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Abstract. We present a parallel preconditioner based on the domain
decomposition for the finite element discretization of multiscale elliptic
problems in 3D with highly heterogeneous coefficients. The proposed pre-
conditioner is constructed using an abstract framework of the Additive
Schwarz Method which is intrinsically parallel. The coarse space consists
of multiscale finite element functions associated with the wire basket,
and is enriched with functions based on solving carefully constructed
generalized eigen value problem locally on each face. The convergence
rate of the Preconditioned Conjugate Method with the proposed precon-
ditioner is shown to be independent of the variations in the coefficients
for sufficient number of eigenfunctions in the coarse space.

Keywords: Finite element method · Domain decomposition method ·
Additive Schwarz Method · Abstract coarse space

1 Introduction

In many applications, like in the porous media flow simulation where we model
flow of water, gas and oil in reservoirs and aquifers, we need to numerically solve
partial differential equations with highly heterogeneous coefficients representing
for instance the permeability. It is known that high contrast in the coefficients
causes many standard numerical methods to perform badly.

Domain decomposition methods are among the efficient solvers for systems
of equations arising from the finite element discretizations of elliptic partial dif-
ferential equations, cf. [22], and Additive Schwarz Methods (ASM) are among
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the most popular domain decomposition methods, cf. e.g. [3,11,15,16] and refer-
ences therein. In classical overlapping Additive Schwarz Methods the domain is
divided into overlapping subdomains, where local subproblems are defined, and
a coarse problem is defined globally for the scalability, cf. [22]. If subdomains
are such that, in each subdomain, the variations in the coefficients are not too
large, it is well known, that classical coarse spaces yield methods that are robust
with respect to the variation, cf. e.g. [4,15,22]. In the recent years, the research
has extended to highly heterogeneous coefficients, cf. e.g. [5–10,14,17–21,23,24].
In some of those works, the construction of coarse spaces have been based on
enriching their coarse spaces with eigenfunctions of some generalized eigenvalue
problems, cf. [1,6,7,9,14,21], resulting in methods that are robust with respect
to any heterogeneity. This has been the source of our inspiration in this paper.

We propose a parallel additive Schwarz preconditioner for the finite element
discretization of the self-adjoint elliptic second order problem in 3D with highly
heterogeneous and highly varying coefficients. Preconditioned conjugate gradi-
ents method (cf. [12]) is used to solve the resulting preconditioned system. The
preconditioner is based on the abstract Schwarz framework where the solution
space is decomposed into subspaces associated with the overlapping subdomains,
and a specially constructed multiscale coarse space associated with the wire bas-
ket of the decomposition, which is then enriched with functions based on solving
generalized eigenvalue problems defined locally over each face. The present work
is an extension to 3D of the recent work of [9] in 2D. The obtained bounds are
independent of the geometries of the subdomains, and the heterogeneities in the
coefficients.

The remainder of this paper is organized as follows, in Sect. 2 we present the
finite element discretization. In Sect. 3 we present our coarse space introducing
the multiscale finite element functions and the functions based on generalized
eigenvalue problem on each face. Section 4 contains a description of the over-
lapping additive Schwarz preconditioner, and in Sect. 5 we briefly discuss the
implementation issues.

2 Finite Element Discretization

The aim is to find an approximation to the solution of the following self-adjoint
second order elliptic differential problem: find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v) ∀v ∈ H1
0 (Ω), (1)

where

a(u, v) =
∫

Ω

α(x)(∇u)T ∇v dx, f(v) =
∫

Ω

fv dx. (2)

Here Ω is a polygonal domain in the three dimensional space, f ∈ L2(Ω) and α
is a strictly positive and bounded function. Hence, we can always scale α by its
minimal value; we further assume that α ≥ 1.
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We introduce a quasi-uniform triangulation of the domain Ω, denoting
it with Th(Ω) = Th = {τ}, which consists of tetrahedrons τ , and we let
h = maxτ∈Th

diam(τ) be the parameter of Th, cf. e.g. [2] for more details.
Let Vh be the finite element space of continuous functions which are piecewise

linear over the triangulation Th and zero on the boundary ∂Ω. The degrees of
freedom are associated with the nodes or nodal points which are the vertices of
tetrahedrons.

Note that on each element τ ∈ Th the gradient ∇u|τ is a constant vector,
hence for u, v ∈ V h we have

∫
τ

α(x)∇uT ∇v dx = (∇uT
|τ∇v|τ )

∫
τ

α(x) dx, hence
we can assume that α(x) is piecewise constant over the elements of Th.

Remark 1. We can also consider a more general case when our differential prob-
lem is defined with the following symmetric bilinear form

∫
Ω

(∇u)T A(x)∇v dx,

where A(x) ∈ (L∞(Ω))3×3 is symmetric, and strictly positive definite over Ω in
the following sense:

∃ C1, C0 > 0, ∀x ∈ Ω, ∀ξ ∈ R
3 C0ξ

T ξ ≤ ξT A(x)ξ ≤ C1ξ
T ξ.

We can scale A and assume that C0 = 1 and the entries of A are piecewise
constant functions over the elements of Th. If the condition number of A|τ in
any τ ∈ Th remain uniformly bounded, we remark that the result of this paper
holds true also for this case.

The discrete FEM problem is formulated as follows: find uh ∈ Vh such that

a(uh, v) = f(v) ∀v ∈ Vh. (3)

The problem has a unique solution by the Lax-Milgram lemma and there are
error estimates, see e.g. [2] and references therein. By formulating the discrete
problem in the standard nodal basis {φi}xi∈Ωh

, we get the following system of
algebraic equations

Ahuh = fh (4)

where Ah = (a(φi, φj))i,j , fh = (fj)xj∈Ωh
with fj =

∫
Ω

f(x)ψi dx, and
uh = (ui)i with ui = uh(xi). Here uh =

∑
xi∈Ωh

uiφi. The resulting system
is symmetric and in general very ill-conditioned; any standard iterative method
may perform badly due to the ill-conditioning of the system.

In this paper we present a method for solving such systems using the pre-
conditioned conjugate method (cf. [12]) and propose an additive Schwarz pre-
conditioner (cf. [22]). Let Ω be partitioned into a collection of disjoint open and
connected substructures Ωk, such that Ω =

⋃N
k=1 Ωk. We assume that the trian-

gulation Th is aligned with the subdomains Ωk, that is any τ ∈ Th is contained
in one subdomain, hence, each subdomain Ωk inherits the local triangulation
Th(Ωk) = {τ ∈ Th : τ ⊂ Ωk}. Such a partition may be computed by a mesh par-
titioning software like e.g. METIS, cf. [13]. We make an additional assumption
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that the number of subdomains which share a vertex or an edge of an element
of Th is bounded by a constant. An important role is played by the interface
Γ =

⋃N
k=1 ∂Ωk\∂Ω. The non-empty intersection of two subdomains ∂Ωi ∩ ∂Ωj

not on ∂Ω is either a collection of 2D faces of elements of Th, in which case we
say that F ij = ∂Ωi ∩ ∂Ωj is a generalized closed face, or it is a collection of
closed edges of elements of Th, in which case we say that E ij = ∂Ωi ∩ ∂Ωj is
a generalized closed edge, or it is a vertex of Th. We define the wire basket of
this partition as the sum of the closed edges of the elements of Th, which are
not on ∂Ω but are contained in more than two substructures, in other words
those contained in any generalized edge, and we denote the wire basket by W.
We also define the local wire basket Wi = W ∩∂Ωi which will play a crucial role
in our analysis. We define the sets of nodal points, Ωh, ∂Ωh, Ωk,h, Fkl,h, Ekl,h,
Wk,h etc., as the sets of vertices of elements of Th, which are in Ω, ∂Ω,Ωk, Fkl,
Ekl, Wk etc., respectively.

3 Coarse Space

In our method, the key role is played by the global coarse space which is a space
of discrete harmonic functions (cf. Sect. 3.1 below) and which consists of two
space components: the multiscale coarse space component and the generalized
face based eigenfunction space component.

3.1 Discrete Harmonic Extensions

We start by defining the discrete harmonic extensions. Local subspaces Vh,k are
defined as restrictions, of the space Vh to Ωk, that is

Vh,k = {u|Ωk
: u ∈ Vh} = {v ∈ C(Ωk) : v|τ ∈ P1(τ), τ ∈ Th(Ωk), v|Ωk∩∂Ω = 0},

and we let
V 0

h,k = Vh,k ∩ H1
0 (Ωk).

Let the local discrete harmonic extension operator Hk : Vh,k → Vh,k be
defined as the unique solution to the following local problem:

{
ak(Hku, v) = 0 ∀v ∈ V 0

h,k

Hku = u on ∂Ωk.
(5)

where ak(u, v) =
∫

Ωk
α(x)∇uT ∇v dx. A function u ∈ Vh,k is discrete harmonic

in Ωk if u|Ωk
= Hku ∈ Vh,k. For u ∈ Vh, if all its restrictions to local subdomains

are discrete harmonic then u is said to be piecewise discrete harmonic over the
partition. Note that a discrete harmonic function in Vk,h is uniquely defined by
its values at the nodal points in ∂Ωk,h.
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3.2 Multiscale Coarse Space Component

We define the multiscale component of the coarse space here. We need a few
extra definitions. Let Vh(Fkl) be the space of all traces of functions from Vh

onto Fkl and let Vh,0(Fkl) be its subspace of functions taking zero values at the
nodal points of Wh ∩ Fkl,h, i.e. the nodal points on the boundary of Fkl.

Note that as α is piecewise constant over Th, it may have jumps across the
2D common faces of two neighboring elements (i.e. tetrahedrons) in Th. For any
face f ⊂ Fkl we define αf = max{α|τ1 , α|τ2} where τ1 ∈ Th(Ωk) and τ2 ∈ Th(Ωl)
are two neighboring elements such that f is their common face.

With each face Fkl, we associate a bilinear form aFkl,h : Vh(Fkl)×Vh(Fkl) →
R, which is defined as

aFkl,h(u, v) =
∑

f⊂Fkl

∫
f

αf∇u∇v ds,

where the sum is over the 2D faces of the elements of Th forming the face Fkl,
and the integral is over each such 2D face. Note that u ∈ Vh(Fkl) is continuous,
and its restriction to such a face f is a linear polynomial.

Analogously, associated with the face Fkl, we define a scaled discrete weighted
L2 inner product, a symmetric bilinear form bFkl,h : Vh(Fkl) × Vh(Fkl) → R, as

bFkl,h(u, v) =
∑

x∈Fkl,h

αxu(x) v(x),

where αx = maxx∈∂τ α|τ , i.e. is equal to the maximal value of α|τ over all
elements τ sharing the node x as a vertex.

Finally, we introduce the multiscale coarse space component Vms ⊂ Vh as
the space of functions whose degrees of freedom are associated with the nodal
points of Wh. For any function u ∈ Vms, on each face Fkl, it is defined as the
solution of the following generalized face problem,

{
aFkl,h(u|Fkl

, v) = 0 ∀v ∈ Vh,0(Fkl)
u|Fkl

= u on ∂Fkl = W ∩ Fkl.
(6)

and inside each subdomain, it is defined as the discrete harmonic extension in
the sense of (5). So, once u ∈ Vms is known at the nodal points of Wh, its values
at the nodal points of each face can be computed by solving (6), and then its
values at the nodal points of each subdomain can be computed by solving (5).

Proposition 1. The problem (6) has a unique solution.

Proof. Note that if the form aFkl,h(v, v) is zero for any v ∈ Vh,0(Fkl), then it
means that v is constant on each 2D face f ⊂ Fkl. The continuity of v yields
that v is equal to a single constant over all 2D faces contained in Fkl. Finally
this constant is zero because v is zero at the nodal points on the wire basket
(boundary of the face). This proves that the form is positive definite in Vh,0(Fkl).
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Let û be a function equal to u at the nodal points of ∂Fkl and equal to zero
at all nodal points in the interior of the face Fkl, i.e. not belonging to Wh. Then
ũ := uFkl

− û is in Vh,0(Fkl) and we can rewrite (6) as: find ũ ∈ Vh,0(Fkl) such
that

aFkl,h(ũ, v) = −aFkl,h(û, v) ∀v ∈ Vh,0(Fkl),

which obviously has a unique solution due the positive definiteness of the bilinear
form in Vh,0(Fkl).

Finally u ∈ Vms is discrete harmonic in Ωk and thus the values of u in Ωk,h

are uniquely defined by its values on the wire basket and on faces using (5). We
note that the dimension of Vms equals the number of all nodes in the set Wh.

3.3 Generalized Face Based Eigenfunction Space Component

We introduce a face based generalized eigenvalue problem: find (λ, ψ) ∈ R ×
Vh,0(Fkl) such that

aFkl,h(ψ, v) = λbFkl,h(ψ, v) ∀v ∈ Vh,0(Fkl) (7)

Since both bilinear forms are symmetric and positive definite in Vh,0(Fkl), there
exist real and positive eigenvalues and their respective bFkl,h-orthogonal and
normalized eigenvectors satisfying (7) such that

0 < λFkl
1 ≤ λFkl

2 ≤ . . . ≤ λFkl

M ,

and
bFkl,h(ψFkl

j , ψFkl
i ) = 0 j �= i, bFkl,h(ψFkl

j , ψFkl
j ) = 1.

Here M is the dimension of Vh,0(Fkl).
For any 1 ≤ n ≤ M we can define a orthogonal projection: πFkl

n : Vh,0(Fkl) →
span{ψFkl

j }n
j=1 ⊂ Vh,0(Fkl) as

πFkl
n v =

n∑
j=1

bFkl,h(v, ψFkl
j )ψFkl

j . (8)

By a simple algebraic argument (similar to those in [21] or [9]) we get the fol-
lowing lemma.

Lemma 1. The operator πFkl
n is aFkl,h-orthogonal projection and moreover

‖v − πFkl
n v‖2b,Fkl

≤ 1
λFkl

n+1

‖v − πFkl
n v‖2a,Fkl

∀v ∈ Vh,0(Fkl),

where ‖v‖2a,Fkl
= aFkl,h(v, v) and ‖v‖2b,Fkl

= bFkl,h(v, v).

We further assume that a nonnegative number n(Fkl), not greater than the
dimension of Vh,0(Fkl), is known or given for each face Fkl. Then for each eigen-
vector ψFkl

j , 1 ≤ j ≤ n(Fkl) we define ΨFkl
j ∈ Vh which is equal to ψFkl

j on
the face Fkl, zero on the remaining faces and everywhere on the wire basket W,
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and finally discrete harmonic inside each subdomain in the sense of (5) defining
uniquely its values at all interior nodes of the subdomain. We are now able to
introduce the face based eigenfunction space component which is

V Fkl

h,n = span{ΨFkl
j }n(Fkl)

j=1 , ∀Fkl ⊂ Γ.

Finally, our coarse space is defined as follows:

V0 := Vms +
∑

Fkl⊂Γ

V Fkl

h,n . (9)

4 Additive Schwarz Method (ASM) Preconditioner

We define our preconditioner utilizing the abstract framework of ASM, i.e. we
introduce a decomposition of the global space Vh into the sum of smaller sub-
spaces of Vh, and define symmetric positive definite bilinear forms on the sub-
spaces; cf. [22]. In our present work, we consider only the original bilinear form
a(u, v), i.e. (2), on each subspace.

The coarse space is defined in the previous section, cf. (9). The local subspace
Vk associated with the subdomain Ωk, is defined as the space of all functions
u ∈ Vh which take the value zero at all nodal points that lie outside Ωk. It is
easy to see that Vh =

∑N
k=1 Vk. Now, including the coarse space, we have the

following decomposition:

Vh = V0 +
N∑

k=1

Vk.

The additive Schwarz operator T : Vh → Vh is defined in terms of the pro-
jection like operators, Tk, k = 0 · · · N , as follows, i.e. T = T0 +

∑N
k=1 Tk, where

the coarse space projection like operator, T0 : Vh → V0, is defined as

a(T0u, v) = a(u, v) ∀v ∈ V0,

and the local subspace projection operators, Tk : Vh → Vk, are defined as

a(Tku, v) = a(u, v) ∀v ∈ Vk, k = 1, . . . , N.

Under the Schwarz framework, the problem (3) is then reformulated as the
following equivalent preconditioned system,

Tuh = g, (10)

where g = g0 +
∑N

k=1 gk with g0 = T0u
∗
h, gk = Tku∗

h, k = 1, . . . , N , and u∗
h the

exact solution. Note that the right hand side vectors, gk, k = 0 · · · , N, can be
calculated without explicitly knowing the exact solution.
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4.1 An Estimate of the Condition Number

We present the main result of this paper, namely, an estimate of the condition
number of the preconditioned system (3), which is given in the following theorem.

Theorem 1. There exist positive constants c and C such that

c(1 + max
Fkl

(λFkl
n+1)

−1)−1 a(u, u) ≤ a(Tu, u) ≤ C a(u, u) ∀u ∈ Vh,

where λFkl
n+1 and n = n(Fkl) are as defined in Sect. 3.3, and c, C are constants

independent of α, h and the number of subdomains.

A Sketch of the Proof. The proof is based on the abstract Schwarz frame-
work, where we need to verify the three key assumptions of the framework,
see [22] for the framework. The first two assumptions, that is, the local sta-
bility and strengthened Schwarz-Cauchy inequalities, follow immediately from
standard arguments. The last assumption, that is the assumption on the stable
decomposition, is less trivial.

We propose the following decomposition of u, u = u0 +
∑N

i=1 ui, with ui ∈ Vi

for i = 0, . . . , N . For any u ∈ Vh we let u0 ∈ V0 be defined as follows. Let
ums ∈ Vms be equal to u at all nodes of Wh. The restriction of u−ums to a face
Fkl is then a function in Vh,0(Fkl). Let ukl ∈ V Fkl

h,n be equal to πFkl
n (u−ums) (cf.

(8)). Note that ukl is zero at all wire basket nodes and discrete harmonic inside
subdomains. Now, by letting u0 = ums +

∑
Fkl⊂Γ ukl, and ui = Ih(θi(u − u0)),

where {θi} is the standard partition of unity with respect to the partition {Ωi}
and Ih the standard nodal interpolation operator.

Now using the above decomposition, and the estimates of Lemma 1 we can
show that

a(u0, u0) +
N∑

k=1

a(uk, uk) ≤ C(1 + max
Fkl

(λFkl
n+1)

−1)a(u, u),

where C is a constant independent of α, h and number of subdomains. The proof
of the theorem then follows from the abstract Schwarz framework, cf. e.g. [22].

Remark 2. The idea is to collect eigenfunctions with the smallest eigenvalues
(bad eigenmodes) into the coarse space, whereby removing their influence on the
convergence. Normally, the bad modes are associated with the channels (regions
with large coefficients) crossing the interface Fkl. The number of eigenfunctions,
n(Fkl), required for the robustness, can either be preassigned from experience
or chosen adaptively by setting a threshold and choosing those eigenfunctions
whose eigenvalues are smaller than the threshold.

Remark 3. Although, an explicit dependence on the mesh parameters does not
appear in the convergence estimate of Theorem 1, it is not difficult to tell that
this dependence is somehow hidden in the eigenvalues of the face eigenvalue
problems, and as soon as the influence of the bad eigenmodes have been removed,
it will start to show, at least numerically. However, if we choose the threshold,
cf. Remark 2, to be in the order of h

H , it is straightforward to see that the
convergence will be in the order of H

h .
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5 Implementation Issues

In this section, we briefly discuss the implementation of our ASM preconditioner.
We propose to use the preconditioned conjugate gradient iteration (cf. e.g. [12])
for the system (10). Constructing the coarse space requires the solution of the
generalized eigenvalue problem (7) on each subdomain face (interface), the first
few eigenfunctions corresponding to the smallest eigenvalues are then included in
the coarse space. Prescribing a threshold λ0, and then computing the eigenpairs
with eigenvalues smaller than λ0, we can get an automatic way to enrich the
coarse space. The simplest way would be to compute a fixed number of eigenpairs,
e.g. n = 5 or so, this may however not guarantee robustness as the number of
channels crossing a face may be much larger. In each step of PCG we compute a
residual vector which requires solving the coarse problem and local subproblems,
cf. [22]. All these problems are independent so they can be solved in parallel. The
local subdomain problems are solved locally on their respective subdomains. The
coarse problem is global, and although its dimension equals the number of nodes
on the wire basket plus the number of local eigenfunctions, the coarse stiffness
matrix is quite sparse. However, if we add too many of the eigenfunctions, the
coarse space may become too large and the coarse problem too expensive, on
the other hand, if we add too few eigenfunctions then the condition number may
be too large and the convergence of the iterative scheme too slow.

References
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