
Parallel Programs Scheduling
with Architecturally Supported Regions

�Lukasz Maśko1(B) and Marek Tudruj1,2

1 Institute of Computer Science, Polish Academy of Sciences,
Jana Kazimierza 5, 01-248 Warsaw, Poland

{masko,tudruj}@ipipan.waw.pl
2 Polish-Japanese Academy of Information Technology,

Koszykowa 86, 02-008 Warsaw, Poland

Abstract. Scheduling of programs for hierarchical architectures of Chip
Multi-Processor (CMP) modules interconnected by global data networks
is the subject of this paper. The CMP modules are of double nature:
architecturally specialized modules which execute time-critical compu-
tations and standard CMP modules which interconnect the specialized
ones. Inside application programs, so called architecturally supported
regions are identified meant for efficient execution on dedicated architec-
turally supported modules. Programs are represented by macro dataflow
graphs built of architecturally supported nodes and program glue nodes.
The paper proposes a new task scheduling algorithm for programs meant
for execution in such CMP-based systems. The algorithm is based on
list scheduling with modified ETF (Earliest Task First) heuristics. It is
assessed by experiments based on simulation of program execution which
shows parallel speedup improvements.

Keywords: Parallel programming · Program graph scheduling ·
Parallel architectures · Heterogeneity

1 Introduction

Putting a large number of cores inside a processor chip in the Networks on Chip
(NoCs), Systems on Chip (SoCs) or Chip Multi-Processors (CMPs) technolo-
gies [1,2] sets new challenges in the design of core interconnection networks.
Designers have to be conscious of technology limitations, such as power dissipa-
tion, wire delays, signal cross talks and silicon area, which make designing large
monolithic CMPs problematic. The self-imposing solution are modular hierar-
chical structures of many CMPs interconnected by an external global network
with improved efficiency and scalability. Although already viable in the current
chip technology, the ideas of core clustering inside CMPs nor CMPs clustering
have not been yet investigated in a mature way.

In globally interconnected systems of CMPs modules some CMPs can be
strongly architecturally supported to provide high parallel speedup for some
time-critical computations, while other CMPs can remain standard multicore
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 77–89, 2016.
DOI: 10.1007/978-3-319-32152-3 8



78 �L. Maśko and M. Tudruj

processors. Usually, the architecturally supported CMPs are more intelligent
and more difficult to be designed. Such architecturally supported CMP mod-
ules usually impose some particular requirements on program structures. This
means at least identification of so called architecturally supported regions in the
program code. Special features of programs imply special task scheduling algo-
rithms to optimize program execution including adequate graph representation
of programs with architecturally supported region nodes.

Scheduling algorithms have been intensively studied for years. Most of tech-
niques like list scheduling, clustering or evolutionary algorithms focus on homo-
geneous architectures [3,4,8,9]. Extensive surveys of such scheduling algorithms
can be found in [4–6]. There are also works dealing with heterogeneous archi-
tectures [7], but heterogeneity there is limited to different speed of processing
units. In this paper, we assume a different idea of heterogeneity. The system is
built of two classes of globally connected computing units (architecturally sup-
ported and standard CMP modules). Consequently, we use a macro data flow
graph representation in which program graphs consist of two kinds of nodes:
architecturally supported and glue nodes.

Our previous paper [10] presents an improved ETF-based list scheduling
algorithm [3] for such program and system assumptions. It aims at obtaining
better schedules by taking special attention of the order of in which ready graph
nodes are scheduled. For this, program graph nodes are assigned scheduling
priorities based on static, topological properties of the graph. They do not take
task computing nor communication times into account. The priorities are first
assigned to architectural nodes after their division into layers, using an analysis
of an architectural task activation graph. These priorities are next propagated
to glue nodes to control glue node selection during list scheduling to prevent too
early execution of such glue nodes, which are not needed for execution of the
topologically nearest architectural nodes.

This paper presents a new scheduling algorithm for the program and system
assumptions as above, based on modified ETF heuristics with a different defin-
ition of task node priorities in the program graphs. Contrary to the previously
proposed algorithm, here the priorities are not defined based exclusively on static
topological properties of program graphs, but they are determined dynamically
based on simultaneous scheduling of the input program graph and scheduling
of an equivalent architecturally supported region activation graph. The paper
examines the influence of some structural properties of program graphs on the
make-spans of such defined program scheduling method and compares its results
to those of standard ETF scheduling.

The paper is composed of 4 main parts. The first part presents general sys-
tem architectural assumptions, the idea of architecturally-supported program
regions, and describes structuring of programs for execution in the assumed
system architecture. The second part presents the proposed task scheduling
algorithm with architecturally supported regions. The third part introduces the
program graph measures used for the selection of the adequate scheduling algo-
rithm. The fourth part presents comparative experimental results obtained by
simulated use of the proposed algorithm.



Parallel Programs Scheduling with Architecturally Supported Regions 79

2 Architecture-Supported Regions in Application
Programs

The general structure of the assumed parallel multi-CMP system with a global
data exchange network is presented in Fig. 1(a). We have two kinds of CMPs in
this system: Architectural CMPs – ACMPs, which have architecture optimized
for execution of some critical program functions and General-Purpose CMPs –
GCMPs, similar to typical commercial multicore processors. A program for such
architecture can be logically divided into two types of fragments (see Fig. 1b):

– Architecturally-Supported Regions (ASR), whose execution will be accelerated
using ACMPs, which can correspond to subroutines and are treated as graph
nodes (“architectural nodes”). An ASR will usually have a parallel internal
structure. We assume, that the ASR program graph has already been mapped
to cores in an ACMP by a separate special scheduling algorithm. Papers [8,9]
describe different kinds of such scheduling algorithms meant for heuristic opti-
mization of exemplary ASR modules for efficient execution of parallel matrix
multiplication in the ACMP architecture based on communication on the fly.
The architecture is especially efficient for parallel programs featuring strong
sharing of processed data.

– The glue code, not showing features for special hardware acceleration, which
fills gaps between ASRs and will be executed using a set of GCMPs. The glue
code is represented as glue nodes.

(a) (b)

Fig. 1. The general system structure (a) and an application program graph (b)

Formally, a program is described by a macro data flow graph G = (V,E),
where V , E are the set of nodes and edges of the graph, respectively. The set V
can be divided into two disjoint sets of nodes Vs and Va, such that V = Vs ∪ Va,
Vs ∩ Va = ∅, where Va contains architectural nodes corresponding to ASRs,
while Vs contains glue nodes which exist between nodes from Va. This division
may be determined automatically by a compiler, or manually by a programmer.



80 �L. Maśko and M. Tudruj

(a) (b) (c)

Fig. 2. Motivation for introduction of priorities in the ETF heuristics.

Each node is characterized by its weight representing time needed for execution
of instructions included in this node (on ACMP or GCMP, respectively), which
is determined automatically by a compiler. Each edge has a weight representing
volume of data transmitted with a communication, which such edge represents.

3 Task Scheduling with Architecturally Supported
Regions

The assumed multi-CMP architecture requires a proper scheduling algorithm to
exploit all its advantageous features. We propose an algorithm, which is derived
from the list scheduling technique with the Earliest Task First (ETF) heuristics,
but was modified to adjust to the proposed computation model. This algorithm
schedules glue nodes to GCMPs and architectural nodes to ACMPs to eliminate
stalls of both kinds of resources.

List scheduling is a basic technique for scheduling parallel tasks and ETF [3]
is one of the most popular heuristics used for list scheduling. Unfortunately, it
has some disadvantages when used in scheduling for heterogeneous systems like
that assumed in this paper. The ETF heuristics examine all ready task nodes
and selects one with the earliest possible start time. If there are several ready
nodes with the same earliest start time, any of them can be selected. It may
cause that some nodes would be executed, which should be delayed since their
results will be required much “later” in the graph. An example of such situation
is depicted in Fig. 2a. Assuming, that the executive system has 1 GCMP with
1 core, 1 ACMP, and weights of all glue nodes G1-G3 are the same, a classical
ETF-based list scheduling would give a schedule shown in Fig. 2b. But execution
of node G1 should be delayed until nodes G2 and G3 are executed. Then G3
can be executed in parallel with execution of architecturally supported region
ASR1, giving a better makespan as in Fig. 2c.

The proposed algorithm aims at minimal program execution time by obtain-
ing permanent loads of ACMP and GCMP modules. The node selection method
is modified by special ordering of nodes in the program graph. The nodes are so
classified to assure selection in the first place of such ready glue nodes, whose



Parallel Programs Scheduling with Architecturally Supported Regions 81

(a) (b)

Fig. 3. Conversion of glue subgraphs (a) to edges in RAG (b)

results are required for execution of the topologically nearest ASRs in the graph.
The selected glue nodes are scheduled on available processing resources without
delaying higher classified graph nodes.

The general algorithm consists of 2 phases. First, the Region Activation
Graph (RAG) of the input program graph is created. Then, the program graph
is scheduled using list scheduling with modified ETF-based heuristics enriched
by an analysis of RAG to set priorities of the ASR and glue nodes.

3.1 Region Activation Graph

A Region Activation Graph (RAG) RAGG = (Va, E
′) is an acyclic unweighted

directed graph derived from the original program graph described in previous
sections. Nodes in RAGG correspond to ASR nodes in an initial graph G (the
Va set), while edges depict data dependencies between the ASRs. For two nodes
u, v ∈ Va, an edge u → v ∈ E′ exists in RAGG, if there is a directed path between
u and v in G containing only glue nodes. Two ASRs are data-dependent if there
exists at least one directed path between them in G with only glue nodes. Two
data-dependent ASR nodes are connected in RAGG with an edge replacing the
subgraph consisting of glue nodes and edges on all paths between the two ASRs
in G. Subgraphs corresponding to different RAGG edges may intersect, so some
glue nodes can be in more than 2 edges in RAGG.

Figure 3a presents a part of an input program graph with 4 architectural
nodes (ASR1-ASR4) connected with a set of glue nodes. Figure 3b shows a RAG
obtained after converting the sets of glue nodes to inter-ASR edges. There are
directed paths which connect ASR1 with ASR3 and ASR4 and also directed
paths from ASR2 to ASR4. Therefore, we obtain 3 edges in the resulting RAG.
There is no directed paths between ASR2 and ASR3 in the input graph, thus,
there is no edge between these nodes in RAG.



82 �L. Maśko and M. Tudruj

Algorithm 1. List scheduling algorithm with modified ETF heuristics
1: {Input: a program graph G = (V,E)}
2: Determine Region Activation Graph RAGG = (Va, E

′), based on graph G.
3: Let V R

a ⊆ Va be the set of nodes without predecessors in RAGG.
4: Let VH be the set of glue nodes without predecessors in G (ready nodes), corre-

sponding to edges leading to nodes from V R
a (high priority ready glue nodes). Let

VL be the set of other ready glue nodes. Let VA be the set of ready architectural
nodes from graph G.

5: while VH ∪ VL ∪ VA is not empty do
6: Find the node u ∈ VA (if available) with the earliest possible execution start

time. Let p be the index of a free ACMP, on which execution of u is possible.
7: Find the node v ∈ VH (if available) with the earliest execution start time. Let q

be the core index, on which execution of v is possible.
8: Find the node w ∈ VL (if available) with earliest execution start time and for

which execution ends before execution of the node v found in the previous step
may start. If the node v was not found, select any node w ∈ VL with the earliest
execution start time. Let r be the core index, on which execution of w is possible.

9: if the node u has been found then
10: Schedule u for execution on pth ACMP and remove it from VA.
11: Virtually schedule u in RAGG and remove it from V R

a .
12: for all descendants u′ of u in RAGG do
13: if u′ becomes ready in RAGG then
14: Insert u′ in V R

a . Move from VL to VH all nodes corresponding to edges
leading to u′ in RAGG.

15: end if
16: end for
17: else
18: if the node w has been found then
19: Schedule the node w for execution on the core r and remove it from VL.
20: Insert to VL all the descendants of the node w, for which all their predeces-

sors have already been scheduled.
21: else
22: Schedule the node v for execution on the core q and remove it from VH .

Insert to VH (or VL) all the descendants of the node v, for which v was the
last scheduled predecessors and which correspond to edges leading to ready
nodes in RAGG (other nodes in RAGG, respectively).

23: end if
24: end if
25: end while

3.2 Scheduling Algorithm Based on RAG Topology Analysis

The proposed scheduling algorithm assumes RAG analysis to delay execution
of glue nodes not used for execution of the soonest ASR nodes. The algorithm
concurrently schedules the initial program graph and its RAG. Classical list
scheduling divides all nodes into three sets: already scheduled nodes, nodes which
are ready for execution (with all predecessors scheduled) and nodes waiting for
completion of their predecessors. In the original ETF heuristics, all ready nodes



Parallel Programs Scheduling with Architecturally Supported Regions 83

are examined and one of them is chosen. Based on RAG analysis, we introduce
two subsets of ready glue nodes: the high priority nodes needed for execution of
the topologically nearest ASRs in the graph and the low priority nodes needed
for execution of topologically more distant ASRs. The topologically nearest ASR
nodes are such, which are also ready for execution in the RAG of the scheduled
program graph. At every scheduling step, the glue nodes, which correspond to
edges in the RAG leading to currently ready nodes in the RAG, have high
priority, while other glue nodes have low priority. If an ASR node is scheduled,
we also simulate its assignment to the same computing resources in the RAG
of the scheduled graph. As a result of this assignment, the descendants of the
scheduled node in the RAG may become ready – then all the low priority ready
glue nodes on the ASR incoming edges obtain high priority.

The pseudo-code of the proposed scheduling algorithm is shown as Algo-
rithm1. It follows list scheduling principles. Each time, when a glue node is to
be assigned to a GCMP, first the high priority nodes are considered. Low pri-
ority glue nodes are scheduled only when their execution doesn’t impede high
priority nodes. Such node selection strategy assumes that architectural nodes
can be executed as soon as possible on ACMPs. Additionally, GCMPs if free,
can execute glue nodes, which are required for further computations.

Time complexity of the algorithm remains polynomial, although with a higher
degree than list scheduling with standard ETF heuristics. All the additional steps
have polynomial complexity, including for instance computation of a RAG and
layers using breadth first graph traversals as well as transfers of ready nodes
between VL and VH sets in the loop.

4 Graph Metrics for Right Selection
of the Scheduling Algorithm

We have compared make-spans obtained for different program graphs. Experi-
ments show, that comparison results depend on features of the graphs in terms of
topology, weights of nodes and edges but also on resources available for program
execution. In our study we deal with layered program macro data flow graphs,
built of node layers and edges for inter-node communication between layers.
A layer in such program graph contains all architectural nodes, which have the
same depth in the program RAG, plus all the glue nodes, which provide data
for these architectural nodes.

In list scheduling of a program graph a node may be scheduled too early,
which may lead to an un-optimal use of processor time for other ready nodes. We
introduce a metrics, which we call Cumulated Activation Stride (CAS) of a
program graph to measure the potential of the graph for this non-optimality. The
metrics is determined starting with a traversal of a program graph by breadth
first search, in which for every node a layer of a deepest architectural region
activating this node is determined (max act layer(v)):

1. For each glue node v, determine its layer number, layer(v) (they depend only
on architectural nodes of the graph and their dependencies in RAG).



84 �L. Maśko and M. Tudruj

2. For each glue node v, determine max act layer(v) – the maximal layer num-
ber in which this node may be activated, by computing the maximum over
the following values, depending on all the predecessors u of node v:
(a) If v has no predecessors, then max act layer(v) = 0.
(b) If u is an architectural node, max act layer(v) = layer(u) + 1. It means,

that node v should be treated in exactly the same way as glue nodes from
layer layer(u) + 1, because it is activated within this layer.

(c) If u is a glue node, then max act layer(v) = max act layer(u). The node
u can be activated earlier then needed, so we consider its max act layer,
not its layer number.

After all the glue nodes in the graph are examined, we determine the Acti-
vation Stride for each glue node v:

activation stride(v) = layer(v) − max act layer(v)

This value will be non-zero only for nodes, which become ready before archi-
tectural nodes preceding their layer are completed.

The Cumulated Activation Stride metrics CAS(G) for graph G is defined
as the sum of node activation strides multiplied by node weights over all glue
nodes, divided it by the product of sum of glue node weights and the maximal
layer number in the graph (Arch(G) and Glue(G) correspond to architectural
and glue nodes of the graph G, respectively):

CAS(G) =

∑
v∈Glue(G) activation stride(v) ∗ weight(v)

maxu∈Arch(G)layer(u) ∗ ∑
v∈Glue(G) weight(v)

So defined metrics will be equal to 0 if all the glue nodes are activated
by architectural nodes, which precede their layers. The maximal value may be
obtained for a graph, in which there are no glue nodes in all layers except the last
one, and all these nodes are ready at the beginning of the program graph exe-
cution (they have no predecessors). Since the maximal stride cannot be greater
than the maximum layer number, CAS(G) cannot exceed 1. It also does not
change if all the weights in the graph are multiplied by the same constant.

Figure 4 presents an exemplary program graph with layered structure. Each
layer is composed as a set of uniform subgraphs containing nodes Aji, Bji and
Mji. Nodes Aji and Bji are glue nodes, while nodes Mji are architectural
nodes. The long, black edge corresponds to communication between layers, which
activates node B1i+2. The other activation edge of nodes Bji corresponds to read
of initial data from shared memory. Node B1i+2 in layer i + 2 is activated by
architectural node from layer i−1, therefore its activation stride equals 3 (layers
are computed with respect to architectural nodes, not glue nodes).

5 Experimental Results

To evaluate and compare performance of the presented scheduling algorithm,
the following exemplary iterative application program was considered:



Parallel Programs Scheduling with Architecturally Supported Regions 85

func benchmark(stride) {
// Let i be the iteration number
for i=1 to N pardo

// Let j be the path number
for j = 1 to K pardo

// select parts of the results of the previous iteration
a[i, j] = A(m[i − 1, 1],m[i − 1, 2], ...,m[i − 1, N ]);
// if i ≤ stride then initial data are read
b[i, j] = B(u[i, j],m[i − stride, j]);
m[i, j] = M(a[i, j], b[i, j]);

end for
end for

}
This program corresponds to a computational algorithm, which includes com-

mon functions A(), B() and M() on elements of square matrices, such as matrix
addition and multiplication. We assume, that functions A() and B() have irregu-
lar internal structure and are not promising for faster implementation in ACMP
modules. Therefore they will be treated as glue nodes in the program graph.
M() is a parallel matrix multiplication based on recursive matrix decomposi-
tion into quarters. The stride parameter corresponds to the activation stride
for computations of B() functions which provide data for M() regions. A vec-
tor u[] and matrices m[0, 1..N ] are initial parameters of the program used for
computation. A single iteration of the outer loop creates a layer of subgraphs
(each subgraph corresponds to an iteration of the inner loop), which are mutu-
ally independent. Macro dataflow graph of a part of the considered exemplary
program for stride = 3 is shown in Fig. 4.

Fig. 4. Exemplary program graph with communication between layers that causes
non-zero strides for nodes Bji; Mji – architectural matrix multiplication nodes.



86 �L. Maśko and M. Tudruj

(a) (b) (c)

Fig. 5. Parallel execution improvement of the proposed algorithm with 2, 4 and 8
ACMPs and 2, 4, 8 or 16 GCMPs for graphs with activation strides 1, 2, 4, 8 and 16.

All graphs for experiments were generated with K = 8 (8 paths) and N = 16
(16 layers). For parallel execution of such graph, the maximal number of 8 ACMP
and 16 GCMP modules is needed. We have considered a set of graphs for a range
of values for parameter stride: 1 which corresponds to a graph with no strides,
2, 4, 8 and 16, which corresponds to a graph, in which all the B nodes are ready
at the beginning of computations. The graph is uniform due to node weights,
which were selected in the arbitrary way: all A and M nodes have weights equal
to 8000 units, while B nodes have weights equal to 6500.

The graphs were scheduled for executive systems with a range of ACMP (2,
4 and 8) and GCMP (2, 4, 8 and 16) modules. ACMP modules execute only
one ASR node at a time. GCMP modules were assumed to contain 1 computing
core. We scheduled the graphs with a standard ETF-based scheduling algorithm
and compared it to the schedules obtained with the proposed algorithm. We
examined parallel schedule improvement computed as a ratio of execution time
obtained by the reference algorithm to execution time of a graph scheduled with
the proposed algorithm (Fig. 5).

Experiments show that the proposed algorithm performs in general better
than classical ETF-based list scheduling. The results depend on the number of
both ACMP and GCMP modules applied. The biggest execution time improve-
ment was equal to 1.34 for 8 ACMP and 8 GCMP modules and graphs with
stride = 16. The smallest average improvement was obtained for the smallest
(2) and the biggest (16) number of GCMP modules. This is due to the fact, that 2
GCMPs are insufficient to prepare data for 16 ACMPs on time (both algorithms
are forced to serialize parallel computations), and 16 is the number of GCMPs
needed for optimal execution of the graph, therefore the standard algorithm
was capable of finding good schedule for such system. For some combinations of
ACMP, GCMP and stride parameters one can observe improvements, which are
smaller than 1. The parallel improvements are computed in comparison to ETF-
based list scheduling algorithm, not the sequential execution. Therefore, it must
be considered, how ETF deals with the graph for a given number of resources.



Parallel Programs Scheduling with Architecturally Supported Regions 87

Table 1. Values of CAS(G) for graphs generated for different values of the stride
parameter and different relative weights of the B nodes.

Relative weight of B nodes Activation Stride

1 2 4 8 16

20 % 0.000 0.009 0.025 0.049 0.070

40 % 0.000 0.015 0.043 0.086 0.123

60 % 0.000 0.021 0.058 0.115 0.165

80 % 0.000 0.025 0.069 0.139 0.198

100 % 0.000 0.028 0.079 0.158 0.226

120 % 0.000 0.031 0.087 0.173 0.248

140 % 0.000 0.033 0.093 0.187 0.267

160 % 0.000 0.035 0.099 0.199 0.284

180 % 0.000 0.037 0.104 0.209 0.298

(a) (b)

Fig. 6. Parallel speedup improvement as a function of the CAS(G) for different relative
weights of the B-type nodes.

We assume, that for those configurations, ETF was able to find a solution, which
was better than the one found by the proposed algorithm.

We have also examined the relation between the CAS metrics of the graph
G and schedule improvement. In the assumed graph, the value of CAS depends
on the stride parameter, which influences the topology of a graph, but also on
weights of B nodes. We have checked a range of graphs, which differ in weights
of B nodes. We have assumed a series of B node weights being a percentage
of the B node weight (100 %) in the uniform graph used in the experiment
discussed above. Experiments were done for the number of both ACMP and
GCMP modules equal to 8. The results for other combinations of ACMP and
GCMP numbers show similar tendencies to those shown in the paper. The values
of CAS measures of examined graphs are shown in Table 1.

Figure 6 shows correspondance of the parallel improvement to the CAS met-
rics of graphs. Improvements for the graphs with CAS metrics equal to 0
(stride = 1) are the smallest in general and equal to 1. In such graphs all the glue



88 �L. Maśko and M. Tudruj

nodes are activated in their layers and therefore the standard ETF-based algo-
rithm has no chance to make a wrong scheduling decision. With the increase of
the CAS metrics we can observe a better improvement obtained by the proposed
algorithm. Graphs with higher CAS contain more nodes that can be scheduled
too early, when compared to their layer. Also, these nodes are heavier, therefore,
they have bigger impact on the overall schedule. It makes such graphs harder
to be correctly scheduled – especially with the standard ETF scheduling. Due
to a different way of handling of ready nodes, the proposed algorithm shows
much better resistance to such situations. Execution of the questionable nodes
is delayed, which allows faster start of architectural nodes from previous lay-
ers and better resource use, leading to better schedules. The best improvements
were noticed for graphs with the biggest CAS value (stride = 16).

6 Conclusions

The paper has presented parallel program scheduling algorithms for the modu-
lar system architecture based on globally interconnected standard and architec-
turally supported CMPs. The proposed scheduling algorithm is based on ETF
heuristics improved by an analysis of the RAG. The additional analysis enables
better use of both architectural and general purpose modules. It leads to better
parallel speedups in the case of graph structures “difficult” for the standard ETF
schedulers for adequate composition of the executive system.

The experiments with the proposed algorithm show, that it can deliver better
schedules than standard ETF-based list algorithm. The experimental results
have shown dependencies of the quality of obtained schedules on the proposed
graph property metrics. Complexity of the standard ETF scheduling is smaller
than complexity of the presented improved algorithm, therefore for graphs with
small CAS values it is enough to use the standard ETF algorithm – the schedules
are the same or very close to the schedules obtained with the improved algorithm,
but they may be computed faster. For graphs with high values of CAS, it is
profitable to use a better, although more complicated algorithm we propose.

References

1. Owens, J.D., et al.: Research challenges for on-chip interconnection networks. IEEE
MICRO 27, 96–108 (2007)

2. Kundu, S., Peh, L.S.: On-chip interconnects for multicores. IEEE MICRO 25, 3–5
(2007)

3. Hwang, J.-J., Chow, Y.-C., Anger, F.D., Lee, C.-Y.: Scheduling precedence graphs
in systems with interprocessor communication times. SIAM J. Comput. 18(2),
244–257 (1989)

4. Yu-Kwong, K., Ishfaq, A.: Benchmarking and comparison of the task graph
scheduling algorithms. J. Parallel Distrib. Comput. 59, 381–422 (1999)

5. Sinnen, O.: Task Scheduling for Parallel Systems. Wiley, England (2007)



Parallel Programs Scheduling with Architecturally Supported Regions 89

6. B�lażewicz, J., Ecker, K.H., Pesch, E., Schmidt, G., Weglarz, J.: Handbook
on Scheduling. International Handbooks on Information Systems. Springer,
Heidelberg (2007)

7. Topcuoglu, H., Hariri, S., Min-You, W.: Performance-effective, low-complexity task
scheduling for heterogeneous computing. IEEE Trans. Parallel, Distrib. Syst. 13(3),
260–274

8. Masko, �L., Dutot, P.F., Mounié, G., Trystram, D., Tudruj, M.: Scheduling moldable
tasks for dynamic SMP clusters in SoC technology. In: Wyrzykowski, R., Dongarra,
J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 879–887.
Springer, Heidelberg (2006)

9. Maśko, �L., Tudruj, M.: Task scheduling for SoC-Based dynamic SMP clusters with
communication on the fly. In: 7th International Symposium on Parallel and Dis-
tributed Computing, ISPDC, pp. 99–10. IEEE CS (2008)

10. Tudruj, M., Maśko, �L.: Scheduling parallel programs based on architecture–
supported regions. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski,
J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 51–60. Springer, Heidelberg
(2012)


	Parallel Programs Scheduling with Architecturally Supported Regions
	1 Introduction
	2 Architecture-Supported Regions in Application Programs
	3 Task Scheduling with Architecturally Supported Regions
	3.1 Region Activation Graph
	3.2 Scheduling Algorithm Based on RAG Topology Analysis

	4 Graph Metrics for Right Selection of the Scheduling Algorithm
	5 Experimental Results
	6 Conclusions
	References


