How to Mitigate Node Failures in Hybrid
Parallel Applications

Maciej Szpindler™)

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw, Warszawa, Poland
m.szpindler@icm.edu.pl

Abstract. This paper describes approach to distributed node failure
detection and communicator recovery in MPI applications with dynamic
resource allocation. Failure detection is based on a recent proposal for
user-level mitigation. The aim of this paper is to identify distributed and
scalable approach for node failures detection and mitigation. Failed MPI
communication recovery is realized with experimental implementation
for MPI level resource allocation. Re-allocation of resources is used to
replace failed node and enable application continuation with a full per-
formance. Experimental results and performance of proposed techniques
are discussed for schematic application scenarios.

Keywords: Message passing * Fault tolerance - Resource allocation -
Dynamic execution

1 Introduction

Recent advances in HPC systems design result in increase of node level par-
allelism. One can expect this trend will continue up to developing substantial
multi-element processing units in a form of many-core hyper-threaded comput-
ing nodes with a dozens of cores. No matter which model of software parallelism
is exploited, the case of fault tolerance is significant for applications reliability
and handling of hardware failures.

The most popular model that ensures both high performance and scalability
on systems composed of large shared memory nodes is the hybrid parallelism.
Usually the latter term refers to at least two levels of different parallelisation
techniques coupled together. On the top level, preferred technique is message
passing and distributed memory model such as MPI. On the lower level, dif-
ferent shared memory models usually provide better scalability for a range of
applications classes. Popular choice there are OpenMP or other threading mod-
els. Such a combination of inter- and intra-node computing techniques is referred
to as hybrid parallelism.

In the case of the MPI as a choice for the highest level of parallelisation
technique, fault tolerance is widely studied area still not yet standardized.
A number of approaches have been explored in this connection. Both library

© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 35-44, 2016.
DOI: 10.1007/978-3-319-32152-3 4



36 M. Szpindler

specific implementation [6] and MPT functionality extension approaches [7] have
been proposed until now without successful adoption in a form of standard-
ized definition. A recent proposal of fault tolerance primitives called User Level
Failure Mitigation (ULFM) [3] has attracted wide recognition.

Nested parallelism on the intra-node communication level is supported within
MPI model. At least two choices are possible there: either multi-process approach
provided by MPI-3 shared memory windows [8] or multi-threading implemented
inside MPT processes with chosen threading library. For both of these choices it
is usually practical to use dedicated MPI communicator that allows intra-node
synchronization. There are also advanced developments on extending this idea
to a dynamic endpoints communicators [5] that will be probably included into
a future version of the MPI standard.

For all the realizations of intra-node parallelism any type of failure result in
a damage of associated communicator. Moreover, usually any serious hardware
failure is actually resulting in whole node failure and loss of communication, no
matter what the scale of the system is. It is expected that for larger systems with
massive inter-node parallelism hardware failures will occur more often comparing
to application lifetime. For either single multi-threaded process or multi-process
execution on the failed node, the associated intra-node communicator is doomed
to failure.

This paper presents basic schemes for failed communicators recovery and
reconstruction that enable hybrid parallel application to mitigate node failures.
Section 2 gives summary on the distributed detection of intra-node communi-
cator failures, Sect.3 describe reconstruction approach with a use of dynamic
resource allocation. Section4 contains an analysis of the experiments on the
proposed techniques for node failure mitigation and a discussion of the perfor-
mance for the proposed approach. The key contributions of the described work
are the following:

— study on the distributed node failure detection using currently available imple-
mentations of the MPI user level failure mitigation approach,

— application of the dynamic resource allocation from the MPI level for failed
node reconstruction,

— experiments on the performance and scalability of the proposed techniques.

2 Detecting Node Failures

2.1 User-Level Failure Mitigation Model

The MPI standard [9] defines basic abstraction for handling failures. The
default approach is to use MPI_LERRORS_ARE_FATAL error handler. In this
case all application processes are immediately terminated if any type of failure
occurs. This is also a common choice for most of the legacy MPI codes that
are in fact no fault-tolerant. Another approach, supported by MPI, is to use
MPI_ERRORS_RETURN handler which gives possibility to post some process
local operation before application is terminated. ULMF model is extending the
latter approach, enabling application to continue its execution after the failure.



How to Mitigate Node Failures in Hybrid Parallel Applications 37

ULFM is a set of functions extending MPI API functionality with primitives
for handling process failures explicitly in the application code. It is designed to
provide mechanisms for failure detection, notification, propagation and commu-
nication recovery. Details of this MPI extension are described in [3]. While this
enables MPI application to detect process failures and mitigate them, recon-
struction and recovering application consistency are not a part of the extension
and remain user responsibility.

Process failures are indicated with specific return codes of MPI communica-
tion routines. Either MPI_SUCCESS or MPI_ERR_PROC_FAILED error codes
are returned for completion or failure respectively. If global knowledge of failure
is required, already started communication can be revoked to assert consistency,
raising MPI_COMM_REVOKED error code on all active communication. Func-
tions for local failure acknowledgement and collective agreement on the group
of survived processes are provided with the ULMF model.

ULFM extensions are partly implemented in the MPICH project (as for
beginning of 2015, version 3.2 pre-release) and in a specific OpenMPI branch
(version 1.7ft) dedicated for fault-tolerance studies. First analyses of the ULFM
model performance and limitations have already appeared in [4] and real MPI
applications with fault tolerance implemented with ULFM have been studied
in [1].

Since ULFM model seems likely to be adopted, it is worth to target hybrid
parallel applications using this approach. Node failure mitigation is addressed in
this paper.

2.2 Intra-node Communicators

MPI model uses abstract communicator construct to represent a group of
processes and their interactions. It provides elegant way of separating different
communication scopes for collective communication. Also it is an abstraction
that allows to express different communication schemes with groups and vir-
tual topologies. More complicated communication designs can be described with
either intra-communicator for a single group of processes or inter-communicator
for separating two distinct groups of processes participating in the communica-
tion (referred to as local group and remote group).

It is practical to express nested parallelism in the hybrid MPI applications
with dedicated communicators. This encapsulates intra-node communication and
synchronization. It allows separation between intra- and inter-node communica-
tion which may overlap. Also it enables fine-grain synchronization depending on
the application design. As a result communication costs may be reduced and
eventually message exchange optimized on the MPI internal level. MPI pro-
vides convenient functionality with MPI_.COMM_SPIT_TYPE which partitions
global communicator into a disjoint subgroups of given type. The only standard-
ized type is MPI_.COMM_TYPE_SHARED which returns groups associated with
shared memory nodes. This exposes intra-node shared memory regions for local
processes.



38 M. Szpindler

This approach is natural for two level parallelism with MPI+MPI model that
is composed of MPI communication across the nodes and MPI shared memory
windows within the node. It was showed that such model of hybrid parallelism
is beneficial for some application classes [8].

Other hybrid parallel applications based on MPI+X approach (where X
denotes some other parallel programming model, e.g. OpenMP) may also require
logical separation of intra- and inter-node communication. This is quite common
approach for reducing total number of MPI messages and its exchange rate.

2.3 Node Failure Detection

In this paper dedicated intra-node communicator is considered. While comput-
ing node fails, respective communicator disappears and fault-tolerant application
needs to handle with corrupted communicator. With a choice of ULFM model
for mitigating node failures, one must decide on detection technique. Two dis-
tinct approaches that aims distributed detection are described in this paper.
Distributed method is defined as not involving all processes participating in the
MPI_.COMM_WORLD communicator (global communicator).

First approach relies on the MPI inter-communicators. In this case each of the
intra-node communicators has its counterpart communicator acting as remote
group of processes. This scheme is depicted on Fig. 1. Local group and its remote
neighbour form an inter-communicator. This seemingly complicated construct
allows detection of node failures locally. Broken node and associated processes
group are identified with a use of ULMF detection function. Unfortunately, inter-
communicators were not fully supported by ULFM implementations at the time
of this research.

Latter approach does not involve inter-communicators. The most straight-
forward way of detecting failed processes is to test MPI_.COMM_WORLD. This
kind of process failures detection is not scalable while all processes are involved.
More distributed attempt is proposed with a special communicators structure.
Each inter-node shared memory communicator delegates one “leader” process.
These processes participate in “leaders” communicator. This special communi-
cator allows to connect processes between distinct nodes as shown on Fig. 2.

ottt EEEEEEE T Sttt EEEEEEE e 1

______ _.I - — - - = h :

V\f —————— | -'_: —_— = !

Local Remote '( : ! | :

communicator communicator :I | 1 : | 1

1 1

0A~0O (0] : '’ 1

o Il %o | h !

Local ranks | Remote ranks : | : 1

: il S |

Inter-communicator i H —- —_- —_ —_ = ! f
1

1 e— - = = -L: _____ / !

Node 0 Node 1 ' T 1

e e e oo L '

Fig. 1. Pairing local and remote node communicators in inter-communicator for local
notification.



How to Mitigate Node Failures in Hybrid Parallel Applications 39

--------------- R
1 1

f 1 f 1

1 1 f 1

1 n 1

Local Remote 1 : 1 :

communicator communicator ! ! '

— — — Al = =T — - L | — — - — —_— ~

e Local leader ‘Remote leader 1 | Leaders communicator v 1

o) o) ! . ¥

— = — T = - - nl- - - — -r’l 1

0,0 0,0 ' n '

Local ranks O Remote ranks 1 : 1 !

1
1 1

' 1 f 1

1 Y 1

" 1 f 1

Node 0 Node 1 f L 1

e e e oo (N '

Fig. 2. Leaders communicator for inter-node communication and notification.

Members of the “leaders” communicator notify failures locally. Node failure is
detected and group of failed processes is identified without involving global oper-
ations on the MPI_.COMM_WORLD level.

3 Dynamic Reconstruction

3.1 Communicator Reconstruction

When the failed communicator is identified, reconstruction is possible. The choice
of reconstruction approach depends on application type and user requirements. If
communicator needs to be recreated to continue execution, then new processes
are spawned. Spawning means dynamic creation of processes in the MPI ter-
minology. Spawned processes eventually build new communicator to swap and
restore failed one. Such approach introduces significant overheads due to process
spawning as discussed in [3]. It is also required that application would support
restore of lost data of the failed communicator member processes. At least two
choices are considered in previous studies: either using checkpoints to dump
application state in a selected points of execution or to replicate node private
data on different remote node. Both choices require significant changes on the
application level and these are discussed in [1].

3.2 Dynamic Resource Allocation

Another essential issue concerning node-communicator reconstruction is resource
utilization. If performance degradation or increased node memory load are not
acceptable, over-subscription of processes on the remaining set of nodes is a bad
solution. Recreated processes need to be spawned on a new node. New resource
need to be granted to application. This is usually not immediate nor possible
with a general purpose HPC systems that execute many user jobs simultaneously.

One of the possible solution is to use dynamic resource allocation. It was
showed that resizing node allocation is possible and basic implementation was
presented for the hydra process manager of the MPICH library and Slurm
resource management infrastructure. The details of this work are described
in [10].



40 M. Szpindler

Proposed approach allows resizing Slurm allocation directly from the MPI
spawn call. This is available from application code as depicted on diagram Fig. 3.
It is implemented with hydra process manager (part of the MPICH library) and
the Slurm allocation techniques using the Process Management Interface (PMI)
API. PMI is the interim layer that provides MPI processes control [2]. In the
case of modern implementations, MPI process spawning model is implemented
with PMI infrastructure. For two common MPI implementations, MPICH is
providing PMI layer implementation tightly integrated within its own process
manager called hydra while OpenMPI has similar approach with closely related
project called PMIx.

User application MP!

I
@ MPI Library

1
PYi | Process Manager

User job (Slurm) Hl:% Job extension

Fig. 3. Dynamic allocation scheme with process and resource managing layers.

Three modes of resource allocation were implemented and provided sup-
port for different applications requirements. Immediate allocation mode provides
access to the resources only if currently available. It raises an error in the other
case. Immediate mode was implemented using native Slurm request features.
Non-blocking mode gives immediate return to execution after the allocation
request. It was intended to use a helper thread to track allocation status. Block-
ing mode returns only if resources are successfully allocated. It is using Slurm
blocking request. While blocking and non-blocking modes depend on external
conditions and availability of the resources were not addressed in experiments
discussed in the next section.

4 Experimental Results

In this section experimental results are described. Synthetic application was
implemented to test the performance of proposed node failure detection and
reconstruction approach. It focuses on node failures in case of hybrid paral-
lelism. Application kernel is a two level reduction with a local operation over
node’s shared memory and a global MPI reduce operation across nodes. If global
reduction raises fault error, failed node is detected and associated communica-
tor is re-created. This schematic kernel aims to reproduce nested parallelism
and it’s typical communication pattern. Reconstruction of the failed communi-
cator allocates new node dynamically with a use of described resource allocation



How to Mitigate Node Failures in Hybrid Parallel Applications 41

technique. Experiments were performed using beta release if the MPI library
which was the only choice available supporting ULFM extension. More com-
plex communication schemes were considered to behave unstable and schematic
application was selected as reliable test at this stage.

Two types of experiments was executed. One type addressed absolute per-
formance of the proposed node failure detection and application reconstruction.
Node failure detection overhead was analysed using high precision timer. Per-
formance of the dynamic reconstruction of failed nodes was measured with a
focus on dynamic allocation time and process spawning time. Other type of
experiments tested relative cost of application reconstruction against the cost
of application restart including the cost of resource allocation and application
re-initialization.

4.1 Absolute Performance

Performance of the described node failure detection without usage of inter-
communicators was addressed. Time overhead introduced by the proposed detec-
tion scheme was measured. Time cost versus a number of participating nodes was
studied. Averaged results are shown on Fig.4. Time measurements was based
on a CPU cycles. The choice of the time measure was motivated by insufficient
precision of the MPI_Wtime function.

Detection scheme was tested for up to 24 nodes running from 4 to 16 local
processes using MPI_COMM _TYPE_SHARED sub-communicators. It was found
that scalability is limited more by a number of processes per node that by the
actual number of nodes. This exposes limitations of the remote process interac-
tions used in a detection scheme.

Cost of the dynamic process allocation used in reconstruction is shown on
Fig.5. Time spend waiting for reallocation of failed nodes was compared to the
process spawning cost. As expected spawning new processes were associated with
overheads [3]. Dynamic allocation implementation was corrected and time was

1400000000
1200000000
1000000000

800000000

B 4 Processes per node
8 Processes per node
16 Processes per node

600000000

400000000
200000000 I ‘ ‘
0
4 8 16 24

Number of nodes

Absolute high resolution time

Fig. 4. Relative time spent in detection phase in the case of schematic hybrid parallel
application.



42 M. Szpindler

Relative time
Absolute time in seconds

0% = Allocate = Allocate
u Spawn g = Spavn
30%
20% 05
10%
0

1 2 4 1 2 4

Number of remote nodes Number of processes spawned and nodes allocated

Fig. 5. Left: relative cost of the spawn and allocate operations for increasing number
of nodes. Right: Time cost in seconds of spawning processes and allocating additional
nodes.

greatly improved comparing to the previous results [10]. Nevertheless significant
overheads were observed for dynamic allocation of nodes, due to user job resizing
which involves many, possibly slow, system components. Experimental results
were collected using “immediate” allocation mode. Presented time measurements
are averaged over the series of experimental runs. Despite using a pool of reserved
nodes for experiments, results still tend to be highly biased by the internal Slurm
allocation procedures.

4.2 Relative Performance

To demonstrate practicality of the discussed approach, cost of the detection and
dynamic reconstruction of failed nodes was compared to cost of re-scheduling and
re-initialization of the schematic mini-application. Overall approach should also
contain full application state recovery, including state of failed node’s memory. It
can use memory image cached on the remote node that is periodically updated
which obviously introduces significant memory footprint and synchronization
overhead. Other choices are possible but were not addressed in the described
work. Instead of studying application specific state recovery that is discussed in
[4], neglected costs of job re-scheduling and MPI related re-initialization were
addressed.

Experiment tested average time needed to detect and dynamically re-allocate
resources in case when half of nodes used failed. Collected results show that
despite its obstacles, reconstruction with dynamic node allocation is practical
approach. It still needs less time to recover than complete re-initialization of
application including resource re-allocation. This test does not take into account
time required to recover application to a state before the failure. Obviously re-
scheduling of application also require new job creation, in case of scheduling
system. Moreover additional waiting is required if nodes are no longer available
to the user. Results of these relative performance comparison are summarized
on Fig. 6.



How to Mitigate Node Failures in Hybrid Parallel Applications 43

7

4
W Failure detection
3 m Resource reallocation
m Job and aplication restart
2
1
0
2 4 8

Number of nodes

Time costin seconds

Fig. 6. Relative costs of detection and dynamic allocation versus cost of complete job
re-initialization.

5 Summary and Future Work

Node failure detection and associated application reconstruction is important
issue in case of hybrid parallelism. In this paper distributed approach for node
failure detection is proposed and possible implementation choices with ULFM
extension of the MPI standard discussed. This is the attempt to enable scalable
and fault-tolerant applications with a hybrid parallelism. Performance of the
proposed approach was invalided and experimental tests are discussed. Limita-
tions and performance issues were identified. This work is related to unstable
and experimental implementation of ULFM extension and other more scalable
approaches are still available. Possible choices are described in this paper and
are easy to apply with more refined and stable implementations.

Another contribution of this paper to the discussion on fault-tolerant MPI
applications is proposal for communicator reconstruction involving dynamic
resources allocation. It is demonstrated as practical alternative for application
restart in case of node failures. Implementation of the proposed mechanism is
described and experimental results included. Identified limitations are related to
immediate allocation and need to be addressed with better Slurm integration.
The case of non-blocking allocation requests and pending for resources still need
to be refined to provide more capabilities and integrity.

References

1. Ali, M.M., Southern, J., Strazdins, P., Harding, B.: Application level fault recovery:
using fault-tolerant open MPI in a PDE solver. In: 2014 IEEE International, Par-
allel & Distributed Processing Symposium Workshops (IPDPSW), pp. 1169-1178.
IEEE (2014)

2. Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Krishna, J., Lusk, E., Thakur, R.:
PMI: a scalable parallel process-management interface for extreme-scale systems.
In: Keller, R., Gabriel, E., Resch, M., Dongarra, J. (eds.) EuroMPI 2010. LNCS,
vol. 6305, pp. 31-41. Springer, Heidelberg (2010)



44

10.

M. Szpindler

Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J.:
An evaluation of user-level failure mitigation support in MPI. Computing 95(12),
1171-1184 (2013)

Bland, W., Raffenetti, K., Balaji, P.: Simplifying the recovery model of user-level
failure mitigation. In: Proceedings of the 2014 Workshop on Exascale MPI, pp.
20-25. IEEE Press (2014)

Dinan, J., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur, R.: Enabling MPI
interoperability through flexible communication endpoints. In: Proceedings of the
20th European MPI Users’ Group Meeting, pp. 13-18. ACM (2013)

Fagg, G.E., Dongarra, J.: FT-MPI: fault tolerant MPI, supporting dynamic appli-
cations in a dynamic world. In: Dongarra, J., Kacsuk, P., Podhorszki, N. (eds.)
PVM/MPI 2000. LNCS, vol. 1908, pp. 346-353. Springer, Heidelberg (2000)
Gropp, W., Lusk, E.: Fault tolerance in message passing interface programs. Int.
J. High Perform. Comput. Appl. 18(3), 363-372 (2004)

Hoefler, T., Dinan, J., Buntinas, D., Balaji, P., Barrett, B., Brightwell, R., Gropp,
W., Kale, V., Thakur, R.: MPI4+MPI: a new hybrid approach to parallel program-
ming with MPI plus shared memory. Computing 95(12), 1121-1136 (2013)

MPI Forum: MPI: A Message-Passing Interface Standard. Version 3.0, 21 Septem-
ber 2012. http://www.mpi-forum.org

Szpindler, M.: Enabling adaptive, fault-tolerant MPI applications with dynamic
resource allocation. In: Proceedings of the 3rd International Conference on Exascale
Applications and Software (2015)


http://www.mpi-forum.org

	How to Mitigate Node Failures in Hybrid Parallel Applications
	1 Introduction
	2 Detecting Node Failures
	2.1 User-Level Failure Mitigation Model
	2.2 Intra-node Communicators
	2.3 Node Failure Detection

	3 Dynamic Reconstruction
	3.1 Communicator Reconstruction
	3.2 Dynamic Resource Allocation

	4 Experimental Results
	4.1 Absolute Performance
	4.2 Relative Performance

	5 Summary and Future Work
	References


