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Abstract. Scheduling of scientific workflows in IaaS clouds with pay-
per-use pricing model and multiple types of virtual machines is an
important challenge. Most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality the
actual runtime may vary. To address this problem, we propose an adap-
tive scheduling algorithm for deadline constrained workflows consisting
of multiple levels. The algorithm produces a global approximate plan for
the whole workflow in a first phase, and a local detailed schedule for
the current level of the workflow. By applying this procedure iteratively
after each level completes, the algorithm is able to adjust to the run-
time variation. For each phase we propose optimization models that are
solved using Mixed Integer Programming (MIP) method. The prelimi-
nary simulation results using data from Amazon infrastructure, and both
synthetic and Montage workflows, show that the adaptive approach has
advantages over a static one.

Keywords: Cloud · Workflow · Scheduling · Optimization · Adaptive
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1 Introduction

Scientific workflow is a widely accepted method for automation of complex com-
putational processes on distributed computing infrastructures, including IaaS
clouds [7]. When using clouds and their pay-per-use pricing model with multiple
types of virtual machine (VM) resources, usually called instances, the problem of
scheduling and cost optimization becomes a challenge. The specific problem we
address in this paper is that most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality these estimates
may be inaccurate. These discrepancies may be a result of inherent uncertainty
in performance models of the application, or may be caused by unexpected
dynamic behavior of the infrastructure. On the other hand, dynamic scheduling
approaches that adapt to such uncertainties cannot be easily used for scheduling
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under deadline or budget constraints, since meeting a constraint requires some
form of advance planning based on estimates.

In this paper, we propose an adaptive scheduling algorithm for deadline con-
strained workflows that consist of multiple levels. Such levels are present in real
scientific workflows and they often have up to 1 000 000 tasks [7,13]. The main
idea behind the algorithm is to produce a global approximate plan for the whole
workflow in a first phase, and a local detailed schedule for the current level of the
workflow. The algorithm is then invoked iteratively after each level completes
the execution, in this way being able to adjust to the runtime variation from
the estimated execution times. Another advantage of this approach is that we
can reduce the complexity of scheduling of the whole workflow by reducing it
into two smaller problems that can be solved using Mixed Integer Programming
(MIP). The algorithm has been evaluated by simulation using data from Amazon
infrastructure and workflows from Pegasus Workflow Gallery [13].

This paper is organized as follows: in Sect. 2 we discuss other scheduling mod-
els and algorithms for workflows. Section 3 contains detailed description of the
algorithm proposed in this paper, and its illustration on a simple example is given
in Sect. 4. In Sect. 5 we outline the optimization models used. Then in Sect. 6
we show results for real workflows. Finally, in Sect. 7 we present conclusions and
future work.

2 Related Work

Mathematical programming has been applied to the problem of workflow
scheduling in clouds. The model presented in [12] is applied to scheduling small-
scale workflows on hybrid clouds using time discretization. Large-scale bag-of-
task applications on hybrid clouds are addressed in [4]. The cloud bursting
scenario described in [3], where a private cloud is combined with a public one,
also addresses workflows. None of these approaches addresses the problem of
inaccurate estimates of actual task runtimes.

Adaptive approach is known from engineering systems [1]. Dynamic algo-
rithms for workflow scheduling in clouds have been proposed e.g. in [17], where
they assume the dynamic stream of workflows. In [9] the goal is to minimize
makespan and monetary cost, assuming an auction model, which differs from
our approach where we assume a cloud pricing model of Amazon EC2.

Fig. 1. DAG example

In our earlier work [14], we also used the MIP
approach to schedule multi-level workflows, but the
dynamic nature of cloud is not considered. We have
also analyzed the impact of uncertainties of runtime
estimations on the quality of scheduling for bag-of-
task in [15] and workflow ensembles in [16], with the
conclusion that these uncertainties cannot be always
neglected.

Task estimation for workflow scheduling is a
non-trivial problem, but several approaches exist,
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Fig. 2. High level flow of scheduling algorithm.

e.g. those based on stochastic modeling and workflow reductions [5]. It is also
possible to create performance models to estimate workflow execution time using
application and system parameters, as proposed in [18]. The error of these esti-
mates is less than 20 % for most cases, which gives a hint on the size of possible
uncertainties.

3 Adaptive Scheduling Algorithm

Our algorithm provides an adaptive method for optimizing cost of workflow exe-
cution in IaaS clouds, under a deadline constraint. We assume that the workflow
tasks can be divided by their levels, where a level of a task is a length of the
longest path from an entry node. Tasks from one level can have different esti-
mates of execution time. It can be considered as a hybrid between static and
dynamic scheduling algorithms.

The algorithm requires: (a) workflow (see Fig. 1) represented as directed
acyclic graph (DAG), where nodes represent tasks and edges dependencies
between them; (b) information about available infrastructure, i.e. the perfor-
mance and cost of available VM instance types; and (c) global deadline for the
whole workflow. We assume that (a) all tasks in each level are independent and
can be executed in parallel on multiple VMs; (b) each VM has price per hour
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and a performance metric called CCU (which is a result of a benchmark, as in
Cloud Harmony Compute Units [6]); (c) each task has estimated size which is
execution time on a VM with performance of 1 CCU; (d) tasks in one level could
have different estimated size; and (e) execution time of a task on given VM is
inversely proportional to VM performance expressed in CCU.

The objective of the algorithm is to minimize the execution cost under a
deadline constraint. The algorithm is run before each level of tasks begins its
execution. Each time it consists of two phases. In the first global planning phase,
the algorithm uses an approximation that tasks in each level are uniform, and
finds assignments between the tasks and VMs for the whole workflow. In the
second local planning phase, a detailed plan is prepared for the closest level of
individual tasks. After a level completes, the algorithm takes into account the
real execution time of already completed tasks, and based on that updates the
remaining time. Thanks to that it is able to adjust to differences between an
estimated and actual execution time.

The algorithm is shown in Fig. 2, and consists of the following steps.

1. First, the information about workflow, available infrastructure (list of VMs)
and global deadline are loaded.

2. In this step (global planning phase) algorithm assigns VMs to levels. For each
level, we calculate average estimated task execution time and we pass it as
input. The aim of this optimization is to find assignments between VMs and
levels with minimal total cost under global deadline. As a result, the algorithm
returns information which VMs are assigned to each level and also how many
tasks should be executed on each VM. It also returns estimated execution
time and cost for levels.

3. If the solver does not find a solution, the optimization is run again without
deadline constraint, but with time minimization as an objective. This may be
the case when the deadline is too short. We then fallback to minimization of
deadline overrun and we ignore the cost objective.

4. Next, we perform local planning phase that assigns individual tasks to VMs
in the current level. It uses the results from step 2 as an input: VMs assigned
to this level and number of tasks which should be executed on each VM. The
objective of optimization is to minimize the total execution time. Total cost is
not taken into account, because the VMs are already chosen and the estimated
execution time for each one is known – so the cost does not change. As a result
the algorithm returns information on which VM task will be executed.

5. Then we execute tasks on VMs assigned in local planning phase and collect
the actual task execution time. Tasks may be executed on real VMs instances
or in a cloud simulator (which allows to test many scenarios easily).

6. The algorithm finishes if there are no remaining levels to be scheduled.
7. We update remaining total time with actual execution time and perform

planning for remaining part of the workflow, repeating process from step 2.
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4 Illustrative Example

To illustrate the operation of our algorithm, we prepared an example using the
simple workflow from Fig. 1. The input is provided in Table 1. The workflow
consists of 3 levels, so the algorithm is executed in three iterations, as shown in
Table 2. The resulting execution times and costs in all iterations are presented
and commented in Fig. 3.

Table 1. Example input to the algorithm: estimated task sizes, VM performance and
costs for the workflow shown in Fig. 1. We assume the global deadline is 15.
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Fig. 3. Execution time and cost of the algorithm, shown level by level. In the first
iteration, the global planning phase estimates the completion time of level 1 is 8 (purple
bar) and the local planning estimates it to be 9 (solid line). In iteration 2, it turns out
that the level L1 finished at time 5 (grey bar). Both global and local planning for level
2 (red bar and solid line) predict the finish time for time 9. The actual execution of
level 2 completes in time 13 (grey bar), so in iteration 3 both global and local phases
plan the execution of level 3 (orange bar) to complete just within the deadline). The
execution in iteration 4 shows that the level 3 actually completed as planned (Color
figure online).

5 Optimization Models

We use three optimization models in the algorithm: the first one for global plan-
ning phase, the second one in the case when deadline cannot be met, and the
third one for the local planning. Since the domain is discrete, each model belongs
to a mixed-integer programming (MIP) class. In all three models we assume for
simplicity that VMs start immediately and have no latency. Thanks to that the
problems are solved quicker. On the other hand, we assume that all possible
delays are included in the error of estimates, which is taken into account in step
7 of the algorithm. Here we outline the main features of the models, and for the
details we refer to the source code in the public repository [8].
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Table 2. Planning and execution flow for illustrative example. The assignments of
tasks to VMs change whenever the actual execution time differs from the estimated
one.

Model used in global planning phase assigns VMs and sub-deadlines to
each level, but instead of scheduling individual tasks, it uses an approximation
of average task runtimes. For each level, it calculates an average task size, and
based on this, an estimated cost of executing its tasks on a given VM. As a
result, it is known which VMs should be used for each level and how many tasks
should be executed on selected VM. The objective is to minimize total cost of
the whole workflow execution.

Input to this approximate planning is defined with the following data: m is
number of VMs, n is number of levels, V is a set of VMs, L is a set of levels,
d is global deadline, Ll is number of tasks in level l, T a

l,v is average estimated
execution time of task from level l on VM v, pv is cost of running VM v for one
time unit, Cl,v = pvT

a
l,v is average estimated cost of executing task from level l

on VM v.
The search space is defined with the following variables: Al,v is binary matrix

which tells if VM v will execute at least one task from level l, Ql,v is integer
matrix which tells how many tasks from level l will be executed on VM v, T e

l

is vector of real numbers which stores execution time for level l (estimated sub-
deadlines), T v

l,v is matrix which stores execution time for VM v on level l. Al,v

is used as an auxiliary variable to simplify defining constraints.
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The objective is to minimize total cost: Minimize:
L∑

l

V∑

v
Cl,v ∗ Ql,v. We con-

strain the search space to keep the total execution time below the deadline, to
divide the deadline into sub-deadlines and to enforce them, and to ensure that
all the tasks from all the levels are executed.

Model used in global planning phase when deadline cannot be met is
used when searching for solution using the first model fails. It can happen e.g.
when real execution time of previous level takes much more time than expected.
Comparing to the previous model, the algorithm ignores global deadline con-
straint and the objective function minimizes total time of workflow execution:

Minimize:
L∑

l

T e
l .

Model used in local planning phase assigns VMs to each task from a single
level. The goal is to minimize time of level execution, which is equal to the time
of the longest working VM. The input to this optimization problem is defined
with the following data: m is number of VMs, k is number of tasks in current
level, K is a set of tasks, V is a set of VMs (only VMs assigned to current level –
results from global planning phase), T e

k,v is an estimated execution time of task
k on VM v, Nv is a number of tasks which will be executed on VM v (results
from global planning phase).

Search space is defined with the following variables: Ak,v is binary matrix
which tells if task k will be executed on VM v, T r

v is vector of real numbers
which tells how long does each VM v work, w is helper variable which stores the
longest working time for VMs from V .

The objective is to minimize time of the longest working VM: Minimize:
max(T r

v |v ∈ V ) that is implemented as Minimize: w. We constrain the search
space to ensure that all the tasks are executed, to assign given number of tasks on
each VM, and to assign the correct value to w which is the longest working VM.

Implementation of Algorithm and Models. Optimization models are imple-
mented in CMPL modeling language [19]. As a solver we use CBC [11]. Input
data is loaded from DAG files (workflows) and JSON files (infrastructure). The
simulator which executes the tasks and introduces the runtime variations is
implemented in Java. Source code (including optimization models) is available
in the repository [8].

6 Evaluation Using Synthetic Workflows

For evaluation of the algorithm we implemented a simple simulator. Its goal is to
execute one level of tasks on the assigned VMs and to introduce the runtime vari-
ation of task execution times to simulate the behavior of the real infrastructure.

We present here the results of our adaptive algorithm obtained using Montage
workflow [13] representing astronomical image processing, consisting of 5000
tasks. As estimates of task sizes we used data from the logs of our earlier runs
performed on Amazon EC2 [10]. We used the m3.large as a reference VM type
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and for performance estimation of other instance types we used the ECU value
as provided by Amazon [2]. As the error of estimates we introduced a normal
distribution with the standard deviation of 0.25. Since the real Montage workflow
consists of very small tasks (having execution time in the order of seconds), we
artificially extended them by multiplying their execution time by 3600. The
deadline was set to 3500 time units (hours).
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(a) Static Algorithm (b) Adaptive Algorithm

Fig. 4. Execution time plot for Montage 5000 workflow with random errors of estimates.

We compared our adaptive algorithm to its static scheduling variant as a
baseline. The static scheduling works in the same way as our algorithm, but it
plans all the levels in advance. This means it does not update the global and
local planning phases after execution of each level, so it does not adjust to the
runtime variations.

Figure 4 shows the results of the static and adaptive scheduling algorithms,
presented in the same convention as in the illustrative example (Fig. 3). We
can observe that in the plot (b) the adaptive algorithm adjusts to the actual
execution time after each level, while the static algorithm (a) does not, which
leads to the deadline overrun.

Figure 5 presents how the completion time and total cost depend on the vary-
ing estimation error µ. The errors were generated using the normal distribution
with the standard deviation of 0.25 and the mean of µ, with µ from −0.25 (over-
estimation) to 0.25 (underestimation). In plot (a) we observe that our adaptive
algorithm succeeds to meet the deadline in more cases than the static algorithm.
Even for the largest error (µ = 0.25) the deadline overrun is only 5 %, while
for the static algorithm it is over 25 %. On the other hand, plot (b) shows that
the adaptation costs more, i.e. in most cases the cost is higher for adaptive algo-
rithm, but never more than by 5 %. This is explained by the need to choose more
expensive VMs to complete the workflow before the deadline.

In addition to Montage, we tested our algorithms using other workflows from
the gallery [13]. Generally, we observed similar behavior as in the case of Mon-
tage. Sample results are shown in Fig. 6, where overestimation and underestima-
tion represent error distribution shifted by -0.25 and 0.25, respectively. Relative
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Fig. 5. Workflow execution time/cost depending on the estimation error.
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Fig. 6. Plots with normalized execution time/cost for other workflows.

execution time is normalized to the deadline, while the relative cost is normalized
to the cost of execution with exact estimates (errors with µ = 0 and standard
deviation of 0.25). The deadline overrun for large errors is caused by the fact
that when the task runtimes are underestimated in the final level, the algorithm
cannot adjust to them. Improving the algorithm would require adding a learning
capability to predict the estimation error based on previous levels, which will be
the subject of future work.

7 Conclusions and Future Work

In this paper we presented the adaptive algorithm for scheduling workflows in
clouds with inaccurate estimates of run times. The preliminary evaluation results
have shown that the implemented algorithm works as designed, and is able to
meet the given deadline while minimizing the cost.
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The algorithm adapts to the actual situation at runtime: when tasks exe-
cute quicker than estimated – the algorithm selects slower (and cheaper) VMs,
and minimizes the total cost. When tasks execute slower than estimated – the
algorithm selects faster (and more expensive) VMs, which increases total cost,
but allows not exceeding the deadline for the whole workflow. When deadline is
exceeded (or it is not possible to plan execution under deadline) then the algo-
rithm minimizes the total time regardless of cost. When estimated execution
time for tasks from the same levels has a big variation, then there are visible
differences between estimated time in global planning phase and local planning
phase. When execution of tasks is longer is final levels (which is the worst case
scenario) then the total cost increases, but this is general problem for all adaptive
scheduling algorithms.

During implementation and evaluation we found out a few ways that could
be enhanced in future work. They include improvement of pricing in optimiza-
tion models by e.g. reusing already assigned VMs, extending models with data
transfer time and cost, or splitting levels with many tasks on smaller ones on
‘logic’ independent levels. It would be also interesting to improve task estimation
(i.e. take into account multi-core CPUs) or use machine learning in estimating
task execution time. After more systematic testing, we plan to use this algorithm
as a part of engine to executing workflows in computing clouds.
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