
A Distributed Hash Table for Shared Memory

Wytse Oortwijn(B), Tom van Dijk, and Jaco van de Pol

Formal Methods and Tools, Department of EEMCS, University of Twente,
P.O.-box 217, 7500 AE Enschede, The Netherlands

{w.h.m.oortwijn,t.vandijk,j.c.vandepol}@utwente.nl

Abstract. Distributed algorithms for graph searching require a high-
performance CPU-efficient hash table that supports find-or-put. This
operation either inserts data or indicates that it has already been added
before. This paper focuses on the design and evaluation of such a hash
table, targeting supercomputers. The latency of find-or-put isminimized
by using one-sided RDMA operations. These operations are overlapped
as much as possible to reduce waiting times for roundtrips. In contrast
to existing work, we use linear probing and argue that this requires less
roundtrips. The hash table is implemented in UPC. A peak-throughput of
114.9 million op/s is reached on an Infiniband cluster. With a load-factor
of 0.9, find-or-put can be performed in 4.5µs on average. The hash table
performance remains very high, even under high loads.

Keywords: Distributed hash table · High-performance computing ·
Partitioned global address space · Remote direct memory access

1 Introduction

A hash table is a popular data structure for storing maps and sets, since stor-
ing and retrieving data can be done with amortised time complexity O(1) [2].
A distributed hash table is a hash table that is distributed over a number of
workstations, connected via a high-performance network. This has the advan-
tage that more memory is available, at the cost of slower accesses due to network
latency and bandwidth limitations. In High Performance Computing (HPC) it
is desirable to have a fast and scalable distributed hash table, as it enables many
distributed algorithms to be implemented efficiently.

Nowadays high-performance networking hardware like Infiniband [7] is avail-
able. Infiniband supports Remote Direct Memory Access (RDMA), which allows
computers to directly access the memory of other machines without invoking
their CPUs. Moreover, RDMA supports zero-copy networking, meaning that no
memcopies are performed [14]. Experimental results show that one-sided RDMA
is an order of magnitude faster compared to standard Ethernet hardware [10].
Furthermore, scaling along high-performance Infiniband hardware is compara-
ble in price to scaling along standard Ethernet hardware [10]. In this paper, we
target supercomputers, i.e. many-core machines connected via Infiniband.

The Partitioned Global Address Space (PGAS) programming model com-
bines the shared and distributed memory models. Each process hosts a local
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 15–24, 2016.
DOI: 10.1007/978-3-319-32152-3 2

16 W. Oortwijn et al.

block of memory. The PGAS abstraction combines all local memory blocks into
a single global address space, thereby providing a global view on the memory.
PGAS can make use of RDMA if used in a distributed setting [5]. In that case,
machine-local accesses to the global address space are handled via standard mem-
ory operations, and remote accesses are handled via one-sided RDMA. Several
PGAS implementations provide support for RDMA, including OpenSHMEM [1]
and UPC [4]. We use UPC, since it supports asynchronous memory operations.

Our goal is to implement a distributed hash table for the PGAS abstraction
that supports a single operation, namely find-or-put, that either inserts data
when it has not been inserted already or indicates that the data has been added
before. If necessary, find-or-put could easily be split into two operations find
and insert. Furthermore, the hash table should require minimal memory over-
head, should be CPU-efficient, and find-or-put should have minimal latency.

Our motivation for designing such a hash table is its use in distributed
symbolic verification (e.g. model checking), which only requires a find-or-put
operation and garbage collection in a stop-the-world scenario. Garbage collec-
tion is, however, omitted in the design of find-or-put presented in this paper.
We tried to minimize the number of roundtrips required by find-or-put while
keeping the hash table CPU-efficient by not relying on memory polling. Many
existing implementations are, however, either CPU-intensive [9] or require more
roundtrips [10,15], which motivated this research. We use linear probing and
argue that this scheme requires less roundtrips compared to alternative hash-
ing schemes. Furthermore, the design of find-or-put is more widely applicable
to any sort of memory-intensive application requiring a hash table, of which
distributed model checking is merely an example.

Previous work includes Pilaf [10], a key-value store that employs RDMA.
Pilaf uses an optimised version of Cuckoo hashing to reduce the number of
roundtrips. In Pilaf, lookups are performed via RDMA reads, but inserts are
handled by the server. Nessie [15] is a hash table that uses Cuckoo hashing and
RDMA both for lookups and inserts. HERD [9] is a key-value store that only
uses one-sided RDMA writes and ignores the CPU bypassing features of RDMA
to achieve higher throughput. FaRM [3] is a distributed computing platform that
exposes the memory of all machines in a cluster as a shared address space. A
hash table is built on top of FaRM that uses a variant of Hopscotch hashing.

This paper is organised as follows. Different hashing strategies are com-
pared in Sect. 2 and we argue that linear probing requires the least number
of roundtrips. Section 3 discusses the design of find-or-put. Section 4 shows
the experimental evaluation of find-or-put, covering hash table efficiency with
respect to latency, throughput, and the required number of roundtrips. Finally,
our conclusions are summarised in Sect. 5.

2 Preliminaries

To achieve best performance, it is critical to minimize the number of RDMA
roundtrips performed by find-or-put when targeting remote memory. This is

A Distributed Hash Table for Shared Memory 17

because the throughput of the hash table is limited to the throughput of the
RDMA devices. Also, the waiting times for roundtrips contribute to the latency
of find-or-put. In this section some notation is given, followed by a number of
hashing strategies and their efficiencies with respect to the number of roundtrips.

2.1 Notation

A hash table T = 〈b0, . . . , bn−1〉 consists of a sequence of buckets bi usually
implemented as a standard array. We denote the load-factor of T by α = m

n ,
where m is the number of elements inserted in T and n the total number of
buckets. A hash function h : U → R maps data from some universe U = {0, 1}w
to a range of keys R = {0, . . . , r − 1}. Hash tables use hash functions to map
words x ∈ U to buckets bh(x) by letting r ≤ n. Let x ∈ U be some word. Then we
write x ∈ bi if bucket bi contains x, and otherwise x �∈ bi. We write x ∈ T if there
is some 0 ≤ i < n for which x ∈ bi, and otherwise x �∈ T . For some x, y ∈ U with
x �= y it may happen that h(x) = h(y). This is called a hash collision. A hash
function h : U → R is called a universal hash function if Pr[h(x) = h(y)] ≤ 1

n
for every pair of words x, y ∈ U .

2.2 Hashing Strategies

Ideally only a single roundtrip is ever needed both for finding and inserting data.
This can only be achieved when hash collisions do not occur, but in practice
they occur frequently. HERD only needs one roundtrip for every operation [9],
but at the cost of CPU efficiency, because every machine continuously polls for
incoming requests. We aim to retain CPU efficiency to keep the hash table usable
in combination with other high-performance distributed algorithms.

Chained hashing is a hashing scheme which implements buckets as linked
lists. Insertions take O(1) time, but lookups may take Θ(m) in the worst case.
It can be shown that lookups require Θ(1+α) time on average when a universal
hash function is used [2]. Although constant, the average number of roundtrips
required for an insert is thus more than one. Furthermore, maintaining linked
lists brings memory overhead due to storing pointers.

Cuckoo hashing [11] is an open address hashing scheme that achieves con-
stant lookup time and expected constant insertion time. Cuckoo uses k ≥ 2
independent hashing functions h1, . . . , hk and maintains the invariant that, for
every x ∈ T , it holds that x ∈ bhi(x) for exactly one 1 ≤ i ≤ k. Lookups thus
require at most k roundtrips, but inserts may require more when all k buckets
are occupied. In that case, a relocation scheme is applied, which may not only
require many extra roundtrips, but also requires a locking mechanism, which is
particularly expensive in a distributed environment. A variant on Cuckoo hash-
ing, named bucketized Cuckoo hashing [13], enables buckets to contain multiple
data elements, which linearly reduces the number of required roundtrips.

Hopscotch hashing [6] also has constant lookup time and expected con-
stant insertion time. In Hopscotch every bucket belongs to a fixed-sized neigh-
bourhood. Lookups only require a single roundtrip, since neighbourhoods are

18 W. Oortwijn et al.

consecutive blocks of memory. However, inserts may require more roundtrips
when the neighbourhood is full. In that case, buckets are relocated, which may
require many roundtrips and expensive locking mechanisms.

Linear probing examines a number of consecutive buckets when finding
or inserting data. Multiple buckets, which we refer to as chunks, can thus be
obtained with a single roundtrip. When there is a hash collision, linear probing
continues its search for an empty bucket in the current chunk, and requests addi-
tional consecutive chunks if necessary. We expect chunks retrievals to require
less roundtrips than applying a relocation scheme, like done in Hopscotch.
Other probing schemes, like quadratic probing and double hashing, require more
roundtrips, since they examine buckets that are nonconsecutive in memory.

Cache-line-aware linear probing is proposed by Laarman et al. [12] in
the context of NUMA machines. Linear probing is performed on cache lines,
which the authors call walking-the-line, followed by double hashing to improve
data distribution. Van Dijk et al. [16] use a probe sequence similar to walking-
the-line to implement find-or-put, used for multi-core symbolic verification.

3 Design and Implementation

In this section the hash table structure and the design of find-or-put are dis-
cussed. We expect linear probing to require less roundtrips than both Cuckoo
hashing and Hopscotch hashing, due to the absence of expensive relocation mech-
anisms. We also expect that minimising the number of roundtrips is key to
increased performance, since the throughput of the hash table is directly limited
by the throughput of the RDMA devices. This motivates the use of linear probing
in the implementation of find-or-put. Unlike [12], we only use linear probing,
since it reduces latency compared to quadratic probing, at the cost of possible
clustering. We did not observe serious clustering issues, but if clustering occurs,
quadratic probing can still be used, at the cost of slightly higher latencies.

The latency of find-or-put depends on the waiting time for roundtrips to
remote memory (which is also shown in Sect. 4). We aim to minimize the waiting
times by overlapping roundtrips as much as possible, using asynchronous memory
operations. Furthermore, the number of roundtrips required by find-or-put is
linearly reduced by querying for chunks instead of individual buckets. We use
constant values C to denote the chunk size and M to denote the maximum
number of chunks that find-or-put takes into account. Figure 1 shows the
design of find-or-put. Design considerations are given in the following sections.

3.1 Memory Layout

In our implementation, each bucket is 64 bits in size. The first bit is used as a flag
to denote bucket occupation and the remaining 63 bits are used to store data.
When inserting data, the occupation bit is set via a cas operation to prevent
expensive locking mechanisms. If the hash table needs to support the storage of
data elements larger than 63 bits, a separate shared data array could be used.

A Distributed Hash Table for Shared Memory 19

1 def find-or-put(data):
2 h ← hash(data)
3 s0 ← query-chunk(0, h)
4 for i ← 0 to M − 1:
5 if i < M − 1
6 si+1 ← query-chunk(i + 1, h)
7 sync(si)
8 for j ← 0 to C − 1:
9 if ¬occupied(p(i,j))

10 addr ← (h + iC + j) mod kn
11 b ← new-bucket(data)
12 val ← cas(ba, p(i,j), b)
13 if val = p(i,j)

14 return inserted

15 elif data(val) = data
16 return found

17 elif data(p(i,j)) = data
18 return found

19 return full

1 def query-chunk(i, h):
2 start ← (h + iC) mod kn
3 end ← (h + (i + 1)C − 1) mod kn
4 if end < start
5 return split(start, end)

6 else
7 S ← 〈bstart · · · bend〉
8 P ← 〈p(i,0) · · · p(i,C−1)〉
9 return memget-async(S, P)

1 def split(start, end):
2 S1 ← 〈bstart · · · bkn−1〉
3 S2 ← 〈b0 · · · bend〉
4 P1 ← 〈p(i,0) · · · b(i,|S1|−1)〉
5 P2 ← 〈p(i,|S1|) · · · p(i,C−1)〉
6 s1 ← memget-async(S1, P1)
7 s2 ← memget-async(S2, P2)
8 return 〈s1, s2〉

Fig. 1. The implementation of find-or-put, as well as the implementation of
query-chunk and split, which are used by find-or-put to query on the ith chunk.

The data elements are then stored in the data array and the corresponding
indices are indexed and stored in the hash table. In that case, an extra roundtrip
is required by find-or-put to access the data array.

The atomic cas(B, c, v) operation compares the content of a shared memory
location B to a value c. If they match, v is written to B and the former value at
location B is returned by cas. Otherwise, B is unchanged and its contents are
returned. The occupied(b) operation simply checks if the occupation bit of a
bucket b is set and the new-bucket(d) operation creates a new bucket with its
occupation bit set to true and containing d as data.

Assuming that the hash table is used by n processes t1, . . . , tn, we allocate a
shared table T = 〈b0, . . . , bkn−1〉 of buckets, such that each process owns k buck-
ets. In addition, we allocate two-dimensional arrays Pi = 〈p(0,0), . . . , p(M−1,C−1)〉
on every process ti in private memory, which we use as local buffers. The arrays
Pi are furthermore cache line aligned. This minimizes the number of cache misses
when iterating over Pi, thus reducing the number of data fetches from main-
memory. Cache lines are typically 64 bytes in size, so 8 buckets fit on a single cache
line. To optimally use cache line alignment we choose C to be a multiple of 8.

3.2 Querying for Chunks

In Fig. 1, when some process tj queries a chunk, it transfers C buckets from
the shared array T into Pj , so that tj can examine the buckets locally.
Because linear probing is used, several consecutive chunks might be requested.

20 W. Oortwijn et al.

The query-chunk operation is used to query the ith consecutive chunk and
the sync operation is used to synchronize on the query, that is, waiting for its
completion.

It may happen that end < start (line 4 of query-chunk), in which case the
chunk wraps around the kn-sized array T because of the modulo operator (line 2
and line 3). Then the query has to be split into two, as the chunk spans over two
nonconsecutive blocks of shared memory. This is done by the split operation.

The memget(S, P) operation is supported by many PGAS implementations
and transfers a block of shared memory S into a block of private memory P
owned by the executing process. Then memget-async is a non-blocking version
of memget, as it does not block further execution of the program while waiting for
the roundtrip to finish. Instead, memget-async returns a handle that can be used
by sync, which is a blocking operation used to synchronize on the roundtrip.
This allows work to be performed in between calls to memget-async and sync.
The query-chunk operation itself returns one or two handles, and sync can be
used to synchronize on them.

3.3 Designing find-or-put

In Fig. 1, the call find-or-put(d) returns found when d ∈ T before the call and
returns inserted when d �∈ T before the call. Finally, full is returned when
d �∈ T and d could not be inserted in any of the MC examined buckets.

The algorithm first requests the first chunk and, if needed, tries a maximum
of M−1 more chunks before returning full. Before calling sync(si) on line 7, the
next chunk is requested by calling query-chunk(i + 1, d) on line 6. This causes
the queries to overlap, which reduces the blocking times for synchronization on
line 7 and thereby reduces the latency of find-or-put.

By iterating over a chunk, if a bucket p(i,j) is empty, find-or-put tries to
write data to the bucket ba in shared memory via a cas operation (line 12). The
former value of ba is returned by cas (line 12), which is enough to check if cas
succeeded (line 13). In this case, inserted is returned, otherwise the bucket has
been occupied by another process in the time between the calls to query-chunk
and cas. It may happen that data is inserted at that bucket, hence the check at
line 15. If not, the algorithm returns to line 8 to try the next bucket. If p(i,j) is
occupied, find-or-put checks if data ∈ p(i,j) (line 17). In that case, found is
returned, otherwise the next iteration is tried.

4 Experimental Evaluation

We implemented find-or-put in Berkeley UPC, version 2.20.2, and evaluated
its performance by measuring the latency and throughput under various con-
figurations. We compiled the implementation using the Berkeley UPC compiler
and gcc version 4.8.2, with the options upcc -network=mxm -O -opt. All exper-
iments have been performed on the DAS-5 cluster [8], using up to 48 nodes, each
running CentOS 7.1.1503 with kernel version 3.10.0. Every machine has 16 CPU

A Distributed Hash Table for Shared Memory 21

0.75 0.8 0.85 0.9

4

6

8

10

load-factor (α)

la
te

n
cy

(μ
s)

C = 8

C = 16

C = 32

C = 64

C = 128

0.6 0.7 0.8 0.9

1

3

5

7

load-factor (α)

n
r.

o
f
ro

u
n
d
tr

ip
s

C = 8

C = 16

C = 32

C = 64

C = 128

Fig. 2. The left plot shows the average latency of find-or-put (in microseconds) and
the right plot shows the average number of roundtrips performed by find-or-put under
different load-factors (α) and chunk sizes (C). Both plots show empirical data.

Table 1. The left table shows the latencies (in μs) and average number of roundtrips
(Rt.) required by find-or-put to find a suitable bucket under various load-factors
(α). The right table shows the total throughput (×106) of find-or-put under a mixed
workload using various machines and processes per machine (Procs/M).

C = 8 C = 16 C = 32 C = 64 C = 128
α Lat. Rt. Lat. Rt. Lat. Rt. Lat. Rt. Lat. Rt.

0.5 3.69 1.0 3.71 1.0 3.99 1.0 4.17 1.0 4.50 1.0
0.6 3.74 1.1 3.72 1.0 4.00 1.0 4.18 1.0 4.50 1.0
0.7 3.90 1.3 3.78 1.1 4.00 1.0 4.18 1.0 4.51 1.0
0.8 4.50 2.1 4.00 1.4 4.09 1.1 4.20 1.0 4.52 1.0
0.9 7.70 5.7 5.64 3.2 4.92 2.0 4.54 1.4 4.66 1.1

Procs Machines
/M 1 2 32 48

1 189.46 1.28 8.51 11.73
2 326.36 2.21 16.09 22.05
4 709.52 3.83 28.76 37.82
8 898.34 6.18 49.41 63.36
16 - 10.17 81.55 114.85

cores, 64 GB internal memory and is connected via a high-performance 48 Gb/s
Mellanox Infiniband network. All experiments have been repeated at least three
times and the average measurements have been taken into account.

4.1 Latency of find-or-put

We measured the latency of find-or-put using various chunk sizes while increas-
ing the load-factor α. This is done by creating two processes on two different
machines, thereby employing the Infiniband network. Both processes maintain
a 1 GB portion of the hash table. The first process inserts a sequence of unique
integers until α reaches 0.92, which appears to be our limit. The hash table
started to return full when using 8-sized chunks and having α > 0.92. The
average latencies and the number of roundtrips have been measured at intervals
of 0.02, with respect to α. These measurements are shown in Fig. 2 and Table 1.

The differences between latencies are very small for α ≤ 0.5, no matter the
chunk size. For α = 0.5, the average latency when using 64-sized chunks is 13%
higher compared to 8-sized chunks (shown in Table 1). However, the average

22 W. Oortwijn et al.

1 2 4 6 8

2

4

6

8

Processes

S
p
ee

d
u
p

mixed

read

write

Fig. 3. Both plots show the average speedups with respect to the total throughput of
find-or-put. The left plot shows the speedup with 1 machine, scaling from 1 to 16
processes. The right plot shows the speedup when scaling from 2 to 48 machines (i.e.
using the Infiniband network) and scaling from 1 to 16 processes per machine.

latencies increase vastly for C ≥ 64. For example, compared to 8-sized chunks,
the latency is already 22% higher for C = 128.

Moreover, the average latencies also increase vastly for α > 0.5 when a low
chunk size is used. By having small chunk sizes, more roundtrips are required by
find-or-put to find the intended bucket, especially when α ≥ 0.8. By using a
larger chunk size, higher load-factors are supported at the cost of slightly higher
latencies. The average number of roundtrips directly influences the average laten-
cies, which shows the importance of minimizing the number of roundtrips.

4.2 Throughput of find-or-put

The throughput of the hash table has been measured in terms of find-or-put
operations per second (ops/sec). We scaled the number of machines from 1 to 48
and the number of processes per machine from 1 to 16. Each process owns a
1 GB portion of the hash table and inserts a total of 107 random integers. Three
different workloads have been taken into account, namely:

– Mixed: 50 % finds and 50 % inserts
– Read-intensive: 80 % finds and 20 % inserts
– Write-intensive: 20 % finds and 80 % inserts

To get the proper find/insert ratio, each workload uses a different strategy to
select the random integers. We used C = 32 and M = 32 in every configuration.

A subset of the measurements is shown in Table 1, and Fig. 3 shows speedups
with respect to the total throughput, that is, the total sum of the throughputs
obtained by all participating processes. In Fig. 3, the local speedups (left) are cal-
culated relative to single-threaded runs. The remote speedups (right) are calcu-
lated relative to 2 machines, each having 1 process, thereby taking the Infiniband

A Distributed Hash Table for Shared Memory 23

network into account. Only throughputs under a mixed workload are presented,
because the other workloads show very similar behaviour.

By comparing local throughput (i.e. using one machine) with remote through-
put (i.e. using at least two machines), we observed a performance drop of several
orders of magnitude. The local throughput reaches a peak of 8.98 × 108 ops/s.
By using a mixed workload, the local throughput is up to 88 times higher than
the peak-throughput obtained with two machines. A remote peak-throughput
of 11.5 × 107 is reached, which is still 7.8 times lower than the local peak-
throughput.

The local throughput reaches a speedup of 5x with 8 processes (see Fig. 3)
under a mixed workload. We observed a vast decrease in local speedup when more
than 8 processes were used. However, when we use the Infiniband network, the
performance remains stable, even when more than 8 processes per machine are
used. The remote throughput reaches a speedup of 90x (with 48 machines, each
having 16 processes) compared to 2 machines, each having 1 process. Compared
to the single-threaded runs, a speedup of 0.61x is reached with 48 machines.
This is expected; single-machine runs have better data-locality, as they do not
use the network. Nonetheless, the entire memory of every participating machine
can be fully utilized while maintaining good time efficiency.

4.3 Roundtrips Required by find-or-put

The average number of probes required by Pilaf during a key lookup in 3-way
Cuckoo hashing with α = 0.75 is 1.6 [10]. Nessie requires more roundtrips, since
it uses 2-way Cuckoo hashing, which increases the chance on hash collisions
compared to 3-way Cuckoo hashing. Our design requires only 1.04 probes on
average for C = 32 and 1.006 probes for C = 64. Compared to Pilaf, this is an
improvement of 53% with 32-sized chunks.

Regarding the number of inserts, Pilaf is more efficient, as all inserts are
handled by the server, at the cost of CPU efficiency. As part of the insertion
procedure, a lookup must be performed to find an empty bucket. After that,
the insert can be performed via cas, thereby requiring one extra roundtrip, in
addition to the lookup operation. Therefore, our inserts are also more efficient
than Nessie’s inserts.

5 Conclusion

To build an efficient hash table for shared memory it is critical to minimize the
number of roundtrips, because their waiting times contribute to higher latencies.
The number of roundtrips is limited by the throughput of the RDMA devices.
Lowering the number of roundtrips may directly increase the throughput.

Linear probing requires less roundtrips than Cuckoo hashing and Hopscotch
hashing due to chunk retrievals, asynchronous queries, and the absence of relo-
cations. Experimental evaluation shows that find-or-put can be performed in
4.5µs on average with a load-factor of 0.9 for C = 64. This shows that the

24 W. Oortwijn et al.

hash table performance remains very high, even when the load-factor gets big.
Furthermore, the entire memory of all participating machines can be used.

Table 1 shows that, in most cases, only one call to query-chunk would be
enough for find-or-put to find a suitable bucket, especially for small values of
α and large values of C. As future work, it would be interesting to dynamically
determine the value of C to reduce the number of roundtrips. Moreover, we plan
to use the hash table in a bigger framework for symbolic verification.

References

1. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Fourth Con-
ference on Partitioned Global Address Space Programming Model. ACM (2010)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT press, Cambridge (2009)

3. Dragojevi, A., Narayanan, D., Hodson, O., Castro, M.: FaRM: Fast remote mem-
ory. In: 11th USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI, vol. 14 (2014)

4. El-Ghazawi, T., Smith, L.: UPC: Unified Parallel C. In: ACM/IEEE Conference
on Supercomputing. ACM (2006)

5. Farreras, M., Almasi, G., Cascaval, C., Cortes, T.: Scalable RDMA performance in
PGAS languages. In: Parallel and Distributed Processing, pp. 1–12. IEEE (2009)

6. Herlihy, M.P., Shavit, N.N., Tzafrir, M.: Hopscotch hashing. In: Taubenfeld, G.
(ed.) DISC 2008. LNCS, vol. 5218, pp. 350–364. Springer, Heidelberg (2008)

7. InfiniBand Trade Association: Accessed 9 May 2015. http://www.infinibandta.org
8. The Distributed ASCI Supercomputer 5 (2015). http://www.cs.vu.nl/das5
9. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value

services. In: ACM Conference on SIGCOMM, pp. 295–306. ACM (2014)
10. Mitchell, C., Geng, Y., Li, J.: Using one-sided RDMA reads to build a fast, CPU-

efficient key-value store. In: USENIX Annual Technical Conference, pp. 103–114
(2013)

11. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
12. Laarman, A., van de Pol, J., Weber, M.: Boosting multi-core reachability perfor-

mance with shared hash tables. In: Conference on Formal Methods in Computer-
Aided Design, FMCAD, pp. 247–256 (2010)

13. Ross, K.A.: Efficient hash probes on modern processors. In: IEEE 23rd Interna-
tional Conference on Data Engineering, pp. 1297–1301. IEEE (2007)

14. Rumble, S.M., Ongaro, D., Stutsman, R., Rosenblum, M., Ousterhout, J.K.: Its
time for low latency. In: HotOS (2011)

15. Szepesi, T., Wong, B., Cassell, B., Brecht, T.: Designing a low-latency cuckoo hash
table for write-intensive workloads using RDMA. In: First International Workshop
on Rack-scale Computing (2014)

16. van Dijk, T., van de Pol, J.: Sylvan: Multi-core decision diagrams. In: Baier, C.,
Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 677–691. Springer, Heidelberg
(2015)

http://www.infinibandta.org
http://www.cs.vu.nl/das5

	A Distributed Hash Table for Shared Memory
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Hashing Strategies

	3 Design and Implementation
	3.1 Memory Layout
	3.2 Querying for Chunks
	3.3 Designing find-or-put

	4 Experimental Evaluation
	4.1 Latency of find-or-put
	4.2 Throughput of find-or-put
	4.3 Roundtrips Required by find-or-put

	5 Conclusion
	References

