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Abstract. Solving parametric interval linear systems is one of the funda-
mental problems of interval computations. When the solution of a para-
metric linear system is a monotone function of interval parameters, then
an interval hull of the parametric solution set can be computed by solving
at most 2n real systems. If only some of the elements of the solution are
monotone functions of parameters, then a good quality interval enclo-
sure of the solution set can be obtained. The monotonicity approach,
however, suffers from poor performance when dealing with large scale
problems. Therefore, in this paper an attempt is made to improve the
efficiency of the monotonicity approach. Techniques such as vectorisation
and parallelisation are used for this purpose. The proposed approach is
verified using some illustrative examples from structural mechanics.
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1 Introduction

Solving systems of linear equations is essential in modern engineering. Highly
complex physical systems, which would require extremely complex formulae to
describe, are approximated with high accuracy by a very large set of linear equa-
tions. In order to get reliable results, uncertainty, which is inevitable in real life
problems, should be taken into account in any computations. Therefore, solv-
ing linear systems is one of the fundamental problems of interval computations,
wherein “to solve a system” usually means to enclose a parametric solution set
by an interval vector as tightly as possible.

The assumption that the coefficients of a linear system vary independently
within given ranges is rarely satisfied in practice. That is why recently a big
effort was made to develop methods that are able to solve the so-called para-
metric interval linear systems, i.e., linear systems with elements being functions
of parameters that are allowed to vary within given intervals. Until now, sev-
eral such methods have been developed, one can mention approximate methods
described in [4,5,11,17,18].

The tightest is the resulting interval vector, the better. The narrowest pos-
sible interval enclosure is called the interval hull solution (or simply the hull).
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When the parametric solution is monotone with respect to all the parameters,
the hull can be computed by solving at most 2n real systems. The monotonicity
approach was investigated, e.g., in [6,12,15,20]. Generally, checking monotonic-
ity is a very complex task and for large scale problems the monotonicity based
methods are inefficient. Therefore, in this paper an attempt is made to reduce
the computational time of the monotonicity approach. Vectorisation and par-
allelisation techniques are used for this purpose. It is worth to add that the
monotonicity approach is extensively used in the interval global optimisation.
Thus, the improvement of the efficiency of the monotonicity approach will signif-
icantly influence the efficiency of the interval global optimisation and monotonic-
ity based methods.

The paper is organised as follows. The Sect. 2 contains preliminaries on solv-
ing parametric interval linear systems with two disjoint sets of parameters. In
the Sect. 3, the monotonicity approach for computing interval hull solution is
outlined. Section 4 presents general concepts of vectorisation and parallelisation.
This is followed by a description of the monotonicity approach. Next, some illus-
trative examples of truss structures and the results of computational experiments
are presented. The paper ends with concluding remarks.

2 Preliminaries

Italic font will be used for real quantities, while bold italic font will denote their
interval counterparts. Let I� denote a set of real compact intervals x = [x, x] =
{x ∈ R | x � x � x}. For two intervals a, b ∈ I�, a � b, a � b and a = b will
mean that, resp., a � b, a � b, and a = b ∧ a = b. I�n will denote interval vectors
and I�n×n will denote square interval matrices [10]. The midpoint x̌ = (x+x)/2
and the radius r(x ) = (x − x)/2 are applied to interval vectors and matrices
componentwise.

Definition 1. A parametric linear system

A(p)x = b(p) (1)

is a linear system with elements that are real valued functions of a K-dimensional
vector of parameters p = (p1, . . . , pK) ∈ �K , i.e., for each i, j = 1, . . . , n,

Aij : �K � (p1, . . . , pK) → Aij(p1, . . . , pK) ∈ �,
bi : �K � (p1, . . . , pK) → bi(p1, . . . , pK) ∈ �.

(2)

Functions describing the elements of a parametric linear system can be gen-
erally divided into affine-linear and nonlinear. However, nonlinear dependencies
can be easily reduced to affine-linear using affine arithmetic [1]. Therefore, the
following consideration are limited to the affine-linear case.

Remark: Obviously, the transformation from nonlinear to affine-linear depen-
dencies causes some loss of information [1], nevertheless, the approach based on
affine arithmetic is worth considering as it is simple and quite efficient.
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Definition 2. A parametric interval linear system with affine dependencies is
given by

A(p)x = b(p), (3)

where A(p) = A(0) +
∑K

k=1 A(k)pk, b(p) = b(0) +
∑K

k=1 b(k)pk, A(i) ∈ �n×n, and
b(i) ∈ �n (i = 1, . . . , K).

If the involved parameters are subject to uncertainty, which means that they
allowed to vary within given intervals (the interval-based model of uncertainty
is adopted in this paper), then a parametric interval linear system is obtained.

Definition 3. A parametric interval linear system is an infinite set (family) of
parametric real linear systems

{A(p)x = b(p) | p ∈ p} . (4)

The family (4) is usually written in a compact form as

A(p)x(p) = b(p). (5)

Definition 4. A parametric (united) solution set of the system (5) is a set of
solutions to all systems from the family (4), i.e.,

S(p) = { x | ∃p ∈ p, A(p)x = b(p)} . (6)

In order that the solution set be bounded, the parametric matrix A(p) must be
regular, i.e., A(p) must be non-singular for each p ∈ p.

In general case, the problem of computing the solution set (6) as well as its
hull are NP-hard. Therefore, usually an outer interval enclosure, i.e., the vector
x out ⊃ S(p), is computed instead. However, when the solution of a parametric
system is monotone with respect to all parameters, then the hull of the solution
set can be computed with polynomial cost in n and K. If the solution is monotone
with respect to some of the parameters, then a good quality outer solution can
be computed with polynomial cost in n and K.

3 Monotonicity Approach

For the sake of completeness of the paper, a brief reminder of the monotonicity
approach is presented below.

Let EK =
{
e ∈ RK | ek ∈ {−1, 0, 1}, k = 1, . . . , K

}
. For p ∈ I�K , e ∈ EK ,

pe
k = p

k
if ek = −1, pe

k = p̌k if ek = 0, and pe
k = pk if ek = 1.

Theorem 1. Let A(p) be regular and let the functions xi(p) =
{
A−1(p) · b(p)

}
i

be monotone on an interval box p ∈ I�K , with respect to each parameter pk

(k = 1, . . . , K). Then, for each i = 1, . . . , n,

{�S(p)}i =
[{

A
(
p−ei

)−1

b
(
p−ei

)}

i

,

{

A
(
pei

)−1

b
(
pei

)}

i

]

, (7)

where ei
k = sign ∂xi

∂pk
, k = 1, . . . , K.
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Now consider the family of parametric linear equations (4) and assume that
Aij(p) and bi(p) (i, j = 1, . . . , n) are continuously differentiable in p. If x is
a solution to the system A(p)x = b(p), then x = A(p)−1b(p), which means that
x is a function of p. Thus, the global monotonicity properties of the solution with
respect to each parameter pk can be verified by checking the sign of derivatives
∂x
∂pk

(p) on the domain p. The differentiation of the Eq. (1) with respect to pk

(k = 1, . . . , K) yields
{

A(p)
∂x

∂pk
(p) =

∂b

∂pk
(p) − ∂A(p)

∂pk
x(p)

∣
∣
∣
∣ p ∈ p

}

. (8)

Since Aij(p), bj(p) are affine linear functions of p, thus ∂Aij

∂pk
, ∂bi

∂pk
are constant on

p. Hence, the approximation of ∂x
∂pk

(p) can be obtained by solving the following
K parametric linear systems

A(p)
∂x

∂pk
= b′(x ∗) (9)

where b′(x ∗) = {b(k) − A(k)x∗ | x∗ ∈ x ∗} and x ∗ is some initial solution to the
system (5).

For a fixed i (1 � i � n), let Dki denotes the interval estimate of { ∂xi

∂pk
(p) | p ∈

p} obtained by solving the Eq. (9). Now assume that each Dki (k = 1, . . . , K)
has a constant sign or equals 0. Then, in order to calculate the hull of {S(p)}i,
the elements of the vector ei must be determined as follows: ei

k = 1 if Dki � 0,
ei
k = 0 if Dki ≡ 0, and ei

k = −1 if Dki � 0. If the sign of some of the partial
derivatives was not determined definitely, then a new vector of parameters is
constructed by substituting the respective endpoints for interval parameters.
The process of determining the sign of derivatives restarts and continues until
no further improvement is obtained. The algorithm of the method is presented
below. Parts of code in Algorithm1 which are candidates for parallelisation and
vectorisation are indicated by comments.

4 Parallelisation and Vectorisation

Parallelisation is the process of converting sequential code into a multi-threaded
one in order to use available processors simultaneously. The parallelisation process
often also includes vectorisation, because contemporary central processor units
are able to perform operations on multiple data in a single instruction. This abil-
ity is called SIMD (single instruction multiple data). It allows to convert an
algorithm from a scalar implementation, in which a single instruction can deal
with one pair of operands at a time, to a vector process, where a single instruction
can refer to a vector of operands (series of adjacent values). Vectorisation can
be carried out either automatically by contemporary C++ compilers or forced
by a programmer usually by using an appropriate pragma. Vectorisation not
always brings performance improvement due to additional data movement and
pipeline synchronisation. Thus, the vectorisation can be profitable for loops that
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Algorithm 1. Monotonicity approach
x 0 ⊇ �{x | A(p)x = b(p) for some p ∈ p}
// potential candidate for parallelisation
for k = 1 to K do

// potential candidate for vectorisation
Dk ⊇ �{y | ∃p ∈ p A(p)y = ∂b/∂pk − ∂A(p)/∂pkx 0}

end for
// potential candidate for parallelisation
for i = 1 to n do

for k = 1 to K do
// Assign a value to eik based on Dki

end for
// potential candidates for vectorisation
xmin

i ⊇ �{x | A(p−e)x = b(p−e)}i

xmax
i ⊇ �{x | A(pe)x = b(pe)}i

x out
i = [xmin

i , xmax
i ]

end for

run for a suitable number of iterations. Such loops however, must meet certain
constraints including continuous access of memory, no data dependency and only
single exit from the loop.

The newest Intel and AMD processors implements Advanced Vector Exten-
sions (AVX) instruction set that operates on 256 bit SIMD registers. For double
precision floating point numbers this allows to perform basic mathematical oper-
ations on 4 numbers at once. Example of addition with SIMD is shown in Fig. 1.
In the experiments presented in this paper, the newest Intel C++ compiler (16.0)
is used. This compiler efficiently analyse the code and indicates which loops are
worth to be vectorised. It can also be forced to vectorise other loops by using
#pragma simd. Both these mechanisms are used in the experiments to improve
the efficiency of the monotonicity approach.

While vectorisation plays only a supporting role in parallelisation process, the
main benefit can be achieved by transforming the code so that it is able to utilise
many threads simultaneously. This is realised in either task parallelism model
(the so called fork-join parallelism) or single program multiple data (SPMD)
model. For a single multi-core processor the first model is usually implemented
as parallel constructs nest in a straightforward manner [21].

Fig. 1. Loops vectorisation
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Similarly to the vectorisation, parallelisation can be done automatically by
a C++ compiler or can be guided by a user. When using an Intel compiler three
methods can be used: Threading Building Blocks (TBB) or Cilk Plus (originally
developed in MIT) and auto parallelisation with OpenMP. The two first methods
use work-stealing strategy, in which each processor maintains its own local queue
and when the local queue is empty, the worker randomly steals work from victim
worker queues, while in OpenMP a master thread forks a specified number of
slave threads and divides a task among them. In our experiments all three types
of parallelisation are used.

5 Numerical Examples

To check the performance of the monotonicity approach some illustrative exam-
ples of structural mechanical systems are considered. The obtained results are
compared with the results given by a method (it should be added that there are
several such methods [2,4,12,17], however a great majority of them yields very
similar results, especially for the problem considered here) for computing outer
interval solution of parametric interval linear systems.

Fig. 2. Example 1: 5-bay 4-floor plane truss structure

Example 1 (5-bay 4-floor plane truss structure). For the plane truss structure
shown in Fig. 2 the displacements of the nodes are computed. The truss is sub-
jected to downward forces P2 = P3 = P4 = 20[kN] as depicted in the figure;
Young’s modulus Y = 2.0 × 1011[Pa], cross-section area C = 0.0001[m2], length
of horizontal bars is L = 10[m], and the lenght of vertical bars is H = 5[m]. The
truss is fully supported at the nodes 1 and 5. This gives 72 interval parameters.
Table 1 shows the relative times for various combinations of vectorisation and
parallelisation. The baseline has been set to the variant of the program that used
no vectorisation and no parallelisation. Tests have been run on the machine with
Intel Xeon 1220v2 CPU with 4 cores and no hyper-threading ability.

The times presented in the table show the benefits that can be achieved
by the vectorisation of the monotonicity algorithm, which are 10 % on average.
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Table 1. Comparison of the computation times for Example 1

Bridge 1 Bridge 4 Bridge 5 Bridge 6

no vectorisation; no parallelisation 76.09 76.38 77.06 77.27

forced vectorisation; no parallelisation 98.04 97.4 98.17 98.04

auto vectorisation; no parallelisation 69.61 69.79 70.09 70.18

auto vectorisation; auto parallelisation 69.14 71.76 21.26 21.67

no vectorisation; Cilk parallelisation 22.68 22.71 22.80 23.17

auto vectorisation; Cilk parallelisation 20.72 20.59 19.23 19.36

auto vectorisation; TBB parallelisation 18.68 19.93 19.03 19.06

Automatic parallelisation does not improve the processing times and in one
case it consumes even more time. This is due to the fact, that compiler cannot
be sure that the processing data are fully independent. When Cilk and TBB
methods have been used, the improvement is significant and when combined
with vectorisation they can improve the processing times up to four times.

Example 2 (Baltimore bridge built in 1870). Consider the plane truss structure
shown in Fig. 3 subjected to downward forces of P1 = 80[kN ] at node 11, P2 =
120[kN ] at node 12 and P1 at node 15; Young’s modulus Y = 2.1 × 1011 [Pa],
cross-section area C = 0.004[m2], and length L = 1[m]. Assume that the stiffness
of 23 bars is uncertain by ±5%. This gives 23 interval parameters.

Fig. 3. Example 2: Baltimore bridge

The comparison of the performance of different variants of code vectorisation
and paralellisation is presented in Table 2. Again the tests have been run on Intel
Xeon 1220v3 processor with 4 cores. For the more complex problem the benefit
in processing times is higher and equals up to 15 %. When we combine either
Cilk or TBB parallelisation method with vectorisation the overall improvement
reaches more than four times. The difference between both two fork-joint models
is unconvincing, so each of them can be successfully applied. The overall com-
putational experiments prove, that the more complex problem is the more is the
benefit from using parallelisation and vectorisation.
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Table 2. Comparison of the computation times for Example 2

Bridge 1 Bridge 4 Bridge 5 Bridge 6

no vectorisation; no parallelisation 150.08 150.29 149.52 149.86

forced vectorisation; no parallelisation 203.61 204.03 203.25 203.39

auto vectorisation; no parallelisation 131.73 131.32 130.59 130.55

auto vectorisation; auto parallelisation 131.21 130.11 129.61 129.56

no vectorisation; Cilk parallelisation 41.67 41.57 41.31 40.85

auto vectorisation; Cilk parallelisation 36.73 35.89 35.75 36.06

auto vectorisation; TBB parallelisation 36.09 35.57 35.39 35.76

6 Conclusions

Checking the sign of the derivatives is a clue to test the global monotonicity of
the solution of parametric linear systems. The global monotonicity enables cal-
culating the interval hull solution easily by solving at most 2n real systems. The
main deficiency of the monotonicity approach is its poor performance. As shown
by the performed experiments, the performance of the monotonicity approach
can be improved by using techniques such as vectorisation and parallelisation,
which are available for contemporary C++ and Fortran compilers like Visual
C++, Gnu cpp or Intel compiler in Parallel Studio XE.

The presented methodology can be applied to any problem which requires
solving linear systems with input data dependent on uncertain parameters. The
monotonicity approach is also a crucial acceleration techniques for interval global
optimisation applied for the problem of solving parametric interval linear sys-
tems. The improved version of monotonicity approach can significantly decrease
the computational time of the interval global optimisation.
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