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Abstract. A (2+1)-dimensional partial differential equation model
describing spatial-lateral dynamics of edge-emitting broad-area semicon-
ductor devices is considered. A numerical scheme based on a split-step
Fourier method is implemented on a parallel computing cluster. Numer-
ical integration of the model equations is used for optimizing of existing
devices with respect to the emitted beam quality, as well as for creating
and testing of novel device design concepts.
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1 Introduction

High power high brightness edge-emitting broad-area semiconductor (BAS)
lasers and optical amplifiers are compact, efficient and reliable light sources
playing a crucial role in different laser technologies, such as material processing,
precision metrology, medical applications, nonlinear optics and sensor technol-
ogy. BAS lasers and amplifiers have a relatively simple geometry [see Fig. 1(a)]
allowing an efficient energy pumping through a broad electric contact on the top
of the device and can operate at high power (tens of Watts) regimes.

However, BAS devices have one serious drawback: operated at high power,
they suffer from a low beam quality due to simultaneous irregular contribu-
tions of different lateral and longitudinal optical modes. As a result, the emitted
optical beam is irregular, has undesirable broad optical spectra, and large diver-
gence. Thus, a quality improvement of the beam amplified in BAS amplifiers or
generated by BAS lasers is a critical issue of the modern semiconductor laser
technology.

Seeking to understand the dynamics of BAS devices, to suggest improve-
ments of existing devices or to propose novel device design concepts we do a
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variety of related tasks. We perform modeling at different levels of complexity,
do mathematical analysis of the hierarchy of models, create and implement effi-
cient and robust numerical algorithms, and make numerical integration of the
model equations. Typically, all these steps are done within research projects in
cooperation with developers of the devices.

2 Mathematical Modeling and Numerical Algorithm

The dynamics of BAS devices can be described in different ways. The most
comprehensive approach resolving the spatio-temporal evolution of full semi-
conductor equations self-consistently coupled to the optical fields is given by 3
(space) +1 (time)-dimensional nonlinear PDEs. Since the height of the active
zone where the optical beam is generated and amplified (y dimension) is con-
siderably smaller than the longitudinal (z) and lateral (x) dimensions of a typ-
ical BAS device [see Fig. 1(a)], a significant simplification can be achieved by
averaging over the vertical direction and by describing certain effects phenom-
enologically. The resulting (2+1)-dimensional dynamical traveling wave (TW)
model [1] can be resolved numerically orders of magnitudes faster allowing for
parameter studies in an acceptable time.

Fig. 1. (a): Schematic diagram of a BAS device. (b): Simplified representation of the
BAS device, as considered by the (2+1)-dimensional TW model (Color figure online).

2.1 Basic (2+1)-Dimensional TW Model

The simplest version of the TW model is a degenerate system of second order
PDEs for the slowly varying complex amplitudes of the counter-propagating
optical fields, E(z, x, t) = (E+, E−)T [see white arrows in Fig. 1(b)], nonlinearly
coupled to a rate equation for the real carrier density distribution N(z, x, t). It
accounts for the diffraction of fields and diffusion of carriers in the lateral direc-
tion, whereas spatially non-homogeneous device parameters capture the geomet-
rical design of the device. The normalized TW model reads as

∂
∂tE =

[(−1 0
0 1

)
∂
∂z − i

2
∂2

∂x2

]
E +

[
B(N, ‖E‖2) − (α + iδ) I]

E + Fsp,

1
μ

∂
∂tN = D ∂2

∂x2 N + I(z, x) − R(N) − 2�e
[
E∗T B(N, ‖E±‖2)E]

,



Modeling and Simulations of Broad-Area Semiconductor Devices 271

where μ is small, α, δ, Fsp, D, I, and R(N) = AN + BN2 + CN3 represent the
field losses, the built-in contrast of the refractive index, the spontaneous emission
noise, the carrier diffusion, the injected current density, and the spontaneous
recombination of carriers, respectively. The complex matrix B models the carrier
and photon density dependent semiconductor material gain, G(N, ‖E±‖2), the
carrier-induced changes of the refractive index, ñ(N), as well as the distributed
coupling of the counter-propagating fields κ±:

B11 = B22 =
G(N, ‖E‖2)

2
+ iñ(N), B12 = −iκ−, B21 = −iκ+.

Here, for example,

G(N, ‖E‖2) =
g′ log (max(N,N∗))

1 + ε‖E‖2 , ñ(N) = σ
√

N, κ+ = κ− ∈ R,

where g′, σ, ε, and N∗ are the differential gain, the refractive index scaling, the
nonlinear gain compression parameters, and the small positive carrier density
used to determine an appropriate cut-off of the logarithmic gain function.

In general, this model should be considered in the (laterally) unbounded
region Q = Qz,x × (0, T ], where Qz,x = {(z, x) : (z, x) ∈ (0, L) × R} is the
spatial domain, L represents the length of the device, x is the coordinate of
the unbounded lateral axis of the device, and T defines the length of the time
interval where we perform the integration. Far from the active zone, |x| � 1,
the optical fields and carriers usually are well damped. Thus, in our numerical
simulations we truncate the lateral domain at x = −X and x = X so that the
truncated domain Qt

z,x = {(z, x) : (z, x) ∈ (0, L) × [−X,X]} [large rectangular
in Fig. 1(b)] contains the considered BAS device [red area in the same figure].
Next, we assume either periodic boundary conditions [2,3] or mixed Dirichlet (for
the carrier densities)/approximate transparent (for the field functions) boundary
conditions [4].

The boundary conditions for the optical fields at the longitudinal edges of
the device, z = 0 and z = L, account for reflections of the counter-propagating
fields and optional injection of external optical beams, a0,L(x, t):

E+(0, x, t) = r0E
−(0, x, t) + a0(x, t), E−(L, x, t) = rLE+(L, x, t) + aL(x, t),

with r0 and rL denoting the complex field reflectivity parameters at the laser
facets.

2.2 Modifications of the TW Model

The basic TW model described above can be reduced to lower dimensional sys-
tems, allowing a more detailed analysis, understanding and control of specific
dynamical effects. Different types of model reduction and analysis were discussed
in Refs. [1,5–8]. On the other hand, different extensions of the basic TW model
allow to achieve a more precise description of various relevant properties of BAS
devices.
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First of all, an introduction of the couple of linear equations for induced
polarization functions P+(z, x, t) and P−(z, x, t) enables modeling of nontrivial
material gain dependence on the lasing frequency [9]:

Bnew = B − ID, DE± := g
(
E± − P±)

,
∂

∂t
P± = iωP± + γ

(
E± − P±)

.

Here, the parameters g, ω, and γ define the Lorentzian fit of the gain profile and
denote the amplitude, the central frequency, and the half width at half maximum
of this Lorentzian, respectively.

Another modification is related to the heating of the BAS device by the
injected current. It is known, that the gain and refractive index change functions
are depending on the local temperature of semiconductor material. A proper cou-
pling of the TW model with the full heat transport equation and the numerical
resolution of this extended model, however, is a challenging task due to different
time scales. Whereas the typical time scale of the thermal diffusion in semicon-
ductors is measured in microseconds, the carrier and the photon lifetimes are
given in nanoseconds and picoseconds, respectively. Thus, in order to simulate
the impact of the changing heating to the dynamics of BA lasers in a reasonable
time, we propose to use the following parametric approach. Namely, in Refs. [1,7]
we have proposed to model injection current induced heating by the linear non-
local dependence of the refractive index change and the gain peak frequency
shift on the inhomogeneous injection I(x, z):

δnew(z, x) = δ(z, x) +
∫∫

cT (z, x, z̃, x̃)I(z̃, x̃)dz̃dx̃,

ωnew(z, x) = ω(z, x) +
∫∫

νT (z, x, z̃, x̃)I(z̃, x̃)dz̃dx̃.

Here, thermal factors cT and νT describe local and nonlocal crosstalk thermal
effects in BAS devices with a single or several electrical contacts. This simple
model with the properly defined [7] contact-wise constant coefficients cT and νT

has allowed a proper theoretical reproduction of the state jumping behavior with
tuning of the injected currents [1].

Another useful extension of the basic TW model can be performed when
simulating an emitted field propagation through the external cavity (EC) and
its re-injection to the BAS device [see thick green arrow in Fig. 1(b)]. In the pres-
ence of the optical feedback from the EC, the optical injection function aL(x, t)
in the longitudinal boundary conditions should be replaced by the corresponding
(delayed) feedback term. The form of this term depends on the different compo-
nents within the EC as well as on the field propagation time along the EC.

For example, in the case of a simple EC composed of the collimating lens and
the flat mirror located perpendicularly to the optical axis of the BAS device, the
re-injection term can be given by a simple delayed term

aL(x, t) = t2L
√

Rec eiϕecE+ (L, x, t − 2dec/c0).

Here, tL =
√

1 − |rL|2 is the field amplitude transmission through the right facet
of the laser, Rec and ϕec are the field intensity reflection and phase change in
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the EC, whereas dec is the distance from the center of the right facet of the BAS
diode to the external reflector.

When the collimating lens is absent, and the reflector or the diffractive grat-
ing is located at the small angle αEC to the optical axis, the feedback term turns
to be more complicated [10]:

aL(x, t) ≈ t2L

√
−i

2decλ0
F ∫

x′∈R

E+ (L, x′, t − 2dec/c0) e−ik0ρ(x,x′)dx′.

Here, ρ(x, x′) is the shortest distance between two lateral points x′ and x at the
diode facet that the light takes to travel via the (infinitely broad) external reflec-
tor, whereas the operator F accounts for the spectral filtering by the external
grating.

Another external cavity including the lens, the refractive grating located at
the angle αec to the optical axis, and the small reflecting aperture was investi-
gated experimentally in Ref. [11]. The corresponding feedback term in this case
can be written as

aL(x, t) ≈ −r2
gT 2

L

2π

∫
R

χ
(

λ0f cotαec

2πc0
ω − x

) ∫
R

E+(L, x, t′)e−iωt′
dt′eiω(t−8f/c0) dω,

where ω denotes the relative optical frequency of the field, f is the focal distance
of the lense, rg and χ(x) are the field amplitude reflections at the grating and
the aperture (the step-function χ(x) is non-vanishing if only x belongs to the
aperture).

2.3 Performance of the Parallel Numerical Algorithm

Precise dynamic simulations of long and broad devices and tuning/optimization
of the model parameters require huge process time and memory resources.
A proper resolution of rapidly oscillating fields in typical BAS devices in a suffi-
ciently large optical frequency range requires a fine space (106−107 mesh points)
and time (up to 106 points for typical 5 ns transients) discretization. Dynamic
simulations of such devices can easily take several days or even weeks on a
single processor. Some speedup of computations is achieved by using problem-
dependent variable grid steps [4]. However, for extended parameter studies with
the numerical integration times up to 1000 ns parallel computers and parallel
solvers have to be employed.

For the numerical integration of the TW model, we use either a split-step fast
Fourier transform based numerical method [2] or a full finite difference scheme
[4]. The method of domain decomposition is used to parallelize the sequential
algorithm. Namely, the numerical mesh of the full problem defined by Nx lateral
and Nz longitudinal uniform discretization steps is splitted along the longitudi-
nal z-direction into K (K: number of processors) non-overlapping rectangular
subgrids of the similar size Nx × Nz,j , j = 1, . . . ,K, Nz,j ≈ ceil(Nz/K) [2].

Exemplary simulations of three test problems on the parallel cluster of
computers (see Fig. 2) show a good scaling of the algorithm [2]. For example,
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the simulations performed on 32 processors give a speedup factor of 25. That
is, the simulations requiring two weeks of process time on a single processor
computer can be efficiently performed over a single night. For a larger number
of processes, the relative time needed for communications between them grows
and implies a saturation of the speedup (see an increasing deviation of the test
results from the ideal speedup in Fig. 2). More details on the performance and
scalability of the parallel algorithm can be found in Ref. [2].

Fig. 2. Speedup of computations in multi-process simulations of three test problems
defined on spatial meshes with Nx ×Nz = 1000×640, 1000×320, and 500×640 points
in lateral (x) and longitudinal (z) directions. Bullets of different color indicate tests
with 1, 2, 4 or 8 processes used on each node (Color figure online).

3 Application: Suppression of Mode Jumps in MOPAs

The TW model and our numerical algorithms were successfully used for simula-
tions of different BAS lasers and amplifiers, also showing good agreement with
experimental observations [1]. In many cases, our simulations have helped to
improve the design of the existing devices.

Fig. 3. Schematic representation of Master Oscillator Power Amplifier (MOPA).
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For example, the master oscillator (MO) tapered power-amplifier (PA) laser
shown in Fig. 3 was analyzed theoretically and experimentally in [1,12]. The
narrow waveguide of the distributed feedback (DFB) MO generates a stable
stationary optical field determined by a single transversal mode, which later is
amplified in the tapered PA part of the device. An ideal MOPA laser should be
able to maintain a good quality of the emitted beam. The operation of realistic
MOPA devices, however, is spoiled by the amplification of the spontaneous emis-
sion in the PA, by the small separation of the MO and PA electrical contacts,
and by the residual field reflectivity at the PA facet of the device.

Fig. 4. Simulated optical spectra of DFB MOPA devices with different DFB field
coupling coefficients κ for increased injected current. More than three days of parallel
32-processor computations on Nx × Nz = 400 × 800 spatial mesh with ∼ 2 · 107 time
steps were required for calculation of the data represented by each panel.

In Ref. [1] we have analyzed how this residual reflectivity and thermally
induced changes of the refractive index imply experimentally observable unwanted
switchings between operating states determined by adjacent longitudinal optical
modes. We have found that these bifurcations are due to the changing phase rela-
tions of complex forward- and back-propagating fields at the interface of the MO
and PA parts of the device. Simulations of a typical state-jumping behavior with
increasing injected current is shown in the left panel of Fig. 4. In the theoretical
paper [12] we have demonstrated that a proper choice of the field coupling para-
meter within the DFB MO part of the device makes it less sensitive to the optical
feedback, leading to a stabilization of the laser emission (see second and fourth
panels of Fig. 4).

4 Conclusions

In conclusion, we have presented several modifications of (2+1)-dimensional
Traveling Wave model used to describe the nonlinear dynamics of broad-area
edge-emitting semiconductor lasers and discussed implementation and perfor-
mance of corresponding numerical algorithms on the parallel cluster of com-
puters. We have found, that a speedup factor of typical problem simulations
performed on 32 processors is around 25. For a larger number of processors, the
saturation of this speedup factor is observed. Finally, we have presented an exam-
ple of practical optimization simulations of Master Oscillator Power Amplifier
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semiconductor laser. Here, 32-processor parallel computations of a single numer-
ical continuation diagram with the change of parameter took more than three
days. Thus, without parallelization of the numerical algorithm, an efficient study
of laser parameters in a reasonable time would not be possible.
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4. Čiegis, R., Radziunas, M., Lichtner, M.: Effective numerical integration of travel-
ing wave model for edge-emitting broad-area semiconductor lasers and amplifiers.
Math. Model. Anal. 15, 409–430 (2010)

5. Radziunas, M., Botey, M., Herrero, R., Staliunas, K.: Intrinsic beam shaping mech-
anism in spatially modulated broad area semiconductor amplifiers. Appl. Phys.
Lett. 103, 132101 (2013)

6. Radziunas, M., Herrero, R., Botey, M., Staliunas, K.: Far field narrowing in spa-
tially modulated broad area edge-emitting semiconductor amplifiers. J. Opt. Soc.
Am. B 32, 993–1000 (2015)

7. Radziunas, M., Tronciu, V.Z., Bandelow, U., Lichtner, M., Spreemann, M.,
Wenzel, H.: Mode transitions in distributed-feedback tapered master-oscillator
power-amplifier. Opt. Quantum Electron. 40, 1103–1109 (2008)

8. Pimenov, A., Tronciu, V.Z., Bandelow, U., Vladimirov, A.G.: Dynamical regimes
of a multistripe laser array with external off-axis feedback. J. Opt. Soc. Am. B
30(6), 1606–1613 (2013)

9. Bandelow, U., Radziunas, M., Sieber, J., Wolfrum, M.: Impact of gain dispersion on
the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron.
37, 183–188 (2001)

10. Jechow, A., Lichtner, M., Menzel, R., Radziunas, M., Skoczowsky, D., Vladimirov,
A.: Stripe-array diode-laser in an off-axis external cavity: theory and experiment.
Opt. Express 17, 19599–19604 (2009)

11. Zink, C., Jechow, A., Heuer, A., Menzel, R.: Multi-wavelength operation of a single
broad area diode laser by spectral beam combining. IEEE Photonics. Technol. Lett.
26(3), 253–256 (2014)

12. Tronciu, V.Z., Lichtner, M., Radziunas, M., Bandelow, U., Wenzel, H.: Improv-
ing the stability of distributed-feedback tapered master-oscillator power-amplifiers.
Opt. Quantum Electron. 41, 531–537 (2009)


	Modeling and Simulations of Edge-Emitting Broad-Area Semiconductor Lasers and Amplifiers
	1 Introduction
	2 Mathematical Modeling and Numerical Algorithm
	2.1 Basic (2+1)-Dimensional TW Model
	2.2 Modifications of the TW Model
	2.3 Performance of the Parallel Numerical Algorithm

	3 Application: Suppression of Mode Jumps in MOPAs
	4 Conclusions
	References


