
Free Scheduling of Tiles Based on the Transitive
Closure of Dependence Graphs

Wlodzimierz Bielecki(B), Marek Palkowski, and Tomasz Klimek

Faculty of Computer Science and Information Systems,
West Pomeranian University of Technology in Szczecin,

Zolnierska 49, 71210 Szczecin, Poland
{wbielecki,mpalkowski}@wi.zut.edu.pl

http://www.wi.zut.edu.pl

Abstract. A novel approach to form the free schedule of tiles compris-
ing statement instances of the program loop nest is presented. Forming
both valid tiles and free scheduling are based on the transitive closure of
loop nest dependence graphs. Under the free schedule, tiles are executed
as soon as their operands are available. To describe and implement the
approach, loop dependences are presented in the form of tuple relations.
A discussed algorithm is implemented in the open source TRACO com-
piler. Experimental results exposing the effectiveness of the introduced
algorithm and speed-up of parallel programs, produced by means of this
algorithm, are discussed.

Keywords: Loop nest tiling · Transitive closure · Dependence graphs ·
Coarse-grained parallelism · Free scheduling

1 Introduction

Tiling is a very important iteration reordering transformation for both improving
data locality and extracting loop parallelism. Loop tiling for improving locality
groups loop statement instances in a loop iteration space into smaller blocks
(tiles) allowing reuse when the block fits in local memory. On the basis of a valid
schedule of tiles, parallel coarse-grained code can be generated.

To our best knowledge, well-known tiling techniques are based on linear or
affine transformations of program loop nests [6,9,10,13,20]. In paper [5], we
describe the limitations of affine transformations and present how the free-
scheduling of loop nest statement instances can be formed by means of the
transitive closure of program dependence graphs. In this paper, we demonstrate
how the approach, presented in our paper [5], can be adapted to form the free-
scheduling of valid tiles. To generate both valid tiles and free-scheduling, we
apply the transitive closure of dependence graphs. The proposed approach allows
generation of parallel tiled code even when there does not exist an affine trans-
formation allowing for producing a fully permutable loop nest. This approach is
a result of a combination of the polyhedral model and the iteration space slicing
framework.
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 133–142, 2016.
DOI: 10.1007/978-3-319-32152-3 13

134 W. Bielecki et al.

2 Background

A considered approach uses the dependence analysis proposed by Pugh and Won-
nacott [16] where dependences are represented by dependence relations. Depen-
dences of a loop nest are described by dependence relations with constraints
presented by means of the Presburger arithmetic.

A dependence relation is a tuple relation of the form [input list]→[output
list]: formula, where input list and output list are the lists of variables and/or
expressions used to describe input and output tuples and formula describes the
constraints imposed upon input list and output list and it is a Presburger formula
built of constraints represented with algebraic expressions and using logical and
existential operators. A dependence relation is a mathematical representation of
a data dependence graph whose vertices correspond to loop statement instances
while edges connect dependent instances. The input and output tuples of a
relation represent dependence sources and destinations, respectively; the relation
constraints point out instances which are dependent.

Standard operations on relations and sets are used, such as intersection (∩),
union (∪), difference (−), domain (dom R), range (ran R), relation application
(S′ = R(S) : e′ ∈ S′ iff exists e s.t. e → e′ ∈ R, e ∈ S). In detail, the description
of these operations is presented in papers [11,16].

The positive transitive closure for a given relation R, R+, is defined as follows
[11]: R+ = {e → e′ : e → e′ ∈ R ∨ ∃e′′s.t. e → e′′ ∈ R ∧ e′′ → e′ ∈ R+}.
It describes which vertices e′ in a dependence graph (represented by relation R)
are connected directly or transitively with vertex e.

Transitive closure, R∗, is defined as follows [12]: R∗ = R+ ∪ I, where I
the identity relation. It describes the same connections in a dependence graph
(represented by R) that R+ does plus connections of each vertex with itself.

The composition of given relations R1 = {x1 → y1|f1(x1, y1)} and
R2 = {x2 → y2|f2(x2, y2)}, is defined as follows [11]: R1 ◦ R2 = {x →
y|∃z s.t. f1(z, y) ∧ f2(x, z)}.

3 Finding Free Scheduling

The algorithm, presented in our paper [5], allows us to generate fine-grained par-
allel code based on the free schedule representing time partitions; all statement
instances of a time partition can be executed in parallel, while partitions are
enumerated sequentially. The free schedule function is defined as follows.

Definition 1 [7,8]. The free schedule is the function that assigns discrete time
of execution to each loop nest statement instance as soon as its operands are
available, that is, it is mapping σ : LD → Z such that

σ(p) =

⎧
⎨

⎩

0 if there is no p1 ∈ LD s.t. p1 → p
1 + max(σ(p1), σ(p2), ..., σ(pn)); p, p1, p2, ..., pn ∈ LD;
p1 → p, p2 → p, ..., pn → p,

Free Scheduling of Tiles Based on Transitive Closure of Dependence Graphs 135

where p, p1, p2, ..., pn are loop nest statement instances, LD is the loop nest
domain, p1 → p, p2 → p, ..., pn → p mean that the pairs p1 and p, p2 and p, ...,pn
and p are dependent, p represents the destination while p1, p2, ..., pn represent
the sources of dependences, n is the number of operands of statement instance
p (the number of dependences whose destination is statement instance p).

The free schedule is the fastest legal schedule [8]. In paper [5] we presented
fine-grained parallelism extraction based on the power k of relation R.

The idea of the algorithm is the following [5]. Given relations R1, R2, ..., Rm,

representing all dependences in a loop nest, we first calculate R =
m⋃

i=1

Ri and then

Rk, where Rk = R ◦ R ◦ ...R︸ ︷︷ ︸
k

, “◦” is the composition operation. Techniques of

calculating the power k of relation R are presented in the following publications
[12,17] and they are out of the scope of this paper. Let us only note that given
transitive closure R+, we can easily convert it to the power k of R, Rk, and vice
versa, for details see [17].

Given set UDS comprising all loop nest statement instances that are ready to
execution at time k = 0 (Ultimate Dependence Sources), each vertex, represented
with the set Sk = Rk(UDS) − R+ ◦ Rk(UDS), is connected in the dependence
graph, defined by relation R, with some vertex(ices) represented by set UDS
with a path of length k. Hence at time k, all the statement instances belonging
to the set Sk can be scheduled for execution and it is guaranteed that k is as
few as possible.

4 Loop Nest Tiling Based on the Transitive Closure
of Dependence Graphs

In this paper, to generate valid tiled code, we apply the approach presented in
paper [4], which is based on the transitive closure of dependence graphs. Next,
we briefly present the steps of that approach.

First, we form set TILE(II ,B), including iterations belonging to a paramet-
ric tile, as follows TILE(II ,B) = {[I]|B*II + LB ≤ I ≤ min(B*(II + 1) +
LB − 1,UB) AND II ≥ 0}, where vectors LB and UB include the lower and
upper loop index bounds of the original loop nest, respectively; diagonal matrix
B defines the size of a rectangular original tile; elements of vector I represent
the original loop nest iterations contained in the tile whose identifier is II ; 1 is
the vector whose all elements have value 1; here and further on, the notation
x ≥ (≤)y where x, y are two vectors in Z

n corresponds to the component-wise
inequality, that is, x ≥ (≤)y ⇐⇒ xi ≥ (≤)yi, i=1,2,...,n.

Next, we build sets TILE LT and TILE GT that are the unions of all the tiles
whose identifiers are lexicographically less and greater than that of TILE (II ,
B), respectively:

TILE LT ={[I] | exists II ′ s. t. II ′ ≺ II AND II ≥ 0 AND B*II+LB ≤
UB AND II ′ ≥ 0 and B*II ′ + LB ≤ UB AND I in TILE(II ′,B)},

136 W. Bielecki et al.

TILE GT ={[I] | exists II ′ s. t. II ′ � II AND II ≥ 0 AND B*II+LB ≤
UB AND II ′ ≥ 0 and B*II ′ + LB ≤ UB AND I in TILE(II ′,B)},
where “≺” and “�” (here and further on) denote the lexicographical relation
operators for two vectors. Then, we calculate set

TILE ITR = TILE − R+(TILE GT),

which does not include any invalid dependence target, i.e., it does not include
any dependence target whose source is within set TILE GT. The following set

TVLD LT = (R+(TILE ITR) ∩ TILE LT) − R+(TILE GT)

includes all the iterations that (i) belong to the tiles whose identifiers are lexico-
graphically less than that of set TILE ITR, (ii) are the targets of the dependences
whose sources are contained in set TILE ITR, and (iii) are not any target of a
dependence whose source belong to set TILE GT. Target tiles are defined by the
following set TILE VLD = TILE ITR ∪ TVLD LT.

Lastly, we form set TILE VLD EXT by means of inserting (i) into the first
positions of the tuple of set TILE VLD elements of vector II : ii1, ii2, ..., iid;
(ii) into the constraints of set TILE VLD the constraints defining tile identifiers
II ≥ 0 and B*II + LB ≤ UB . Target code is generated by means of applying
any code generator allowing for scanning elements of set TILE VLD EXT in the
lexicographic order, for example, CLooG [1].

5 Free Scheduling for Tiles

The algorithm presented in this paper is a combination of the approaches pre-
sented in the two previous sections. First, we generate tiled code as it is described
in Sect. 4, then we find free scheduling for tiles of the tiled code. For this pur-
pose, first, we form relation, R TILE, which describes dependences among tiles
as follows

R TILE :={[II]−>[JJ]: exist I , J s.t. (II,I) in TILE VLD EXT (II) AND
(JJ,J) in TILE VLD EXTi(JJ) AND J in R(I)},
where II , JJ are the vectors representing tile identifiers; vectors I , J comprise
iterations belonging to tiles whose identifiers are II , JJ , respectively.

The following step is to calculate set, UDS, including the tile identifiers
which state for tile ultimate dependence sources and/or independent ones as
follows: UDS=II SET − range (R TILE), where set II SET = {[II]|II ≥
0 and B*II + LB ≤ UB} represents all tile identifiers.

Now, we apply the algorithm presented in paper [5] to form free-scheduling
for tiles of tiled code. With this purpose, we calculate the transitive closure
and power k of relation R TILE and next calculate set Sk, representing the
free schedule, as follows Sk = R TILEk(UDS)− (R TILE+ ◦R TILEk(UDS)).
Finally, we extend the tuple of set Sk with variable k and variables representing
statement instances of a parametric target tile(together with corresponding con-
straints) and generate code applying any code generator, for example, CLooG to
scan iterations within set Sk in the lexicographical order. Algorithm 1 presents
the discussed above idea in a formal way.

Free Scheduling of Tiles Based on Transitive Closure of Dependence Graphs 137

Algorithm 1. Parallel tiled code generation based on the free schedule
Input: A loop nest of depth d ; constants b1, b2, ..., bd defining the size of a rectangular

original tile, relation R representing all the dependences in the loop nest.

Output: Code enumerating time partitions according to the free schedule, tiles for each

time partition (in parallel), and statement instances in each tile.

Method:

1. Apply the algorithm, presented in paper [4] to the original loop nest to generate sets

II SET, TILE VLD, TILE VLD EXT, and tiled code.

2. Form relation, R TILE, which describes dependences among tiles but ignores

dependences within each tile as follows

R TILE :={[II]−>[JJ]: exist I, J s.t. (II,I) in TILE VLD EXT (II) AND (JJ,J)

in TILE VLD EXT (JJ) AND J in R(I)},
where II, JJ are the vectors representing tile identifiers, TILE V LD EXT is the set

returned by step 1.

3. Calculate set, UDS, including the tile identifiers which state for tile ultimate

dependence sources and/or independent ones as follows

UDS :=II SET − range (R TILE),

4. Calculate set

Sk= R TILEk(UDS) − (R TILE+◦R TILEk(UDS)).

5. Extend set Sk as follows: insert in the first its tuple position symbolic variable k

responsible for representing time under the free schedule; insert in the last its tuple

positions the elements of set TILE V LD returned by step 1; insert into the constraint

of set Sk the constraint of set TILE V LD.

6. Apply to the set, returned by step 5, CLooG [1] and postprocess the code generated by

CLooG to get the following code structure

seqfor for k //enumerating time partitions

parfor Sk //enumerating tile identifiers contained in set Sk

//formed in step 4 for a given value of k

seqfor TILE_VLD //enumerating statement instances comprised in

//set TILE_VLD defined by the tile identifiers

//represented by the previous parfor loop

6 Illustrative Example

In this section, we illustrate steps of Algorithm 1 by means of the following loop:

for(i=1; i<=6; i++)

for(j=1; j<=6; j++)

a[i][j] = a[i+1][j-1];

We use the ISL library to carry out operations on relations and sets required
by the presented algorithm. A dependence relation, returned by Petit, the Omega
project dependence analyzer, is the following

R:= {[i,j,v] -> [i’,j’,v’] : (i’ = 1+i and j’ = j-1 and v = 6 and v’ = 6

and 1 <= i <= 5 and 2 <= j <= 6)},

138 W. Bielecki et al.

where here and further on “6” states for the statement identifier represented via
the corresponding line number in the original loop nest.

The algorithm presented in paper [4] returns the following set
TILE V LD EXT representing both tile identifiers and statement instances
within each target tile.

TILE_VLD_EXT:= { [i0, i1, i2, i3, 6] : i0 >= 0 and i2 >= 1 + 2i0 and

i2 <= 6 and i3 >= 1 + 2i1 and i3 <= 6 and i3 >= 1 and i3 <= 3 + 2i0 +

2i1 - i2; [i0, i1, 2 + 2i0, 2i1, 6] : i0 <= 2 and i0 >= 0 and i1 <= 2

and i1 >= 1; [i0, 2, 2 + 2i0, 6, 6] : i0 <= 2 and i0 >= 0 }.

Using relation R and set TILE V LD EXT , we form realtion R TILE that
is of the form below.

R_TILE:= { [i0, i1, 6] -> [1 + i0, -1 + i1, 6] : i0 >= 0 and i0 <= 1 and

i1 <= 2 and i1 >= 1; [i0, 2, 6] -> [1 + i0, 2, 6] : i0 <= 1 and i0 >= 0 }.

Set UDS is the following {[0, jj, 6] : jj ≤ 2 and jj ≥ 0}.
Using the appropriate functions of the ISL library to calculate relations

R TILEk and R TILE+, we calculate set Sk according to the formula in step 4
of Algorithm 1, and extend set Sk as presented in step 5 of Algorithm 1, to get:

Sk:= { [i0, i0, i2, i3, i4, 6] : i3 >= 1 + 2i0 and i4 >= 1 + i2 and

i2 <= 2 and i3 <= 2 + 2i0 and i0 >= 0 and i4 <= 2 + 2i2 and i4 >= 2 +

2i0 + 2i2 - i3 and i0 <= 2 and 2i4 <= 6 + 4i0 + 5i2 - 2i3 }.

Finally, we apply to set Sk the GLooG code generator and postprocess the
code returned by CLooG to yield the following OpenMP C code.

1. for (c0 = 0; c0 <= 2; c0 += 1)

2. #pragma omp parallel for

3. for (c2 = 0; c2 <= 2; c2 += 1)

4. for (c3 = 2 * c0 + 1; c3 <= 2 * c0 + 2; c3 += 1)

5. for (c4 = max(c2 + 1, 2 * c0 + 2 * c2 - c3 + 2);

c4 <= min(2*c0 + 2 * c2 - c3 + c2/2 + 3, 2 * c2 + 2); c4++)

6. a[c3][c4]=a[c3+1][c4-1];

where line 1 presents the serial for loop enumerating time partitions; line 2 rep-
resents the two OpenMP directives (parallel for) pointing out that the iterations
of the for loop in line 3 can be executed in parallel; the for loops in line 1 and
line 3 enumerate tile identifiers, whereas the for loops in line 4 and line 5 scan
iterations within a tile. Figure 1 presents original tiles, while Fig. 2 shows target
tiles returned by the algorithm, presented in paper [4] (depicted by dashed lines),
and the three time partitions (k=0, 1, 2) for the illustrative example.

Free Scheduling of Tiles Based on Transitive Closure of Dependence Graphs 139

j

i
1 2 3 4 5 6

1

2

3

4

5

6

Fig. 1. Original tiles Fig. 2. Target tiles and time partitions

7 Experimental Study

The presented algorithm has been implemented in the optimizing compiler TRA
CO, publicly available at the website http://traco.sourceforge.net. For calculat-
ing R+ and Rk, TRACO uses the corresponding functions of the ISL library
[17]. To evaluate the effectiveness of proposed approach, we have experimented
with NAS Parallel Benchmarks 3.3 (NPB) [14].

From 431 loops of the NAS benchmark suite, Petit is able to analyse 257
loops, and dependences are available in 134 loops (the rest 123 loops do not
expose any dependence). For these 134 loop nests, ISL is able to calculate
R TILEk for 58 ones and accordingly TRACO is able to generate parallel tiled
code for those programs. Such a limitation is not the limitation of the algorithm,
it is the limitation of the corresponding ISL function.

To check the performance of parallel tiled code, produced with TRACO,
the following criteria were taken into account for choosing NAS programs: (i) a
loop nest must be computationally intensive (there are many NAS benchmarks
with constant upper bounds of loop indices, hence their parallelization is not
justified), (ii) structures of chosen loops must be different (there are many loops
of a similar structure).

Applying these criteria, we have selected the following five NAS
loops: BT rhs 1 (Block Tridiagonal Benchmark), FT auxfnct.f2p 2 (Fast
Fourier Transform Benchmark), UA diffuse 5, UA setup 16 and UA transfer 4
(Unstructured Adaptive Benchmark).

To carry out experiments, we have used a computer with Intel i5-4670
3.40 GHz processors (Haswell, 2013), 6 MB cache and 8 GB RAM. Source and
target codes of the examined programs are available in http://sourceforge.net/
p/issf/code-0/HEAD/tree/trunk/examples/fstile/.

Table 1 presents execution time and speed-up for the studied loop nests.
Speed-up is the ratio of sequential and parallel program execution times, i.e.,
S=T (1)/T (P), where T (P) is the parallel program execution time on P proces-
sors. Speedups were computed against the serial original code execution time.

http://traco.sourceforge.net
http://sourceforge.net/p/issf/code-0/HEAD/tree/trunk/examples/fstile/
http://sourceforge.net/p/issf/code-0/HEAD/tree/trunk/examples/fstile/

140 W. Bielecki et al.

Table 1. Speed-up of parallel tiled loop nests for 4 CPU cores.

Program Loop up. bounds Time of serial Block Time of parallel Speed-up

run (in seconds) size run (in seconds)

FT auxfnct.f2p 2 N1, N2, N3=500 6.857 16 0.817 8.393

32 0.795 8.625

N1, N2, N3=600 13.403 16 1.176 11.397

32 1.228 10.914

BT rhs.f2p 1 N1, N2, N3=200 2.87 16 0.892 3.217

32 1.112 2.581

N1, N2, N3=300 10.598 16 2.936 3.610

32 3.549 2.986

UA diffuse.f2p 5 N1, N2, N3, N4=100 0.444 16 0.209 2.124

32 0.187 2.374

N1, N2, N3, N4=200 10.875 16 3.85 2.825

32 3.556 3.058

UA setup.f2p 16 N1, N2, N3=1000 1.325 16 0.662 2.002

32 0.445 2.978

N1, N2, N3=1100 15.285 16 0.976 15.661

32 0.746 20.489

UA transfer.f2p 4 N1, N2, N3=700 5.541 16 0.742 7.468

32 0.745 7.438

N1, N2, N3=1000 22.751 16 1.501 15.157

32 1.499 15.177

Experiments were carried out for 4 CPUs. Analysing the data in Table 1, we
may conclude that for all parallel tiled loops, positive speed-up is achieved. It
depends on the problem size defined by loop index upper bounds and a tile size.
It is worth to note that for the FT auxfnct.f2p 2 and UA transfer 4 programs,
super-linear speed-up is achieved, i.e., the speed-up is greater than 4 – the num-
ber of CPUs used. This phenomenon could be explained by the fact that the
data size required by the original program is greater than the cache size when
executed sequentially, but could fit nicely in each available cache when executed
in parallel, i.e., due to increasing program locality.

8 Related Work

There has been a considerable amount of research into tiling demonstrating
how to aggregate a set of loop iterations into tiles with each tile as an atomic
macro statement, starting with pioneer paper [10] and those presenting advanced
techniques [6,9,19].

One of the most advanced reordering transformation frameworks is based
on the polyhedral model. Let us remind that “Restructuring programs using
the polyhedral model is a three steps framework. First, the Program Analysis
phase aims at translating high level codes to their polyhedral representation and
to provide data dependence analysis based on this representation. Second, some

Free Scheduling of Tiles Based on Transitive Closure of Dependence Graphs 141

optimizing or parallelizing algorithm uses the analysis to restructure the programs
in the polyhedral model. This is the Program Transformation step. Lastly, the
Code Generation step returns back from the polyhedral representation to a high
level program” [3].

All above three steps are available in the approach presented in this paper.
But there exists the following difference in step 2: in the polyhedral model “a
(sequence of) program transformation(s) is represented by a set of affine func-
tions, one for each statement” [3] while the presented approach does not find
and use any affine function. It applies the transitive closure of a program depen-
dence graph to specific subspaces of the source loop iteration space. At this
point of view the program transformation step is rather within the Iteration
Space Slicing Framework introduced by Pugh and Rosser [15], where the key
step is calculating the transitive closure of a program dependence graph.

Papers [10,18] are a seminal work presenting the theory of tiling techniques
based on affine transformations. These papers present techniques consisting of
two steps: they first transform the original loop into a fully permutable loop nest,
then transform the fully permutable loop nest into tiled code. Loop nests are fully
permutable if they can be permuted arbitrarily without altering the semantics
of the source program. If a loop nest is fully permutable, it is sufficient to apply
a tiling transformation to this loop nest [18].

Papers [2,5] demonstrate how we can extract coarse- and fine-grained par-
allelism applying different Iteration Space Slicing algorithms, however they do
not consider any tiling transformation.

Wonnacott and Strout review implemented and proposed techniques for tiling
dense array codes in an attempt to determine whether or not the techniques
permit on scalability. They write [19]: “No implementation was ever released for
iteration space slicing”. This permits us to state that TRACO, which implements
the algorithm, presented in this paper, is the first compiler where Iteration Space
Slicing is applied to produce parallel tiled code based on the free-schedule of tiles.

9 Conclusion

In this paper, we presented a novel approach based on a combination of the
Polyhedral Model and the Iteration Space Slicing framework. It allows gener-
ation of parallel tiled codes which demonstrate significant speed-up on shared
memory machines with multi-core processors. The usage of the free schedule
of tiles instead of that of loop nest statement instances allows us to adjust the
parallelism grain-size to match the inter-processor communication capabilities of
the target architecture. In the future, we plan to present an extended approach
allowing for tiling with parallelepiped original tiles.

References

1. Bastoul, C.: Code generation in the polyhedral model is easier than you think. In:
PACT 2013 IEEE International Conference on Parallel Architecture and Compi-
lation Techniques, Juan-les-Pins, pp. 7–16, September 2004

142 W. Bielecki et al.

2. Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., Siedlecki, K.: Coarse-grained
loop parallelization: iteration space slicing vs affine transformations. Parallel Com-
put. 37, 479–497 (2011)

3. Benabderrahmane, M.-W., Pouchet, L.-N., Cohen, A., Bastoul, C.: The poly-
hedral model is more widely applicable than you think. In: Gupta, R.
(ed.) CC 2010. LNCS, vol. 6011, pp. 283–303. Springer, Heidelberg (2010).
http://dx.doi.org/10.1007/978-3-642-11970-5 16

4. Bielecki, W., Palkowski, M.: Perfectly nested loop tiling transformations based on
the transitive closure of the program dependence graph. Soft Comput. Comput.
Inf. Sci. 342, 309–320 (2015)

5. Bielecki, W., Palkowski, M., Klimek, T.: Free scheduling for statement instances
of parameterized arbitrarily nested affine loops. Parallel Comput. 38(9), 518–532
(2012)

6. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113
(2008)

7. Darte, A., Khachiyan, L., Robert, Y.: Linear scheduling is nearly optimal. Parallel
Process. Lett. 1(2), 73–81 (1991)

8. Darte, A., Robert, Y., Vivien, F.: Scheduling and Automatic Parallelization.
Birkhauser, New York (2000)

9. Griebl, M.: Automatic parallelization of loop programs for distributed memory
architectures (2004)

10. Irigoin, F., Triolet, R.: Supernode partitioning. In: Proceedings of the 15th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1988, pp. 319–329. ACM, New York (1988)

11. Kelly, W., Maslov, V., Pugh, W., Rosser, E., Shpeisman, T., Wonnacott, D.: The
omega library interface guide. Technical report, College Park, MD, USA (1995)

12. Kelly, W., Pugh, W., Rosser, E., Shpeisman, T.: Transitive closure of infinite graphs
and its applications. Int. J. Parallel Program. 24(6), 579–598 (1996)

13. Lim, A., Cheong, G.I., Lam, M.S.: An affine partitioning algorithm to maxi-
mize parallelism and minimize communication. In: Proceedings of the 13th ACM
SIGARCH International Conference on Supercomputing, pp. 228–237. ACM Press
(1999)

14. NAS benchmarks suite (2013). http://www.nas.nasa.gov
15. Pugh, W., Rosser, E.: Iteration space slicing and its application to communication

optimization. In: International Conference on Supercomputing, pp. 221–228 (1997)
16. Pugh, W., Wonnacott, D.: An exact method for analysis of value-based array

data dependences. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D. (eds.)
Languages and Compilers for Parallel Computing. LNCS, vol. 768, pp. 546–566.
Springer, Heidelberg (1993)

17. Verdoolaege, S.: Integer set library - manual. Technical report (2011). http://www.
kotnet.org/∼skimo//isl/manual.pdf

18. Wolf, M.E., Lam, M.S.: A loop transformation theory and an algorithm to maxi-
mize parallelism. IEEE Trans. Parallel Distrib. Syst. 2(4), 452–471 (1991)

19. Wonnacott, D.G., Strout, M.M.: On the scalability of loop tiling techniques. In:
Proceedings of the 3rd International Workshop on Polyhedral Compilation Tech-
niques (IMPACT), January 2013

20. Xue, J.: On tiling as a loop transformation (1997)

http://dx.doi.org/10.1007/978-3-642-11970-5_16
http://www.nas.nasa.gov
http://www.kotnet.org/~skimo//isl/manual.pdf
http://www.kotnet.org/~skimo//isl/manual.pdf

	Free Scheduling of Tiles Based on the Transitive Closure of Dependence Graphs
	1 Introduction
	2 Background
	3 Finding Free Scheduling
	4 Loop Nest Tiling Based on the Transitive Closure of Dependence Graphs
	5 Free Scheduling for Tiles
	6 Illustrative Example
	7 Experimental Study
	8 Related Work
	9 Conclusion
	References

