracts, including manifolds with boundaries and manifolds with singularities.

In the last few years there has been a flurry of other activity in Plateau’s problem
and in related fields, some of which we shall discuss below. For example, papers
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Fig. 5 A piece of the helicoid, which extends to infinity in all directions

have recently appeared on sliding boundaries, where the soap film’s interface within
a larger boundary is permitted to move freely, on flexible boundaries, where the
boundary itself is permitted to move subject to forces created by the spanning soap
film, and on axiomatic theory, ellipticity, spanning conditions, and classical minimal
surface theory. Indeed, very recently, a beautiful and central theorem in classical
minimal surfaces was proved by Meeks and Rosenberg, namely that every simply
connected, properly embedded minimal surface in R

3 must be either a plane or a
helicoid (Fig. 5.)

There are still many major questions in the world of Plateau’s problem, indeed
the list seems to be growing, not shrinking. We have enumerated several of our
favorites at the end of this paper, some of which are newly posed.

Disclaimer

Before diving in, the reader should be aware that the following exposition is far
from complete and will often be imprecise. We hope that it will be useful to give
non-specialists some idea of the history of Plateau’s problem, a few lines of current
theoretical development, and some open problems, both enduring and emerging.
We have endeavored to give a broad overview of many different aspects of the
problem, and in doing so, have, by necessity, left out many important contributions
by numerous mathematicians. If we have neglected to mention your favorite result,
it was not due to malice, but rather due to the constraints of writing this article. If
we have incorrectly stated your favorite result, know that we are experts in only a
small portion of the Plateau problem, and would welcome any corrections you might
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provide. Lastly, the authors would like to thank Emanuele Paolini,1 Ken Brakke,2

and Claire-Audrey Bayan3 for the use of their soap-film figures.

2 Classical Minimal Surfaces

2.1 The Minimal Surface Equation

Let˙ be a surface in R
3. We say that˙ is a minimal surface if every point in˙ has

an �-neighborhood U which has least area among all surfaces S � R
3 with boundary

@U. This condition is equivalent to ˙ having vanishing mean curvature, and to the
condition that @

@t Area.˙t/btD0D 0 for all compactly supported variations ˙t of ˙ .
These are the two (and higher) dimensional analogs of geodesics, but one must be
careful in this comparison: even in R

n, a minimal surface with a given boundary
may not have smallest area amongst all surfaces with that boundary. For example,
consider two horizontal disks in R

3 separated vertically by a small amount. Their
union forms a minimal surface, but the cylinder has smaller area, and the catenoid,
smaller still (Fig. 6).

A special kind of minimal surface ˙ is one which occurs as a graph:
Suppose˝ is a bounded open set in R

2 with locally Lipschitz boundary @˝, and
suppose g W @˝ ! R is continuous. Let F denote the set of continuous extensions
of g to ˝ which are continuously differentiable in ˝ and whose derivative is
integrable. Let A.f / denote the surface area of the graph of such a function f and
suppose f 2 F solves Plateau’s problem for this setup. That is, f satisfies

Fig. 6 Minimal surfaces with the same boundary. (a) Two disks. (b) Catenoid

1Figures 2b, 3–7, 9.
2Figure 11.
3Figure 8.
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A.f / � A.h/ for all h 2 F: (1)

Then,

div

 
r.f /

.1C jrf j2/1=2
!
D 0: (2)

This differential equation is called the minimal surface equation. It is the Euler-
Lagrange equation for the area functional.

Theorem 1. A function f 2 F satisfies (1) if and only if f satisfies the minimal
surface equation (2).

Such a function f is unique, and is in fact analytic on ˝ [60].
Suppose now the domain ˝ is a disk D of radius r. This produces a unique min-

imal surface for each continuous function g on S1, and thus there are uncountably
many minimal surfaces that are graphs over disks of radius r < 1. However, if
r D1, the situation simplifies dramatically:

Theorem 2 (Bernstein [13]). Any solution of the minimal surface equation (2)
which is defined on all R2 must be linear.

Bernstein conjectured that this was also the case in higher dimension. Indeed this is
the case up to dimension seven:

Theorem 3 (de Giorgi [27], Almgren [6]). The Bernstein conjecture holds for
minimal graphs  D f.x; f .x// 2 R

nC1 W x 2 R
ng for n � 4.

Theorem 4 (Simons [81]). The Bernstein Conjecture holds for minimal graphs
when n � 7.

2.2 Recent Developments

In the classical theory, non-compact minimal surfaces might not be graphs and
might not have a boundary. An example in R

3 is the helicoid (Fig. 5). A long
outstanding question posed by Osserman was the following generalization of
Bernstein’s Conjecture: The plane and the helicoid are the only properly embedded,
simply-connected, minimal surfaces in R

3.
Osserman’s conjecture has recently been solved after many years of effort by

Meeks and Rosenberg [70] who built on the work of Colding and Minicozzi [21, 22]
as well as a number of other mathematicians (see [68] for a detailed discussion and
a more complete list of citations.)

Combining this with work of Collin [24], López and Ros [63], Meeks et al. [69]
give the following classification theorem:
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Theorem 5. Up to scaling and rigid motion, any connected, properly embedded,
minimal surface in R

3 is a plane, a helicoid, a catenoid or one of the Riemann
minimal examples. In particular, for every such surface there exists a foliation of R3

by parallel planes, each of which intersects the surface transversely in a connected
curve which is a circle or a line.

This beautiful theorem is only just the beginning of what looks to be a new era
in classical minimal surface theory. A few particularly intriguing open problems are
listed in Sect. 7 and can be found as part of a larger list in [68].

3 The Douglas-Plateau Problem: Immersions of Disks
and Surfaces of Higher Genus

The Plateau problem, in its original formulation, was to find a minimal immersed
disk whose boundary was a given Jordan curve in R

n. For any immersed disk,
coordinates on the disk D can be chosen so that the immersion is conformal, in
which case minimality is equivalent to the immersion being harmonic.

Independently, Douglas [39] and Radó [75] proved the existence of such a
surface, with (possibly) isolated singularities:

Theorem 6. If C is a Jordan curve in R
n, there exists a continuous map � W D! R

n

which is conformal and harmonic away from a set of isolated singularities (i.e.
branch points), such that �b@D parameterizes C.

The solutions produced by Douglas and Radó also had minimal area in the class
of branched immersions. However, Douglas could prove slightly more than Radó,
principally his theorem allowed for certain pathological boundaries C which could
only be spanned by disks of infinite area.4 In addition, Douglas’s methods signaled
a significant and promising departure from the classical techniques, and for these
reasons he was awarded the first Fields medal in 1936.

Osserman proved [72] that if n D 3, then branch points did not exist in such
minimal disks. Thus,

Theorem 7. If C is a smooth Jordan curve in R
3, there exists a (conformal,

harmonic) immersion � W D ! R
3 such that �b@D parameterizes C, whose area

is minimal among all immersed disks whose boundaries parameterize C.

4Douglas was well known for his displeasure at having to share credit with Radó for Theorem 6.
When teaching subsequent geometry courses, he eschewed those books which, in covering the
theorem, contained the attribution “Douglas-Radó.” Unfortunately, as the years went on, he was
forced to use increasingly antiquated texts, since virtually no book published after the 1930s failed
to give this (correct) attribution (See [85]. The second author has also heard a similar story from
Martin Bendersky, who was a student in one of Douglas’s courses at City College.)



Plateau’s Problem 281

Fig. 7 A non-orientable surface with smaller area than any immersed disk with the same boundary.
(a) An immersed disk spanning the boundary of the Möbius band. (b) A Möbius band

Fig. 8 The transverse intersection of two sheets can be replaced with a pair of triple junctions with
smaller area. These singularities do not, however, show up in the mass minimization problem (see
Sect. 4.2), as the horizontal portion of the right hand figure would require higher mass to cancel
out any contribution of the triple junction to the boundary

However, there still could be immersed surfaces with boundary C whose area
is strictly less than those of the solutions produced above. Consider a thin Möbius
band. Its area is less than that of any immersed disk spanning the boundary curve
(Fig. 7). Higher genus surfaces could also have less area. Douglas had made attempts
to generalize his techniques to account for possibly non-orientable surfaces and
those of higher genus, but the consensus seems to be that his arguments were
incomplete [52]. It took until the 1980s for a complete solution to the higher genus
problem to appear in a paper by Jost [61] (see [14] for the non-orientable case),
who built upon ideas of Schoen-Yau [84] and Sacks-Uhlenbeck [88]. Tomi-Tromba
[87] soon after offered a different solution to the higher genus problem based on a
development of Teichmüller theory from the viewpoint of differential geometry.

Although not a mathematical shortcoming, self-intersections in which two sheets
intersect transversally can easily show up in Douglas’s and others’ immersed
solutions. Such solutions are not physically realistic as soap-films, since transverse
intersections resolve into pairs of triple junctions (Fig. 8) with smaller total area
when one is allowed to consider surfaces more general than immersed manifolds.
These generalized surfaces with triple junctions became important in the 1960s in
the work of Reifenberg [77], Almgren [7] and Taylor [86], who studied soap-film
regularity and classified the singularities for these general size-minimizing surfaces.
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4 Orientable Generalized Surfaces

Fleming’s example (Fig. 4) shows that one must consider all topological types to
find a true minimizer for an orientable version of Plateau’s problem. The curve in
the figure is an unknotted simple closed curve and is smoothly embedded except
at one point. It bounds the shaded surface which is orientable and clearly area
minimizing. This shows that one should not insist that competitors have finite
topological type when looking for absolute area minimizers. The proof of the
existence of an orientable surface minimizing the area among all possible surfaces
without restriction on their topological type requires other techniques, namely the
results of Reifenberg [77] and the integral currents of Federer and Fleming [45].

4.1 Hausdorff Measure

Readers will recall that for any E � R
n, and any non-negative real number k, the

k-dimensional Hausdorff measure of E is

H k.E/ D lim
ı!0

H k
ı .E/

where

H k
ı .E/ D ˛k inf

(X
i2I

diam.Ui/
k W E � [i2IUi

)
;

˛k is a normalizing constant, and the infimum is taken over all coverings of E by a
collection fUigi2I of sets with diam.Ui/ < ı. The normalizing constant ˛k is chosen
so that when k is an integer, the k-dimensional Hausdorff measure of the unit cube
in R

k is one.
Note that H k

ı .E/ is monotone decreasing in ı, so the limit limı!0H
k
ı .E/

exists but may be infinite. H k is a Borel regular outer measure and coincides with
Lebesgue measure when E is a k-dimensional submanifold.

The Hausdorff dimension of E is the infimum over all k � 0 such that
H k.E/ D 0.

4.2 Integral Currents and Mass Minimization

A k-dimensional current T on an n-dimensional smooth manifold M is a linear
functional on the space of compactly supported smooth k-forms D k.M/, continuous
in the following sense:



Plateau’s Problem 283

If !i is a sequence of k-forms supported in a single compact set K contained in
a coordinate neighborhood and @r!i ! 0 uniformly for all 0 � jrj < 1, then
T.!i/! 0. Here r D .r1; : : : ; rn/ is a n-tuple of non-negative integers, jrj DP

ri,
and @r is shorthand for the coordinate-wise differentiation operator

@jrj

@xr1
1 : : : @xrn

n
:

It is important to note that the topology on D k.M/ is strictly finer than the
subspace topology induced by the inclusion of D k.M/ into the space E k.M/ of
C1 differential k-forms on M, in which a sequence of forms &i converges to zero
whenever @r&ibK! 0 uniformly for all 0 � r < i and all compact sets K contained
in a coordinate neighborhood. The difference is subtle, but has extremely important
consequences (the full description of the space D0, its topology, and continuous dual
was the major component of L. Schwartz’s Fields medal.) For example, in E 0.R/,
any sequence of bump functions fi equal to 1 on the interval Œ�i; i� converges to
the function 1, which is no longer compactly supported. Such a sequence is not
convergent in D0.R/. As a matter of fact, D k.Rn/ is complete, so it is not even
Cauchy.

4.2.1 Examples

• If S � M is an oriented k-dimensional submanifold, then a k-current ŒŒS�� is
defined, setting ŒŒS��.!/ � RS !.

• If M is equipped with a volume form dV , then a k-vector field X on M defines a
current ŒŒX��, whereby ŒŒX��.!/ � RM !.X/dV .

• A generalized Dirac delta is a current: if p 2 M and ˛ 2 �k.TpM/, then a current
ŒŒ.p; ˛/�� is defined, where ŒŒ.p; ˛/��.!/ � !p.˛/.

• An .n�k/-form & in E n�k.M/ defines a k-current ŒŒ&��, where ŒŒ&��.!/ D RM &^!.
Such a current is called a smooth current. Through convolution, it is possible to
construct a smoothing operator which approximates any current by a smooth
current (See [76, Sect. 15]).

Denote the space of k-dimensional currents by Dk.M/. The operator dual to
exterior differentiation on forms, denoted @, turns D.M/ into a chain complex.
The image and kernel of @ are closed. When given the opposite grading (i.e. give
Dk.M/ degree n � k), the resulting cochain complex .Dn�; @/ is quasi-isomorphic,
via application of the aforementioned smoothing operator, to the cochain complex
.E .M/; d/. Thus, Poincaré duality holds in this setting: the homology of currents in
degree k (which is dual to the compactly supported de Rham cohomology in degree
k) is isomorphic to de Rham cohomology in degree n � k.

Before we can describe a sub-complex of .D; @/ which computes the integral
homology of M, it will be necessary to define the mass of a current. If M is equipped
with a Riemannian metric and W � M, define kTk.W/ � supfT.!/ W supp.!/ �
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W; k!k0 � 1g, where k!k0 is the supremum of !p˛, where p 2 M and ˛ is a unit
simple k-vectors in �kTpM. The (possibly infinite) mass of T , denoted M.T/, is the
quantity kTk.Rn/. If kTk.W/ is finite for every W �� M, we say T has locally
finite mass.

A k-dimensional current T is called (integer) rectifiable if it has locally finite
mass and there exists a sequence Si of C1 oriented k-dimensional submanifolds of
M, a sequence of pairwise disjoint closed subsets Ki � Si and a sequence of positive
integers ki such that

T.!/ D
X

i

ki

Z

Ki

!

for all ! 2 D k.M/. If T and @T are rectifiable, we say that T is an integral current.
One can show, e.g., using sheaf theory, that the homology of the chain complex
.I.M/; @/ of integral currents computes the homology of M with Z coefficients.

One can also show that the mass M.T/ of an integral current T is the same as the
quantity

P
i kiH k.Ki/.

Central to the utility of integral currents is the following compactness theorem:

Theorem 8 (Federer-Fleming). If fTig � Ik.M/ is a sequence of integral currents
such that

sup
i
kTik.W/C k@Tik.W/ <1

for all W �� M, then there exists an integral current T and a subsequence of fTig
which converges weakly to T.

Since mass is weakly lower-semicontinuous, Federer-Fleming produced the
following corollary:

Corollary 1. If T 2 Ik.M/, then there exists T0 2 Ik.M/ with T � T0 D @R0 for
some R0 2 IkC1 such that

M.T0/ D inf
R2IkC1

M.T0 C @R/:

As a special case, setting Q D @T:

Corollary 2. If Q 2 Ik�1.Rn/, there exists T0 2 Ik.R
n/ with @T0 D Q such that

M.T0/ D inf
T2Ik;@TDQ

M.T/:

Another special case occurs when T is a cycle:

Corollary 3. Each class in Hk.I.M/; @/ contains a representative of least mass.
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4.3 Regularity

The support supp.T/ of a current T 2 Dk is the complement of the largest open
set U for which supp.!/ � U ) T.!/ D 0. We say p 2 supp.T/ n supp.@T/ is
an interior regular point if there exists � > 0, a positive integer � and an oriented
k-dimensional smooth submanifold S such that T.!/ D �ŒŒS��.!/ for all forms !
supported in the ball of radius � about p. The remaining points in supp.T/nsupp.@T/
are called interior singular points, the set of which will be denoted P.T/.

Theorem 9 (Complete Interior Regularity). If T0 2 In.R
nC1/, where 2 � n � 6,

and the mass of T0 is minimal among all integral currents with the same boundary,
then supp.T0/n supp.@T0/ is an embedded minimal hypersurface in R

n n supp.@T0/,
and P.T0/ is empty.

In 1962, Fleming proved the result for n D 2, so other than regularity at the
boundary which was to take another 17 years [59], this result completed the solution
of the oriented Plateau Problem in R

3 for surfaces of all topological types.
Almgren [6] extended Fleming’s theorem to n D 3, and Simons extended it up

to n D 6 in [81].
Also in [81] Simons constructed an example which showed that singularities

could in fact occur in dimension 7 and higher. The “Simons cone” is the cone over
S3 	 S3 � S7 � R

8. He showed it was locally mass minimizing, yet has an isolated
interior singularity. Immediately after Simons published his example, Bombieri, de
Giorgi, and Giusti [12] showed in a marathon three-day session5 that S is in fact
globally mass minimizing. As a corollary, they also showed that, for any n � 8,
there exist functions which satisfy the minimal surface equation and are not affine,
finally settling the Bernstein problem in all dimensions.

Not long after, Federer [44] put a bound on the size of the singular set P.T/:

Theorem 10. The singular set P.T0/ has Hausdorff dimension at most n � 7.
Singularities are isolated points if n D 7.

Bombieri, de Giorgi, and Giusti [12] showed that this bound is sharp: there exist
mass minimizers T0 in every dimension n � 7 such that H n�7.P.T0// > 0. In the
90’s, Simon [83] proved this singular set is well-behaved:

Theorem 11. Except for a set of H m�7 measure zero, the singularity set of a
codimension one mass minimizer T0 is covered by a countable collection of C1

submanifolds of dimension m � 7.

A new and simpler proof of Simon’s theorem has been recently found by Naber
and Valtorta [71]. To the best of our knowledge, however, it is still an open question
whether or not the remainder of the singularity set stratifies as lower-dimensional
submanifolds.

Surprisingly, codimension one mass minimizers do not have boundary singulari-
ties, as Hardt and Simon [59] established:

5This story was recently communicated by Simons to the second author.
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Theorem 12. If T0 2 In.R
nC1/, @T0 D ŒŒS�� for some oriented embedded C2

submanifold S � R
n, and the mass of T0 is minimal among all integral currents

with the same boundary, then there exists an open neighborhood V of S such that
V \ supp.T0/ is an embedded C1;˛ hypersurface with boundary for all 0 < ˛ < 1.

The story is more complicated and incomplete in higher codimension. Almgren
in his 1700 page “big regularity paper” [10] proved the following theorem:

Theorem 13. The singular set P.T0/ of an m-dimensional mass-minimizing inte-
gral current T0 in R

n has Hausdorff dimension at most m � 2.

Again, this bound is sharp in codimension � 2 [42]. Chang [20] built upon
Almgren’s work to show that if m D 2, then the singularity set consists of isolated
branch points. More recently, in a series of papers [30–34], De Lellis and Spadaro
took on the monumental task of modernizing and simplifying Almgren’s work. For
an excellent overview of their approach, see [28].

5 Non-orientable Generalized Surfaces

Much of the above story can be repeated using chains with coefficients in a finite
group, and in particular in Z=2Z to account for non-orientable surfaces. Fleming
[47] has a beautiful theory of flat chains with coefficients (see also [95]), the
homology of which recovers the mod-p homology of the ambient space.

However, soap films that occur in nature are not only non-orientable, but possess
singularities such as triple junctions which are not amenable to mass-minimization.
To ensure that the triple junction not be part of the algebraic boundary, one must
assign one of the three surfaces a higher multiplicity. This in turn increases the total
mass of the surface, and as a result triple junctions do not show up in solutions to
the mass minimization problem.

To get around this issue, there is a different approach one can take, and that
is to ignore multiplicity when measuring area. Instead of minimizing mass, one
can instead minimize size, which for an integral current

P
i ki
R

Ki
is the quantityP

i H
k.Ki/. The k-dimensional size of an arbitrary subset E � M is just H k.E/.

Note that the size of an integral current may be smaller than the size of its support.
The primary difficulty with working with size is that unlike mass, it is not weakly
lower semicontinuous. Extreme care must be taken with the minimizing sequence
to account for this. The payoff is that size is better suited to the study of soap films
than mass.

5.1 Reifenberg’s 1960 Paper

The same year that Federer and Fleming’s seminal paper appeared [45], Reifenberg
published a work [77] which dealt with the Plateau problem for non-orientable
manifolds of arbitrary genus. This paper is also famous for a result that later became
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known as “Reifenberg’s disk theorem,” which placed sufficient conditions on the
approximate tangencies of a surface to guarantee that it was a topological disk. A
set satisfying these conditions is now known as Reifenberg flat. Reifenberg was
well known for his prowess with tricky if not quirky estimates, and indeed his
disk theorem did not disappoint: a condition involved in the statement required
� � 2�2000n2 . Reifenberg’s paper has sparked a number of subsequent results:
Almgren provided a generalization to so-called “elliptic integrands” in [7]. Morrey
generalized Reifenberg’s result to ambient manifolds in [65] (see also [66]).

Reifenberg’s approach to proving his main theorem was built on work by
Besicovitch and was purely set-theoretic, not involving any fancy machinery such
as currents or varifolds. His main result was the following:

Consider a finite collection A of pairwise disjoint Jordan curves in R
3. A compact

subset X of R3 is said to be a surface spanning A if X can be written as an increasing
union of manifolds Xi with boundary, such that for each i, there exists a manifold Yi

with boundary A[ @Xi such that Yi ! A in the Hausdorff distance. Reifenberg then
proved:

Theorem 14. There is a surface spanning A of least area.

His class of surfaces included those with infinite genus such as in Fleming’s
example (Fig. 4), and non-orientable surfaces as well. However, it did not include
soap-film type surfaces with triple junctions (Fig. 9b). Reifenberg proved a sec-
ondary result which did minimize amongst this larger category, in the case that
A � R

n is homeomorphic to the .m � 1/-sphere:

Fig. 9 Depending on the configuration of the boundary wire, any of (b), (c) or (d) can have smaller
area. (a) The boundary of a triple Möbius band. (b) A Triple Möbius band. (c) A non-orientable
embedded surface. (d) An immersed disk
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Theorem 15. If A is a topological .m � 1/-sphere in R
n, 2 � m � n and G � is

the collections of all compact sets X � A which do not retract onto A, then there
exists a set X 2 G � with least m-dimensional Hausdorff spherical measure. Any
such minimizer is locally Euclidian almost everywhere.

Both of these theorems were special cases of a general result involving “surfaces
with algebraic boundary,” which were defined by Reifenberg and developed by
Adams in an appendix of [77].

Let G be a compact6 abelian group and suppose A is a compact subset of R
n

with H m�1.A/ < 1. Suppose L is a subgroup of the .m � 1/-dimensional Čech
homology LHm�1.AIG/ of A with coefficients in G. We say that a compact set X � A
is a surface with (algebraic) boundary � L if L is in the kernel of the inclusion
homomorphism �� W LHm�1.AIG/ ! LHm�1.XIG/. Reifenberg proved existence of a
surface with algebraic boundary � L with least m-dimensional Hausdorff spherical
measure. The case that G D Z=2Z implies Reifenberg’s first theorem, and the case
that G D S1 implies, via a theorem of Hopf, the second.

A shortcoming of Reifenberg’s theory is that for boundaries more general than
a sphere, he did not defined a single, unifying collection surfaces with soap-film
singularities. For example, consider the disjoint union of a disk and a circle in R

3.
There is no retraction to the pair of circles, yet we might not want to consider this
as an admissible spanning set. As another example, consider the surfaces Xi, i D
1; 2; 3, in Fig. 10. Any one could be a surface with minimal area, depending on the
distance between the circles, but a simple computation shows there is no non-trivial
collection of Reifenberg surfaces which contains all three simultaneously. Thus,
one would have to find an appropriate subgroup L which would produce the correct
minimizer, and this task would change depending on the configuration of the circles
in the ambient space.

Fig. 10 Three minimal surfaces spanning three circles

6The exactness axiom is used in the proof and Čech homology only satisfies exactness when the
coefficients are compact, so we will need this assumption.
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In a recent paper [55, 56], the authors found a way around this problem using
linking number to define spanning sets, and later in [58], using Čech cohomology
in higher codimension. We also generalized Reifenberg’s result so as to minimize a
Lipschitz density functional.

5.1.1 Spanning Sets via Linking Numbers

Definition 1. Suppose A is an .n�2/-dimensional compact orientable submanifold
of Rn, n � 2. We say that a circle S embedded in R

n n A is a simple link of A if
the absolute value of the linking number L.S;Ai/ of S with one of the connected
components Ai of A is equal to one, and L.S;Aj/ D 0 for the other connected
components Aj of A, j ¤ i. We say that a compact subset X � R

n spans A if
every simple link of A intersects X (see Fig. 11).

Fig. 11 Each row of surfaces depicts a distinct type of minimal surface spanning the Borromean
rings. A surface in the first row spans the Borromean rings using any linking test. That is, every
simple link of any number of curves must meet the surface. In the second row, every simple link
of one curve or all three curves must meet the surface. The third row has mixed types



290 J. Harrison and H. Pugh

If A is a topological .n � 2/-sphere then the set of spanning surfaces is the
same as the collection G � above. Any orientable .n � 1/-manifold with boundary
A spans A. The set A can be a frame such as the .n � 2/-skeleton of an n-cube, in
which case one can specify .n� 2/-cycles which the simple links need to link. This
procedure generalizes to higher dimension using linking spheres, or alternatively,
via Alexander duality, to Čech cohomology.

This idea was first proposed for connected smooth boundaries in the exis-
tence paper of [54] which was followed by the more substantial [55, 56] which
established lower semicontinuity of Hausdorff measure for a minimizing sequence
Xk ! X0 in codimension one and applied to any number of boundary components.
One of us (HP) realized that linking number tests could be naturally viewed a
cohomological spanning condition in higher codimension,7 and while we were
writing this generalization [58], two papers appeared [35] and [37] which built upon
our linking number test for spanning sets. See [57] for a new homotopy spanning
condition, building on [35] and [37].

The cohomological spanning condition is stated as follows: if L is a subset of the
.m�1/-st (reduced) Čech cohomology group LHm�1.AIG/ (G need not be compact),
we say that X � A is a surface with (algebraic) coboundary � L if L is disjoint
from the image of �� W LHm�1.XIG/! LHm�1.AIG/.

One of the primary benefits of using this definition over the covariant “surface
with algebraic boundary” is that if A is an oriented manifold, then there is a natural
choice for the subset L, namely the collection LZ of those cocycles on A which
evaluate to 1 on the fundamental cycle of a particular component of A, and zero
on the rest. By naturality of the Alexander duality isomorphism, the collection of
surfaces with coboundary � LZ is equivalent in codimension one to the collection
of compact sets which span A in the sense of linking number.

Eight years after [77] was published, Almgren proposed an extension [7] of
Reifenberg’s theorem to prove the existence of surfaces which minimize not only
area, but area weighted by a density function which is permitted to vary in both
spacial and tangential directions, subject to an ellipticity condition. To discuss
Almgren’s papers [7] and [9] we will need to introduce rectifiable sets and varifolds,
which we now define.

5.2 Rectifiable Sets

A subset E of Rn is m-rectifiable if there exist a countable collection of Lipschitz
maps ffi W R

m ! R
ng such that the m-dimensional Hausdorff measure of

E n [1
iD0fi.Rm/ is zero. If E is H m measurable and H m.E/ < 1, then the maps

fi can be taken to be C1. Such sets are the higher dimensional analog of rectifiable
curves. The defining property of a rectifiable set is that it is equipped with a unique

7Similar “surfaces with coboundary” were discovered independently by Fomenko [49].
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“approximate tangent m-plane” almost everywhere, a consequence of Rademacher’s
theorem. If these approximate tangent spaces are equipped with an orientation,
it becomes possible to integrate m-forms: An integer rectifiable current is just an
integer weighted rectifiable E together with an orientation, i.e. an H m measurable
field of m-vectors on E such that for almost every p 2 E, the m-vector at p is unit
simple in the direction of the approximate tangent space at p.

A set F is purely m-unrectifiable if H m.F \ E/ D 0 for every m-rectifiable
set E. Every subset of Rn with finite H m measure can be written, uniquely up to
H m measure zero sets, as the disjoint union of a m-rectifiable set an a purely m-
unrectifiable set. The beautiful Besicovitch-Federer structure theorem says that if
F is purely m-unrectifiable, then for almost every m-plane V in the Grassmannian
Gr.m; n/, the orthogonal projection of F onto V has H m measure zero.

Morally, every subset of Euclidian space can be decomposed almost uniquely
into a countable collection of C1 submanifolds, and a remainder which casts no
shadows.

5.3 Integral and Stationary Varifolds

Varifolds were first introduced by Young [93, 94] as “generalized surfaces” and
developed by Young and Fleming [46, 51]. Fleming, who had been Young’s student,
in turn, taught Almgren what he knew [48] when Almgren was a student at Brown
1958–62. Almgren took an interest in generalized surfaces and changed the name to
“varifolds,” a mnemonic for manifolds in the calculus of variations. He produced
a set of mimeographed notes [4] on varifolds that were circulated amongst his
students but never published. Allard, who had been Fleming’s student, produced the
definitive reference on varifolds [2] in which he proved the compactness theorem
for integral varifolds.

Definition 2. Let M be a smooth n-dimensional Riemannian manifold. A k-varifold
V in M is a Radon measure on the total space of the Grassmannian bundle � W
Gr ! M, whose fiber above a point p 2 M is the Grassmannian of un-oriented
linear k-planes in TpM. The pushforward of V by � is denoted kVk. The mass of V
is the quantity kVk.M/. The support of V is the support of the measure kVk.

For example, an embedded k-dimensional submanifold S � M, together with a
H k-measurable function � W S! R

C determine a varifold V as follows:

V.A/ WD
Z

S\fpW.p;TpS/2Ag
�.p/dH k.p/:

More generally, S can be replaced by a k-rectifiable set. In this case V is called
a rectifiable k-varifold. If � takes integer values, the varifold is called an integral
varifold. Integral varifolds are the non-orientable analogs of integral currents. There
is no notion of integration of differential forms on a varifold, and unlike currents
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the space of varifolds does not possess a boundary operator. However, integral k-
varifolds can be pushed forward by a Lipschitz map.

Almgren saw these features as an advantage, for he wanted to model
non-orientable surfaces and those with triple junctions. In [5] Almgren
credits Federer-Fleming for proving the Plateau problem for mass minimization
of oriented surfaces, and Reifenberg for size minimization of non-oriented surfaces
“subject to certain topological restraints.” Almgren sought at this time to prove a
mass minimization result for non-oriented surfaces. He did not specify what it meant
for a varifold to span a given contour in [4] or [5], but his focus at the time was on
stationary varifolds where the definition seemed self-evident as we shall next see.

The first variation ıV of a compactly supported varifold V is a function which
assigns to a smooth compactly supported vector field Y on M the rate of change of
the mass of the pushforward of V by the time-t map of the flow of Y at t D 0. A
varifold is stationary if ıV D 0.

In [4], Almgren proved the following theorem:

Theorem 16. Let M be a smooth compact n-dimensional Riemannian manifold.
For each 0 < k < n there exists a stationary integral k-varifold in M.

Allard in [2] proved a beautiful regularity result for such varifolds:

Theorem 17. If V is a stationary integral k-varifold in a smooth compact n-
dimensional Riemannian manifold M, 0 < k < n, then there is an open dense
subset of the support of V which is a smooth k-dimensional minimal submanifold
of M.

Even many years later, this theorem remains state-of-the-art in terms of what
is known about the singularity set of stationary varifolds. For example, it is not
known if the singularity set has zero Hausdorff measure in dimension k. Indeed,
regularity theory for stationary varifolds is still at an early stage, even compared to
what is known about mass minimizing integral currents in higher codimension. See
[17] where Bombieri mentions this problem, as well as [29] for an accounting of
progress.

5.4 Elliptic variational problems

In [7] Almgren initiated the study of elliptic variational problems for non-orientable
surfaces by providing the first definition of an elliptic integrand and a proof of
regularity, depending on the degree of smoothness of the integrand. His definitions
and main regularity result follow:

Let A be a compact .m � 1/-rectifiable subset of R
n with H m�1.A/ < ı, G

a finitely generated abelian group, and 	 2 LHm.R
n;AIG/. We say a compact

m-rectifiable set X � A is a surface which spans 	 if 	 is in the kernel of the
homomorphism on homology induced by the inclusion .Rn;A/ ,! .Rn;X/.

A Ck (resp. real analytic) integrand is a Ck (resp. real analytic) function f W
R

n 	Gr.m; n/! Œa; b�; where 0 < a < b < ı. We say f is elliptic with respect to G
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if there exists a continuous function c W Rn ! R \ ft W t > 0g such that if D � R
n

is an m-disk, � 2 LHm.R
n; @DIG/ n f0g, and QD is any surface which spans � , then

Z
QD

f .x;Ty QD/ dH m.y/ �
Z

D
f .x;TyD/ dH m.y/ � c.x/

�
H m. QD/ �H m.D/

�

for all x 2 R
n.

Theorem 18. Let 3 � k � ı and G 2 G. If f is a Ck (resp. real analytic) integrand,
elliptic with respect to G, and S is a surface which spans 	 such that

Z

S
f .x;TxS/ dH m.x/ �

Z

T
f .x;TxT/ dH m.x/

for all surfaces T which span 	 , then S is H m almost everywhere a Ck�1 (resp. real
analytic) submanifold of Rn.

The authors proved there exists such a surface S. These results marked a
significant advance8 over Reifenberg’s paper which only dealt with the functional
f D 1, and bring Plateau’s problem, which had grown well beyond the classical
theory of minimal surfaces and the minimal surface equation, squarely back into the
realm of PDE’s.

5.4.1 .f ; –; •/-minimal sets

In his memoir [9] (see also [8]), Almgren defined new classes of surfaces to
model soap bubbles as well as many types of soap films. His regularity theory for
minimizers in such a class is often cited.

Fix A � R
n. If � W Rn ! R

n is Lipschitz, let W� D fx W �.X/ ¤ xg. If
W�[�.W�/ is disjoint from A and contained in a ball of radius ı for some 0 < ı < ı,
we say that � is a •-deformation fixing A.

Let 1 � � < 1. A compact set X � R
n with H m.X/ < 1 is .”; •/-restricted

with respect to A if

H m.X \W�/ < �H
m.�.X \W�//

for all ı-deformations � fixing A.

8Readers should be warned that the existence portion of [7] contains a serious gap. Briefly, a
minimizing convergent sequence for a bounded elliptic integrand does not automatically yield a
uniformly quasiminimal subsequence, but [7] assumes that it does. This is a critical part of the
argument for existence of a minimizer (see [57] for a more detailed discussion.) In [9] spanning
surfaces are chosen to be a priori uniformly quasiminimal so that the problem disappears. However,
he was not able to prove a general existence theorem (see [67] for further details.).
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If � W Œ0;1/ ! Œ0;1/ with �.0/ D 0 is a continuous non-decreasing function,
the set X is called .f ; –; •/-minimal if in addition for every r-deformation � fixing
A, 0 < r < ı,

Z

X
f .x;TxX/ dH m.x/ � .1C �.r//

Z

�.X/
f .x;Tx�.X// dH m.x/:

An important fact about .�; ı/-restricted sets is that they are m-rectifiable [43,
3.2.14(4)] and have both upper and lower bounds on density ratios. Almgren proved
regularity results a.e for .f ; �; ı/ minimal sets in [9]:

Theorem 19. Suppose f is elliptic and C3 and X is .f ; �; ı/-minimal with respect to
A where � satisfies

Z 1

0

t�.1C˛/�.t/1=2dt <1

for some 0 � ˛ < 1. Then there exists an open set U � R
n such that H m.XnU/ D 0

and X \ U is a C1 m-dimensional submanifold of Rn.

Almgren states however that “These hypotheses and conclusions, incidentally, do
not imply that S \ U locally can be represented as the graph of a function which
satisfies any of the various Euler equations associated with f .” Indeed, any C2 m-
dimensional submanifold S with boundary is9 .M; �; ı/ minimal with respect to @S
if ı is sufficiently small and � is a linear map with large slope.

For the three-dimensional case, Taylor [86] relied upon Theorem 19 to prove a
beautiful soap film regularity result for .M; �; ı/-minimal sets. However, Morgan
[67] points out that the class of .M; 0; ı/-minimal sets, taken over all ı > 0, is not
compact. It remains an open problem of whether a smoothly embedded closed curve
in R

3 bounds a film with minimal area in the class of all .M; 0; ı/-minimal sets.
Another open problem motivated by [35, 37] and [55, 56] is to prove the same

regularity theorems as above in the case that � is also required to be uniformly close
to a diffeomorphism.

6 Variable Boundaries

6.1 Sliding Boundaries

The notion of a sliding boundary has had a long history in the study of elasticity
in mechanical engineering (see Sect. 24 of [73], for example). David brought the
attention of this problem to those in geometric measure theory [26]. We shall
mention a formulation of the problem found in [35] and [37] which was influenced

9Here and in the literature, M denotes the constant function 1.
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by [26]. These works assume that the bounding set A has zero H m measure and
often .m � 1/-rectifiable, but others do not (see, e.g., [23, 50]) as applications often
require a large, and even rough, bounding set.

Definition 3. Let A � R
n be compact and S� � R

n n A be relatively compact.
Let Lip.A/ denote the collection of Lipschitz maps � W Rn ! R

n such that there
exists a continuous map ˚ W Œ0; 1� 	 R

n ! R
n with �.1; �/ D �, �.0; �/ D Id and

�.t;A/ � A for each t 2 Œ0; 1�. Define

C .A; S�/ D fS W S D �.S�/ for some � 2 Lip.A/g
and call S� a sliding minimizer if H m.S�/ D inffH m.S/ W S 2 C .A; S�/g.

Note that C .A; S�/ does not form an equivalence class. It is not known if
C .A; S�/ is compact. However it can be shown with some assumptions on A
(see [35] for codimension one, [37] for higher codimension) that if fSkg �
C .A; S�/ is a minimizing sequence, then the measures H mbSk converge weakly to a
measure gH mbS0 where S0 is m-rectifiable and g � 1. In particular, H m.S0/ �
lim infH m.Sk/. It is not known if S0 2 C .A; S�/, but [35] and [37] proved
nonetheless that S0 is a sliding minimizer. We address a slightly different sliding
boundary problem in [57].

It is an open question if this result extends to Lipschitz or elliptic integrands. It
is similarly open to prove the result if the aforementioned assumptions on A (e.g.,
H m.A/ <1) are removed.

6.2 Euler-Plateau Problem

Mahadevan and Giomi [53] proposed a type of Plateau problem in which a rigid
boundary is replaced by a soft boundary such as a flexible wire. Specifically, in the
language of Kirchhoff’s theory of rods [38], permissible boundaries are circular rods
which resist bending yet are inextensible, unshearable, without intrinsic curvature,
and without resistance to twisting about their centerlines. Mahadevan and Giomi
formulated an energy functional which measured not only the area of a spanning
surface, but also the energy of the boundary. The resulting Euler-Lagrange equations
are equivalent, in the zero surface tension case, to those derived by Langer and
Singer [64] (see [41]). This minimization problem is called the Euler-Plateau
problem after Euler’s study of column buckling, but might more appropriately be
called the Kirchhoff-Plateau problem.10

Chen and Fried [41] rigorously derived the equilibrium conditions for the
minimization problem, and provided geometric and physical interpretations of these
conditions. Briefly, the surface on the interior must have zero mean curvature, and
the boundary is required to bend elastically in response to a force exerted by the

10The authors would like to thank Eliot Fried for helpful remarks.
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spanning film. The class of competitors for minimization are those surfaces which
occur as images of the disk. However, since the boundary is permitted to vary,
the maps cannot, in contrast to Douglas, Radó and Courant, be assumed to be
conformal. See also [16, 50].

These papers are closely related to earlier work by Bernatzki [15] and Bernatzki-
Ye [19].

7 Open Problems

Though we have labeled the following problems as “open,” some may have been
solved without our knowledge. If you have solved one of these, please accept our
apologies (and our congratulations!)

7.1 Classical Minimal Surfaces

The following problems are part of a longer list in [68]. Let C be the space of
connected, complete, embedded minimal surfaces and let P � C be the subspace of
properly embedded surfaces.

• Isolated Singularity Conjecture (Lawson and Gulliver): The closure of a properly
embedded minimal surface in the punctured closed unit ball is a compact
embedded minimal surface.

• Convex Curve Conjecture (Meeks): Two convex Jordan curves in parallel planes
cannot bound a compact minimal surface of positive genus.

• 4�-Conjecture (Meeks, Yau, Nitsche): If  is a simple closed curve in R
3 with

total curvature at most 4� , then  bounds a unique compact, orientable, branched
minimal surface and this unique minimal surface is an embedded disk.

• Liouville Conjecture (Meeks): If M 2 P and h W M ! R is a positive harmonic
function, then h is constant.

• Finite Genus Properness Conjecture (Meeks, Pérez, Ros): If M 2 C and M has
finite genus, then M 2 P.

7.2 Integral Currents

These problems are adapted from a longer list in [11].

• Establish the uniqueness of tangent cones to an mass-minimizing current.
Uniqueness for 2-dimensional currents was proved in [90], and partial results
in the general case in [1] and [82].
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• Does the singular set of a mass-minimizing current have locally finite H m�2
measure? Chang [20] proved that it does if m D 2.

• Is the singular set of an mass minimizing current rectifiable? Does it have other
geometric structure such as a stratification? See e.g., Theorem 11.

7.3 Reifenberg Problems

Reifenberg posed ten open problems in [77]. Three of particular interest are these:

• Let M be a manifold with boundary and Dk be discs with boundary @M. Let
� be the infimum of the areas of discs with boundary @M. Suppose Dk ! M
and H 2.Dk/ ! H 2.M/ D �. Prove that M is a disc. Prove the same for m-
dimensional disks.

• Generalize Theorem 2 of [77] to the case where the boundary is any manifold.
For example, let A be the 2-torus and X the solid torus with a small interior
ball removed. Then A is not a retract of X, as one can deformation retract X
onto the union of A and a transverse disk. If the torus is made to be narrower in
some region, the solution to the generalized Theorem 2 in this case would be a
transverse disk at the narrowest location.

• Find a class of surfaces which includes those such as the Adams example which
retract onto their boundary, and also includes some class of deformations thereof;
then prove a compactness theorem for such surfaces. Do those sets which do not
admit a deformation retraction onto the boundary forms such a class?

7.4 Elliptic integrands

• Show by example that interesting non-smooth solutions can arise which represent
observed phenomena in nature if an elliptic integrand is not smooth.

• Prove a version of the main result in [57] for mass, instead of size, weighted by
an elliptic density functional.

• What restrictions on the competing class of surfaces can be made that carry
over to minimizing solutions? E.g., one can restrict the problem to graphs, disks,
continuous embeddings, bordisms, topological type, etc. Each problem presents
its own existence and regularity questions.

• Axiomatic approach: Let S be a collection of surfaces such that if S 2 S
and � is a Lipschitz map fixing A which is C0 close to a diffeomorphism, then
�.S/ 2 S . What are minimal conditions needed on S to guarantee existence of
a minimizer for an elliptic integrand in S? See [35–37, 57].
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7.5 Non-closed Curves

• Find models for surfaces spanning non-closed curves and prove a compactness
theorem (Fig. 2b). In [58] we proposed using relative (co)homology as follows: If
one replaces the boundary set A with a pair .A;B/, the definition of a surface with
coboundary can be repeated: A pair .X;Y/ � .A;B/ is a surface with coboundary
� L if L is disjoint from the image of �� W QHm�1.X;Y/ ! QHm�1.A;B/. To what
extent can this be adapted if B is permitted to vary in some restricted fashion?
See also [40] and [67, 11.3].

7.6 Varifolds

• Does a smoothly embedded closed curve in R
3 bound a film with minimal area

in the class of all .M; 0; ı/-minimal sets?
• Does the singular set of a stationary varifold have measure zero?

7.7 Dynamics and Deformations

We close with three increasingly open-ended problems

• Euler-Plateau for sliding boundaries: State and solve the Euler-Plateau problem
for sliding boundaries. Not only is the bounding set B allowed to be flexible, but
frontiers of solutions can slide around within B as it flexes.

• To what extent can mean curvature flow detect soap-film solutions including
triple junctions and non-orientable surfaces, starting with a given spanning set?
See [18, 91, 92].

• The problem of lightning (Harrison and Pugh): Formulate a dynamic version
of Plateau’s problem which models the formation and evolution of branched
solutions. Applications would be numerous: lightning, formation of capillaries,
branches, fractures, etc. One should permit boundaries with higher Hausdorff
dimension and solve the elliptic integrand problem, as solutions would be
branched minimizers of the corresponding action principle, and thus should be
relevant to physics.
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The Unknotting Problem

Louis H. Kauffman

Abstract This paper tells the story of knots and the search to detect their knotted-
ness.

1 Introduction

We say that a closed loop embedded in three dimensional space is knotted if there
is no continuous deformation of the loop, through embeddings, that changes it to a
circle embedded in a plane. The fundamental problem in knot theory is to determine
whether a closed loop embedded in three dimensional space is knotted. The loop in
Fig. 1 is a trefoil knot, the simplest knot. View Fig. 2. Can you tell whether this loop
is knotted or not? It requires a special intuition for topology to just look at a loop
and know if it is really knotted.

In order to analyze the knottedness of a knot, a mathematical representation is
required. In this paper we shall use the method of knot and link diagrams, and
the equivalence relation generated by the Reidemeister moves (see Fig. 3 for an
illustration of these moves). Knot diagrams are graphs with extra structure that
encode the embedding type of the knot. Each diagram is a pictorial representation
of the knot, and so appeals to the intuition of the viewer. The Reidemeister moves
are a set of simple combinatorial moves, proved in the 1920s to capture the
notion of topological equivalence of knots and links in three dimensional space.
Single applications of these moves can leave the diagram with the same number
of crossings (places where a weaving of two segments occurs), or increase or
decrease the number of crossings. Some unknottings can be accomplished without
increasing the number of crossings in the diagram. We call such unknot diagrams
easy since the fact that they are unknotted can be determined by a finite search for
simplifying moves. However, there are culprit diagrams [28, 56, 58, 60] that require
moves that increase the number of crossings before the diagram can be simplified
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Fig. 1 The trefoil knot

Fig. 2 Knotted?

to an unknotted circle with no crossings. It is the structure of such culprits that is
the subject matter of Sect. 3 of this paper.

This paper is an exploration of the theme of detecting knottedness. This exposi-
tion is an outgrowth of a series of lectures [30] that I gave in Tokyo at the Knots 96
conference in the summer of 1996. The present exposition goes considerably farther
than those lectures, as in the intervening time there has been much progress on this
problem. In particular there is a beautiful combinatorial solution to the problem of
detecting whether a knot diagram is knotted, due to Dynnikov [10] that we sketch
in Sect. 3 of this paper.

The problem of detecting the unknot has been investigated by many people.
The three dimensional work of Haken and Hemion [33] solves these problems in
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Fig. 3 Reidemeister moves
I

II

III

principle, giving definite algorithms to tell whether two knots are equivalent, or
whether a given knot is unknotted. The algorithms are given in terms of the structure
of a triangulation of the complement of the knot or link, and these algorithms
are unwieldy. Nevertheless, the major problem that we have discussed is solved
by the Haken-Hemion method. This result did not end the field of study of knot
invariants. In fact, it spurred it on and the methods that we have discussed in
this paper are just the tip of the iceberg of the revolutions that have engulfed the
theory of knots and links since the early 1980s. For example, the papers by Birman
and Hirsch [54] and Birman and Moody [55] study the unknotting problem. More
recently it has been shown that both Khovanov Homology [17] (a generalization
of the Jones polynomial) and Heegard Floer Homology (a generalization of the
Alexander polynomial) detect the unknot. Heegaard Floer Homology not only
detects the unknot, but can be used to calculate the least genus of an orientable
spanning surface for any knot. This is an outstanding result. The reader can examine
the paper by Manolescu et al. [62] for more information. In that work, the Heegard
Floer homology is expressed via a chain complex that is associated to a rectangular
diagram of just the type that Dynnikov uses.

This paper is organized as follows. Section 2 discusses the Reidemeister moves
and the combinatorial approach to the theory of knots and links. We sketch the
proof of Reidemeister’s Theorem that expresses equivalence of knots and links
in terms of diagram moves (the Reidemeister moves). We give examples of knot
diagrams that are unknotted but must be made more complicated in order to be
undone by a sequence of Reidemeister moves. If it were not for this phenomenon,
the problem of detecting an unknotted diagram would be over at once. One would
only need to try to simplify the diagram by Reidemeister moves (that is, to try to
reduce the number of crossings in the diagram). This is a finite search and that
would be an algorithm to determine the knottedness of the diagram. Section 2
explains the solution by Dynnikov to this conundrum of unknotting by moves.
We reformulate knot theory in terms of arc-diagrams and explain how Dynnikov
constructs moves on these diagrams that can simplify an unknotted knot diagram.
In this way, the problem of detecting the unknot is solved. There are many questions
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still remaining in the combinatorial domain, and the end of Sect. 3 discusses them.
We give upper bounds on the number of crossings needed to unknot an unknotted
diagram (work with Henrich [28] based on Dynnikov’s work) and upper bounds
on the number of Reidemeister moves needed for unknotting. Section 4 turns to
the question of detection of knotting by the Jones polynomial and gives examples of
links that cannot be detected by the Jones polynomial. It is still an unsolved problem
whether the Jones polynomial detects the unknot. Section 5 is an introduction to
Vassiliev invariants. We include this section in order to give the reader a flavor of the
wider context the includes the Jones polynomial with invariants that are related to
physics and to Lie algebras. We include a description of the relationship of Vassiliev
invariants with Witten’s approach to knot invariants via quantum field theory. We
end this chapter with a statement of the remarkable problem to distinguish knots
from their reverses. There are knots that are not isotopic to the curve obtained by
reversing the orientation of the loop. At this writing it is not known if Vassiliev
invariants can detect reversibility.

There are many more problems about the detection of knottedness. We have not
touched on the question of distinguishing distinct knots in this paper. It is possible
that if two knots are not isotopic, then there are Vassiliev invariants that distinguish
them. But that is another country.

2 Reidemeister Moves

Reidemeister [39] discovered a simple set of moves on link diagrams that captures
the concept of ambient isotopy of knots in three-dimensional space. There are
three basic Reidemeister moves. Reidemeister’s theorem states that two diagrams
represent ambient isotopic knots (or links) if and only if there is a sequence of
Reidemeister moves taking one diagram to the other. The Reidemeister moves are
illustrated in Fig. 3.

Reidemeister’s three moves are interpreted as performed on a larger diagram in
which the small diagram shown is a literal part. Each move is performed without
disturbing the rest of the diagram. Note that this means that each move occurs, up
to topological deformation, just as it is shown in the diagrams in Fig. 3. There are
no extra lines in the local diagrams. For example, the equivalence (A) in Fig. 4 is
not an instance of a single first Reidemeister move. Taken literally, it factors into a
move II followed by a move I.

Diagrams are always subject to topological deformations in the plane that
preserve the structure of the crossings. These deformations could be designated as
“Move Zero”. See Fig. 4.

A few exercises with the Reidemeister moves are in order. First of all, view the
diagram in Fig. 5. It is unknotted and you can have a good time finding a sequence
of Reidemeister moves that will do the trick. Diagrams of this type are produced
by tracing a curve and always producing an undercrossing at each return crossing.
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Fig. 4 Factorable move,
move zero

II
I

Move Zero
Fig. 5 Standard unknot

This type of knot is called a standard unknot. Of course we see clearly that a
standard unknot is unknotted by just pulling on it, since it has the same structure
as a coil of rope that is wound down onto a flat surface.

Can one recognize unknots by simply looking for sequences of Reidemeister
moves that undo them? This would be easy if it were not for the case that there are
examples of unknots that require some moves that increase the number of crossings
before they can be subsequently decreased. Such an culprit is illustrated in Fig. 6.

It is generally not so easy to recognise unknots. However, here is a tip: Look
for macro moves of the type shown in Fig. 7. In a macro move, we identify an arc
that passes entirely under some piece of the diagram (or entirely over) and shift this
part of the arc, keeping it under (or over) during the shift. In Fig. 7, we illustrate
a macro move on an arc that passes under a piece of the diagram that is indicated
by arcs going into a circular region. A more general macro move is possible where
the moving arc moves underneath one layer of diagram, and at the same time, over
another layer of diagram. Macro moves often allow a reduction in the number of
crossings even though the number of crossings will increase during a sequence of
Reidemeister moves that generates the macro move.
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Fig. 6 A culprit

Fig. 7 Macro move

As shown in Fig. 7, the macro-move includes as a special case both the second
and the third Reidemeister moves, and it is not hard to verify that a macro move can
be generated by a sequence of type II and type III Reidemeister moves. It is easy to
see that the type I moves can be left to the end of any deformation. The demon of
Fig. 6 is easily demolished by macro moves, and from the point of view of macro
moves the diagram never gets more complicated.

Let’s say that a knot can be reduced by a set of moves if it can be transformed by
these moves to the unknotted circle diagram through diagrams that never have more
crossings than the original diagram. Then we have shown that there are diagrams
representing the unknot that cannot be reduced by the Reidemeister moves. On the
other hand, I do not know whether unknotted diagrams can always be reduced by
(appropriately generalized) macro moves in conjunction with the first Reidemeister
move. If this were true it would give a combinatorial way to recognise the unknot.
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Remark. In fact, there is a combinatorial way to recognise the unknot based on a
diagrams and moves. In [10] I. A. Dynnikov finds just such a result, using piecewise
linear knot diagrams with all ninety degree angles in the diagrams, and all arcs in the
diagram either horizontal or vertical. We shall discuss Dynnikov’s work in Sect. 3
of this paper.

2.1 Reidemeister’s Theorem

We now indicate how Reidemeister proved his Theorem.
An embedding of a knot or link in three-dimensional space is said to be piecewise

linear if it consists in a collection of straight line segments joined end to end.
Reidemeister started with a single move in three-dimensional space for piecewise
linear knots and links. Consider a point in the complement of the link, and an edge
in the link such that the surface of the triangle formed by the end points of that
edge and the new point is not pierced by any other edge in the link. Then one can
replace the given edge on the link by the other two edges of the triangle, obtaining
a new link that is ambient isotopic to the original link. Conversely, one can remove
two consecutive edges in the link and replace them by a new edge that goes directly
from initial to final points, whenever the triangle spanned by the two consecutive
edges is not pierced by any other edge of the link. This triangle replacement
constitutes Reidemeister’s three-dimensional move. See Fig. 8. It can be shown that
two piecewise linear knots or links are ambient isotopic in three-dimensional space
if and only if there is a sequence of Reidemeister triangle moves from one to the
other. This will not be proved here. At the time when Reidemeister wrote his book,
equivalence via three-dimensional triangle moves was taken as the definition of
topological equivalence of links.

It can also be shown that tame knots and links have piecewise linear represen-
tatives in their ambient isotopy class. It is sufficient for our purposes to work with
piecewise linear knots and links. Reidemeister’s planar moves then follow from an
analysis of the shadows projected into the plane by Reidemeister triangle moves in
space. Figure 9 gives a hint of this analysis. The result is a reformulation of the
three-dimensional problems of knot theory to a combinatorial game in the plane.

To go beyond the hint in Fig. 9 to a complete proof that Reidemeister’s
planar moves suffice involves preliminary remarks about subdivision. The simplest
subdivision that one wants to be able to perform on a piecewise linear link is the

Fig. 8 Triangle move
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Fig. 9 Shadows

II

I
I

placement of a new vertex at an interior point of an edge—so that edge becomes two
edges in the subdivided link. Figure 10 shows how to accomplish this subdivision
via triangle moves.

Any triangle move can be factored into a sequence of smaller triangle moves
corresponding to a simplicial subdivision of that triangle. This is obvious, since the
triangles in the subdivision of the large triangle that is unpierced by the link are
themselves unpierced by the link.

To understand how the Reidemeister triangle move behaves on diagrams it is
sufficient to consider a projection of the link in which the triangle is projected to a
non-singular triangle in the plane. Of course, there may be many arcs of the link also
projected upon the interior of the projected triangle. However, by using subdivision,
we can assume that the cases of the extra arcs are as shown in Fig. 11. In Fig. 11
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Fig. 10 Subdivision of an
edge

Fig. 11 Projections of
triangle moves

we have also shown how each of these cases can be accomplished by (combinations
of) the three Reidemeister moves. This proves that a projection of a single triangle
move can be accomplished by a sequence of Reidemeister diagram moves.

A piecewise linear isotopy consists in a finite sequence of triangle moves. There
exists a direction in three-dimensional space that makes a non-zero angle with each
of theses triangles and is in general position with the link diagram. Projecting to the
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plane along this direction makes it possible to perform the entire ambient isotopy
in the language of projected triangle moves. Now apply the results of the previous
paragraph and we conclude

Reidemeister’s Theorem If two links are piecewise linearly equivalent (ambient
isotopic), then there is a sequence of Reidemeister diagram moves taking a
projection of one link to a projection of the other.

Note that the proof tells us that the two diagrams can be obtained from one spatial
projection direction for the entire spatial isotopy. It is obvious that diagrams related
by Reidemeister moves represent ambient isotopic links. Reidemeister’s Theorem
gives a complete combinatorial description of the topology of knots and links in
three-dimensional space.

3 Dynnikov’s Solution of the Problem of Knot Detection

We now discuss a powerful result proven by Dynnikov in [10]. Dynnikov uses, a
diagram called an arc-presentation for the knot. We define this below, and show
how one can detect the unknot using moves that preserve this type of presentation.
This section is based on our paper [28].

Definition 1. An arc–presentation of a knot is a knot diagram comprised of
horizontal and vertical line segments such that at each crossing in the diagram, the
horizontal arc passes under the vertical arc. Furthermore, we require that no two
edges in an arc–diagram are colinear. Two arc–presentations are combinatorially
equivalent if they are isotopic in the plane via an ambient isotopy of the form
h.x; y/ D .f .x/; g.y//. The complexity c.L/ of an arc–presentation is the number
of vertical arcs in the diagram.

We say more generally that a link diagram is rectangular if it has only vertical
and horizontal edges. In Fig. 12 we give an example of a rectangular diagram that
is an arc–presentation and another example of a rectangular diagram that is not an
arc–presentation.

Note that a rectangular diagram can naturally be drawn on a rectangular grid. If
we start with such a grid and represent rectangular diagrams on the grid we have
called these knots mosaic knots and used them to define a notion of quantum knot.
See [61] for more about quantum knots. For now, we focus our attention on arc–
presentations.

Proposition 1 (Dynnikov). Every knot has an arc–presentation. Any two arc–
presentations of the same knot can be related to each other by a finite sequence
of elementary moves, pictured in Figs. 13 and 14.

The proof of this proposition is elementary, based on the Reidemeister moves.
One shows that each Reidemeister move can be represented by (a sequence of)
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Fig. 12 The picture on the left is an example of an arc–presentation of a trefoil. The picture on the
right is an example that is not an arc–presentation (since not all horizontal arcs pass under vertical
arcs)

Fig. 13 Elementary
(de)stabilization moves.
Stabilization moves increase
the complexity of the
arc–presentation while
destabilization moves
decrease the complexity

Fig. 14 Some examples of exchange moves. Other allowed exchange moves include switching the
heights of two horizontal arcs that lie in distinct halves of the diagram

elementary moves. See [10]. We will show how to convert a usual knot diagram to
an arc–presentation in the next few paragraphs, making use of the concept of Morse
diagrams of knots.

Definition. A knot diagram is in Morse form if it has

1. no horizontal lines,
2. no inflection points,
3. a single singularity at each height, and
4. each crossing is oriented to create a 45 degree angle with the vertical axis.
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Fig. 15 A Morse diagram of
a knot and a corresponding
rectangular diagram

Conversion of 
a Morse diagram
to a rectangular 
diagram.

Fig. 16 Rotating a crossing
to convert a rectangular
diagram into an
arc–presentation

Fig. 17 Converting a
rectangular diagram into an
arc–presentation by rotating a
crossing

We note that converting an arbitrary knot diagram into a diagram in Morse
form requires no Reidemeister moves, only ambient isotopies of the plane. More
information about Morse diagrams can be found in [59]. See Figs. 15, 16 and 17 for
an illustration of the process of conversion of a knot diagram to an arc diagram.

In Fig. 18 we show the example found by Goeritz [56] in 1934 of a knot diagram
that is unknotted, but requires Reidemeister moves that create more crossings before
it can be simplified. In Fig. 19 we show another example of this same type. We shall
refer to the latter as the “culprit” and analyse it below.

Here is Dynnikov’s solution to the problem of recognizing the unknot.

Theorem 1 (Dynnikov). If L is an arc–presentation of the unknot, then there exists
a finite sequence of exchange and destabilization moves

L! L1 ! L2 ! � � � ! Lm

such than Lm is trivial.
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Fig. 18 Goeritz unknot

G

Fig. 19 The culprit

What is particularly interesting about this result is that the unknot can be
simplified without increasing the complexity of the arc–presentation, that is,
without the use of stabilization moves. This means that a finite search will reveal
a diagram to be unknotted if that is the case. Furthermore, if we apply Dynnikov’s
method to a knotted knot, it will stop on a diagram that is not a planar circle. Thus
Dynnikov’s diagrammatic method can detect the unknot.

We can go further and ask how large a diagram is needed to unknot a knot by
Reidemeister moves, and how many Reidemeister moves are needed.

Theorem 2 ([28]). Suppose K is a diagram (in Morse form) of the unknot with
crossing number cr.K/ and number of maxima b.K/. Then, for every i, the crossing
number cr.Ki/ is no more than .M � 2/2 where M D 2b.K/ C cr.K/ and K D
K0;K1;K2; : : : ;KN is a sequence of knot diagrams such that KiC1 is obtained from
Ki by a single Reidemeister move and KN is a trivial diagram of the unknot.

To find our upper bound on the number of Reidemeister moves, we must first
specify an upper bound on the number m of exchange and destabilization moves
required to trivialize an arc–presentation. This bound will depend on the complexity
c.L/ D n of the arc–diagram L. We also must provide an upper bound on the number
of Reidemeister moves required for a destabilization or exchange move.

In [10], Dynnikov provides the following bounds on the number of combinatori-
ally distinct arc–presentations of complexity n.

Proposition 2. Let N.n/ denote the number of combinatorially distinct arc–
presentations of complexity n. Then the following inequality holds.

N.n/ � 1

2
nŒ.n � 1/Š�2
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Using this count on the number of distinct arc–presentations of a given size, we
can find a bound (albeit a large one) on the number of arc–presentation moves we
need. This is simply by virtue of the fact that any reasonable sequence of moves will
contain mutually distinct arc–presentations that don’t exceed the complexity of the
original, and there are a limited number of such diagrams. With this we obtain

Theorem 3 ([28]). Suppose K is a diagram (in Morse form) of the unknot with
crossing number cr.K/ and number of maxima b.K/. Let M D 2b.K/Ccr.K/. Then
the number of Reidemeister moves required to unknot K is less than or equal to

MX
iD2

1

2
iŒ.i � 1/Š�2.M � 2/:

We have provided several upper bounds regarding the complexity of the Reide-
meister sequence required to simplify an unknot. The bound that Dynnikov’s work
helps us obtain for the number of Reidemeister moves required to unknot an unknot
is superexponential. Using a different technique, Hass and Lagarias were able to
find a bound that is exponential in the crossing number of the diagram [57]. They
prove the following result.

Theorem 4 (Hass and Lagarias). There is a positive constant c1; such that for
each n � 1; any unknotted knot diagram D with n crossings can be transformed to
the trivial knot diagram using at most 2c1n Reidemeister moves. In fact one can take
c1 D 1011:

Hass and Lagarias use the same technique to find an exponential bound for
the number of crossings required for unknotting. For bounds of this second sort,
the one presented here is a comparatively sharper estimate. Our bound on the
number of Reidemeister moves required to unknot an unknot eventually becomes
larger than the previously known bound from the above Theorem, but it does
remain significantly smaller for knots with up to 1010

10
crossings. We can see

this by assuming that the number of maxima in a Morse diagram of a knot is
approximately the same size as the crossing number (in practice the number of
maxima is significantly smaller than the crossing number). We can estimate the
size of our bound by computing the quantity

M � 2
2

.MŠ/2:

This larger estimate remains smaller than the bound proposed by Hass and
Lagarias until the knots have 1010

10
crossings. It is possible that these methods

may be improved to find smaller unknotting bounds for unknot diagrams. In fact,
polynomial bounds are now shown by Lackenby [34].

Let us return to the Culprit. Recall that hard unknots are difficult to unknot by
virtue of the fact that no simplifying type I or type II Reidemeister moves and no
type III moves are available. In Fig. 20, we picture a Morse diagram of the Culprit, a
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Fig. 20 Undoing the culprit by Reidemeister moves

corresponding arc-presentation and a sequence of Dynnikov moves that simplify
it to a standard unknot. Bounds for the size of diagrams that are needed using
Reidemeister’s moves can be deduced using Dynnikov’s work. See [10, 28]. In fact,
we [28] derive a quadratic upper bound on the crossing number of diagrams in
an unknotting sequence. A similar result can be found in [10]. We saw that the
Culprit may be unknotted with ten Reidemeister moves in Fig. 21 (see also [60]).
The maximum crossing number of all diagrams in the given Reidemeister sequence
is 12, two more than the number of crossings in the Culprit. On the other hand, we
can compute our upper bound on the number of crossings required for unknotting
as follows. Since the crossing number cr.K/ D 10 and the number of maxima in the
diagram is b.K/ D 5, we see that M D cr.K/ C 2b.K/ D 20. Thus, our bound is
.M � 2/2 D 182 D 324: There is room for improvement!

We can also use M to find our bound for the number of Reidemeister moves
required to unknot the Culprit.

MX
iD2

1

2
iŒ.i � 1/Š�2.M � 2/ D 9

20X
iD2

iŒ.i � 1/Š�2:

The largest term in this expression is roughly 1035, unfortunately quite a bit larger
than ten.

In this section we have sketched results given in more detail in [10, 28], showing
Dynnikov’s remarkable solution to the unknotting problem. Remarkable as this
solution is, we are not happy since we believe that better bounds on the number of
Reidemeister moves needed to unknot a knot are surely possible, and better bounds
on the complexity of diagrams is also possible. Could there be a simple algorithm
in the form of a calculation from a diagram that would tell if a knot was knotted?
This is the subject of the next section where we discuss the Jones polynomial.
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Fig. 21 Undoing the culprit by Dynnikov moves

4 The Bracket Polynomial and the Jones Polynomial

Now that we have exhibited a solution to problem of the detection of the unknot,
we turn to some unsolved problems related to other methods of detection. It is
an open problem whether there exist classical knots (single component loops) that
are knotted and yet have unit Jones polynomial [14]. In other words, it is an open
problem whether the Jones polynomial can detect all knots. There do exist families
of links whose linkedness is undetectable by the Jones polynomial [47, 48]. It is the
purpose of this section of the paper to give a summary of some of the information
that is known in this arena. We begin with a sketch of ways to calculate the bracket
polynomial model of the Jones polynomial, and then discuss how to construct
classical links that are undetectable by the Jones polynomial.

The bracket polynomial [20–23, 25] model for the Jones polynomial [14–16, 52]
is described by the expansion

h i D Ah i C A�1h i (1)

and we have

hK�i D .�A2 � A�2/hKi (2)

h i D .�A3/h i (3)

h i D .�A�3/h i (4)
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A state S of a link diagram K is obtained by choosing a smoothing for each
crossing in the diagram and labelling that smoothing with either A or A�1 according
to the convention indicated in the bracket expansion above. Then, given a state S,
one has the evaluation < KjS > equal to the product of the labels at the smoothings,
and one has the evaluation jjSjj equal to the number of loops in the state. One then
has the formula

< K >D ˙S < KjS > djjSjj�1

where the summation runs over the states S of the diagram K, and d D �A2 � A�2:
This state summation is invariant under all classical and virtual moves except the
first Reidemeister move. The bracket polynomial is normalized to an invariant fK.A/
of all the moves by the formula fK.A/ D .�A3/�w.K/ < K > where w.K/ is the
writhe of the (now) oriented diagram K. The writhe is the sum of the orientation
signs (˙1/ of the crossings of the diagram. The Jones polynomial, VK.t/ is given in
terms of this model by the formula

VK.t/ D fK.t
�1=4/:

The state sum is part of a wider approach to invariants of knots and links that
we do not concentrate upon in this paper. First of all, the Alexander polynomial
[53] was the first polynomial invariant of knots and links. It was not until 1981
that the Alexander polynomial was reformulated as a state summation [18–20]. In
1983 Jones discovered his polynomial and showed that it satisfied a skein relation
similar to that for the Alexander-Conway polynomial [9]. Along with this there
arose relations with statistical mechanics [5] in the work of Jones. The bracket
model was the first direct relationship of the Jones polynomial with statistical
mechanics. In the wake of the discovery of the Jones polynomial came more
skein polynomials, particularly the Homflypt polynomial [20, 35] named after the
people who discovered it—Hoste, Ocneanu, Freyd, Lickorish, Yetter, Przytycki and
Trawczk, and the Kauffman Polynomial [24]. These invariants are more powerful
than the Jones polynomial, but it is still conjectural that they detect the unknot. After
the skein polynomials, came more algebraic state sums based on the work of Yang
and Baxter in statistical mechanics, and then arose relationships with Lie algebras
and gauge theoretic physics. We shall sketch some of these developments in the
sections to follow. It remains to be seen how powerful all these new invariants are as
detectors of knottedness, but it is known that certain families of these invariants do
detect knottedness and those results are found in the relationships of the knot theory
with physics

It remains on open problem whether the Jones polynomial can detect the unknot.
We can make the conjecture as follows:

Knot Detection Conjecture If K is a knot diagram of one component and
VK.t/ D 1; then K is equivalent by Reidemeister moves to the unknot.
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Fig. 22 Thistethwaite’s link

This knot detection conjecture is false for links. View Fig. 22. Here we have a
version of a link L discovered by Thistlethwaite [47] in December 2000. One can
verify that this link is indeed non-trivial, but it has the same Jones polynomial as
the unlink of two circles. In [48] we produce infinite families of distinct links that
appear to be unlinked to the Jones polynomial.

4.1 Present Status of Links Not Detectable
by the Jones Polynomial

In this section we give a quick review of the status of our work
A tangle (2-tangle) consists in an embedding of two arcs in a three-ball (and

possibly some circles embedded in the interior of the three-ball) such that the
endpoints of the arcs are on the boundary of the three-ball. One usually depicts the
arcs as crossing the boundary transversely so that the tangle is seen as the embedding
in the three-ball augmented by four segments emanating from the ball, each from
the intersection of the arcs with the boundary. These four segments are the exterior
edges of the tangle, and are used for operations that form new tangles and new
knots and links from given tangles. Two tangles in a given three-ball are said to be
topologically equivalent if there is an ambient isotopy from one to the other in the
given three-ball, fixing the intersections of the tangles with the boundary.

It is customary to illustrate tangles with a diagram that consists in a box (within
which are the arcs of the tangle) and with the exterior edges emanating from the
box in the NorthWest (NW), NorthEast (NE), SouthWest (SW) and SouthEast (SE)
directions. Given tangles T and S, one defines the sum, denoted T C S by placing
the diagram for S to the right of the diagram for T and attaching the NE edge of
T to the NW edge of S, and the SE edge of T to the SW edge of S. The resulting
tangle T C S has exterior edges corresponding to the NW and SW edges of T and
the NE and SE edges of S. There are two ways to create links associated to a tangle
T: The numerator TN is obtained, by attaching the (top) NW and NE edges of T
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together and attaching the (bottom) SW and SE edges together. The denominator TD

is obtained, by attaching the (left side) NW and SW edges together and attaching
the (right side) NE and SE edges together. We denote by Œ0� the tangle with only
unknotted arcs (no embedded circles) with one arc connecting, within the three-
ball, the (top points) NW intersection point with the NE intersection point, and
the other arc connecting the (bottom points) SW intersection point with the SE
intersection point. A ninety degree turn of the tangle Œ0� produces the tangle Œ1�
with connections between NW and SW and between NE and SE. One then can
prove the basic formula for any tangle T

< T >D ˛T < Œ0� > CˇT < Œ1� >
where ˛T and ˇT are well-defined polynomial invariants (of regular isotopy) of the
tangle T: From this formula one can deduce that

< TN >D ˛TdC ˇT

and

< TD >D ˛T C ˇTd:

We define the bracket vector of T to be the ordered pair .˛T ; ˇT/ and denote it
by br.T/, viewing it as a column vector so that br.T/t D .˛T ; ˇT/ where vt denotes
the transpose of the vector v: With this notation the two formulas above for the
evaluation for numerator and denominator of a tangle become the single matrix
equation


< TN >

< TD >

�
D


d 1
1 d

�
br.T/:

We then use this formalism to express the bracket polynomial for our examples.
The class of examples that we considered are each denoted by H.T;U/ where T
and U are each tangles and H.T;U/ is a satellite of the Hopf link that conforms
to the pattern shown in Fig. 23, formed by clasping together the numerators of
the tangles T and U: Our method is based on a transformation H.T;U/ �!
H.T;U/! , whereby the tangles T and U are cut out and reglued by certain specific
homeomorphisms of the tangle boundaries. This transformation can be specified
by a modification described by a specific rational tangle and its mirror image.
Like mutation, the transformation ! preserves the bracket polynomial. However,
it is more effective than mutation in generating examples, as a trivial link can be
transformed to a prime link, and repeated application yields an infinite sequence of
inequivalent links.

Specifically, the transformation H.T;U/! is given by the formula

H.T;U/! D H.T!;U N!/
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Fig. 23 Hopf link satellite
H.T;U/ T

U
Fig. 24 The omega
operations

T T

T Tw w

w
= =

w
=

=

where the tangle operations T! and U N!/ are as shown in Fig. 24. By direct
calculation, there is a matrix M such that

< H.T;U/ >D br.T/tMbr.U/

and there is a matrix ˝ such that

br.T!/ D ˝br.T/

and

br.T N!/ D ˝�1br.T/:

One verifies the identity

˝ tM˝�1 D M
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Fig. 25 Applying omega
operations to an unlink

H(T,U) H(Tw wU ),

from which it follows that < H.T;U/ >!D< H.T;U/ > : This completes the
sketch of our method for obtaining links that whose linking cannot be seen by
the Jones polynomial. Note that the link constructed as H.T!;U N!/ in Fig. 25 has
the same Jones polynomial as an unlink of two components. This shows how the
first example found by Thistlethwaite fits into our construction.

5 Vassiliev Invariants and Invariants of Rigid Vertex Graphs

If V.K/ is a (Laurent polynomial valued, or more generally—commutative ring
valued) invariant of knots, then it can be naturally extended to an invariant of rigid
vertex graphs by defining the invariant of graphs in terms of the knot invariant
via an “unfolding” of the vertex. That is, we can regard the vertex as a “black
box” and replace it by any tangle of our choice. Rigid vertex motions of the graph
preserve the contents of the black box, and hence entail ambient isotopies of the link
obtained by replacing the black box by its contents. Invariants of knots and links that
are evaluated on these replacements are then automatically rigid vertex invariants
of the corresponding graphs. If we set up a collection of multiple replacements
at the vertices with standard conventions for the insertions of the tangles, then a
summation over all possible replacements can lead to a graph invariant with new
coefficients corresponding to the different replacements. In this way each invariant
of knots and links implicates a large collection of graph invariants. See [25, 26].

The simplest tangle replacements for a 4-valent vertex are the two crossings,
positive and negative, and the oriented smoothing. Let V.K/ be any invariant of
knots and links. Extend V to the category of rigid vertex embeddings of 4-valent
graphs by the formula (see Fig. 26)

V.K�/ D aV.KC/C bV.K�/C cV.K0/
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Fig. 26 Graphical vertex
formulas

V V V V= a b c+ +

V V V= -

V V V= - = 0

V = 0

V = V - V = - V

Here K� indicates an embedding with a transversal 4-valent vertex. This formula
means that we define V.G/ for an embedded 4-valent graph G by taking the sum

V.G/ D
X

S

aiC.S/bi�.S/ci0.S/V.S/

with the summation over all knots and links S obtained from G by replacing a
node of G with either a crossing of positive or negative type, or with a smoothing
(denoted 0). Here iC.S/ denotes the number of positive crossings in the replacement,
i�.S/ the number of negative crossings in the replacement, and i0.S/ the number of
smoothings in the replacement. It is not hard to see that if V.K/ is an ambient isotopy
invariant of knots, then, this extension is a rigid vertex isotopy invariant of graphs.
In rigid vertex isotopy the cyclic order at the vertex is preserved, so that the vertex
behaves like a rigid disk with flexible strings attached to it at specific points. See the
previous section.

There is a rich class of graph invariants that can be studied in this manner. The
Vassiliev Invariants [4, 6, 50] constitute the important special case of these graph
invariants where a D C1, b D �1 and c D 0: Thus V.G/ is a Vassiliev invariant if

V.K�/ D V.KC/ � V.K�/:

Call this formula the exchange identity for the Vassiliev invariant V: V is said to be
of finite type k if V.G/ D 0 whenever jGj > k where jGj denotes the number of
4-valent nodes in the graph G: The notion of finite type is of paramount significance
in studying these invariants. One reason for this is the following basic Lemma.

Lemma. If a graph G has exactly k nodes, then the value of a Vassiliev invariant vk

of type k on G, vk.G/, is independent of the embedding of G.
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Proof. The different embeddings of G can be represented by link diagrams with
some of the 4-valent vertices in the diagram corresponding to the nodes of G.
It suffices to show that the value of vk.G/ is unchanged under switching of a
crossing. However, the exchange identity for vk shows that this difference is equal
to the evaluation of vk on a graph with kC 1 nodes and hence is equal to zero. This
completes the proof.

The upshot of this Lemma is that Vassiliev invariants of type k are intimately
involved with certain abstract evaluations of graphs with k nodes. In fact, there
are restrictions (the four-term relations) on these evaluations demanded by the
topology (we shall articulate these restrictions shortly) and it follows from results of
Kontsevich [4] that such abstract evaluations actually determine the invariants. The
invariants derived from classical Lie algebras are all built from Vassiliev invariants
of finite type. All this is directly related to Witten’s functional integral [52].

Definition. Let vk be a Vassiliev invariant of type k. The top row of vk is the set
of values that vk assigns to the set of (abstract) 4-valent graphs with k nodes. If we
concentrate on Vassiliev invariants of knots, then these graphs are all obtained by
marking 2k points on a circle, and choosing a pairing of the 2k points. The pairing
can be indicated by drawing a circle and connecting the paired points with arcs.
Such a diagram is called a chord diagram. Some examples are indicated in Fig. 27.

Note that a top row diagram cannot contain any isolated pairings since this would
correspond to a difference of local curls on the corresponding knot diagram (and
these curls, being isotopic, yield the same Vassiliev invariants.

The Four-Term Relation (Compare [45].) Consider a single embedded graphical
node in relation to another embedded arc, as illustrated in Fig. 28. The arc underlies
the lines incident to the node at four points and can be slid out and isotoped over the
top so that it overlies the four nodes. One can also switch the crossings one-by-one

Fig. 27 Chord diagrams
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Fig. 28 The four term
relation -
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to exchange the arc until it overlies the node. Each of these four switchings gives
rise to an equation, and the left-hand sides of these equations will add up to zero,
producing a relation corresponding to the right-hand sides. Each term in the right-
hand side refers to the value of the Vassiliev invariant on a graph with two nodes
that are neighbors to each other.

There is a corresponding 4-term relation for chord diagrams. This is the 4-term
relation for the top row. In chord diagrams the relation takes the form shown at the
bottom of Fig. 28. Here we have illustrated only those parts of the chord diagram
that are relevant to the two nodes in question (indicated by two pairs of points on
the circle of the chord diagram). The form of the relation shows the points on the
chord diagram that are immediate neighbors. These are actually neighbors on any
chord diagram that realizes this form. Otherwise there can be many other pairings
present in the situation.

As an example, consider the possible chord diagrams for a Vassiliev invariant
of type 3: There are two possible diagrams as shown in Fig. 29. One of these has
the projected pattern of the trefoil knot and we shall call it the trefoil graph. These
diagrams satisfy the 4-term relation. This shows that one diagram must have twice
the evaluation of the other. Hence it suffices to know the evaluation of one of these
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Fig. 29 The four term
relation for a type three
invariant
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0 - =

=

Fig. 30 Trefoil graph

= -

two diagrams to know the top row of a Vassiliev invariant of type 3. We can take
this generator to be the trefoil graph

Now one more exercise: Consider any Vassiliev invariant v and let’s determine
its value on the trefoil graph as in Fig. 30.

The value of this invariant on the trefoil graph is equal to the difference between
its values on the trefoil knot and its mirror image. Therefore any Vassiliev invariant
that assigns a non-zero value to the trefoil graph can tell the difference between the
trefoil knot and its mirror image.
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Example. This example shows how the original Jones polynomial is composed of
Vassiliev invariants of finite type. Let VK.t/ denote the original Jones polynomial
[14]. Recall the oriented state expansion for the Jones polynomial [27] with the
basic formulas (ı is the loop value.)

VKC
D �t1=2VK0 � tVK1

VK�
D �t�1=2VK0 � t�1VK1

:

ı D �.t1=2 C t�1=2/:

Let t D ex: Then

VKC
D �ex=2VK0 � exVK1

VK�
D �e�x=2VK0 � e�xVK1

:

ı D �.ex=2 C e�x=2/:

Thus

VK�
D VKC

� VK�
D �2sinh.x=2/VK0 � 2sinh.x/VK1

:

Thus x divides VK�
, and therefore xk divides VG whenever G is a graph with at

least k nodes. Letting

VG.e
x/ D

1X
kD0

vk.G/x
k;

we see that this condition implies that vk.G/ vanishes whenever G has more than
k nodes. Hence the coefficients of the powers of x in the expansion of VK.ex/ are
Vassiliev invariants of finite type! This result was first observed by Birman and Lin
[6] by a different argument.

Let’s look a little deeper and see the structure of the top row for the Vassiliev
invariants related to the Jones polynomial. By our previous remarks the top row
evaluations correspond to the leading terms in the power series expansion. Since

ı D �.ex=2 C e�x=2/ D �2C Œhigher�;

�ex=2 C e�x=2 D �xC Œhigher�;

�ex C e�x D �2xC Œhigher�;

it follows that the top rows for the Jones polynomial are computed by the recursion
formulas
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v.K�/ D �v.K0/ � 2V.K1/

v.Œloop�/ D �2:

The reader can easily check that this recursion formula for the top rows of
the Jones polynomial implies that v3 takes the value 24 on the trefoil graph and
hence it is the Vassiliev invariant of type 3 in the Jones polynomial that first detects
the difference between the trefoil knot and its mirror image.

This example gives a good picture of the general phenomenon of how the
Vassiliev invariants become building blocks for other invariants. In the case of
the Jones polynomial, we already know how to construct the invariant and so it
is possible to get a lot of information about these particular Vassiliev invariants
by looking directly at the Jones polynomial. This, in turn, gives insight into the
structure of the Jones polynomial itself.

5.1 Lie Algebra Weights

Consider the diagrammatic relation shown in Fig. 31. Call it (after Bar-Natan [4])
the STU relation.

Lemma. STU implies the 4-term relation.

Proof. View Fig. 32.

STU is the smile of the Cheshire cat. That smile generalizes the idea of a Lie
algebra. Take a (matrix) Lie algebra with generators Ta. Then

TaTb � TbTa D ifabcTc

expresses the closure of the Lie algebra under commutators. Translate this equation
into diagrams as shown in Fig. 33, and see that this translation is STU with Lie
algebraic clothing!

Fig. 31 The STU relation

-

=
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Fig. 32 A diagrammatic
proof -

= -

=

=

Fig. 33 Algebraic clothing

-

=

a bab

a b
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Here the structure tensor of the Lie algebra has been assumed (for simplicity)
to be invariant under cyclic permutation of the indices. This invariance means that
our last Lemma applies to this Lie algebraic interpretation of STU. The upshot is
that we can manufacture weight systems for graphs that satisfy the 4-term relation
by replacing paired points on the chord diagram by an insertion of Ta in one point
of the pair and a corresponding insertion of Ta at the other point in the pair and
summing over all a. The result of all such insertions on a given chord diagram is a
big sum of specific matrix products along the circle of the diagram, each of which
(being a circular product) is interpreted as a trace.

Let’s say this last matter more precisely: Regard a graph with k nodes as obtained
by identifying k pairs of points on a circle. Thus a code such as 1212 taken in cyclic
order specifies such a graph by regarding the points 1; 2; 1; 2 as arrayed along a
circle with the first and second 1’s and 2’s identified to form the graph. Define,for a
code a1a2 : : : am

wt.a1a2 : : : am/ D trace.Ta1Ta2Ta1 : : : Tam/

where the Einstein summation convention is in place for the double appearances of
indices on the right-hand side. This gives the weight system.
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Fig. 34 Weight system and
Casimir insertion

aa

The weight system described by the above procedure satisfies the 4-term relation,
but does not necessarily satisfy the vanishing condition for isolated pairings. This
is because the framing compensation for converting an invariant of regular isotopy
to ambient isotopy has not yet been introduced. We will show how to do this in the
course of the discussion in the next paragraph. The main point to make here is that
by starting with the idea of extending an invariant of knots to a Vassiliev invariant of
embedded graphs and searching out the conditions on graph evaluation demanded
by the topology, we have inevitably entered the domain of relations between Lie
algebras and link invariants. Since the STU relation does not demand Lie algebras
for its satisfaction we see that the landscape is wider than the Lie algebra context,
but it is not yet understood how big is the class of link invariants derived from Lie
algebras.

In fact, we can line up this weight system with the formalism related to the knot
diagram by writing the Lie algebra insertions back on the 4-valent graph. We then
get a Casimir insertion at the node. See Fig. 34.

To get the framing compensation, note that an isolated pairing corresponds to the
trace of the Casimir. Let � denote this trace. See Fig. 34.

� D tr.
X

a

TaTa/

Let D be the trace of the identity. Then it is easy to see that we must compensate
the given weight system by subtracting .�=D/ multiplied by the result of dropping
the identification of the two given points. We can diagram this by drawing two
crossed arcs without a node drawn to bind them. Then the modified recursion
formula becomes as shown in Fig. 35.
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Fig. 35 Modified recursion
formula

C = a
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V V V= - /Dγ

SU(N): D=N, γ = (N    -1)/22

( )

C

V V V= - (N   -1)/(2N)2

C = (1/2) -(1/2N)

(Fierz  Identity)

(1/2) -(N/2)V = V V

For example, in the case of SU.N/ we have D D N, � D .N2 � 1/=2 so that we
get the transformation shown in Fig. 35, including the use of the Fierz identity.

For N D 2 the final formula of Fig. 35 is,up to a multiple, exactly the top row
formula that we deduced for the Jones polynomial from its combinatorial structure.

5.2 Witten’s Functional Integral and Vassiliev Invariants

In [52] Edward Witten proposed a formulation of a class of 3-manifold invariants as
generalized Feynman integrals taking the form Z.M/ where

Z.M/ D
Z

dAexpŒ.ik=4�/S.M;A/�:

Here M denotes a 3-manifold without boundary and A is a gauge field (also called
a gauge potential or gauge connection) defined on M. The gauge field is a one-form
on a trivial G-bundle over M with values in a representation of the Lie algebra of
G. The group G corresponding to this Lie algebra is said to be the gauge group.
In this integral the “action” S.M;A/ is taken to be the integral over M of the trace of
the Chern-Simons three-form CS D AdA C .2=3/AAA. (The product is the wedge
product of differential forms.)
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Z.M/ integrates over all gauge fields modulo gauge equivalence (see [2] for a
discussion of the definition and meaning of gauge equivalence.)

The formalism and internal logic of Witten’s integral supports the existence of
a large class of topological invariants of 3-manifolds and associated invariants of
knots and links in these manifolds.

The invariants associated with this integral have been given rigorous combinato-
rial descriptions [31, 35, 41, 49, 51], but questions and conjectures arising from the
integral formulation are still outstanding (see for example [3, 11–13, 40]). Specific
conjectures about this integral take the form of just how it involves invariants of links
and 3-manifolds, and how these invariants behave in certain limits of the coupling
constant k in the integral. Many conjectures of this sort can be verified through
the combinatorial models. On the other hand, the really outstanding conjecture
about the integral is that it exists! At the present time there is no measure theory
or generalization of measure theory that supports it. It is a fascinating exercise to
take the speculation seriously, suppose that it does really work like an integral and
explore the formal consequences. Here is a formal structure of great beauty. It is
also a structure whose consequences can be verified by a remarkable variety of
alternative means. Perhaps in the course of the exploration there will appear a hint
of the true nature of this form of integration.

We now look at the formalism of the Witten integral in more detail and see how
it involves invariants of knots and links corresponding to each classical Lie algebra.
In order to accomplish this task, we need to introduce the Wilson loop. The Wilson
loop is an exponentiated version of integrating the gauge field along a loop K in
three-space that we take to be an embedding (knot) or a curve with transversal self-
intersections. For this discussion, the Wilson loop will be denoted by the notation
WK.A/ D< KjA > to denote the dependence on the loop K and the field A. It is
usually indicated by the symbolism tr.Pexp.

R
K A// . Thus

WK.A/ D< KjA >D tr.Pexp.
Z

K
A//:

Here the P denotes path ordered integration—we are integrating and exponentiating
matrix valued functions, and so must keep track of the order of the operations. The
symbol tr denotes the trace of the resulting matrix.

With the help of the Wilson loop functional on knots and links, Witten writes
down a functional integral for link invariants in a 3-manifold M:

Z.M;K/ D
Z

dAexpŒ.ik=4�/S.M;A/�tr.Pexp.
Z

K
A//

D
Z

dAexpŒ.ik=4�/S� < KjA > :

Here S.M;A/ is the Chern-Simons Lagrangian, as in the previous discussion.
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We abbreviate S.M;A/ as S and write < KjA > for the Wilson loop. Unless
otherwise mentioned, the manifold M will be the three-dimensional sphere S3

An analysis of the formalism of this functional integral reveals quite a bit about
its role in knot theory. This analysis depends upon key facts relating the curvature
of the gauge field to both the Wilson loop and the Chern-Simons Lagrangian. The
idea for using the curvature in this way is due to Smolin [43, 44] (see also [38]). To
this end, let us recall the local coordinate structure of the gauge field A.x/, where x
is a point in three-space. We can write A.x/ D Ak

a.x/T
adxk where the index a ranges

from 1 to m with the Lie algebra basis fT1;T2;T3; : : : ;Tmg. The index k goes from
1 to 3. For each choice of a and k, Ak

a.x/ is a smooth function defined on three-space.
In A.x/ we sum over the values of repeated indices. The Lie algebra generators Ta

are matrices corresponding to a given representation of the Lie algebra of the gauge
group G: We assume some properties of these matrices as follows:

1. ŒTa;Tb� D ifabcTc where Œx; y� D xy � yx , and fabc (the matrix of structure
constants) is totally antisymmetric. There is summation over repeated indices.

2. tr.TaTb/ D ıab=2 where ıab is the Kronecker delta (ıab D 1 if a D b and zero
otherwise).

We also assume some facts about curvature. (The reader may enjoy comparing
with the exposition in [27]. But note the difference of conventions on the use of i in
the Wilson loops and curvature definitions.) The first fact is the relation of Wilson
loops and curvature for small loops:

Fact 1. The result of evaluating a Wilson loop about a very small planar circle
around a point x is proportional to the area enclosed by this circle times the
corresponding value of the curvature tensor of the gauge field evaluated at x.
The curvature tensor is written

Frs
a .x/T

adxrdys:

It is the local coordinate expression of AdAC AA:

Application of Fact 1 Consider a given Wilson line < KjS >. Ask how its value
will change if it is deformed infinitesimally in the neighborhood of a point x on
the line. Approximate the change according to Fact 1, and regard the point x as the
place of curvature evaluation. Let ı < KjA > denote the change in the value of the
line. ı < KjA > is given by the formula

ı < KjA >D dxrdxsF
rs
a .x/T

a < KjA > :

This is the first order approximation to the change in the Wilson line.
In this formula it is understood that the Lie algebra matrices Ta are to be inserted

into the Wilson line at the point x, and that we are summing over repeated indices.
This means that each Ta < KjA > is a new Wilson line obtained from the original
line < KjA > by leaving the form of the loop unchanged, but inserting the matrix
Ta into that loop at the point x. A Lie algebra generator is diagrammed by a little
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Fig. 36 Wilson loop
insertion
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W   (A) = <K|A> = tr(Pe        )K
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K

(1 + A   (x)T  dx   )a i
i a

x ε K
=

aT  <K|A>a

aT W
a

W=

box with a single index line and two input/output lines which correspond to its role
as a matrix (hence as mappings of a vector space to itself). See Fig. 36.

Remark. In thinking about the Wilson line < KjA >D tr.Pexp.
R

K A//, it is helpful
to recall Euler’s formula for the exponential:

ex D limn!1.1C x=n/n:

The Wilson line is the limit, over partitions of the loop K, of products of the
matrices .1CA.x// where x runs over the partition. Thus we can write symbolically,

< KjA >D
Y
x2K

.1C A.x// D
Y
x2K

.1C Ak
a.x/T

adxk/:

It is understood that a product of matrices around a closed loop connotes the trace
of the product. The ordering is forced by the one-dimensional nature of the loop.
Insertion of a given matrix into this product at a point on the loop is then a well-
defined concept. If T is a given matrix then it is understood that T < KjA > denotes
the insertion of T into some point of the loop. In the case above, it is understood
from context in the formula

dxrdxsF
rs
a .x/T

a < KjA >

that the insertion is to be performed at the point x indicated in the argument of the
curvature.

Remark. The previous remark implies the following formula for the variation of the
Wilson loop with respect to the gauge field:

ı < KjA > =ı.Ak
a.x// D dxkTa < KjA > :
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Varying the Wilson loop with respect to the gauge field results in the insertion of
an infinitesimal Lie algebra element into the loop.

Proof.

ı < KjA > =ı.Ak
a.x//

D ı
Y
y2K

.1C Ak
a.y/T

adyk/=ı.A
k
a.x//

D
Y

y<x2K

.1C Ak
a.y/T

adyk/ŒT
adxk�

Y
y>x2K

.1C Ak
a.y/T

adyk/

D dxkTa < KjA > :

Fact 2. The variation of the Chern-Simons Lagrangian S with respect to the gauge
potential at a given point in three-space is related to the values of the curvature
tensor at that point by the following formula:

Frs
a .x/ D �rstıS=ı.A

t
a.x//:

Here �abc is the epsilon symbol for three indices, i.e. it is C1 for positive
permutations of 123 and �1 for negative permutations of 123 and zero if any two
indices are repeated.

With these facts at hand we are prepared to determine how the Witten integral
behaves under a small deformation of the loop K:

In accord with the theme of this paper, we shall use a system of abstract tensor
diagrams to look at the differential algebra related to the functional integral. The
translation to diagrams is accomplished with the aid of Figs. 37 and 38. In Fig. 37 we
give diagrammatic equivalents for the component parts of our machinery. Tensors
become labelled boxes. Indices become lines emanating from the boxes. Repeated
indices that we intend to sum over become lines from one box to another. (The
eye can immediately apprehend the repeated indices and the tensors where they are
repeated.) Note that we use a capital D with lines extending from the top and the
bottom for the partial derivative with respect to the gauge field, a capital W with
a link diagrammatic subscript for the Wilson loop, a cubic vertex for the three-
index epsilon, little triangles with emanating arcs for the differentials of the space
variables.

The Lie algebra generators are little boxes with single index lines and two
input/output lines which correspond to their roles as matrices (hence as mappings
of a vector space to itself). The Lie algebra generators are, in all cases of our
calculation, inserted into the Wilson line either through the curvature tensor or
through insertions related to differentiating the Wilson line.

In Fig. 38 we give the diagrammatic calculation of the change of the functional
integral corresponding to a tiny change in the Wilson loop. The result is a double
insertion of Lie Algebra generators into the line, coupled with the presence of a
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Fig. 37 Notation
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k

W = W

Wδ = W

F

volume form that will vanish if the deformation does not twist in three independent
directions. This shows that the functional integral is formally invariant under regular
isotopy since the regular isotopy moves are changes in the Wilson line that happen
entirely in a plane. One does not expect the integral to be invariant under a
Reidemeister move of type one, and it is not. This framing compensation can be
determined by the methods that we are discussing [32], but we will not go into the
details of those calculations here.

In Fig. 39 we show the application of the calculation in Fig. 38 to the case of
switching a crossing. The same formula applies, with a different interpretation, to
the case where x is a double point of transversal self-intersection of a loop K, and
the deformation consists in shifting one of the crossing segments perpendicularly to
the plane of intersection so that the self-intersection point disappears. In this case,
one Ta is inserted into each of the transversal crossing segments so that TaTa <

KjA > denotes a Wilson loop with a self-intersection at x and insertions of Ta

at x C �1 and x C �2 where �1 and �2 denote small displacements along the two
arcs of K that intersect at x: In this case, the volume form is nonzero, with two
directions coming from the plane of movement of one arc, and the perpendicular
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Fig. 38 Derivation
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direction is the direction of the other arc. The reason for the insertion into the two
lines is a direct consequence of the calculational form of Fig. 38: The first insertion
is in the moving line, due to curvature. The second insertion is the consequence
of differentiating the self-touching Wilson line. Since this line can be regarded as
a product, the differentiation occurs twice at the point of intersection, and it is the
second direction that produces the non-vanishing volume form.

Up to the choice of our conventions for constants, the switching formula is, as
shown in Fig. 39,

Z.KC/ � Z.K�/ D .4� i=k/
Z

dAexpŒ.ik=4�/S�TaTa < K��jA >

D .4� i=k/Z.TaTaK��/:

The key point is to notice that the Lie algebra insertion for this difference is
exactly what we did to make the weight systems for Vassiliev invariants (without
the framing compensation). Thus the formalism of the Witten functional integral
takes us directly to these weight systems in the case of the classical Lie algebras.
The functional integral is central to the structure of the Vassiliev invariants.
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Fig. 39 Crossing switch
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5.3 Combinatorial Constructions for Vassiliev Invariants

Perhaps the most remarkable thing about this story of the structure of the Vassiliev
invariants is the way that Lie algebras are so naturally involved in the structure of the
weight systems. This shows the remarkably close nature of the combinatorial struc-
ture of Lie algebras and the combinatorics of knots and links via the Reidemeister
moves. A really complete story about the Vassiliev invariants at this combinatorial
level would produce their existence on the basis of the weight systems with entirely
elementary arguments.

As we have already mentioned, one can prove that a given set of weights for
the top row, satisfying the abstract four-term relation does imply that there exists a
Vassiliev invariant of finite type n realizing these weights for graphs with n nodes.
Proofs of this result either use analysis [1, 4] or non-trivial algebra [4, 7]. There is
no known elementary combinatorial proof of the existence of Vassiliev invariants
for given top rows.

Of course quantum link invariants (see Sect. 4 of these lectures.) do give
combinatorial constructions for large classes of link invariants. These constructions
rest on solutions to the Yang-Baxter equations, and it is not known how to describe
the subset of finite type Vassiliev invariants that are so produced.

It is certainly helpful to look at the structure of Vassiliev invariants that arise from
already-defined knot invariants. If V.K/ is an already defined invariant of knots (and
possibly links), then its extension to a Vassiliev invariant is calculated on embedded
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graphs G by expanding each graphical vertex into a difference by resolving the
vertex into a positive crossing and a negative crossing. If we know that V.K/ is
of finite type n and G has n nodes then we can take any embedding of G that is
convenient, and calculate V.G/ in terms of all the knots that arise in resolving the
nodes of this chosen embedding. This is a finite collection of knots. Since there
is a finite collection of 4-valent graphs with n nodes, it follows that the top row
evaluation for the invariant V.K/ is determined by the values of V.K/ on a finite
collection of knots. Instead of asking for the values of the Vassiliev invariant on
a top row, we can ask for this set of knots and the values of the invariant on this
set of knots. A minimal set of knots that can be used to generate a given Vassiliev
invariant will be called a knots basis for the invariant. Thus we have shown that the
set consisting of the unknot, the right-handed trefoil and the left handed-trefoil is a
knots basis for a Vassiliev invariant of type 3. See [36] for more information about
this point of view.

A tantalizing combinatorial approach to Vassiliev invariants is due to Polyak and
Viro [37]. They give explicit formulas for the second, third and fourth Vassiliev
invariants and conjecture that their method will work for Vassiliev invariants of all
orders. The method is as follows.

First one makes a new representation for oriented knots by taking Gauss
diagrams. A Gauss diagram is a diagrammatic representation of the classical Gauss
code of the knot. The Gauss code is obtained from the oriented knot diagram by first
labelling each crossing with a naming label (such as 1,2,. . . ) and also indicating the
crossing type (C1 or �1). Then choose a basepoint on the knot diagram and begin
walking along the diagram, recording the name of the crossings encountered, their
sign and whether the walk takes you over or under that crossing. For example, if
you go under crossing 1 whose sign isC then you will record oC1. Thus the Gauss
code of the positive trefoil diagram is

.o1C/.u2C/.o3C/.u1C/.o2C/.u3C/:
For prime knots the Gauss code is sufficient information to reconstruct the knot
diagram. See [29] for a sketch of the proof of this result and for other references.

To form a Gauss diagram from a Gauss code, take an oriented circle with a
basepoint chosen on the circle. Walk along the circle marking it with the labels for
the crossings in the order of the Gauss code. Now draw chords between the points
on the circle that have the same label. Orient each chord from overcrossing site to
undercrossing site. Mark each chord with C1 or �1 according to the sign of the
corresponding crossing in the Gauss code. The resulting labelled and basepointed
graph is the Gauss diagram for the knot. See Fig. 40 for examples.

The Gauss diagram is deliberately formulated to have the structure of a chord
diagram (as we have discussed for the weight systems for Vassiliev invariants).
If G.K/ is the Gauss diagram for a knot K, and D is an oriented (i.e. the chords
as well as the circle in the diagram are oriented) chord diagram, let jG.K/j denote
the number of chords in G.K/ and jDj denote the number of chords in D: If
jDj � jG.K/j then we may consider oriented embeddings of D in G.K/. For a
given embedding i W D �! G.K/ define
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Fig. 40 Gauss diagrams
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< i.D/jG.K/ >D sign.i/

where sign.i/ denotes the product of the signs of the chords in G.K/ \ i.D/: Now
suppose that C is a collection of oriented chord diagrams, each with n chords,
and that

eval W C �! R

is an evaluation mapping on these diagrams that satisfies the four-term relation at
level n. Then we can define

< DjK >D
X

iWD�!G.K/

< i.D/jG.K/ >

and

v.K/ D
X
D2C

< DjK > eval.D/:

For appropriate oriented chord subsets this definition can produce Vassiliev
invariants v.K/ of type n. For example, in the case of the Vassiliev invariant of
type three taking value 0 on the unknot and value 1 on the right-handed trefoil, �1
on the left-handed trefoil, Polyak and Viro give the specific formula

v3.K/ D< AjK > C.1=2/ < BjK >

where A denotes the trefoil chord diagram as we described it in Sect. 3 and B
denotes the three-chord diagram consisting of two parallel chords pierced by a third
chord. In Fig. 41 we show the specific orientations for the chord diagrams A and B.
The key to this construction is in the choice of orientations for the chord diagrams in
C D fA;Bg: It is a nice exercise in translation of the Reidemeister moves to Gauss
diagrams to see that v3.K/ is indeed a knot invariant.
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Fig. 41 Oriented chord
diagrams for v3

A B

v  (K) = <A|K> + <B|K>/2
eval(A) = 1 eval(B) = 1

3

Fig. 42 Tangle
decomposition of 817

8 17

8 17Tangle Version of

It is possible that all Vassiliev invariants can be constructed by a method similar
to the formula v.K/ DPD2C < DjK > eval.D/: This remains to be seen.

5.4 Invertibility and the knot 817

It is an open problem whether there are Vassiliev invariants that can detect the
difference between a knot and its reverse (The reverse of an oriented knot is obtained
by flipping the orientation.). The smallest instance of a non-invertible knot is the
knot 817 depicted in Fig. 42. Hale Trotter [46] was the first person to give proofs
that some knots are non-invertible. We have not discussed his methods in this paper.

Thus, at the time of this writing there is no known Vassiliev invariant that can
detect the non-invertibility of 817: On the other hand, the tangle decomposition
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shown in Fig. 42 can be used in conjunction with the results of Siebenmann
and Bonahon [42] and the formulations of John Conway [8] to show this non-
invertibility. These tangle decomposition methods use higher level information
about the diagrams than is easy to encode in Vassiliev invariants. The purpose of this
section is to underline this discrepancy between different levels in the combinatorial
topology.
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How Can Cooperative Game Theory Be Made
More Relevant to Economics? : An Open
Problem

Eric Maskin

Abstract Game Theory pioneers J. von Neumann and O. Morgenstern gave most
of their attention to the cooperative side of the subject. But cooperative game theory
has had relatively little effect on economics. In this essay, I suggest why that might
be and what is needed for cooperative theory to become more relevant to economics.

Cooperative game theory is the part of game theory that pertains when players can
sign binding contracts determining their actions and payoffs. J. von Neumann and
O. Morgenstern devoted most of their seminal book [6] to cooperative theory, with
subsequent major contributions by Nash [4] and Shapley [5].

But despite its auspicious beginnings, cooperative game theory has been used far
less than noncooperative theory as a predictive tool in economics. Indeed, inspection
of the current leading game theory textbooks used in graduate economics programs
reveals that the ratio of cooperative to noncooperative theory is remarkably low (in
one such text, [1], the ratio is 0). And all Nobel Memorial Prizes awarded for game
theory to date have recognized work exclusively on the noncooperative side.

This imbalance may seem strange. Cooperative theory seems to offer the
important advantage of giving insight into how coalitions behave, i.e., how subsets
of players bargain over which actions are played. Such bargaining seems basic
to many aspects of economic and political life from the European Union, to the
Paris climate change agreement, to the OPEC cartel. Moreover, on the face of
it, cooperative theory appears to be far less dependent on particular details about
strategies—and, therefore, more robust and general—than noncooperative theory.

To understand the sense in which noncooperative is more detail dependent,
let us briefly go over the basic noncooperative and cooperative models. In a
noncooperative game, each player i; i D 1; : : : ; n; chooses a strategy si from a
strategy set Si, and the payoffs of the game are given by the mapping
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g W S1 	 � � � 	 Sn ! R
n ;

where gi.s1; : : : ; sn/ is player i’s payoff if strategies .s1; : : : ; sn/ are played. The
standard prediction for what will happen in game g is that players will choose Nash
equilibrium strategies [3]. Strategies .s�

1 ; : : : ; s
�
n / constitute a Nash equilibrium if

gi.s
�
1 ; : : : ; s

�
n / � gi.s

�
1 ; : : : ; s

�
i�1; si; s

�
iC1; : : : ; s�

n /; for all i and all si 2 Si : (1)

As formula (1) makes clear, Nash equilibrium depends crucially on what strategies
are or are not in each player’s strategy set; for example, adding a single strategy s0

i to
Si can destroy .s�

1 ; : : : ; s
�
n / as an equilibrium and change the predicted outcome of

the game discontinuously, even if s0
i generates payoffs quite similar to those of s�

i .
By contrast, cooperative games are typically described by a characteristic

function v. Given a coalition of players S � f1; : : : ; ng, v.S/ is the sum of
payoffs that the members of S can get on their own. An often-used predictive
concept in cooperative game theory is the Shapley value (unlike Nash equilibrium
in noncooperative theory, the Shapley value has serious competition as a predictive
concept; there are some other leading notions, such as the core and the bargaining
set). Given characteristic function v, player i’s Shapley value payoff is

X
S	f1;:::;i�1;iC1;:::;ng

jSjŠ.n � jSj � 1/Š
nŠ

.v.S [ fig/ � v.S// ;

i.e., player i gets his expected marginal contribution to coalitions, where the
expectation is taken over all possible coalitions that he might join.

Notice that in the cooperative-game setting, players’ strategies no longer are
modeled explicitly—only the resulting payoffs matter. Thus, many different non-
cooperative games can be associated with the same characteristic function. In that
sense, the characteristic function approach is more general than the noncooperative
model. Moreover, in cooperative games, the discontinuities that arise in noncoop-
erative games no longer occur: the characteristic function and Shapley value vary
continuously with the payoff possibilities. In that sense, cooperative games are more
robust than noncooperative games.

So why, despite these advantages, is cooperative game theory currently domi-
nated by noncooperative theory as applied to economics? Perhaps one answer is
that the characteristic function, by assumption, rules out externalities—situations
in which a coalition’s payoff depends on what other coalitions are doing. Yet,
interactions between coalitions are at the very heart of economics, e.g., bargaining
between unions and management, competition between companies, and trade
between nations. Moreover, even in the (relatively small) cooperative literature
that does accommodate externalities (the partition-function approach; see [2]),
extensions of the Shapley value and of other leading cooperative concepts do
not predict competition between coalitions; instead, they assume as a matter of
definition that the grand coalition—the coalition of all players—always forms. Of
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course this flies in the face of reality, where, in most settings, we don’t typically see
just a single big coalition, but rather several smaller coalitions. Furthermore, there is
a good theoretical reason why, in a model with externalities, we should not expect
the grand coalition to form.

To illustrate this point, let us consider the following three-player game, in which
coalitions can produce public goods. The coalition of players 1 and 2—f1; 2g—can
produce a total payoff of 12 for itself, f1; 3g can produce 13, and f2; 3g can produce
14. The grand coalition f1; 2; 3g can produce 24. A player can produce nothing on
his own. However, if the other two players form a coalition, he can free-ride on the
public good they produce and enjoy a payoff of 9 (which is the externality that the
coalition confers on him).

I claim that, we should not expect the grand coalition to form in this game. To
see why not, imagine that all bargaining is conducted at a particular site and player
1 arrives there first, followed by 2, and finally by 3. When player 2 arrives, player 1
can make him offer to join 1 in a coalition. Let us explore what 2 must be offered to
be willing to join. Notice that if he does not join with 1, he will be in competition
with 1 for signing up 3. In this competition, 1 will be willing to bid 13 (the gross
value of the coalition with 3) minus 9 (which he would get as a free-rider if 3 signed
up with 2), i.e., 4. Similarly, 2will be willing to bid 14�9 D 5. Hence, 2will win the
bidding war for 3 and will pay 4 (notice that because, in this thought experiment,
1 and 2 don’t form a coalition, 3 has no possibility of free-riding and so will be
willing to accept 4). Hence 2’s payoff if he refuses to join with 1 is 14 � 4 D 10.
Thus, player 1 must offer him 10 in order to sign him up.

Assuming 2 is signed up, 1 must then offer 3 a payoff of 9 to attract him to
coalition f1; 2g (because 3 has the option to free-ride on f1; 2g and get 9 that way).
Hence, altogether player 1 must pay 10 C 9 D 19 in order to form the grand
coalition. But this leaves only 24 � 19 D 5 for himself. Clearly, he would be better
off refraining from signing up 2—in which case, as analyzed above, 2 will form a
coalition with 3. And 1 obtains a free-riding payoff of 9.

I conclude that with arrival order 1, 2, 3, two separate coalitions will form: f2; 3g
and f1g. A similar conclusion follows for the five other possible arrival orders.

Unfortunately, cooperative game theory in its current state does not allow for
such a two-coalition outcome. In my view, it remains an open problem—perhaps
the most important open problem in cooperative theory—to develop an approach
that properly accommodates the formation of multiple coalitions. Only by solving
this problem can we make cooperative game theory relevant to economics.

Acknowledgements I acknowledge research support from the Rilin Fund at Harvard University.
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The Erdős-Szekeres Problem

Walter Morris and Valeriu Soltan

Abstract Erdős and Szekeres proved in their 1935 paper that for every integer n �
3 there exists a smallest positive integer N.n/ such that any set of at least N.n/ points
in general position in the plane contains n points which are the vertices of a convex
n-gon. They also posed the problem to determine the value of N.n/ and conjectured
that N.n/ D 2n�2C 1 for all n � 3. Despite the efforts of many mathematicians, the
Erdős-Szekeres problem is still far from being solved. This chapter describes recent
achievements towards the solution of this problem and some of its close relatives.

1 Introduction

In 1932, the young Hungarian mathematician Esther Klein observed that any set of
five points in general position in the plane (that is, no three of the points belong to a
line) contains the vertices of a convex quadrilateral.

Indeed, there are three distinct types of placement of five points in general
position in the plane, as shown in Fig. 1. In any of these cases, we can pick out
at least one convex quadrilateral determined by the points. Furthermore, the chosen
quadrilateral may contain no other point of the set in its interior (see Sect. 3 for a
related problem).

Esther Klein realized that this elementary fact could be a particular case of
the following interesting problem, which she posed to her friends Paul Erdős and
George Szekeres: given an integer n � 3, does there exist a positive integer N.n/
such that from any set containing at least N.n/ points in general position in the
plane, it is possible to choose n points which form a convex n-gon?

In their enormously influential paper [16] from 1935, Erdős and Szekeres proved
the existence of the number N.n/ by two different methods. The first method
uses Ramsey’s theorem (independently discovered by Szekeres for the purpose of
solving Klein’s problem) and gives the estimate N.n/ � R4.5; n/, where R4.5; n/
is a Ramsey number (see Sect. 2.4 for details). The second method, based on
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Fig. 1 Any five points in general position in the plane determine a convex quadrilateral

consideration of convex and concave sequences of points, produces a better upper
bound, N.n/ � �2n�4

n�2
�C1. In the same paper, Erdős and Szekeres posed their famous

conjecture, often formulated as a problem.

Problem 1. Is it true that N.n/ D 2n�2 C 1 for all n � 3?

The conjecture that N.n/ D 2n�2 C 1 for all n � 3 is attributed to Klein by
Szekeres and Peters in [43]. In 1961, Erdős and Szekeres [17] returned to their
problem; they gave an example of 2n�2 points in general position in the plane
containing no vertex set of a convex n-gon. In other words, they established the
inequality N.n/ � 2n�2 C 1.

Their work on Problem 1 preceded and perhaps led to the marriage of Klein
and Szekeres, prompting Erdős to call Problem 1 the “Happy End Problem.” Their
passing (see [13]) was shortly before the Szekeres-Peters paper [43] appeared and
established that N.6/ D 17. Thus Problem 1 framed their marriage of nearly seventy
years. Additional historic and bibliographic comments related to this topic can be
found in [36].

Problem 1 is steadily gaining interest, generating new original questions and
directions of research. An essential part of the existing results were summarized
around 2000 in the surveys of Bárány and Károlyi [2] and Morris and Soltan [36].
This topic also is considered in separate chapters of the books of Matoušek [35]
and Brass et al. [8]. At present we witness a further development of the field, with
research to find the broadest generalizations and the deepest essence of Erdős and
Szekeres’ original results.

This chapter is based on the authors’ survey [36]. It gives an updated account of
results immediately related to the Erdős-Szekeres problem, leaving more distant
topics for further analysis. The content of the chapter is indicated by section
headings as follows.

1. Introduction.
2. The Erdős-Szekeres problem on convex polygons.
3. The Erdős problem on empty convex polygons.
4. Higher dimensional extensions.

Some words about notation: jXj stands for the cardinality of a finite set X; if X is a
subset of the Euclidean space Ed, then aff X and conv X mean, respectively, the affine
and convex hull of X. A set X � Ed is said to be convexly independent if no point
of X lies in the convex hull of the remaining points. Furthermore, hp; qi denotes the
line through distinct points p and q, and Œp; qi stands for the closed halfline through
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q with endpoint p. Given functions f .x/ and g.x/ on the halfline Œ0;1/, we write
f D O.g/ and g D �.f / provided there are positive constants C and k such that
jf .x/j � Cjg.x/j for all x � k. Finally, Œm� means the set f1; 2; : : : ;mg, and

�
Œm�
k

�
denotes the family of all subsets of Œm� of cardinality k.

2 The Erdős-Szekeres Problem on Convex Polygons

This section describes the advances in solving the Erdős-Szekeres problem in the
plane. We start with the “caps and cups” technique from [16], which gives upper
bounds on the number N.n/, that are O.4n/.

2.1 Caps and Cups

Let X D fp1; p2; : : : ; pmg be a set of points in general position in the coordinate
plane. If necessary, we can rotate X by a small angle to ensure that no two points of
X have the same x-coordinate. Renumbering these points, we also may assume that
pj has a greater x-coordinate than pi whenever i < j. For a subset I D fi1; i2; : : : ; ing
of the set Œm� � f1; 2; : : : ;mg, we say that the set fpi W i 2 Ig is an n-cap if pijC1

lies above the line through pij and pijC2
for all j D 1; 2; : : : ; n � 2. Similarly, the

set fpi W i 2 Ig is an n-cup if pijC1
lies below the line through pij and pijC2

for all
j D 1; 2; : : : ; n�2 (see examples in Fig. 2). We will call pi1 the left endpoint and pin
the right endpoint of the n-cap (or an n-cup) fpi1 ; pi2 ; : : : ; ping.

Given integers k; ` � 3, define f .k; `/ as the smallest positive integer for which
a set X in general position in the plane contains a k-cup or an `-cap whenever X has
at least f .k; `/ points. The following lemma gives a key argument in known proofs
for upper bounds on N.n/.

Lemma 1. Suppose that a set X in general position in the plane contains at least
f .k�1; `/C f .k; `�1/�1 points, where k; ` � 3. If the left endpoint pi1 of a .k�1/-
cup fpi1 ; : : : , pik�1g is the right endpoint pj`�1 of an .` � 1/-cap fpj1 ; pj2 ; : : : ; pj`�1g,
then X contains a k-cup fpj`�2 ; pi1 ; pi2 ; : : : ; pik�1g or an `-cap fpj1 ; pj2 ; : : : ; pj`�1 ,
pi2g, depending on whether pi1 is below or above the line through pj`�2 and pi2 .
The same conclusion is reached if the left endpoint of an .` � 1/-cap is the right
endpoint of a .k � 1/-cup (Fig. 3). ut

Fig. 2 A cup and a cap
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Fig. 3 A cap followed by a
cup

Theorem 1. f .k; `/ � �kC`�4
k�2

�C 1 for all k; ` � 3.

Proof. The inequality follows from the boundary conditions

f .k; 3/ D f .3; k/ D k D
 

k � 1
k � 2

!
C 1

and the recurrence

f .k; `/ � f .k � 1; `/C f .k; ` � 1/ � 1:

Here is a proof of the recurrence. Choose a set X in general position in the plane
with at least f .k�1; `/C f .k; `�1/�1 points. Let Y be the set of right endpoints of
.`�1/-caps of X. If XnY contains f .k; `�1/ points, then it contains a k-cup, because
X nY contains no .`� 1/-cap. Otherwise Y contains f .k� 1; `/ points. Suppose that
Y contains a .k � 1/-cup fpi1 ; pi2 ; : : : ; pik�1g. Let fpj1 ; pj2 ; : : : ; pj`�1g be an .` � 1/-
cap with j`�1 D i1. By Lemma 1, X contains a k-cup fpj`�2 ; pi1 ; pi2 ; : : : ; pik�1g or an
`-cap fpj1 ; pj2 ; : : : ; pj`�1 ; pi2g. Finally,

f .k � 1; `/C f .k; ` � 1/ � 1 �
 

kC ` � 5
k � 3

!
C 1C

 
kC ` � 5

k � 2

!
C 1 � 1

D
 

kC ` � 4
k � 2

!
C 1: ut

The inequality N.n/ � f .n; n/ immediately implies the following upper bound
on N.n/, obtained by Erdős and Szekeres [16] in 1935.

Corollary 1 ([16]). N.n/ � �2n�4
n�2

�C 1 for all n � 3. ut
In this regard we observe that the argument, which show the existence of a

convex n-gon, actually proves the stronger statement that either an n-cap or an
n-cup is contained in the set. It is obvious, but perhaps worth mentioning, that if
jXj � f .n; n/, then every set obtained by rotating X will contain an n-cup or an
n-cap; thus the set X contains several sets that are rotations of n-cups or n-caps.

The idea for the lower bound construction comes from Erdős and Szekeres’ 1961
paper [17]. A correction to an error in that paper was made by Kalbfleisch and
Stanton [27]. The following proof is taken from Lovasz [34, Sect. 14].
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Theorem 2. f .k; `/ D �kC`�4
k�2

�C 1 for all k; ` � 3.

Proof. By Theorem 1, it suffices to prove the inequality f .k; `/ � �kC`�4
k�2

�C 1.
We argue by double induction on k and `. As previously observed, this inequality

is true for k D 3 and ` D 3. Suppose that we have a set A of
�kC`�5

k�3
�

points in general

position, with no .k � 1/-cup and no `-cap, and a set B of
�kC`�5

k�2
�

points in general
position, with no k-cup and no .` � 1/-cap. Translate these sets so that every point
of B has greater x-coordinate than the x-coordinates of points of A, and the slope of
any line connecting a point of A to a point of B is greater than the slope of any line
connecting two points of B. Let X D A [ B be the resulting set. Any cup in X that
contains elements of both A and B may have only one element of B. Thus X contains
no k-cup. We similarly see that X contains no `-cap. Consequently,

f .k; `/ � jAj C jBj C 1 D
 

kC ` � 4
k � 2

!
C 1: ut

The next theorem gives the lower bound on N.n/ obtained by Erdős and
Szekeres [17].

Theorem 3 ([17]). N.n/ � 2n�2 C 1 for all n � 3.

Proof. For i D 0; 1; : : : ; n � 2, let Ti be a set of
�n�2

i

�
points in general position

in the plane, containing no .iC 2/-cap and no .n � i/-cup and having the property
that no two points in the set are connected by a line having slope of absolute value
greater than 1. (The existence of Ti follows from Theorem 2, and the condition on
slopes can be satisfied by “compressing” Ti vertically.) Place a small copy of Ti in a
neighborhood of the point on the unit circle making an angle of �

4
� i�

2.n�2/ with the

positive x-axis. Let X be the union of T1;T2; : : : ;Tn�2. Clearly, jXj D 2n�2.
Suppose that Y is a convexly independent subset of X. Let k and ` be the smallest

and the largest values of i so that Y\Ti ¤ 0. If k D `, then Y contains no .kC2/-cap
and no .n � k/-cup. The construction guarantees that:

1. Y \ Tk is a cap of at most kC 1 points,
2. Y \ T` is a cup of at most n � ` � 1 points,
3. jY \ Tij � 1 for all i D kC 1; kC 2; : : : ; ` � 1.

Summing up, jYj � .kC 1/C .l � k � 1/C .n � ` � 1/ D n � 1. ut
A 16-point set with no convex hexagon and with an appealing circular symmetry

is shown in the book of Bokowski [6, p. 283]. It would be interesting to see this
example generalized to larger sets with 2n�2 points and no convex n-gon.
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2.2 Improvements of the Upper Bounds on N.n/

The first improvement of the inequality N.n/ � �
2n�4
n�2

� C 1 was made in 1998 by
Chung and Graham [11], who reduced the number

�
2n�4
n�2

� C 1 by one. This was
followed shortly afterward by Kleitman and Pachter’s [30] improvement to N.n/ ��
2n�4
n�2

� � 2n C 7. A key new idea of a projectively transformed set led Tóth and
Valtr [44] to lower the bound further to N.n/ � �

2n�5
n�2

� C 2. In 2005, the same
authors proved the following result.

Theorem 4 ([45]). N.n/ � �2n�5
n�2

�C 1 for all n � 5.

Proof. Let X be a set of
�
2n�5
n�2

�C 1 points in general position in the plane. Choose
an extreme point p of conv X, and let q be a point outside conv X such that no line
determined by a pair of points in X n fpg meets the segment Œp; q�. Also, choose a
line L through q disjoint from conv X.

Let T be a projective transformation that maps L to the line at infinity and also
maps the segment Œp; q� to the vertical halfline emanating downward from T.p/.
Clearly, the set T.X/ has the following properties:

1. a subset Y of X is convexly independent if and only if T.Y/ is,
2. a subset Z of X containing p is convexly independent if and only if T.Z n fpg/ is

a cap.

For the rest of the proof, assume that T.X n fpg/ does not contain any .n� 1/-cap
or n-cup. Let Y be the set of points in T.X n fpg/ that are right endpoints of .n� 2/-
caps. If jYj > �

2n�6
n�3

�
then Y contains an .n � 1/-cap or an .n � 1/-cup. Since the

first case contradicts the assumption, Y contains an .n � 1/-cup. The left endpoint
of this cup is the right endpoint of an .n � 2/-cap. By Lemma 1, T.X n fpg/ would
have an .n � 1/-cap or an n-cup, and we are assuming that neither of these may
occur. If jT.X n fpg/ nYj > �2n�6

n�2
�
, then T.X n fpg/ nY contains an .n� 2/-cap or an

n-cup. The first of these cannot happen because Y contains all the right endpoints of
.n � 2/-caps.

Summing up, we have established that

jYj D
 
2n � 6
n � 3

!
and jT.X n fpg/ n Yj D

 
2n � 6
n � 2

!
:

If t 2 T.X n fpg/ n Y , then Y [ ftg contains
�
2n�6
n�3

�C 1 points; so it contains an
.n � 1/-cup. If the left endpoint of this cup is in Y , then we have an .n � 1/-cap or
n-cup in T.X n fpg/ by Lemma 1. Therefore, every element of T.X n fpg/ n Y is the
left endpoint of an .n � 1/-cup with right endpoint in Y . This implies, by the same
line of reasoning, that every element of Y is the right endpoint of an .n�2/-cap with
left endpoint in T.X n fpg/ n Y .

Let S be the set of all segments Œv; v0�, where v 2 T.X n fpg/ n Y and v0 2 Y ,
and there is an .n� 2/-cap or .n� 1/-cup with left endpoint v and right endpoint v0.
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Assume that a segment Œv; v0� from S has the largest slope. Suppose Œv; v0� represents
an .n � 1/-cup with elements v D v1; v2; : : : ; vn�1 D v0 listed in order from left
to right. There is an .n � 2/-cap with right endpoint v0 and left endpoint in T.X n
fpg/ n Y . Let u1; u2; : : : ; un�2 be its points listed from left to right. If un�3 lies above
the line through v1; v2, then fun�3; v1; v2; : : : ; vn�1g is a convexly independent set.
Otherwise, fu1; u2; : : : ; un�3; v1; v2g is an .n � 1/-cap in T.X n fpg/. The argument
for the case where Œv; v0� represents an .n � 2/-cap is similar to the previous case.

ut
Strunk [42] proves some improved bounds for point sets satisfying some

conditions. For example, he proves that for n � 4, any set of
�
2n�5
n�2

��2nC10 points
in general position in the plane with an .n � 1/-gon as its convex hull contains a
convex n-gon.

2.3 The Values of N.n/ for Small n

Esther Klein’s observation (see Sect. 1) shows that N.4/ D 5. The next value,
N.5/ D 9, was first published in 1970 by Kalbfleisch et al. [26]. The proof below is
due to Bonnice [7].

We will say that a set of nine points X in general position in the plane is of type
.k1; k2; k3/ if the set X1 of vertices of conv X has k1 elements, the set X2 of vertices
of conv .X n X1/ has k2 elements, and jX n .X1 [ X2/j D k3 (see Fig. 4).

Suppose a set of points Q D fx; y; z;wg is convexly independent and the points
are encountered in the order x; y; z;w as one traverses the convex hull of Q. The
convex polygonal region bounded by the halflines Œy; xi; Œz;wi and the segment Œy; z�
is called the beam yz W xw (see Fig. 5). Note that the beam yz W xw is bounded
if the halflines Œy; xi and Œz;wi meet. Similarly, for non-collinear points x; y;w, the
convex cone bounded by the halflines Œy; xi and Œy;wi is called a beam and is denoted
y W xw.

Suppose that X is of type .3; 3; 2/, and let X3 D fz1; z2g. There are two points
of X2 D fv1; v2; v3g, say v1 and v2, on the same side of the line containing X3. We

Fig. 4 A set of type (4,3,2)

Fig. 5 A beam yz W xw

y
x

z w
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can assume that the halfline Œz1; z2i meets the segment Œv1; v3�. If there is a point of
X1 D fy1; y2; y3g in the beam z1z2 W v1v2, then this point, together with z1; z2; v1; v2,
forms a convex pentagon. Otherwise, we can assume that there are two points of X1,
say y1 and y2, that are both in one of the beams z1 W v2v3 and z2 W v1v3. In either
case, y1 and y2, together with the three points defining the beam, form a convexly
independent set of five points.

Suppose that X is of type .4; 3; 1/. Let X3 D fzg. Then one of the three beams
formed by z and two points of X2 must contain two points of X1. As in the previous
case, these two points, together with the three points defining the beam, form a
convex pentagon.

Finally, suppose that X is of type .3; 4; 2/. Put X3 D fz1; z2g, and let the points of
X2 be v1; v2; v3; v4, appearing in the order v1; v2; v3; v4 as one traverses the boundary
of conv X2. If the line through z1 and z2 has one point of X2, say v1, on one side and
the other three points of X2 on the other side, then the points z1; z2; v2; v3; v4 form
a convex pentagon. Thus we may assume that v1 and v2 are on one side of the line
hz1; z2i, while v3 and v4 are on the other side. We let the halfline Œz1; z2i meet the
segment Œv2; v3�. If the beam z1z2 W v1v2 or the beam z1z2 W v3v4 contains a point
of X1, then this point, together with the four defining the beam, forms a convex
pentagon. Otherwise, there are two points of X1 in one of the beams z1 W v1v4 and
z2 W v2v3. In both cases, the two points of X1 together with the three points defining
the beam yield a convex pentagon.

Theorem 5. N.5/ D 9.

Proof. Let X be a set of 9 points in general position in the plane. If conv X has less
than 5 points, it must be of one of the types

.4; 4; 1/; .4; 3; 2/; .3; 4; 2/; .3; 3; 3/:

Clearly, each set of the first two types contains a subset of type .4; 3; 1/. The third
type, .3; 4; 2/, has been considered above, and a set of type .3; 3; 3/ contains a subset
of type .3; 3; 2/. In every case, X contains a subset of 5 convexly independent points.

ut
The main virtue of this proof is its brevity. A similar approach was used by

Dehnhardt et al. [14] to show, in seventeen pages, that if X is a set of 17 points in
general position in the plane and conv X has 5 vertices, then X contains 6 convexly
independent points. The rapid increase in the number of cases seems to limit the
method of classifying point sets by the sequence of sizes of the nested convex
hulls. This method, however, was surprisingly effective in the solution of the empty
hexagon problem discussed in Sect. 3.

The next value of N.n/, namely N.6/ D 17, follows from a much stronger result
of Szekeres and Peters [43], described below.

Suppose that X D fp1; p2; : : : ; pmg is a set in general position in the plane such
that the x-coordinate of pi is less than the x-coordinate of pj whenever i < j. Define
a function 	X W

�
Œm�
3

� ! f�1; 1g by 	X.fi; j; kg/ D 1 if i < j < k and pj is above
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the line through pi and pj, and 	X.fi; j; kg/ D �1 otherwise. A function 	 W �Œm�
3

�!
f�1; 1g will be called realizable if there is a planar set X in general position such
that 	 D 	X .

The geometric meaning of this approach can be explained as follows: if a
function 	 W �Œm�

3

�! f�1; 1g is realizable, then for a set

I D fi1; i2; : : : ; ing � Œm� � f1; 2; : : : ;mg

and sets fi1; ing � A � I and B D .I n A/ [ fi1; ing, expressed as

A D fi1 D a1 < a2 < � � � < ak D ing; B D fi1 D b1 < b2 < � � � < bn�kC2 D ing;

the equality

k�2X
iD1

	.fai; aiC1; aiC2g/ �
n�kX
jD1

	.fbi; biC1; biC2g/ D n � 2 e.I;A/

implies the existence of a convex n-gon made up of an jAj-cap indexed by elements
of A and a jBj-cup indexed by elements of B.

Denote by QN the smallest integer m such that there is no function 	 W �Œm�
3

� !
f�1; 1g satisfying the following condition: the inequality

k�2X
iD1

	.fai; aiC1; aiC2g/ �
n�kX
jD1

	.fbi; biC1; biC2g/ < n � 2 i.I;A/

holds for all I D fi1; i2; : : : ; ing � Œm� and fi1; ing � A � I. We will denote by i.I/
the conjunction of all inequalities i.I;A/ for a given set I.

Theorem 6 ([43]). QN.4/ D 5.

Proof. This tiny argument from [43] can serve as a model for later computer
searches. Suppose that a function 	 W �Œ5�

3

�! f�1; 1g satisfies the inequality i.I;A/
for all

I D fi1; i2; i3; i4g � Œ5� and fi1; i4g � A � I:

Assume, without loss of generality, that 	.f1; 2; 3g/ D 1. From the obvious
inequality i.f1; 2; 3; 5g; f1; 2; 3; 5g/ it follows that 	.f2; 3; 5g D �1. Then

i.f2; 3; 4; 5g; f2; 4; 5g/) 	.f2; 4; 5g/ D �1;
i.f1; 2; 4; 5g; f1; 5g/) 	.f1; 2; 4g/ D 1;
i.f1; 2; 3; 4g; f1; 2; 4g/) 	.f1; 3; 4g/ D 1;
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i.f1; 3; 4; 5g; f1; 3; 4; 5g/) 	.f3; 4; 5g/ D �1;
i.f2; 3; 4; 5g; f2; 5g/) 	.f2; 3; 4g/ D 1:

Now i.f1; 2; 3; 4g; f1; 2; 3; 4g/ implies 	.f1; 2; 3g/ D �1, contradicting our original
assumption. ut

By a computer search, Szekeres and Peters established the following statement.

Theorem 7 ([43]). QN.5/ D 9.

It should be emphasized that Theorem 7 is much stronger than Theorem 5,
because it holds for the class of all functions 	 W �Œ9�

3

� ! f�1; 1g, which is much

larger than the class of realizable functions 	X W
�
Œ9�
3

�! f�1; 1g.
Szekeres and Peters raise the fascinating possibility that QN.n/ D 2n�2 C 1 might

hold for all n. This would not contradict the lower bound on the Ramsey number
R3.n; n/, as discussed in Sect. 2.4. Indeed, the equality e.I;A/ for some A � I
determines the values of 	.fi; j; kg/ for all fi; j; kg � I when the function 	 is
realizable, while this is not the case for non-realizable functions 	 .

Szekeres and Peters were not able to determine whether QN.6/ D 17, because they
could not utilize the constraints i.I;A/ efficiently enough to force a contradiction
within the time they had allotted for the computation. This led them to the
introduction of the 4-realizability constraints, which hold for realizable functions 	 .

For a given 	 W �Œm�
3

� ! f�1; 1g and a 4-element set J D fi1 < i2 < i3 < i4g �
Œm�, a realizable 	 must satisfy either

	.fi1; i2; i3g/ D 	.fi1; i2; i4g/ and 	.fi1; i3; i4g/ D 	.fi2; i3; i4g/

if the points indexed by i1; i2; i3; i4 are convexly independent, or

	.fi1; i2; i3g/ D �	.fi2; i3; i4g/ and 	.fi1; i2; i4g/ D 	.fi1; i3; i4g/

if the point indexed by i2 or i3 is in the convex hull of the other three. The function
satisfies one or the other of these if and only if the following system i4.J/ of
inequalities holds:

� 3 < 	.fi1; i2; i4g/ � 	.fi1; i3; i4g/C 	.fi2; i3; i4g/ < 3;
� 3 < 	.fi1; i2; i3g/ � 	.fi1; i2; i4g/C 	.fi2; i3; i4g/ < 3:

i4.J/

If 	 satisfies the condition i4.J/ for all J � Œm�, we say that 	 is 4-realizable.
We define N�.n/ as the smallest integer m such that there is no 4-realizable

function 	 W �Œm�
3

� ! f�1; 1g so that all inequalities i.I;A/ hold. These additional
restrictions were enough to allow Szekeres and Peters to establish the following
result.

Theorem 8. N�.6/ D 17.
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Theorem 8 is equivalent to the statement that the generalization of the conjecture
N.6/ D 17 to rank 3 uniform oriented matroids, put forward by Goodman and
Pollack [21], is true.

We will say a few words about the strategy for the computer proof. A function
	 W �Œm�

3

� ! f�1; 1;�g will be called a partial function. We say that a partial
function 	 is consistent if for each pair .I;A/ the inequality i.I;A/ holds whenever
the restriction of 	 to the variables involved in the inequality has range contained
in f�1; 1g. A partial function 	 0 agrees with 	 if 	 0.�/ D 	.�/ whenever 	.�/ 2
f�1; 1g. We say that a partial function 	 is feasible if there is a consistent function
	 0 with range f�1; 1g that agrees with 	 . The constant function 	0 that sends every
triple to � is consistent, and the goal is to show that it is not feasible.

In the proof of Theorem 6 above, we started with the constant partial function
	0, and picked a function 	 0 that agrees with it, by changing 	0.f1; 2; 3g/ to 1. The
subsequent derivation established that 	 0 was infeasible. If we went on to show that
the function 	 00 obtained from 	0 by changing 	0.f1; 2; 3g/ to �1 is infeasible, then
we would have established that 	0 is infeasible. This last step is not necessary to
verify, by symmetry.

Szekeres and Peters determined that there are only 892 possible restrictions of
a function 	 W �Œm�

3

� ! f�1; 1g to the set of triples in a 6-element subset I of Œm�
that are 4-realizable and satisfy the system i.I/. (Compare 892 to the cardinality
2.

6
3/ of the family of all 	 W �I

3

� ! f�1; 1g). Their computer search alternates
between finding, for a given consistent partial function 	 , a partial function 	 0 that
agrees with both 	 and the restriction of a 4-realizable function satisfying i.I/ to
a contiguous subset I D fi1; i1 C 1; : : : ; i1 C 5g of Œ17�, and determining if the
	 0 obtained is consistent. Three independent implementations of this strategy, each
differing slightly in the details, were made, one each by Szekeres, Peters, and by
Brendan McKay. Each arrived at the conclusion that there is no feasible function
	 W �Œ17�

3

�! f�1; 1g. Subsequent work by Koshelev [32] (see Sect. 3) independently
verified the result.

The work of Szekeres and Peters leaves us with the challenges:

1. Find a noncomputer proof that QN.5/ D 9 holds,
2. Find a proof (computer or otherwise) that QN.6/ D 17 holds.

Lemma 1 can be applied directly to show that QN.n/ � �2n�4
n�2

�C 1, as was pointed
out in [18]. It is not obvious that the improved arguments from [44] can be adapted
to show that QN.n/ is bounded by any smaller function of n.

2.4 Ramsey Theory

The first proof of the existence of N.n/ involved rediscovering Ramsey’s theorem.
The bounds given by Ramsey’s Theorem tend to be much larger than the ones given
in previous sections.
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Theorem 9 ([39]). For any positive integers k1; `1; `2; : : : ; `r, there exists a small-
est positive integer m0 satisfying the following condition. For any integer m � m0, if
the k-element subsets of Œm� are colored with colors 1; 2; : : : ; r, then there exists an
i, 1 � i � r, and an `i-element subset T � Œm� so that each of the k-element subsets
of T is i-colored.

The smallest number m0 for which the conclusion of Ramsey’s theorem holds is
usually denoted by Rk.`1; `2; : : : ; `r/ or, if all of the `i are equal to `, Rk.rI `/.
Theorem 10. For any positive integer n � 3, the number N.n/ exists and

N.n/ � minfR4.n; 5/;R3.n; n/g:

Proof. Suppose X is a set of R4.n; 5/ points in general position in the plane. Color a
subset of four points from X with color 1 if the four points are convexly independent,
and with color 2 otherwise. Because N.4/ D 5, there is no set of 5 points with
all 4-element subsets colored with color 2. Therefore, there is a set of n points
of X with every 4-element subset convexly independent. It is easy to see (using a
planar version of Carathéodory’s theorem [10]) that this n-element set must itself be
convexly independent. Summing up, N.n/ � R4.n; 5/.

For the second inequality, let X D fp1; p2; : : : ; pmg be a set of points in general
position in the plane, with m � R3.n; n/. Color a 3-element subset fpi; pj; pkg � X,
i < j < k, with color 1 if one encounters the points in the order .pi; pj; pk/ by
passing clockwise around their convex hull. Color the subset with color 2 otherwise.
An n-element subset of X is convexly independent if all of its 3-element subsets are
colored with the same color. Hence N.n/ � R3.n; n/. ut

The first statement of Theorem 10 gives Szekeres’ original proof of the existence
of N.n/ for all n � 3, while the second statement is due to Tarsy (see [33]). It seems
that Tarsy’s proof is most relevant for the evolution of the theory. Another way to
see that there is no set of five points with all 4-element subsets colored with color
2 in Szekeres’ proof is that the no two of the six line segments formed by pairs of
vertices in a 4-element set of color 2 cross. A set of five points with all 4-element
subsets of color 2 would therefore yield a planar drawing of the complete graph K5.
This proof that N.4/ D 5 was shown to us by H. Tverberg (private communication).

The particular set of n convexly independent points guaranteed by the monochro-
matic set of triples depends on the ordering of the elements of X. If the points of
X are listed in order of increasing x coordinate, then the 3-element subsets of an
n-element subset Y of X are all of color 1 (color 2) if and only if the points of Y
form an n-cap (n-cup). Thus jXj � R3.n; n/ implies the existence of an n-cup or an
n-cap, but also many other convexly independent sets.

The best known bounds on R3.n; n/ are 2bn2 � R3.n; n/ � 2cn
for some constants

b and c (see [12]).
One reason why the number R3.n; n/ is so much larger than N.n/ is the

requirement of a monochromatic clique in the hypergraph. For a realizable set, there
are sparse monochromatic subhypergraphs which, together with the 4-realizability
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conditions, guarantee the existence of a monochromatic clique in the 3-regular
hypergraph. Szekeres and Peters [43] looked for a solution to an equality e.I;A/, as
shown in the previous section. The special cases A D I and A D fi1; ing correspond
to minimal evidence for existence of an n-cup and an n-cap. The other values of A
involve triples for which 	 is both 1 and �1, so they do not fit so neatly into the
Ramsey theory framework in which monochromatic subsets of triples are sought.

Fox et al. [18] pursued this direction further, going beyond the planar case and
allowing more than 2 colors. For a sequence of positive integers j1 < j2 < � � � < jn,
the k-tuples

.ji; jiC1; : : : ; jiCk�1/; i D 1; 2; : : : ; n � kC 1;

are said to form a monotone path of length n. Note that the case k D 3 gives the
collection of triples appearing in e.I; I/ and e.I; fj1; jng/ for I D fj1; j2; : : : ; jng. Let
Nk.q; n/ be the smallest integer N such that for every coloring of the edges of the
complete k-regular hypergraph on N vertices there is a monochromatic monotone
path of length n. It is proved in [18] that

2.n=q/q�1 � N3.q; n/ � 2nq�1 log n:

One should also mention that paths in 3-regular hypergraphs, without the
monotonicity requirement, have also been studied. The paper of Haxell et al. [23]
shows that only a linear number in n of points is needed to guarantee the existence
of a monochromatic sequence .fji; jiC1; jiC2g/, i D 1; 2; : : : ; n � 2. However, the
absence of the condition j1 < j2 < � � � < jn means that this type of sequence is not
sufficient to guarantee a convex n-gon in the realizable case.

Johnson’s [25] Ramsey-theoretic proof colors a 3-element subset S of a planar
point set X in general position with color 1 if there is an even number of points of
X in the interior of conv S, and with color 2 otherwise. Again it is easy to show that
a complete monochromatic hypergraph with n vertices corresponds to a convexly
independent n-element subset of X.

The paper of Alon et al. [1] considered colorings of ordered triples rather than
unordered triples. It defines a happy-end space to be a set S along with a function
f W S 	 S 	 S ! f1;�1g such that f .x; y; z/ D f .y; x; z/ for all x; y; z. A subset C
of S is called convex if and only if for every subset B of C such that jBj > 2 and
every point x of B there is a y ¤ x in B so that f .x; y; z/ is constant on B n fx; yg.
Every set S of points in general position in the plane where no two have the same
first coordinate defines a happy-end space by f .x; y; z/ D 1 if point z lies above the
line xy and f .x; y; z/ D �1 if point z lies below the line xy. Here a set is convex
if and only if it consists of vertices of a convex polygon. Alon et al. show that if S
is a happy-end space with at least R3.nI 8/ points, then it contains a convex n-set.
They also show that for every positive integer n there is a happy-end space on 2�.n

2/

points that contains no convex set of n points.
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3 The Erdős Problem on Empty Convex Polygons

In 1978 Erdős [15] posed a new problem on convex polygons.

Problem 2. For any positive integer n � 3, determine the smallest positive integer
H.n/, if it exists, such that any finite set X of at least H.n/ points in general position
in the plane contains n points which are the vertices of an empty convex polygon,
i. e., a polygon whose interior does not contain any point of X.

Bukh and Matoušek [9] express the suspicion that Problem 2 is a substantially
harder kind of problem than Problem 1. We will see that known values of N.n/ serve
as tools for bounding corresponding values H.n/.

Trivially, H.3/ D 3, and the argument of Esther Klein (see Fig. 1) shows that
H.4/ D 5. The next value of H.n/ was determined by Harborth [22].

Theorem 11 ([22]). H.5/ D 10.

The argument of Harborth is as follows. The inequality H.5/ � 10 immediately
follows from Fig. 6, where a set of nine points in general position determines no
empty convex pentagon (there are still two convex pentagons, neither being empty).

For the opposite inequality, choose a finite set X of n .� 10/ points in general
position in the plane, then, using Theorem 5, one can find in Xn a vertex set F D
fp1; p2; p3; p4; p5g of a convex pentagon P D conv F. Among all such pentagons,
there is at least one whose interior contains at most one point from X. If no such
point exists in the interior of P, then F is the desired set. Assuming that the interior
of P contains exactly one point from X, all other points of X should be outside P.
A carefully study of possible placements of the latter points reveals the existence
of five points from X which are the vertices of an empty convex pentagon, which
results in the inequality H.5/ � 10.

In 1983 Horton [24] showed that H.n/ does not exist for all n � 7. Valtr [46]
gave a simple inductive construction of point sets, called Horton sets, that do not
contain empty 7-gons. The empty set and a one-point set are Horton sets. A Horton
set H is in general position in the plane, with distinct x-coordinates. Furthermore, H
can be partitioned into two sets A and B such that

1. Each of A and B is a Horton set.

Fig. 6 A set of nine points
with no empty convex
pentagon
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Fig. 7 A Horton set

2. The set A is below any line connecting two points of B, and the set B lies above
any line connecting two points of A.

3. The x-coordinates of the points of A and B alternate.

It follows by induction on n that H contains no empty 7-gon. If a 7-gon P in H
contained points from both A and B, then one of jP \ Aj and jP \ Bj would be at
least four. One could then find a point of H in the interior of P (Fig. 7).

The existence of H.6/ was a major open problem for many years. The lower
bound, H.6/ � 30, was established by Overmars [38], whose computer program
produced a set of 29 points in the plane with no empty convex 6-gon. The finiteness
of H.6/ was established independently in 2005 by Gerken [19] and Nicolás [37].
The proof of [37] shows that H.6/ � N.25/, while that of [19] gives a better
inequality H.6/ � N.9/.

A more easily readable manuscript of Valtr [48] simplified Gerken’s proof and
provided a key lemma to describe point sets with no empty 6-gon. A convex h-gon
H with vertices in X is called minimal if there is no convex h-gon Y , with vertices
in X, contained in H and distinct from H. Let H be a minimal h-gon in X, and let I
be the intersection of X with the interior of conv H. Denote by J the intersection of
X with the interior of conv I. Valtr’s lemma then states that if h � 7 and X contains
no empty 6-gon, then there are no points of X in the interior of conv J. Combined
with the bound on N.8/ obtained by Tóth and Valtr [45], this argument gives the
inequality H.6/ � 463.

This result was followed by the improvement of Koshelev [31], who showed that
H.6/ � maxfN.8/; 400g. The proof of Koshelev investigates each of the possible
triples .h; i; j/ of cardinalities of the boundaries of the above sets H; I; J with h D 8,
and in each case shows that either X has an empty 6-gon or jXj � 400.

In this regard, we observe that the approach of Szekeres and Peters [43] to prove
that N.6/ D 17 was followed by Koshelev [32]. He proves that every set X of 17
points contains a convex 6-gon with at most 2 points of X in its interior. He also
gives an example of a 17-point set X which does not have a convex 6-gon with at
most one point of X in its interior, and proves that every 18-point set X contains
a convex 6-gon with at most one point of X in its interior. One can speculate on
the existence of a number H.n; k/ for which every point set X in general position
in the plane, with at least H.n; k/ points, contains the vertex set of a convex n-gon
with at most k points of X in its interior. Some results for n D 7 were obtained by
Sendov [40].
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4 Higher Dimensional Extensions

This section deals with a generalization of the Erdős-Szekeres problem (as well as
the problem on empty convex polygons) for higher dimensions.

4.1 Convex Polytopes

An observation that Problem 1 can be generalized for higher dimensions was
already mentioned by its authors (see [16]) and later rediscovered by Grünbaum [20,
pp. 22–23]. We recall that a set X of points in the Euclidean space Ed is in general
position if no d C 1 points of X lie in a hyperplane. Furthermore, X is said to be
convexly independent if no point of X lies in the convex hull of the remaining points.
In other words, a set X in general position is convexly independent provided it is the
vertex set of a convex d-polytope in Ed.

Following Grünbaum [20], we define Nd.n/, n � d C 1, as the smallest positive
integer such that any set of Nd.n/ points in general position in Ed contains a subset
of n convexly independent points. Similarly to the planar case, one can pose the
following two questions.

1. Do the numbers Nd.n/ exist for all n � dC 1?
2. If yes, what are the values of Nd.n/?

The theorem below shows the existence of Nd.n/, establishing an upper bound in
terms of Ramsey numbers. It is a direct generalization of the proof of [16] for the
planar case.

Theorem 12. For any positive integer n � dC 1, the number Nd.n/ exists and

Nd.n/ � RdC2.n; dC 3/:

Proof. We observe first that any set Z � Ed of d C 3 points in general position
contains a subset of dC2 convexly independent points. Indeed, consider the convex
hull P of Z and denote by V the vertex set of P. Clearly, V � Z. Since the case
jVj � d C 2 is obvious, we may assume that jVj D d C 1, that is, P is a d-simplex.
Let u; v be the points from Z nV . The line l through u; v meets at most two facets of
P. If Q is a facet of P disjoint from l, then the union of fu; vg and the d vertices of
Q form a desired convexly independent subset of Z of cardinality dC 2.

Next, we state that a finite set F � Ed in general position is convexly independent
if and only if each of its subsets of d C 2 points is convexly independent. The “if
part” is trivial, so it suffices to prove the “only if” part. Indeed, if F is not convexly
independent, then p 2 conv .F n fpg/ for a certain point p 2 F. According to
Carathéodory’s theorem [10], F n fpg contains a subset G of d C 1 points such
that p 2 conv G. Consequently, fpg [ G is a convexly dependent subset of F of
cardinality dC 2.
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Finally, let X � Ed be a set in general position consisting of RdC2.n; d C 3/

points. Color the .d C 2/-element subsets of X red if the points are convexly
independent, and color them blue otherwise. The above argument shows that it is
impossible for all of the .d C 2/-element subsets of a .d C 3/-element subset of X
to be blue. Hence it must be true that X contains an n-element subset Y for which
all .d C 2/-element subsets are red. Therefore Y is convexly independent. Hence
Nd.n/ � RdC2.n; dC 3/. ut

Tarsy’s Ramsey-theoretic proof from the planar case was generalized in The-
orem 9.4.7 of [5]. If a point set X � Ed in general position contains RdC1.n; n/
points, then X contains the n vertices of a cyclic d-polytope. Thus we know that X
not only contains a convexly independent set of n points, but the combinatorial type
of the convex hull of this point set is prescribed. Thus one can define a function
Ncyc

d .n/ which is the smallest positive integer such that any set of Ncyc
d .n/ points in

general position in Ed contains the vertex set of a cyclic polytope with n vertices.
Clearly, Ncyc

d .n/ � Nd.n/ and Ncyc
2 .n/ D N2.n/. The theorem of [5] also states that

if a combinatorial type of polytopes has the property that a large enough point set in
general position must contain it, then it is a cyclic polytope.

Johnson [25] also pointed out that his Ramsey-theoretic argument for the planar
case can be generalized to higher dimensions.

Valtr [47] gave another approach for establishing the existence of Nd.n/. He
considers any set X of at least N2.n/ points in general position in Ed and its
projection Y onto a two-dimensional plane L � Ed such that Y is in general
position in L. Since jYj � N2.n/; one can choose in Y a subset of n convexly
independent points. It is easily seen that the prototypes of these points in X are
convexly independent. This argument implies the inequality Nd.n/ � N2.n/; d � 2.

A similar consideration is true for the case of projections of X on m-dimensional
planes in Ed, 2 < m < d. Using Theorem 4 and Valtr’s argument, one obtains the
estimates

Nd.n/ � Nd�1.n/ � � � � � N2.n/ �
 
2n � 5
n � 3

!
C 1:

Another upper bound on Nd.n/ was obtained by Károlyi [28], as shown in the
theorem below.

Theorem 13 ([28]). If n > d � 3, then Nd.n/ � Nd�1.n � 1/C 1. Consequently,

Nd.n/ � N2.n � dC 2/C d � 2:

Proof. Let X � Ed be a set of Nd�1.n� 1/C 1 points in general position. Choose a
vertex p of conv X, and denote by H a hyperplane strictly separating p from X n fpg.
Let Y D fŒp; u� \ H W u 2 X n fpgg. It is easy to see that the set Y is in general
position in H, and the mapping ' W X n fpg ! Y defined by '.u/ D Œp; u� \ H is a
bijection. Since H can be identified with Ed�1, and since jYj � Nd�1.n � 1/, there
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is a convexly independent subset Z of Y of size n� 1. Clearly, the set fpg [ '�1.Z/
is a convexly independent subset of X of size n. ut

A combination of Theorems 4 and 13 results in the following inequality.

Corollary 2. If n > d � 2, then Nd.n/ �
�
2n�2d�1

n�d

�C d � 1.

In contrast to what is known about the planar case, it is not known if the function
Nd.n/ is exponential for any fixed d > 2. The only known general lower bound for
Nd.n/ is due to Károlyi and Valtr [29], given in Theorem 14 below.

Theorem 14 ([29]). For all integers N > d � 2, there exists a configuration of
N points in general position in Ed which contains at most c0

d.log N/d�1 convexly
independent points, where c0

d is a constant depending on d. Equivalently, there is a
constant cd > 1 such that

Nd.n/ D ˝
�
cn1=.d�1/

d

�
:

Sketch of the proof of Theorem 14. A set X � Ed is said to be in strongly general
position if it is in general position and, for every f D 1; 2; : : : ; e � 1, any f C 1
points of X determine an f -dimensional affine subspace which is not parallel to the
.e� f /-dimensional subspace of Ee spanned by its last e� f coordinate axes, e � d.
Denote by mc.X/ the maximum size of a convexly independent subset of X.

Next, we say that two finite sets in general position and of equal size, have
the same order type if there is a one-to-one correspondence between them which
preserves the orientation of each .e C 1/-tuple. It is clear that small perturbations
of the sets do not affect the order type. More precisely, it is possible to show that
for every finite set X D fp1; p2; : : : ; ptg in general position in Ee, e � d, there is a
largest scalar ı D ıd.X/ > 0 such that whenever Y D fq1; q2; : : : ; qtg � Ee satisfies
jpj

i � qj
ij < ı for all 1 � i � t and 1 � j � e, then Y also is in general position and

has the same order type as X. (Here pi D .p1i ; p2i ; : : : ; pn
i / and qi D .q1i ; q2i ; : : : ; qn

i /.)
In particular, X is convexly independent if and only if Y is.

For a set X D fp1; : : : ; ptg, let

�e.X/ D minfıf .�f .X// W 1 � f � eg;

where �f is the orthogonal projection of Ed onto Ef , and ıf .�f .X// is defined as
above. Given a scalar 0 < � < �e.X/, chose for every point p 2 X a vector v.p/ D
.v1.p/; : : : ; ve.p// such that

0 < v1.p/ < � � � < ve.p/ and vf .p/ < �vf C1.p/ for all 1 � f < e:

These vectors v.p1/; : : : ; v.pt/ can be chosen in such a way that the set X0 D fp˙
v.p/ W p 2 Xg of size 2jXj is in strongly general position; in the latter case X0 is
called an �-double of X. Important properties of �-doubles:
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1. If X0 is an �-double of X, then �f .X0/ is an �-double of �f .X/ for all 1 � f � e,
2. If X is in strongly general position and 0 < � � �e.X/ is small enough, then

mc.X0/ � mc.X/Cmc.�e�1.X//:

Finally, a desired set is constructed inductively, starting with a singleton X0 � Ed.
If for some i � 0, a set Xi of points in strongly general position is selected, then a
very small �i > 0 and an �i-double X0

i of Xi can be chosen so that �e.X0
i/ is an

�i-double of �e.Xi/ for all 1 � e � d and

mc.�e.X
0// � mc.�e.Xi//Cmc.�e�1.Xi//; 2 � e � d:

Based on the latter inequality, a double induction on e and i gives

mc.�e.Xi// � 2i e�1 for all 1 � e � d and i � 1: ut

As shown in [28], a more careful calculation yields that

mc.�e.Xi// � .2=.e � 1/Š/i e�1 C O.i e�2/:

Thus, for large n and N, Theorem 14 is valid with cd � 20:37d and c0
d � 2=.d � 1/Š.

There are quite few cases when the exact values of Nd.n/ is known. For small
values of n � dC1, we can mention the following equalities, derived by Morris and
Soltan [36] from a stronger result of Bisztriczky and Soltan [4] (see Theorem 16
below):

Nd.n/ D 2n � d � 1 for all 2 � d and dC 2 � n � b3d=2c C 1:

These equalities show that Nd.n/ behaves as a linear function with respect to n for
small values of n.

For n > b3d=2c C 1 and d � 3, there is only one known value: N3.6/ D 9, due
to Bisztriczky and Soltan [4] (see Theorem 18 below).

Grünbaum [20, pp. 22–23] discussed a variant of the Erdős-Szekeres problem
in higher dimensions. Namely, he established the existence of a minimum number
Bd.n/, d � 2 and n � d C 1, such that any set X � Ed of at least Bd.n/ points
in general position contains a subset of n points lying on the boundary of a convex
body. His proof is based on Ramsey’s theorem and the following assertion: a finite
set Y � Ed lies on the boundary of a convex body in Ed if and only if each of its
subsets of at most 2d C 1 points lies on the boundary of a convex body in Ed. The
last statement is a direct consequence of the Steinitz theorem (see [41, Sect. 10]): a
point p 2 Ed belongs to the interior of the convex hull of a set S � Ed if and only if p
belongs to the interior of the convex hull of at most 2d points of S. Later Bisztriczky
and Soltan [4] showed that in the definition of Bd.n/ the set X � Ed can be arbitrary
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(not necessarily in general position); they also proved the equality Bd.n/ D Nd.n/
for all d � 2 and n � d C 1, based on the simple argument that any finite set in Ed

can be approximated by a set in general position.

4.2 Empty Convex Polytopes

Generalizing the Erdős problem on empty convex polygons (see Sect. 3), Bisz-
triczky and Soltan [4] defined Hd.n/ as the smallest positive integer, if it exists, such
that any set X of at least Hd.n/ points in general position in Ed contains a subset
of n points that are the vertices of an empty convex polytope, that is, of a polytope
whose interior does not contain any point of X. We observe that in this definition one
may consider only sets X of precisely Hd.n/ points. Indeed, if X contains more than
Hd.n/ points, we can partition X into subset Y and Z by a suitable hyperplane such
that jYj D Hd.n/. Then, if some n points from Y form an empty convex polytope
with respect to Y , then this polytope also is empty with respect to X.

The following theorem of Valtr [47] (formulated in slightly distinct terms) shows
the existence of numbers Hd.n/ for all dC 1 � n � 2dC 1.

Theorem 15. Hd.2dC 1/ � Nd.4dC 1/ for all d � 2.

Proof. Let X � Ed be a set of Nd.4d C 1/ points in general position. Choose a
subset Y � X of 4d C 1 convexly independent points such that the interior of the
convex polytope P D conv Y contains the smallest number of points from X. Let
Z D X \ int P and k D jZj.

If k � d, then we consider a hyperplane H containing Z. Since the set X n Z
contains at least 4d � k C 1 points and lies in the union of two open halfspaces
determined by H, at least one of these halfspaces contains a subset V of X n Z
consisting of at least d.4d � kC 1/=2e points. It is easy to see that the set V [ Z is
convexly independent, contains at least d.4d � kC 1/=2e C k � 2dC 1 points, and
is the vertex set of an empty polytope.

Suppose that k � dC 1 and let Q D conv Z. Choose a facet F of Q and consider
the set Y0 of all points of Y which belong to the open halfspace C determined by the
hyperplane H containing F but not Q. We state that jY0j � d C 1. Indeed, assume
for a moment that jY0j D m � d. If G is a subset of F \ Z of m points, then the
set Y 0 D G [ .Y \ C0/, where C0 is the second open halfspace determined by H,
consists of 4dC1 convexly independent points such that the interior of the polytope
conv Y 0 contains less then k points of X. Since the latter contradicts the choice of Y ,
we conclude that jY0j � dC 1. This argument shows that Y0[ .F\Z/ is a convexly
independent set of at least 2dC1 points which form an empty convex polytope. ut

Using an n-dimensional version of Horton sets (see [24]), Valtr [47] gave an
example of an arbitrary large set X � Ed in general position containing no
convexly independent subset of size 2d�1.r2r3 � � � rdC1/which determines an empty
convex polytope with respect to X (here r2 D 2; r3 D 3; r4 D 5; : : : is the
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sequence of prime numbers). Consequently, the numbers Hd.n/ do not exist for all
n � 2d�1.r2r3 � � � rdC 1/. If d D 3, then the latter statement can be improved: H3.n/
do not exist for all n � 23 (instead of n � 22.2 � 3 C 1/ D 28 due to the above
argument).

For small values of n, Bisztriczky and Soltan [4] determined a sharp upper bound
on Hd.n/, formulated here in slightly distinct terms.

Theorem 16 ([4]). If d � 2 and dC1 � n � b3d=2cC1, then Hd.n/ � 2n�d�1.

Proof. Let m D 2n � d � 1 and X � Ed be a set of m points in general position.
Set P D conv X. Denote by v the number of vertices of the polytope P. Since the
case v D m is obvious, we assume that d C 1 � v < m. Then v D d C t, where
1 � t < 2n � 2d � 1. Consequently, int P contains m � v D 2n � 2d � t � 1
points from X. Choose any 3d � 2nC t C 1 vertices of P (which is possible due to
n � b3d=2c C 1), and let H be the hyperplane through the selected

.2n � 2d � t � 1/C .3d � 2nC tC 1/ D d

points from X. Denote by Y the set of these d vertices. Clearly, H contains no other
point of X. Consequently, Y D H \ X and the remaining

v � .3d � 2nC tC 1/ D 2n � 2d � 1

vertices of P lie in Ed n H. Hence there is a subset Z of at least n � d vertices of
P which belong to an open halfplane determined by H. It is easy to see that the
n-element set Y [ Z is the vertex set of an empty convex polytope. ut

Later Bisztriczky and Harborth [3] proved the opposite inequality.

Theorem 17 ([3]). If Hd.n/ exists, then Hd.n/ � 2n � d � 1, where d � 2 and
n � dC 1.

Proof. Since Hd.d C 1/ D d C 1 and Hd.d C 2/ D d C 3, we may assume that
n � d C 3. Let X � Ed be a set in general position, and 1 � t < jXj be an integer.
We will say that X is t-fat provided

\ �int.conv Y/ W Y � X; jYj D jXj � t
� ¤ ;:

Let Ld.t/ denote the smallest integer l such that there exists a t-fat set X � Ed of
cardinality l. As shown in [4],

Ld.t/ D dC 2tC 1 whenever d � 2 and t � 1:

Put t D n�d�2 and choose a t-fat set X � En of cardinality dC2tC1. Then there
is a point

p 2 U � \ �int.conv Y/ W Y � X; jYj D dC tC 1�:
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Since U is an open set, we may choose p so that the set X� D X [ fpg is in general
position. Then jX�j D d C 2t C 2 and p belongs to the interior of every convex
polytope conv Y , where Y � X� and jYj D d C t C 2 D n. Hence no subset of n
points from X� forms an empty convex polytope. Consequently,

Hd.n/ � jX�j C 1 D dC 2tC 3 D 2n � d � 1: ut

Combining Theorems 16 and 17, we obtain the following equalities:

Hd.n/ D 2n � d � 1 for all d � 2 and dC 1 � n � b3d=2c C 1:

For d > 2 and n > b3d=2c C 1, only one value of Hd.n/ is known: H3.6/ D 9,
as shown in the theorem below.

Theorem 18 ([4]). N3.6/ D H3.6/ D 9.

Proof. Due to the obvious inequality N3.6/ � H3.6/, it suffices to show that 9 �
N3.6/ and H3.6/ � 9.

Case 1. 9 � N3.6/. For this, let

p1 D .�64; 0; 0/; p2D.0; 64; 0/; p3D64; 0; 0/; p4D.0; 0; 128/;
p5 D

�
� 32

10
; 8C 8

30
; 24� 8

30

�
; p6D

�
� 32

5
; 8C 8

15
; 24 � 8

15

�
; p7D

�
16; 128

6
; 64
6

�
;

and p8 D .0; 32.1 � �/; 64.1 � �//, where � is an arbitrary small real number.
It is a matter of computation to verify that the set X D fp1; p2; : : : ; p8g is in
general position and has the following properties:

1. conv X D conv fp1; p2; p3; p4g,
2. fp5; p6g � conv fp1; p3; p4; p7g \ conv fp1; p3; p4; p8g,
3. p5 2 conv fp2; p3; p4; p6g \ conv fp3; p4; p6; p7g,
4. p6 2 conv fp1; p2; p5; p8g \ conv fp1; p3; p5; p8g \ conv fp1; p4; p5; p7g,
5. p7 2 conv fp1; p2; p3; p8g \ conv fp2; p3; p4; p6g \ conv fp2; p3; p5; p6g,
6. p8 2 conv fp2; p4; p5; p7g \ conv fp2; p4; p6; p7g.
Consequently, no six-element subset of X is the vertex set of an empty convex
polytope.

Case 2. H3.6/ � 9. Let X D fp1; p2; : : : ; p9g be any set of nine points in general
position in E3. Put P D conv X, and denote by Y the vertex set of P. Without loss
of generality, we assume that Y D fp1; p2; : : : ; prg, where 4 � r � 9. Since the
case r D 9 is obvious (any six points from Y are convexly independent), we let
r � 8. Put Z D X n Y and T D conv Z.

a) If r � 6, then we argue as in the proof of Theorem 16 and obtain the existence
of an empty polytope with six vertices from X.

b) Let r D 5. Then jZj D 4 and T is a 3-simplex. Obviously, T � int P.



The Erdős-Szekeres Problem 373

Suppose first that the line l D hpi; pji meets int T ¤ ; for some pi 2 X and
pj 2 Y . Let l D hp5; p6i. Then l meets the relative interior of conv fp7; p8; p9g.
Denote by Li the closed halfplane bounded by l and containing pi, i D 7; 8; 9.
It is clear that E3 n .L7 [ L8 [ L9/ is the union of three open convex regions,
A1;A2;A3, one of them containing at least two points from fp1; p2; p3; p4g.
Assume that namely A1 is bounded by L7;L8 and contains two points, say
p1; p2, from fp1; p2; p3; p4g. Then, as easy to see, the set fp1; p2; p5; p6; p7; p8g
generates an empty polytope with six vertices.
Suppose now that

hpi; pji \ int T D ; for all pi 2 X and pj 2 Y: (1)

Translating X on a suitable vector, we may assume that p6 is the origin of E3.
Since X is in general position, fp7; p8; p9g is a basis for E3. Choosing a new
coordinate system, we let p7 D .1; 0; 0/, p8 D .0; 1; 0/, and p9 D .0; 0; 1/.
The three coordinate planes decompose E3 into eight pairwise disjoint open
octants Q.˛1; ˛2; ˛3/, where ˛i D ˙1 is the sign of the i th coordinate of a
point in Q.˛1; ˛2; ˛3/.
Next, let H denote the plane through fp7; p8; p9g; also, H1 and H2 be the
opposite open halfspace determined by H such that p6 2 H2. It is a direct
consequence of (1) that

X \ H1 � Q.C;C;�/ [ Q.C;�;C/ [ Q.�;C;C/;
X \ H2 � Q.�;�;C/ [ Q.�;C;�/ [ Q.C;�;�/:

Put

Qk.˛1; ˛2; ˛3/ D Hk \ Q.˛1; ˛2; ˛3/; k D 1; 2:

Then Y lies in the union of six regions,

Q1.C;C;�/; Q1.C;�;C/; Q1.�;C;C/;
Q2.�;�;C/; Q2.�;C;�/; Q2.C;�;�/:

If one of these six regions contains two points, say p1 and p2, from fp1; p2; p3g,
then conv.fp1; p2g[Z/ is an empty convex polytope with six vertices. Assume
this is not the case, and let, for instance,

p1 2 Q1.C;C;�/; p2 2 Q2.�;C;�/; p3 2 Q2.C;�;�/:

In this case, the plane H strictly separates fp9g and fp1; p2; p3g, which shows
that the convex polytope conv fp1; p2; p3; p6; p7; p8g is empty.
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c) Let r D 4. Then jZj D 5. If the polytope T D conv Z has five vertices, then it
is the union of two non-overlapping simplices

conv fp5; p7; p8; p9g and conv fp6; p7; p8; p9g:
Then the line l D hp5; p6i meets the relative interior of the triangle
conv fp7; p8; p9g.
If T has four vertices, then it is a simplex. In this case, we may assume p5 2
int T and whence the line l D hp5; p6i still has the above property. In either
case, we define the halfplanes Li, i D 7; 8; 9, and argue as in part b). ut

Since the number H3.6/ can be viewed as a particular case of Hd.b3d=2c C 2/;
we pose the question on the values of Hd.b3d=2c C 2/ for all d � 4.
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31. Koshelev, V. A.: The Erdős-Szekeres problem. Dokl. Math. 76, 603–605 (2007)
32. Koshelev, V. A.: Computer solution of the almost empty hexagon problem. Math. Notes 89,

455–458 (2011)
33. Lewin, M.: A new proof of a theorem of Erdős and Szekeres. Math. Gaz. 60, 136–138 (1976)
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Novikov’s Conjecture

Jonathan Rosenberg

Abstract We describe Novikov’s “higher signature conjecture,” which dates back
to the late 1960s, as well as many alternative formulations and related problems.
The Novikov Conjecture is perhaps the most important unsolved problem in
high-dimensional manifold topology, but more importantly, variants and analogues
permeate many other areas of mathematics, from geometry to operator algebras to
representation theory.

1 Origins of the Original Conjecture

The Novikov Conjecture is perhaps the most important unsolved problem in the
topology of high-dimensional manifolds. It was first stated by Sergei Novikov, in
various forms, in his lectures at the International Congresses of Mathematicians in
Moscow in 1966 and in Nice in 1970, and in a few other papers [85–88]. For an
annotated version of the original formulation, in both Russian and English, we refer
the reader to [37]. Here we will try instead to put the problem in context and explain
why it might be of interest to the average mathematician. For a nice book-length
exposition of this subject, we recommend [66]. Many treatments of various aspects
of the problem can also be found in the many papers in the collections [38, 39].

For the typical mathematician, the most important topological spaces are smooth
manifolds, which were introduced by Riemann in the 1850s. However, it took about
100 years for the tools for classifying manifolds (except in dimension 1, which is
trivial, and dimension 2, which is relatively easy) to be developed. The problem is
that manifolds have no local invariants (except for the dimension); all manifolds of
the same dimension look the same locally. Certainly many different manifolds were
known, but how can one tell whether or not the known examples are “typical”? How
can one distinguish one manifold from another?
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With big leaps forward in topology in the 1950s, it finally became possible to
answer these questions, at least in part. Here were a few critical ingredients:

1. the development of the theory of Reidemeister and Whitehead torsion and the
related notion of “simple homotopy equivalence” (see [77] for a good survey of
all of this);

2. the theory of characteristic classes of vector bundles, developed by Chern, Weil,
Pontrjagin, and others;

3. the notion of cobordism, introduced by Thom [112], who also provided a method
for computing it;

4. the Hirzebruch signature theorem sign.M/ D hL .M/; ŒM�i [54], giving a
formula for the signature of an oriented closed manifold M4k (this is the algebraic
signature of the nondegenerate symmetric bilinear form .x; y/ 7! hx[ y; ŒM�i on
H2k coming from Poincaré duality), in terms of a certain polynomial L .M/ in
the rational Pontrjagin classes of the tangent bundle.

Using just these ingredients, Milnor [74] was able to show that there are at
least 7 different diffeomorphism classes of 7-manifolds homotopy equivalent to S7.
(Actually there are 28 diffeomorphism classes of such manifolds, as Milnor and
Kervaire [65] showed a bit later.) This and the major role played by items 2 and
4 on the above list1 came as a big surprise, and showed that the classification of
manifolds, even within a “standard” homotopy type, has to be a hard problem.

The final two ingredients came just a bit later. One was Smale’s famous
h-cobordism theorem, which was the main ingredient in his proof [109] of the
high-dimensional Poincaré conjecture in the topological category. (In other words,
if Mn is a smooth compact n-manifold, n � 5, homotopy equivalent to Sn, then
M is homeomorphic to Sn, even though it may not be diffeomorphic to it.) But
from the point of view of the general manifold classification program, Smale’s
important contribution was a criterion for telling when two manifolds really are
diffeomorphic to one another. An h-cobordism between compact manifolds M and
M0 is a compact manifold with boundary W, such that @W D MtM0 and such that W
has deformation retractions down to both M and M0. The h-cobordism theorem [76]
says that if dim M D dim M0 � 5 and if M, M0, and W are simply connected, then W
is diffeomorphic to M 	 Œ0; 1�, and in particular, M and M0 are diffeomorphic. The
advantage of this is that diffeomorphisms between different manifolds are usually
very hard to construct directly; it is much easier to construct an h-cobordism.

If one dispenses with simple connectivity, then an h-cobordism between M and
M0 need not be diffeomorphic to a product M 	 Œ0; 1�. However, the s-cobordism
theorem, due to Barden, Mazur, and Stallings, with simplifications due to Kervaire

1Spheres have stably trivial tangent bundle and no interesting cohomology, so one’s first guess
might be that the theory of vector bundles and the signature theorem might be irrelevant to studying
homotopy spheres. Milnor, however, showed that one can construct lots of manifolds with the
homotopy type of a 7-sphere as unit sphere bundles in rank-4 vector bundles over S4. He also
showed that the signature of an 8-manifold bounded by such a manifold yields lots of information
about the homotopy sphere.
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[64], says that the h-cobordisms themselves are classifiable by the Whitehead
torsion �.W;M/, which takes values in the Whitehead group Wh.�/, where
� D �1.M/, and all values in Wh.�/ can be realized by h-cobordisms. (The
Whitehead group is the quotient of the algebraic K-group K1.Z�/ by its “obvious”
subgroup f˙1g 	 �ab.) Thus an h-cobordism is a product if Wh.�/ D 0, which is
the case for � free abelian, and in fact is conjectured to be the case if � is torsion-
free. But for � finite, for example, Wh.�/ is a finitely generated group of rank
r � q, where r is the number of irreducible real representations of � , and q is the
number of irreducible rational representations of � [77, Theorem 6.2]. This number
r � q is usually positive (for example, when � is finite cyclic, it vanishes only if
j�j D 1; 2; 3; 4; or 6). Bass and Murthy have even shown [8] that there are finitely
generated abelian groups � for which Wh.�/ is not finitely generated.

The last major ingredient for the classification of manifolds is the method of
surgery. Surgery on an n-manifold Mn means cutting out a neighborhood Sk 	Dn�k

of a k-sphere Sk ,! M (with trivial normal bundle) and replacing it by DkC1 	
Sn�k�1, which has the same boundary. This can be used to modify a manifold
without changing its bordism class, and was first introduced by Milnor [75] and
Wallace [117].

With the help of all of these techniques, Browder [20, 21] and Novikov
[81, 82] finally introduced a general methodology for classifying manifolds in high
dimensions. The method gave complete results for simply connected manifolds
in dimensions � 5, and only partial information in dimensions 3 and 4, which
have their own peculiarities we won’t discuss here. With the help of additional
contributions by Sullivan [111], Novikov [86], and above all, Wall [115], this
method grew into what we know today as surgery theory, codified by Wall in
his book [116], which originally appeared in 1970. There are now fairly good
expositions of the theory, for example in Ranicki’s books [94, 95], in the book by
Kreck and Lück [66], in the first half of Weinberger’s book [119], and in Browder’s
colloquium lectures from 1977 [22], so we won’t attempt to compete by going into
details, which anyway would take far too many pages. Instead we will just outline
enough of the ideas to set the stage for Novikov’s conjecture.

As we indicated before, surgery theory addresses the uniqueness question for
manifolds: given (closed and connected, say) manifolds M and M0 of the same
dimension n, when are they diffeomorphic (or homeomorphic)? It also addresses
an existence question: given a connected topological space X (say a finite CW
complex), when is it homotopy equivalent to a (closed) manifold?

A few necessary conditions are evident from a first course in topology. If M
and M0 are diffeomorphic, then certainly they are homotopy equivalent, and so
they have the same fundamental group � . Furthermore, if a finite connected CW
complex X has the homotopy type of a closed manifold, then it has to satisfy
Poincaré duality, even in the strong sense of (possibly twisted) Poincaré duality
of the universal cover with coefficients in Z� . Homotopy equivalences preserve
homology and cohomology groups and cup products, so an orientation-preserving
homotopy equivalence also preserves the signature (in dimensions divisible by 4
when the signature is defined). However, these conditions are not nearly enough.



380 J. Rosenberg

For one thing, for a homotopy equivalence to be homotopic to a diffeomorphism
(or even a homeomorphism), it has to be simple, i.e., to have vanishing torsion in
Wh.�/. Depending on the fundamental group � , this may or may not be a serious
restriction.

But the most serious conditions involve characteristic classes of the tangent
bundle. Via a very ingenious argument using surgery theory and the Hirzebruch
signature theorem, Novikov [83, 84] showed that the rational Pontrjagin classes
of the tangent bundle of a manifold are preserved under homeomorphisms.2

(Incidentally, Gromov [45, Sect. 7] has given a totally different short argument for
this.) The rational Pontrjagin classes do not have to be preserved under homotopy
equivalences. So if ' W M ! M0 is a homotopy equivalence not preserving rational
Pontrjagin classes, it cannot be homotopic to a homeomorphism.

In the simply connected case, this is (modulo finite ambiguity) just about all:
if M0 ! M is an orientation-preserving homotopy equivalence of closed simply
connected oriented manifolds, the rational Pontrjagin classes of M0 have to satisfy
the constraint hL .M0/; ŒM0�i D sign.M0/ D sign.M/ imposed by the Hirzebruch
signature theorem, but otherwise they are effectively unconstrained (assuming the
dimension of the manifold is at least 5).3 And if the map does preserve rational
Pontrjagin classes, then there are only finitely many possibilities for M0 up to
diffeomorphism.

When M is not simply connected, the situation is appreciably more complicated.
Suppose one wants to check if two n-manifolds M and M0 are diffeomorphic. As
we indicated before, that means we need to have a simple homotopy equivalence
' W M0 ! M. If ' were homotopic to a diffeomorphism, it would preserve the
classes of the tangent bundles, so it’s convenient to assume that ' has been promoted
to a normal map ' W .M0; �0/! .M; �/. Here � and �0 are the stable normal bundles
defined via the Whitney embedding theorem: if k is large enough (n C 1 suffices),
then M and M0 have embeddings into Euclidean space R

nCk, and any two such
embeddings are isotopic, so the isomorphism class of the normal bundle � or �0 for
such an embedding is well defined. (Because of the Thom-Pontrjagin construction,
it’s better to work with the normal bundle than with the tangent bundle, but they
contain the same information.) Being a normal map means that ' has been extended
to a bundle map from �0 to �, which we can assume is an isomorphism on fibers.
The idea of trying to show that M and M0 are diffeomorphic is to start with a normal
bordism from ' to idM , i.e., a manifold WnC1 with boundary M t M0 and a map
˚ W W ! M 	 Œ0; 1� restricting to ' and to idM on the two boundary components,
and with a compatible map of bundles, and then to try to modify .W; ˚/ by surgery

2The same does not hold for the torsion part of the Pontrjagin classes, as one can see from
calculations with lens spaces [87, Sect. 3].
3A precise statement to this effect may be found in [31, Theorem 6.5]. It says for example that if M
is a closed simply connected manifold and dim M is not divisible by 4, then for any set of elements
xj 2 H4j.M;Q/, 1 
 j 
 �

dim M
4

˘
, there is a positive integer R such that for any integer m, there is

a homotopy equivalence of manifolds 'm W M0

m ! M such that pj.M0

m/ D '�

m

�
pj.M/C m R xj

�
.



Novikov’s Conjecture 381

to make it into an s-cobordism. Once this is accomplished, then M and M0 are
diffeomorphic by the s-cobordism theorem. It turns out that doing the surgery is not
difficult until one gets up to the middle dimension (if nC 1 is even) or the “almost
middle” dimension

�
nC1
2

˘
(if n C 1 is odd). At this point a surgery obstruction

appears, taking its value in a group LnC1.Z�/ constructed purely algebraically out
of quadratic forms on Z� . (Roughly speaking, the L-groups are groups of stable
equivalence classes of forms on finitely generated projective or free Z�-modules,
and the type of the form—symmetric, skew-symmetric, etc.—depends only on the
value of n mod 4. The original construction may be found in [116].) The existence
problem (telling if one can find a manifold homotopy equivalent to a given finite
complex with Poincaré duality) works in a very similar way, just down in dimension
by 1, and the surgery obstruction in that case takes its values in Ln.Z�/.

Ultimately, the result of this surgery process is to prove that there is a surgery
exact sequence for computation of the structure set S .M/, the set of (simple)
homotopy equivalences ' W M0 ! M, where M0 is a smooth compact manifold,
modulo equivalence. We say that two such maps ' W M0 ! M and '0 W M00 ! M
are equivalent if there is a commuting diagram

M′

∼=

M

M′′

′

.

The surgery exact sequence then takes the form

· · · a Ln+1(Zp (M))
h

j

j

(M) a Ln(Zp) . (1)

Here N .M/ is the set of normal invariants, the normal bordism classes of all normal
maps ' W .M0; �0/ ! .M; �/ (not necessarily homotopy equivalences as before)
modulo linear automorphisms of �. This can also be identified with homotopy
classes of maps from M into a classifying space called G=O. If one works instead
in the PL or the topological category, the same sequence (1) is valid, but G=O is
replaced by G=PL or G=Top, which are easier to deal with,4 and in fact look a lot
like BO, the classifying space for real K-theory. The natural maps G=O! G=PL!
G=Top are rational homotopy equivalences. The map & W S .M/! N .M/ sends a
homotopy equivalence ' W M0 ! M to the associated normal data.

The groups L.Z�/ are 4-periodic, and only depend on the fundamental group
and some “decorations” which we are suppressing here, which only affect the
torsion. The map ˛ W N .M/ ! Ln.Z�/ takes the bordism class of a normal map
' W .M0; �0/ ! .M; �/ to its associated surgery obstruction. When this vanishes,
exactness of (1) says we can lift ' to an element of S .M/, or in other words, we

4Once the dimension is bigger than 4!
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can do surgery to convert it to a homotopy equivalence. The dotted arrow from
LnC1.Z�/ to S .M/ signifies that the surgery group operates on S .M/ (which is
just a pointed set, not a group) and that two elements of the structure set have the
same normal invariant if and only if they lie in the same orbit for the action of
LnC1.Z�/.

The exact sequence (1) is closely related to an algebraic surgery exact sequence

� � � ! LnC1.Z�/! Sn.M/! Hn.M;L.Z//
A�! Ln.Z�/ (2)

constructed in [93, 95], where the map A, called the assembly map, corresponds to
local-to-global passage. We will come back to this later.

For most groups � , the L-groups L.Z�/ are not easy to calculate, so a lot of
the literature on surgery theory emphasizes things related to the exact sequence (1)
which don’t rely on explicit calculation of all the groups. For example, sometimes
one can compare two related surgery problems, or rely on other invariants, such as
&- and �-invariants for finite groups. These (as well as direct calculation from (1))
show that there are infinitely many manifolds with the homotopy type of RP4kC3,
k � 1. In fact, it’s shown in [27] that in dimension 4kC 3, k � 1, any closed
manifold M with torsion in its fundamental group has infinitely many distinct
manifolds simple homotopy-equivalent to it.

Now we are ready to explain Novikov’s conjecture. We can rewrite the Hirze-
bruch signature theorem as saying that for a closed connected oriented manifold
M, the 0-degree component of L .M/ \ ŒM� in H0.M;Q/ Š Q coincides with
sign M, which is preserved by orientation-preserving homotopy equivalences. The
components of L .M/\ ŒM� in other degrees have no such invariance property, and
knowing them is equivalent to knowing the rational Pontrjagin classes. However,
Novikov discovered in [83] (see [31, Theorem 2.1 and its proof] for a simplified
version of his argument) that if �1.M/ Š Z, then the degree-1 component of
L .M/ \ ŒM� is also an oriented homotopy invariant. This theorem is the simplest
special case of Novikov’s conjecture.

Definition 1.1. Let M be a closed connected oriented manifold, and let � be a
countable discrete group (usually taken to be the fundamental group of M). Let B�
be a classifying space for � , a CW complex with contractible universal cover and
fundamental group � , and let f W M ! B� be a continuous map. (Up to homotopy,
it’s determined by the induced homomorphism �1.M/! � .) The associated higher
signature of M is f�.L .M/ \ ŒM�/ 2 H.B�;Q/.

Conjecture 1.2 (Novikov’s Conjecture). Any higher signature f�.L .M/ \
ŒM�/ 2 H.B�;Q/ is always an oriented homotopy invariant. In other words,
if M and M0 are closed connected oriented manifolds and if ' W M0 ! M is

(continued)
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Conjecture 1.2 (continued)
an orientation-preserving homotopy equivalence and f W M ! B� , then

f�.L .M/ \ ŒM�/ D .f ı '/�.L .M0/ \ ŒM0�/ 2 H.B�;Q/:

The utility of the conjecture can be illustrated by an example.

Problem 1.3. Classify smooth compact 5-manifolds homotopy equivalent to
CP

2 	 S1. (Note: the diffeomorphism classification of smooth 4-manifolds
homotopy equivalent to CP

2 is not known, since surgery breaks down in the
smooth category in dimension 4. It is known by work of Freedman [41] that up to
homeomorphism, there are exactly two closed topological 4-manifolds homotopy
equivalent to CP

2, but for the “exotic” one, the product with S1 does not have a
smooth structure.)

Proof. Suppose M is a smooth closed manifold of the homotopy type of CP2 	 S1.
There is a smooth map f W M ! S1 inducing an isomorphism on �1, and we can take
this to be the map f W M ! B� , � D Z, for the case of the conjecture proven by
Novikov himself. So the conjecture implies that if K D f �1.pt/, the inverse image
of a regular value of f , then K has signature 1. This fixes the first Pontrjagin class
of M. Furthermore, K being a smooth 4-manifold with signature 1, it is in the same
oriented bordism class as CP2. From this we can get a normal bordism W6 between
M (with its stable normal bundle �) and CP

2 	 S1 (with its stable normal bundle �).
We plug into the surgery machine and try to do surgery to convert this to an h-
cobordism (and thus automatically an s-cobordism, since Wh.Z/ D 0). The surgery
obstruction lives in L6.ZŒZ�/. This group turns out to be Z=2 (coming from the
image of the Arf invariant in L6.Z/ Š Z=2). So there are not a lot of possibilities.
In fact one can show by studying the continuation of the sequence (1) to the left
that M is diffeomorphic to CP

2 	 S1. But note that the key ingredient in the whole
argument is the Novikov Conjecture, which pins down the first Pontrjagin class. ut

2 Methods of Proof

Work on the Novikov Conjecture began almost as soon as the conjecture was for-
mulated. Roughly speaking, methods fall into three different categories: topological,
analytic, and algebraic. The topological approach began with Novikov’s own work
on the free abelian case of the conjecture, which we already mentioned in the case
� D Z, and which only uses transversality and basic homology theory. This method
was generalized in work of Kasparov, Farrell-Hsiang, and Cappell [23, 33, 58],



384 J. Rosenberg

who used codimension-one splitting methods to deal with free abelian and poly-
Z groups, and certain kinds of amalgamated free products.

Subsequent topological approaches to the conjecture have been based on con-
trolled topology (if you like, a blend of analysis and topology since it amounts
to topology with ı-" estimates) or on various methods in stable homotopy theory.
There is a lot more in this area than we can possibly summarize here, but it is
discussed in detail in [37], which includes a long bibliography.

The analytic approach began with the important contribution of Lusztig [72].
The key idea here is to realize the higher signature of Definition 1.1 as the index
of a family of elliptic operators, just as Atiyah and Singer [2, Sect. 6] had reproven
Hirzebruch’s signature theorem by realizing the signature as the index of a certain
elliptic operator, now universally called the signature operator. (This is just the
operator d C d� operating on differential forms, but with a grading on the forms
coming from the Hodge �-operator.) A major step forward from the work of Lusztig
came with the work of Mishchenko [78, 79] and Kasparov [57, 61, 62], who realized
that one could generalize this construction by using “noncommutative” families of
elliptic operators, based on a C�-algebra completion C�.�/ of the algebraic group
ring C� . Underlying this method was the idea [79, 99] that because of the inclusions
Z� ,! C� ,! C�.�/, there is a natural map Ln.Z�/ ! Ln.C�.�//, and that
because the spectral theorem enables one to diagonalize quadratic forms over a C�-
algebra, the L-groups and topological K-groups of a C�-algebra essentially coincide.
As we will see in the next section, the analytic approach to the Novikov conjecture
is the one that has attracted the most recent attention, though there is still plenty of
work being done on topological and algebraic methods.

Algebraic approaches to proving the Novikov conjecture depend on a finer
understanding of the surgery exact sequence (1) and the L-groups. For a homotopy
equivalence of manifolds ' W M0 ! M, the difference '�.L .M0/\ŒM0�/�.L .M/\
ŒM�/ 2 H.M;Q/ is basically &.ŒM0 ! M�/ ˝Z Q in (1). The Novikov conjecture
says that this should vanish when we apply f�, f W M ! B� . Since we could also
apply (1) with M replaced by B� (at least if B� can be chosen to be a manifold—
but there is a way of getting around this), exactness in (1) shows that the Novikov
Conjecture is equivalent to rational injectivity of the map ˛ in (1), when we replace
M by B� .

More precisely, we need to make use of an idea of Quinn [91], that the L-groups
are the homotopy groups of a spectrum:

Ln.Z�/ D �n.L.Z�//

and that the map ˛ in the surgery exact sequence (1) comes from an assembly map
which is the induced map on homotopy groups of a map of spectra

AM W MC ^ L.Z/! L.Z�/:

This map factors (via f W M ! B�) through a similar map
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A� W B�C ^ L.Z/! L.Z�/: (3)

If A� in (3) induces a rational injection on homotopy groups, then the Novikov
Conjecture follows from exactness of (1). On the other hand, if A� is not rationally
injective, then one can construct an M and a higher signature for it that is not
homotopy invariant. So the Novikov Conjecture is reduced to a statement which
at least in principle is purely algebraic, as Ranicki in [93, 95] gives a purely
algebraic construction of the surgery spectra and of the map A� , leading to the exact
sequence (2).5

3 Variations on a Theme

One of the most interesting features of the Novikov Conjecture is that it is closely
related to a number of other useful conjectures. Some of these are known to be true,
some are known to be false, and most are also unsolved. But even the ones that are
false are false for somewhat subtle reasons, and still carry some “element of truth.”
Here we mention a number of these related conjectures and something about their
status.

Conjecture 3.1 (Borel’s Conjecture). Any two closed aspherical (i.e., hav-
ing contractible universal covers) manifolds M and M0 with the same
fundamental group are homeomorphic. In fact, any homotopy equivalence
' W M0 ! M of such manifolds is homotopic to a homeomorphism.

This conjecture is known to have been posed informally by Armand Borel,
before the formulation of Novikov’s Conjecture, and was motivated by the Mostow
Rigidity Theorem. It amounts to a kind of topological rigidity for aspherical mani-
folds. Note that if M is aspherical with fundamental group � and n D dim M � 5,
then we can take M D B� , and Borel’s conjecture amounts to saying that in the
surgery sequence (1) in the topological category, S .M/ is just a single point, or
by exactness, the assembly map A� is an equivalence. This implies the Novikov
Conjecture for � , but is stronger.

Incidentally, it is known now that the analogue of Borel’s Conjecture,
but with homeomorphism replaced by diffeomorphism, is false. The simplest

5It turns out that (2) coincides with the analogue of (1) in the topological, rather than smooth,
category, but the difference between these is rather small since all homotopy groups of Top=O are
torsion.
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counterexample is with M D T7, the 7-torus. Since a torus is parallelizable, Wall
pointed out in [116, Sect. 15A] that the set of smooth structures on Tn compatible
with the standard PL structure is parameterized by ŒTn;PL=O� (for n � 5). It is
known that the classifying space PL=O is 6-connected and that (for j � 7) its
jth homotopy group can be identified with the group ‚j of smooth homotopy j-
spheres.6 Since ‚7 Š Z=28 by [65, 74], the differentiable structures on T7 are
parameterized by ŒT7;PL=O� Š ŒT7;K.‚7; 7/� Š H7.T7;‚7/ Š Z=28 and there
are 28 different differentiable structures on T7. A series of counterexamples with
negative curvature to the smooth Borel conjecture was constructed in [34, 35].

The fundamental group � of an aspherical manifold M (even if noncompact) has
to be torsion-free, since if g 2 � has finite order k > 1, it would act freely on
the universal cover eM, and eM=hgi would be a finite-dimensional model for BZ=k,
contradicting the fact that Z=k has homology in all positive odd dimensions. So
Conjecture 3.1 can’t apply to groups with torsion. In fact, the result of [27] shows
that for groups with torsion, A� in (3) is never an equivalence. We will come back
to this shortly.

However, we have already mentioned the role of the Whitehead group, which
comes from the algebraic K-theory of Z� , in studying manifolds with fundamental
group � . An important conjecture which we have already mentioned is:

Conjecture 3.2 (Vanishing of Whitehead Groups). If � is torsion-free,
then Wh.�/ D 0.

Note that if Conjecture 3.2 fails and � is the fundamental group of a closed
manifold M, then by the s-cobordism theorem, there is an h-cobordism W with
@W D M t .�M0/ which is not a product, and we have a homotopy equivalence
M0 ! M which is not simple, hence Borel’s Conjecture, Conjecture 3.1, fails for M.

More generally, one can ask what one can say about the algebraic K-theory of Z�
in all degrees. Loday [69] constructed an assembly map B�C ^ K.Z/ ! K.Z�/,
and this being an equivalence would say that all of the algebraic K-theory of Z�
comes in some sense from homology of � and K-theory of Z. This is known in some
cases—for � free abelian, it follows from the “Fundamental Theorem of K-theory.”
The assembly map being an equivalence in degrees � 1 for torsion-free groups
� and R D Z implies Conjecture 3.2. The analogue of Novikov’s Conjecture for
K-theory is

6The group operation is the connected sum; inversion comes from reversing the orientation.
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Conjecture 3.3 (Novikov Conjecture for K-Theory). Let R D Z;Q;

R; or C and let � be a discrete group. Then the assembly map
B�C ^ K.R/ ! K.R�/ induces an injection of rational homotopy
groups.

Conjecture 3.3 was proved (with R D Z, the most important case) for groups �
with finitely generated homology in [16]. It was also proved (without rationalizing)
in [25], when � is a discrete, cocompact, torsion-free discrete subgroup of a
connected Lie group. Subsequently, Carlsson and Pedersen [26] proved it (without
rationalizing) for any group � for which there is a finite model for B� , such
that the universal cover E� of B� admits a contractible metrizable �-equivariant
compactification X such that compact subsets of E� become small near the
“boundary” X X E� . This was recently improved [92] to the case where there is a
finite model for B� and � has finite decomposition complexity, which is a tameness
condition on � viewed as a metric space with the word length metric (for some finite
generating set).

As we have already mentioned, for groups with torsion, the assembly map
A� of (3) is never an equivalence. For similar reasons, one also can’t expect the
K-theory assembly map to be an equivalence for groups with torsion. The correct
replacement seems to be the following.7

Conjecture 3.4 (Farrell-Jones Conjecture). Let � be a discrete group and
let F be its family of virtually cyclic subgroups (subgroups that contain a
cyclic subgroup of finite index). Such subgroups are either finite or else admit
a surjection with finite kernel onto either Z or the infinite dihedral group
.Z=2/ � .Z=2/. Let EF .�/ denote the universal �-space with isotropy in F .
This is a contractible �-CW-complex X with all isotropy groups in F (for
the �-action) and with XH contractible for each H 2 F . It is known to be
uniquely defined up to �-homotopy equivalence. Then the assembly maps

H� .EF .�/IL.Z//! L.Z�/ and H� .EF .�/IK.R//! K.R�/ (4)

are isomorphisms for R D Z;Q;R; or C.

7Just for the experts: one needs to use the �1 decoration on the L-spectra here.
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When � is torsion-free, (4) is just the assembly map (3) or its K-theory version,
and the conjecture says that the assembly map is an equivalence. Conjecture 3.4
implies Conjectures 3.1, 1.2, and 3.3, even for groups with torsion, as well as
Conjecture 3.2. More details on Conjecture 3.4 may be found in [70], in [66,
Chaps. 19–24], or in [71]. The K-theory version of the conjecture has been proven
in [7] for fundamental groups of manifolds of negative curvature and in [6] for
hyperbolic groups, and both the K-theory and L-theory versions have been proven
for certain groups acting on trees in [5, 107] and for cocompact lattice subgroups of
Lie groups in [4]. Split injectivity of (4) has been proved for groups with finite
quotient finite decomposition complexity (a condition weaker than that of [92])
in [63]. Rational injectivity of (4) holds under much weaker conditions; see for
example [30].

Another variation on the Novikov Conjecture is to consider the situation where a
finite group G acts on a manifold, and one wants to study G-equivariant invariants
of M. Under suitable circumstances, one finds that the fundamental group of M
leads to a certain extra amount of equivariant topological rigidity. To formulate
the analogue of Conjecture 1.2, one needs a substitute for the homology L-class
L .M/ \ ŒM�. The easiest way to formulate this is in K-homology, since Kasparov
[59, 60], following ideas of Atiyah and Singer, showed that an elliptic differential
operator D on M naturally leads to a K-homology class ŒD� 2 K.M/ (see also [50]
for an exposition), and when D is G-invariant, the class naturally lives in KG .M/.
The image of ŒD� in KG .pt/ D R.G/ under the map induced by M ! pt is the
equivariant index indG D 2 R.G/ in the sense of Atiyah and Singer. When D is
the signature operator, L .M/ \ ŒM� is basically (except for some powers of 2, not
important here) the Chern character of ŒD� 2 K.M/, and so if f W M ! B� , the
higher signature of Definition 1.1, is basically the Chern character of f�.ŒD�/. That
motivates the following.

Conjecture 3.5 (Equivariant Novikov Conjecture [105]). Let M be a
closed oriented manifold admitting an action of a finite group G, and suppose
f W M ! X is a G-equivariant smooth map to a finite G-CW complex which
is G-equivariantly aspherical (i.e., XH is aspherical for all subgroups H of
G). Let ' W M0 ! M be a G-equivariant map of closed G-manifolds which,
non-equivariantly, is a homotopy equivalence. Then if ŒDM� and ŒDM0 � denote
the equivariant K-homology classes of the signature operators on M and M0,
respectively,

f�.ŒDM�/ D .f ı '/�.ŒDM0 �/ 2 KG .X/:
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Various generalizations and applications to rigidity theorems are possible (see for
example [36, 104]), but we won’t go into details here. Conjecture 3.4 was proven in
[105] for X a closed manifold of nonpositive curvature and in [43] for X a Euclidean
building, in both cases with G acting by isometries.

4 New Directions

The conjectures we discussed in Sect. 3 are fairly directly linked to the original
Novikov Conjecture, and it is easy to see how they are connected with topological
rigidity of highly connected manifolds. But in this section, we will discuss a number
of other conjectures which grew out of work on Novikov’s Conjecture but which
go somewhat further afield, to the point where the connection with the original
conjecture may not be immediately obvious. However, we will try to explain the
relationships as we go along.

We have already mentioned the assembly map and the Farrell-Jones Conjecture
(Conjecture 3.4), which gives a conjectural calculation of the L-groups L.Z�/ for
a discrete group � . However, work on Novikov’s Conjecture by analytic techniques
(see Sect. 2) already required passing from the integral group ring to the complex
group ring (this only affects 2-torsion in the L-groups) and then completing C� to a
C�-algebra. For C�-algebras, L-theory is basically the same as topological K-theory,
and even for real C�-algebras, they agree after inverting 2 [99, Theorem 1.11].
So it’s natural to ask if assembly can be used to compute the topological K-
theory of C�.�/. For the full group C�-algebra this seems to be impossible, but
for the reduced group C�-algebra C�

r .�/,
8 the completion of C� for its action on

L2.�/, there is a good guess for a purely topological calculation of K.C�
r .�//.

(Here K denotes topological K-theory for Banach algebras, which satisfies Bott
periodicity. This is much more closely related to L-theory, which is 4-periodic,
than is algebraic K-theory in the sense of Quillen.) This guess is given by the
Baum-Connes Conjecture, originally formulated in [9, 10] and further refined in
[11] (see also [47] for a nice quick survey). The conjecture applies to far more
than just discrete groups; it applies to locally compact groups, to such groups
“with coefficients” (i.e., acting on a C�-algebra), and even to groupoids [113]. In
its greatest generality the conjecture is known to be false [48], though a patch
which might repair it has been proposed [13]. However, the original version of
the conjecture is still open, though the literature on the conjecture has grown to
more than 300 items. To avoid having to talk about Kasparov’s KK-theory, we will
omit discussion of the conjecture with coefficients, and will just stick to the original
conjecture for groups.

8It is known that the natural map C�.�/ � C�

r .�/ is an isomorphism if and only if � is amenable.
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Conjecture 4.1 (Baum-Connes Conjecture). Let G be a second countable
locally compact group, and let C�

r .G/ denote the completion of L1.G/ for its
action by left convolution on L2.G/. Then there is a natural assembly map

� W KG .EG/! K.C�
r .G//;

where EG is the universal proper G-space (a contractible space on which
G acts properly), and this map is an isomorphism. If G has no nontrivial
compact subgroups, then the assembly map simplifies to

� W K.BG/! K.C�
r .G//:

Proposition 4.2. Conjecture 4.1 implies Conjecture 1.2.

Proof. For this we take G D � to be discrete and countable. For simplicity, we
also work with the periodic L-theory spectra instead of the connective ones. (The
difference only affects the bottom of the surgery sequence (1).) If � is torsion-
free, the domain of � is K.B�/ D H.B� IKtop/. But after inverting 2, Ktop is
just a direct sum of two copies of L.Z/, one of them shifted in degree by 2. So if
Conjecture 4.1 holds for � and � is torsion-free, we have the commuting diagram

H•(Bp;L(Z))⊗Q
Ap L•(Zp)⊗Q

L•(C∗
r (p))⊗Q

∼=
H•(Bp;Ktop)⊗Q ∼=

m
K•(C∗

r (p))⊗Q.
(5)

Diagram (5) immediately implies that the rational L-theory assembly map A� [the
same map as the map induced on rational homotopy groups by (3)] is injective.

If � is not torsion-free, then E� and E� are not the same,9 but there is always a
�-equivariant map E� ! E� . Thus we need only replace (5) by the diagram

9In the extreme case where � is a torsion group, E� D pt, while if � is nontrivial, E� is necessarily
infinite dimensional.
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H•(B ;L(Z))⊗Q

Ap

Hp• ( p;L(Z))⊗Q L•(Zpp )⊗Q

L•(C∗
r (p))⊗Q

∼=

H•(Bp;Ktop)⊗Q
a Hp• ( p;Ktop)⊗Q ∼=

m
K•(C∗

r (p))⊗Q.
(6)

Since points in E� have finite isotropy, and since the �-map � � �=	 , 	 a finite
subgroup of � , induces the map Z ,! R.	/ on equivariant K-homology, a spectral
sequence argument shows that the bottom left map ˛ in (6) is injective, and so by a
diagram chase, A� is injective. ut
Thus Conjecture 4.1 (for the case of discrete groups) implies Conjecture 1.2.
However, Conjecture 4.1 for non-discrete groups is also quite interesting and
important. There are two main reasons for this:

1. There are “change of group methods” that enable one to pass from results for
a group to results for a closed subgroup. Many of the significant early results
on Novikov’s Conjecture were proved by considering discrete groups � that
embed in a Lie group (or p-adic Lie group) and then using these change of group
methods to pass from the Lie group to the discrete subgroup.

2. The Baum-Connes Conjecture for connected Lie groups (also known as the
Connes-Kasparov Conjecture) and the same conjecture for p-adic groups are both
quite interesting in their own right, and say a lot about representation theory. For
an introduction to this topic, see [11, 47]. For some of the more significant results,
see [14, 67, 110, 118]. For recent applications to harmonic analysis on reductive
groups, see [3, 73, 90, 102].

Another direction arising out of both the controlled topology and the analytic
approaches to Novikov’s Conjecture leads to the so-called coarse Baum-Connes
Conjecture [49, 96, 120]. This conjecture deals with the large-scale geometry of
metric spaces X of bounded geometry (think of complete Riemannian manifolds
with curvature bounds, or of finitely generated groups with a word-length metric).
Roughly speaking, the coarse Novikov Conjecture says that indices of generalized
elliptic operators capture all of the coarse (i.e., “large-scale”) rational homology of
such a space X.

Conjecture 4.3 (Coarse Baum-Connes and Novikov). Let X be a uni-
formly contractible locally compact complete metric space of bounded

(continued)
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Conjecture 4.3 (continued)
geometry, in which all metric balls are compact. Let KX.X/ be the coarse K-
homology of X (the direct limit of the K-homologies of successively coarser
Rips complexes) and let C�.X/ be the C�-algebra of locally compact, finite
propagation operators on X. Then Roe defined a natural assembly map

� W KX.X/! K�.C�.X//: (7)

The coarse Baum-Connes Conjecture is that � is an isomorphism; the coarse
Novikov Conjecture is that � is rationally injective.

Positive results on Conjecture 4.3 may be found in [28, 29, 40, 42, 49, 96,
114, 120].

However, it is known that the conjecture fails in various situations [32, 48, 121],
especially if one drops the bounded geometry assumption.

The coarse Baum-Connes conjecture implies the Novikov conjecture under mild
conditions. To see this, suppose for example that there is a compact metrizable
model Y for B� , and let X D E� be its universal covering. Then there is a
commutative diagram

K∗(Bp) a

tr∼=

K∗(C∗
r (p))

tr

p∗(KX∗(X)hp)
mhp

p∗(K∗(C∗(X))hp),

where ˛ is usual Baum-Connes assembly, � is as in Conjecture 4.3, h� denotes
homotopy fixed points, and tr is a transfer map. Then � being an isomorphism
implies that �h� is an isomorphism, and so we get a splitting for ˛. Refinements
of this argument, as well as generalizations of the coarse Baum-Connes conjecture,
may be found in [80].

Thinking of C�
r .�/ as being (up to Morita equivalence) the same thing as the

fixed points of � on C�.X/ also gives rise to a nice way of relating the surgery
exact sequence (2) to the Baum-Connes assembly map. This was accomplished in
the series of papers [51–53, 89], which set up a natural transformation from the
surgery sequence to a long exact sequence where the C�-algebraic assembly map
corresponds to the L-theory assembly map in the original sequence. This gives an
even more direct connection between coarse Baum-Connes and surgery theory.

Other “new directions” from Novikov’s Conjecture arise from replacing the
higher signature of Definition 1.1 with other sorts of “higher indices.” For example,
an important case is obtained by replacing L .M/ with bA .M/, the total bA class.
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This is again a certain polynomial in the rational Pontrjagin class, and has the
property that when M is a spin manifold, bA .M/ \ ŒM� is the Chern character of
the class ŒD� defined by the Dirac operator on M. (Here the reader doesn’t need
to know much about the Dirac operator D except for the fact that it’s an elliptic
first-order differential operator canonically defined on a Riemannian manifold with
a spin structure.) It was pointed out by Lichnerowicz [68] that when M is closed and
has positive scalar curvature, then the spectrum of D must be bounded away from 0,
and thus ind.D/ D h bA .M/; ŒM�i has to vanish. When M is not simply connected, a
major strengthening of this is possible:

Conjecture 4.4 (Gromov-Lawson Conjecture [46]). Let M be a connected
closed spin Riemannian manifold of positive scalar curvature, let � be a
discrete group, and let f W M ! B� be a continuous map (determined up
to homotopy by a homomorphism �1.M/ ! �). Then the higher bA-genus
f�. bA .M/ \ ŒM�/ 2 H.B�;Q/ vanishes.

This conjecture is still open in general, but it is known to be closely related to
Novikov’s Conjecture. For example, it was shown in [97] that Conjecture 4.4 is true
whenever the K-theory assembly map K.B�/! K.C�

r .�// is rationally injective,
and thus a fortiori whenever Conjecture 4.1 holds. It also can be deduced from
certain cases of Conjecture 4.3, by a descent argument similar to the one above.
The Lichnerowicz argument also applies to complete noncompact spin manifolds
M of uniformly positive scalar curvature, and when Conjecture 4.3 holds, one gets
obstructions to existence of such metrics living in K.C�.X// whenever there is a
coarse map M ! X.

Conjecture 4.4 can be refined to conjectures about necessary and sufficient
conditions for positive scalar curvature. Here we just mention a few of several
possible versions. For these it’s necessary to go beyond ordinary homology and
to consider KO-homology, the homology theory dual to the (topological) K-theory
of real vector bundles. This theory is 8-periodic and has coefficient groups KOj D Z

when j is divisible by 4 (this part is detected by the Chern character to ordinary
homology), Z=2 when j � 1; 2 .mod 8/, 0 otherwise. The class ŒD� of the Dirac
operator on a spin manifold M lives in KOn.M/, n D dim.M/. While the actual
operator D depends on a choice of a Riemannian metric, the class ŒD� 2 KOn.M/
does not, so that the following conjecture makes sense.
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Conjecture 4.5 (Gromov-Lawson-Rosenberg Conjecture). Let M be a
connected closed spin manifold with fundamental group � and Dirac operator
DM, and let f W M ! B� be the classifying map for the universal cover. Let
A W KO.B�/ ! KO.C�

r .�// be the assembly map in real K-theory. Then
M admits a Riemannian metric of positive scalar curvature if and only if
A ı f�.ŒDM�/ D 0 in KOn.C�

r .�//, n D dim M � 5.

The restriction to n � 5 is needed only to use surgery methods to construct a
metric of positive scalar curvature when the obstruction vanishes; it is not needed
to show that there is a genuine obstruction to positive scalar curvature when
A ı f�.ŒDM�/ ¤ 0, which was proven in [98]. For the next conjecture, we need to
introduce a choice of Bott manifold, a geometric representative for Bott periodicity
in KO-homology. This is a simply connected closed spin manifold Bt8 of dimension
8 with h bA .Bt8/; ŒBt8�i D 1. It may be chosen to be Ricci flat. Since scalar curvature
is additive on Riemannian products, Bt8 being Ricci flat implies that taking a product
with the Bott manifold does not change the scalar curvature.

Conjecture 4.6 (Stable Gromov-Lawson-Rosenberg Conjecture). Let M
be a connected closed spin manifold with fundamental group � and Dirac
operator DM, and let f W M ! B� be the classifying map for the universal
cover. Let Bt8 be a Bott manifold as above. Then M stably admits a Rieman-

nian metric of positive scalar curvature, in the sense that M 	
k‚ …„ ƒ

Bt8 	 � � � 	 Bt8

admits such a metric for some k, if and only if A ı f�.ŒDM�/ D 0 in
KOn.C�

r .�//, n D dim M.

There are simple implications

Conj: 4.5) Conj: 4.6; Conj: 4.6C injectivity of A) Conj: 4.4:

The (very strong) Conjecture 4.5 is known to hold for especially nice groups, such as
free abelian groups [98], hyperbolic groups of low dimension [55], and finite groups
with periodic cohomology [18], but it fails in general [55, 108]. Conjecture 4.6
is weaker, and holds for all the known counterexamples to Conjecture 4.5. It was
formulated and proven for finite groups in [103]. Subsequently, Stolz [unpublished]
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showed that it follows from the Baum-Connes Conjecture, Conjecture 4.1. For a
survey on this entire field, see [100].

The last “new direction” we would like to discuss here comes from replacing the
higher signature in Novikov’s Conjecture by the higher Todd genus or the higher
elliptic genus. This seems to be quite relevant for understanding the interaction
between topological invariants and algebraic geometry invariants for algebraic
varieties defined over C.

The Todd class T .M/ is still another polynomial in characteristic classes, this
time the rational Chern classes of a complex (or almost complex) manifold. Suppose
for simplicity that M is a smooth projective variety over C, viewed as a complex
manifold via an embedding into some complex projective space. The Hirzebruch
Riemann-Roch Theorem then says that

hT .M/; ŒM�i D 
.M;OM/ D
nX

jD0
.�1/j dim Hj.M;OM/; (8)

where OM is the structure sheaf of M, the sheaf of germs of holomorphic functions,
and n is the complex dimension of M. The right-hand side of (8) is called the
arithmetic genus. (The original definition of the latter by algebraic geometers like
Severi turned out to be .�1/n.
.M;OM/ � 1/, but the normalization here is a bit
more convenient.) The left-hand side of (8) is called the Todd genus, and is known
to be a birational invariant.10 Once again, if one has a map f W M ! B� , then we
can define the associated higher Todd genus as f�.T .M/ \ ŒM�/ 2 H.B�;Q/.

Conjecture 4.7 (Algebraic Geometry Novikov Conjecture [101]). Let M
be a smooth complex projective variety, and let f W M ! B� be a continuous

map (for the topology of M as a complex manifold). Let M0 '
�� M be

a birational map. Then the corresponding higher Todd genera agree, i.e.,

f�.T .M/ \ ŒM�/ D .f ı '/�.T .M0/ \ ŒM0�/ 2 H.B�;Q/:

Note the obvious similarity with Conjecture 1.2. However, unlike Novikov’s
original conjecture, this statement is actually a theorem [15, 19]. That follows from

10Recall that two varieties are said to be birationally equivalent if there are rational maps between
them which are inverses of each. Since rational maps do not have to be everywhere defined (this
is why we denote rational maps below by dotted lines), two varieties are birationally equivalent if
and only if they have Zariski-open subsets which are isomorphic as varieties.
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the fact that if M0 '
�� M is a birational map, then '�.ŒDM0 �/ D ŒDM� 2

K0.M/, where ŒDM� denotes the K-homology class of the Dolbeault operator,
whose Chern character is T .M/ \ ŒM�.11 The corresponding statement for the
signature operator is not true; a homotopy equivalence does not have to preserve
the class of the signature operator. (However, the mod 8 reduction of this class is
preserved [106].)

However, there is another similarity with Novikov’s Conjecture which is pointed
out in [101]. By [112, Théorème IV.17],˝, the graded ring of cobordism classes of
oriented manifolds, is, after tensoring with Q, a polynomial ring in the classes of the
complex projective spaces CP2k, k 2 N. Then if I is the ideal in˝ generated by all
ŒM� � ŒM0� with M and M0 homotopy equivalent (in a way preserving orientation),
Kahn [56] proved that ˝=I Š Q, with the quotient map identified with the
Hirzebruch signature. Similarly,˝U , the graded ring of cobordism classes of almost
complex manifolds, is, after tensoring with Q, a polynomial ring in the classes of
all complex projective spaces, and the quotient of ˝U by the ideal generated by all
ŒM��ŒM0�with M and M0 birationally equivalent smooth projective varieties is again
Q, this time with the quotient map identifiable with the Todd genus.

These results effectively say that, up to multiples, the signature is the only
homotopy-invariant genus on oriented manifolds, and the arithmetic genus is
the only birationally invariant genus on smooth projective varieties. But if one
considers manifolds with large fundamental group, the situation changes. By [101,
Theorem 4.1], a linear functional on ˝.B�/ ˝ Q that is an oriented homotopy
invariant must come from the higher signature, and by [101, Theorem 4.3], a linear
functional on ˝U .B�/ ˝ Q that is a birational invariant must (under a certain
technical condition satisfied in many cases) come from the higher Todd genus.

Finally, the papers [17, 24, 44] consider still more analogues of higher genera
with the Todd genus replaced by the elliptic genus. The result of [17] is particularly
nice; it is the exact analogue of Conjecture 4.7, but with the Todd genus replaced
by the elliptic genus and with birational equivalence replaced by K-equivalence
(a birational equivalence preserving canonical bundles).

Acknowledgements Work on this paper was partially supported by the United States National
Science Foundation, grant number 1206159. I would like to thank Greg Friedman, Daniel
Kasprowski, Andrew Ranicki, and Shmuel Weinberger for useful feedback on an earlier draft of
this paper.

11It takes a bit of work to make sense of '� here, since ' may not be everywhere defined, but this
can be done. The point is that by the factorization theorem for birational maps [1], we can factor '
into a sequence of blow-ups and blow-downs, and '� is clearly defined for a blow-down (since it
is a continuous map) and is an isomorphism in this case by the Baum-Fulton-MacPherson variant
of Grothendieck-Riemann-Roch [12]. In the case of a blow-up, let '� be given by the inverse of
the map induced by the reverse blow-down.
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The Discrete Logarithm Problem

René Schoof

Abstract For large prime numbers p, computing discrete logarithms of elements
of the multiplicative group .Z=pZ/� is at present a very difficult problem. The
security of certain cryptosystems is based on the difficulty of this computation. In
this expository paper we discuss several generalizations of the discrete logarithm
problem and we describe various algorithms to compute discrete logarithms.

1 Introduction

For a prime number p, the multiplicative group .Z=pZ/� is cyclic of order p � 1.
Generators of .Z=pZ/� are called primitive roots mod p. Let p be a prime and let g
denote a primitive root modulo p. Then for every x 2 .Z=pZ/� we have

x D ga;

for some integer a. This integer is called the discrete logarithm of x and is denoted
by log x. Since it depends on the primitive root g, one often writes logg x rather
than log x. Since the discrete logarithm is only unique modulo p � 1, we view it as
an element of the additive group Z=.p � 1/Z. Just as for the usual logarithm, we
have for x; y 2 .Z=pZ/� that

log xy D log xC log y:

Here is an explicit example. Let p D 10000000259. Since .p � 1/=2 is prime, it is
easy to see that g D 2 is a primitive root modulo p. We have

log 3 D 9635867242;
log 5 D 227891530;
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log 7 D 1803320787;
:::

illustrating the fact that there is no simple minded formula for log x in terms of x.
Indeed, the discrete logarithms of the first few primes appear like random numbers
in the interval from 0 to p � 1.

Given a prime number p, a primitive root g 2 .Z=pZ/� and an exponent a
in Z=.p�1/Z, the element x D ga can be computed efficiently by repeated squarings
and multiplications. On the other hand, given a large prime number p and a primitive
root g 2 .Z=pZ/�, there are at present no good methods to compute the discrete
logarithm of a given element x 2 .Z=pZ/�. In other words, computing the exponent
a 2 Z=.p�1/Z for which x D ga, is a very difficult problem. In particular, there is no
polynomial time algorithm known to perform this calculation. There do, however,
exist subexponential algorithms.

Designing good algorithms to compute discrete logarithms is a problem that is of
interest in itself. It is also relevant for applications in cryptography. The security
of the Diffie-Hellmann key exchange protocol [6] relies on the assumption that
computing discrete logarithms is very hard. More precisely, the working hypothesis
of this protocol is that given a prime number p, a primitive root g modulo p and
elements x and y in .Z=pZ/�, but not their discrete logarithms a and b, it is very
hard to compute the element gab.

In this expository paper we describe some methods for computing discrete
logarithms. We do not pretend to present the best known ones, but merely try to give
the main ideas behind the most commonly used algorithms. In Sect. 2 we describe
a natural generalization of the discrete logarithm problem and we discuss the baby-
step-giant-step method due to Dan Shanks and a probabilistic method due to John
Pollard. Section 3 is dedicated to the subexponential index calculus algorithm.
In Sect. 4 we discuss the discrete logarithm problem for multiplicative groups of
finite fields of relatively small characteristic. In particular, we describe recent work
of Antoine Joux and others. Finally in Sect. 5, we discuss the discrete logarithm
problem for groups of points of elliptic curves over finite fields. This is relevant for
applications in cryptography.

I thank Hendrik Lenstra for several useful comments on an earlier version of this
paper.

2 Exponential Algorithms

Following ideas in [11, Sect. 7], we consider the following general problem. It is a
natural extension of the discrete logarithm problem.

Problem. Given a finite set S, a finite abelian group A and a group homomorphism



The Discrete Logarithm Problem 405

f W ZS �! A;

determine the kernel of f .

In applications, the group A is the multiplicative group of a finite field or the
multiplicative group .Z=nZ/� of the finite ring Z=nZ. It can also be an ideal class
group of a number field, or the group of points of an elliptic curve or of an abelian
variety over a finite field. In general, we assume that A is given to us in such a way
that we can efficiently compose elements, calculate inverses and test for equality.
Usually we even require that every element in A has a unique, easily computable
“reduced” representative. But in general we do not suppose that we know the
structure or even the cardinality of A. In most applications we know an upper bound
for #A. Since Hom.ZS;A/ is naturally isomorphic to AS, the map f can be specified
by giving #S elements in A indexed by s 2 S. The kernel of f is a free group of the
same rank as ZS. It can be described by giving #S generators.

If S consists of one element, then f is determined by f .1/ D x 2 A. Determining
the kernel of f is the same problem as determining the order of the element x 2 A.
An algorithm that solves this problem for the group A D .Z=nZ/� can be used to
factor the integer n. See [13, Lemma 5]. If #S D 2 and f is therefore given by two
elements x; y 2 A, determining the kernel of f is the same as finding all relations
between x and y that are of the form xkym D 1 with .k;m/ 2 Z2. In particular, if A
is a cyclic group of order m generated by x, so that y D xa for some a 2 Z, then the
kernel of f is the subgroup generated by .m; 0/ and .a;�1/ 2 Z2. Determining ker f
is therefore the same problem as computing the ‘discrete logarithm’ a of y.

In general, the difficulty in computing the kernel of a group homomorphism f W
ZS �! A does not depend on the group structure of the finite abelian group A, but
rather on the way it is presented. For instance, if A is the additive group Z=nZ of
integers modulo n, presented in the usual way, the problem is very easy. It can be
solved using at most O.#S/ gcd computations in the ring Z, which can be efficiently
calculated by means of the Euclidean algorithm. Indeed, when #S D 1 the kernel
of f W Z �! Z=nZ is generated by n=d, where d D gcd.f .1/; n/. For larger S one
proceeds inductively, dealing in a similar way with one element of S at the time. On
the other hand, if A is the cyclic multplicative group F�

p or the group E.Fp/ of an
elliptic curve over Fp for some large p, there are no methods known to compute the
kernel of a homomorphism f W ZS �! A that are of a comparable efficiency.

Let f W ZS �! A be a homomorphism. Since both A and S are finite sets, the
problem of determining the kernel of f is a finite issue. The straightforward naive
algorithm to solve it, runs as follows. First assume that #S D 1. In other words,
we are given an element in x 2 A and we wish to compute its order. This can
be done by computing the powers 1; x; x2; : : : of x until xi is equal to the neutral
element 1 2 A. The exponent i is then the order of x and generates ker f . When S
is larger and f is determined by elements x; y; z; : : : 2 A, we first list the elements
of the subgroup H generated by x as above. Next we list all elements in the cosets
yiH for i D 0; 1; 2; : : : The smallest exponent i for which yiH D H gives rise to
a relation of the form yi D xj and hence to an element in the kernel of f . Next
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one puts H D hx; yi and lists all elements of the cosets ziH : : : etc. This method
uses O.#A#S/ operations in A. Since eventually all elements of A may be listed, the
amount of memory required is O.#A/.

If we can compute a proper non-trivial subgroup B of A, then the problem of
computing the kernel K of f W ZS �! A can be reduced to two similar problems
involving the subgroup B and the quotient group B0 D A=B. More precisely, writing
� for the canonical map A �! B0 and K0 for the kernel of the composite map
� � f W ZS �! A �! B, we have the following commutative diagram with exact
rows and columns

0 0??y
??y

ker f
Š�! K??y

??y
0 �! K0 �! ZS � �f�! B0??yf

??yf k
0 �! B �! A

��! B0 �! 0:

The group K0 is isomorphic to ZS0

for some finite set S0 having the same cardinality
as S. The map f maps K0 to B. Since the kernel of the homomorphism f W K0 �! B,
is isomorphic to K, we can compute K by first computing the kernel K0 of � � f W
ZS �! B0 and then the kernel of f W K0 �! B.

The groups B and B0 are smaller than A. Since B is contained in A, one
can efficiently compose elements, calculate inverses and test for equality in B.
Therefore, if one is also able to do this in the group B0 D A=B, then it is usually a
good idea to make this reduction. This observation is due to Pohlig-Hellmann [16].
It applies for instance, if one knows a section j W B0 �! A of � so that A Š B 	 B0.
In this case equality tests in B0 can be performed in A. Another example is the case
when A is cyclic and we know a proper divisor d of the order of n D #A. Then we can
take B D dA and compute in B0 D A=dA exploiting the isomorphism B0 Š .n=d/A
given by multiplication by n=d. It follows that computing the kernel of f W ZS �! A
is relatively easy when all prime divisors of #A are small. Therefore, in this paper
one should keep in mind groups A, for which #A is divisible by at least one large
prime number.

Next we describe a more efficient algorithm to compute the kernel of a
homomorphism f W ZS �! A. It is the baby-step-giant-step algorithm due to Dan
Shanks [20]. It is deterministic and uses O.#S

p
#A/ operations and equality tests in

the group A. It also requires the storage of O.
p

#A/ elements of A. We explain the
algorithm in the case #S D 1. For larger S, the idea remains the same, but, as in our
description above of the naive algorithm, the details are more cumbersome to write
down [3]. Any homomorphism f W Z �! A is determined by the element x D f .1/
of A. Let a be the integer part of

p
#A C 1. We first make baby-steps. This means
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that we make a list of the elements xi for 0 � i < a. If for some i in this range, xi

is the neutral element of A, we are done: the smallest such i is the order of x and
generates the kernel of f . If this is not the case, we make giant steps: we put y D xa

and compute yj for 1 � j � a. Each time we check whether yj is in the list that we
made. In order to be able to do this efficiently, we assume that the elements in A
are presented in some unique “reduced” way and that the list of the elements xi for
0 � i � a is sorted with respect to this presentation. Since the order of x is at most
#A < a2, it is bound to happen that for some j, the element yj is in the list. If it does,
we have xi D yj D xaj for some i D 0; 1; : : : ; a. The first value of j for which this
happens has the property that aj � i is the order of x and hence generates the kernel
of f .

There are also probabilistic algorithms to compute the kernel of f W ZS �! A.
They have the same running time as the baby-step-giant-step algorithm. The
advantage of the probabilistic algorithms is, that they do not require making lists
of size

p
#A. We describe the so-called %-algorithm, due to John Pollard [17]. Once

again we explain the algorithm only in the case #S D 1. In this case, we put x D f .1/
and make a random, or rather pseudorandom, walk by evaluating elements of the
form xni for i D 0; 1; 2; : : : with 1 D n0 < n1 < n2 : : :. This means that for
each i, the next element xniC1 is computed in a pseudorandom fashion from the
element xni 2 A. By the birthday paradox, one expects that xni D xnj for two distinct
values of i; j that are O.

p
#A/. Moreover, this can be detected efficiently using the

cycle detection algorithm, attributed to R.W. Floyd by Knuth [9, p. 7]. The order
of x divides ni � nj. In practice the quotient is small, so that the order of x can be
computed easily.

3 Index Calculus

Index calculus is a method to compute discrete logarithms and, more generally,
to determine kernels of homomorphisms f W ZS �! A, that applies when A is the
multiplicative group of a finite field. In this section we assume that A D F�

p for some
large prime p. In the next section we consider the case where A is the multiplicative
group of a finite field of small characteristic.

Before considering the map f , we do a precomputation and use the index calculus
algorithm to compute the kernel of

h W ZT �! F�
p ;

where T is the set of the primes l � X for some bound X < p and h is the
homomorphism that, for any prime l � X, maps the lth basis vector of ZT to
l .mod p/. The kernel of h consists of the vectors .xl/l2T 2 ZT that satisfy
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Y
l2T

lxl D 1 in Z�
p

and hence

X
l2T

xl log l � 0 .mod p � 1/;

where log l denotes the discrete logarithm of l with respect to any fixed primitive
root in F�

p . The algorithm to determine ker h runs as follows. Pick random exponents
e.l/ � 0 with

P
l2T e.l/ bounded by some power of log p, that is sufficiently large

in the sense that the products
Q

l2T le.l/ exceed p. Then check whether the remainder
modulo p of

Q
l2T le.l/ is “X-smooth”. In other words, check whether its factorization

in the ring Z is of the form
Q

l2T lf .l/. If it is, we obtain the relation

Y
l2T

le.l/ D
Y
l2T

lf .l/; in F�
p :

It follows that the vector .e.l/ � f .l//l2S is in the kernel of h:

X
l2T

.e.l/ � f .l// log l D 0; in Z=.p � 1/Z:

Repeating this procedure, we occasionally find that
Q

l2T le.l/ is X-smooth, hence
obtain a non-trivial relation and thus a non-zero vector in the kernel of h. Once we
have obtained a bit more than #T vectors, it is reasonable to expect that the vectors
that we found, generate the kernel.

It remains to choose the value of X. If X is very small with respect to p, there
are very few X-smooth numbers in the set f1; 2; : : : ; p � 1g. Since the remainders
of the products

Q
l2T le.l/ appear to be distributed randomly in this set, it is difficult

to obtain relations and the algorithm may be time consuming. On the other hand,
if X is very large, it is much easier to find X-smooth numbers and vectors in ker h.
However, since we need more than #T relations, we need to find many more of them
and the algorithm may also be time consuming.

The optimal value of X is somewhere in the middle. It depends on the probability
that a random natural number less than p is X-smooth. Writing X D p1=u for some
u > 1, this probability is roughly u�u. See [4]. A back of an envelope computation
shows that the optimal value for u is approximately u D 2

p
log p= log log p. With

this choice of u, computing the kernel of f involves

exp.2
p

log p log log p/

elementary operations with numbers that have O.log p/ digits. Therefore this is a
subexponential algorithm.
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With this choice of u, the set of primes l � X almost certainly generates F�
p , so

that f is surjective. Therefore the induced map

h W .Z=.p � 1/Z/T �! F�
p

is also surjective and hence split. This means that the kernel of h is the zero set of
a single linear equation

P
l2T alXl � 0 .mod p � 1/, with coefficients al equal to

log l with respect to the primitive root g that is given by g D Q
l2T lyl . Here .yl/l2T

is any vector for which one has
P

l2T alyl D 1 in Z=.p� 1/=Z. The equation can be
computed efficiently using linear algebra over the ring Z=.p � 1/Z. This completes
the description of the precomputation.

In order to explain how to determine the kernel of the given homomorphism

f W ZS �! F�
p ;

we consider first the case that #S D 1. In this case f is determined by the element
x D f .1/ 2 F�

p and the kernel of f is generated by the order of x in the group F�
p .

To compute the kernel, pick random products x
Q

l2T le.l/ with T as above and check
whether the factorization in Z of the remainder modulo p is of the form

Q
l2T lf .l/. If

this happens, we obtain the relation

x
Y
l2T

le.l/ D
Y
l2T

lf .l/; in F�
p :

This implies that

log x D
X
l2T

.f .l/ � e.l// log l; in Z=.p � 1/Z:

Since we already have computed log l for every l 2 T , we can now evaluate log x.
The order of x in the group F�

p is equal to the order of log x in the additive group
Z=.p � 1/Z. It is therefore equal to p � 1 divided by gcd.p � 1; log x/.

The method for #S > 1 is based on this. One computes the discrete logarithm of
f .s/ for each element s 2 S. Composing f W ZS �! F�

p with the discrete logarithm
gives a homomorphism from ZS to the additive group Z=.p � 1/Z. As remarked
above, determining the kernel of such a homomorphism is easy and can be done by
means of linear algebra over Z.

4 Finite Fields

Recently there has been great progress in solving the discrete logarithm problem for
finite fields of small characteristic. Indeed, in [1, 5, 7, 8] algorithms are described
that almost run in polynomial time. As in the previous section, the algorithms
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proceed by first computing the logarithms of a set of elements—the factor base—
that are, in some sense, small. Next one uses this to solve the problem of computing
the discrete logarithm of an individual element that is not in the factor base. Here
we describe the first phase following Antoine Joux and his collaborators [1]. For the
second phase we refer to the papers mentioned above for more details.

As a typical example of the method, we discuss the case of a finite field of
Q D q2k elements, where q is a prime power and k is of the same order of magnitude
as q. See [1] for a precise description of the range of finite fields for which the
algorithm is effective. Let Fq2 denote the subfield of q2 elements of FQ. Note that if
k and q are approximately equal, q2 is small with respect to Q D q2k. Therefore,
making a list of all elements of Fq2 can be done in time polynomial in log Q.
As a consequence, computing discrete logarithms of elements in F�

q2
can be done

in time polynomial in log Q as well. Therefore, the Pohlig-Hellmann argument of
Sect. 2 reduces the problem of computing discrete logarithms in the group F�

Q to the
problem of computing discrete logarithms in the group A D F�

Q=F�
q2

.

We assume that the field with Q D q2k elements is represented as Fq2 ŒX�=.�.X//,
where �.X/ is an irreducible degree k polynomial in Fq2 ŒX�. In order to have an
efficient algorithm, the polynomial �.X/ in FQ D Fq2 ŒX�=.�.X// is supposed to
have a special shape: we want that

Xq � r.X/ mod �.X/;

for some rational function r.X/ 2 Fq2 .X/ whose numerator and denominator have
very small degrees. Examples are provided by the polynomials �.X/ D Xq�1 � g
or XqC1 � g, where g is a generator of the cyclic group F�

q2
. In the first case we

have r.X/ D gX and in the second r.X/ D g=X. See [23]. Numerical experiments
suggest [1] that when k is close to q, one can find a rational function r.X/ with
denominator and numerator of degree at most 2, for which Xq � r.X/ is divisible by
an irreducible degree k polynomial �.X/. Since an algorithm of Lenstra [10] allows
one to compute an isomorphism between any presentation of the finite field FQ and
Fq2 ŒX�=.�.X// in polynomial time, requiring �.X/ to have this special shape, is not
a serious restriction.

In the first phase of the algorithm we compute the discrete logarithms of the
elements in a factor base, which in this case consists of the images of all monic linear
polynomials in Fq2 ŒX� in the group A D Fq2 ŒX�=.�.X//

�=F�
q2

. Putting T D Fq2 , this
means that we compute the kernel of the homomorphism

h W ZT �! A;

that maps the basisvector eu corresponding to u 2 T to the image of X � u in the
group A D .Fq2 ŒX�=.�.X///

�=F�
q2

.
The identity
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Xq � X D
Y
u2Fq

.X � u/

implies that

r.X/ � X D
Y
u2Fq

.X � u/; in Fq2 ŒX�=.�.X//:

The denominator of the rational function r.X/�X is equal to the one of r.X/. For the
sake of exposition, we suppose that it factors into a product of linear polynomials in
Fq2 ŒX�. Its numerator has degree at most 3 and may or may not factor into a product
of linear polynomials in Fq2 ŒX�. If it does, we obtain a multiplicative relation in the
group A between the elements of our factor base. The relation gives then rise to an
element in the kernel of the homomorphism h W ZT �! A.

In order to get more relations, we apply automorphisms of the fraction field
Fq2 .X/ of Fq2 ŒX�. The group PGL2.Fq2 / acts on the right on Fq2 .X/ as follows:

f 	 .X/ D f .
aX C b

cX C d
/; for any 	 D

	
a b
c d



2 PGL2.Fq2 /:

Applying 	 2 PGL2.Fq2 / to the identity above, we obtain the equality

.X	 /q � X	 D .Xq � X/	 D
Y
u2Fq

.X	 � u/; in Fq2 .X/:

The group PGL2.Fq2 / acts via linear fractional transformations on the left on the
projective line P1 and preserves the set of Fq2 -points P1.Fq2 /. We view Fq2 as a
subset of P1.Fq2 /. So we have P1.Fq2 / D Fq2 [ f1g. For a function f 2 Fq2 .X/, a
point u 2 P1.Fq2 / and an automorphism 	 2 PGL2.Fq2 /, we have f 	 .u/ D f .	.u//.

The above identity for 	 D
	

a b
c d



2 PGL2.Fq2 / then becomes

.cX C d/.aX C b/q � .aX C b/.cX C d/q D
Y

u2	�1.P1.Fq//�f1g
.X � u/:

It holds in the function field Fq2 .X/ up to multiplication by some � 2 F�
q2

. Note

that the set 	�1.P1.Fq// consists of q C 1 points and may or may not contain the
point1. Since Xq � r.X/ modulo �.X/, we have

.aX C b/q � ar.X/C b and .cX C d/q � cr.X/C d

in Fq2 ŒX�=.�.X//. Here we put t D tq for t 2 Fq2 . This leads to the following relation
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.cX C d/.ar.X/C b/ � .aX C b/.cr.X/C d/ D
Y

u2	�1.P1.Fq//�f1g
.X � u/: (�)

It holds in the ring Fq2 ŒX�=.�.X// up to multiplication by some � 2 F�
q2

. The denom-
inator of the left hand side of this equation is equal to the one of r.X/. The numerator
has degree at most 3 and it seems reasonable to expect that it varies randomly when
we vary 	 . Numerical experiments have confirmed this [1]. Under this assumption
a positive proportion factors into a product of linear polynomials in Fq2 ŒX�. Indeed,
this proportion is approximately 1=6. For other choices of r.X/, see [15]. A positive
proportion of the relations (�) are therefore multiplicative relations between the
elements X � u of the factor base in the group A D .Fq2 ŒX�=.�.X///

�=F�
q2

. They

give rise to elements in the kernel of the homomorphism h W ZT �! A.
The question is how many independent multiplicative relations between the

elements X � u of the factor base we obtain in this way. The discrete logarithms
of the elements X � u of the factor base are a solution of the system of linear
equations that we obtain from the relations (�). There is at present no proof that
we obtain sufficiently many relations for the linear system to have a unique solution
over Z=MZ, where M D #A. However, there are some heuristic arguments in this
direction that seem to be confirmed by experiments [1].

The subgroup of PGL2.Fq2 / that preserves the subset P1.Fq/ of P1.Fq2 /, is equal
to PGL2.Fq/. Therefore, the set 	�1.P1.Fq// and hence the right hand side of the
relation (�), depends only on the left coset 	�1PGL2.Fq/ rather than on 	�1 itself.
The number of cosets is equal to #PGL2.Fq2 /=#PGL2.Fq/ D q3 C q. It follows that
there are q3 C q different subsets 	�1.P1.Fq// and hence q3 C q possibilities for
the right hand sides of the relations (�). For a positive proportion the left hand sides
of (�) factor into products of linear polynomials in Fq2 ŒX�. Therefore one expects
many more than q2 relations between the elements X � u of the factor base, at least
when q is not very small. As a consequence we obtain many more than q2 elements
in the kernel of the homomorphism h W ZT �! A.

The subsets 	�1.P1.Fq// and therefore the right hand sides of the relations,
are very different from one another. Indeed, it easy to see that any two distinct
subsets 	�1.P1.Fq// intersect in at most two points. Moreover, when 	 runs over
representatives of the cosets of PGL2.Fq/ in PGL2.Fq2 / and P runs over the points
of P1.Fq2 /, the q3 C q by q2 C 1 matrix m	;P given by

m	;P D
�
1; when P 2 	�1.P1.Fq//I
0; otherwise:

has maximal rank q2 C 1. See [1]. In fact, it is not difficult to show that its rows
span a subgroup of index q C 1 in Zq2C1. The matrix of the homogeneous linear
system we want to solve consists of the subset of rows of the matrix m	;P for which
the left hand side of (�) factors completely, somewhat perturbed by the few non-
zero coefficients that come from the left hand side of (�). Since the matrix m	;P has
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maximal rank, it is perhaps not unreasonable to expect that our linear system has a
unique solution over Z=MZ, where M D #A.

It was pointed out by Wan et al. [5] that there is a problem with linear polynomials
X�u that divide .Xq� r.X//=�.X/. Indeed, the relations that we find, not only hold
modulo �.X/, but also modulo X � u. Typically the multiplicity of X � u is the
same on both sides of the relations (�). This cancellation implies that the logarithm
of X � u does not appear in the linear system. Therefore it cannot be computed
this way. For instance, in the case �.X/ D Xq�1 � g, we have r.X/ D gX and
Xq�gX D X�.X/. In this case, the logarithm of X may not at all appear in the linear
system. In this special case however, computing the logarithm of X is easy since its
order in the group A is q � 1, which is very small. See the original papers [1, 8] for
ways to get around this problem in general.

5 Elliptic Curves

Elliptic curve cryptography is based on the difficulty of solving the discrete
logarithm problem in the finite group E.Fq/ of points of an elliptic curve E over
a finite field Fq. More generally, determining the kernel of a homomorphism

f W ZS �! E.Fq/;

is a difficult problem. Apart from some exceptional situations that we describe
below, the only methods that are available at present, are the baby-step-giant-step
method and the Pollard %-method that were discussed in Sect. 2. Since #E.Fq/ � q,
both methods require O.

p
q/ operations in the group E.Fq/. This is much more than

the number of operations required by the subexponential index calculus algorithm
that was described in Sect. 3. Therefore, in cryptographical systems based on elliptic
curves, key sizes can be made smaller, so that encryption and decryption algorithms
are faster.

Suppose that E is an elliptic curve over a finite field Fq given by a Weierstrass
equation

Y2 C a1XY C a3 D X3 C a2X
2 C a4X C a6;

with coefficients ai 2 Fq. See [21] for the basic properties of elliptic curves. We let
E.Fq/ denote the group of points on E with coordinates in an algebraic closure Fq

of Fq. It is an infinite torsion group. The set E.Fq/ of points on E with coordinates
in Fq is a finite subgroup. For every natural number n, we let EŒn� denote the group
of points on E that are annihilated by n. In other words, we have

EŒn� D fP 2 E.Fq/ W nP D 0g:
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If n is not divisible by the characteristic p of Fq, the group EŒn� is isomorphic
to Z=nZ 	 Z=nZ. The Weil pairing is a bilinear, antisymmetric and non-degenerate
pairing

en W EŒn� 	 EŒn� �! �n:

Here �n denotes the subgroup of nth roots of unity of F
�
q . The pairing en is Galois

equivariant.
Suppose now that the group E.Fq/ is cyclic of order n, coprime to p. Let Q 2 EŒn�

be a point of order n with the property that the subgroup it generates has trivial
intersection with E.Fq/. Then the map

g W E.Fq/ �! �n

given by g.P/ D en.P;Q/ is an injective group homomorphism. It can be efficiently
computed by means of an algorithm invented by Victor Miller [14]. In this way
the kernel of f W ZS �! E.Fq/ can be calculated by computing the kernel of the
composite homomorphism

ZS f�!E.Fq/
g�!�n ,! F�

qd :

Here d is the order of q modulo n. This approach is due to Menezes et al. [12]. It
reduces the problem of computing the kernel of a homomorphism ZS �! E.Fq/ to
a similar problem involving the multiplicative group F�

qd rather than E.Fq/.
Since the Weil pairing is Galois equivariant, the field of definition of the point Q

contains Fqd . Since d is typically very large, computing in the group E.Fqd / is very
costly and this approach is usually not very successful. However, in certain special
cases it can be very effective. An important example is provided by supersingular
elliptic curves over prime fields Fp. When p � 1 .mod 4/, the group E.Fp/ of a
supersingular curve E is cyclic of order pC 1. In this case �pC1 is contained in an
extension of Fp that has only degree d D 2. Therefore this method is very efficient.
With small modifications it also works when p � 3 .mod 4/ and more generally
when the order of q modulo n D #E.Fq/ is small. In this situation, this use of the
Weil pairing is an efficient way to compute discrete logarithms or, more generally,
to compute the kernels of homomorphisms f W ZS �! E.Fq/.

An even faster algorithm was invented by Semaev [19] for elliptic curves E over
prime fields Fp, for which the group E.Fp/ has order p. In this case an isomorphism

g W EŒp� �! Z=pZ

is constructed as follows. We fix a non-zero point Q in E.Fp/. For P 2 E.Fp/ we put

g.P/ D f 0
P

fP
.Q/:
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Here fP is a function on E whose divisor is equal to p.Q � 1/. We let f 0
P denote

the function for which we have the following equality of Kähler differentials: dfP D
f 0
PdX. The map g can be efficiently computed by means of Miller’s algorithm. In this

way we can compute the kernel of f W ZS �! E.Fp/ by computing the kernel of

ZS f�!E.Fp/
g�!Z=pZ:

Similar related algorithms have been proposed by Satoh and Araki [18] and by
Smart [22]. See Belding’s paper [2] for a relation between the algorithms described
in this section.
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Hadwiger’s Conjecture

Paul Seymour

Abstract This is a survey of Hadwiger’s conjecture from 1943, that for all t � 0,
every graph either can be t-coloured, or has a subgraph that can be contracted to the
complete graph on t C 1 vertices. This is a tremendous strengthening of the four-
colour theorem, and is probably the most famous open problem in graph theory.

1 Introduction

The four-colour conjecture (or theorem as it became in 1976), that every planar
graph is 4-colourable, was the central open problem in graph theory for a hundred
years; and its proof is still not satisfying, requiring as it does the extensive use
of a computer. (Let us call it the 4CT.) We would very much like to know the
“real” reason the 4CT is true; what exactly is it about planarity that implies that
four colours suffice? Its statement is so simple and appealing that the massive case
analysis of the computer proof surely cannot be the book proof.

So there have been attempts to pare down its hypotheses to a minimum core, in
the hope of hitting the essentials; to throw away planarity, and impose some weaker
condition that still works, and perhaps works with greater transparency so we can
comprehend it. This programme has not yet been successful, but it has given rise to
some beautiful problems.

Of these, the most far-reaching is Hadwiger’s conjecture. (One notable other
attempt is Tutte’s 1966 conjecture [79] that every 2-edge-connected graph contain-
ing no subdivision of the Petersen graph admits a “nowhere-zero 4-flow”, but that
is beyond the scope of this survey.) Before we state it, we need a few definitions.
All graphs in this paper have no loops or parallel edges, and are finite unless we say
otherwise. If G is a graph, any graph that can be obtained by moving to a subgraph
of G and then contracting edges is called a minor of G. The complete graph on t
vertices is denoted by Kt, and the complete bipartite graph with sides of cardinalities
a; b is denoted by Ka;b.
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By the Kuratowski-Wagner theorem [56, 83], planar graphs are precisely the
graphs that do not contain K5 or K3;3 as a minor; so the 4CT says that every graph
with no K5 or K3;3 minor is 4-colourable. If we are searching for the “real” reason
for the four-colour theorem, then it is natural to exclude K5 here, because it is not
four-colourable; but why are we excluding K3;3? What if we just exclude K5, are all
graphs with no K5 minor four-colourable? And does the analogous statement hold if
we change K5 to KtC1 and four-colouring to t-colouring? That conjecture was posed
by Hadwiger in 1943 [37] and is still open:

Hadwiger’s Conjecture 1.1. For every integer t � 0, every graph with no KtC1
minor is t-colourable.

Let HC(t) denote the statement “every graph with no KtC1 minor is t-colourable”.
Hadwiger proved HC(t) for t � 3 in 1943 when he introduced his conjecture.
Wagner [83] had already shown that HC(4) is equivalent to the 4CT in 1937; and so
HC(4) was finally proved when the 4CT was proved by Appel and Haken [4, 5] in
1976. Then in 1993, Robertson, Thomas and I proved HC(5) [71]; one step further
than the 4CT! And the proof did not use a computer (although it did assume the 4CT
itself). HC(6) remains open.

There have been numerous weakenings and variations proved, of various types,
and strengthenings proposed, some of which still survive; and this is an attempt
to survey them. Incidentally, there is an excellent 1996 survey on Hadwiger’s
conjecture by Toft [78], which is particularly informative on the early history of
the problem.

2 The Proved Special Cases

Let us first go through the results just mentioned more carefully. HC(0) and HC(1)
are trivial. Graphs with no K3 minor are forests, which are 2-colourable, so HC(2)
holds. The first case that is not quite obvious is HC(3). How do we show that graphs
with no K4 minor are 3-colourable? Hadwiger [37] showed that every non-null graph
with no K4 minor has a vertex of degree at most two, which implies that all such
graphs are 3-colourable; and there are later theorems of Dirac [22] and Duffin [24]
on the same topic. This assembly of results can be expressed in several different
ways, but here is one that is convenient for us. Take two graphs G1;G2, and for
i D 1; 2 let Ci be a clique (that is, a subset of vertices, all pairwise adjacent) of Gi,
where jC1j D jC2j. Choose some bijection between the cliques, and identify each
vertex of C1 with the corresponding vertex of C2. We obtain a graph H say, with two
subgraphs isomorphic to G1;G2 respectively, overlapping on a clique. Now let G be
obtained from H by deleting some edges (or none) of the clique; we say that G is a
clique-sum of G1;G2, and if the clique has size k, we also call it a k-sum.

It is easy to see that if G is a clique-sum of G1;G2, and both G1;G2 are
t-colourable, then so is G. So if G can be built by repeated clique-sums starting
from some basic class of graphs that are all t-colourable, then so is G. This gives us
a slick proof of HC(t) for t � 3, because of the following:



Hadwiger’s Conjecture 419

Theorem 2.1. For 0 � t � 3, the graphs with no KtC1 minor are precisely the
graphs that can be built by repeated clique-sums, starting from graphs with at most
t vertices.

HC(4) implies the 4CT, so we should not expect Theorem 2.1 to extend to t D 4.
And it doesn’t; large grids have no K5 minor and yet cannot be built from 4-vertex
graphs by clique-sums. (Indeed, let us say G has tree-width k if k is minimum
such that G can be built by clique-sums from pieces with at most k C 1 vertices;
then the n 	 n grid has tree-width n.) Nevertheless, we can describe all the graphs
with no K5 minor in this language. Let V8 be the graph obtained from a cycle of
length 8 by adding four edges joining the four opposite pairs of vertices of the cycle.
Wagner [83] essentially proved the following in 1937.

Theorem 2.2. The graphs with no K5 minor are precisely the graphs that can
be built by repeated 0-, 1-, 2-, and 3-sums, starting from planar graphs and
copies of V8.

Consequently the 4CT implies HC(4), as Wagner points out in his 1937
paper [83]. (Of course, this does not yet provide the profound insight into the four-
colour theorem we hope for, because not only does the proof of HC(4) use the 4CT,
but the graphs it concerns are themselves basically planar.)

What about HC(5)? One might imagine that since the curve of difficulty versus t
has recently had such a steep slope, HC(5) would be impossible (or false); but that
is not so. Suppose it is false, and let G be a smallest counterexample. Robertson
et al. [71] showed, without using a computer and without assuming the four-
colour theorem, that G must be an apex graph, that is, there is a vertex whose
deletion makes it planar. If so, then since the 4CT implies that the planar part of
G is 4-colourable, we still have a colour left for the vertex we deleted, so G is
5-colourable after all.

The proof that G is apex is (very roughly) as follows. One can show that G is
6-connected, and in particular all vertices have degree at least six; and vertices of
degree six belong to K4 subgraphs, and it follows that there are not many of them
(in fact at most two), or else we could piece together all these K4’s to make a K6
minor. On the other hand, a theorem of Mader says that the average degree of G is
less than eight, and we cannot make the average degree bigger then eight even if we
cleverly contract edges. That implies that there are edges that are in several triangles
or squares. If, say, there is an edge uv in four triangles, then there is no K4 minor of
G n fu; vg on the four surviving vertices of the triangles (since G has no K6 minor),
and graphs with this property are well-understood; basically they have to be planar
with the four special vertices on the infinite region. So G n fu; vg is planar, and now
a little more thought shows that one of G n u;G n v is planar, and hence G is apex.

Proving that graphs with no K7-minor are 6-colourable is thus the first case of
Hadwiger’s conjecture that is still open. Albar and Gonçalves[2] proved:

Theorem 2.3. Every graph with no K7 minor is 8-colourable, and every graph with
no K8 minor is 10-colourable.
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3 Average Degree

Since we are stuck trying to prove Hadwiger’s conjecture itself, let us see what
we can show about the chromatic number of graphs with no KtC1 minor. As
Wagner [82] proved in 1964, all graphs with no KtC1 minor are 2t-colourable. The
proof is as follows: we may assume G is connected; fix some vertex z, and for each
i let Li be the set of vertices at distance i from z; since G has no KtC1 minor, the
subgraph induced on Li has no Kt minor (because the union of all the earlier levels
would provide one more vertex in the minor); inductively each level Li induces a
subgraph that is 2t�1-colourable; and now alternate colours in even and odd levels
to get a 2t-colouring of G.

Wagner’s result has been considerably improved, but most of these improvements
depend on “degeneracy”, so let us first discuss that. We say G is k-degenerate if
every non-null subgraph has a vertex of degree at most k. For instance, forests are
1-degenerate, series-parallel graphs (the graphs with no K4 minor) are 2-degenerate,
and planar graphs are 5-degenerate. By deleting a vertex of degree at most k and
applying an inductive hypothesis, we have:

Theorem 3.1. If G is k-degenerate then its chromatic number is at most kC 1.

So, if we can bound the degeneracy of the graphs with no KtC1 minor, we also
bound their chromatic number. (This gives us another proof of HC(t) for t � 3,
because for t � 3 every graph with no KtC1 minor is .t � 1/-degenerate.)

The simplest way to bound the degeneracy is to bound the average degree. How
many edges an n-vertex graph with no Kt minor can have is a much-studied question.
Mader [59, 60] showed in 1967 that:

Theorem 3.2. For every graph H there exists c such that jE.G/j � cjV.G/j for
every graph G with no H minor.

But when H D Kt for small values of t, we know the answer exactly:

• for n � 1, n-vertex graphs with no K3 minor (forests) have at most n � 1 edges;
• for n � 2, graphs with no K4 minor have at most 2n � 3 edges;
• for n � 3, graphs with no K5 minor have at most 3n � 6 edges.

Here is an example: for n � t � 2, take the complete bipartite graph Kt�2;n�tC2,
and add edges joining all pairs of vertices on the side of cardinality t � 2. This has
no Kt minor, and has n vertices and .t�2/n� .t�1/.t�2/=2 edges. Thus for t � 5,
this graph has the maximum number of edges possible, and if this were so for all t,
it would prove Hadwiger’s conjecture within a factor of 2. Mader [60] showed that
the same holds for t D 6; 7:

Theorem 3.3. For t � 7 and all n � t�2, every n-vertex graph G with no Kt minor
satisfies

jE.G/j � .t � 2/n � .t � 1/.t � 2/=2:
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But for t � 8 the pattern fails. If n1; : : : ; nt > 0, we denote by Kn1;:::;nt the
complete t-partite graph with parts of cardinality n1; : : : ; nt. Mader pointed out that
K2;2;2;2;2 has no K8 minor, and does not satisfy the formula of Theorem 3.3.

On the other hand, for t D 8 we understand all counterexamples to the
formula. In the definition of a k-sum we are permitted to delete edges from the
clique involved; if we do not delete any such edges let us call it a pure k-sum.
Jørgensen [39] proved:

Theorem 3.4. Let G be an n-vertex graph with no K8 minor, with n � 6 and
jE.G/j > 6n � 21; then jE.G/j D 6n � 20, and G can be built by pure 5-sums
from copies of K2;2;2;2;2.

The same holds for K9; Song and Thomas [72] proved:

Theorem 3.5. Let G be an n-vertex graph with no K9 minor, with n � 7 and
jE.G/j > 7n � 28; then jE.G/j D 7n � 27, and either G D K2;2;2;3;3, or G can
be built by pure 6-sums from copies of K1;2;2;2;2;2.

But as t grows, the formula of Theorem 3.3 becomes completely wrong.
For a graph H, let �.H/ be the infimum of all d such that every graph G
with no H minor has average degree at most d, that is, satisfies jE.G/j �
djV.G/j=2. (We are particularly concerned here with the case when H is a
complete graph Kt, but �.H/ is of interest for non-complete graphs too.) Kostochka
[49, 51] and Fernandez de la Vega [28] proved that �.Kt/ is at least of order
t.log t/1=2, and Kostochka [49, 51] and Thomason [73] proved the same was an
upper bound; and in particular Kostochka [51] showed (logarithms are to base e):

Theorem 3.6. For every integer t � 4, � D �.Kt/ satisfies:

0:032 �

.log.�=2//1=2
� t:

Later Thomason [74] found the limit exactly: he proved (again with logarithms
to base e):

Theorem 3.7. Let � < 1 be the solution of the equation 1 � � C 2� log� D 0

and let

˛ D .1 � �/ log.1=�/�1=2 ' 0:63817:

Then as t!1, �.Kt/ D .˛ C o.1//t.log t/1=2:

This was extended to non-complete graphs by Myers and Thomason [63], who
proved the following (RC denotes the set of nonnegative real numbers, and ˛ is as
before):
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Theorem 3.8. Let H be a graph with t vertices, and let �.H/ be the minimum of
1
t

P
u2V.H/ w.u/ over all functions w W V.H/! R

C such that

X
uv2E.H/

t�w.u/w.v/ � t:

Then as t!1, �.H/ D .˛�.H/C o.1//t.log t/1=2:

For classes of graphs H with �.H/ bounded away from zero (such as regular
graphs with degree ct� where c; � > 0), this determines �.H/ asymptotically; but
for some classes of graphs (such as those with a linear number of edges) it does not.
This gap is addressed by two theorems of Reed and Wood [67]:

Theorem 3.9. There is a constant d0 such that �.H/ � 3:895.log d/1=2t for every
graph H with t vertices and average degree d � d0.

Theorem 3.10. For every graph H, �.H/ � jV.H/j C 6:291jE.H/j:
The Myers-Thomason theorem implies that �.H/ is not linear in t for graphs

with t vertices and with a quadratic number of edges; but the second Reed-Wood
theorem implies that if jE.H/j is linear in t then so is �.H/.

For some graphs H we can determine exactly the maximum number of edges in
graphs with no H minor, but those theorems are thinner on the ground. We already
mentioned the cases when H D Kt; and the same can be done for many graphs
H with at most six vertices, such as K3;3; and there are two theorems doing it for
larger graphs H. Chudnovsky et al. [14] answered it for K2;t (extending a result of
Myers [62]), and Kostochka and Prince [52] did it for K3;t (and the K1;t result is
obvious):

Theorem 3.11. Let G be an n-vertex graph with no H minor.

• If H D K1;t then jE.G/j � 1
2
.t � 1/n;

• if H D K2;t then jE.G/j � 1
2
.tC 1/.n � 1/; and

• if H D K3;t and t � 6300 and n � tC 3 then jE.G/j � 1
2
.tC 3/.n � 2/C 1.

All three results are exact for infinitely many values of n. (By the way, when
H D K1;t, if we restrict to connected graphs G then the answer is quite different,
namely jE.G/j � nC .tC 1/.t � 2/=2 if n � tC 2; see [20].)

What about H D Ks;t in general, if t � s? For fixed s and large t, the value of
�.Ks;t/ is not determined by Theorem 3.8, so this is an interesting case. It turns out
to be more natural to exclude K�

s;t instead; this is the graph obtained from Ks;t by
adding edges joining all pairs of vertices in the side of cardinality s. Extrapolating
from Theorem 3.11, one might hope that if an n-vertex graph has no Ks;t minor then

jE.G/j � 1

2
.2sC t � 3/n � 1

2
.s � 1/.sC t � 1/;
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because again this can be attained with equality for infinitely many n (take many
disjoint copies of Kt and add s � 1 extra vertices adjacent to everything). But this
is not true, at least for s > 18. Kostochka and Prince [53, 54] proved (and see
also [55] for a related result) that with the function �.H/ as before (here logarithms
are binary):

Theorem 3.12. Let s; t be positive integers with t > .180s log s/1C6s log s. Then

3s � 5s1=2 C t � �.Ks;t/ � �.K�
s;t/ < 3sC t:

All these results tell us that the graphs with a certain minor H excluded have
average degree at most some constant, and therefore have minimum degree at most
the same constant; and that gives us a bound on their degeneracy. In particular, from
Theorem 3.6, every graph with no Kt minor has degeneracy at most O.t.log t/1=2/,
and therefore chromatic number at most the same. For large t, this is the best bound
known on the chromatic number of graphs excluding Kt.

Incidentally, bounding minimum degree by average degree is natural, but it might
not give the right answer. For instance, graphs with no K4 minor can have average
degree > 3; and yet they always have minimum degree at most 2. When we exclude
K5, average degree gives the true bound for minimum degree; but what happens with
K6? Graphs with no K6 minor can have average degree more than 7, but must they
have minimum degree at most 6? I think this is open.

4 Stability Number

One possible cause of the intractability of Hadwiger’s conjecture is that we need to
use the fact that the chromatic number is large, and graphs can have large chromatic
number for obscure reasons. What if we make our lives easier, and look at graphs
that have large chromatic number for obvious reasons? The stability number ˛.G/
of a graph G is the size of the largest stable set (a set of vertices is stable if no two of
its members are adjacent). (This is different from Thomason’s ˛, which we do not
need any more.) Every n-vertex graph G has chromatic number at least dn=˛.G/e,
and should contain a clique minor of this size if Hadwiger’s conjecture is true. Can
we prove this at least?

The signs are not good; the only known proof that every n-vertex planar graph
has stability number at least n=4 is via the 4CT. Nevertheless, there are some results.
There is an elegant argument by Duchet and Meyniel [23] proving:

Theorem 4.1. Every n-vertex graph G has a Kt minor where t � n=.2˛.G/ � 1/.
Their argument can also be used to show a result that seems to have been overlooked:

Theorem 4.2. For every graph G with no KtC1 minor, there exists a t-colourable
induced subgraph containing at least half the vertices of G.
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Theorem 4.1 is within a factor of 2 of what should be true, and there have been
subsequent improvements, notably by Fox [29] (who proved a factor slightly less
than 2) and then Balogh and Kostochka [6], who reduced Fox’s factor a little further
and currently have the record. They showed the following:

Theorem 4.3. Every n-vertex graph G has a Kt minor where t � 0:51338n=˛.G/:

A different strengthening, better than Theorem 4.3 when ˛ is small, was proved
by Kawarabayashi and Song [47]:

Theorem 4.4. Every n-vertex graph G with ˛.G/ � 3 has a Kt minor where t �
n=.2˛.G/ � 2/.

Returning to Theorem 4.1: it implies that if G has no KtC1 minor then some stable
set has cardinality at least n=.2t/. Suppose we give each vertex of G a nonnegative
real weight. Hadwiger’s conjecture would imply that there is a stable set such that
the total weight of its members is at least 1=t times the sum of all weights. One
might hope to prove a weighted version of Theorem 4.1 (without the �1 in the
denominator) and this turns out to be true, though more difficult to prove. Say the
fractional chromatic number of a graph G is the minimum real number k such that
for some integer s > 0, there is a list of ks stable sets of G such that every vertex is in
s of them. Via linear programming duality, the weighted Duchet-Meyniel statement
is equivalent to the following, proved by Reed and myself [65]:

Theorem 4.5. Every graph with no KtC1 minor has fractional chromatic number at
most 2t.

The proof also gives a corresponding extension of Theorem 4.2:

Theorem 4.6. In every graph G with no KtC1 minor, there is a non-null list of t-
colourable subsets of V.G/, such that every vertex is in exactly half of the sets in the
list.

Graphs G with ˛.G/ D 2 are particularly interesting, because these graphs are
more tractable for colouring; for instance, there is a polynomial-time algorithm to
find the chromatic number of such a graph (just find the largest matching in the
complement graph). Here is another nice feature of them: say a seagull in a graph
G is an induced 3-vertex path. If ˛.G/ D 2 and S is a seagull in G then every other
vertex of G has a neighbour in S, and so finding many disjoint seagulls is a way
to find a large clique minor. In [15], Chudnovsky and I proved there is a min-max
formula for the maximum number of disjoint seagulls in a graph G with ˛.G/ D 2.

For an n-vertex graph G with ˛.G/ D 2, the Duchet-Meyniel theorem implies
that there is a Kt minor with t � n=3. This was strengthened by Böhme et al. [9],
who proved (for graphs with arbitrary stability number):

Theorem 4.7. Every n-vertex graph with chromatic number k has a Kt minor where
t � .4k � n/=3.

But Hadwiger’s conjecture implies that if ˛.G/ D 2 then there should be a
Kt minor with t � n=2. This seems to me to be an excellent place to look for a
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counterexample. My own belief is, if it is true for graphs with stability number two
then it is probably true in general, so it would be very nice to decide this case.
Despite some intensive effort the following remains open:

Open Question 4.8. Does there exists c > 1
3

such that every graph G with ˛.G/ D
2 has a Kt minor where t � cjV.G/j?

A graph is claw-free if no vertex has three pairwise nonadjacent neighbours. Thus
graphs with stability number two are claw-free. Fradkin [31] proved:

Theorem 4.9. Every n-vertex connected claw-free graph G with ˛.G/ � 3 has a
Kt minor where t � n=˛.G/.

Chudnovsky and Fradkin [13] proved:

Theorem 4.10. Every claw-free graph G with no KtC1 minor is b3t=2c-colourable.

Line graphs are claw-free, so these last two results are related to a theorem of
Reed and myself; we proved [66] that Hadwiger’s conjecture is true for line graphs
(of multigraphs).

5 Weakenings

The statement of Hadwiger’s conjecture is:
For all t � 0 and every graph G, either G has a KtC1 minor or V.G/ can be

partitioned into t stable sets.
How can we weaken this and still have something non-trivial? Section 2 covered

changing “For all t � 0” to “For a few t � 0”; Sect. 3 did changing “t stable
sets” to “f .t/ stable sets”; and Sect. 4 covered changing “partitioned into stable sets”
to “fractional chromatic number”; but there are several other ways to weaken the
statement. Here are some.

Change “every graph G” to “almost every graph G” (The meaning of “almost
every” here is that the proportion of n-vertex graphs that satisfy the statement tends
to 1 as n!1.) This weakening is true. It follows from a combination of a theorem
of Bollobás et al. [10] and a theorem of Grimmett and McDiarmid [35]:

Theorem 5.1. For all d > 2, almost every n-vertex graph has a Kt minor where
t � n=..log n/1=2 C 4/, and has chromatic number at most 2n= log n.

Change “KtC1” to something else If we hope to prove that every graph with no H
minor has chromatic number at most t, then H had better have at most tC1 vertices,
or else taking G D KtC1 is a counterexample. So, which subgraphs H of KtC1 work?
Kostochka [48, 50] proved the following.
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Theorem 5.2. For all s there exists t0 such that for all t � t0, every graph with no
K�

s;t minor is .sC t � 1/-colourable.

Change “stable sets” to something else Here is a recent theorem of Edwards
et al. [26]:

Theorem 5.3. For all t there exists k such that if G has no KtC1 minor then V.G/
can be partitioned into t sets X1; : : : ;Xt, such that for 1 � i � t, GŒXi� has maximum
degree at most k.

(For X � V.G/, GŒX� denotes the subgraph induced on X.) This result is quite
easy, but it has two attractive features; first, it is best possible in that if we ask for a
partition into t� 1 sets there is no such k; and second, it and Theorem 6.8 below are
the only results known that derive a partition into t sets with any non-trivial property
from the absence of a KtC1 minor.

There are more weakenings to describe yet, but they deserve a new section.

6 Bounded Component-Size

What if we try to improve Theorem 5.3? Let us say X � V.G/ has component-size
k if the largest component of GŒX� has k vertices. Thus having bounded component-
size is more restrictive than have bounded maximum degree, though less than what
we really want, being stable. Instead of just saying that each GŒXi� has bounded
maximum degree, what if we ask that each of them has bounded component-size?
It has not been proved that for graphs G with no KtC1 minor, we can partition into
t sets with this property, but there has been a series of papers proving that V.G/
can be partitioned into a linear number of parts each with bounded component-size.
Initially Kawarabayashi and Mohar [43] proved:

Theorem 6.1. For all t � 0 there exists k such that if G has no Kt minor, then V.G/
can be partitioned into at most f .t/ parts each with component-size at most k, where
f .t/ D d31t=2e.

Wood [84] proved the same with f .t/ D d7t=2 � 3=2e (using Theorem 10.6, an
unpublished theorem of Norin and Thomas which we discuss later), and there have
been further improvements which we describe below, culminating in Norin’s result
that the same holds with f .t/ D 2.t � 1/.

There is a set of lemmas here that can be combined in various ways. DeVos
et al. [16] proved:

Theorem 6.2. For all t there exists w such that for every graph G with no Kt minor,
there is a partition of V.G/ into two parts, such that the subgraph induced on each
part has tree-width at most w.
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Alon et al. [3] showed:

Theorem 6.3. For all w; d and for every graph G with tree-width at most w � 3

and maximum degree at most d � 1, there is a partition of V.G/ into two parts each
with component-size at most 24wd.

Wood [85] improved this, replacing 24kd with 5.kC1/.7d�2/=4. Liu (unpublished)
has recently proved a list-colouring version:

Theorem 6.4. For all w; d there exists k such that for every graph G with tree-
width at most w and maximum degree at most d, and every assignment of a set Lv
with jLvj � 2 to each vertex v, there is a choice of c.v/ 2 Lv for each v such that
for each x, the set of all vertices v with c.v/ D x has component-size at most k.

Incidentally, an interesting asymmetric version was proved by Ding and Dzio-
biak [19]:

Theorem 6.5. For all t � 0 there exists w � 0 such that for every graph G with no
Kt minor, V.G/ can be partitioned into two sets X;Y, where GŒX� has tree-width at
most w, and GŒY� is .tC 1/-degenerate.

By combining Theorems 6.2 and 6.3, Alon et al. deduced:

Theorem 6.6. For all t; d there exists k such that for every graph G with no Kt

minor and maximum degree at most d, there is a partition of V.G/ into four parts
each with component-size at most k.

Recently, Liu and Oum [58] improved this, replacing “four” by “three”. If
we then combine their result with Theorem 5.3 we deduce an improvement of
Theorem 6.1 with f .t/ D 3.t � 1/. Even more recently, Norin used a different
approach to do better. He proved the following lemma [64]:

Theorem 6.7. For all t;w � 0 there exists N with the following property. Let G be
a graph with jV.G/j � N, with tree-width at most w and with no Kt minor. Then for
every S � V.G/ with jSj � 2w, there exists I � V.G/ n S, nonempty, such that at
most 2w vertices in V.G/n I have a neighbour in I, and every vertex in I has at most
t � 2 neighbours in V.G/ n I.

With the aid of this lemma, an easy inductive argument yields:

Theorem 6.8. For all t;w � 0 there exists k such that for every graph G with tree-
width at most w and no Kt minor, there is a partition of V.G/ into t � 1 parts such
that each part has component-size at most k.

Then this, combined with Theorem 6.2, yields an improvement of Theorem 6.1
with f .t/ D 2.t � 1/.

Dvořák and Norin have now announced a proof of Theorem 6.1 with f .t/ D t�1,
the best possible.
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7 Odd Minors

We have finished with weakenings of Hadwiger’s conjecture now; time to turn to
strengthenings.

Graphs that are not 2-colourable not only have a K3 minor (or equivalently, a
cycle); they have an odd cycle. It is tempting to try to make some corresponding
strengthening of Hadwiger’s conjecture. Here is what seems to be the most natural
way to do it. If G is a graph and X � V.G/, ı.X/ denotes the set of edges of G
with one end in X and the other in V.G/ n X. We say that F � E.G/ is a cut of G
if F D ı.X/ for some X � V.G/. Now let G;H be graphs. We say that H is an odd
minor of G if H can be obtained from a subgraph G0 of G by contracting a set of
edges that is a cut of G0. (Note that ; is a cut.) Thus a graph is not 2-colourable if
and only if it contains K3 as an odd minor. In 1979, Catlin [12] proved:

Theorem 7.1. If G has no K4 odd minor then G is 3-colourable.

Incidentally, a much stronger statement than this has now been proved. Say a
fully odd K4 in G is a subgraph of G which is obtained from K4 by replacing each
edge of K4 by a path of odd length (the length of a path is the number of edges in it)
in such a way that the interiors of these six paths are disjoint. Toft [77] conjectured
in 1975 and Zang [86] proved in 1998 (and, independently, Thomassen [76] proved
in 2001) that:

Theorem 7.2. If G contains no fully odd K4 then G is 3-colourable.

Returning to odd minors: there is a result giving a construction for all graphs
with no K4 odd minor, due to Lovász, Schrijver, Truemper and myself. It is rather
awkward to state, and not published, although it was proved many years ago (in the
early 1980s, and mostly on a riverboat in Bonn, if I remember correctly). We omit
its statement here; see [33].

In view of its truth for t � 3, Gerards and I conjectured the following
strengthening of Hadwiger’s conjecture (see [38]):

Conjecture 7.3. For every t � 0, if G has no KtC1 odd minor, then G is
t-colourable.

Several of the results mentioned earlier approaching Hadwiger’s conjecture have
extensions to odd minors. For instance, Guenin [36] announced at a meeting in
Oberwolfach in 2005 that:

Theorem 7.4. Every graph with no K5 odd minor is 4-colourable.

Geelen et al. [32] proved (see also [41] for a simpler proof):

Theorem 7.5. If G has no Kt odd minor then 
.G/ � O.t.log t/1=2/.

Kawarabayashi and Song [47] proved an odd minor version of Theorem 4.1,
namely:

Theorem 7.6. Every n-vertex graph G has a Kt odd minor where t�n=.2˛.G/�1/.
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Kawarabayashi and Reed [45] proved:

Theorem 7.7. Every graph with no Kt odd minor is fractionally 2t-colourable.

Kawarabayashi and Song [47] proved an odd minor relative of Theorem 10.2:

Theorem 7.8. For every t � 0, there exists N such that for every .496t C 13/-
connected graph G with at least N vertices, either G has a Kt odd minor, or there
exists X � V.G/ with jXj � 8t such that G n X is bipartite.

Kawarabayashi [40] proved:

Theorem 7.9. If G has no Kt odd minor, then there is a partition of V.G/ into 496t
parts such that each part induces a subgraph of bounded maximum degree.

8 Other Strengthenings

There have been some other strengthenings of Hadwiger’s conjecture proposed,
but they have mostly not fared so well as Conjecture 7.3. For instance, say G is
a subdivision of H if G can be obtained from H by replacing each edge by a path,
where the paths have disjoint interiors. Hajós conjectured in the 1940s (but did not
publish it) that

False Conjecture 8.1. For all t � 0, if no subgraph of G is a subdivision of KtC1
then G is t-colourable.

This is true for t � 3, but it is still open for t D 4; 5, and Catlin [12] gave a
counterexample for all t � 6. Indeed, Erdős and Fajtlowicz [27] proved that almost
all graphs are counterexamples, because of the following:

Theorem 8.2. There are constants C1;C2 such that for almost every n-vertex graph
G, no subgraph of G is a subdivision of Kt for t � C1n1=2, and the chromatic number
of G is at least C2n= log.n/.

Erdős and Fajtlowicz conjectured and Fox et al. [30] proved that the ratio of
the chromatic number over the clique subdivision number over all n-vertex graphs
is maximized up to a constant factor by the random graph on n vertices; in other
words, the uniform random graph is essentially the strongest counterexample to the
Hajós conjecture.

Another conjectured strengthening of Hadwiger’s conjecture was proposed by
Borowiecki [11]. A graph G is t-choosable if for every assignment of a t-element
set Lv to each vertex v of G, it is possible to select a member c.v/ 2 Lv for each v
such that c.u/ ¤ c.v/ if u; v are adjacent. Borowiecki asked whether

False Conjecture 8.3. Every graph with no KtC1 minor is t-choosable.

This is true for t � 3, but false for t D 4; Voigt [81] gave a planar graph that is
not 4-choosable. Thomassen [75] proved that all planar graphs are 5-choosable, but
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an additive constant adjustment is not enough to repair the conjecture in general;
Barát et al. [7] showed that for all t � 1 there is a graph with no K3tC2 minor that is
not 4t-choosable. Kawarabayashi and Mohar [43] conjectured:

Conjecture 8.4. For all t, every graph with no Kt minor is 3t=2-choosable.

A third strengthening was proposed by Ding et al. [21]:

Conjecture 8.5. For all integers t � s � 2, if G has no Kt minor, then there is a
partition of V.G/ to t � s C 1 parts, such that the subgraph induced on each part
has no Ks minor.

For s D 2 this is Hadwiger’s conjecture, but it has not been disproved for any values
of s; t. For s � t � 1 it is easy, and it was proved for s D t � 2 by Gonçalves [34].

Reed and I proposed a fourth variation in [65] (this one is not a strengthening):

Conjecture 8.6. For every graph, there is a partition of its vertex set, such that
each part induces a connected bipartite graph, and contracting each part to a vertex
yields a graph with no induced cycle of length more than three.

This would imply that all graphs with no KtC1 minor are 2t-colourable. It remains
open.

A fifth possible extension is to infinite graphs. (Henceforth, graphs may be
infinite in this section.) By compactness, if t is an integer and HC(t) holds for finite
graphs then it also holds for infinite graphs; but we could try to extend Hadwiger’s
conjecture to allow infinitely many colours. One might hope that

False Conjecture 8.7. For every cardinal t, every graph with no Kt minor has
chromatic number less than t;

but this is trivially false (let G be the disjoint union of infinitely many finite cliques,
one of each size; then G cannot be coloured with finitely many colours, but has no
infinite clique minor). A better formulation is:

Conjecture 8.8. For every cardinal t, let s be the least cardinal larger than t; every
graph with no Ks minor is t-colourable.

I believe Conjecture 8.8 remains open, but van der Zypen [80] proved the
following:

Theorem 8.9. For every infinite cardinal t, every graph with no subgraph which is
a subdivision of Kt is t-colourable.

Van der Zypen’s proof uses the fact that when t is an infinite cardinal, one can
give a construction of the graphs that contain no subdivision of Kt, a result due to
Robertson et al. [70]. It is also possible [69] to do the same for graphs that contain
no Kt minor when t is an infinite cardinal.
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9 Immersions

There is an interesting conjecture, parallel to Hadwiger’s conjecture, that was
proposed by Lescure and Meyniel [57], (and independently, by Abu-Khzam and
Langston [1], later). Let G;H be graphs. An immersion of H in G is a choice
&.v/ 2 V.G/ for each v 2 V.H/, all distinct, and a choice &.e/ for each e 2 E.G/,
where for e D uv, &.e/ is a path of G between &.u/ and &.v/, and all the paths
&.e/ are pairwise edge-disjoint (they may share vertices; and an end-point of one
path may be an internal vertex of another). Let us say G immerses H if there is an
immersion of H in G. Lescure and Meyniel proposed:

Conjecture 9.1. For every integer t � 0, every graph that does not immerse KtC1
is t-colourable.

This neither implies nor is implied by Hadwiger’s conjecture, since immersing
KtC1 neither implies nor is implied by having a KtC1 minor; but it is in some respects
similar. (In one respect it is very different: planar graphs can immerse huge complete
graphs.) Conjecture 9.1 was proved for t � 6 by Lescure and Meyniel (though
they did not publish the proof for t D 6), and more recently DeVos et al. [18]
published a proof for t D 6. Both sets of authors used the same approach, proving
the stronger statement that for t � 6, every simple graph with minimum degree at
least t immerses Kt. For t � 9, it is not true that every graph with minimum degree at
least t immerses Kt; but DeVos et al. [17] proved the following (in fact they proved
it for “strong” immersion, in which the vertices &.v/ are not permitted to be internal
vertices of the paths &.e/):

Theorem 9.2. For all t � 0, every graph of minimum degree at least 200t
immerses Kt.

Recently, Dvořák and Yepremyan [25] have improved this:

Theorem 9.3. For all t � 0, every graph of minimum degree at least 11t C 7

immerses Kt.

It follows that

Theorem 9.4. Every graph that does not immerse Kt is 11tC 7-colourable.

10 Big Graphs

The constructions of Kostochka and Fernandez de la Vega mentioned earlier show
that there are graphs with no Kt minor with average degree of the order of t.log t/1=2,
and indeed their minimum degree and connectivity are also of this order. But there
is a feeling that honest, sensible graphs with no Kt minor are not really like this;
they will have vertices of degree about t. How can we make this intuition closer to
a true statement?
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The intuition comes mostly from the Graph Minors structure theorem of
Robertson and myself [68], which says very roughly that to make graphs with no
KtC1 minor, one takes graphs on surfaces of bounded genus and adds a bounded
number of extra vertices; and if these extra vertices are not just attached to small
parts of the surface, there had better not be many of them (or else we will get a KtC1
minor); in fact at most t � 4 of them, and fewer if the surface is not the plane. But
vertices in the surface have average degree (in the surface) less than six, so total
degree less than tC 2. There are have been several attempts to bring this very vague
argument closer to reality, and in this section we discuss some of them.

The feeling is that the examples of Kostochka and Fernandez de la Vega have
only bounded size (which they do) in some essential way (which remains to be
made precise). Of course we can make bigger examples by taking disjoint unions of
the little ones, but then the connectivity is lost. What if we impose some connectivity
restriction? Can there still be large examples?

Thomas and I conjectured:

Conjecture 10.1. For all t � 0 there exists N such that every .t � 2/-connected
graph G with no Kt minor and with n � N vertices satisfies

jE.G/j � .t � 2/n � .t � 1/.t � 2/=2:

This remains open. Böhme et al. [8] proved:

Theorem 10.2. For all positive integers t, there exists N such that every 3t C 2-
connected graph with no Kt minor and with at least N vertices has a vertex of degree
less than 31.tC 1/=2 � 3.

This is very encouraging: everything is linear, the frightening .log t/1=2 term has
disappeared.

How can we arrange some decent connectivity? To prove HC(t) it is enough
to prove the impossibility of minimal or minimum counterexamples to HC(t)
(a counterexample is “minimal” if no proper minor of itself is a counterexample;
and “minimum” if no counterexample is smaller.) What about the connectivity of
minimal counterexamples? Kawarabayashi [42] proved:

Theorem 10.3. For t � 0, every minimal counterexample to HC(t) is d2.tC1/=27e-
connected, and every minimum counterexample to HC(t) is d.tC 1/=3e-connected.

Mader [61] proved that for any value of t, if G is a minimal counterexample
to HC(t) then G is 6-connected, and 7-connected if t � 6. When t D 5 this
is particularly interesting, because it means that to prove HC(5) we only have to
consider 6-connected graphs without K6 minors. And Jørgensen [39] conjectured
the following:

Conjecture 10.4. Every 6-connected graph with no K6 minor is apex.

(We recall that a graph is apex if it can be made planar by deleting one vertex,
and in particular all apex graphs are 5-colourable.) Thus if only we could prove
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Jørgensen’s conjecture, we would obtain a much more appealing proof of HC(5).
Unfortunately it remains open; but it might point a way to solve Hadwiger’s
conjecture in general, if we could only figure out an analogue of this conjecture
for larger values of t (and then figure out how to prove it).

Kawarabayashi et al. [44] proved that Conjecture 10.4 itself is true in large
graphs:

Theorem 10.5. There exists N such that every 6-connected graph with at least N
vertices and with no K6 minor is apex.

More recently Norin and Thomas have announced the following analogue of
Conjecture 10.5 for general values of t (this is a difficult result with a huge proof,
and is still being written at this time):

Theorem 10.6. For all t � 0 there exists N such that every tC 1-connected graph
with at least N vertices and with no KtC1 minor can be made planar by deleting t�4
vertices.

So it would be nice to know that minimal counterexamples to HC(t) are t C 1-
connected; but we do not know this.

But recently it may have been shown that in fact there are no large minimal coun-
terexamples to HC(t), using a feature of them slightly different from connectivity.
A cutset of G means (in this paper) a partition .A;B;C/ of V.G/ with A;B ¤ ;,
such that there are no edges between A and B. A one-way clique cutset of G means
a cutset .A;B;C/, and for each v 2 C a connected subgraph Xv � B[C containing
v, such that Xu;Xv are disjoint and some edge has an end in Xu and an end in Xv ,
for all distinct u; v 2 C. In other words, we can turn C into a clique by contracting
edges within B[C. Suppose that G is a minimal counterexample to HC(t), for some
value of t. Then it is easy to show that:

• no vertex has degree at most t;
• no vertex of degree tC 1 has three nonadjacent neighbours;
• there is no one-way clique cutset; and
• G cannot be made planar by deleting t � 4 vertices.

Robertson and I announced (about 1993) that we proved:

Theorem 10.7. For all t � 0 and for every graph G with no KtC1 minor, if G
satisfies the four bullets above then G has bounded tree-width.

This had all kinds of pleasing consequences, but the proof was very long, and was
never written down, and now it is lost. Fortunately, almost the same thing, and with
the same desirable consequences, has recently been announced by Kawarabayashi
and Reed [46], and their proof seems more manageable, and may get written
down. (At the moment the proof sketched in [46] has developed a few cracks,
but Kawarabayashi maintains it can be fixed.) They added a fifth bullet to the four
above:
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• there do not exist a cutset .A;B;C/ of G and disjoint connected subgraphs
X1; : : : ;Xk of of GŒA [ C�, each including a stable subset of C, such that if B0
denotes the graph obtained from B [ X1 [ � � � [ Xt by contracting the edges of
X1; : : : ;Xt, then every t-colouring of B0 extends to one of G.

This evidently also holds in any minimal counterexample to HC(t). They claim:

Theorem 10.8. For all t � 0 and for every graph G with no KtC1 minor, if G
satisfies the five bullets above then G has bounded tree-width.

This would have several consequences. The most important is probably an
explicit function f .t/ such that for all t, every minimal counterexample to HC(t)
has at most f .t/ vertices.
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The Hadwiger–Nelson Problem

Alexander Soifer

Abstract Inspired by the Four-Color Conjecture, the Hadwiger–Nelson Problem
became one of the famous open problems of mathematics in its own rights. It
has withstood all assaults for 65 years, and attracted many mathematicians from
many fields, including Paul Erdős and Ronald L. Graham. John F. Nash admired
this problem and chose it for the present book. In this chapter we will discuss this
problem, its history and generalizations, several of the many related open problems,
and the state of the art results. 1

1 The Problem

The title problem asks to find the smallest number of colors sufficient for coloring
the points of the Euclidean plane E2 in such a way that no two points of the same
color are unit distance apart.

This number is called the chromatic number of the plane (CNP) and is denoted
by 
(E2).

2 The History and the Authorship of the Problem

While the distinguished Swiss geometer Hugo Hadwiger admired this problem
and wrote about it in the early 1960s, the problem was posed earlier by one
remarkable young person. As documented in [49], the problem was created in
October–November 1950 by the 18-year old Edward Nelson (May 4, 1932, Decatur,

1Unlike the previous version of this survey [55], more history of the problem and its authorship
has been included here.
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GA–September 10, 2014, Princeton, NJ), who also determined a lower bound 4; his
20-year old friend John Isbell found an upper bound 7: 4�
(E2)� 7.

During his talk at 25th South Eastern International Conference on Combina-
torics, Computing and Graph Theory in Boca Raton, Florida at 9:30–10:30 A.M.
on March 10, 1994, Paul Erdős summarized the results of the author’s historical
research on the authorship of this problem in a characteristically Erdősian style [17]:

“There is a mathematician called Nelson who in 1950 when he was an epsilon, that is he
was 18, discovered the following question. Suppose you join two points in the plane whose
distance is 1. It is an infinite graph. What is chromatic number of this graph?

Now, de Bruijn and I showed that if an infinite graph which is chromatic number k, it
always has a finite subgraph, which is chromatic number k. So this problem is really [a]
finite problem, not an infinite problem. And it was not difficult to prove that the chromatic
number of the plane is between 4 and 7. I would bet it is bigger than 4, but I am not sure.
And the problem is still open.

If it would be my problem, I would certainly offer money for it. You know, I can’t offer
money for every nice problem because I would go broke immediately. I was asked once
what would happen if all your problems would be solved, could you pay? Perhaps not,
but it doesn’t matter. What would happen to the strongest bank if all the people who have
money there would ask for money back? Or what would happen to the strongest country if
they suddenly ask for money? Even Japan or Switzerland would go broke. You see, Hungary
would collapse instantly. Even the United States would go broke immediately : : :

Actually it was often attributed to me, this problem. It is certain that I had nothing to do
with the problem. I first learned the problem, the chromatic number of the plane, in 1958,
in the winter, when I was visiting [Leo] Moser. He did not tell me from where this nor the
other problems came from. It was also attributed to Hadwiger but Soifer’s careful research
showed that the problem is really due to Nelson.”

It is therefore fitting to call this problem The Nelson Problem or, as it is often
called, The Chromatic Number of the Plane Problem (CNP).

There are fascinating similarities between the famous Four-Color Problem (4CP)
and the Nelson Problem (CNP). 4CP was created during 1850–1852 timeframe by
the 18–20 year old Francis Guthrie. CNP was created a century later, in 1950 by the
18-year old Edward Nelson. Augustus De Morgan was instrumental in keeping 4CP
alive for decades. Paul Erdős, like De Morgan a century earlier, kept the flaming
torch of the problem lit. He made the chromatic number of the plane problem well
known by posing it in his countless problem talks and many publications.

In fact, the starting point of Edward Nelson in creating CNP problem was 4CP.
In his October 5, 1991, letter [33], he conveyed to the author the Story of Creation:

“Dear Professor Soifer:
In the autumn of 1950, I was a student at the University of Chicago and among

other things was interested in the four-color problem, the problem of coloring graphs
topologically embedded in the plane. These graphs are visualizable as nodes connected
by wires. I asked myself whether a sufficiently rich class of such graphs might possibly
be subgraphs of one big graph whose coloring could be established once and for all, for
example, the graph of all points in the plane with the relation of being unit distance apart
(so that the wires become rigid, straight, of the same length, but may cross). The idea did
not hold up, but the other problem was interesting in its own right and I mentioned it to
several people.”
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Both problems, 4CP and CNP, required a very long time to be conquered. Victor
Klee and Stan Wagon [54], observing that solving 4CP took 124 years, suggested
that CNP might require as long for its solution: “If a solution of CNP takes as long
as 4CC, then we will have a solution by the year 2084.” Will we succeed by 2084?
Paul Erdős would have said, “We shall see!” The great composer Arnold Schoenberg
believed that faith can move mountains. Erdős urged us to believe that the transfinite
Book of all theorems and their best proofs exists. A similar belief led Appel and
Haken to succeed in solving 4CP at the breaking point of available computing.
Such a belief is needed to conquer CNP, the author’s favorite open problem of
mathematics.

3 Translation of the Nelson Problem into the Language
of Graph Theory

Graph Theory was born out of our neglecting geometric considerations of shape and
size, and preserving only adjacency. Surprisingly, the past century has witnessed
a renewed interest in graphs, where geometrical considerations such as distance
matter, in fact, define the adjacency.

We can create a graph G(E2) out of the Euclidean plane E2 by taking all of
its points as vertices, and joining two vertices by an edge if and only if they are
at distance 1 apart. More generally, we call a graph unit-distance when any two
vertices are adjacent if and only if they are at distance 1 apart. In this language, the
Nelson Problem can be translated as follows:

The Nelson Problem 1 Find the chromatic number of the graph G(E2).

After 65 years of intensive work by many scholars, using tools from graph theory,
geometry, abstract algebra, topology and measure theory, we have been unable to
improve on the above bounds for 
(E2) in the general case. Ronald L. Graham
believes that the chromatic number of the plane is 5 or 6 (see [21, 22]). He cites
a theorem of Paul O’Donnell (see [34, 49]) showing the existence of 4-chromatic
unit-distance graphs of arbitrarily large girth (Theorem 28 below) as “perhaps, the
evidence that 
 is at least 5.” Paul Erdős [14, 15] believed that the chromatic number
of the plane was 5, 6, or 7. The author conjectured the answer to be 7.

4 The Polychromatic Number: The Lower Bound

When a problem withstands all assaults, mathematicians create related problems,
solutions of which may shed light on the original problem. Let us look at one of
them here. We say that a point set S realizes distance d if S contains two points at
distance d apart. In 1958 Erdős posed the following question.
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Fig. 1 The Mosers spindle A

B

C

D

E

F

G

Polychromatic Number of the Plane Problem 2 What is the smallest number of
colors needed to color the plane so that no color realizes all distances?

In 1992 Soifer [43] named this invariant the polychromatic number of the plane,
and denoted by 
p(E2). Clearly 
p(E2)�
(E2)� 7. In 1970 upper and lower bounds
for 
p(E2) were published by a Russian high-school student, Dmitry E. Raiskii [40].
We look at the lower bound here and return to the upper bound in Sect. 6. In 1961
the brothers Leo and Willie Moser produced [31] a seven-point plane configuration
that we now call The Mosers Spindle (Fig. 1): each edge in the spindle has length 1.

Lemma 3 Any three points of the Mosers Spindle contain two points at distance
1 apart. Consequently, in any coloring of a Mosers Spindle that forbids monochro-
matic distance 1, at most two points can be of the same color.

Raiskii [40] proved the following lower bound.

Theorem 4 
p(E2)� 4

Proof The following striking proof was found in 1997 by Alexei Merkov, another
Russian high-school student, and appeared in an obscure brochure [37]. It is
presented here with modifications by the author. We assume that the plane is colored
in three colors, red, white and blue, and that each color forbids a distance r, w and b,
respectively. Equip the three-colored plane with Cartesian coordinates with origin
O, and construct three 7-point sets Sr, Sw and Sb, each being the Mosers Spindle
(Fig. 2), in such a way that all three spindles share O as one of their seven vertices
and have edge lengths all equal to r, w and b, respectively. This construction defines
18 vectors: six ‘red’ ones, v1, v2, . . ., v6 from the origin O to each remaining point
of Sr, six ‘white’ ones, v7, v8, . . ., v12 from O to the points of Sw, and six ‘blue’ ones
v13, v14, . . ., v18 from O to the points of Sb.

We now introduce 18-dimensional Euclidean space E18 and a function M: E18!
E2 that maps each vector (a1, a2, . . . , a18) to a1v1 C a2v2 C . . . C a18v18. This
function induces a three-coloring of E18 by assigning to a point of E18 the color of
the corresponding point of the plane. In accordance with the colors of the vectors vi,
we call the first six axes of E18 ‘red’, the next six axes ‘white’, and the last six axes
‘blue.’
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Fig. 2 The Cartesian plane
with three Mosers Spindles

Let W be the subset of E18 consisting of all points whose coordinates include at
most one equal to 1 for each of the three colors of the axes, and the remaining (15
or more) coordinates equal to 0; it is easy to verify that W has 73D 343 points. For
any fixed array of coordinates allowable in W on white and blue axes, we get the
7-element set A of points in W with these fixed coordinates on white and blue axes.
The image M(A) forms in the plane a translate of the original 7-point set Sr. If we
fix another array of white and blue coordinates, we obtain another 7-element set in
E18, whose image under M in the plane would form another translate of Sr. Thus,
the set W gets partitioned into 49 subsets, each of which maps onto a translate of Sr.

By Lemma 3, any translate of Sr has at most two red points among its 7 points.
Since W has been partitioned into translates of Sr, at most 2/7 of the points of W
are red. We can now start all over again, and similarly show that at most 2/7 of the
points of W are white, and at most 2/7 of the points of W are blue. But 2/7C2/7C2/7
is less than 1. This contradiction implies that at least one of the colors realizes all
distances, as required. �

5 The de Bruijn–Erdős Theorem

We can expand the notion of the chromatic number to any subset S of the plane.
The chromatic number ¦(S) is the smallest number of colors sufficient to color the
points of S in such a way that forbids monochromatic pairs of points at distance 1
apart. In other words, we create on S a unit distance graph, with vertex set S and
two points adjacent if and only if they are distance 1 apart, and denote by ¦(S) the
chromatic number of this graph.
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In 1951 Nicolaas G. de Bruijn and Paul Erdős [11] published a lemma that
implies the following important ‘compactness theorem’; its proof assumes the
axiom of choice.

The De Bruijn-Erdős Theorem 5 The chromatic number of the plane is equal to
the maximum chromatic number of its finite subsets.

Accordingly, Erdős used to say that the problem of finding the chromatic number
of the plane is a problem about finite sets in the plane. In 1975 he posed the following
problem [13]:

Erdős’ $25 Problem 6 Let S be a subset of the plane which contains no equilateral
triangle of side length 1. Join two points of S if their distance is 1. Does this graph
have chromatic number at most 3? If the answer is no—assume that the graph
defined by S contains no Cl [cycles of length l] for 3 � l � t and ask the same
question.

Erdős was unsure of the outcome (which was rare for him): he expected triangle-
free unit distance graphs to have chromatic number at most 3, or else that chromatic
number 3 can be forced by prohibiting all small cycles up to Ct, for sufficiently
large t.

In 1979 Nicholas Wormald [53] disproved the first, easier conjecture, contained
in Problem 6, and Erdős promptly paid $25 and reported the result in a lecture and
later in print [16]:

In a recent paper (still unpublished), Wormald found a set S for which the unit distance
graph G1(S) has girth 5 and chromatic number 4. His construction involved elaborate
computations and is fairly complicated. Indeed, aided by a computer, he had proved in
[49] the existence of a set S of 6448 points with chromatic number 4 and without triangles
or quadrilaterals with all sides of length 1.

In 1992 the author in a talk posed this Erdős’ $25 Problem, in a form of
competition:

Problem 7 Find the smallest number ¢4 of points in a plane set with chromatic
number 4 without unit equilateral triangles, and classify all such sets S of ¢4 points.

Several young mathematicians entered the race, and the graphs obtained by the
record setters were as mathematically significant as they were beautiful (see [49]).
The two record-holding graphs, created by roommates-graduate students of Rutgers
University Robert Hochberg and Paul O’Donnell [24], are shown in Figs. 3 and 4;
both graphs are 4-chromatic unit-distance graphs.

6 The Polychromatic Number: The Upper Bound

An example proving an upper bound 
p(E2)� 6 was found by Sergei B. Stechkin
(see Fig. 5) and published by Raiskii [40].

The ‘unit of construction’ is a parallelogram consisting of four regular hexagons
and eight equilateral triangles, all of side-length 1. We color the hexagons with
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Fig. 3 The
Hochberg–O’Donnell fish
graph, of girth 4 and order 23

Fig. 4 The
Hochberg–O’Donnell star
graph, of girth 5 and order 45

Fig. 5 Stechkin’s six-coloring of the plane
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Fig. 6 Two squares that
induce the tiling of the plane
with octagons and squares

Fig. 7 Boundary points
included in the colors of the
polygons are shown in bold

Fig. 8 Soifer’s six-coloring
of the plane 4
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colors 1, 2, 3 and 4. We then partition the triangles into two types: assign color 5
to the triangles with a vertex below their horizontal base, and color 6 to those with
a vertex above their horizontal base. While coloring, assume that every hexagon
includes its entire boundary, except for its one right-most and two lowest vertices,
and that every triangle includes none of its boundary points. We can now tile the
entire plane with translates of the ‘unit of construction’.

If our ultimate goal is to find the chromatic number of the plane, or at least to
improve its known bounds, it might be worthwhile to ‘measure’ how close a given
coloring of the plane is to achieving this goal. In 1992 such a measurement was
introduced by the author and named the coloring type (see Soifer [43, 44]): given
an n-coloring of the plane for which color i does not realize the distance di (for
1� i� n), we say this coloring is of type (d1,d2, . . ., dn).

It would improve our search for the chromatic number of the plane if we could
find a six-coloring of type (1, 1, 1, 1, 1, 1), or show that one does not exist.
With an appropriate choice of unit, Stechkin’s coloring in Fig. 5 has type (1, 1,
1, 1, 1/2, 1/2). In 1973 Woodall [52] found a second six-coloring of the plane
with no color realizing all distances; his coloring had a property that each of
the six monochromatic sets was closed. However, his example had three ‘missing
distances’: it had type (1, 1, 1, 1/

p
3, 1/
p
3, 1/2

p
3). In 1991 a new six-coloring

was found by the author [44], using a tiling of the plane by squares and non-regular
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octagons; it had type (1,1,1,1,1, 1/
p
5). To construct it, we start with two squares,

one of side 2 and the other of diagonal 1 (see Fig. 6), and use them to create a
tiling of the plane with squares and non-regular octagons (see Fig. 8); colors 1–5
were used for the octagons, and all the squares were colored 6. With each octagon
and each square we include half of its boundary (bold lines in Fig. 7) without the
endpoints of that half. It is easy to verify that

p
5 is not realized by any of the colors

1–5, and 1 is not realized by color 6. By shrinking all linear sizes by a factor of
p
5,

we obtain the six-coloring of type (1,1,1,1,1, 1/
p
5). To simplify the verification, we

define the unit of construction as the region bounded by the bold line in Fig. 8; its
translates tile the plane.

The above six-coloring gave birth to a new definition (see [25]). The almost
chromatic number 
a(E2) of the plane is the minimal number of colors that are
required to color the plane so that all but one of the colors forbid unit distance,
and the remaining color forbids a distance, which is not necessarily unit. Note that
4�
a(E2)� 6; the lower bound follows from Raiskii [40], and the upper bound
follows form the above six-coloring. The problem of determining 
a(E2) is still
open (see [49]).

7 The Continuum of Six-Colorings

In 1993 another six-coloring was found by the 15-year old violinist Ilya Hoffman
and the author (see [25, 26]), with type (1, 1, 1, 1, 1,

p
2� 1); the story of its

discovery can be found in [49]. To construct it we first tile the plane with squares
of diagonals 1 and

p
2� 1 (see Fig. 9). We use colors 1–5 for larger squares and

color 6 for all small squares. With each square we include the left and lower sides
of its boundary without the endpoints of this half (see Fig. 10). To verify that this
coloring does the job, define the unit of construction that is bounded by the bold line
in Fig. 9; its translates tile the plane.

In 1993 the above two examples prompted the introduction of new terminology
and the translation of earlier results and problems into this new language (see [45,
46]). We let X6 denote the 6-realizable set of all positive numbers ˛ for which there
exists a six-coloring of the plane of type (1, 1, 1, 1, 1, ˛). The problem, posed by
the author, which is still open and extremely difficult, is to find X6.

We know, from our above discussion, that 1/
p
5 and

p
2 – 1 both lie in X6. As

shown by the author in [45, 46] (see also [49]), these are extreme examples of the
general case, which includes a continuum of ‘working’ six-colorings: for every ˛
between

p
2 – 1 and 1/

p
5, there is a six-coloring of type (1, 1, 1, 1, 1, ˛).

Theorem 8 X6 contains the entire closed interval [
p
2 – 1, 1/

p
5].

Outline of Proof We tile the plane with congruent non-regular octagons and ‘small’
squares (see Fig. 11). We now color this tiling in six colors. Denote by F the unit
of our construction, bounded by a bold line and consisting of five octagons and four
‘small’ squares. Use colors 1–5 for the octagons inside F and color 6 for all ‘small’
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squares, and include in the colors of octagons and ‘small’ squares those parts of
their boundaries that are shown in bold in Fig. 12. This is followed by a proof that
for each ˛ from the given in the theorem interval, we can vary the relative sizes of
the hexagons and squares and the angle between them to guarantee that this six-
coloring has type (1, 1, 1, 1, 1, ˛). We have found a continuum of values for ˛ and
a continuum of ‘working’ six-colorings of the plane.

8 The Chromatic Number of the Plane in Special
Circumstances

In 1973 Douglas R. Woodall [52] attempted to prove a lower bound for the
chromatic number of the plane for the special case of ‘map-type colorings’.
However, in 1979 Stephen P. Townsend constructed a counter-example that showed
that one essential idea of Woodall’s proof was incorrect. By that time, Townsend
had already proved the same result, and his proof was much more elaborate
than Woodall’s attempt. For decades Townsend’s proof was unavailable until he
produced a clear version of it where the definition of the map-type coloring can
also be found (see [49]). The following result was thus conjectured by Woodall and
proven by Townsend.

The Townsend–Woodall Theorem 9 The chromatic number of the plane under
map-type coloring is 6 or 7.

Woodall [52] showed that this result implies another result worth mentioning.

Fig. 9 Hoffman and Soifer’s
six-coloring of the plane
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Fig. 10 Boundary points
included in the colors of the
squares are shown in bold

Fig. 11 Continuum of
six-colorings of the plane
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Fig. 12 Boundary points
included in the colors of the
polygons are shown in bold

Theorem 10 The chromatic number of the plane under coloring with closed
monochromatic sets is 6 or 7.

In 1993–94 three American undergraduate students, Nathanial Brown, Nathan
Dunfield and Greg Perry, proved that a similar result is true for coloring with open
monochromatic sets (see [3–5]).

Theorem 11 The chromatic number of the plane under coloring with open
monochromatic sets is 6 or 7.

A related graph-theoretic result was obtained by Carsten Thomassen ([49, 51]).
He proved that for a “nice” coloring of a connected graph on a surface, such as the
plane, seven colors are needed.
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Meanwhile, Kenneth J. Falconer [18], while still a graduate student, proved the
following important result, that the measurable chromatic number 
m(E2) of the
plane is 5, 6 or 7.

The Falconer Theorem 12 If E2 D 4[
iD1Ai is a covering of the Euclidean plane E2

by four disjoint measurable sets, then one of the sets Ai realizes distance 1.

Decades later, Falconer wrote a much more detailed and self-contained exposi-
tion of his result especially for [49]. Theorem 12 means that if a four-coloring of the
plane forbids monochromatic distance 1, then one of the classes is non-measurable.

9 Space Explorations

Around 1961 Erdős generalized the problem of finding the chromatic number of the
plane to n-dimensional Euclidean space En. He was interested both in asymptotic
behaviour as n increases, and in exact values of the chromatic number 
(En) for
small n (especially nD 2 and 3).

In 1970 Raiskii [40] proved that 
(En)� nC 2, for all n > 1; thus, for nD 3 we
have 
(E3)� 5. This lower bound for E3 lasted until 2000, when Oren Nechushtan
proved that 
(E3)� 6 (see [32]). For upper bounds, David Coulson [9, 10] proved
that 
(E3)� 15, by using a face-centred cubic lattice (see Conway and Sloane [8] for
more on cubic lattices). For higher dimensions, Kent Cantwell [6] proved in 1996
that 
(E4)� 7 and 
(E5)� 9; these remain the best results known. Then in 2008 the
Czech student Josef Cibulka [7] proved that 
(E5)� 11.

Many years ago, Erdős conjectured that the chromatic number 
(En) increases
exponentially with n. This conjecture was settled in the affirmative by two results,
an exponential upper bound, found in 1972 by D. G. Larman and C. A. Rogers [28],
and an exponential lower bound obtained in 1981 by P. Frankl and R. M. Wilson
[20]:

For all n; .1C o.1// 1:2n � 
 .En/ � .3C o.1//n.

Asymptotically, Larman and Rogers’s upper bound remains the best known
today. In 2000 Frankl and Wilson’s asymptotic lower bound was improved by
Andrei Raigorodskii [39] to (1.239 : : : C o(1))n. Narrowing the remaining gap is
desirable.

The polychromatic number 
p(E2) also generalizes to higher dimensions. Raiskii
[40] proved that 
p(En) � n C 2, for all n > 1. Larman and Rogers’s upper bound
implied 
p(En) � (3 C o(1))n. Their conjecture that 
p(En) grows exponentially in
n, was proved by Frankl and Wilson [20], who showed (1C o(1)) 1.2n � 
p(En).
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10 The Chromatic Number of Rational Spaces

Another approach to the chromatic number of the plane E2 is to use Cartesian
coordinates. Here, E2 is the set of all ordered pairs (x, y) with real coordinates x and
y, with the distance between two points defined in Euclidean way. Since it suffices to
deal with finite subsets of E2, by de Bruijn and Erdős’ Theorem 3.1, we can restrict
the coordinates to some subset C of E. The problem is: which subset should we
choose?

Problem 13 Find a countable subset C of the set of real numbers E whose
chromatic number 
(C2) equals that of the plane.

The set Q of all rational numbers does not work, as shown by Woodall [52]:

Theorem 14 
(Q2)D 2.

In 1975 there appeared ‘the legendary unpublished manuscript’, as P. D. Johnson,
Jr. referred to the manuscript by Miro Benda and Micha Perles. This widely
circulated manuscript was called Colorings of Metric Spaces; Johnson tells its story
in the Geombinatorics, where in January 2000 the Benda–Perles paper was finally
published [2]. It included the following results:

Theorem 15 
(Q3)D 2 and 
(Q4)D 4.

Benda and Perles [3] then posed some important open problems.

Problem 16 Find 
(Q5) and, in general, 
(Qn).

Problem 17 Find the chromatic number of Q
�p

2
�2

and, in general, of any

algebraic extension of Q2.

This direction was developed by P. D. Johnson, Jr., Joseph Zaks, Klaus Fischer,
Kiran B. Chilakamarri, Michael Reid, Douglas Jungreis, David Witte, and Timothy
Chow. In 2006 Johnson [29] published in Geombinatorics “A tentative history and
compendium” of this direction of inquiry.

More recently Matthias Mann [29] has proved that 
(Q5) � 7. This jump from

(Q4) D 4 explains the difficulty of finding 
(Q5), whose exact value is still
unknown. Mann [30] then obtained further lower bounds: 
(Q6)�10; 
(Q7)�13;

(Q8)�16. In 2008 Cibulka [7] obtained new lower bounds for these chromatic
numbers, improving some of Mann’s results: 
(Q5)�8 and 
(Q7)�15

11 One Odd Graph

In 1994 Moshe Rosenfeld [41] defined the odd-distance graph Eodd to be the graph
with vertex-set E2 in which two vertices are adjacent whenever the distance between
them is an odd integer. He showed that Eodd does not have a subgraph K4, and
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asked whether the chromatic number of Eodd is finite. In fact, while the problem was
new, the absence of K4-subgraphs was not, following from a more general result of
Graham, Rothschild and Straus [23]:

Theorem 18 In En there exist nC 2 points for which the distance between any two
of them is an odd integer if and only if n� 14 (mod 16).

In the necessary part of the proof, the authors used a Victorian result about
determinants by Arthur Cayley. The main problem remains wide open:

Problem 19 Find 
(Eodd).

We do not even know whether 
(Eodd) is finite. In 2009 Ardal, Manuch,
Rosenfeld, Shelah and Stacho [1] improved the lower bound to 
 .Eodd/ � 5. Let
me pose here, for the first time, the following conjecture:

Conjecture 20 
(Eodd) � @0.

In fact, let us denote the measurable chromatic number of the odd-distance graph
by 
m(Eodd). In 1986 Falconer and Marstrand [19] proved that plane sets with
positive density at infinity contain all large distances. This proves the conjecture
in a special case: 
m(Eodd) � @0.

12 The Influence of Set Theory Axioms
on Combinatorial Results

Here we need some ideas from set theory. The standard Zermelo–Fraenkel–Choice
system of axioms for set theory will be denoted by ZFC; the countable axiom of
choice by AC@0 , the principle of dependent choices by DC. We will use one further
axiom, LM: every set of real numbers is Lebesgue measurable. Our first task is to
extend the definition of the chromatic number of a graph. Without the axiom of
choice, the chromatic number of a graph may not exist. In allowing a system of
axioms for set theory to exclude the axiom of choice, we need to create a much
broader definition of the chromatic number than the usual one, if we want it to exist.
In fact, instead of the chromatic number we ought to talk about the set of chromatic
cardinalities. There are several meaningful ways to define this. Here is one that the
author chose in [49].

Definition 21 Let G be a graph and let A be a system of axioms for set theory.
The set of chromatic cardinalities 
A(G) of G is the set of all cardinal numbers
� � jV.G/j for which there is a proper coloring of the vertices v(G) of G in �
colors, and � is minimum with respect to this property.

As can be seen, the set of chromatic cardinalities needs not have just one element
as with ADZFC. It can also be empty. The advantage of this definition is its
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simplicity. Best of all, we can use inequalities on sets of chromatic cardinalities
as follows.

Let � be a cardinal number. The inequality 
A(G) > � means that, for every 	 ç

A(G), 	 > � ; the inequalities <, � and � are defined analogously. We also agree
that the empty set is greater than or equal to any other set of cardinal numbers.
Finally, if � is a cardinal number and 
A(G)D f�g is a one-element set of chromatic
cardinalities (as is the case with the chromatic number when A D ZFC), then we
will simplify our notation by omitting parentheses and writing 
A(G)D � .

An infinite cardinal @˛ is regular if cf !˛D!˛ , and � is a strong limit cardinal
if, for every cardinal �, �< � implies that 2� < �. A cardinal � is called inaccessible
if � > @0, � is regular, and � is a strong limit cardinal. Assuming the existence
of an inaccessible cardinal, and using Paul Cohen’s forcing, Robert Solovay [50]
constructed in 1964 and published in 1970 a model that proved a remarkable
theorem. In his honor the author introduced the following definitions [49].

The Zermelo–Fraenkel–Solovay system of axioms ZFS for set theory is defined
by ZFS D ZFC AC@0 C LM, and ZFSC stands for ZFCDCCLM.

Solovay’s theorem can now be formulated very concisely:

Solovay’s Theorem 22 ZFSC is consistent.

Saharon Shelah and Alexander Soifer [42] constructed the following example.
Define a graph G as follows: the vertex-set is the set of real numbers, and the set
of edges is f(s, t): s � t � p2 ç Qg. They proved that for this graph 
ZFC(G) D 2,
while 
ZFS(G) > @0.

This example and its analogues in 2- and more generally n-dimensional
Euclidean spaces prompted Jean-Paul Delahaye [12] to point out philosophical
questions of the foundations stemming from these examples:

“It turns out that knowing if the world of sets satisfies the axiom of choice or a competing
axiom is a determining factor in the solution of problems that no one had imagined depended
on them. The questions raised by the new results are tied to the fundamental nature of the
world of sets. Is it reasonable to believe that the mathematical world of sets is real? If it
exists, does the true world of sets—the one in which we think we live—allows the coloring
of S. Shelah and A. Soifer in two colors or does it require an infinity of colors? : : :

A series of results concerning the theory of graphs, published in 2003 and 2004
by Alexander Soifer of Princeton University and Saharon Shelah, of the University of
Jerusalem, should temper our attitude and invite us to greater curiosity for the alternatives
offered by the axiom of choice. The observation demonstrated by A. Soifer and S. Shelah
should force mathematicians to reflect on the problems of foundations: what axioms must
be retained to form the basis of mathematics for physicists and for mathematicians?”

Delahaye observes (ibid): “These [Shelah-Soifer’s] results mean, as with the par-
allels postulate, that several different universes can be considered,” and continues:

“In the case of geometry, the independence of the parallels postulate proved that non-
Euclidian geometries deserved to be studied and that they could even be used in physics:
Albert Einstein took advantage of these when, between 1907 and 1915, he worked out his
general theory of relativity.

Regarding the axiom of choice, a similar logical conclusion was warranted; the universes
where the axiom of choice is not satisfied must be explored and could be useful in physics.”
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Similar examples with the plane E2, and in general En, as the vertex-set, were
constructed in [48] and [47] respectively. These examples illuminate the influence
of the system of axioms for set theory on combinatorial results. They also suggest
that the chromatic number of En may not exist ‘in the absolute’ (that is, in ZF), but
may depend upon the system of axioms chosen for set theory. An important example
later came from the Australian student Michael Payne [35], who started with the
unit-distance graph G1 whose vertex-set is the rational plane Q2, where, as usual,
two vertices are adjacent if and only if they are at distance 1 apart. He then showed
that the desired unit-distance graph G on the vertex-set E2 is obtained by tiling the
plane by translates of the graph G1 – that is, its edge-set is f(p1, p2): p1, p2 ç E2, p1 –
p2 ç Q2, and jp1 – p2j D 1g, and proved that 
ZFC(G) D 2 and 3 � 
ZFS(G) � 7.
Payne proved first that any measurable set S of positive Lebesgue measure contains
the endpoints of a path of length 3 in G. Of course, this rules out a 2-coloring of S.
Payne continued: “We can then proceed in a similar fashion to Shelah and Soifer’s
proof [42].” In 2009 Payne [36] constructed a new class of unit distance graphs on
the vertex-set En whose chromatic number depends upon the system of axioms for
set theory.

13 Predicting the Future

In 2003 Shelah and Soifer [42] observed the following surprising result.

Theorem 23 Assume that any finite unit-distance plane graph has chromatic
number not exceeding 4. Then 
ZFC

�
E2
� D 4, but 
ZFSC �E2� � 5.

Can we obtain any results unconditionally? Yes, we can [49], but not yet in ZFC.

Theorem 24 
ZFSC �E2� � 5.

We conclude with the author’s conjectures [49] of the expected value of the
chromatic number of the plane, and more generally of En—in ZFC. Formulating
conjectures is a form of predicting the future, is it not?

Conjecture 25 

�
E2
� D 4 or 7.

If the chromatic number of the plane were 4, then Theorem 23 would imply that
the chromatic number of the plane does not exist in absolute, but depends upon the
choice of the system of axioms for set theory. However, if the author were limited
to a single value, he would conjecture the value 7:

The Chromatic Number of the Plane Conjecture 26 

�
E2
� D 7.

If this conjecture is true, then a unit-distance 7-chromatic finite graph exists in
the plane. In 1998 Dan Pritikin [38] published a lower bound for the order of such a
graph:

Theorem 27 Any unit-distance 7-chromatic graph G has at least 6198 vertices.

In fact, the order of the smallest such graph may be even larger.
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The following important result from the 1999 Ph.D. thesis of Paul O’Donnell
makes many of us think that the chromatic number of the place is greater than 4:

The O’Donnell Theorem 28 For any n � 3, there is a unit distance 4-chromatic
graph of girth n.

For the 3-dimensional space the author [49] conjectures as follows:

Conjecture 29 

�
E3
� D 15.

In general, the author conjectures [49]:

The Main Chromatic Number Conjecture 30 For any positive integer n > 1,


 .En/ D 2nC1– 1:

To paraphrase Paul Erdős’ words about some of his conjectures, we can say, the
Main Conjecture will likely withstand centuries, but we shall see!

The author is forever indebted to the late Paul Erdős and Edward Nelson for
their inspiration and friendship. A heartfelt gratitude goes to John F. Nash, Jr. and
Michael Rassias for their appreciation of this problem and a kind invitation to write
this chapter in a group of distinguished colleagues for this spectacular collection of
open problems of mathematics.
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Erdős’s Unit Distance Problem

Endre Szemerédi

Abstract We survey some problems and results around one of Paul Erdős’s favorite
questions, first published 70 years ago: What is the maximum number of times that
the unit distance can occur among n points in the plane? This simple and beautiful
question has generated a lot of important research in discrete geometry, in extremal
combinatorics, in additive number theory, in Fourier analysis, in algebra, and in
other fields, but we still do not seem to be close to a satisfactory answer.

1 A Short History of the Problem

Diameters Consider all
�n
2

�
pairs taken from an n-element point set P in the plane.

In 1934, Hopf and Pannwitz [33] discovered that the number of pairs that determine
the largest distance, that is, the diameter of P is at most n. This bound is attained
by the vertex set of the regular n-gon and by many other configurations. Shortly
after, Erdős generalized the question in several different ways. In particular, he
asked that at most how many times the diameter can occur among n points in
3-dimensional space and in higher dimensions. His childhood friend, Andy
Vázsonyi conjectured that in 3-space the answer was 2n � 3, for every n � 4. This
was proved independently by Grünbaum [28], Heppes [32], and Straszewicz [60].
The bound is sharp for the set of vertices of a tetrahedron with n � 4 additional
points that lie on a circle C passing through two vertices of the tetrahedron, such
that the perpendicular axis of C is the line induced by the two other vertices.
This result easily implies that Borsuk’s famous conjecture [6] is true in 3-space:
every d-dimensional point set can be decomposed into d C 1 pieces of smaller
diameter. Surprisingly, in 1993, Kahn and Kalai [36] disproved Borsuk’s conjecture
when d is sufficiently large. At present, the smallest known counterexample is
64-dimensional [34]. It is an interesting question to decide what happens in lower
dimensions.
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The diameter graph of a point set P is the graph on the vertex set P, in which two
vertices are connected by an edge if and only if their distance is the diameter of P.
A beautiful generalization of the above mentioned result of Hopf and Pannwitz was
suggested by Schur [53]. He conjectured that the maximum number of d-cliques
(complete subgraphs with d vertices) in the diameter graph of a d-dimensional point
set is n. The answer does not depend on the dimension! Schur et al. [53] proved
this conjecture for d D 3. Morić and Pach [48] verified it in the case when any two
d-cliques of the diameter graph share d � 2 vertices, and conjectured this condition
always holds. Finally, Kupavskii and Polyansky [42, 43] proved this last conjecture
and, hence, settled Schur’s conjecture in the affirmative.

Geometric Graphs Erdős made another fruitful observation concerning the Hopf-
Pannwitz result on diameters. He noticed that if we draw the edges of the diameter
graph as straight-line segments, any two edges share an endpoint or an interior point.
We call a graph whose vertices are points in the plane, no 3 on a line, and whose
edges are closed segments, a geometric graph. Erdős pointed out that essentially
the original proof of the Hopf-Pannwitz result also gives that every geometric
graph with n vertices and no 2 disjoint edges has at most n edges. Following
this observation, Erdős, Avital and Hanani [3], Kupitz [44], and later Perles and
Pach [49], started to systematically explore extremal problems for geometric graphs,
where the forbidden configuration is “geometrically defined”. What is the maximum
number of edges that a geometric graph of n vertices can have if it contains no
k disjoint edges, no k pairwise intersecting edges, no non-selfintersecting path of
length k, etc.? This has led to the birth of a rich separate area within combinatorial
geometry, which is usually called geometric graph theory. See [50], for a recent
survey.

Unit Distances In 1946, Erdős [20] published a short paper in the American
Mathematical Monthly, in which he suggested a very natural modification of the
Hopf-Pannwitz question. Let P be a set of n points in the plane. What happens if we
want to determine or estimate u.n/, the largest number of unordered pairs fp; qg � P
such that p and q are at a fixed distance, which is not necessarily the largest distance
between two elements of P? Without loss of generality we can assume that this
distance is the unit distance. This explains why Erdős’s question is usually referred
to as the unit distance problem. That is,

u.n/ D max
P�R2;jPjDn

jffp; qg � P W jp � qj D 1gj:

Using classical results of Fermat and Lagrange, Erdős showed that one can
choose an integer x � n=10 that can be written as the sum of two squares in at least
nc= log log n different ways, for a suitable constant c > 0. Thus, among the points of
the
p

n	pn integer lattice, there are at least .1=2/n1Cc= log log n pairs whose distance
is
p

x. Scaling this point set by a factor of 1=
p

x, we obtain a set of n points with at
least .1=2/n1Cc= log log n, i.e., with a superlinear number of, unit distance pairs.
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Fig. 1 If the segments
PA;QA;PB;QB;QA0 are of
length 1, then the length of
PA0 cannot be 1

Q

P

B A

A'

For any set of n points P, define the unit distance graph of P as the geometric
graph GP on the vertex set V.GP/ D P, in which two vertices are joined by a
segment if and only if their distance is 1. We want to estimate the maximum number
of edges that such a graph can have. Erdős noticed that GP does not contain K2;3,
a complete bipartite subgraph with 2 and three vertices in its classes (see Fig. 1).
He proved that the maximum number of edges of a K2;3-free graph on n vertices is
c2n3=2, for some c2 > 0; see [19]. This statement and Turán’s theorem [68] were the
first instances of a result that belongs to the—by now vast—field called (Turán-type)
extremal graph theory; see Bollobás [5]. Summarizing, Erdős proved that

n1Cc1= log log n � u.n/ � c2n
3=2;

for some c1; c2 > 0; and he conjectured that the order of magnitude of u.n/ is
roughly n1Cc= log log n. In spite of many efforts to improve on the upper bound, 70
years after the publication of the paper in the Monthly, the best known upper bound
is still only slightly better than the above estimate. Erdős’s upper bound was first
improved by Józsa and Szemerédi [35] to o.n3=2/, and 10 years later by Beck and
Spencer [4] to O.n13=9/. In a joint paper with Spencer and Trotter [59], I proved
u.n/ D O.n4=3/; which is the best currently known result.

Erdős’s approach has had a tremendous impact on combinatorial geometry.
Today, when we try to solve a geometric optimization problem, first we attempt to
extract some special combinatorial property of the underlying structure. If we can
associate a graph or a hypergraph H with the geometric situation, we check if we can
exclude a so-called forbidden configuration (subgraph or subhypergraph) H0. If this
is the case, we forget about geometry, and try to establish or apply some known
results to bound the number of (hyper)edges of an H0-free graph or hypergraph.
This point of view has fertilized extremal combinatorics and motivated many new
problems and results.

Incidences Given a curve � and a point p, we say that there is an incidence between
them if � passes through p, that is, p 2 � . Up to a factor of at most 2, the unit distance
problem can now be rephrased as follows. Given a set P of n points in the plane
and a set � of n unit circles, what is the maximum number of incidences between
them? Of course, the same question can be asked for any set of n curves taken
from a fixed family of curves other than the family of unit circles. An important
special case is when � consists of n distinct straight lines. For this case, Erdős
conjectured and I proved together with Trotter [64, 65] that the maximum number of
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incidences is O.n4=3/. Note that in a finite projective plane the number of incidences
between n points and n lines can be as large as cn3=2. Thus, our result establishes a
combinatorial distinction between the Euclidean plane and finite projective planes.
The proof technique of the original paper was extended by Tóth [67], who generalize
the Szemerédi-Trotter theorem to the complex plane. Later a slightly weaker, but
more general result was proved by Solymosi and Tao [57], using the polynomial
ham-sandwich theorem of Guth and Katz [29, 30] and methods from algebraic
geometry.

Our bounds on the number of incidences between points and unit circles, and
points and lines in the plane have a common generalization. A family of curves has
k degrees of freedom and multiplicity type s if

1. for any k points there are at most s curves of � passing through all of them, and
2. any pair of curves from � intersect in at most s points.

For example, the family of all straight lines in the plane has 2 degrees of freedom
and multiplicity type 1. The family of all unit circles has 2 degrees of freedom
and multiplicity type 2. The family of all circles of arbitrary radii has 3 degrees of
freedom and multiplicity type 2. The family of all polynomial curves defined by an
equation y D p.x/, where p is a polynomial of degree d, has dC1 degrees of freedom
and multiplicity type d. According to the Pach-Sharir theorem [51], the number of
incidences between n points in the plane and m curves taken from a family � of
curves with k degrees of freedom and multiplicity type s is at most

c.k; s/
�
nk=.2k�1/m.2k�2/=.2k�1/ C nC m

�
;

for a constant c.k; s/ depending only on k and s. In the special case m D n; k D 2,
we obtain the bound u.n/ D O.n4=3/ on the maximum number of unit distances
among n points in the plane and the Szemerédi-Trotter theorem on incidences
between points and lines.

Computational vs. Combinatorial Geometry In the late 1980s, it became clear
that results about incidences play an important role in analyzing many basic
algorithms in computational geometry, computer vision, and robotics. Clarkson,
Edelsbrunner, Guibas, Sharir, Welzl, and other computer scientists revisited these
questions, and made many important contributions. In particular, they gave a new
proof of the Szemerédi-Trotter theorem based on space partitions constructed by
random sampling methods [16]. They also generalized the incidence results in a
natural way, motivated by applications in motion planning. A set of m lines divide
the plane into at most

�mC1
2

� C 1 cells. We pick n of them, and we would like to
bound from above the total number of their sides. It was shown in [16] that this
quantity is at most O.n2=3m2=3 C nC m/. By perturbing a little the arrangement of
lines, so that a point incident to k lines becomes a cell with O.k/ sides, we obtain
that the number of incidences between m lines and n points is O.n2=3m2=3C nCm/.
Similar generalizations have been established for the total number of sides of n
cells in arrangements of various kinds of curves. Combinatorial and computational
geometry have both benefitted a lot from decades of interaction.
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Distinct Distances In the same 1946 paper published in the American Mathe-
matical Monthly where Erdős raised the unit distance problem, he also asked the
following closely related question. What is the minimum number f .n/ of distinct
distances determined by a set P of n points in the plane? In other words, if we list
with multiplicities all

�n
2

�
distances between the points of P, at least how many of

these numbers are necessarily distinct? Erdős conjectured that f .n/ � cn=
p

log n
for a suitable constant c > 0. Again, this would be asymptotically tight for an
integer lattice of size

p
n 	pn. Obviously, if we have an upper bound on u.n/, the

maximum number of times the same distance can occur among n points, this yields a
lower bound on f .n/, the minimum number of distinct distances. This follows from
the trivial inequality

f .n/ �
�n
2

�

u.n/
:

Therefore, the best known bound u.n/ D O.n4=3/ only implies that f .n/ � cn2=3.
This result was subsequently improved in [14, 15, 39, 58, 63], culminating in the
result of Katz and Tardos [40], which states that for any " > 0, any set of n �
n0."/ points in the plane has an element from which there are at least n˛�" distinct
distances, where ˛ D .48�14e/=.55�16e/ � 0:8641. Thus, we have f .n/ � n0:864,
provided that n is sufficiently large. These developments suggested that it might
be easier to settle the problem of distinct distances than the unit distance problem.
Indeed, in a sensational breakthrough, Guth and Katz [30] almost completely settled
Erdős’s question. They proved that f .n/ � cn= log n. Curiously, no similar bound is
known for the stronger version, where we want to find a point from which there are
many distinct distances.

2 A Short Proof of the Best Upper Bound on u.n/

In the original paper [59], in which we proved the best known upper bound,
u.n/ D O.n4=3/, for the unit distance problem, we modified the ideas in [65]. The
proof had two main components: a regular subdivision of the plane and a counting
argument. Combining them, we found that if the number of unit distances were too
large, the total number of intersection points between the unit circles drawn around
the n points would exceed 2

�n
2

�
, which is impossible. The aim of this section is to

present a much more elegant argument, due to Székely [63], which is based on the
Crossing Lemma of Ajtai et al. [1] and, independently, Leighton [45]. In retrospect,
the idea of this proof does not differ much from the original one, but there is no need
to construct a regular subdivision of the plane: it will be automatically created by a
random “thinning” of the unit distance graph; see below. As was mentioned earlier,
there is a third proof [16], in which the regular subdivision itself is constructed
by random sampling. The same proof is “redressed” by Kaplan et al. [38]. Here the
only difference is that the partitioning is created using the polynomial ham-sandwich
theorem of Guth and Katz.
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We start with presenting the Crossing Lemma. We need to extend the notion
of geometric graphs. A topological graph is a graph drawn in the plane so that
its vertices are represented by points and its edges are represented by Jordan arcs
connecting the corresponding point pairs, where

1. no arc passes through any point representing a vertex, other than its endpoints;
2. any two arcs intersect in a finite number of points;
3. no two arcs are tangent to each other.

If two arcs have an interior point in common, they must properly cross at this point.
We refer to such a point, as a crossing, and we say that the two edges (arcs) cross
each other. For simplicity, in terminology, we make no distinction between vertices
and the corresponding points and between edges and the corresponding arcs.

Crossing Lemma ([1, 45]). Let G be a topological graph with n vertices and
m � 4n edges. Then cr.G/, the number of crossing pairs of edges, satisfies the
inequality

cr.G/ � 1

64
� m3

n2
:

Proof. The following proof is folkloristic: it was discovered by Lovász, Matoušek,
Pach, and others. It follows by induction on m that

cr.G/ � m � 3nC 6 > m � 3n: (1)

For any 0 < p � 1, define a random (topological) subgraph Gp of G, by selecting
each vertex of G independently with probability p, and letting Gp denote the
subgraph induced by the selected vertices. That is, an edge (arc) of G belongs to Gp

if and only if both of its endpoints have been selected. Let n.Gp/ and m.Gp/ denote
the number of vertices and the number of edges in Gp, respectively. According to (1),
we have

cr.Gp/ � m.Gp/ � 3n.Gp/:

Taking the expected values of both sides, we obtain

EŒcr.Gp/� � EŒm.Gp/� � 3EŒn.Gp/�:

Clearly, we have EŒn.Gp/� D pn and EŒm.Gp/� D p2m. On the other hand, the
expected number of crossing pairs of edges not incident to the same vertex of Gp is
equal to p4cr.G/. Consequently,

p4cr.G/ � p2m � 3pn:
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Setting p D 4n=m, we obtain that

cr.G/ � m

p2
� 3n

p3
D m3

16n2
� 3m3

64n2
D 1

64
� m3

n2
;

which completes the proof. �

As before, let u.n/ denote the maximum number of times that the unit distance
can occur among n points in the plane. The desired inequality u.n/ � cn4=3; for a
suitable positive constant c, is an immediate corollary of the m D n special case of
the following theorem.

Theorem ([16]). There is an absolute constant c > 0 such that the number of
incidences between n points and m unit circles in the plane is at most c.n2=3m2=3 C
nC m/.

Proof. The following argument is due to Székely [63]. Let P be a set of n points and
� a set of m unit circles in the plane. Let I.P; �/ denote the number of incidences
between the elements of P and � .

Define a topological graph G on the vertex set P, as follows. Let any pair of
points p1; p2 2 P that are consecutive along a circle � 2 � be connected by the arc
of � that passes through no other points in P. We delete those arcs that run along
circles incident to at most two points.

We have jV.G/j D n and jE.G/j � I.P;C/�2m. Notice that G is a “multigraph,”
in the sense that the same edge can occur twice, along two arcs belonging to two
different circles �1; �2 2 � . Keep only one of these arcs. This will reduce the number
of edges by a factor of at most 2. With a slight abuse of notation, the resulting
topological graph is still denoted by G. Applying the Crossing Lemma, we obtain
for the number of crossing pairs of edges

cr.G/ � 1

64

..I.P;C/ � 2m/=2/3

n2
;

provided that jE.G/j � 4n. On the other hand, we clearly have

cr.G/ � m.m � 1/;

as the total number of intersection points between m circles, with multiplicities,
cannot exceed 2

�m
2

� D m.m � 1/: Comparing the last two inequalities, the theorem
follows. �

Incidences Between Points and Lines Székely’s argument, with some simplifi-
cations, can also be used to establish the Szemerédi-Trotter theorem mentioned
above: There is an absolute constant c > 0 such that the number of incidences
between n points and m lines in the plane is at most c.n2=3m2=3C nCm/. The order
of magnitude of this bound is best possible. In [65], this result was stated in the
following (seemingly weaker, but equivalent) form.
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Theorem ([65]). Let t and n be positive integers, t <
p

n. Let P be a set of n points,
 a set of lines in the plane. Then the number of distinct lines in  that pass through
at least t points of P is at most cn2=t3.

Sum-Product Estimates Given a set of t non-zero reals A, let ACA and A�A denote
the set of all pairwise sums faC b W a; b 2 Ag and pairwise products fab W a; b 2 Ag
formed by the elements of A. If the elements of A form an arithmetic progression or
a geometric progression, then jAC Aj � 2t � 1 and jA � Aj � 2t � 1, respectively.
In a joint paper with Erdős [25], it was shown that it cannot occur that both of these
sets have O.t/ elements. More precisely, we proved the existence of a small " > 0

such that maxfjAC Aj; jA � Ajg � t1C":
György Elekes, whose ingenious ideas contributed a lot to the near-solution of

Erdős’s problem on distinct distances by Guth and Katz, surprised us by a very
elegant improvement on our theorem, based on the above upper bound on the
number of lines that pass through at least t elements of an n-element point set in
the plane.

Theorem ([18]). There is a constant c > 0 such that for every set of t reals, we
have

maxfjAC Aj; jA � Ajg � ct5=4:

Proof. Let a1; : : : ; at denote the elements of A. For every j and k with 1 � j; k � t,
define

fjk.x/ WD aj.x � ak/:

Notice that for a fixed k, the function fjk maps the elements ak C ai into ajai,
i D 1; : : : ; t. Thus, setting P WD .A C A/ 	 A � A, we find that the graph of each
function fjk is a line that passes through at least t points of P. We have t2 such lines.
Applying the previous theorem, we obtain that

t2 � c
jPj2
t3
;

which implies that jPj D jAC Aj � jA � Aj � t5=2=
p

c, as required. �

Elekes’s bound has been slightly improved by Solymosi [56], who established
the inequality

maxfjAC Aj; jA � Ajg � t14=11

log3=11 t
:

It is conjectured that the lower bound can be replaced by t2�", for every " > 0,
but currently such a result does not seem to be within reach. Today sum-product
problems have a huge literature. In particular, there are many deep sum-product
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estimates for finite and other infinite fields, found by Bourgain et al. [7], Bourgain
et al. [8], Konyagin and Rudnev [41], and others. The subject has become an
important separate theme within additive combinatorics [66].

3 A Forbidden Submatrix Argument

Erdős’s trick of reducing a geometric problem to a question in extremal graph or
hypergraph theory has become a standard approach in combinatorial geometry.
Unfortunately, it does not always work. Sometimes it might work, but the com-
binatorial essence of the structure is hidden and cannot be easily extracted. Most of
the above mentioned proofs of the bound u.n/ D O.n4=3/ for the maximum number
of times the unit distance can occur among n points in the plane, use a forbidden
subgraph argument, but it has to be applied to several carefully selected subgraphs of
the unit distance graph. Applying them directly to the full graph, we obtain Erdős’s
initial bound u.n/ D O.n3=2/.

The only proof we know that follows by a direct application of a forbidden
substructure theorem is due to Pach and Tardos [52]. To state their combinatorial
result, we need some definitions.

Given a graph G on n vertices v1; : : : ; vn, let A.G/ denote its n 	 n adjacency
matrix, in which we put a 1 at the position .i; j/ if and only if vivj is an edge of G.
Otherwise, the entry is 0. Conversely, for any symmetric 0-1 matrix A with an all-
zero diagonal, let G.A/ denote the graph whose adjacency matrix is A. A sequence
C D .p0; p1; : : : ; p2k/ of positions in a zero-one matrix A forms an orthogonal
cycle if p0 D p2k and the positions p2i and p2iC1 belong to the same row, while
the positions p2iC1 and p2iC2 belong to the same column, for every 0 � i < k. If the
entry of A in position pi is 1 for all 0 � i � 2k, then we call C an orthogonal cycle of
A. For any symmetric 0-1 matrix A, every cycle of G.A/ with a fixed starting point
and orientation corresponds to an orthogonal cycle of A.

Given a position p D .i; j/ of the matrix A and an orthogonal cycle
C D .p0; p1; : : : ; p2k/, let C.i; j/ be the number of times that the possibly self-
intersecting polygon p0p1 : : : p2k encircles the point p0 D .iC 1=2; jC 1=2/ of the
plane in the counter-clockwise direction. Here the position .i; j/ in the matrix is
represented by the point .i; j/ of the plane. (This convention contradicts the tradition
of writing the first row of a matrix on top!) More precisely, let P.i; j/ be the set of
positions .i0; j0/ with i0 > i and j0 > j, and set

C.i; j/ D jf0 < l � k W p2l 2 P.i; j/gj � jf0 < l � k W p2l�1 2 P.i; j/gj:

An orthogonal cycle is said to be positive if C.i; j/ � 0 for every pair .i; j/ and C.i; j/
is strictly positive for at least one such pair.

Pach and Tardos proved the following result, from which the bound
u.n/ D O.n4=3/ for the number of unit distances can be deduced relatively easily.
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Theorem ([52]). The maximum number of 1 entries in an n 	 n 0-1 matrix that
contains no positive orthogonal cycle is O.n4=3/. The order of magnitude of this
bound cannot be improved.

Since the last theorem is tight, this approach cannot lead to any improvement of
the u.n/ D O.n4=3/ bound on the number of unit distance pairs in a set of n points
in the plane.

Is the O.n4=3/ Bound on the Number of Unit Distances Tight? It is rather
remarkable that none of the known proofs for u.n/ D O.n4=3/ offers any hope
to break this barrier, although it is conjectured that u.n/ D O.n1C"/; for every
" > 0. How is this possible? All existing proofs easily generalize to the case where
the plane is equipped with some other strictly convex metric, i.e., with a metric
according to which the unit disk is a centrally symmetric strictly convex region.
However, using an idea of Brass [9], Valtr [69] found the following simple metric,
with respect to which the number of unit distance pairs among n points in the plane
can be as large as cn4=3, for some c > 0.

Let the unit circle of this metric be the locus of all points .x; y/ satisfying the
equation jyj D 1�x2. This is a closed curve � , centrally symmetric about the origin,
and it consists of two parabolic arcs. Assume for simplicity that n is of the form
.2k C 1/.2k2 C 1/ for some positive integer k, so that k � .n=4/1=3. Consider the
n-element point set

Pn D
�	

i

k
;

j

k2



W jij � k; jjj � k2

�
� Œ�1;C1�2:

Notice that the unit circle � passes through 4k points of Pn. No matter how we
translate � by a vector belonging to Pn, it will pass through at least k points of Pn.
In other words, with respect to this metric, every point of Pn is at unit distance
from at least k others. Therefore, the number of unit distance pairs is at least
1
2
nk � 1

321=3
n4=3.

Algebraically, this metric is quite similar to the Euclidean one! Which special
properties of the Euclidean metric do we have to explore in order to break the
bound u.n/ D O.n4=3/? Perhaps there is no such property, and the bound O.n4=3/
is optimal. Frankly, we do not know too many interesting examples of planar
point sets, within which there is an exceptionally popular distance. There is no
strong evidence supporting the assumption that such an example cannot exist.
For convenience, we conjecture that the best constructions are latticelike.

In Almost All Metrics, There Are Few Unit Distances Consider the plane
equipped with an arbitrary metric with a strictly convex unit circle � centered at
the origin. Let P0 be the 1-element set whose only point is the origin. Pick a random
element q1 2 � , and set P1 WD P0 [ .P0C q1/. If the sets P0; : : : ;Pk�1 have already
been defined, then choose randomly a point qk 2 � , and let Pk WD Pk�1[.Pk�1Cqk/.
After k steps, we obtain a set Pk of n WD 2k points in the plane such that from
every point there are precisely k D log2 n others at unit distance. Thus, the
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number of unit distance pairs in Pk, with respect to our metric, is at least 1
2
n log n.

In fact, almost surely, exactly this many unit distances will occur in Pk, because
there will be no other “accidental” incidences between the points in Pk and the
unit circles centered at its elements. Moreover, Matoušek [47] proved that in the
Baire category sense, with respect to almost all metrics, every set of n points in
the plane determines only O.n log n log log n/ unit distances. We may take it as
an indication that Erdős’s conjecture that in the Euclidean plane the number unit
distances between n points cannot exceed O.n1Cc= log log n/. However, this evidence
should be taken with a grain of salt. First, n log n log log n is much smaller than
n1Cc= log log n. Second, Baire category provides a rather counter-intuitive measure on
the class of centrally symmetric convex curves � . For many curious properties of
curves, it is hard to exhibit any explicit example that has that property, yet it can be
shown that almost all curves in the Baire category sense possess it. The situation is
analogous to the case of random graphs, where for instance we can show that almost
all graphs of n vertices have clique number and independence number O.log n/, yet
it looks hopelessly difficult to come up with any explicit construction.

Unit Distances on the Sphere In classical geometry, most problems are considered
not only in the Euclidean space, but also in spherical and hyperbolic geometry. For
our problem, the case of the sphere is particularly interesting. All known planar
proofs easily extend to the sphere, so we have that the number of times that the
same (angular or Euclidean) distance can occur among n points on the sphere S

2 of
radius 1 is O.n4=3/. In the plane, a

p
n	pn piece of the integer lattice is conjectured

to provide the maximum number of unit distance pairs, but on the sphere there is no
grid with two independent translational (rotational) symmetries.

Leo Moser conjectured that on the unit sphere the same distance ı among n
points can occur only O.n/ times. However, he overlooked a detail: the answer may
depend on ı. As Erdős et al. [22] discovered, for ı D �=2, there may be cn4=3 point
pairs at angular distance ı, that is, the above bound is tight. To see this, suppose that
n is even, and take n=2 points, p1; : : : ; pn=2; and n=2 lines l1; : : : ; ln=2 in the plane
z D �1 in R

3 with at least cn4=3 incidences between them, for some c > 0. For each
lj, let vj denote normal vector of the plane spanned by lj and the origin 0 D .0; 0; 0/.
For i D 1; : : : ; n=2, let qi and ri denote the intersection points of the line 0pi and the
supporting line of vi with the unit sphere, respectively. Notice that whenever a line

lj passes through a point pi, the vectors vj and
�!
0pi are perpendicular and, hence, the

angular distance between qi and rj 2 S
2 is equal to �=2. Thus, the number of point

pairs in

fq1; : : : ; qn=2; r1; : : : ; rn=2g � S
2

at angular distance �=2 from each other is at least cn4=3; the number of incidences
between the lines lj and points vi.

On the other hand, Erdős et al. [22] disproved Moser’s conjecture for any angle ı
different from �=2. They constructed n-element point sets in S

2 with a superlinear
number of ı-distance pairs, as n ! 1. Their n log� n lower bound, where
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log� stands for the iterated logarithm function, was improved by Swanepoel and
Valtr [62] to cn

p
log n, for a suitable positive constant c. The gap between the lower

and upper bounds is still huge! Strangely, on the sphere, even the trivial 1
2
n log n

lower bound construction described at the beginning of the previous subsection
breaks down.

4 Unit Distances with Special Angles

Apart from his conjecture that the unit distance among n points cannot occur more
than n1Cc= log log n times, Erdős also made the stronger conjecture that, with the
possible exception of a few points, all extremal examples can be obtained as subsets
of a suitable 2-dimensional lattice. It is needless to say that we are very far from
being able to verify or disprove this conjecture. Nevertheless, serious computational
and other attempts were made to decide whether such a statement may be true at
least for small values of n or in some restricted situations.

Brass [11] managed to prove Erdős’s stronger conjecture in the special case when
we count only unit distance pairs parallel to one of k fixed directions in the plane.
To state his result more precisely, we need some notation. For any point set P in the
plane and for any set U of k unit vectors, no two of which are opposite each other, let

f .P;U/ D jf.p; q/ 2 P 	 P W p � q 2 Ugj:

Let f .n; k/ be defined as the maximum of f .P;U/ over all such sets P of n points and
all sets U of k unit vectors with the above property. Obviously, we have f .n; 1/ D
n�1. The unit distance graph of a point set restricted to two directions is the disjoint
union of subgraphs of unit distance graphs of square lattices. Therefore, it follows
from a theorem of Harary and Harborth [31] that

f .n; 2/ D b2n � 2pnc:

For any two positive functions, g and h, we write that g.n/ D ‚.h.n// if c1h.n/ �
g.n/ � c2h.n/ for suitable constants c1; c2 > 0.

Theorem ([11]). For any fixed k � 3, we have f .n; k/ D kn �� �pn
�
.

Furthermore, there are a finite number of lattices �1.k/;�2.k/; : : : and an
integer n0.k/ such that for every n � n0.k/ the extremal configurations Pk;Uk are
subsets of one of the lattices�i.k/. Moreover, at least one of the extremal n-element
point sets Pk, with the exception of

p
n points, can be obtained by intersecting�i.k/

with a convex set.

If the number n0.k/ were small, this would prove Erdős’s stronger conjecture,
because every extremal set for the unit distance problem with no restriction on
the number of directions is also an extremal set for some number of directions k.
Unfortunately, this is not the case.
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The direction (or angle) of a straight line in the plane is said to be rational if
the angle between the line and the x-axis is a rational multiple of � . The special
case of Erdős’s unit distance problem where we count unit distances in all rational
directions, was studied by Schwartz et al. [55]. In this case, they showed that Erdős’s
weak conjecture is not far from being optimal: For any " > 0, there exists n0."/
such that the number of unit distance pairs with rational angles in a set of n � n0."/
points in the plane is at most n1C".

Unit vectors in rational directions correspond to roots of unity. The proof
proceeds by counting certain paths in the unit distance graph and using a theorem
of Mann [46] to bound the number of edges.

Using the Subspace Theorem in place of Mann’s Theorem, Ryan Schwartz
considered unit distances from a multiplicative group with rank not too large with
respect to the number of points [54]. As before, a unit distance in the plane will
be considered as a complex number of unit length. So all unit distances can be
considered as coming from a subgroup of C�. Schwartz established the following
generalization of the Schwartz-Solymosi-de Zeeuw theorem stated above.

Theorem ([54]). For any " > 0, there exist a positive integer n0 D n0."/ and a
constant c D c."/ > 0 such that given n > n0 points in the plane, the number
of unit distances coming from a subgroup  � C

� with rank r < c log n is at
most n1C".

Proof. Suppose G D G.V;E/ is a graph on v.G/ D n vertices and e.G/ D m edges.
We denote the minimum degree in G by ı.G/.

Note that, by removing vertices with degree less than m=.2n/, we obtain a
subgraph H with at least e.H/ � m=2 edges and ı.H/ � m=.2n/. The number
of vertices in H is at least v.H/ � pm. We will consider such a well behaved
subgraph instead of the original graph.

Let G be the unit distance graph on n points with unit distances coming from
� as edges. We show that there are fewer than n1C" such edges, i.e., distances, for
any " > 0. We can assume that e.G/ � .1=2/n1C"; v.G/ � n1=2C"=2 and ı.G/ �
.1=2/n".

Consider a path in G on k edges Pk D p0p1 : : : pk. We denote by ui.Pk/ the unit
vector between pi and piC1. The path is nondegenerate if

P
i2I ui.Pk/ D 0 has no

solutions where I is a nonempty subset of f0; 1; : : : ; k � 1g. Note that such a sum is
a sum of elements of � with no vanishing subsums. We will denote by Pk.v;w/ the
set of nondegenerate paths of length k between vertices v and w.

The number of nondegenerate paths of length k from any vertex is at least

k�1Y
`D0
.ı.G/ � 2` C 1/ � nk"

22k
:

The first expression is true since if we consider a path P` on ` < k edges then all
but 2` � 1 possible continuations give a path P`C1 with no vanishing subsums. The
inequality is true if we assume 2k � .1=2/n", which is true if k < ." log n/= log 2�1.
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From this, we get that the number of nondegenerate paths Pk in the graph is at least
n1=2C.kC1=2/"=22kC1. So there exist vertices v;w in G with

jPk.v;w/j � n.kC1=2/"�3=2

4k
:

Consider a path Pk 2 Pk.v;w/, Pk D p0p1 : : : pk. Let a be the complex number
giving the vector between p0 and pk. Since Pk is nondegenerate we get a solution
of .1=a/x1 C .1=a/x2 C � � � C .1=a/xk D 1 with no vanishing subsums. Thus, by a
corollary of the Subspace Theorem, due to Amoroso and Vieta [2], we obtain

jPk.v;w/j � .8k/4k4.kCkrC1/:

This, with the lower bound, gives

..kC 1=2/" � 3=2/ log n � k log 4C 4k4.kC krC 1/ log.8k/

� c0rk5 log k;

H) " � c0rk4 log k

log n
C c00

k
: (2)

Since rC 1 � c log n, we can choose k an integer satisfying

C0..log n/=r/1=5 � k � C00..log n/=r/1=5:

Then, with this k, the right hand side of (2) goes to zero as n increases. Earlier
we assumed that k � ." log n/= log 2 � 1. This holds for the value of k given above
for n large enough. So the number of unit distances from � is less than cn1C" for
each " > 0. �

Performing a careful analysis of Erdős’ lower bound construction, it is possible to
verify that all unit distances come from a group with rank at most c log n= log log n
for some c > 0. This group is generated by considering solutions of the equation
x2Cy2 D p where p is a prime of the form 4mC1. Using the prime number theorem
for arithmetic progressions, we get the bound on such solutions and thus on the rank.
For the details, see [54]. So Erdős’ construction satisfies the conditions of the above
theorem. A similar approach could be used for other types of lattices. So all the
best known lower bounds for the unit distance problem have unit distances coming
from a well structured group. It would be interesting to see if every configuration of
points with the maximum possible number of unit distances has such a structure.
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5 Variations of the Unit Distance Problem

In this short survey, we cannot cover all aspects of the unit distance problems.
We only mention those questions that we find most interesting. Our list of references
is also somewhat uneven. It reflects our knowledge, our ignorance, and our taste.
We refer the interested reader to the monograph Research Problems in Discrete
Geometry by Brass et al. [12].

However, there are two variants of the problem that we cannot completely ignore
even in such a short an subjective review.

Point Sets in Convex Position We say that n points in the plane are in convex
position if they form the vertex set of a convex polygon. Erdős and Moser [23]
conjectured that the number of unit distances, uconv.n/, among n points in convex
position in the plane satisfies uconv.n/ D 5

3
nCO.1/. They were wrong: Edelsbrunner

and Hajnal [17] exhibited an example with 2n�7 unit distance pairs, for every n � 7.
It is widely believed that uconv.n/ D O.n/, and perhaps even uconv.n/ D 2nC O.1/.
The best known upper bound is due to Füredi [27], who proved by a forbidden
submatrix argument that uconv.n/ D O.n log n/. A very short and elegant inductional
argument for the same bound can be found in [13].

Erdős suggested a beautiful approach to prove that uconv.n/ grows at most linearly
with n. He conjectured that every convex n-gon in the plane has a vertex from which
there are no kC1 other vertices at the same distance. Originally, he believed that this
is also true with k D 2, but Danzer constructed a series of counterexamples. Later,
Fishburn and Reeds [26] even found convex polygons whose unit distance graphs
are 3-regular, that is, in which for each vertex there are precisely three others at unit
distance. If Erdős’s latter conjecture is true for some integer k, then this immediately
implies by induction that uconv.n/ < kn:

Unit Distances in Higher Dimension Erdős’s unit distance problem can be asked
in any metric space. Let ud.n/ denote the maximum number of unit distance pairs
that can occur among n points in R

d. In their landmark paper [16] in which they
found alternative proofs and generalizations of the Szemerédi-Trotter theorem on
incidences between points and lines, Clarkson, Edelsbrunner, Guibas, Sharir, and
Welzl proved that u3.n/ � n3=2˛.n/, where ˛.n/ is an extremely slowly growing
function, closely related to the inverse of Ackermann’s function. During the last
quarter of a century, no improvement was made on this bound, apart from the fact
that now we know that the term ˛.n/ can be eliminated; see Zahl [71] and [37],
for another proof. By a simple number theoretic argument, Erdős [21] demonstrated
that in an n1=3 	 n1=3 	 n1=3 cube lattice, the same (unit) distance occurs at least
cn4=3 log log n times, for a constant c > 0. This is the best presently known lower
bound, and its order of magnitude is conjectured to be nearly optimal.

The innocent reader may suspect that if it is so difficult to determine the
asymptotic behavior of the functions ud.n/ already for d D 2 and 3, then the task is
even harder for d > 3. However, this is not the case, as is shown by the following
so-called Lenz configurations. For d > 3, take bd=2c mutually orthogonal circles of
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radius 1=
p
2 in R

d, centered at the origin. Place n points on these circles, distributed
among them as evenly as possible. Notice that the distance between any two points
lying on different circles is precisely 1. Thus, the number of unit distances in this

example is at least 1
2

�
1 � 1

bd=2c C o.1/
�

n2.

On the other hand, Erdős [21] proved that the unit distance graph of n points in
R

d contains no complete .bd=2cC1/-partite subgraph K3;3;:::;3 with three vertices in
each of its classes. Using the Erdős-Stone theorem [24], a cornerstone in extremal
graph theory, this condition is sufficient to deduce that for d > 3 we have

ud.n/ D 1

2

	
1 � 1

bd=2c C o.1/



n2:

This is one of the most beautiful early examples of the interplay between discrete
geometry and extremal graph theory, from which both fields have richly benefitted.

Swanepoel [61] actually proved that, for every d > 3 there exists n0.d/ such that
all n-element extremal point sets for the d-dimensional unit distance problem are
Lenz configurations, provided that n � n0.d/. Moreover, for even dimensions d � 6,
he also succeeded in determining the exact value of ud.n/ for all sufficiently large n.
For d D 4, completing the work of Brass [10], van Wamelen [70] determined the
precise value of u4.n/ for sufficiently large n.
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Goldbach’s Conjectures: A Historical
Perspective

Robert C. Vaughan

Abstract In 1742, Goldbach and Euler in conversation and in an exchange of letters
discussed the representation of numbers as sums of at most three primes. Although
the question as to whether every even number is the sum of one or two primes (the
binary Goldbach conjecture) is still unresolved, this and associated questions have
attracted many mathematicians over the years, and have lead to a range of powerful
techniques with many applications. This article is a commentary on the historical
developments, the underlying key ideas and their widespread influence on a variety
of central questions.

1 Introduction

Christian Goldbach was a German mathematician who was a professor of mathe-
matics and history in St Petersburg. On 7 June 1742, from Moscow, he wrote a letter
to Leonhard Euler (letter XLIII) in which he proposed the following conjecture:

Every integer which can be written as the sum of two primes, can also be written as the sum
of as many primes as one wishes, until all terms are units.

In the margin he than added a second conjecture.

Every integer greater than 2 can be written as the sum of three primes.

Of course he took 1 to be prime. One can also observe that since any representa-
tion of an even number would have to include a 2 it would follow that

Every even number is the sum of two primes.

In a letter dated 30 June 1742 Euler reminded Goldbach of an earlier conversation
they had in which Goldbach had pointed out that his original conjecture would
follow from this last statement.
Of course today we would state the Goldbach binary and ternary conjectures as
follows.
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Every even integer greater than 2 can be written as the sum of two primes.
Every odd integer greater than 5 can be written as the sum of three primes.
[Include facsimile of letter.]

The above is well known, of course. What is perhaps somewhat less well known
is the following assertion of Descartes.

Quod tamen nondum demonftraui. Sed & omnis numerus par fit ex vno vel duobus vel tribis
primis.

Descartes[1596–1650], Opuscula Posthuma
It is not yet proved, but all numbers are made from one or two or three primes.

Descartes[1596–1650], posthumous small works

2 Sylvester

There is nothing of consequence in the literature until 1871. Spottiswoode, then
President of the London Mathematical Society, in his account [82] of communica-
tions received during the meeting of 9th November 1871 describes at some length
researches that Sylvester had been undertaking on the behaviour of

R.n/ D cardfp1; p2 W p1 C p2 D ng (1)

when n is even. In modern notation Sylvester asserts that probabilistic arguments
suggest that

S.n/ D �.n/
Y

p
p
n

p−n

p � 2
p � 1 (2)

should be a good approximation to R.n/, and further asserts that this is confirmed
by the known calculations. The product here is quite interesting. A simple argument
based on the observation that a number x is divisible by p with probability 1

p leads
instead to the expression

n

0
BB@
Y

p
p
n

p−n

p � 2
p

1
CCA
Y
pjn

p � 1
p

: (3)

It turns out that (2) is bad and (3) is worse. However, as we shall see, it is interesting
and curious that Sylvester should find the product

Y

p
p
n

p−n

p � 2
p � 1 :
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Of course, the prime number theorem was 20 odd years in the future, and it would
be another 3 years before Mertens would prove that

X
p
x

1

p

 log log x

and

Y
p
x

p � 1
p

 e��

log x

where � is Euler’s constant. The first of these expressions illustrates the underlying
difficulty with probabilistic methods in that the series

X
p

1

p

diverges. Armed with the above and the prime number theorem it is not hard to show
that for even n

S.n/ 
 2e��C
�.n/

log n

Y
pjn
p>2

p � 1
p � 2

where C is the, so called, twin prime constant

C D 2
Y
p>2

	
1 � 1

.p � 1/2



and to deduce as Landau [55] did in reference to similar work of Stäckel [83] that

X
n
x

R.n/ 
 n2

2.log n/2

whereas

X
n
x

S.n/ 
 2e�� n2

2.log n/2
:

We have

2e�� D 1:1229 : : : ;
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and we now believe that for even n

R.n/ 
 Cli2.n/
Y
pjn
p>2

p � 1
p � 2 (4)

where

li2.n/ D
Z n�2

2

dx

.log x/ log.n � x/
: (5)

Approximately

li2.n/ D n

.log n/2
C 2n

.log n/3
C � � � (6)

whereas the factor �.n/= log n satisfies

�.n/

log n
D n

.log n/2
C n

.log n/3
C � � � : (7)

These discrepancies will somewhat cancel each other for smaller n and perhaps
account for Sylvester’s belief that the known calculations supported his formula.

3 Hardy and Ramanujan

The first two substantial lines of progress on Goldbach’s conjectures arose almost
simultaneously. One was a consequence of a paper which nowhere mentions
Goldbach, namely the seminal paper of Hardy and Ramanujan [38] which, as is
widely known, is mostly concerned with a formula for the partition function. The
fundamental idea is that there is some arithmetical function R.n/ of interest and the
generating function

f .z/ D
1X

nD0
R.n/zn

converges in the unit disc but has singularities on the circle centred at 0 of radius 1,
and perhaps even has that circle as a natural boundary. Then by the Cauchy integral
formula

R.n/ D 1

2� i

Z

C
f .z/z�n�1dz
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where C is a circle of radius r, 0 < r < 1 about 0 and described in the positive
sense. It is also supposed that r is close to 1. How close will depend on n and the
behaviour of f .z/ on C as r approaches 1. Typically for functions of arithmetical
interest the behaviour of f .z/ can be ascertained quite precisely if

z D re.a=qC ˇ/ e.˛/ D e2� i˛

with r “close” to 1 but ˇ “small” and q is “not too large”. Let me illustrate this
with an example which relates to Waring’s problem. You will recall that Waring had
asserted that every positive integer is the sum of four squares, nine cubes, nineteen
biquadrates, “and so on”. Suppose that R.n/ is the number of ways of writing n as
the sum of s non-negative cubes. Then it is readily seen that

f .z/ D
1X

nD0
R.n/zn D g.z/s

where

g.z/ D
1X

nD0
znk
:

Let z be as above and let us sort the terms according to their residue class modulo q.
Then

g.z/ D
qX

mD1
e.amk=q/

X
n�m mod q

rnk
e.ˇnk/:

When r is close to 1 and ˇ is small we can approximate the sum over n by an integral
and after several changes of variables we get

g.z/ 
 q�1S.q; a/ .1C 1=k/.1 � re.ˇ//�1=k:

Here S.q; a/ is the generalized Gauss sum

S.q; a/ D
qX

mD1
e.amk=q/

and was shown by Hardy and Littlewood [36] to satisfy

S.q; a/ D O
�
q1�1=k

�

provided that .q; a/ D 1. When k D 2 this estimate can be made sufficiently precise
that it is of utility on the whole of C , and this is described briefly by Hardy and
Ramanujan. For s � 5 (and when s D 4 via the Kloosterman refinement) it leads



484 R.C. Vaughan

to an approximation to R.n/, the number of representations of n as the sum of s
squares, of the form

R.n/ 
  .3=2/s

 .s=2/
n

s
2�1S.n/

where

S.n/ D
1X

qD1
q�s

qX
aD1

.a;q/D1

S.q; a/se.�an=q/:

Modern technology (see Vaughan [86]) would enable this to be carried through in a
routine way for k D 3 and s � 13 also. When k > 3, and at the time when k D 3, the
approximation for g.z/ obtained was only good for a rather small subset of C and
another substantial idea was required. This difficulty Hardy and Littlewood were
able to overcome using ideas from Weyl’s seminal paper on uniform distribution.
However pursuing this would take me too far from our path.

4 Hardy and Littlewood

When Littlewood returned from active duty in the First World war, he and Hardy
set themselves the task of developing the fundamental ideas of the Hardy and
Ramanujan paper. This eventually saw the light of day as the series of eight papers
with the generic title “On some problems of partitio numerorum”, the first two of
which are on Waring’s problem, and the seventh of which never appeared in print.

I understand that the first questions they examined were in fact the Goldbach
conjectures. Eventually they realised that they could only make progress by
assuming the generalised Riemann hypothesism and they preferred that the first
papers using what has come known as the Hardy–Littlewood method established
unconditional theorems. However III [33] and V [35] are concerned with the
Goldbach conjectures.

To describe these results I am going to make an innovation that only came later,
due to Vinogradov. If we were to follow Hardy, Littlewood and Ramanujan the
generating function for sums of s primes would be

f .z/ D g.z/s; g.z/ D
X

p

.log p/zp:

However if we are only interested in the representation of n we can suppose that the
primes p satisfy p � n. But now since the sum is finite we can work on the unit
circle. Thus we will work with

F.˛/ D
X
p
n

.log p/e.˛p/
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and now we find that if

rs.n/ D
X

p1;:::;ps
p1C���CpsDn

.log p1/ : : : .log ps/ (8)

then the substitution z D e.˛/ in Cauchy’s formula gives

rs.n/ D
Z 1

0

F.˛/se.�˛n/d˛:

We can also view this as a consequence of the fundamental orthogonality relation-
ship of harmonic analysis.

If we apply the recipe used previously of sorting the terms of F according to
the residue classes in which the prime lie modulo q, and we apply results that
follow from the generalised Riemann hypothesis, then we find that, provided that
also .q; a/ D 1,

F.a=qC ˇ/ D �.q/

�.q/

nX
mD2

e.ˇm/C O
�
.qC qnjˇj/ 12 n

1
2C"� :

Here � is the Möbius function and � is Euler’s function. There is a famous theorem
of Dirichlet on diophantine approximation that tells us, given a real parameter Q � 1
and any real number ˛, there are q and a with .q; a/ D 1 such that j˛ � a=qj �
q�1Q�1. Now if we take ˇ D ˛ � a=q we see that the error term above is always

O
�
.QC n=Q/

1
2 n

1
2C"�

and if we make the optimal choice Q D n
1
2 this is

O
�
n
3
4C"�:

Thus Hardy and Littlewood were able to treat rs.n/ whenever s � 3 and they
established, on the generalised Riemann hypothesis, that, when n � s .mod 2/,

rs.n/ 
 ns�1

.s � 1/ŠSs.n/

where

Ss.n/ D
0
@Y

p−n

	
1C .�1/sC1

.p � 1/s

1
AY

pjn

	
1C .�1/s

.p � 1/s�1


:
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When s D 2 they were unable to prove anything quite as precise but they could
establish that

nX
mD1
2−m

�
r2.m/ � mS2.m/

�2 D O
�

n
5
2C"� : (9)

This is the strongest evidence we have that for even n,

r2.n/ 
 nS2.n/:

Of course, why stop there. How good an error term should one expect? Well, one
could speculate that

r2.n/ D nS2.n/C O
�
n
1
2C"�

and if true, then this would be essentially best possible as Montgomery and Vaughan
[68] have proved unconditionally that

nX
mD1
2−m

�
r2.m/ � mS2.m/

�2 D ˝ �
n2.log n/2

�
:

Returning to (9) it follows quite easily that the exceptional set

E.x/ D cardfm W 2jm;m � x; r2.m/ 6D 0g (10)

satisfies

E.x/ D O
�

x
1
2C"� : (11)

Of course, this assumes the generalised Riemann hypothesis.

5 Vinogradov

In [92] Vinogradov introduced a fundamental new method which enabled theorems
of the following kind to be established.

Theorem 1. Let

F.˛/ D
X
p
n

e.˛p/:
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Suppose that q 2 N, a 2 Z, .q; a/ D 1 and j˛ � a=qj � q�2. Then

F.˛/ D O

	
n.log n/

9
2

�
q� 1

2 C .n=q/� 1
2

�C n exp
� � 1

2

p
log n

�

:

This gives non-trivial estimates when

.log n/A < q � n.log n/�A; j˛ � a=qj � .log n/An�1q�1

and complements what can be deduced from the more classical theory of Dirichlet
L-functions. Thus Vinogradov was able to establish that if n is odd, then

R3.n/ 
 n2

2.log n/3
S3.n/:

Of course the method also gives

nX
mD1
2jm

.R2.n/ � li2.n/S2.n//
2 D O

�
n3.log n/�A

�

for any fixed positive number A, and consequently

E.x/ D �x.log x/�A
�
;

and this was established independently by Chudakov [14], van der Corput [15] and
Estermann [21].

Later Montgomery and Vaughan [69] pushed these ideas further and obtained

E.x/ D O
�
x1�ı

�

for some positive number ı. A number of authors have computed values for ı. The
first was Chen [13] who obtained ı D 1

100
. More recently Lu [61] has obtained

ı D 0:121 and Pintz has claimed ı D 1
3
.

Let me briefly describe Vinogradov’s idea. In principle it works well for sums of
the kind

X
p
x

f .p/

where the function f is oscillatory, so one expects some cancellation, but is not
multiplicative. Thus e.˛p/ or 
.pC c/ are fine, but 
.p/ is not. Actually this rule of
thumb can be broken in applications when we average over a large class of 
. See
Sect. 11 for an example.
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Of course in many ways the primes are rather randomly distributed so such sums
are hard to deal with. Vinogradov is able to apply the sieve of Eratosthenes in a
rather non-standard way to relate the original sum to two types of sums which are
more tractable. These are as follows.

Type I sums. These are sums of the form

X
l
z

al

X
m
n=l

f .lm/

where the al are complex numbers which satisfy, at least for the sake of this
exposition,

jalj D O.logC 2l/

and are “good” when z is, say, some power of n smaller than n.
Type II sums. These are sums of the form

X
l>z

al

X
z<m
n=l

bmf .lm/

where the al and bm are complex numbers which satisfy

X
l
x

jalj2 D O.x logC x/;
X
m
x

jbmj2 D O.x logC x/:

These can be considered “good” if z is not too small by comparison with n.

Why have I used the terms “good”? Well, consider the Type I sum

X
l
z

al

X
m
n=l

e.˛lm/:

Here the inner sum is just the sum of the terms of a geometric progression,
so provided that ˛m … Z the inner sum is bounded by

1

j sin�˛lj
and so the double sum is bounded by

.log x/C
X
l
z

min

	
n

l
;

1

j sin�˛lj



and this is something which is quite nice to deal will as long as z is somewhat smaller
than n.
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How about the Type II sums? In the original treatment Vinogradov makes mul-
tiple applications of the Cauchy–Schwarz inequality which look a bit mysterious.
Here is what is really happening. We can suppose the support of both the al and bm

lies in the interval .z; x=z/ and we can write the double sum as

aMbT

where M is (essentially) an .x=z� z/	 .x=z� z/ matrix with general entries f .lm/.
Applying Cauchy-Schwarz once replaces this by

p
.a:a�/bMM �b�:

Now

MM � D
 X

l

f .kl/f .lm/

!

km

is a Hermitian matrix and it turns out we just need a bound for the largest eigenvalue.
One such bound is

max
k

X
m

ˇ̌
ˇ̌
ˇ
X

l

f .kl/flm

ˇ̌
ˇ̌
ˇ :

In the case f .x/ D e.˛x/ this is also quite nice to deal with.
Note that I have oversimplified this explanation somewhat, but in principle it

is the way one proceeds. In particular there is an important technicality I did not
mention in order to avoid obscuring the underlying ideas. When one applies the
Cauchy–Schwarz inequality, in order to get the best out of it is a good idea to ensure
that the order of magnitude of the terms does not vary too much. Thus in the Type II
sums it is usual to divide the sum into dyadic ranges, that is into subsums of the kind

X

2r<l
2rC1

al

X
z<m
n=l

bmf .lm/:

Another wrinkle that is useful if one is trying to squeeze as much as possible out of
the method is to split some Type I sums into two ranges

X
l
u

al

X
m
n=l

f .lm/C
X

u<l
z

X
m
n=l

f .lm/

and treat the second sum here as a Type II sum.
To obtain good Type I and Type II sums Vinogradov applies the sieve of

Erathosthenes, but then has to make various combinatorial rearrangements, which
for the most powerful results were not well understood. Here is a much simpler way
of proceeding [84].
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Consider the trivial identity

� �
0

�
.s/ D F.s/C G.s/

� � �0.s/
�

� F.s/G.s/�.s/C �.��0.s// � F.s/�.s/
� 	 1

�.s/
� G.s/



(12)

where

F.s/ D
X
k
u

�.k/

ks
; G.s/ D

X
l
v

�.l/

ls
:

We can apply the identity theorem for Dirichlet series to give a partition of the von
Mangoldt function

�.m/ D c0.m/C c1.m/ � c2.m/C c3.m/:

Now multiplying by f .m/ and summing over m we obtain

X
m
n

�.m/f .m/ D S0 C S1 � S2 C S3: (13)

The sum

S0 D
X
k
u

�.k/f .k/

will be small for u small so we can treat that trivially. The sums

S1 D
X
l
v

�.l/
X

m
n=l

.log m/f .lm/

and

S2 D
X
l
uv

al

X
m
n=l

f .lm/

with

al D
X
j
u
k
v
jkDl

�.j/�.k/
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are good Type I sums, and

S3 D
X
l>u

cl

X
v<m
n=l

�.m/f .lm/

with

cl D log l �
X
k
u
kjl

�.k/

is a good Type II sum.
When applied to the generating function

F.˛/ D
X
p
n

.log p/e.˛p/

the method gives

Theorem 2. Let

F.˛/ D
X
p
n

.log p/e.˛p/:

Suppose that .q; a/ D 1 and j˛ � a=qj � q�2. Then

F.˛/ D O
�

n.log n/
5
2

�
q�1=2 C n�1=5 C .n=q/�1=2

��
:

This method has had many other applications. Vinogradov and Hua [49] have
extended the method to sums of the kind

X
p
X

e.˛pk/

and consequently there is a large body of work on the Goldbach–Waring problem.
That is, on the solubility of equations

pk
1 C � � � C pk

s D n

in primes p1; : : : ; ps.
There are also a number of rather different applications. One example, due to

Vinagradov [93] himself concerns non-trivial bounds for sums

X
p
x


.pC a/
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where 
 is a non-trivial character modulo q. There are many papers on this and
related topics. For a recent incarnation see Friedlander et al. [24] Another due to
Piatetski–Shapiro [71] states that when 1 � c � 12

11
,

cardfn � x W bnccprimeg 
 x

c log x
:

There are quite a number of papers increasing the upper bound for c. The best that I
have seen is

1 � c <
243

205
D 1:18 : : :

due to Rivat and Wu [77]

6 The Goldbach Ternary Problem

Now let me give a brief outline of the proof of Vinogradov’s three primes theorem.
To ease expository detail we consider r3.n/ given by (8), rather than

R3.n/ D cardfp1; p2; p3 W p1 C p2 C p3 D ng

considered by Vinogradov.

Theorem 3. Suppose that A is any fixed positive real number. Then

r3.n/ D 1

2
n2S3.n/C O

�
n2.log n/�A

�

where

S3.n/ D
0
@Y

p−n

	
1C 1

.p � 1/3

1
AY

pjn

	
1 � 1

.p � 1/2


:

From this it follows that every large odd integer is the sum of three primes. Some
of Vinogradov’s exposition of this are somewhat complicated by his desire to avoid
results in which implicit constants are not computable, with the aim in mind of
computing an n0 beyond which all odd n are the sum of three primes. Recently
Helfgott has spoken about showing that every odd integer greater than 5 is the sum
of three primes, and it has been written up [42], although I am not sure whether it has
been accepted for publication. Helfgott refines the method by taking a generating
function
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F.˛/ D
X
p
n

w.p/e.˛p/

with more complicated weights w.p/ than log p. These have the effect of easing the
size of some of the constants which occur in various estimates.

Proof. We have

r3.n/ D
Z

U

F.˛/3e.�˛n/d˛

where U is a unit interval, and we expect that r3.n/ is roughly n2 in size. A crude
bound for the integrand is

 X
p


n.log p/

!3

 n3:

Thus we have to “save” at least n.
Let B be given and assume n is sufficiently large in terms of B. For convenience

let L D .log n/B and consider the intervals (“major arcs”)

M.q; a/ D f˛ W j˛ � a=qj � Lq�1n�1g

for

1 � a � q � L; .a; q/ D 1:

They are disjoint and contained in the unit interval

U D .Ln�1; 1C Ln�1�:

Let M denote their union and define their complement with respect to U, the “minor
arcs”, by

m D UnM:

We are hoping and expecting that the contribution from m is o.n2/, so we have
to save more than n. For an ˛ 2 m we use Dirichlet’s theorem on diophantine
approximation to provide us with q; a so that 1 � a � q � nL�1, .q; a/ D 1 and
j˛ � a=qj � q�1Ln�1. Since ˛ … M it follows that q > L. Applying Theorem 5.2
we find that

sup
˛2m
jF.˛/j � n.log n/

5
2� B

2 :
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But this only “saves” a power of a logarithm. However we can use Parseval’s identity

Z

U

jF.˛/j2d˛ D
X
p
n

.log p/2 
 n log n

which “saves” n.log n/�1. Thus combining the two

Z

m

jF.˛/j3d˛ D O
�

n2.log n/
7
2� B

2

�

and this is

O
�
n2.log n/�A

�

provided that B � 2AC 7. This argument clearly works with any exponent greater
than 2 in place of the 3 but fails when it is 2 and this is one reason why binary
problems are so much harder than ternary ones.

By the way, although

Z

U

jF.˛/j2d˛ D
X
p
n

.log p/2 
 n log n

it is probably true that for any fixed k 6D 0
Z

U

jF.˛/j2e.2k˛/d˛ 
 nS2.2k/

as n!1. With m defined as here this is equivalent to

Z

m

jF.˛/j2d˛ 
 n log n

but
Z

m

jF.˛/j2e.2k˛/d˛ D o.n/:

Having shown that the contribution from the minor arcs is small compared with
the expected main term it remains to deal with the contribution from the major arcs.
By invoking a standard theorem (the Siegel-Walfisz theorem, [70] Corollary 11.19)
on the distribution of primes in arithmetic progressions it follows that whenever
1 � a � q � L, .a; q/ D 1 and ˛ 2M.q; a/ we have

F.˛/ D �.q/

�.q/

nX
mD1

e
�
.˛ � a=q/m

�C O
�

n exp
� � c

p
log n

��
:
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On each major arc we replace F.˛/ by the main term here. The total contribution
from the error term to the integral over M is

O
�
n2.log n/�A

�

The main term contributes

X
q
L

X
aD1

.a;q/D1

�.q/

�.q/3
e.�an=q/

Z L=.qn/

�L=.qn/
T.ˇ/3e.�ˇn/dˇ

where

T.ˇ/ D
nX

mD1
e.ˇm/:

The function T.ˇ/ is bounded by kˇk�1 and so the interval Œ�L=.qn/;L.qn/� can
be replaced by

�� 1
2
; 1
2

�
with an acceptable error term. Then the integral is simply

the number of solutions of m1 C m2 C m3 D n in positive integers mj, and so is
1
2
.n � 1/.n � 2/. The sum over q can then be completed to infinity. Thus one finds

that for B � B0.A/

Z

M

F.˛/3e.�˛n/d˛ D .n � 2/.n � 1/
2

S3.n/C O
�
n2.log n/�A

�

where

S3.n/ D
1X

qD1

qX
aD1

.a;q/D1

�.q/3

�.q/3
e.�an=q/:

7 Twin Primes and Prime k-Tuples

We have already observed that the ideas I have described so far are quite effective
for ternary problems, but much less so for binary problems. However they have been
quite successful in creating conjectures. The procedure is quite simple. One assumes
without proof that the minor arcs give a negligible contribution! In this way Hardy
and Littlewood were able to write down a large class of plausible conjectures. One
such is the following. Let

 2k.x/ D
X

2k<n
x

�.n/�.n � 2k/:



496 R.C. Vaughan

Then

 2k.x/ 
 xS2.2k/

as x ! 1. Whilst this seems well out of reach, Lavrik [56] (van der Corput [15]
had earlier shown something similar but with the sum over n replaced by a sum
restricted to primes p for which p � 2k is also prime) has shown that

X
k
x=2

. 2k.x/ � .x � 2k/S2.2k//2 � x3.log x/�A:

We shall see later that this has its uses.
Another of the Hardy and Littlewood conjectures concerns k-tuples of primes.

Suppose that h D h1; : : : ; hk and let �.q/ D �.qIh/ be the number of distinct
residue classes amongst the h. Let

�k.xIh/ D cardfn � x W nC h1; : : : ; nC hk all primeg
and suppose that for every q 2 N we have �.q/ < q. Then

�k.xIh/ 
 x

.log x/k
Sk.h/

where

Sk.h/ D
0
@Y

p−�

pk � kpk�1

.p � 1/k

1
AY

pj�

pk � pk�1�.p/
.p � 1/k

and

� D
Y

1
i<j
k

jhi � hjj:

Of course, this is still well beyond our compass. However considerations closely
connected with this conjecture underly the recent exciting work by Zhang, Maynard
and Tao on bounded gaps in the primes, and I will say more about this later.

8 Brun and Selberg

There is another approach to the Goldbach and similar problems. This is the second
of the two methods which arose almost simultaneously, namely the advent of a
useful sieve method. Of course the idea of the sieve by Erathosthenes is over 2200
years old, but it was not until Brun [11] that a concerted attempt was made to apply
the ideas in a more sophisticated way.
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Generally given a sequence A D fa.m/ W m 2 Ng of non-negative real numbers
we are interested in

S.A ; z/ D
X
m2N

.m;P.z//D1

a.m/

where

P.z/ D
Y
p
z

p

and we make some basic assumptions about divisibility and growth, such as

Ad WD
X
m2N
djm

a.m/ D �.d/

d
X C Rd (14)

where � is a multiplicative function, X is some measure of A1 and, we hope, Rd is
somewhat smaller than X, at least on average over squarefree d. For example, if we
are interested in the twin prime conjecture we might take

a.m/ D
(
1 m D l.lC 2/ for some l � X:

0 otherwise:

Then �.d/ is the number of solutions of the congruence

l.lC 2/ � 0 .mod d/

and it is readily seen that � is multiplicative, �.2/ D 1 and �.p/ D 2 for odd
primes p. Moreover the above holds with

jRdj � �.d/:

The fundamental problem with this is that if we proceed in the obvious way by using
the Möbius function in the form

X
dj.m;P.z//

�.d/

to pick out the condition .m;P.z// D 1 and obtain an expression of the form

X
X

djP.z/

�.d/�.d/

d
C
X

djP.z/
Rd
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the sums over d will have far too many terms. Thus the primary object of sieve
theory is to find functions �ḋ such that

X
djl
��

d �
X
djl
�.d/ �

X
djl
�C

d

which give reasonable results but whose support is contained in, for example,
Œ1;D� for some parameter D. Brun was the first to do this successfully by adapting
Sylvester’s principle of inclusion–exclusion for sets to construct �ḋ . The methods
are very combinatorial and result in considerable complexities. However there was
an immediate success for the method. The simplest of Brun’s upper bound methods
leads to the inequality

X
p
x

pC2prime

1 D O

	
x.log log x/2

.log x/2



:

It follows that

X
p

pC2prime

1

p
<1

and so dashes any hopes of proving that there are infinitely many twin primes by
imitating Euler’s proof that there are infinitely many primes.

Lower bound methods lead to less clear cut conclusions. Let Pk denote the
subset of N consisting of those m > 1 with at most k prime factors. Brun was able
to establish that given any large even n there are l, m in P9 such that n D lCm. The
ultimate theorem in this direction, after many technical developments, and including
the advent of the large sieve and the Bombieri–Vinogradov theorem for which one
can see Sects. 10 and 11 below, is the celebrated result of Jing-Run Chen [12] that
every large even number can be written as the sum of a prime and an element of P2.

There is a particularly effective upper bound method due to Selberg [81]. Selberg
observes that if we suppose that the sequence f�.n/g has �.1/ D 1 and its support
is a subset of the divisors of P.z/, then

S.A ; z/ �
X

m

a.m/

0
@X

djm
�.d/

1
A
2

:

On multiplying out, interchanging the order of summation and inserting the
assumption (14) we obtain

X
X
d;e

�.d/�.e/�.Œd; e�/

Œd; e�
C
X
d;e

�.d/�.e/RŒd;e�:
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Now it is supposed that the second term here can be taken care of by an appropriate
choice for the support of the �.d/ and will then be suitably bounded. Thus the initial
task is to minimise the quadratic form

X
d;e

�.d/�.e/�.Œd; e�/

Œd; e�

subject only to the constraint �.1/ D 1. It is useful at this stage to suppose further
that the support D of the �.d/ is divisor closed, i.e if d 2 D , then e 2 D whenever
ejd, and commonly this is done by taking

D D fd W djP.z/; d � Dg

where D is a parameter at our disposal. It turns out that this minimisation process is
quite easy and the minimising choice gives

S.A; z/ � X

G.D; z/
C
X
d
D

X
e
D

�.d/2�.e/2jRŒd;e�j

where

G.D; z/ D
X
d
D

djP.z/

�.d/2
Y
pjd

�.p/

p � �.p/ :

In the case of the Goldbach conjecture, given an even natural number n we could
take a.m/ to be the number of l with l.n � l/ D m and 1 � l � n � 1, so that
a.m/ D 0, 1 or 2. Then

Ad D �.d/

d
.n � 1/C Rd

where �.d/ is the number of solutions to the congruence l.n� l/ � 0 .mod d/. Thus
� is multiplicative, �.p/ D 1 when pjn and �.p/ D 2 otherwise. It turns out that the
choice z D D D x

1
2 .log x/�4 leads to

R2.n/ � 8n

.log n/2
S2.n/C O

	
n.log log n/

.log n/3



:

This misses the conjectured result by only a factor of 8, and it is remarkable that such
a simple and elementary method will do so well. There are various wrinkles that can
be applied to this. For example one can take a.m/ to be 1 when m < n and n � m is
prime and 0 otherwise. Then Selberg’s method combined with Bombieri’s theorem
(see Sect. 11) enables one to replace the 8 by 4. Further small improvements can be
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made by using more complicated weights a.m/ which take account of information
from lower bound sieve methods as well. The best that is know is a constant a little
bit smaller than 3:5.

The recent sensational work on small gaps between primes (see Sect. 15) shows
that there is further information which can be teased out of these methods.

9 Schnirelmann

There is a third attack on the Goldbach problem, due to Schnirelmann [80] which
uses just an upper bound sieve method, and then not directly. It appeared before
Vinograd’s method, and so for a short while was the only unconditional game in
town. It also had the merit that it stimulated a whole new area.

Schnirelmann’s idea is to consider densities of sets of integers. Given subsets A
and B of Z it is natural to consider an new set C ,

C D A CB;

the set of integers of the form a C b with a 2 A and b 2 B. It is also handy to
define iteratively for s 2 N,

sA D A C .s � 1/A

and to take

A.n/ D
nX

mD1
m2A

1

Now suppose we have some idea of density. Then we would hope that the density
of C is greater than the density of either A or B. If we are being really optimistic,
then we might hope that the density of C is equal to the sum of the densities of A
and B. Unfortunately this fails for any of the more natural definitions of density,
such as lower asymptotic density

dA D lim inf
n!1

A.n/

n
:

For example, let Let A and B both consist of the zero residue class modulo q. Then
A CB gives nothing new.

Schnirelmann’s clever idea is to consider

	.A / D inf
n2N

A.n/

n
;
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the Schnirelmann density of A . The nice thing about Schnirelmann density is that if

	.A / D 1

then

N � A :

Note that if A contains 0 or any negative integers, then they are not counted by
A.n/. However 0 plays an important rôle. Schnielmann conjectured the following,
which was eventually proved by Mann [63].

Theorem 4. Suppose that 0 2 A and 0 2 B, then

	.A CB/ � min
�
1; 	.A /C 	.B/�:

Obviously the primes have density 0, and generally there is a parity problem when
considering primes. However, consider the set A consisting of 0 and the n such that
2n is prime or the sum of two primes, and suppose this has positive density, say

	.A / � ı

for some positive real number ı. Then choose s so that sı � 1. Then by repeated
application of Mann’s theorem it follows that

	.sA / D 1

and so

N � sA :

Thus every even number is the sum of at most 2s primes.
How might one show unconditionally, prior to Vinogradov, that A has positive

density? The answer lay with the Brun sieve. By the prime number theorem

2x2

.log x/2



X
p1;p2

p1Cp2
2x

�
X
n
2x

r2.n/ D
X
m
x

r2.2m/C 2�.2x/:

Thus

.2C o.1//x2

.log x/2
�
X
m
x

r2.2m/



502 R.C. Vaughan

and the Cauchy-Schwarz inequality gives

.4C o.1//x4

.log x/4
� A.x/

X
m
x

r2.2m/2:

Thus the upper bound sieve can be applied to r2.m/ to obtain for m � 2

r2.2m/ � .CC o.1//m

.log m/2
S2.2m/

and s straightforward calculation then gives

A.x/ � ıx:

for x � 1. In the early days the sieve gave a poor value for C, and only results
somewhat weaker than Mann’s were available, so the lower bounds for s were
rather large. Nevertheless the methodology is not without interest, especially since
it provided a result for all even n. It has been refined by a succession of authors. The
ultimate result is due to Ramaré, [74] who proved that every even number is the sum
of at most six primes.

Let me return to lower asymptotic density. As already pointed out there are
problems with developing a theory comparable with that of Schnirelmann when the
sets A and B are unions of residue classes. However, there is a remarkable theorem
of Kneser [53] (see also Halberstam and Roth [30, Chap. 3]) which tells that this is
essentially the only bad situation that happens.

From Kneser’s theorem it is possible to deduce the following very general
form of the local to global principle (Banks et al. [2]) which has many potential
applications in additive number theory.

Theorem 5. Suppose that there are numbers s1; s2 such that

(i) For all s � s1 and m; n 2 N, the sumset sA has at least one element in the
arithmetic progression n mod mI

(ii) The sumset s2A has positive lower asymptotic density, i.e., d.s2A / > 0.

Then, there is a number s0 with the property that for any s � s0 the sumset sA
contains all but finitely many natural numbers.

Theorem 5 has several interesting consequences, such as the next theorem.

Theorem 6. Let P be a set of prime numbers with

lim inf
X!1

P.X/

X= log X
> 0:
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Suppose that there is a number s1 such that for all s � s1 and m; n 2 N, the
congruence

p1 C � � � C ps � n .mod m/

has a solution with p1; : : : ; ps 2 P . Then, there is a number s0 with the property
that for any s � s0 the equation

p1 C � � � C ps D N

has a solution with p1; : : : ; ps 2P for all but finitely many natural numbers N.

10 The Large Sieve

There is another sieve, the large sieve, which apparently, and certainly in its original
manifestation, has nothing to do with the Goldbach problems. It was created by
Linnik who had in mind a very important application to the least quadratic non-
residue.

Let the an .M C 1 � n � M C N/ denote arbitrary complex numbers. In the
application they may well be specialised to be the indicator function of some set.
Let

Z.qI h/ D
MCNX

nDMC1
n�h mod q

an

and for brevity write Z D Z.1I 1/. Let H .p/ be a set of residue classes modulo
p which have the property that if h … H .p/, then Z.pI h/ D 0, let �.p/ D p �
cardH .p/ and consider

X
h2H .p/

ˇ̌
ˇ̌Z.pI h/ � Z

p � �.p/
ˇ̌
ˇ̌
2

:

By multiplying out this becomes

pX
hD1
jZ.pI h/j2 � jZj2

p � �.p/ D
1

p

pX
aD1

ˇ̌
ˇ̌S
	

a

p


ˇ̌
ˇ̌
2

� jZj2
p � �.p/

where

S.˛/ D
MCNX

nDMC1
ane.˛n/
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and we have used the orthogonality of the additive characters modulo p. Note that
S.1/ D Z. Thus on rearranging this and summing over primes p � Q we find that

X
p
Q

p
X

h2H .p/

ˇ̌
ˇ̌Z.pI h/ � Z

p � �.p/
ˇ̌
ˇ̌
2

C jZj2
X
p
Q

�.p/

p � �.p/ D
X
p
Q

p�1X
aD1

ˇ̌
ˇ̌S
	

a

p


ˇ̌
ˇ̌
2

:

The sum on the right is bounded by

�0.N;Q/
MCNX

nDMC1
janj2

for some choice of �0.N;Q/ independent of the an. If we take, as suggested above,
the an to be the indicator function of some set omitting �.p/ residues classes modulo
p for each prime p � Q we find that

Z � �0.N;Q/P
p
Q

�.p/
p��.p/

:

There are no restrictions on the size of �.p/, which is the reason why any decent
estimate for �0.N;Q/ is called the large sieve. In Linnik’s case �.p/ D pC1

2
when

p is odd. In this way he was able to show that for any fixed ı > 0 the number of
primes p � x for which n2.p/ > pı is O.log log x/.

More generally an inequality of the kind

RX
rD1
jS.˛r/j2 � �.N; ı/

MCNX
nDMC1

janj2

is called the large sieve. Here

ı D min
r 6Ds
k˛r � ˛sk:

There was a considerable amount of work on this, beginning with seminal papers of
Roth [79] and Bombieri [4] in the mid 1960s, and we now know that we can take

�.N; ı/ D N � 1C ı�1

and that this is best possible. There are two proofs, Montgomery and Vaughan [69]
combined with an idea of Cohen, and Selberg [81]. Thus

X
q
Q

qX
aD1

.a;q/D1

ˇ̌
ˇ̌S
	

a

q


ˇ̌
ˇ̌
2

� .N � 1C Q2/

MCNX
nDMC1

janj2:
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A further development was that Montgomery [31] was able to make use of the
composite q, and obtained, again supposing that the an are 1 or 0,

Z � N � 1C Q2

P
q
Q �.q/

2
Q

pjq
�.p/

p��.p/
:

Wait a minute! The sum in the denominator is the same as occurs in the Selberg
sieve, and that Q2 in the numerator looks cleaner to deal with than the remainders in
Selberg’s sieve. The main drawback is that one has to work on an interval. In fact,
it turns out that, in some sense, this is the dual of Selberg’s sieve. Anyway, this can
certainly be applied to the Goldbach problem. For example, let N be an even natural
number and take an D 0 if pjn or pjN � n for any prime p � Q D pN.

Moreover there is a lot more information to be extracted from the large sieve
inequality. Let

S.
/ D
MCNX

nDMC1
an
.n/

where 
 is a Dirichlet character modulo q. Then for primitive characters the
relationship

qX
xD1


.x/e.nx=q/ D 
.n/�.
/;

where the Gauss sum �.
/ satisfies �.
/, gives

X
q
Q

q

�.q/

X�


mod q

jS.
/j2 � .N � 1C Q2/

MCNX
nDMC1

janj2

where
X�

indicates that the sum is restricted to primitive characters.

11 Bombieri

In [4], Bombieri was able to use the large sieve to establish the following. Let

#.yI q; a/ D
X
p
y

p�a mod q

.log p/:
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Theorem 7. Given any fixed A > 0 there is a B D B.A/ such that if Q �
x
1
2 .log x/�B, then

X
q
Q

max
a

.a;q/D1
sup
y
x

ˇ̌
ˇ̌#.yI q; a/ � y

�.q/

ˇ̌
ˇ̌� x.log x/�A:

This is a very powerful result and can substitute for the Generalised Riemann
Hypothesis in many applications. Independently and simultaneously a slightly
weaker result was established by Vinogradov [91].

Apart from the application to Goldbach via the sieve mentioned in Sect. 8, there
is another connection with Goldbach. Bombieri’s proof is quite technical, and first
uses the large sieve to obtain bounds for Dirichlet polynomials. These in turn are
used to obtain zero density estimates for the zeros of Dirichlet L-functions. Finally
the zero density estimates are applied via the explicit formula for

 .yI
/ D
X
n
y

�.n/
.n/:

We now have simpler proofs, and perhaps the simplest is via the identity of Sect. 5
which gives a partition of sums involving the von Mangoldt function into good Type
I and Type II sums [85]. Thus things have come full circle. A technique developed
to treat the Goldbach problems is then used on a cognate question which then has
implications back to Goldbach.

12 Montgomery and Hooley

We are not finished with the large sieve. Barban [3] states without proof a precise
estimate for

M2.xIQ/ D
X
q
x

qX
aD1

.a;q/D1

	
 .xI q; a/ � x

�.q/


2

where

 .xI q; a/ D
X
n
x

n�a mod q

�.n/:

Davenport and Halberstam [17] then used the large sieve in a more sophisticated
way to show that if x.log x/�A � Q � x, then

M2.xIQ/ D O
�
Qx.log x/5

�
:
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This was refined further by Gallagher who showed that

M2.xIQ/ D O .Qx.log x// :

Gallagher, inter alia, had given a very simple proof of a large sieve bound

�.N; ı/ � �N C Q2

in which he compares

jS.˛r/j2with
Z ˛rCı

˛r�ı
jS.ˇ/j2dˇ:

When I first saw this, it was in Roth’s inaugural lecture at Imperial College in 1968,
I got very excited because, if you think of the specialisation to the case when the ˛r

are the rationals a
q , this looks awfully like the Hardy–Littlewood method.

In [66] Montgomery was able to give a more precise version,

M2.xIQ/ D Qx log xC O
�
Qx log QC x2.log x/�A

�
:

The most remarkable thing about these results is that they give something that is
beyond what can be deduced from the Generalised Riemann hypothesis. They are
saying that on average

 .xI q; a/ � x

�.q/
D O

 	
x

q


 1
2

.log q/
1
2 /

!
:

Montgomery’s proof begins by multiplying out the left hand side. The terms

�2
X
q
Q

qX
aD1

.a;q/D1

 .xI q; a/ x

�.q/

and

X
q
Q

qX
aD1

.a;q/D1

x2

�.q/2

are easy to deal with. That leaves

X
q
Q

qX
aD1

.a;q/D1

 .xI q; a/2:
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Since the residue classes with .a; q/ > 1 contain very few prime powers this is
essentially

X
q
Q

X
m
x

X
n
x

n�m mod q

�.m/�.n/

and this can be rewritten as

Q
X
n
x

�.n/2 C 2
X
q
Q

X
l
x
qjl

X
l<n
x

�.n � l/�.n/:

Since the vast majority of prime power differences are even this is essentially

Q
X
n
x

�.n/2 C 2
X

k
x=2

X
qj2k
q
Q

X
2k<n
x

�.n � 2k/�.n/: (15)

Then Montgomery appeals to the result by Lavrik

X

k
 1
2 x

 X
n
x

�.n/�.n � 2k/ � .x � 2k/S2.2k/

!2
D O

�
x2.log x/�A

�
;

that mentioned in Sect. 7, to show that the sum

X
2k<n
x

�.n � 2k/�.n/

in (12) can be replaced by

.x � 2k/S2.2k/

with an acceptable error. The proof is then completed in a routine way.
Thus Vinogradov’s method for dealing with the ternary Goldbach problem has

been used to say something quite deep about the distribution of primes in arithmetic
progressions.

Soon afterwards Hooley [45] found a more elementary argument which gives
even more precise results. However this is not the end of the Hardy–Littlewood–
Vinogradov method. In 1996, Goldston and Vaughan have adapted that method
to take things even further, and on the assumption of the Generalised Riemann
hypothesis have obtained an essentially best possible error term.
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13 Hooley and Third Moments

Hooley [44] also considered the third moment

M�
3 .xIQ/ D

X
q
Q

q
qX

aD1
.a;q/D1

	
#.xI q; a/ � x

�.q/


3

and has shown for that, any positive constant A, if Q D o.x= log x/ as x!1, then

M�
3 .x;Q/ D o

�
Q

3
2 x

3
2 log

3
2 x
�
C O

	
x3

logA x




and has also shown that if x= log x � Q � x, then

M3.x;Q;w0; �0/ D 1

2�.2/
Q2x log2 xC O

	
Q2x log x log2

2x

Q



:

Later I was able to simplify the proof and obtain somewhat stronger results by using
a variation on the main term which takes better account of the fact that when q is
close to x there are relatively few primes in each residue class modulo q.

Let me briefly describe the underlying method. We can concentrate on the terms
with R < q � Q for some suitable R D, say, x.log x/�A. Then by considering the
difference of the intervals Q < q � x and R < q � x and cubing out the general
term gives four expression

�
X

R<q
x

x3

�.q/
;

3
X

R<q
x

qX
aD1

.a;q/D1

#.xI q; a/ x2

�.q/
;

�3
X

R<q
x

qX
aD1

.a;q/D1

#.xI q; a/2x;

X
R<q
x

�.q/
qX

aD1
.a;q/D1

#.xI q; a/3

for various choices of R. The first two are easily dealt and the third much as in the
case of the second moment. The fourth can be rewritten as essentially
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X
R<q
Q

�.q/
X

p1
x;p2
x;p3
x
l�m�n card q

.log p1/.log p2/.log p3/:

Terms with pj D pk for some j 6D k can be dealt with similarly to the second and
third sums. This leaves the case when the pj are distinct. This contributes

6
X

R<q
x

X
j<x; k<x
qjj; qjk

X
p1
x;p2
x; p3
x

p3�p2Dk; p2�p1Dl

.log p1/.log p2/.log p3/:

Thus we need to examine the system

p3 � p2 D qs; p2 � p1 D qr:

These differences do not exceed x, whereas q > R. Hence s � x=R and r � x=R,
and x=R D .log x/A. Moreover, solving for q, we have

p3 � p2
s
D p2 � p1

r
;

in other words

rp3 � .sC r/p2 C sp1 D 0:

Again, this is a situation which can be treated successfully by the Hardy-Littlewood-
Vinogradov method.

14 Hooley’s Conjecture

Let

V.xI q/ D
qX

aD1
.a;q/D1

	
 .xI q; a/ � x

�.q/


2
:

In view of the nature of the second moments, Hooley [43], has suggested that, for
some unspecified range of q,

V.x; q/ 
 x log q

and in 1975 he showed that if

x.log x/�A < Q � x
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then (12) holds for almost all q in the range Q
2
< q � Q and that on the generalised

Riemann hypothesis the range (14) may be extended to

x
4
5C" < Q � x:

Friedlander and Goldston [25] have shown that a better approximation to V.xI q/
should be

U.x; q/ D x log q � x

0
@� C log 2� C

X
pjq

log p

p � 1

1
A

and have obtained various estimates for

X
Q
2 <q
Q

jV.x; q/ � U.x; q/j :

In Vaughan [87] the subject was developed further by treating the general moment

Mk.x;Q/ D
X

Q
2 <q<Q

jV.x; q/ � U.x; q/jk:

Once more the Hardy–Littlewood method plays a crucial rôle.

15 Small Gaps Between Primes

The modern work on small gaps between primes starts with Hardy and Littlewood.
In Sect. 4 it was mentioned that the seventh paper in their “Partitio Numerorum”
series was never published. This deals with small gaps between prime numbers. Let
2 D p1 < p2 < : : : be the sequence of primes in their natural order. The prime
number theorem tells us that the average size of pnC1 � pn is log pn, so at once

lim inf
n!1

pnC1 � pn

log pn
� 1:

Hardy and Littlewood had the idea of considering

HX
hD�H

.H � jhj/�2.xI h/ D
Z 1

0

jF.˛/j2j
HX

hD1
e.˛/j2d˛
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where

�2.xI h/ D
X

p1
x; p2
x
p2�p1Dh

.log p1/.log p2/

and

F.˛/ D
X
p
x

.log p/e.˛p/:

On the generalised Riemann hypothesis they were able to take

H D
	
2

3
C ı



log x

and deduce that the right hand side is so large that the left hand side contains non-
zero terms with h 6D 0. Thus

lim inf
n!1

pnC1 � pn

log pn
� 2

3
:

Erdős obtained an unconditional result and Rankin [75] and Ricci [76] both made
contributions, but the first paper to make significant progress is Bombieri and
Davenport [5] who used the large sieve and the Selberg sieve in the above method
to obtain

lim inf
n!1

pnC1 � pn

log pn
� 2Cp3

8
D 0:466:

This was successively reduced by Pilt’jai [72], Huxley [47, 48], and Maier [62] to
0:248.

The recent spectacular advances on small gaps by Goldston et al. [27], Zhang
[94], Maynard [64], Tao are based around a rather different idea, that of seeking
primes in “admissible” k-tuples of integers. Let 1P be the indicator function of the
primes P. Typically an expression of the kind

X
N<n
2N

n�a .mod q/

	 kX
jD1

1P.nC hj/ � �

� X

d
R
djnCh
.d;q/D1

�.d/
�2

(16)

is considered where, perhaps, d denotes the k-tuple d1; : : : ; dk, djjn C hj

.j D 1; : : : ; k/ and d D d1 : : : dk. Other configurations are possible. Maybe
d D dj.nCh1/ : : : .nChj/. The idea is to use Selberg � which are related closely to
those which would arise in applying his upper bound method to the prime k-tuples
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conjecture. Since it is only an upper bound sieve method this does not ensure that
each nC hj is prime, but it does make it more likely that primes occur amongst the
n C h1; : : : ; n C hk. If it can be show that the expression in (16) is positive then it
will follow that there are n such that

kX
jD1

1P.nC hj/ > �:

As of 25th May 2015, the best results achieved by these methods are that
unconditionally

lim inf
n!1 pnC1 � pn � 246;

and if one assumes the Elliott–Halberstam conjecture [19], then

lim inf
n!1 pnC1 � pn � 12:

This method has very great flexibility and many potential applications. One
is to Dickson’s conjecture [1904] which states that if the gi, hi are integers andQk

iD1.ginC hi/ has no fixed prime divisor, then there are infinitely many n such that
the gin C hi are simultaneously prime. Perhaps the most exciting application has
been to large gaps, where Ford et al. [22] have solved a $5000.00 problem of Erdős
by showing that there is a positive constant c such that for infinitely many n

pnC1 � pn >
c.log n/.log log n/.log log log log n/

log log log n
:

16 Goldbach Generalised: Partitions into Primes

There are a variety of generalisations of Goldbach type problems which have been
considered recently and to all of which one can apply the Hardy–Littlewood–
Ramanujan–Vinogradov method. One such concerns the asymptotic formula for the
number p.n/ of partitions of n into primes. Let

˚.z/ D
1X

nD0
p.n/zn D

Y
p

.1 � zp/�1

and

�.z/ D
1X

kD1

X
p

zkp

k
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which are readily seen to converge when jzj < 1 and satisfy

˚.z/ D exp
�
�.z/

�
:

Moreover, for every k 2 N
� and � 2 .0; 1/,

�.k/.�/ > 0

and

�.k/.�/!1 as �! 1�:

Thus, for every x � 0 the equation

�� 0.�/ D x

has a unique solution � D �.x/ with � 2 Œ0; 1/, and �.x/ ! 1� as x ! 1. Thus
as x!1,

x log
1

�.x/
D �

r
x

3 log x

	
1C log log x

log x
C O.1= log x/



;

�
�
�.x/

� D �
r

x

3 log x

	
1C log log x

log x
C O.1= log x/




and the prime number theorem gives

�2.�/ D
	
�

d

d�


2
�.�/ D 2��1.3 log x/

1
2 x

3
2

�
1C O.log log x= log x/

�
:

Then a variant of the method [88] will give the following theorem.

Theorem 8. Suppose that n is sufficiently large. Then

p.n/ D �.n/�n˚
�
�.n/

�
q
2��2

�
�.n/

�
�
1C O

�
n�1=5�� :

Theorem 9. We have

p.nC 1/ � p.n/ 
 �p.n/p
3n log n

as n!1.
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17 Goldbach Generalised: Beatty Primes

Another collection of recent applications concerns representations by Beatty primes.
A Beatty prime is a prime in the set

B.˛; ˇ/ D fb˛nC ˇc W n 2 Ng (17)

where ˛, ˇ 2 R and ˛ > 1. Thus, given ˛1; : : : ; ˛s, ˇ1; : : : ; ˇs 2 R with ˛j > 1 let

R.nI˛;ˇ/ D
X�

p

.log p1/ : : : .log ps/ (18)

where
X

p

�
indicates that the sum is over s-tuples of primes pj 2 B.˛j; ˇj/ with

p1 C � � � C ps D n.
See Banks et al. [1], Kumchev [54] and Vaughan [90]. Here is a sample theorem

taken from the latter paper.

Theorem 10. Suppose that s � 3, ˛j > 1 .1 � j � s/, ˛1; : : : ; ˛s are irrational
and there is a pair i, j such that ˛i; ˛j; 1 are linearly independent over Q, and n � s
.mod 2/. Then

Rs.nI˛;ˇ/ 
 nk�1Sk.n/

˛1 : : : ˛k.k � 1/Š (19)

as n!1

18 Goldbach Generalised: Mixed Powers

In addition to the Goldbach–Waring problem mentioned in Sect. 5, there is a
considerable body on mixed powers. One modern development has been to combine
the Hardy–Littlewood method with sieve techniques. This was first done by Heath–
Brown [41] when he showed that there are infinitely many configurations of three
primes and an almost prime in arithmetic progression. Of course, this has been
overtaken by the recent work of Green and Tao [29] (see also Green [28]), which
itself is partially dependent on techniques which can be considered to descend from
the Hardy–Littlewood–Ramanujan method.

Let Pk denote the set of natural numbers having at most k prime factors. Then
the elements of Pk are called almost primes. In the context of the Goldbach–Waring
problem the combination of the Hardy–Littlewood method with sieve techniques
was first exploited systematically by Brüdern in his Habilitationsschrift [6] and then
by Brüdern and Fouvry [9]. They proved that every sufficiently large integer n � 4
.mod 24/ can be written as the sum of four squares of P34-numbers.
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This is an area which has really mushroomed and I am going to be very selective.
To set the scene, consider Roth [78] who proved that if n is sufficiently large,

then the equation

x3 C p31 C � � � C p37 D n (20)

has solutions in primes p1; : : : ; p7 and a positive integer x. By comparison, if we
insist the all the variables be prime, then the best that can be achieved is nine terms
rather than eight. Brüdern showed that, when n � 4 .mod 18/, x can be restricted
to be a P4-number. Then Kawada [50] replaced the P4 by a P3. There is a good
account of this and similar questions in Brüdern and Kawada [10], Kawada [51] and
Kawada [52].

Another class of questions that Brüdern and Kawada consider is to show that in
each case for almost all n such that

n 6� 0 .mod 2/; n D x2 C p31 C p52 x 2P15 (21)

n 6� 2 .mod 3/; n D x2 C p31 C p42 x 2P6 (22)

n 6� 2 .mod 3/; n D p21 C y3 C p42 y 2P4 (23)

n 6� 5 .mod 7/; n D x2 C p31 C p32 x 2P3 (24)

n 6� 5 .mod 7/; n D p21 C y3 C p32 y 2P3 (25)

there is a solution. Yet another is to show in each case that for

n > n0; n even; n D p1 C x2 C p32 C p43 x 2P3 (26)

n > n0; n even; n D p1 C x2 C p32 C p53 x 2P4 (27)

n > n0; n even; n D xC p21 C p32 C pk
3 x 2P2 (28)

there is a solution.
Recently Liu [60] has shown in each case if

n > n0; n odd; n D xC p31 C p32 C p33 C p34 x 2P2 (29)

n > n0; n odd; n D p1 C p32 C p33 C p34 C y3 y 2P3 (30)

n > n0; n odd; n D p1 C p32 C p33 C y31 C y32 yj 2P2 (31)

then there is a solution.
A different approach which works in some cases is to assume the Generalised

Riemann Hypothesis. Thus in Vaughan [89] the following were obtained.
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Theorem 11. Assume the Generalised Riemann Hypothesis. Then every sufficiently
large even integer is the sum of a prime, the square of a prime and two cubes of
primes.

Theorem 12. Assume the Generalised Riemann Hypothesis. Then every sufficiently
large odd integer is the sum of a prime and four cubes of primes.

19 Goldbach Generalised: Other Rings

Another rather obvious generalisation of the Goldbach questions is to other rings
than Z. The irreducible polynomials play the rôle of prime numbers. There might
be some difficulties if one does not have uniqueness of factorisation. This is not
a problem for polynomials over a field. It can be a lot easier than the classical
case, but can nevertheless give rise to some interesting techniques. Thus Hayes
[40] established a Goldbach theorem for polynomials over Z and there are many
generalisations. See Pollack [73] for a generalization and a useful review of the
literature.

For polynomials over finite fields Effinger and Hayes [20] give a systematic
treatment of the subject. There are many similarities with the classical situation.
Thus it is possible to imitate the Hardy–Littlewoo–Ramanujan–Vinogradov method
by introducing the Pontryagin dual. This gives an analogue of the fourier transform
on the torus which is at the heart of the classical approach.
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1. W. D. Banks, A. M. Güloǧlu & C. W. Nevans, Representation of integers as sums of primes
from a Beatty sequence, Acta Arith. 130(2007), 255–275.

2. W. D. Banks, Ahmet M. Guloglu & R. C. Vaughan, On Waring’s problem for dense sequences,
Journal de Théorie des Nombres de Bordeaux, to appear.

3. M. B. Barban, The “large sieve method” and its application to number theory (Russian), Uspehi
Akad. Nauk SSSR 21(1966), 51–102.

4. E. Bombieri, On the large sieve, Mathematika, 12(1965), 201–225.
5. E. Bombieri & H. Davenport, Small differences between prime numbers, Proc. Roy. Soc. A,

293(1966), 1–18.
6. J. Brüdern, Sieves, the circle method, and Waring’s problem for cubes, Habilitationsschrift,

Mathematica Gottingensis, Vol. 51.
7. J. Brüdern, A sieve approach to the Waring-Goldbach problem I: Sums of four cubes, Ann.

scient. Ec. Norm. Sup. (4) 28, 461–476.
8. J. Brüdern, A sieve approach to the Waring-Goldbach problem II: On the seven cubes theorem,

Acta Arith. 72, 211–227.
9. J. Brüdern & E. Fouvry, The four square theorem with almost prime variables, J. reine angew.

Math. 454, 59–96.
10. J. Brüdern & K. Kawada, Ternary problems in additive prime number theory, Analytic Number

Theory, edited by Chaohua Jia and Kohji Matsumoto, Kluwer 2002, 39–91.



518 R.C. Vaughan

11. V. Brun, Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare, Archiv for
Mathematik og Naturvidenskab B34(1915), no. 8, 19pp.

12. Jing-Run Chen, On the representation of a large even integer as the sum of a prime and the
product of at most two primes, J. Kexue Tongbao 17(1966), 385–386.

13. Jing-Run Chen & Pan Cheng Dong, The exceptional set of Goldbach numnbers, J. of Shandong
Univ, (1979), 1–27.

14. N. G. Chudakov, On the Goldbach problem, C. R. Acad. Sci. URSS, (2)17(1937), 335–338.
15. J. G. van der Corput, Sur l’hypothèse de Goldbach pour presque tous les nombres pairs, Acta

Arith. 2(1937), 266–290.
16. H. Davenport, The Collected Works of Harold Davenport IV, edited by B. J. Birch, H.

Halberstam, & C. A. Rogers, Academic Press, 1977.
17. H. Davenport & H. Halberstam, Primes in arithmetic progressions, Michigan Math. J.

13(1966), 485–489.
18. Davenport, H.; Halberstam, H. Corrigendum: “Primes in arithmetic progression”. Michigan

Math. J. 15 1968 505.
19. P. D. T. A. Elliott & H. Halberstam, A conjecture in prime number theory, Symp. Math.

4(1968), 59–72.
20. G. W. Effinger & D. R. Hayes, Additive numbe theory of polynomials over a finite field, Oxford

University Press, 1991, 176pp.
21. T. Estermann, On Goldbach’s problem: Proof that almost all even positive integers are sums of

two primes, Proc. London Math. Soc.(2)44(1938), 307–314.
22. Ford, Kevin; Green, Ben; Konyagin, Sergei; Maynard, James; Tao, Terence, Long gaps between

primes, arXiv:1412.5029
23. J. B. Friedlander & H. Iwaniec, Opera de Cribo, A.M.S. Colloquium Publications, vol 57.
24. J. B. Friedlander, K. Gong and I. E. Shparlinski, Character sums over shifted primes, Mat.

Zametki 88(2010), 605–619.
25. J. B. Friedlander & D. A. Goldston, Variance of distribution of primes in residue classes, Quart.

J. Math. Oxford (2) 47(1996), 313–336.
26. P. X. Gallagher, The large sieve, Mathematika 14(1967), 14–20.
27. D. A. Goldston, J. Pintz, & C. Y. Yıldırım, Primes in tuples I, Ann. of Math. 170(2009),

819–862.
28. B. J. Green, Generalizing the Hardy–Littlewood method for primes, Proc. ICM (Madrid 2006),

vol. 2, pp. 373–399.
29. B. J. Green & T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. Math.

167(2008), 481–547.
30. H. Halberstam & K. F. Roth, Sequences, Oxford University Press, 1966.
31. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, I: A new solution to

Waring’s problem, Göttinger Nachrichten (1920), 33–54.
32. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, II: Proof that every

large number is the sum of 21 biquadrates, Mat. Z. 9(1921), 14–27.
33. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, III: On the expression

of a number as a sum of primes, Acta Math, 44(1922), 1–70.
34. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, IV: The singular series

in Waring’s problem and the value of the number G.K/, Mat. Z. 12(1922), 161–188.
35. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, V: A further

contribution to the study of Goldbach’s problem, Proc. London Math. Soc. (2)22(1924),
254–269.

36. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, VI: Further researches
in Waring’s problem, Mat. Z. 23(1925), 1–37.

37. G. H. Hardy & J. E. Littlewood, Some problems of partitio numerorum, VII: The number  .k/
in Waring’s problem, Proc. London Math. Soc. (2)28(1928), 518–542.

38. G. H. Hardy & S. Ramanujan, Asymptotic Formulae in Combinatory Analysis, Proc. London
Math. Soc. 17(1918), 75–115.



Goldbach’s Conjectures: A Historical Perspective 519

39. G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, Oxford University
Proess, fifth edition, 1979.

40. D. R. Hayes, A Goldbach theorem for polynomials with integral coefficients, Amer. Math
Monthly 72(1965), 45–46.

41. D. R. Heath-Brown, Three primes and an almost-prime in arithmetic progression, J. London
Math. Soc. (2)23(1981), 396–414.

42. H. Helfgott, The ternary Goldbach conjecture is true, arXiv:1312.7748, (2013).
43. C. Hooley, The distribution of sequences in arithmetic progression, Proc. ICM publ. Vancouver

1974.
44. C. Hooley, On the Barban-Davenport-Halberstam theorem: I, J. reine angew. Math.

274/275(1975), 206–223.
45. C. Hooley, On the Barban-Davenport-Halberstam theorem III, J. London Math. Soc. (2)

11(1975), 399–407.
46. C. Hooley, On the Barban-Davenport-Halberstam theorem. VIII. J. Reine Angew. Math. 499

(1998), 1–46.
47. M. N. Huxley, Small differences between consecutive primes, Mathematika 20(1973),

229–232.
48. M. N. Huxley, Small differences between consecutive primes, II, Mathematika 24(1977),

142–152.
49. L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs, 13,

American Mathematical Society, Providence, R.I. 1965 xiii+190 pp.
50. K. Kawada, Note on the sum of cubes of primes and an almost prime, Arch. Math. (Basel)

69(1997), 13–19.
51. K. Kawada, On several additive problems that regard variables as prime numbers, RIMS

Kokyuroku 1274(2002), 219–229.
52. K. Kawada, On sums of seven cubes of almost primes, Acta Arith. 117(2005), 213–245.
53. M. Kneser, Abschätzungen der asymptotischen Dichte vin Summengen, Math. Z. 58(1953),

459–484.
54. A. V. Kumchev, On sums of primes from Beatty sequences, Integers 8, A8 (2008). 12 pp.
55. E. Landau, Ueber die zahlentheoretische Function '.n/ und ihre Bezeihung zum Goldbach-

schen Satz, Nachrichten von der Königliche Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch–Physikalische Klasse, 1900, 177–186.

56. Lavrik, A. F., On the twin prime hypothesis of the theory of primes by the method of I. M.
Vinogradov. Dokl. Akad. Nauk SSSR 132(1960) 1013–1015 (Russian); translated as Soviet
Math. Dokl. 1 1960 700–702.

57. Yu. V. Linnik, The large sieve, C. R. (Doklady) Acad. Sci. URSS (N.S.) 30(1941), 292–294.
58. Yu. V. Linnik, A remark on the least quadratic non-residue, C. R. (Doklady) Acad. Sci. URSS

(N.S.) 36(1942), 119–120.
59. J. E. Littlewood, On the zeros of the Riemann zeta-function, Proc. Cam. Phil. Soc, 22(1924),

295–318.
60. Zhixin Liu, Cubes of primes and almost prime, Journal of Number Theory, (6) 132(2012),

1284–1294.
61. Wen Chao Lu, Exceptional set of Goldbach number, J, Number Theory 130(2010), 2359–2392.
62. H. Maier, Small differences between prime numbers, Michigan Math. J. 35(1988), 323–344.
63. H. B. Mann, A proof of the fundamental theorem on the density of sums of sets of positive

integers, Annals of Mathematics, 43(1942), 523–527.
64. J. Maynard, Small gaps between primes, 181(2015), 383–413.
65. H. L. Montgomery, A note on the large sieve, J. London Math. Soc. 43(1968), 93–98.
66. H. L. Montgomery, Primes in arithmetic progressions. Michigan Math. J. 17(1970), 33–39.
67. H. L. Montgomery & R. C. Vaughan, The large sieve, Mathematika, 20(1973), 119–134.
68. H. L. Montgomery & R. C. Vaughan, Error terms in additive prime number theory, Q. J. Math.

24(1973), 207–216.
69. H. L. Montgomery & R. C. Vaughan, The Exceptional Set in Goldbach’s Problem, Acta. Arith.

27(1975), 353–370.



520 R.C. Vaughan

70. H. L. Montgomery & R. C. Vaughan, Multiplicative Number Theory I. Classical Theory,
Cambridge University Press, 2007.

71. I. Piatetski–Shapiro, On the distribution of prime numbers in sequences of the form [f(n)], Mat.
Sbornik N.S. 33(75)(1953), 559–566.

72. G. Z. Pil’tai, Studies in the theory of numbers (Saratov), No. 4, pp. 73–79, Izdat. Saratov. Univ.,
Saratov, 1972.

73. P. Pollack, On polynomial rings with a Goldbach property, Amer. Math. Monthly 118(2011),
71–77.

74. O. Ramaré, On S’nirel’man’s constant, Annali dela Scuola Superiore di Pisa 21(1995),
645–705.

75. R. A. Rankin, The difference between consecutive prime numbers, V, Proc. Edinburgh Math.
Soc. 13(1963), 331–332.

76. G. Ricci, Sull’andamento della differenza di numeri primi consecutivi, Riv. Mat. Univ. Parma
5(1954), 3–54.

77. J. Rivat & J. Wu, Prime numbers of the form bncc, Glasg. Math. J. 43(2001), 237–254.
78. K. F. Roth, On Waring’s problem for cubes, Proc. London Math. Soc. (2)53(1951), 268–279.
79. K. F. Roth, On the large sieves of Linnik and Rényi, Mathematika 12(1965), 1–9.
80. Schnirelmann, On additive properties of numbers, Ann. Inst. polytechn. Novoerkassk

14(1931), 3–28.
81. A. Selberg, On an elementary method in the theory of primes, Norske Vid. Selsk. Forh.

Trondheim 19(1947), 64–67.
82. W. H. Spottiswoode, Description of a communication in the account of the Annual General

Meeting, Proc. London Math. Soc. (1871), 3–6.
83. P. G. S. Stäckel, Ueber Goldbachs empirisches Theorem, Nachrichten von der Königliche

Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse (1896),
292–299.

84. R. C. Vaughan, Sommes trigonométriques sur les nombres premiers, C.R. Acad. Sci. Paris Sér.
A 285(1977), 981–983.

85. R. C. Vaughan, An elementary method in prime number theory, Acta Arithmetica 37(1980),
111–115.

86. R. C. Vaughan, Some remarks on Weyl sums, Colloquia Math. Soc. János Bolyai, 34 Topics in
classical number theory, Budapest, 1981, North Holland (1984), 1585–1602.

87. R. C. Vaughan, On a variance associated with the distribution of primes in arithmetic
progressions, Proc. London Math. Soc, 82(2001), 533–553.

88. R. C. Vaughan, On the number of partitions into primes, The Ramanujan Journal, 15(2008),
109–121.

89. R. C. Vaughan, Some problems of ‘Partitio Numerorum’: Hybrid expressions, The Legacy of
Srinivasa Ramanujan, RMS-Lecture Notes Series No. 20, 2013, pp. 363–385.

90. R. C. Vaughan, The general Goldbach problem with Beatty primes, The Ramanujan Journal,
34 (2014), 347–359.

91. A. I. Vinogradov, On the density hypothesis for Dirichlet L–functions, Izv. Akad. Nauk SSSR
Ser. Mat. 29(1965), 903–934, and Correction to the paper of A. I. Vinogradov, On the desity
hypothesis for Dirichlet L–functions, Izv. Akad. Nauk SSSR Ser. Mat. 30(1966), 719–720.

92. I. M. Vinogradov, Representation of an odd number as the sum of three primes, Dokl. Akad.
Nauk SSSR, 16 (1937), 179–195.

93. I. M. Vinogradov, The distribution of quadratic residues and non–residues of the kind p C k to
a prime modulus, Mat. Sbornik (2)3(45)(1938), 311–320.

94. Yitang Zhang, Bounded gaps between primes, Ann. of Math. 179(2014), 1121–1174.



The Hodge Conjecture

Claire Voisin

Abstract This is an introduction to the Hodge conjecture, which, although intended
to a general mathematical audience, assumes some knowledge of topology and
complex geometry. The emphasis will be put on the importance of the notion of
Hodge structure in complex algebraic geometry.

1 Introduction

The Hodge conjecture stands between algebraic geometry and complex geometry.
It relates data coming from topology (a Betti cohomology class), complex geometry
(the Hodge decomposition or filtration) and algebraic geometry (the algebraic
subvarieties of a complex algebraic variety). We can state it very quickly by
saying that it provides a conjectural characterization of algebraic classes, that is
cohomology classes generated over Q by classes of algebraic subvarieties of a given
dimension of a complex projective manifold X, as Hodge classes, that is those
rational cohomology classes of degree 2k which admit de Rham representatives
which are closed forms of type .k; k/ for the complex structure on X. The geometry
behind this condition is the fact that the integration current defined by a complex
submanifold of dimension n � k annihilates forms of type .p; q/ with .p; q/ 6D
.n � k; n � k/.

Not much is known about the Hodge conjecture, apart from the Lefschetz
theorem on .1; 1/-classes (Theorem 2) and a beautiful evidence (Theorem 6)
provided by Cattani, Deligne and Kaplan, which says roughly that Hodge classes
behave in family as if they were algebraic, that is, satisfied the Hodge conjecture.
What we plan to do is to explain the basic notions in Hodge theory (Hodge structure,
coniveau) giving a strong motivation for the Hodge conjecture (and still more
for its generalization, the generalized Hodge conjecture, see Conjecture 3). The
Hodge structures on rational cohomology groups are very rich objects associated
to a smooth projective complex variety, and the belief is that they carry a lot
of qualitative information on the variety: Torelli theorems state that under some
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assumptions, the isomorphism class of these Hodge structures determine the variety
itself. In another direction, the Hodge conjecture is part of a general picture
predicting that these Hodge structures determine the “motive” or at least the Chow
groups of the variety. We also wish to present some of the most important facts
from Hodge theory allowing to prove some conditional results or implications
between various subconjectures. Some very important cases of the Hodge conjecture
are summarized under the name of standard conjectures (see [21]), the main one
being the Lefschetz standard conjecture (Conjecture 2). These instances of the
Hodge conjecture concern Hodge classes of a very special type, which satisfy extra
arithmetic conditions (being absolute Hodge, see Definition 5) satisfied by algebraic
classes but not known to be satisfied by all Hodge classes (see Conjecture 7). An
example of such conditional statement underlining the importance of the Lefschetz
standard conjecture is Theorem 7 concerning the variational form of the Hodge
conjecture which asks whether, starting from a variety X with a Hodge class ˛
which is algebraic, and deforming X in a family .Xt/t2B in such a way that the class
˛ remains Hodge along the deformation, the class ˛t also remains algebraic on Xt.

This paper is organized as follows: in Sect. 2, we will define Hodge structures,
polarizations on them and Hodge classes. In Sect. 3, we will present the Hodge
conjecture, its generalized version, and the few cases in which it is known. We will
also discuss the standard conjectures. Finally we will turn in Sect. 4 to variational
aspects of the Hodge conjecture. Sections 3 and 4 use in an essential way the theory
of mixed Hodge structures which is summarized in Sect. 3.3.

This quick presentation of the Hodge conjecture does not contain many exam-
ples. It is an invitation to read the book [23] where many specific known cases of
the Hodge conjecture are presented.

2 Hodge Structures, Hodge Classes

2.1 Hodge Decomposition

Let X be a complex manifold. The complex structure on X allows to decompose the
vector bundle of complex differential 1-forms on X as

˝X;C D ˝1;0
X ˚˝0;1

X ; (1)

where˝1;0
X is the vector bundle of 1-forms which are C-linear for the complex struc-

ture on TX , locally generated by dzi, the zi’s being local holomorphic coordinates,

and ˝0;1
X D ˝

1;0
X is its complex conjugate, locally generated by dzi. From (1), we

deduce a decomposition of the sheaf of C1 complex differential forms of degree k:

A k
X;C D ˚pCqDkA

p;q
X ; (2)
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where A p;q
X is the sheaf of differential forms of type .p; q/, which can be written in

local holomorphic coordinates zi as

˛ D
X

jIjDp;jJjDq

˛I;JdzI ^ dzJ : (3)

It is clear from (3) that the exterior differential d W A k
X;C ! A kC1

X;C satisfies dA p;q
X �

A pC1;q
X ˚ A p;qC1

X . There is thus no reason that the decomposition (2) induces a
decomposition on the level of de Rham cohomology, that is on the space

Hk.X;C/ D Ker .d W Ak.X/! AkC1.X//
Im .d W Ak�1.X/! Ak.X//

:

Here Ak.X/ WD  .X;A k
X;C/ is the space of C1 complex differential k-forms on

X. However, when X is compact Kähler (and a fortiori projective), the Hodge
decomposition theorem says the following:

Theorem 1 (Hodge [17]). If X is a compact Kähler manifold, one has a canonical
decomposition

Hk.X;C/ D ˚pCqDkHp;q.X/; (4)

where Hp;q.X/ is the set of de Rham cohomology classes of closed differential forms
on X which are of type .p; q/.

The simplest consequence of this statement is the following restriction on the
topology of compact Kähler manifolds:

Corollary 1. If k is odd, and X is a compact Kähler manifold, bk.X/ is even.

Indeed, the definition we gave of Hp;q.X/ clearly shows that the Hodge decomposi-
tion (4) satisfies the Hodge symmetry property:

Hp;q.X/ D Hq;p.X/; (5)

where complex conjugation acts naturally on Hk.X;C/ D Hk.X;R/ ˝ C. The
conclusion of Corollary 1 is not satisfied by the simplest example of non-Kähler
compact complex surface, namely the Hopf surface S, which is the quotient of
C
2 n f0g by the action of Z given by multiplication by � 6D 0, where j�j 6D 1.

Indeed, �1.T/ D Z hence b1.T/ D 1.
Note on the other hand that by the change of coefficients theorem, we have

Hk.X;C/ D Hk.X;Q/˝ C:

This leads us to introduce the basic definition of a Hodge structure of weight k:
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Definition 1. A rational Hodge structure of weight k is the data of a finite rank
Q-vector space L, together with a decomposition

LC WD L˝ C D ˚pCqDkLp;q; (6)

where the Lp;q � LC are complex vector subspaces satisfying the Hodge symmetry
condition Lp;q D Lq;p.

The data of the Hodge decomposition (6) is equivalent to that of the Hodge filtration
(which is a decreasing filtration on LC)

FrLC WD ˚pCqDk;p�rL
p;q; (7)

since Lp;q D FpLC \ FqLC.
Hodge structures coming from geometry are “effective”, meaning that Lp;q D 0

for p < 0 or q < 0. However it is natural to introduce the dual .L�; .Lp;q/�/ of a
Hodge structure .L; Lp;q/ of weight k and to give it weight �k, so the effectivity
condition should not be part of the definition.

Morphisms of Hodge structures .L; Lp;q/ of weight k and .L0; L0p;q/ of weight k0
are defined only when k0 D kC 2r, as the set of morphisms � W L! L0 of Q-vector
spaces satisfying

�C.L
p;q/ � L0pCr;qCr

:

The Tate twist L.r/ of a Hodge structure of weight k is the Hodge structure L0 of
weight k � 2r which has the same underlying vector space L0 D L and Hodge
decomposition L0p;q D LpCr;qCr. If X is a compact Kähler manifold, Poincaré duality
provides an isomorphism of weight �k Hodge structures

Hk.X;Q/� Š H2n�k.X;Q/.n/:

If X and Y are compact Kähler manifolds and � W X ! Y is a holomorphic map,

�� W Hk.Y;Q/! Hk.X;Q/

is a morphism of Hodge structures since the pull-back by � of a closed form of
type .p; q/ on X is a closed form of type .p; q/ on Y; by Poincaré duality, the Gysin
morphism

�� W Hk.X;Q/! HkC2r.Y;Q/; r D dim Y � dim X

is also a morphism of Hodge structures.



The Hodge Conjecture 525

2.2 Hodge Structures and Polarizations

Given a morphism of Hodge structures � W L ! L0, it is obvious how to define
a Hodge structure on Ker� and on Im� since morphisms of Hodge structures are
those which are bigraded after tensoring by C. Hence rational Hodge structures form
an abelian category. However this category is not semi-simple. This phenomenon
already appears for weight 1 Hodge structures. An effective weight 1 Hodge
structure on L is determined by the choice of vector subspace L1;0 � LC which has
to be in direct sum with its complex conjugate. Suppose now that .L;L1;0/ contains
a Hodge substructure L0 � L, L01;0 D L0

C
\L1;0. The only condition on the space L1;0

determining the Hodge structure on L is that its intersection with L0
C

has dimension
1
2
dim L0. We claim that for a general pair .L0; L/ of Hodge structures as above,

there is no splitting L D L0 ˚ L00 as Hodge structures. Indeed, there are countably
many choices of such splitting over Q, and for a given splitting, the condition that
L00 � L is also a Hodge structure means that L1;0 \ L00

C
has dimension 1

2
dim L00.

The complex dimension of the algebraic subset of the Grassmannian Grass.k; 2k/
parameterizing the Hodge structures on L for which L0 � L is a Hodge substructure
is thus equal to k02 C .k � k0/k while the algebraic subset of the Grassmannian
Grass.k; 2k/ parameterizing the Hodge structures on L for which L is a direct sum
L0 ˚ L00 of Hodge structures is a countable union of algebraic subsets of dimension
k02 C .k � k0/2. As k02 C .k � k0/k > k02 C .k � k0/2, the claim is proved. The
phenomenon described above does not appear in algebraic geometry where the
Hodge structures we get are polarized.

Definition 2. A polarization on a rational Hodge structure L of weight k is a
nondegenerate intersection form . ; / on L which is symmetric if k is even, skew-
symmetric if k is odd and satisfies the Hodge-Riemann bilinear relations:

(1) .˛; ˇ/ D 0 for ˛ 2 Lp;q; ˇ 2 Lp0;q0

and .p; q/ 6D .p0; q0/.
(2) �k.�1/p.˛; ˛/ > 0 for ˛ 2 Lp;q, ˛ 6D 0.

Admittedly, the sign rules in (2) are complicated, but they are imposed on us by
geometry. The importance of the notion comes from the following:

Lemma 1. Let L0 � L be a Hodge substructure of a polarized rational Hodge
structure. Then there exists a Hodge substructure L00 � L such that L is isomorphic
to L0 ˚ L00 as Hodge structure.

Proof. Indeed, let q be the intersection form giving the polarization on L. It suffices
to prove that the restricted form qjL0 is nondegenerate since then the orthogonal
complement L00 WD L0?q is defined over Q, is a Hodge substructure of L by property
(1) above and satisfies L0 ˚ L00 D L. Let h.u; v/ D �kq.u; v/ be the Hermitian
bilinear form on LC associated to q. It suffices to show that hjL0

C
is nondegenerate.

But the Hodge decomposition of L0
C

is orthogonal for h by (1) above and each hjL0p;q

is nondegenerate by (2) above. Hence hjL0
C

is nondegenerate. ut
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The construction of a polarization on the Hodge structure on Hk.X;Q/ when X is
a smooth complex projective manifold goes as follows: Let l 2 H2.X;Q/ be the
Chern class of an ample line bundle on X. Then the hard Lefschetz theorem [31,
6.2.3] gives an isomorphism of Hodge structures

ln�k ^W Hk.X;Q/! H2n�k.X;Q/; n D dim X:

We can thus assume k � n. We then consider the nondegenerate intersection pairing

.˛; ˇ/l WD
Z

X
ln�k ^ ˛ ^ ˇ; ˛; ˇ 2 Hk.X;Q/:

It is nondegenerate by the hard Lefschetz theorem, does not satisfy property (2)
above, but satisfies property (1) above. We finally modify it as follows: the Hodge
structure Hk.X;Q/ admits the Lefschetz decomposition as a direct sum of Hodge
substructures

Hk.X;Q/ D ˚2r
klr ^ Hk�2r.X;Q/prim; (8)

where the primitive cohomology is defined by Hk�2r.X;Q/prim WD Ker .ln�kC2rC1 ^W
Hk�2r.X;Q/ ! H2n�kC2rC2.X;Q//. This decomposition is orthogonal for . ; /l.
The polarization . ; / on Hk.X;Q/ is the unique intersection pairing for which
the Lefschetz decomposition is orthogonal, and which is equal to .�1/r. ; /l on
lr ^ Hk�2r.X;Q/prim. The fact that this polarizes (up to a sign) the Hodge structure
on Hk.X;Q/ is exactly the contents of the Hodge-Riemann bilinear relations (see
[31, 6.3.2]).

2.3 Hodge Classes and Cycle Classes

2.3.1 Hodge Classes

Let H be a Hodge structure of even weight 2k, with Hodge decomposition
HC D ˚pCqD2kHp;q.

Definition 3. The Hodge classes in H are the classes in H (hence rational) which,
via the inclusion H � HC, belong to Hk;k.

We will denote Hdg2k.H/ the space H \Hk;k of Hodge classes. Note that this space
can be reduced to 0 and will be 0 for a general Hodge structure with given Hodge
numbers hp;q D dim Hp;q unless hp;q D 0 for p 6D q, since the space Hk;k � HC

needs not be defined over Q, but only over R (as implied by the Hodge symmetry
property, that is condition (5)). If X is a smooth projective variety, we will denote
Hdg2k.X/ the space Hdg2k.H2k.X;Q//.
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2.3.2 Cycle Classes

Let X be a smooth complex projective or compact Kähler variety of (complex)

dimension n, and let Z
j
,! X be a closed analytic subset (which in the projective case

is the same thing according to Chow as a closed algebraic subset) of codimension k.
If Z is smooth, then Z is a codimension 2k real submanifold endowed with the
complex orientation, so it has a fundamental homology class ŒZ�fund 2 H2n�2k.Z;Z/
which gives a homology class

j�ŒZ�fund 2 H2n�2k.X;Z/ Š H2k.X;Z/;

where the last isomorphism is the Poincaré duality isomorphism. If Z is not smooth,
then according to Hironaka, one can construct a smooth projective varietyeZ with a
morphism � W eZ ! Z of degree 1. Letting Qj WD j ı � W eZ ! X, we can define the
class ŒZ� of Z by

ŒZ� D Qj�ŒeZ�fund 2 H2k.X;Z/:

Lemma 2. The class of a closed analytic subset Z in a compact Kähler manifold X
is a Hodge class.

Proof. Let n be the dimension of X. Then we have Poincaré duality

H2k.X;C/ D H2n�2k.X;C/�

identifying the space Hk;k.X/ with the subspace of H2k.X;C/ which is orthogonal to
˚pCqD2n�2k;.p;q/6D.n�k;n�k/Hp;q.X/. It thus suffices to show that for ˇ 2 Hp;q.X/; pC
q D 2n � 2k; .p; q/ 6D .n � k; n � k/, one has hŒZ�; ˇiX D 0. Recall from Sect. 2.1
that Hp;q.X/ consists of classes of closed forms of type .p; q/. The class ˇ is thus
represented by a closed form Q̌ which is closed of type .p; q/ and introducing a
desingularization Qj WeZ ! X of Z, we have, by definition of the Gysin morphism,

hŒZ�; ˇiX D hQj�ŒeZ�fund; Q̌iX D hŒeZ�fund; Qj� Q̌ieZ D
Z
eZ
Qj� Q̌:

The last expression vanishes since the form Qj� Q̌ vanishes oneZ for type reasons.

Important examples of Hodge classes are provided by the following Lemma 3.

Lemma 3. Let H; H0 be two Hodge classes of weights k; k0 D k C 2r. Then
the Hodge classes of the weight 2r Hodge structure Hom .H;H0/ are exactly the
morphisms of Hodge structures H ! H0.

Here the Hodge structure on H� has been introduced previously, and the Hodge
structure on the tensor product H� ˝ H0 D Hom .H;H0/ is given by

.H� ˝ H0/p;q D ˚tCt0Dp;sCs0Dq.H
�/t;s ˝ .H0/t0;s0

: (9)
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Proof. Indeed a morphism � 2 Hom .H;H0/ D H� ˝ H0 is of type .r; r/ for
the tensor product Hodge structure if and only if it satisfies �C 2 ˚.t;s/.H�/t;s ˝
.H0/r�t;r�s. As we have .H�/t;s D .H�t;�s/�, this is equivalent to

�C 2 ˚.t;s/.Ht;s/� ˝ .H0/rCt;rCs D ˚.t;s/Hom .Ht;s; .H0/rCt;rCs/;

that is, to the fact that �C shifts the Hodge decomposition by .r; r/.

3 The Hodge and Generalized Hodge Conjectures

3.1 The Hodge Conjecture

Conjecture 1 (Hodge 1951). Let X be a projective complex manifold. Then for any
k, the space Hdg2k.X/ is generated over Q by classes ŒZ� of codimension k closed
algebraic subsets of X.

A codimension k cycle on X is a formal combination Z D P
i ˛iZi, ˛i 2 Q. We

will call cycle classes ŒZ� WD P
i ˛iŒZi� algebraic classes, and will use the notation

H2k.X;Q/alg for the space of algebraic classes. We have H2k.X;Q/alg � Hdg2k.X/
and the Hodge conjecture states that H2k.X;Q/alg D Hdg2k.X/.

3.1.1 Why Is the Conjecture Important?

There are very few morphisms in algebraic geometry so it is important to consider
multivalued morphisms which are given by their graphs  � X 	 Y . This leads
to consider the group Z m.X 	 Y/ of codimension m cycles in X 	 Y , or better
cycles modulo an adequate equivalence relation Ï, like rational equivalence, which
provides Chow groups, or homological equivalence. When X and Y are smooth and
projective, cycles in X 	 Y act on many objects, like Chow groups or cohomology.
Given an adequate equivalence relation Ï on cycles, the action of  2 Z m.X 	 Y/
takes the general form

 �.˛/ D pr1�. � pr�
2 ˛/ 2 Z kCm�dim Y.X/= Ï; 8˛ 2 Z k.X/= Ï;

where pr1� is pushforward by the first projection, pr�
2 is pull-back by the second

projection and “�” is the intersection product. When the equivalence relation is
homological equivalence, cycles Z mod. Ï are cohomology classes and the push-
forward map is the Gysin map, the intersection product is the cup-product.

The importance of the Hodge conjecture in this context is that, combined with
Lemma 3, it predicts exactly which morphisms Z� W H�.Y;Q/ ! H�.X;Q/ can
be constructed from cycle classes in X 	 Y . Namely, one should get exactly the
morphisms of Hodge structures. The geometric importance of this prediction is
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obvious: we mentioned in the introduction Torelli type questions, asking whether
a variety is determined by its Hodge structures. The Hodge conjecture predicts that
if two smooth projective varieties X; Y have isomorphic Hodge structures, they are
related by algebraic cycles in X 	 Y inducing isomorphisms in cohomology. In a
more motivic direction, the Hodge conjecture can thus pedantically rephrased by
saying that the category of polarizable Hodge structures contains the category of
cohomological motives as a full subcategory, so that structure results for the category
of polarizable Hodge structures (like semisimplicity, see Lemma 1) also should hold
for the category of cohomological motives. This adequation of Hodge theory and
algebraic geometry fits also very well with conjectures of Bloch and Beilinson (see
[6, 19, 33]) predicting that to a large extent, Hodge structures control Chow groups.
In our mind however, the generalized Hodge conjecture which will be explained in
Sect. 3.3 is much more important in this context than the Hodge conjecture itself as
it says much more, qualitatively, on the relationship between Hodge structures and
algebraic cycles than the Hodge conjecture does.

A more technical but important justification of the interest of the Hodge
conjecture concerns the Hodge classes which appear in the standard conjecture.
Roughly speaking, these Hodge classes are those which can be produced by linear
algebra starting from classes of algebraic cycles. The classes so obtained, which will
be described in Sect. 3.2, are still Hodge classes for linear algebra reasons, but it is
not known if they are algebraic. The importance of these classes also comes from
the consideration of the theory of motives.

3.1.2 Positive Evidences

The only instances of the Hodge conjecture which are known for any smooth
complex projective n-fold X are first of all the two trivial cases H0.X;Q/ D
Hdg0.X;Q/ D QŒX�fund, (where X is assumed to be connected), and H2n.X;Q/ D
Hdg2n.X;Q/ D QŒpoint�, and secondly the Lefschetz theorem on .1; 1/-classes
(Theorem 2) which concerns divisor (that is degree 2) classes and its corollary which
concerns curve (that is degree 2n � 2) classes.

Theorem 2 (Degree 2). Let X be a complex projective manifold and let
˛ 2 Hdg2.X;Z/ be an integral Hodge class. Then ˛ is a combination with integral
coefficients of classes ŒD� 2 H2.X;Z/ of hypersurfaces D � X.

Corollary 2 (Degree 2n � 2). Let X be a complex projective n-fold and let
˛ 2 Hdg2n�2.X/ be a Hodge class. Then ˛ is a combination with rational
coefficients of classes ŒC� 2 H2n�2.X;Z/ of curves C � X.

Remark 1. The first three cases mentioned above (degrees 0, 2 or 2n) are the only
cases where the Hodge conjecture is true for integral Hodge classes, that is integral
cohomology classes whose image in rational cohomology is a Hodge class. This
follows from Atiyah-Hirzebruch and Kollár counterexamples [3, 20] for integral
Hodge classes.
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Proof (Proof of Theorem 2). There is a beautiful description in [13] of the original
Lefschetz proof. It relies on the notion of normal function associated to a Hodge
class. Given a Hodge class ˛ 2 Hdg2.X;Z/, we choose a pencil of hyperplane
sections .Xt/t2P1 of X and assume that ˛jXt D 0. The Hodge class ˛ lifts to a
class Q̨ in the Deligne cohomology group H2

D.X;Z.1// (see [31, 12.3.1]). Then Q̨ jXt

belongs to

Ker .H2
D.Xt;Z.1//! H2.Xt;Z// D J1.Xt/ D Pic0.Xt/:

Associated to ˛ we thus found a family of divisors t 7! Q̨ jXt 2 Pic0.Xt/. A large part
of this argument works as well for any Hodge class on a smooth projective variety X
vanishing on the fibers Xt of a pencil on X. Indeed, the Deligne cohomology group
H2k

D .X;Z.k// fits in the exact sequence

0! Jk.X/! H2k
D .X;Z.k//! Hdg2k.X;Z/! 0

and similarly for Xt. We can thus lift a Hodge class on X to a Deligne cohomology
class and restrict it to the fibers Xt. The problem is that the normal function one shall
get this way will be a holomorphic section of the family of intermediate Jacobians
Jk.Xt/t2P1 , and one does not know for k � 2 what is the image of the Abel-Jacobi
map Z k.Xt/hom ! Jk.Xt/.

The modern proof of Theorem 2 uses the exponential exact sequence and goes
as follows:

1) The Picard group of holomorphic line bundles of an analytic space X identifies
to H1.X;O�

X /, where O�
X is the sheaf of invertible holomorphic functions. The

exponential exact sequence

0! Z
2��! OX

exp! O�
X ! 1

provides the associated cohomology long exact sequence

: : :H1.X;O�
X /

c1! H2.X;Z/! H2.X;OX/ : : :

defining c1.
2) If X is compact Kähler, the kernel of the natural map H2.X;Z/ ! H2.X;OX/

appearing above is exactly the set of integral Hodge classes. This follows from
the fact that this map identifies using Hodge theory with the composite

H2.X;Z/
2��! H2.X;C/! H0;2.X/ Š H2.X;OX/;

where all maps are natural and the map H2.X;C/ ! H0;2.X/ is the projection
given by Hodge decomposition. It thus follows that a class ˛ 2 H2.X;Z/ which
maps to 0 in H2.X;OX/ has ˛0;2 D 0 in the Hodge decomposition. But then it
also has ˛2;0 D 0 since it is real, and thus it is of type .1; 1/ hence a Hodge class.
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3) At this point we proved that if X is compact Kähler, the set of Hodge classes
of degree 2 is equal to the set of classes c1.L/ where L runs through the set
of holomorphic line bundles on X. Assume now that X is projective. By Serre
GAGA principle [27], holomorphic line bundles and algebraic line bundles are
the same objects on X : equivalently, any holomorphic line bundle has a nonzero
meromorphic section. Choosing a nonzero meromorphic section 	 of L, we
introduce its divisor D	 which is a codimension 1 cycle on X and the final step
is Lelong’s formula [31, Theorem 11.33] which says that the class ŒD	 � is equal
to c1.L/.

Proof (Proof of Corollary 2). We use for this the Lefschetz isomorphism

ln�2 ^W H2.X;Q/! H2n�2.X;Q/

given by the choice of a very ample line bundle L on X with first Chern class l,
which is obviously an isomorphism of Hodge structures. A Hodge class ˇ of degree
2n � 2 can thus be written as ˇ D ln�2 ^ ˛, where ˛ is a Hodge class of degree 2.
The class ˛ is the class of a divisor D DP

i ˛iDi, where the Di’s are hypersurfaces
in X, and thus ˇ D P

i ˛iŒCi� where the curve Ci is the intersection of Di with
a surface L1 \ : : : \ Ln�2 complete intersection of hypersurfaces Li in the linear
system jL j (hence of class l) in general position.

Apart from these four known cases, the best positive evidence in favour of the
Hodge conjecture is the fact that Hodge classes behave geometrically as if they
were algebraic as predicted by the Hodge conjecture. The precise statement will be
explained in Sect. 4.2.

3.1.3 Negative Evidences

Many complex geometry results have been proved in the past by analytic methods
working as well in the compact Kähler setting, for example the Hodge decomposi-
tion itself, or the study of positivity of divisors by curvature and currents methods
[12], or the proof of the existence of Hermite-Einstein metrics on stable vector
bundles [29]. In the case of the Hodge conjecture, it has been known for a long time
(see [36]) that in the compact Kähler setting, there are not enough closed analytic
cycles to generate the Hodge classes: the example, due to Mumford, is a very general
complex torus of dimension at least 2 admitting a holomorphic line bundle L with
nontrivial Chern class which is neither positive not negative: such a torus does not
contain any hypersurface, while c1.L / is a nontrivial Hodge class. However, in this
example, one can argue that the problem is a lack of effectivity (or positivity), and
that we still have a complex geometric object which is a good substitute for the
hypersurfaces, namely the line bundle itself (in the projective case, by the existence
of rational sections of line bundles, Chern classes of line bundles are combinations
of classes of hypersurfaces).
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In the paper [30], I constructed examples of Hodge classes on complex tori T ,
which do not belong to the Q-vector space generated by Chern classes of coherent
sheaves on T . It seems that in these cases, there is no way of extending the Hodge
conjecture: there is no holomorphic object on T explaining the presence of a Hodge
class on T .

The second point which makes not very plausible a solution of the Hodge conjec-
ture by analytic methods is the lack of uniform solutions to the Hodge conjecture,
assuming they exist, that is the lack of bound on the cycles (supposed minimal
in some way) representing a given Hodge class. This follows from the analysis
of some of the known counterexamples to the integral Hodge conjecture. In the
case of Kollár counterexamples [20], which are just hypersurfaces X of degree d
in projective space P

nC1 with the generator ˛ of H2n�2.X;Z/ not being algebraic
while d˛ is algebraic, it was observed in [28] that the following phenomenon holds:
Let U be the Zariski open set in the space of homogeneous polynomials of degree
d such that the corresponding hypersurface is smooth. Then the (locally constant)
class ˛t 2 H2n�2.Xt;Z/ is Hodge on Xt for any t 2 U, the set of points t 2 U
such that the class ˛t is algebraic on Xt is dense in U for the usual topology, while
Kollár proves that this set is not the whole of U. This means that for a very general
point 0 2 U, there is a sequence of points tn 2 U converging to 0 and for which
the class ˛tn is the class of an algebraic cycle Zn on Xtn . Thus the cycle Zn is of the
form ZC

n �Z�
n , but the degrees of the positive part ZC

n and the negative part Z�
n of Zn

cannot be bounded, although the difference Zn has class ˛tn which is locally constant
hence bounded. Indeed, if these degrees were bounded, we could use compactness
results to make the cycles ZC

n and Z�
n converge respectively to cycles ZC and Z� on

X0 with ŒZC� � ŒZ�� D ˛, which is not true.

3.2 The Standard Conjectures

The main source of construction of Hodge classes is Lemma 3. Let X be a complex
projective n-fold, and consider X 	 X. For any integer k, we have

End Hk.X;Q/ Š H2n�k.X;Q/˝ Hk.X;Q/ � H2n.X 	 X;Q/

and Lemma 3 tells us that a morphism � 2 End Hk.X;Q/ provides a Hodge class
on X 	 X by the composite map above if and only if � is a morphism of Hodge
structures. In particular, the identity of Hk.X;Q/ is a morphism of Hodge structures,
hence provides a Hodge class ık 2 Hdg2n.X	X;Q/. The sum

P
k ık is the identity of

H�.X;Q/, hence is the class of the diagonal �X � X 	 X. Hence
P

k ık is algebraic
but it is not known if individually each class ık is algebraic, that is, satisfies the
Hodge conjecture. The classes ık are called the Künneth components of the diagonal
of X. The varieties for which it is known that the Künneth components of the
diagonal are algebraic include the abelian varieties (that is, projective complex tori)
and smooth complete intersections in projective space, for which the non-algebraic
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cohomology is concentrated in degree n. If A is an abelian variety (or complex
torus), A is an abelian group, hence we have for each l the multiplication map

�l W A! A; a 7! la:

We have ��
l D lkId on Hk.A;Q/ and it easily follows that we can write the Künneth

components of A as linear combinations of the classes of the graph l of �l for
various l (note that ��

l D Œl�
� W H�.A;Q/! H�.A;Q/).

A more subtle construction involves the properties of the Lefschetz operator.
Recall from Sect. 2.2 that if l is the first Chern class of an ample line bundle L on
X, the cup-product map

ln�k ^W Hk.X;Q/! H2n�k.X;Q/; n D dim X (10)

is an isomorphism for any k. It is clear that ln�k ^ acting on H�.X;Q/ is the action
of the following cycle on X 	 X: let L1; : : : ;Ln�k be general hypersurfaces in the
linear system jL j (we may assume L very ample), and let Z D L1\: : :\Ln�k. Then
ŒZ� D ln�k by Lelong’s theorem, and Œi��Z� 2 H4n�2k.X 	 X;Q/ acts on H�.X;Q/
by ln�k ^, where i��Z is the cycle Z supported on the diagonal �X Š X � X 	 X.
Next we can consider the inverse �n�k W H2n�k.X;Q/! Hk.X;Q/ of the Lefschetz
isomorphism (10). This is a morphism of Hodge structures, hence this provides a
Hodge class on X 	 X.

Conjecture 2 (Lefschetz Standard Conjecture). There exists a codimension k
cycle Z on X 	 X such that ŒZ�� W H2n�k.X;Q/! Hk.X;Q/ is equals to �n�k.

Again the answer is positive in the case of an abelian variety A, and this is due to
the existence of an interesting line bundle P on A 	 A, defined as ��L where
� W A 	 A ! A is the sum map. The line bundle P is called the Poincaré divisor
and its class p WD c1.P/ 2 Hdg2.A 	 A/ and its powers pk 2 Hdg2k.A 	 A/ are
algebraic classes on A	A which allow to solve the Lefschetz conjecture in this case
(see [24]).

The Lefschetz standard conjecture is very important in the theory of motives (see
[1]), because of the semisimplicity Lemma 1. This lemma uses the polarization to
construct, given a polarized Hodge structure L and a Hodge substructure L0 � L, a
decomposition

L D L0 ˚ L00: (11)

The construction of these polarizations when L D Hk.X;Q/ for some smooth
projective variety X is quite involved, as it uses the Lefschetz decomposition in
order to modify the natural pairing into one which satisfies the polarization axioms.
If now L D Hk.X;Q/ and L0 � L is defined as the image of a morphism ŒZ�� for
some algebraic cycle Z on X 	 X, the Lefschetz standard conjecture is exactly what
would be needed in order to construct the orthogonal complement L00 via the action
of an algebraic cycle on X 	 X.
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The most concrete consequence of the Lefschetz standard conjecture is the
following (cf. [21]):

Lemma 4. Let X be a smooth complex projective variety of dimension n. Assume
the Lefschetz standard conjecture holds for X and some ample class l 2 Hdg2.X/ in
all even degrees 2k. Then for any k, the intersection pairing between H2k.X;Q/alg

and H2n�2k.X;Q/alg is nondegenerate.

Proof. Indeed, if the Lefschetz conjecture holds for X in any even degree, then the
Lefschetz isomorphism (10) induces an isomorphism ln�2k ^W H2k.X;Q/alg Š
H2n�2k.X;Q/alg for all k � n=2, because the inverse �n�k preserves algebraic
classes. It follows that the space H2k.X;Q/alg is stable under the Lefschetz decom-
position (8). It suffices to prove that for k � n=2 the pairing . ; /l on H2k.X;Q/
defined by .˛; ˇ/l D hln�2k ^ ˛;ˇiX , is nondegenerate on H2k.X;Q/alg �
H2k.X;Q/. By the Hodge-Riemann bilinear relations, the Lefschetz decomposition
is orthogonal for this pairing and on each piece lr ^ H2k�2r.X;R/prim, the pairing
. ; /l restricted to the subspace Hk�r;k�r.X/R;prim � H2k�2r.X;Q/prim of real classes
of Hodge type .k � r; k � r/ is definite of a sign which depends only on k � r.
As lr ^ H2k�2r.X;Q/alg;prim is contained in Hk�r;k�r.X/R;prim, it follows that
the pairing . ; /l restricted to lr ^ H2k�2r.X;Q/alg;prim remains definite, and in
particular nondegenerate. Hence . ; /l is nondegenerate on H2k.X;Q/alg which is
the orthogoanl direct sum of the spaces lr ^ H2k�2r.X;Q/alg;prim.

Let us give two corollaries:

Corollary 3. (i) Let j W Y ! X be a morphism, where X; Y are smooth complex
projective varieties. Assume X and Y satisfy the Lefschetz standard conjecture.
Then if Z is an algebraic cycle on Y whose class ŒZ� 2 H2k.Y;Q/ is equal to
j�ˇ for some class ˇ 2 H2k.X;Q/, there exists a codimension k cycle Z0 on X
such that

j�ŒZ0� D ŒZ� in H2k.Y;Q/: (12)

(ii) If Z is an algebraic cycle on X such that the class ŒZ� 2 H2k.X;Q/ is equal
to j�ˇ for some class ˇ 2 H2k�2r.Y;Q/, r D dim X � dim Y, there exists a
codimension k � r cycle Z0 on Y such that j�ŒZ0� D ŒZ� in H2k.X;Q/.

Proof. (i) The class ˇ gives by the Poincaré pairing on X a linear form on
H2n�2k.X;Q/alg, n D dim X, which by Lemma 4 applied to X is of the form
hŒZ0�; iX for some codimension k cycle Z0 on X. We now prove that the class
ŒZ0� satisfies (12). By Lemma 4, it suffices to show that for any cycle W on Y ,

hj�ŒZ0�; ŒW�iY D hŒZ�; ŒW�iY : (13)

The left hand side is equal to hŒZ0�; j�ŒW�iX where j is the inclusion morphism
of Y in X, and by definition of ŒZ0�, this is equal to hˇ; j�ŒW�iX . Finally, by
definition of the Gysin morphism j�, we have hˇ; j�ŒW�iX D hj�ˇ; ŒW�iY D
hŒZ�; ŒW�iY .
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(ii) is proved exactly in the same way.

The following corollary appears in [33] where it is proved that the conclusion (for
all X and Y) is essentially equivalent to the Lefschetz conjecture:

Corollary 4 (See [33]). Assume the Lefschetz conjecture. Let X be a smooth
projective variety and let Y � X be a closed algebraic subset. Let Z be a
codimension k cycle on X whose cohomology class ŒZ� vanishes in H2k.X n Y;Q/.
Then there exists an algebraic cycle Z0 supported on Y such that ŒZ� D ŒZ0� in
H2k.X;Q/.

Proof. Our assumption is that there is a homology class ˇ 2 H2n�2k.Y;Q/ such
that the image of j�ˇ 2 H2n�2k.X;Q/ Š H2k.X;Q/ is equal to ŒZ�. We now apply
Lemma 6, which says that if Qj W eY ! X is a desingularization of Y , there exists a
class ˇ0 2 H2k�2r.eY;Q/ such that Qj�ˇ0 D ŒZ�, where r D dim X � dim Y . We then
conclude with Corollary 3, (ii).

3.3 Mixed Hodge Structures and the Generalized
Hodge Conjecture

In [8], Deligne discovered a very important generalization of Hodge structures,
namely mixed Hodge structures, see [25]. The definition is as follows:

Definition 4. A mixed Hodge structure is the data of a finite dimensional Q-vector
space L equipped with an increasing exhaustive filtration W (the weight filtration),
together with a decreasing exhaustive filtration F on LC with the property that the
induced filtration on Gri

W , defined by FpGri
W D Fp \ WiLC=Fp \ WiC1LC, comes

from a Hodge structure [see (7)] of weight i on Gri
W .

Morphisms of mixed Hodge structures are morphisms of Q-vector spaces preserving
both filtrations. The following result is crucial for geometric and topological
applications of this notion.

Lemma 5 (Deligne [8]). Morphisms of mixed Hodge structures are strict for both
filtrations.

Denoting by � W L! M such a morphism, this means that

.Im�C/ \ FpMC D �C.FpLC/; .Im�/ \WiMC D �.WiL/:

We will call the pure Hodge substructure of a mixed Hodge structure the smallest
nonzero piece WiL � L and the pure quotient the quotient L=WiL where i is maximal
such that WiL 6D L. they both carry a Hodge structure.

Deligne proves the following result:
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Theorem 3. For any quasiprojective variety X, its homology groups and cohomol-
ogy groups carry mixed Hodge structures, which are functorial under pull-back on
cohomology and functorial under pushforward on homology.

If X is smooth, the pure Hodge substructure on Hk.X;Q/ has weight k (so all
weights are � k) and is equal to Im .Hk.X;Q/ ! Hk.X;Q// for any smooth
projective compactification X of X.

If X is projective, the pure quotient Hodge structure of Hk.X;Q/ has weight k (so
all weights are � k) and is equal to Im .Hk.X;Q/ ! Hk.eX;Q// for any smooth
projective desingularization eX of X. The dual statement is that the pure Hodge
substructure of Hk.X;Q/ is the image Im .Hk.eX;Q/ ! Hk.X;Q// for any smooth
projective desingularizationeX of X.

Let now X be a smooth projective variety, and Y � X be a closed algebraic
subset of X. Assume for simplicity that all the irreducible components of Y are
of codimension r.

Theorem 4. Let U WD X n Y. Then the kernel

Ker .Hk.X;Q/! Hk.U;Q//

is a Hodge substructure LY of Hk.X;Q/ which is of Hodge coniveau � r, meaning
that Lp;q

Y D 0 for p < r or q < r.

Proof. We will use the following consequence of Theorem 3 and Lemma 5 which
is of independent interest:

Lemma 6. In the situation of Theorem 4, the kernel Ker .Hk.X;Q/ ! Hk.U;Q//
is equal to the image of the composite map

Qj� W H2n�k.eY;Q/! H2n�k.X;Q/
PDŠ Hk.X;Q/; (14)

where Qj W eY ! X is a desingularization of Y.

Proof. This kernel is the image of the composite map

H2n�k.Y;Q/! H2n�k.X;Q/
PDŠ Hk.X;Q/:

This map is a morphism of mixed Hodge structures, the right hand side being a
pure Hodge structure of weight k. Comparing weights and applying Lemma 5 and
Theorem 3, the image of this map is the same as the image of the pure Hodge
substructure of H2n�k.Y;Q/, that is Im .H2n�k.eY;Q/ ! H2n�k.Y;Q//, which
concludes the proof.

Of course, as eY is smooth and projective, the composite in (14) is the same as
the Gysin morphism Qj� W Hk�2r.eY;Q/ ! Hk.X;Q/. As Qj� is a morphism of Hodge
structures of bidegree .r; r/, its image is a substructure of Hk.X;Q/ which is of
Hodge coniveau � r.
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The generalized Hodge conjecture due to Grothendieck [15] states the following:

Conjecture 3. Let X be a smooth complex projective variety and let L � Hk.X;Q/
be a Hodge substructure of Hodge coniveau � r. Then there exists a closed
algebraic subset Y � X of codimension � r such that L � Ker .Hk.X;Q/ !
Hk.U;Q//; U WD X n Y.

The Hodge Conjecture 1 is the particular case of Conjecture 3 where k D 2r. Indeed,
a Hodge substructure of H2r.X;Q/ which is of Hodge coniveau � r is made of
Hodge classes. Conjecture 3 predicts in this case that L vanishes away from a closed
algebraic subset Y � X of codimension r, which is the same as saying that L is
generated by classes of irreducible components of Y (see [31, 11.1.2]). Conjecture 3
corrects an overoptimistic formulation of the Hodge conjecture (see [18]), where
any rational cohomology class ˛ of degree k with Hodge decomposition

˛C D ˛k�r;r C : : :C ˛r;k�r;

that is, satisfying ˛p;q D 0 for p < r or q < r, is conjectured to be supported on
a codimension r closed algebraic subset. This is wrong by Theorem 4 which says
that if ˛ is supported on a codimension r closed algebraic subset, then the minimal
Hodge substructure L � Hk.X;Q/ containing ˛ also satisfies Lp;q D 0 for p < r or
q < r (see [15], [32, Exercise 1 p 184]).

The generalized Hodge Conjecture 3 cannot be deduced from the Hodge
conjecture, unless the following conjecture is answered affirmatively:

Conjecture 4. Let X be a smooth projective complex variety and let L � Hk.X;Q/
be a Hodge substructure of Hodge coniveau � r (thus L.r/ is effective of weight
k�2r). Then there exists a smooth projective variety Y, such that L.r/ is isomorphic
to a Hodge substructure of Hk�2r.Y;Q/.

We now have:

Proposition 1. Conjecture 4 combined with the Hodge conjecture implies Conjec-
ture 3.

Proof. Note that by the hard Lefschetz theorem, it suffices to prove Conjecture 3
for L � Hk.X;Q/ with k � n. Next assume Conjecture 4. Then since k � n we
can assume by the Lefschetz theorem on hyperplane section that dim Y D n � r.
Now L.r/ is a direct summand of Hk�2r.Y;Q/ and the Hodge structure isomorphism
L.r/ Š L � Hk.X;Q/ provides by Lemma 3 a Hodge class ˛ of degree 2n on
Y 	 X. Assuming the Hodge conjecture, ˛ is algebraic, which provides a cycle Z DP

i ˛iZi, Zi � Y 	 X, dim Zi D n � r, such that L D Im .ŒZ�� W Hk�2r.Y;Q/ !
Hk.X;Q//. But then L vanishes away from the codimension � r closed algebraic
subset Y 0 WD [ipr2.Zi/ of X.
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4 Variational Hodge Conjecture

4.1 The Global Invariant Cycles Theorem

The following result is due to Deligne [8]. Let � W X ! B be a holomorphic
map from a smooth projective variety X to a connected complex manifold, and
let �0 W X0 ! B0 be the restriction of � over the open subset B0 of B of regular
values of �. By definition, �0 W X0 ! B0 is proper with smooth fibers, hence is a
topological fibration. There is thus a monodromy representation � W �1.B0; b/ !
Aut Hk.Xb;Q/, where b 2 B0 is a regular value.

Theorem 5. The image of the restriction map Hk.X;Q/ ! Hk.Xb;Q/ is equal to
the subspace Hk.Xb;Q/

� of monodromy invariant cohomology classes.

Proof (Sketch of Proof). The proof of this theorem splits into two parts. First of
all, Deligne proves in [11] that the Leray spectral sequence for �0 degenerates at
E2, a result which was also known to Blanchard [4]. This implies that the space
Hk.Xb;Q/

�, which is also the image of H0.B0;Rk�0�Q/ in Hk.Xb;Q/, is equal to the
image of the restriction map

Hk.X0;Q/! Hk.Xb;Q/: (15)

The second step uses the full strength of Theorem 3. The morphism (15) is a
morphism of mixed Hodge structures, the Hodge structure on the right being pure,
that is, equal to its minimal Hodge substructure. The mixed Hodge structure on the
left has for minimal Hodge substructure (or pure part) the image of the restriction
map Hk.X;Q/ ! Hk.X0;Q/. Comparing weights, it then follows from Lemma 5
that the two restriction maps Hk.X0;Q/ ! Hk.Xb;Q/ and Hk.X;Q/ ! Hk.Xb;Q/

have the same image.

4.2 The Algebraicity Theorem and Application
to the Variational Hodge Conjecture

The following theorem proved in [7] is the best known evidence for the Hodge
conjecture. It says that Hodge classes behave geometrically as if they were algebraic.
Let � W X ! B be a projective everywhere submersive morphism, with X ; B
smooth quasi-projective. For any b 2 B, denote by Xb the fiber ��1.b/. Let ˛ 2
Hdg2k.Xb/ be a Hodge class. The Hodge locus of ˛ is defined as the set of points
t 2 B, such that for some path � W Œ0; 1� ! B with �.0/ D b, �.1/ D t, the class
˛s 2 H2k.X�.s/;Q/ remains a Hodge class for any s 2 Œ0; 1�. Here ˛s is the class
˛ transported to X�.s/ using the natural isomorphism H2k.Xb;Q/ Š H2k.X�.s/;Q/

given by topological trivialization of the pulled-back family X� ! Œ0; 1�.
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Theorem 6 (Cattani, Deligne, Kaplan 1995). The Hodge locus of ˛ is a countable
union of closed algebraic subsets of B.

Note that the local structure of this locus, say in an open ball B0 � B, as a countable
union of closed analytic subsets of B0 was understood since the developments of the
theory of variations of Hodge structures due to Griffiths [14]. The difficulty here
lies in the comparison between the analytic and the algebraic category (the basis B
is almost never projective in the above theorem).

That this is indeed the structure predicted by the Hodge conjecture for the Hodge
locus of ˛ follows from the existence of relative Hilbert schemes (or Chow varieties)
which are projective over B and parameterize subschemes (or effective cycles)
Zt � Xt of a given cohomology class. Using these relative Hilbert schemes Mi,
we can construct a countable union of varieties Mij projective over B, defined by
Mij D Mi 	B Mj and parameterizing cycles Zt D ZC

t � Z�
t in the fibers Xt. For any

point t 2 B, if the class ˛t on Xt is algebraic, ˛t is the class of a cycle ZC
t � Z�

t
parameterized by a point in the fiber of at least one of these varieties Mij. Hence the
Hodge locus is the union of the images of Mij in B over the pairs .i; j/ such that the
cycles parameterized by Mij are of class ˛.

Let us explain the importance of this theorem in the context of the “variational
Hodge conjecture”. Here the situation is the following: X is a complex manifold,�
is a complex ball centered at 0, X ! � is a proper submersive holomorphic map
with projective fibers Xt; t 2 �, and ˛ 2 H2k.X ;Q/ is a cohomology class which
has the property that ˛t WD ˛jXt is a degree 2k Hodge class on Xt for any t 2 B.

Conjecture 5 (Variational Hodge Conjecture). Assume that ˛0 satisfies the
Hodge conjecture, that is, is algebraic on X0. Does it follow that ˛t is also
algebraic?

Theorem 7. The variational Hodge conjecture is implied by the Lefschetz conjec-
ture.

Proof. The family of projective varieties .Xb/b2� is the pullback of an algebraic
family X alg ! B via a holomorphic map f W �! B. Our assumption is that f .�/
is contained in the Hodge locus B˛ of the Hodge class ˛0 on X0. By Theorem 6, this
Hodge locus is algebraic, and we can thus replace� by an irreducible component B0̨
of B˛ passing through 0 and containing f .�/. We can assume that B0̨ is smooth by
desingularization. By definition of B˛ , the class ˛t deduced by parallel transport
from the class ˛0 is Hodge on all fibers Xt of the family X alg

˛ ! B0̨ . The
monodromy has finite orbits on the set of cohomology classes in fibers which are
Hodge everywhere (see [35, Theorem 4.1]). Replacing B0̨ by a finite étale cover, we
can thus assume that the class ˛0 is monodromy invariant on B0̨ . Let us introduce

a smooth projective completion X alg
˛ of X alg

˛ . By Theorem 5, there exists a class

ˇ 2 H2k.X alg
˛ ;Q/ such that ˇjX0

D ˛0. We now apply Corollary 3 (i) to X DX alg
˛ ,

Y D X0. As the class ˛0 D ˇjX0
is algebraic, there exists assuming the Lefschetz

standard conjecture a cycle Z on X alg
˛ such that ŒZ�jX0

D ˛0, hence ŒZ�jXt D ˛t,
8t 2 � � B0̨ , and thus ˛t is also algebraic.
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4.3 Algebraic de Rham Cohomology and Absolute Hodge
Classes

The following arithmetic counterpart of Theorem 6 is completely open except for
abelian varieties [9] (see also [26, 34] for some partial results) :

Conjecture 6. In the situation of Theorem 6, assume the family X ! B is defined
over a field K (in fact, we can always assume K to be a number field). Then the
Hodge locus of ˛ is a countable union of closed algebraic subsets of B which are
defined over a finite extension of K.

Using the global invariant cycle theorem, this conjecture would allow to reduce the
Hodge conjecture to the case of varieties X defined over a number field (see [34]).
It would be disproved by the existence of a variety X not defined over a number
field, with a Hodge class ˛ such that the pair .X; ˛/ is rigid (meaning that under a
nontrivial deformation of X, the class ˛ does not remain Hodge).

We next introduce the notion of absolute Hodge class. Let X be a smooth
projective variety defined over C. In the following, we will write Xan for the complex
manifold associated with X and cohomology on X will be coherent cohomology
with respect to the Zariski topology on X. We have a chain of isomorphisms whose
combination gives the Grothendieck comparison isomorphism [16]:

H
k.X; ˝

X=C/ Š H
k.Xan; ˝

Xan/ Š Hk.Xan;C/:

The first term is algebraic de Rham cohomology of X over C. The second term is
holomorphic de Rham cohomology of Xan and the first isomorphism comes from
Serre’s GAGA theorem [27]. The second isomorphism comes from the fact that
the holomorphic de Rham complex is a resolution of the constant sheaf C on Xan.
Note that the Grothendieck isomorphism gives an algebraic definition of the Hodge
filtration, namely, it induces for any p an isomorphism

H
k.X; ˝�p

X=C / Š FpHk.Xan;C/: (16)

Let now � W C ! C be a field automorphism. Clearly � induces an isomorphism
(which is not C-linear)

�� W Hk.X; ˝
X=C/ Š H

k.X� ;˝

X� =C/; (17)

where X� is the complex algebraic variety whose equations are obtained by applying
� to the coefficients of the defining equations of X. Composing this automorphism
with the Grothendieck isomorphisms

H
k.X; ˝

X=C/ Š Hk.Xan;C/ (18)

for X and X� , we get an isomorphism Hk.Xan;C/ Š Hk.Xan
� ;C/; ˛ 7! ˛� . This

isomorphism is compatible with the Hodge filtrations by (16).
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Definition 5. Let ˛ be a degree 2k Hodge class on X. We say that ˛ is an
absolute Hodge class if the class .2��/k˛ DW ˛0 has the property that for any field
automorphism � of C, ˛0

� belongs to .2��/kH2k.Xan
� ;Q/.

Remark 2. The class ˛0
� is then .2��/k times a Hodge class on X� , as it belongs to

FkH2k.Xan
� ;C/ since ˛0 belongs to FkH2k.Xan;C/.

We now use the existence of an algebraic cycle class Z 7! ŒZdR� with value in
algebraic de Rham cohomology (see [5] for an explicit construction). It is clear that
if � is a field automorphism of C, and Z is a codimension k algebraic cycle on X,

��ŒZ�dR D ŒZ� �dR in H
2k.X� ;˝


X� =C/;

where Z� is the cycle of X� obtained by applying � to the defining equations of the
components Zi of Z. Finally we use the comparison formula saying that, via the
Grothendieck isomorphism (18), ŒZ�dR D .2��/kŒZ�. We then get:

Proposition 2. Cycle classes on smooth projective varieties are absolute Hodge.

Conjecture 6 is a weak form (see [34]) of the following Conjecture 7 (which by
Proposition 2 is part of the Hodge conjecture).

Conjecture 7. Hodge classes are absolute Hodge.

Deligne [9] proves Conjecture 7 for abelian varieties. It follows from the
compatibility properties of the Kuga-Satake construction [22] (see [10]) that it
is true as for Hodge classes on (powers of) hyper-Kähler manifolds lying in the
subalgebra generated by H2.

In general, one can say from the above discussion that the Hodge conjecture has
two independent parts, each of which might be true or wrong, namely Conjecture 7
on the one hand and on the other hand the conjecture that absolute Hodge classes
are algebraic, which is in the same spirit as the Lefschetz standard Conjecture 2 but
also concerns more mysterious classes, like Weil classes on abelian varieties with
complex multiplication.

Let us conclude with an example of an absolute Hodge class which is not
known to be “motivated” in the sense of André [2]. André defines the set of
motivated classes as the smallest set of classes on smooth projective algebraic
varieties containing algebraic classes, and stable under the operators �n�k inverse of
the Lefschetz operators and under any other algebraic correspondence. Motivated
classes include classes ˛t 2 Hdg2k.Xt/, for some Hodge class ˛ on a smooth
projective variety X ! B (where B is connected), such that for some regular value
0 2 B, ˛0 2 Hdg2k.X0/ is algebraic.

Example 1. Let X be smooth complex projective, and let b2k WD dim H2k.X;Q/.
Then the space

b2k̂

H2k.X;Q/ � H2k.X;Q/˝b2k � H2kb2k.Xb2k ;Q/

is clearly a Hodge substructure which is of rank 1, hence generated by a Hodge
class on Xb2k . This class is clearly an absolute Hodge class. Note that one can
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make the same construction with odd degree cohomology, but in this case the
existence of a polarization easily implies that the classes one gets are algebraic,
or at least motivated. For this reason, by specializing to Fermat hypersurfaces, the
class constructed above is motivated for all smooth hypersurfaces.
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