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Abstract. We present a numerical algorithm for solving large scale
Tikhonov Regularization problems. The approach we consider introduces
a splitting of the regularization functional which uses a domain decom-
position, a partitioning of the solution and modified regularization func-
tionals on each sub domain. We perform a feasibility analysis in terms
of the algorithm and software scalability, to this end we use the scale-up
factor which measures the performance gain in terms of time complexity
reduction. We verify the reliability of the approach on a consistent test
case (the Data Assimilation problem for oceanographic models).
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1 Introduction and Motivation

The solution of large scale inverse and ill posed problems arises in a variety of
applications, such as those in the earth/climate science, including earth obser-
vation (remote sensing) and data assimilation [8,14], or those arising in image
analysis, including medical imaging, astronomical imaging and restoration of dig-
ital films [2,4,5,9,10,15]. A straightforward solution of such problems is mean-
ingless because the computed solution would be dominated by errors. Therefore
some regularization must be employed. In this paper we focus on the standard
Tikhonov Regularization (TR) method [16]. The efficient solution of TR prob-
lems critically depends on suitable numerical algorithms. Several strategies have
been proposed in the literature. Basically, the approaches are based on the Con-
jugate Gradient iterative method, or on the Singular Value Decomposition. How-
ever, because of their formulation, these approaches are intrinsically sequential
and none of them is able to address in an acceptable computational time large
scale applications. For such simulations we need to address methods which allow
us to reduce the problem to a finite sequence of sub problems of a more man-
ageable size, perhaps without sacrificing the accuracy of the computed solution.
Indeed, we need to employ scalable parallel algorithms.
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Here, scalability refers to the capability of the algorithm to:

– exploit performance of emerging computing architectures in order to get a
solution in a suitable acceptable time (strong scaling),

– use additional computational resources effectively to solve increasingly larger
problems (weak scaling).

In the present work we introduce a computational model which starts from a
decomposition of the global domain into sub domains. On these sub domains
we define local regularization functionals such that the minimum of the global
regularization functional can be obtained by collecting the minimum of each
local functional. The (global) problem is decomposed into (local) sub problems
in such a way. The resulted algorithm consists of several copies of the original
one, each one requiring approximately the same amount of computations on
each sub domain and an exchange of boundary conditions between adjacent sub
domains. The data is flowing across the surfaces, the so called surface-to-volume
effect is produced.

A research collaboration between us, the Argonne National Laboratory in
Chicago, the Imperial College London, the University of California Santa Cruz,
and the Barcelona Supercomputing Center, within the H2020-MSCA-RISE-2015
Project NASDAC (iNnovative Approaches for Scalable Data Assimilation in
oCeanography) give us the opportunity to work on variational Data Assimi-
lation (DA) in Oceanographic Models [7,9]. Then we applied this approach to
the (DA) inverse problem which is ill posed and variational approaches used for
solving it are essentially derived from the TR formulation.

2 Preliminary Concepts

Here we introduce some notations we use in the next sections. For more details
see [6].

Definition 1 (The Inverse problem). Given the linear operators M ∈ �N×N

and H ∈ �S×N , and the vector v ∈ �S×1, where N >> S. Assume that H is
highly ill conditioned. To compute u : Ω �→ �N×1 such that

v = H[u] (1)

subject to the constraint u = uM where uM = M[u]. ♠
The TR approach provides the approximation u(λ) of u, where λ is the

regularization parameter, as follows [13]

Definition 2 (The TR problem). To compute

u(λ) = argminuJ(u) (2)

where
J(u) = ‖Hu − v‖2R + λ‖u − uM‖2B, (3)
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is the TR problem of (1) and, where ‖ · ‖B and ‖ · ‖R denote the weighted norms
with respect to the error covariance matrices B and R and λ is the regularization
parameter. ♠
Definition 3 (Domain Decomposition). Let

Ω =
p⋃

i=1

Ωi Ωi ⊂ �3 (4)

be the decomposition of Ω ⊂ �3 where Ωi ⊂ �3 are such that Ωi ∩ Ωj = Ωij 
= ∅
when the subdomains are adjacent. ♠

Starting from a decomposition of the domain Ω, we now introduce the local
TR functionals. A local TR functional, which describes the local problems on
each sub-domain Ωi, is obtained from the TR functional J in (3), by adding a
local constraint defined on the overlapping regions in Ωij . This is in order to
enforce the continuity of each solution of the local DA problem onto the overlap
region between adjacent domains Ωi and Ωj .

Definition 4 (Local TR functional). Let Hi,ui,vj , (uM)i,Ri and Bi, be the
restrictions on Ωi of H,u,v and uM ,R and of B, respectively. Let uj be the
restriction on Ωj of u, Bij be the restriction of B on the overlapping region Ωij.
Finally, let λi and ωi be the (local) regularization parameters. Then

ui(λi, ωi) = argminuiJ(Ωi, λi, ωi)

where

J(Ωi, λi, ωi) = ‖Hiui − vi‖2Ri
+ λi‖ui − (uM)

i‖2Bi

+ ωi‖ui/Ωij − uj/Ωij‖2Bij
(5)

is the minimum of the local TR functional J(Ωi, λi, ωi). ♠
In [6] the authors proved that

u(λ) =
∑

i=1,p

uEOi(λi, ωi), (6)

where
uEOi(λi, ωi) : Ωi �→ Ω

and

uEOi(λi, ωi) :=
{
ui onΩi

0 elsewhere

This result states that the minimum of J , in (2), can be regarded as a piece-
wise function obtained by patching together ui, i.e. the minimum of the opera-
tors J(Ωi, λi, ωi); it means that, by using the domain decomposition, the global
minimum of the operator J can be obtained by patching together the minimum
of the local functionals J(Ωi, λi, ωi).

In the following we refer to the decomposition of TR functional as the DD-TR
model.
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2.1 The Algorithmic Scalability

Large-scale problems are computationally expensive and their solution requires
designing of scalable approaches. Many factors contribute to scalability, including
the architecture of the parallel computer and the parallel implementation of the
algorithm. However, one important issue is the scalability of the algorithm itself.
We use the following measure

Definition 5 (Scalable Algorithm). If p ∈ N , and p > 1, the algorithm
associated to the decomposition given in (4) is

A(Ω, p) := {A(Ω1),A(Ω2), . . . ,A(Ωp)}

where A(Ωi) is the local algorithm on Ωi. ♠
Definition 6 (Scale up factor). Let p1, p2 ∈ N and p1 < p2. Let T (A(Ω, pi)),
i = 1, 2 denote the time complexity of A(Ωi, pi), i = 1, 2. ∀ i 
= j we define the
(relative) scale up factor of A(Ω, p2), in going from p1 to p2, the following ratio:

Sp2,p1(N) =
T (A(Ω, p1))

(p2/p1)T (A(Ω, p2))
.

♠
We observe that:

1. if N is fixed and p ∼ N we get the so called strong scaling.
2. if N → ∞ and r is kept fixed, then we get the so called weak scaling.

3 The Case Study

Let t ∈ [0, T ] denote the time variable. Let utrue(t, x) be the evolution state of a
predictive system governed by the mathematical model M with utrue(t0, x), t0 =
0 as initial condition. Here we consider a 3D shallow water model. Let v(t, x) =
H(utrue(t, x)) denote the observations mapping, where H is a given nonlinear
operator which includes transformations and grid interpolations. According to
the real applications of model-based assimilation of observations, we will use the
following definition of Data Assimilation (DA) inverse problem [13,14]. Given

– DN (Ω) = {xj}j=1,...,N ∈ �N : a discretization of Ω ⊂ �3;
– M: a discretization of M;
– uM

0 = {uj
0}M

j=1,...,N ≡ {u(t0, xj)}M
j=1,...,N ∈ �N : numerical solution of M on

DN (Ω). This is the background estimates, i.e. the initial states at time t0; it
is assumed to be known, usually provided by a previous forecast.

– uM = {uj}j=1,...,N ≡ {u(xj)}j=1,...,N ∈ �N : numerical solution of M on
DN (Ω);

– utrue = {u(xj)true}j=1,...,N : the vector values of the reference solution of M
computed on DN (Ω) at t fixed;
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– v = {v(yj)}j=1,...,nobs: the vector values of the observations on DN (Ω);
– H(x) � H(z) + H(x − z): where H ∈ �N×nobs is the matrix obtained by the

first order approximation of the Jacobian of H and nobs << N ;
– R and B the covariance matrices of the errors on the observations v and on

the system state uM, respectively. These matrices are symmetric and positive
definite (see [6] for details).

We assume that N = nx × xy × nz and nx = ny = n while nz = 3. Since the
unknown vectors are the fluid height or depth, and the two-dimensional fluid
velocity fields, the problem size is N = 3n2. H is assumed to be a piecewise
linear interpolation operator whose coefficients are computed using the points of
model domain nearest the observation values. We assume utrue be the solution
of M as given in [1]. Observation values are randomly chosen among the values
of utrue.

Definition 7 (The DA Inverse problem). Let uDA be the solution of:

v = H[uDA]

subject to the constraint:
uDA = uM. ♠

DA is an ill posed inverse problem [14]. The local DD-TR operator, defined on
a subdomain Ωi, is (see Eq. (5), with λi = ωi = 1)):

Ji(ui) = (Hiui − vi)TRi(Hiui − vi) + (ui − (uM)
i
)TBi(ui − (uM)

i
)

+ (ui − uj)TBij(ui − ui). (7)

In [3,7] the authors provided the reliability of DD-TR model for DA problem. In
this paper we present results of an implementation of the model on two different
computing architectures. We evaluate the efficiency of these implementations by
analysing the strong and weak scalability of the algorithm by using the scale up
factor defined in Sect. 2.1.

4 The DD-TR Algorithm on Two Reference Computing
Architectures

In this paper, our testbed is a distributed computing environment composed of
computational resources, located in the University of Naples Federico II campus,
connected by local-area network. More precisely, the testbed is made of:

– A1: a 288 CPU-multicore architecture made of distributed memory blades
each one with computing elements sharing the same local memory for a total
of 3456 cores.

– A2: a GPU+CPU architecture made of the 512 threads NVIDIA Tesla con-
nected to a quad-core CPU.
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If nproc denotes the number of processing elements of the reference architectures,
we have nproc = 64 for A1, and nproc = # threads-blocks, for A2. We assume
a 2D uniform decomposition of DN (Ω) along the (x, y)-axis, that is the x-axis
is divided by s and the y-axis by q then, the size of each subdomain DN (Ωi) is
r = nlocx × nlocy × nlocz where:

nlocx =
nx

s
+ 2ox , nlocy =

ny

q
+ 2oy , nlocz = nz. (8)

These dimensions include the overlapping (2ox × 2oy).
We use the LBFGS method for computing the minimum of DD-TR func-

tionals [11,17]. Then, following result specifies the scale up factor of algorithm
A(DN (Ω), p) in our case study [6]:

Proposition 1. If the time complexity of A(DN (Ω), 1) is T (N) = O(f(N))
flops, on a problem of size N , where f(N) ∈ Π3, the scale up factor of the
algorithm A(DN (Ω), p) is

Sp,1(N) = α(r, p) p2. (9)

Remark: Let tflop denote the unitary time required by one floating point oper-
ation. As a result, the execution time needed to algorithm A(DN (N), 1) for
performing T (N) floating point operations, is

Tflop(N) = T (N) × tflop.

Multiplying and dividing the (9) by tflop we get

α(r, p)p2 =
Tflop(N)

pTflop(N/p)
. (10)

Finally, we give the following

Definition 8. Let S
V := Toh(N/p)

Tflop(N/p) denote the surface-to-volume ratio. It is a
measure of the amount of data exchange (proportional to surface area of domain)
per unit operation (proportional to volume of domain). ♠

In [12] authors define Tnproc(N), the execution time of A(N, p), as given
by time for computation plus an overhead which is given by synchronization,
memory accesses and communication time also.

Tnproc(N) := Tnproc
flop (N) + Tnproc

oh (N)



A Scalable Numerical Algorithm 51

where

– A1: Tnproc
flop (N) is computing time required for the execution of T (N) floating

point operations; Tnproc
oh (N) is overhead time of T (N) data which includes

communications among CPU processors.
– A2: Tnproc

flop (N) := TCPU (N) + TGPU (N), where
• TCPU (N) is the CPU execution time for the execution of T (N) floating

point operations,
• TGPU (N) is the GPU execution time for the execution of T (N) floating

point operations.
and Tnproc

oh (N) includes the communications time between host (CPU) and
device (GPU) and time for memories accesses.

Here we assume that

TGPU (N) := TGPU
flop (N) + TGPU

mem (N), (11)

where TGPU
mem (N) is the time for global and local memories transfers into the

device (GPU) and TGPU
flop (N) is the computing time required for execution of

floating point operations.

Finally, for A2, Tnproc
oh (N) ≡ TGPU

mem (N), since the communications between
host (CPU) and device (GPU) in the algorithm we implement occur just at the
begin and the end for I/O transfers and, for this reason, it can be neglected in
our considerations.

4.1 Discussion

Table 1 shows results obtained for A(Ω, p) on A1 for a problem size O(106) and
O(107) by using nproc = p and Table 2 shows execution time of the algorithm
A(Ω, p) running on A2 for a problem size O(107) by using # thread-blocks= 2p.

In Table 2, TCPU (N) is execution time that CPU needs for building data.
These data are transferred just once as well as output data so we have that
TGPU
oh (N) is reduced to the time of I/O transfer. For this reasons we evaluate the

performance of DD-TR implementation on GPU by analysing TGPU (N). Toh(N)
can be estimates by dividing DN , which is size of processed data espressed in
GB by the bandwidth value BW which is the rate of data transfer espressed in
GB/seconds: Toh(N) := DN

BW
secs .

We have DN = 3.7 GB which gives Toh � 3.7/208 s � 0.017 s. Our consider-
ations will focus on values of TGPU

flop (N) reported in Table 3. We now discuss the
software scalability as shown in Tables 1 and 3. To this end, we introduce

slocnproc :=
Tflop(N/p)
Tnproc(N/p)

, (12)

which denotes the speed up of the (local) algorithm A(DN (Ωi), N/p) for solving
the local problem on subdomain DN (Ωi). Let us express the measured scale up
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Table 1. Results on A1: Execution time and scale up factor of A(Ω, p) for different
values of N = 3n2 and nproc = 2p.

n nproc Tnproc(N) Measured Snproc,8 Snproc,8

O(106) 8 2.0545e+02 1.0 1

16 6.3316e+01 3.25 4

32 2.0005e+01 10.27 16

64 8.7835e+00 23.39 64

n nproc Tnproc(N) Measured Snproc,16 Snproc,16

O(107) 8 − − −
16 3.9091e+03 1.0 1

32 9.9952e+02 3.91 4

64 2.7584e+02 14.17 16

Table 2. Execution time of algorithm A(Ω, p) running on A2 for a problem size O(107)
and nproc = #thread − blocks.

N p nproc TGPU (N)

O(107) 1 2 0.144

2 4 0.044

4 8 0.025

8 16 0.024

factor in terms of slocnproc. We have:

Smeasured
1,nproc :=

Tflop(N)
p · (Tflop(ri) + Toh(N/p))

. (13)

From the (12) and the (13) it follows that

Smeasured
1,nproc =

Tflop(N)
pTflop(N/p)

slocnproc
+ pToh(N/p)

=
slocnproc

Tflop(N)
pTflop(N/p)

1 + slocnprocToh(N/p)

Tflop(N/p)

. (14)

Table 3. Results on A2: Values of TGPU
flop and measured scale upfactor compared with

theoretical once.

N p TGPU
flop (N) Measured Snproc,2 Snproc,2

O(107) 1 0.127 - -

2 0.027 4.7 4

4 0.008 15.9 8

8 0.007 18.1 16
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As we need to guarantee that the so-called surface-to-volume effect on each local
DA problem is produced [2,4,9,10], we assume:

0 ≤ S

V
< 1 − 1

slocnproc

< 1.

Let

α :=
slocnproc

1 + slocnprocToh(N/p)

Tflop(N/p)

=
slocnproc

1 + slocnproc
S
V

,

from (14) it comes out that

Smeasured
1,nproc = αS1,nproc.

Finally, it holds that

(i) if slocnproc = 1 then

α < 1 ⇔ Smeasured
nproc,1 < Snproc,1;

(ii) if slocnproc > 1 then

α > 1 ⇔ Smeasured
nproc,1 > Snproc,1;

(iii) if slocnproc = p then

1 < α < p ⇒ Smeasured
nproc,1 < pSnproc,1;

Hence, we may conclude that if

slocnproc ∈]1, p] ⇒ Smeasured
nproc ∈]Snproc,1, p Snproc,1[.

It is worth noting that in our experiments, in A1, local DA problems are sequen-
tially solved, then

slocnproc = 1

while in A2, local DA problems have been concurrently solved on the GPU
device, so

slocnproc > 1

Thus the above analysis validates the experimental results both in terms of
strong and weak scaling.
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