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Abstract. Matrix multiplication (MM) is a computationally-intensive
operation in many algorithms used in scientific computations. Not only
one of the kernels in numerical linear algebra, the problem of matrix
multiplication is also fundamental for almost all matrix problems such
as least square and eigenvalues problem. The performance analysis of
the MM needs to be re-evaluated to find out the best-practice algorithm
on novel architectures. This motivated the analysis which is presented
in this article and which is carried out by means of the new modelling
framework that the authors have already introduced (L. D’Amore et al.
On a Mathematical Approach for Analyzing Parallel Algorithms, 2015).
The model exploits the knowledge of the algorithm and the multilevel
parallelism of the target architecture and it could help the researchers
for designing optimized MM implementations.

Keywords: Matrix-matrix multiply · Performance analysis · Multilevel
paralllelism

1 Introduction

The authors proposed a performance model for analysing parallel algorithms.
The model assumes that the (parallel) algorithm is represented as a set of oper-
ators related to each other according to a rule of dependence. Furthermore, the
model has a parameterized formulation intended to exploit the different charac-
teristics of the computing machines such as reconfigurable hardware devices [13].

Here we consider the matrix multiplication (MM) algorithm and we apply
the performance model. The algorithm is simple and has not any ambition of
optimization (many efforts are spent in the field of linear algebra and recent
examples can be found in [1,9,11,12]), instead, our aim is to discuss how easily
some implementation choices could be addressed giving rise to different perfor-
mance results. The focus is on the “opportunity” of implementing the algorithm
in hybrid distributed/shared memory computing environments, obtaining the
most important information before the implementation. The implementations
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of MM algorithm will be composed from multiplications with sub matrices. The
general MM algorithm can be decomposed into multiple calls to matrix multipli-
cation. These themselves can be decomposed into multiple calls to inner-kernels.
The aim now is to understand how these lowest level kernels can attain high
performance, then so will the MM algorithm. This paper attempts to describe
how to apply the performance model that the authors have developed so as to
make it accessible to a broad audience.

2 Matrix Multiplication

Given two matrices A, B ∈ �n×n and the computational problem

Bn2 ≡ MMn×n := A · B, (1)

we introduce the sub problems matmulin
3 ×n

3
, for i = 0, . . . , 26 which are defined

as follows:
Bn

3 ×n
3

≡ matmulin
3 ×n

3
:= Ci + Ai · Bi, (2)

with Ai ∈ �n
3 ×n

3 , Bi ∈ �n
3 ×n

3 and Ci ∈ �n
3 ×n

3 blocks of A, B and C, respec-
tively. Finally, we introduce the decomposition

D27(MMn×n) := {matmulin
3 ×n

3
}0≤i<27. (3)

From (1)–(3), the decomposition matrix is:

MD =

⎡
⎢⎣
matmul0n

3 ×n
3
matmul1n

3 ×n
3
matmul2n

3 ×n
3

· · · matmul8n
3 ×n

3

matmul9n
3 ×n

3
matmul10n

3 ×n
3
matmul11n

3 ×n
3

· · · matmul17n
3 ×n

3

matmul18n
3 ×n

3
matmul19n

3 ×n
3
matmul20n

3 ×n
3

· · · matmul26n
3 ×n

3

⎤
⎥⎦ (4)

The set D27(MMn×n) is made of 27 subproblems matmul
(i+j+k)
n
3 ×n

3
∈ D27, and

the problem MMn×n has concurrence degree rD = 9 and dependence degree
cD = 3.

Suppose that the computing environment can be represented by means of
the machine M1,1 which has

– P = 1,
– OpM1,1 = {⊗, ...} where ⊗ := matrix-matrix multiply,
– L = 2 two memory levels,
– rmemi (read) and wmemj (write) as memory accesses operators on blocks of

size n
3 × n

3 ,
– tmem1 := tblockmem,
– for each ⊗, 1 read (before the execution) and 1 write (after the execution) are

needed.

According to D27, the sequential algorithm AD27,M1,1 on M1,1 is made of
the 27 operators ⊗ corresponding to the 27 sub-problems. The execution matrix



Mathematical Approach to the Performance Evaluation 27

corresponding to AD27,M1,1 on M1,1 has rE = 27 rows and only one column, i.e.
cE = 1. It is the following matrix:

ME =

⎡
⎢⎢⎢⎣

⊗0

⊗1

...
⊗26

⎤
⎥⎥⎥⎦ (5)

while the memory matrix AMAD27,M1,1
has rMEM = 52 rows and cMEM = 1

column, and it can be described in the following way:

AMAD27,M1,1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rmem0(·)
wmem0(·)
rmem1(·)
wmem1(·)

...
rmem26

wmem26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The execution time of algorithm AD27,M1,1 is

T (AD27,M1,1) = rE · Tr (7)

where Tr is the execution time of the row r of the matrix given in (5). It is equal
to the execution time of the ⊗ operator (since they are all the same).
Let C(⊗) denote the complexity of ⊗ operator, then (7) becomes:

T (AD27,M1,1) = 27 · C(⊗) · tcalc (8)

The memory access time of the software corresponding to AD27,M1,1 , is

TM (SW (AD27,M1,1(A))) = rmem1 · tblockmem = 54 · tblockmem, (9)

and its execution time is

T (SW (AD27,M1,1)) = T (AD27,M1) + TM (SW (AD27,M1,1))
= 27 · C(⊗) · tcalc + 54 · tblockmem

(10)

2.1 The Algorithm at the First Level of Decomposition

We consider the machine M9,9 such that

– P = 9 (which we call nodes), which are organized in a 3 × 3 logical grid,
– OpM9,9 = {⊗, ...} where ⊗ = matrix-matrix multiply,
– L = 3 (two memory levels plus one level for communications),
– transi denotes the memory access operator which moves a block of size n

3 × n
3

in time tblockcom
1,

1 Note that typically tblockcom >> tblockmem.
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– each node can transfer a single block concurrently, that is the machine can
transfer 9 blocks at the same time.

– for a broadcast step, each node performs a transfer (one send, other eight
receive).

– for a rolling step, each node performs two transfers (send and receive one
block).

Starting, each node has a n
3 × n

3 block of each matrix. If matmul(p · i) is the
subproblem matmulp·i

n
3 ×n

3
∈ D27, the algorithm AD27,M9,9 is the following (i.e.

the so called Broadcast Multiply Rolling (BMR) Algorithm [10]) (Fig. 1):

for p=1 to 3
nodes on the i-th grid diagonal broadcast their A block

to all its grid row;
the node i solves matmul(i*p);
if p<3, each node sends its B block to the upper one

on the same column of the grid (rolling).
endfor

Fig. 1. The starting matrices blocks distribution among the nodes.

The execution matrix of AD27,M9,9 is

ME =

⎡
⎣

⊗0 ⊗1 ⊗2 ⊗3 ⊗4 ⊗5 ⊗6 ⊗7 ⊗8

⊗9 ⊗10 ⊗11 ⊗12 ⊗13 ⊗14 ⊗15 ⊗16 ⊗17

⊗18 ⊗19 ⊗20 ⊗21 ⊗22 ⊗23 ⊗24 ⊗25 ⊗26

⎤
⎦ (11)

and it is perfectly parallel. The memory matrix is

AMAD27,M9,9
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

trans0(·) trans1(·) trans2(·) ... trans8(·)
trans9(·) trans10(·) trans11(·) ... trans17(·)
trans18(·) trans19(·) trans20(·) ... trans26(·)
trans27(·) trans28(·) trans29(·) ... trans35(·)
trans36(·) trans37(·) trans38(·) ... trans44(·)
trans45(·) trans46(·) trans47(·) ... trans53(·)
trans54(·) trans55(·) trans56(·) ... trans62(·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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The execution time of each row of ME , is the execution time of the ⊗ operator.
If rE = 3 is the number of rows of EAD27,M9,9

, the execution time of the BMR
algorithm AD27,M9,9 is

T (AD27,M9,9) = rE · Tr = 3 · C(⊗) · tcalc (13)

Since rmem = 7, the memory access time of the software SW (AD27,M9,9) is

TM (SW (AD27,M9,9)) = rmem9 · tblockcom = 7 · tblockcom (14)

and its execution time is

T (SW (AD27,M9,9)) = T (AD27,M9,9) + TM (SW (AD27,M9,9))
= 3 · C(⊗) · tcalc + 7 · tblockcom.

(15)

Finally, the speed up of the software SW (AD27,M9,9) is

Sp(SW (AD27,M9,9)) =
T (SW (AD27,M1,1))
T (SW (AD27,M9,9))

=
26 · C(⊗) · tcalc + 52 · tblockmem

3 · C(⊗) · tcalc + 7 · tblockcom
(16)

2.2 The Sequential Algorithm at the Second Level of Decomposition

Consider the subproblem matmulin
3 ×n

3
and the decomposition

D′
n
3 −1 = {matvecin

3 ×n
3
}0≤i<(n

3 −1) (17)

where
matvecin

3 ×n
3

:= multiply of a block Ai of
n

3
× n

3
elements and a vector Bi of

n

3
elements.

(18)

All the subproblems are independent, so the decomposition matrix of
matmulin

3 ×n
3

is

MD′
n
3 −1

=
[
matvec0n

3 ×n
3
matvec1n

3 ×n
3
... matvec

n
3 −1
n
3 ×n

3

]
(19)

and matmulin
3 ×n

3
has concurrence degree n

3 and dependence degree 1.
Let us introduce the machine M′

1,1 corresponding to a generic node of M9,9.
Suppose that M′

1,1 is such that

– P = 1,
– OpM′

1,1
= {�, ...} where �= matrix-vector multiply,

– L = 2,
– rmemvi (read) or wmemvj (write) denote the memory accesses operators

moving a vector of size n
3 in time tmem := tvecmem

2.

2 Typically tvecmem ≤ tblockmem.
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Since all the subproblems must be solved one after another, the execution
matrix of AD′

n
3 −1,M′

1,1
is

ME =

⎡
⎢⎢⎢⎣

�0

�1

...
�n

3 −1

⎤
⎥⎥⎥⎦ (20)

Since we assume that for the execution of each operator, it is required one read
(before the execution) and one write (after the execution) of a vector of size
n
3 + 1, the memory matrix has

rmem,D′
n
3 −1

=
(n

3
+ 2

)
· n

3

rows. The execution time of each row of the matrix in (20) is the execution time
of the � operator. If

rE,D′
n
3 −1

=
n

3
is the number of rows of EAD′

n
3 −1

,M′
1,1

, the execution time of the algorithm

AD′
n
3 −1,M′

1,1
is

T (AD′
n
3 −1,M′

1,1
) = C(⊗) · tcalc = rE1D′

n
3 −1

· Tr

=
n

3
· C(�) · tcalc =

n

3
· 2 ·

(n

3

)2

· tcalc

= 2 ·
(n

3

)3

· tcalc

(21)

and the memory access time of the software SW (AD′
n
3 −1,M′

1,1
) is

TM (SW (AD′
n
3 −1

,M′
1,1

)) = rmem,D′
n
3 −1

· tveccom =
(n

3
+ 2

)
· n

3
· tvecmem. (22)

Finally, the execution time of the software SW (AD′
n
3 −1,M′

1,1
) is

T (SW (AD′
n
3 −1

,M′
1,1)) = T (AD′

n
3 −1

,M′
1,1

) + TM (SW (AD′
n
3 −1

,M′
1,1

))

= 2 ·
(n

3

)3

· tcalc +
(n

3
+ 2

)
· n

3
· tvecmem

(23)

2.3 The Parallel Algorithm at the Second Level of Decomposition

We consider the machine M′
1·8 made of 8 cores/threads for each node of M9,9.

Let us assume that M′
1·8 is such that

– P = 8,
– OpM′

1·8 = {�, ...} where � = matrix-vector multiply,
– L = 2,
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– rmemvi (read) or wmemvj (write) denote the memory access operators on
a vector of n

3 elements concurrently in time tvecmem between the memory
levels. Note that tvecmem ≤ tblockmem.

Then, if matvec(t · i) denotes subproblem matvect·in
3 ×n

3
∈ D′

n
3 −1, we get the

Multi Thread Matrix multiply Algorithm AD′
n
3 −1,M′

1·8 :

for i:=1 to n/(9*8)
each thread t solves matvec(t*i)

endfor

The first 8 of the n
3 subproblems can be solved independently by the 8 cores, and

so on until they are all completed. Hence, the execution matrix of the algorithm
AD′

n
3 −1,M′

1·8 has rE = n
3·8 = n

24 rows and if we assume that n
3 is a multiple of 83,

the algorithm is perfectly parallel.
Assuming that for the execution of each operator, it is required to read (before

the execution) and to write (after the execution) the vector of size n
3 + 1 and

that the cores can transfer their vectors concurrently, that is the machine can
concurrently transfer 8 vectors, the memory matrix AMAD′

n
3 −1

,M1·8
has

rmem,D′
n
3 −1

=
(n

3
+ 2

)
· n

24

rows. The execution time of each row of the execution matrix is the execution
time of the � operator. If rE = n

24 is the number of rows of EAD′
n
3 −1

,M′
1·8

, the

execution time of the algorithm AD′
n
3 −1,M′

1·8 is

T (AD′
n
3 −1,M′

1·8) = rE · Tr =
n

24
· C(�) · tcalc =

n

24
· 2 ·

(n

3

)2

· tcalc. (24)

If we denote by rmem,D′
n
3 −1

=
(
n
3 + 2

) · n
24 the number of rows of the mem-

ory access matrix of the algorithm AD′
n
3 −1,M1·8 , the memory access time of the

software SW (AD′
n
3 −1

,M1·8) we are going to implement is

TM (SW (AD′
n
3 −1

,M1·8)) = rmem,D′
n
3 −1

· tvecmem =
(n

3
+ 2

)
· n

24
· tvecmem (25)

and the execution time of the software SW (AD′
n
3 −1,M1·8) is

T (SW (AD′
n
3 −1

,M1·8)) = T (AD′
n
3 −1

,M′
8,8

) + TM (SW (AD′
n
3 −1

,M8,8))

=
n

24
· 2 ·

(n

3

)2

· tcalc +
(n

3
+ 2

)
· n

24
· tvecmem.

(26)

3 There is no loss of generality.
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Finally, the speed up is

Sp(SW (AD′
n
3 −1,M′

1·8)) =
T (SW (AD′

n
3 −1,M′

1,1
))

T (SW (AD′
n
3 −1,M1·8))

=
2 · (

n
3

)3 · tcalc +
(
n
3 + 2

) · n
3 · tvecmem

n
24 · 2 · (

n
3

)2 · tcalc +
(
n
3 + 2

) · n
24 · tvecmem

> 1

(27)

Let A′
Dn

3 −1,M9·8 denote the algorithm that uses 9 nodes and 8 cores per node.
We get the following expression of the speed up the algorithm that uses 1 level
of parallelism in M9,9

Sp(SW (AD27,M9,9)) =
T (SW (AD27,M1,1))
T (SW (AD27,M9,9))

=
26 · C(⊗) · tcalc + 52 · tblockmem

3 · C(�) · tcalc + 7 · tblockcom (28)

which should be compared to the speed up of the algorithm that uses 2 levels of
parallelism in M9·8

Sp(SW (AD′
n
3 −1

,M9·8 )) =
T (SW (AD27,M1,1)

T (SWAD′
n
3 −1

,M9·8)

=
26 · (n

3
· C(�) · tcalc+ (n

3
+ 2) · tvecmem

)
+ 52 · tblockmem

3 · n
24

· (C(�) · tcalc+ (n
3
+ 2
) · tvecmem

)
+ 7 · tblockcom

(29)

By specializing the parameters we can estimate the performance gain that
we get using two levels of parallelism instead of one.

3 Conclusion

Matrix multiplication is one of the fundamental kernels in numerical linear alge-
bra, for almost all matrix problems such as least square problem eigenvalue prob-
lem and data assimilation problem [5–8,14]. Future designs of microprocessors
and large HPC systems will be heterogeneous in nature, relying on the integra-
tion of two major types of components. On the first hand, multi/many-cores
CPU technology have been developed and the number of cores will continue to
escalate because of the desire to pack more and more components on a chip while
avoiding the power wall, instruction level parallelism wall, and the memory wall.
On the other hand special purpose hardware and accelerators, especially Graph-
ics Processing Units (GPUs) are in commodity production, and have outpaced
standard CPUs in floating point performance in recent years, and have become
as easy, if not easier to program than multi-core CPUs. Finally, reconfigurable
architectures such as Field programmable Gate Arrays (FPGAs) offer several
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parameters such as operating frequency, precision, amount of memory, number
of computation units, etc. These parameters define a large design space that
must be explored to find efficient solutions.

To address this scenario, it is undoubted that performance analysis of MM
algorithm should be re-evaluated to find out the best-practice algorithm on novel
architectures. This motivated the work to investigate the performance of the
standard MM algorithm, by means of the new modelling framework that the
authors have introduced.

This paper attempts to describe how to apply the performance model that
the authors have developed so as to make it accessible to a broad audience. The
model exploits the knowledge of the algorithm and the target architecture and it
could help the researchers for designing optimized implementations on emerging
computing architectures, such as that one developed in [3,4].
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