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Abstract. We propose a microscopic stochastic model to describe 1D
pedestrian trajectories obtained in laboratory experiments. The model
is based on optimal velocity (OV) functions and an additive noise deter-
mined by the inertial Ornstein-Uhlenbeck process. After statistical esti-
mation of the OV function and noise parameters, we explore the model
by simulation. The results show that the stochastic approach gives a
good description of the characteristic relation between speed and spac-
ing (fundamental diagram) and its variability. Moreover, it can repro-
duce the observed stop-and-go waves, bimodal speed distributions, and
nonzero speed or spacing autocorrelations.

Keywords: Unidirectional pedestrian streams · Stochastic optimal
velocity model · Statistical estimation of the parameters · Ornstein-
Uhlenbeck process

1 Introduction

The analysis and modeling of pedestrian dynamics has attracted a lot of atten-
tion during the last decades [11,29]. Empirically, data have been obtained
from experiments in laboratory conditions [7,15] with software to automatically
extract the trajectories from video recordings [9]. These investigations allowed
to establish many features of pedestrian dynamics [30], e.g. the unimodal shape
of the fundamental flow-density diagram or the presence of stop-and-go waves as
characteristics of unidirectional pedestrian streams [30,31]. Interestingly, these
phenomena do not only hold for pedestrians but are also observed for vehicle or
bike motion in 1D showing a certain universality in streams composed of human
agents and related self-driven flows [39].

Numerous models have been developed to understand and analyze the char-
acteristics of self-driven flows [6,11,29]. The unimodal shape of the fundamental
diagram is already found in simple models like the Asymmetric Simple Exclu-
sion Process (ASEP) [22] where it is related to the exclusion principle. More
generally it is well explained microscopically by phenomenological monotone
relations between the agent speed and distance spacing with the neighbor (usu-
ally called optimal velocity (OV), see [3]). The relation reflects the tendency to
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respect safety spacings to avoid collision due to unexpected movements of the
neighbors. It is observed with both pedestrians [2] and drivers [4].

Nonlinear traffic waves and instability were the topics of the pioneering
papers in the 1950’s and early 1960’s [10]. Microscopic continuous models defined
by systems of differential equations were initially used [27]. The inertial optimal
velocity models based on the OV function and defined by systems of ordinary
or delayed equations are ones the most investigated traffic models [3,23]. Traffic
waves are analyzed through instability of uniform solutions [25] or mapping to
macroscopic soliton equations [20]. Generally speaking, it seems that the intro-
duction of delays and deterministic inertial mechanisms generates instability of
the uniform solution and the emergence and stable propagation of stop-and-go
waves.

Many microscopic models describing nonuniform dynamics are stochastic
[17]. A noise is added to differential systems of continuous models for both pedes-
trian [13,21] and road vehicle [33,34]. Yet, the stochastic aspect does not seem
to be preponderant in the dynamics, especially in the formation of stop-and-go
waves. In continuous pedestrian models, the noise is used for ambiguous situa-
tions (e.g. conflicts) in which two or more behavioral alternatives are equivalent
[13] or to model heterogeneous pedestrian behaviors [28]. Few studies have shown
that the noise plays a major role (see [12] for bidirectional streams and the for-
mation of lanes). For road traffic models, probabilistic distributions of the para-
meters are also used to model heterogeneous driving styles [26], and stochastic
noises are introduced to model perception errors [34] or to switch from a sta-
tionary state to an other [33]. The use of white noises or time-correlated ones
does not impact the global dynamics of the second order models [34].

In this paper, we show that the introduction of a specific additive noise in a
first order model can impact the dynamics and generate stop-and-go phenom-
ena without requirement of deterministic instabilities. The noise is relaxed at the
second order through a Langevin equation. After calibration, we observe by sim-
ulation that the model is able to give a good description of pedestrian dynamics
and notably the stop-and-go waves. The paper is organized as following. The
stochastic OV model is defined in Sect. 2. The description model calibration is
presented in Sect. 3. The simulation of the model and comparison to the real
data are done in Sect. 4. Conclusions are proposed in Sect. 5.

2 Stochastic Optimal Velocity Model

Initially, the optimal velocity model is a second-order model for which the speed
is relaxed to an optimal speed depending on the spacing (headway) [3]. The
relaxation is determined by an OV function V : Δx �→ V (Δx). Nowadays, any
approach based on the OV function is called OV model or extended OV model.
The minimal OV model is [27]

dxn(t) = V (Δxn(t)) dt, (1)

with xn(t) the position of agent n at time t and Δxn(t) = xn+1(t) − xn(t)
the distance spacing, xn+1(t) being the position of the first predecessor n + 1.
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The uniform solutions are stable in this model if the optimal speed function is
increasing which is a natural assumption. The minimalist OV model is too simple
to reasonably describe wave phenomena. More realistic dynamics are obtained
if an inertia is introduced through reaction (or relaxation) time parameters such
as in the ordinary second order OV model [3]{

dxn(t) = vn(t) dt,
dvn(t) = 1

b

[
V (Δxn(t)) − vn(t)

]
dt,

(2)

with vn(t) the agent speed and b > 0 the relaxation time parameter. The OV
function calibrates the fundamental diagram while stop-and-go waves can be
obtained if the reaction times are sufficiently high for that the stability condition
fails.

In the literature, stochastic OV models are classically related to discrete
models of interacting particle systems [18,19]. Here, we propose to use stochastic
OV models by adding a stochastic noise to the continuous minimalist model
(1). The noise is centered and stationary, with finite variance. It models other
random factors affecting the speed besides the spacing. We denote W (t) the
Wiener process such that W (t, s) − W (t) is normally distributed with mean
zero, variance s, and independent to W (t) for all t and s. In order to introduce
a non-vanishing noise autocorrelation, we use the model{

dxn(t) = V (Δxn(t)) dt + εn(t) dt,
dεn(t) = − 1

b εn(t) dt + adWn(t), (3)

with a the amplitude of the noise and b > 0 the relaxation time parameter. The
noise εn(t) is the solution of a Langevin equation. It is a standard stochastic process
called the Ornstein-Uhlenbeck process, for which the autocorrelation tends to zero
exponentially. The noise randomly oscillates around zero making positive and neg-
ative corrections to the optimal speed at random instants with independent incre-
ments. This behavior is consistent with action-point traffic models and observa-
tions that drivers react at discrete random times [32,35,36,38]. The model (3) is
close to the deterministic second order OV model (2). Yet with the stochastic app-
roach, the inertia only affects the noise. The uniform solutions are linearly stable
in the model (3) in the deterministic case where a = 0 as soon as V (·) is strictly
increasing. However, the trajectories obtained from the model with the additive
noise describe nonuniform solutions with stop-and-go waves (see Fig. 1, the sim-
ulation details are given in Sect. 4). Yet, oppositely to the unstable deterministic
approaches, there are no generic problems of collision and backward motion (see
for instance [8,37]).

3 Calibration of the Parameters

The data we use to calibrate and evaluate1 the models are pedestrian trajectories
in a ring over laboratory conditions [1]. The experiments in a ring with length of
1 There is no split of the data; both calibration and evaluation steps are done with

the global data sample.
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27 m and width of 0.7 m. Several experiments were carried out with different level
of densities (the pedestrians numbers go from 14 to 70 with 11 tested density
levels) and uniform initial distribution. The trajectories are measured on two
segments with length of 4 m using the software PeTrack [5] with a time resolution
of 0.04 s (frame-rate 25 fps). The variables used for the model calibration are the
distance spacing and speed

Δx(t) = x1(t) − x(t) and vδt(t) = 1
δt

(
x(t + δt/2) − x(t − δt/2)

)
. (4)

with x1 the position of the predecessor. The spacings are measured instanta-
neously while the speeds have to be averaged over time intervals of length δt =
0.8 s to avoid effects of the pedestrian step frequency that is close to 0.7 s [24].

The OV function models a phenomenological relation between the speed and
the spacing. Two main states are classically distinguished: (1) the free state,
when the spacing is large and the speed is equal to the maximal desired speed
and (2) the congested (or interactive) state, when the spacing is small and the
speed depends on the spacing. Both road traffic and pedestrian observations
show clear correlations between speed and spacing in congested regimes. This
suggests that the spacing is proportional to the speed to keep a constant safety
time gap to react to unexpected behaviors of the predecessor [2,4]. Therefore,
we assume that the OV function is piecewise linear

Vp(Δx) = min
{
v0,max{0, (Δx − �)/T}}, p = (v0, T, �), (5)

with v0 the desired (or maximal) speed, T the time gap and � the longitudinal
length of the pedestrian. We propose to estimate these parameters microscop-
ically by using K = 5251 pseudo-independent measures from the sample of
trajectories (by waiting 5 s between each observation). We denote the observa-
tions by (Δxk, vk), k = 1, . . . ,K, where the speed vk is averaged over δt = 0.8 s.
For a given pedestrian k, the residuals Rk(p) of the model are

Rk(p) = Vp(Δxk) − vk. (6)

As in [16], the parameters are estimated by minimizing the empirical variance
of the residuals

p̃ = arg minp

∑
k R2

k(p). (7)

This estimation by least squares maximizes the likelihood under the assump-
tion that the residuals are independent and normal, and has in general good
properties if the noise repartition is compact. The observations, the estimations
of the parameters and the histogram of the residuals are given in Fig. 2. The
R2 = 0.78 of the estimation (the proportion of the variance explained by the
model) reveals a good fit of the model. Moreover the distribution of the resid-
uals is relatively compact. Note that the fit can be slightly improved by using
sigmoid OV functions with 4 parameters (R2 = 0.80).

The empirical estimation of the variance of the residuals maximizing the
likelihood is σ̃2

R = 1
K

∑
k R2

k(p̃). The stationary variance and δt-autocorrelation
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Fig. 1. Trajectories on a segment of length 2 m. From top to bottom: 25 (free state),
45 (slightly congested state) and 62 pedestrians (congested state) on the ring of length
27 m. From left to right: Real data and the calibrated stochastic model (3).
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Fig. 2. Statistical estimation of the parameters (left panel) and histogram of the resid-
uals (right panel). σ̃R is the empirical standard deviation of the residuals. δt = 0.8 s in
the calculus of the speed. Global sample of observations.

of the Ornstein-Uhlenbeck process are var(ε) = a2b/2 and c̃δt = e−δt/b. These
relations allow to obtain the estimators for b and a

b̃ = −δt/ log(c̃δt) and ã = σ̃R

√
2/b̃. (8)

The estimations for all the data are ã ≈ 0.09 ms−3/2 and b̃ ≈ 4.38 s. Note that the
value of the relaxation time b is close to 5 s that is approximately 10 times larger
than the value τ ≈ 0.5 s generally used with force-based pedestrian models based
on a relaxation process (see for instance [13]). Estimations by class of spacing
show clear relations between the noise parameters and this variable. The results
are shown in Fig. 3. We can see for b̃ particular uni-modal shapes in the congested
phase where Δx ≤ � + v0T ≈ 1.3 m. For the free phase where Δx ≥ � + v0, the
values are relatively constant. The shape of the parameter ã is more irregular.
It will be assumed constant on Δx ≤ 0.95 and Δx ≥ 0.95 m in the simulations.
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Fig. 3. Statistical estimation of the noise parameters by class of spacing. The dotted
lines are the linear approximations used in the simulations.
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4 Simulation Results

In the analysis of complex systems, the top-down method consists in calibrating
the parameters of a microscopic model in order to reproduce observed macro-
scopic behaviors. It requires knowledge about the relation between the parameter
values and the macroscopic properties of the model, or to implement a sensitiv-
ity analysis. The top-down approach has been mainly used in particle physics
where the microscopic particle behaviors are unknown (only macroscopic quan-
tities such as the temperature are measured). In this study, the microscopic
performances (i.e. the trajectories) are observed and directly used to calibrate
the parameters. The macroscopic behaviors are observed by simulation and used
to validate the calibrated models. This bottom-up method allows to control both
local and global dynamics.

We evaluate the model (3) by comparing simulation results to the real data.
A similar setup as in the real experiments is reproduced for the simulations
(from 14 to 70 pedestrians in a ring of length 27 m). The models are simulated
by using explicit Euler-Maruyama schemes [14]. The discretisation of the relaxed
noise model (3) is

{
xn(t + dt) = xn(t) + dt Vp̃(Δxn(t)) + dt εn(t),
εn(t + dt) = (1 − dt/b̃) εn(t) +

√
dt ã ξn(t),

(9)

with (ξn(t), n, t) independent normal random variables. The time step dt is set
to 1e-3 s.

The stochastic model is firstly evaluated by looking at the mean, standard
deviation and correlation of the speed and spacing for the global sample of obser-
vations (see Table 1). The trajectories for 25, 45 and 62 pedestrians are presented
in Fig. 1. Some stop-and-go waves propagate when the density increases as in real
data (see Fig. 1, middle and bottom panels). Yet we do not observe the collision
and backward motion problems frequently related with the unstable determin-
istic approaches [8,37]. The autocorrelations of the speed and spacing also give
good fits to the data (see Fig. 4). The speed distributions by class of spacing
are plotted in Fig. 5. We clearly observe bimodal distributions for intermediate

Table 1. Mean, standard deviation (in m and m/s) and correlation for the spacing Δx
and speed vδt of a pedestrian and his/her predecessor (Δx1 and v1

δt) for global sample
of observations. δt = 0.8 s.

Δx vδt Δx1 v1
δt

Data Mod. (3) Data Mod. (3) Data Mod. (3) Data Mod. (3)

Mean 0.68 0.67 0.32 0.32 0.68 0.67 0.32 0.31

Std-dev 0.33 0.34 0.30 0.30 0.33 0.35 0.30 0.30

Corr. Δx 1 1 0.87 0.87 0.79 0.76 0.87 0.87

vδt 0.87 0.87 1 1 0.85 0.84 0.97 0.97
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Fig. 4. Autocorrelation function for the spacing (top panels) and the speed (bottom
panels) for N = 25 (free state, left panels), N = 45 (slightly congested state, middle
panels) and N = 62 (congested state, right panels).
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spacings within the data and model (3) (see Fig. 5, middle panel). This result is
consistent with stable propagation of the stop-and-go waves.

5 Conclusion

A first order pedestrian model based on Optimal Velocity functions and addi-
tive stochastic noise is proposed and calibrated using real pedestrian data on
a ring. The model gives realistic descriptions of pedestrian trajectories in one
dimension. Mean values and correlations of the speed and spacing are relatively
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well fitted through piecewise linear OV function with three parameters. Stop-
and-go phenomena at congested density levels, bimodal speed distributions, and
nonzero speed and spacing autocorrelations are obtained thanks to the relaxed
noise at the second order.

As the classical deterministic OV models, inertia mechanisms are used to
generate collective waves. Yet the inertia here is stochastic, without deterministic
instability of the uniform solution. Also, and oppositely to classical deterministic
models, there is no requirement of using nonlinear dynamics to obtain (nonlinear)
traffic waves within the stochastic OV approach. Moreover, we do not observe
the generic problems of collision and motion backward that are unfortunately
frequently obtained with the unstable deterministic approaches. The statistical
estimation of the relaxation time is close to 5 s for the noisy model, while it is
generally around 0.5 s for the deterministic Ansatz. The relaxation mechanism of
the stochastic approach is clearly not that of the classical models. This makes the
stochastic OV model a new way to describe accurately stop-and-go phenomena.
For pedestrian dynamics in two dimensions, it has to be completed by a direction
model.
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Multi-Agent Systems for Traffic and Transportation Engineering, pp. 124–154. IGI
Global, Hershey (2009)

31. Seyfried, A., Portz, A., Schadschneider, A.: Phase coexistence in congested states
of pedestrian dynamics. In: Bandini, S., Manzoni, S., Umeo, H., Vizzari, G. (eds.)
ACRI 2010. LNCS, vol. 6350, pp. 496–505. Springer, Heidelberg (2010)

32. Todosiev, E.: The action point model of the driver-vehicle system. Ph.D. thesis,
Ohio State University (1963)

33. Tomer, E., Safonov, L., Havlin, S.: Presence of many stable nonhomogeneous states
in an inertial car-following model. Phys. Rev. Lett. 84(2), 382–385 (2000)



538 A. Tordeux and A. Schadschneider

34. Treiber, M., Kesting, A., Helbing, D.: Delays, inaccuracies and anticipation in
microscopic traffic models. Physica A 360(1), 71–88 (2006)

35. Wagner, P.: How human drivers control their vehicle. EPJ B 52(3), 427–431 (2006)
36. Wagner, P., Lubashevsky, I.: Empirical basis for car-following theory development.

Technical report, German Aerospace Center, Germany (2006)
37. Wilson, R.E., Berg, P., Hooper, S., Lunt, G.: Many-neighbour interaction and non-

locality in traffic models. Eur. J. Phys. B 39(3), 397–408 (2004)
38. Zgonnikov, A., Lubashevsky, I., Kanemoto, S., Miyazawa, T., Suzuki, T.: To react

or not to react? Intrinsic stochasticity of human control in virtual stick balancing.
J. R. Soc. Interface 11, 2014063 (2014)

39. Zhang, J., Mehner, W., Holl, S., Boltes, M., Andresen, E., Schadschneider, A.,
Seyfried, A.: Universal flow-density relation of single-file bicycle, pedestrian and
car motion. Phys. Lett. A 378(44), 3274–3277 (2014)


	A Stochastic Optimal Velocity Model for Pedestrian Flow
	1 Introduction
	2 Stochastic Optimal Velocity Model
	3 Calibration of the Parameters
	4 Simulation Results
	5 Conclusion
	References


