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Abstract. The aim of this paper is to show that well known SPARSKIT
SpMV routines for Ellpack-Itpack and Jagged Diagonal formats can be
easily and successfully adapted to a hybrid GPU-accelerated computer
environment using OpenACC. We formulate general guidelines for sim-
ple steps that should be done to transform source codes with irregu-
lar data access into efficient OpenACC programs. We also advise how
to improve the performance of such programs by tuning data struc-
tures to utilize hardware properties of GPUs. Numerical experiments
show that our accelerated versions of SPARSKIT SpMV routines achieve
the performance comparable with the performance of the corresponding
CUSPARSE routines optimized by NVIDIA.
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1 Introduction

Recently, GPU-accelerated computer architectures have become very attractive
for achieving high performance execution of scientific applications at low costs
[1,2], especially for linear algebra computations [3,4]. Unfortunately, the process
of adapting existing software to such new architectures can be difficult. Compute
Unified Device Architecture (CUDA) programming interface can be used only
for NVIDIA cards, while the use of OpenCL (Open Computing Language [5])
leads to a substantial increase of software complexity.

SPARSKIT is a well known package tool for manipulating and working with
sparse matrices [6]. It is a very good example of widely used valuable software
packages written in Fortran. Unfortunately, it does not utilize modern computer
architectures, especially GPU-accelerated multicore machines. The new imple-
mentation of the most important SPARSKIT routines for NVIDIA GPUs has
been presented in [7].

Sparse matrix-vector product (SpMV) is a central part of many numeri-
cal algorithms [6,8]. There are a lot of papers presenting rather sophisticated
techniques for developing SpMV routines that utilize the underlying hardware
of GPU-accelerated computers [9–13]. Unfortunately, these methods are rather
complicated and usually machine-dependent. However, the results presented
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in [14] show that simple SPARSKIT SpMV routines using CSR (Compressed
Sparse Row) format [6] can be easily and efficiently adapted to modern multi-
core CPU-based architectures. Loops in source codes can be easily parallelized
using OpenMP directives [15,16], while the rest of the work can be done by a
compiler. Such parallelized SpMV routines achieve the performance comparable
with the performance of the SpMV routines available in libraries optimized by
hardware vendors (i.e. Intel MKL).

OpenACC is a new standard for accelerated computing [17]. It offers compiler
directives for offloading C/C++ and Fortran programs from host to attached
accelerator devices. Such simple directives allow to mark regions of source code
for automatic acceleration in a vendor-independent manner [18]. However, some-
times it is necessary to apply some high-level transformations of source codes
to achieve reasonable performance [19–21]. Paper [22] shows attempts to apply
OpenACC for accelerating SpMV. However, the authors consider only some mod-
ifications of the CSR format and apply other GPU-specific optimizations (just
like communication hiding).

In this paper we show that well known SPARSKIT SpMV routines for
Ellpack-Itpack (ELL) and Jagged Diagonal (JAD) formats [6] can be easily and
successfully adapted to a hybrid GPU-accelerated computer environment using
OpenACC. We also advise how to improve the performance of such programs
by tuning data structures to utilize hardware properties of GPUs applying some
high-level transformation of the source code. The paper is structured as fol-
lows. Section 2 describes ELL and JAD – two formats which are suitable for
GPU-accelerated computations. We show how to apply some basic source code
transformations to obtain accelerated versions of SpMV routines. In Sect. 3 we
present pJAD - a new format, which allows to outperform SpMV routine for
JAD. Section 4 discusses the results of experiments performed for a set of test
matrices. We also compare the performance of our OpenACC-accelerated rou-
tines with the performance of SpMV for the HYB (ELL/COO) format [23].
Finally, in Sect. 5 we formulate general guidelines for simple steps that should
be done to transform irregular source codes into OpenACC programs.

2 SPARSKIT and SpMV Routines

ELL format for sparse matrices assumes the fixed-length rows [24]. A sparse
matrix with n rows and at most ncol nonzero elements per row is stored column-
wise in two dense arrays of dimension n× ncol (Fig. 1). The first array contains
the values of the nonzero elements, while the second one contains the corre-
sponding column indices.

JAD format removes the assumption on the fixed-length rows [7]. Rows of
a matrix are sorted in non-increasing order of the number of nonzero elements
per row (Fig. 2). The matrix is stored in three arrays. The first array a contains
nonzero elements of the matrix (i.e. jagged diagonals), while the second one (i.e.
ja) contains column indices of all nonzeros. Finally, the array ia contains the
beginning position of each jagged diagonal. The number of jagged diagonals is
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Fig. 1. ELL format for sparse matrices

Fig. 2. JAD format for sparse matrices

stored in jdiag. Optionally, we can consider just another array rlen containing
lengths of all rows [11]. Elements of this array can be easily calculated (even in
parallel) using the following formula

rlen(i) = |{j : 1 ≤ j ≤ jdiag ∧ ia(j + 1) − ia(j) ≥ i}|, i = 1, . . . , n. (1)

Figure 3 shows Fortran subroutines which implement SpMV for ELL and JAD.
Note that SPARSKIT subroutines amuxe and amuxj were originally written in
Fortran 77, but here we present their equivalents written in Fortran 90.

OpenACC provides the parallel construct that launches gangs that will
execute in parallel. Gangs may support multiple workers that execute in vector
or SIMD mode [17]. This standard also provides several constructs that can be
used to specify the scope of data in accelerated parallel regions. It should be
noticed that proper data placement and carefully planned data transfers can be
crucial for achieving reasonable performance of accelerated programs [19].

In our OpenACC program, a GPU is responsible for performing SpMV while
the host program has to read data and initialize computations. The acceler-
ated subroutines accamuxe and accamuxj are presented in Fig. 4. From the
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Fig. 3. SPARSKIT SpMV for ELL (left) and JAD (right)

developer’s point of view, the OpenACC parallel construct together with
vector length should be used to vectorize loops. In case of amuxe, the sim-
plest way to accelerate SpMV is to vectorize the loops 6–8 and 10–12. Then,
the loop 9–13 would repeat generated kernel ncol times. However, it is better
to apply the loop exchange. In accamuxe, the outermost loop 9–16 is vectorized.
Similarly we obtain accamuxj. In case of this routine we can observe that the
loop 11–19 works on rows, thus we have to provide the length of each row in
rlen. Note that to avoid unnecessary transfers, we use the clause present to
specify that the data already exist in the device memory.

Fig. 4. Accelerated versions of SpMV for ELL (left) and JAD (right)
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3 Optimizing SpMV Using pJAD Format

Our version of SpMV for JAD can be further optimized. We can improve memory
access by aligning (padding) columns of the arrays a and ja. Thus, in each
column we add several zero elements and each column’s length should be a
multiple of a given bsize. Then, each block of threads will have to work on
rows of the same length. The number of elements in a and ja will be increased
to the size which is bounded by nnz + jdiag · (bsize − 1), where nnz is the
number of nonzero elements (Fig. 5). This modified format can be called pJAD
(i.e. padded JAD format). Similar modifications have been introduced in [25].
However, Kreutzer et al. consider bsize equal to the length of half-warp, what
is specific for NVIDIA GPUs. They also assume that threads with a block can
be responsible for processing various amount of data. Figure 6 shows the source
code of accpamuxj. Note that the array brlen contains the length of each block
of rows of a given size bsize.

Fig. 5. pJAD format and its data structures

4 Results of Experiments

Our OpenACC implementation of the SpMV routines has been tested on a com-
puter with two Intel Xeon X5650 (6 cores each with hyper- threading, 2.67 GHz,
48 GB RAM) and two NVIDIA Tesla M2050 (448 cores, 3 GB GDDR5 RAM
with ECC off), running under Linux under with NVIDIA CUDA Toolkit version
6.5 and PGI Accelerated Server version 15.4, which supports OpenACC [26].
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Fig. 6. Accelerated SpMV routine for pJAD format

Table 1 summarizes the results obtained for a set of test matrices chosen from
Matrix Market [27] and University of Florida sparse matrix collection [28].

The set contains various matrices with different number of rows and nonzero
elements. The largest cage15 has over 5 · 106 rows and almost 108 nonzero ele-
ments. For each matrix we provide the number of rows (columns), number of
nonzero entries, average number of nonzero entries per row, maximum number of
nonzero elements within a row. We also show the performance (in GFLOPS) of
accelerated versions of SpMV for ELL, JAD and pJAD. The last column shows
the performance of CUSPARSE SpMV routine using HYB (i.e. hybrid format
[23]). In Table 1, the best performance for each matrix is underlined.

The HYB sparse storage format is composed of a regular part stored in ELL
and an irregular part stored in COO. CUSPARSE conversion operation from
CSR to HYB partitions a given sparse matrix into the regular and irregular parts
automatically or according to developer-specified criteria [23]. For our tests, we
have chosen the first option.

We can observe that for almost all matrices pJAD format achieves better
performance than ELL and JAD. ELL outperforms pJAD only for matrices
cry1000, af23560, majorbasis, ecology2, atmosmodl, where all rows have almost
the same number of nonzero elements (i.e. nnz/n ≈ maxnz) or where the number
of nonzero elements is rather big in comparison with the number of rows (i.e.
n � nnz for nd24k). It should be noticed that for some matrices ELL exceeds
the memory capacity of Tesla M2050 (pre2, torso1, inline 1 ). The performance
of pJAD is a little bit worse than the performance of HYB, because pJAD
format requires re-permutation of the result’s entries. For some matrices with
nnz/n � maxnz, pJAD outperforms HYB (i.e. af23560, bcsstk36, bbmat, cfd1,
torso1, ldoor). Note that for cage15, CUSPARSE routine for conversion from
CSR to HYB has failed because memory capacity has been exceeded.
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Table 1. Results of experiments for a set of test matrices

Matrix n nnz nnz/n maxnz ELL JAD pJAD HYB

cry10000 10000 49699 5.0 5 3.99 3.79 3.37 2.11

poisson3Da 13514 352762 26.1 110 2.14 3.40 3.54 4.41

af23560 23560 484256 20.6 21 12.03 11.88 11.94 9.05

g7jac140 41490 565956 13.6 153 1.21 3.23 3.39 4.90

fidapm37 9152 765944 83.7 255 4.97 6.19 6.78 6.84

bcsstk36 23052 1143140 49.6 178 4.34 11.64 13.52 9.21

majorbasis 160000 1750416 10.9 11 15.20 13.78 13.80 14.01

bbmat 38744 1771722 45.7 126 6.03 7.73 8.88 7.34

cfd1 70656 1828364 25.9 33 12.84 12.77 13.21 12.83

ASIC 680ks 682712 2329176 3.4 210 0.28 4.32 4.46 7.54

FEM 3D thermal2 147900 3489300 23.6 27 13.09 13.13 14.95 14.98

parabolic fem 525825 3674625 7.0 7 9.80 9.33 9.83 11.58

ecology2 999999 4995991 5.0 5 13.83 12.00 12.84 15.76

pre2 659033 5959282 9.0 628 — 6.59 7.32 8.74

boneS01 127224 6715152 52.8 81 9.96 9.51 11.43 12.58

torso1 116158 8516500 73.3 3263 — 10.70 11.73 6.96

thermal2 1228045 8580313 7.0 11 5.92 4.80 5.03 8.65

atmosmodl 1489752 10319760 6.9 7 13.67 12.42 12.68 15.55

bmw3 2 227362 11288630 49.7 336 2.16 11.58 14.17 16.08

af shell8 504855 17588875 34.8 40 13.56 14.69 17.59 19.48

cage14 1505785 27130349 18.0 41 6.40 9.48 11.05 12.79

nd24k 72000 28715634 398.8 520 11.46 4.23 4.52 12.52

inline 1 503712 36816342 73.1 843 — 9.89 11.74 12.26

ldoor 952203 46522475 48.9 77 9.05 12.52 15.43 14.68

cage15 5154859 99199551 19.2 47 5.86 9.12 10.49 —

5 Conclusions and Future Work

We have shown that well known SPARSKIT SpMV routines for ELL and JAD
formats can be easily and successfully adapted to a hybrid GPU-accelerated
computer environment using OpenACC. Such routines achieve reasonable per-
formance. Further improvements can be obtained by introducing the new data
formats for sparse matrices to utilize specific GPU hardware properties. Numer-
ical experiments have justified that the performance of our optimized SpMV
routines is comparable with the performance of the routine provided by the
vendor. We have also discussed when the use of considered formats would be
profitable. We believe the use of OpenACC and accelerated Fortran routines
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can be attractive for people who prefer to develop applications using high-level
directive programming techniques instead of complicated CUSPARSE API.

The general guidelines for semiautomatic acceleration of irregular codes using
OpenACC can be summarized as follows:

1. Define regions where data should exist on accelerators. Try to reduce transfers
between host and accelerators.

2. Try to vectorize outermost loops within your code. Vectorized loops should
have sufficient computational intensity, namely the ratio of the number of
computational operations to the number of memory operations should be
greater than one.

3. If necessary, apply loop exchange and inform the compiler that loops are safe
to parallelize using the independent clause in OpenACC loop constructs.

4. Try to keep threads within gangs (or blocks in terms of CUDA) working on
the same amount of data.

5. The best performance occurs when coalesced memory access takes place
[29,30]. Threads within gangs should operate on contiguous data blocks.

6. Tune your data structures by aligning data in arrays. It can be done by data
structure padding.

In the future, we plan to implement some other important routines from
SPARSKIT, especially well-known solvers for sparse systems of linear equations.
We also plan to implement multi-GPU support using OpenACC and OpenMP
[31]. The full package with the software will soon be available for the community.
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