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Abstract. Image denoising is one of the fundamental problems in the
image processing. In a PDE based approach for image processing, the
simplest possible method for denoising is to solve the heat equation.
However such a diffusion equation will destroy sharp edges in the image.
An approach known for preserving the edges while denoising is called the
classical Rudin-Osher-Fatemi (ROF) method based on the total varia-
tion (TV) regularization. Recently, an algorithm, also known as the TV-
Stokes, based on two minimization steps involving the smoothing of the
tangential field and then the reconstruction of the image has been pro-
posed. The latter produces images without the blocky effect which we
observe in the case of the ROF model. An iterative regularization method
for the total variation based image restoration has recently been proposed
giving significant improvement over the classical method in the quality
of the restored image. In this paper we propose a similar algorithm for
the TV-Stokes denoising algorithm.

Keywords: Iterative regularization · Total variation · TV-Stokes ·
Denoising

1 Introduction

Recovering an image from a noisy and blurry image is an inverse problem which
is solved via variational methods, e.g. cf [1,7]. This requires the minimization of
some energy functional.

By the Euler-Lagrange formulation it results into a set of nonlinear partial
differential equations which are then solved using say, the gradient-descent iter-
ation, see for instance [12] for the classical model of Rudin, Osher and Fatemi
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(ROF model), which is based on the total variation (TV) regularization of the
intensity (gray level), and [9,11] for an improved model (TV-Stokes model) which
is based on the total variation regularization of the tangential field of the inten-
sity. The drawback of such algorithms is that their convergence is very slow,
particularly for large images. There exist now algorithms which are much faster,
those based on the dual formulation of the underlying models, see for instance
[2,3,8]

An iterative regularization algorithm for the ROF model has recently been
proposed, cf. [10], giving significant improvement over the classical method in
the quality of the restored image. The main purpose of this paper is to propose
a similar algorithm for the TV-Stokes model, and its dual formulation for faster
convergence. The paper is organized as follows: in Sect. 2 we present the iterative
regularization algorithm for the ROF model, and in Sect. 3 we propose a similar
algorithm for the TV-Stokes model. In Sect. 4 we describe Chambolle’s iteration
for the dual formulation of the TV-Stokes model, which we use for the numerical
experiments of Sect. 5.

2 Iterative Regularization for the TV Denoising

Let the noisy image d0 represented as scalar L2(Ω) function be given. The clas-
sical denoising method is based on the minimization problem:

min
d

∫
Ω

|∇d| dx +
λ

2

∫
Ω

(d0 − d)2dx, (1)

where λ is a constant which is used to balance between the smoothing of the
image and the fidelity to the input image. It is difficult to know how to choose
λ. An equivalent formulation of (1) is the following constrained minimization
problem, cf. e.g. [4]:

min
‖d0−d‖2

L2=σ2

∫
Ω

|∇d| dx, (2)

where σ is the noise level. One often has a reasonable estimate of the noise level.
In the original paper [12], a gradient projection method was used to solve (2).
The method is known for its good edge preserving capability. It suffers however
from its blocky effect on the resulting image. Not just that, it looses quite easily
the high frequency part of the image as well. The recently proposed iterative
regularization method [10], an algorithm which is based on the original TV
denoising algorithm, has proven to give a much better result than the constrained
denoising algorithm of ROF.

Given d0, λ, and v0 = 0. For k = 0, 1, 2, . . ., find the minimizer dk+1 of the
following minimization problem,

min
d

∫
Ω

|∇d| dx +
λ

2

∫
Ω

(d0 + vk − d)2dx, (3)

and update
vk+1 = vk + d0 − dk+1. (4)
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Algorithm: TV Iterative Regularization

Given d0 and λ ;

Initialize counter: k = 0 ;

Set: v0 = 0 ;

while not converged do

Initialize counter: n = 0 ;

Set: u0 = vk + d0 ;

while not converged do

Calculate un+1:

un+1 − un

Δt
= ∇ ·

( ∇un

|∇un|
)

+ λ(u0 − un) (5)

Update counter: n = n + 1 ;

end
Set: dk+1 = un ;

Update:
vk+1 = vk + d0 − dk+1 (6)

Update counter: k = k + 1 ;

end
Algorithm 1. Iterative regularization for ROF denoising.

For stopping the iterative procedure, a reasonable criterion to use is the discrep-
ancy principle, that is to stop the iteration the first time the residual ‖d0−dk‖L2

is of the same order as the noise level σ, cf. [10]. We know that the problem (3)
has a unique solution. It is shown in [10] that dk will converge to the original
noisy image d0 as we continue to iterate beyond the discrepancy point.

2.1 Discrete Algorithm

The algorithm consists of two loops. The first one, which will be the outer loop,
we call it the k-loop. In each iteration of the k-loop, we need the minimizer of
the classical ROF model, which we do by the descent technique, iterating over
an artificial time step to steady state.

2.2 Discretization

For the time discretization we use an explicit scheme, where, in each time step,
the nonlinear term is calculated using values from the previous time step and
is therefore a known quantity. Each vertex of the rectangular grid corresponds
to the position of a pixel or pixel center where the image intensity variable d is
defined, cf. Fig. 1 (Right).
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Fig. 1. Left: the computational grid with approximating points for the variables d, dx,
and dy, represented by ◦, �, and �, respectively. Right: mapping the computational grid
onto the pixels.

For the space discretization, we approximate the derivatives by finite dif-
ferences using the standard forward/backward difference operators D±

x and
D±

y , and the centered difference operators Ch
x and Ch

y , respectively in the
x and y directions, as D±

x f = ± f(x±h,y)−f(x,y)
h , D±

y f = ± f(x,y±h)−f(x,y)
h ,

Ch
y f = f(x+h,y)−f(x−h,y)

2h , and Ch
y f = f(x,y+h)−f(x,y−h)

2h for any function f , where
h correspond to the h−spacing. We introduce two average operators Ax and Ay

as Axf = (f(x, y) + f(x + h, y)) /2 and Ayf = (f(x, y) + f(x, y + h)) /2.
The discrete approximation of (5), thus, takes the following form:

∇ ·
( ∇un

|∇un|
)

+ λ(u0 − un) ≈ D−
x

(
D+

x un

Tn
1

)
+ D−

y

(
D+

y un

Tn
2

)
+ λ(u0 − un), (7)

where Tn
1 is defined as Tn

1 =
√(

D+
x un

)2
+

(
Ax(Ch

y un)
)2 + ε, and Tn

2 as Tn
2 =√(

D+
y un

)2
+ (Ay(Ch

xun))2 + ε. Here ε is a small number.

3 Iterative Regularization for the TV-Stokes

3.1 The TV-Stokes Denoising

Let the noisy image d0 represented as scalar L2(Ω) function be given. We com-
pute τ0 = ∇⊥d0. The algorithm is then defined in two steps, see [9,11]. In the
first step, writing the tangent vector as τ = (v, u), we solve the following mini-
mization problem:

min
τ

∫
Ω

(|∇v| + |∇u|) dx +
δ

2

∫
Ω

|τ − τ0|2 dx (8)

subject to ∇ · τ = 0, where δ is a constant which is used to balance between the
smoothing of the tangent field and the fidelity to the input tangent field. Once
we have the smoothed tangent field, we can get the corresponding normal field
n = (u,−v). In the second step, we reconstruct our image by fitting it to the
normal field through solving the following minimization problem:

min
d

∫
Ω

(
(|∇d| − ∇d

n
|n|

)
dx +

λ

2

∫
Ω

(d0 − d)2dx. (9)
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As before, let ‖d−d0‖2L2 = σ2 be the estimated noise variance. This can be esti-
mated using statistical methods. If the exact noise variance cannot be obtained,
then an approximate value may be used. In which case, a larger value would
result in over-smoothing and a smaller value would result in under-smoothing.

3.2 Iterative Regularization

Given d0, s0 = 0, δ and λ. For k = 0, 1, 2, . . ., in the first step, we compute
τ0 = ∇⊥(d0 + sk), and we solve the following minimization problem.

min
τ

∫
Ω

(|∇v| + |∇u|) dx +
δ

2

∫
Ω

|τ − τ0|2 dx, (10)

subject to ∇ · τ = 0.
Once we have the smoothed tangent field, we get the corresponding normal

field n = (u,−v). In the second step, we reconstruct our image by fitting it to
the normal field through solving the following minimization problem.

min
d

∫
Ω

(
(|∇d| − ∇d

n
|n|

)
dx +

λ

2

∫
Ω

(d0 + sk − d)2dx, (11)

and update sk+1 = sk+d0−dk+1. For stopping of the iterative procedure, we use
the discrepancy principle, that is to stop the iteration the first time the residual
‖d0 − dk‖L2 is of the same order as the noise level σ, cf. [10]. It is possible to
show that dk will converge to the original noisy imaged0 as we continue to iterate
beyond the discrepancy point.

3.3 Discrete Algorithm

The algorithm consists of two loops, the outer loop being the k-loop as before.
In each iteration of the k-loop, the two minimizing steps of the TV-Stokes algo-
rithms is performed. The discrete algorithm is in Algorithm 2 below.

3.4 Discretization

For the time discretization, we use an explicit scheme, where, in each time step,
the nonlinear term is calculated using values from the previous time step and
is therefore a known quantity. As before, each vertex of the rectangular grid
corresponds to the position of a pixel or pixel center where the image intensity
variable d is defined, cf. Fig. 1 (Right).

For the space discretization again we use a staggered grid, cf. Fig. 1 (Left).
We approximate the derivatives by finite differences using the standard for-
ward/backward difference operators D±

x and D±
y , and the centered difference

operators Ch
x and Ch

y , respectively in the x and y directions, as described in
Sect. 2.
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The discrete approximation of (15)–(17) are as follows

vn+1 − vn

Δt
= D−

x

(
D+

x vn

Tn
1 (v)

)
+ D−

y

(
D+

y vn

Tn
2 (v)

)
+ δ(v0 − vn) + D−

x qn (12)

un+1 − un

Δt
= D−

x

(
D+

x un

Tn
1 (u)

)
+ D−

y

(
D+

y un

Tn
2 (u)

)
+ δ(u0 − un) + D−

y qn (13)

qn+1 − qn

Δt
= D+

x vn + D+
y un (14)

where Tn
1 (u) is defined as Tn

1 (u) =
√(

D+
x un

)2
+

(
Ax(Ch

y un)
)2 + ε and Tn

2 (u)

as Tn
2 (u) =

√(
D+

y un
)2

+ (Ay(Ch
xun))2 + ε. Analogously, we define Tn

1 (v) and
Tn
2 (v) by replacing u with v.

Algorithm: TV-Stokes iterative regularization

Given d0, δ and λ ;

Initialize counter: k = 0 ;

Set: s0 = 0 ;

while not converged do

Initialize counter: n = 0 ;

Set: w0 = d0 + sk and (v0, u0) = ∇⊥w0, q0 = 0 ;

while not converged do

Calculate τn+1 = (vn+1, un+1):

vn+1 − vn

Δt
= ∇ ·

( ∇vn

|∇vn|
)

− δ
(

v
n − v

0
)
+

∂qn

∂x
(15)

un+1 − un

Δt
= ∇ ·

( ∇un

|∇un|
)

− δ
(

u
n − u

0
)
+

∂qn

∂y
(16)

qn+1 − qn

Δt
=

∂vn

∂x
+

∂un

∂y
(17)

Update counter: n = n + 1 ;

end

Set n = (un+1, −vn+1);

while not converged do

Calculate wn+1:

wn+1 − wn

Δt
= ∇

( ∇d

|∇d| − n

|n|
)

+ λ(w
0 − w

n
) (18)

Update counter: n = n + 1 ;

end

Set: dk+1 = wn+1 ;

Update:

sk+1 = sk + d0 − dk+1 (19)
Update counter: k = k + 1 ;

end

Algorithm 2. Iterative regularization for TV Stokes denoising.
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The discrete approximation of (18) is defined as follows

wn+1 − wn

Δt
= D−

x

(
D+

x wn

Tn
3

− n1

)
+ D−

y

(
D+

y wn

Tn
4

− n2

)
+ λ(w0 − wn) (20)

where Tn
3 is defined as Tn

3 =
√(

D+
x wn

)2
+

(
Ax(Ch

y wn)
)2 + ε and Tn

4 as Tn
4 =√(

D+
y wn

)2
+ (Ay(Ch

xwn)2 + ε. and nk, for k = 1 and 2, respectively as n1 =
u√

u2+(Ax(Ayv))2)+ε
and n2 = −v√

v2+(Ay(Axu))2)+ε
.

4 Chambolle’s Algorithm

In this section we present a dual approach for solving our TV Stokes iterative
regularization, cf. [5,6,8]. We consider the image in L2(Ω) be approximated on
the regular mesh and be represented as d ∈ R

N×N . The derivative matrices, cor-
responding to the u and v, are then computed naturally from d using appropriate
finite differences, which again constitute the pair of matrices corresponding to
the tangential vector τ = (v, u).

4.1 First Step

In the first step, we consider the minimization problem (10):

min
∇τ=0

∫
Ω

(|∇v| + |∇u|) dx +
δ

2

∫
Ω

|τ − τ0|2 dx. (21)

Using a dual formulation of the TV norm we can write
∫

Ω

(|∇v| + |∇u|) dx = max
G

∫
Ω

〈τ,∇ · G〉 dx,

where 〈x,y〉 = x1y1 +x2y2 for x,y ∈ R
2, and G = (g1,g2)T is the dual variable

such that gi ∈ C1
c (Ω)2 and |gi|∞ ≤ 1. Using this, (10) can be reformulated as

min
∇τ=0

max
G

∫
Ω

〈τ,∇ · G〉dx +
δ

2

∫
Ω

|τ − τ0|2 dx. (22)

Here ∇ · G = (∇ · g1,∇ · g2)T . We define the orthogonal projection ΠY onto
Y = {τ : ∇ · τ = 0} as

ΠY

[
τ1
τ2

]
=

[
τ1
τ2

]
− ∇
†∇ ·

[
τ1
τ2

]
. (23)

We note that ∇ · τ = 0 is equivalent to ΠY τ = τ ; using this, and exchanging
min and max, we get

max
G

min
τ

∫
Ω

〈τ,ΠY ∇ · G〉dx +
δ

2

∫
Ω

|τ − τ0|2 dx. (24)
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Minimizing with respect to τ we get

τ = τ0 − 1
δ
ΠY ∇ · G. (25)

Substituting it back, we obtain the dual problem:

min
G

∫
Ω

|ΠY ∇ · G − δτ0|2 dx. (26)

This problem can be solved using Chambolle’s fixed point iteration (cf. [3]):

Gn+1 =
Gn + Δt∇[ΠY ∇ · G − δτ0]
1 + Δt∇[ΠY ∇ · G − δτ0]

(27)

Fig. 2. Denoising of Lena image, with noise level ≈ 8, δ = .16 and μ = 0.20.

In practice we compute an approximation of ΠY using the following dis-
crete gradient, discrete divergence and discrete Laplace operator. For d ∈ R

N×N

representing an image on a 2D grid let

∇hd = (dDT ,Dd)T , ∇h · (p1, p2) = −p1D − DT p2, (28)

where D is differentiation matrix. Then 
h = −dDDT −DT Dd and the discrete
projection becomes: Πh

Y = I − ∇h(
h)†∇h. Because we know SVD of 
h, thus
the action of (
h)† can be computed using discrete cosine and sine matrices with
the aid of the Fast Fourier Transform requiring only O(N2 log2(N)) operations.

4.2 Second Step

In the second step, we have an unconstrained minimization problem (11). Using
the dual formulation of the TV norm, the problem can be reformulated as

min
d

max
g∈C1

c (Ω)2:|g|∞≤1

∫
Ω

d ∇ ·
(
g +

n
|n|

)
dx +

λ

2

∫
Ω

(d0 + sk − d)2dx. (29)
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Fig. 3. Denoising of fingerprint image, with noise level ≈ 6.4, δ = .16 and μ = 0.20.

Exchanging the min and max, and minimizing with respect to d, we get

d = d0 + sk − 1
λ

∇ ·
(
g +

n
|n|

)
. (30)

Substituting it back, we obtain the dual problem:

min
g

∫
Ω

∣∣∣∣λ(d0 + sk) − ∇ ·
(
g +

n
|n|

)∣∣∣∣
2

dx. (31)

Using Chambolle’s fixed point iteration we get

gn+1 =
gn + Δt∇[∇ ·

(
gn + n

|n|
)

− λ(d0 + sk)]

1 + Δt∇[∇ ·
(
gn + n

|n|
)

− λ(d0 + sk)]
. (32)

5 Numerical Results

The algorithm has been applied to the Lena and the fingerprint image, and
the results are shown in Figs. 2 and 3, respectively, showing three iterations of
the iterative regularization algorithm, with denoised images in the first row and
their corresponding difference images (difference between the noisy image and
the denoised image) in the second row. The preliminary results shown in the
figures proves that he proposed algorithm works well.

Acknowledgements. We would like to thank Bin Wu for the numerical experiments.



390 L. Marcinkowski and T. Rahman

References

1. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial
Differential Equations and the Calculus of Variations, With a foreword by Olivier
Faugeras. Applied Mathematical Sciences, vol. 147, 2nd edn. Springer, New York
(2006)

2. Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation
norm and applications to color image processing. Inverse Probl. Imaging 2(4),
455–484 (2008). http://dx.doi.org/10.3934/ipi.2008.2.455

3. Chambolle, A.: An algorithm for total variation minimization
and applications. J. Math. Imaging Vision 20(1–2), 89–97 (2004).
http://dx.doi.org/10.1023/B:JMIV.0000011320.81911.38, special issue on mathe-
matics and image analysis

4. Chambolle, A., Lions, P.L.: Image recovery via total variation mini-
mization and related problems. Numer. Math. 76(2), 167–188 (1997).
http://dx.doi.org/10.1007/s002110050258

5. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for
total variation-based image restoration. In: Berger, M.-O., Deriche, R.,
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