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Abstract. This study has investigated how scaled performance is
affected by the energy constraints imposed on dual-architecture proces-
sors. Theoretical models were developed to extend the Gustafson-Barsis
Law by accounting for energy limitations before examining the three
processing modes available to hybrid processors: symmetric, asymmet-
ric, and simultaneous asymmetric. Analysis shows that by choosing the
optimal chip configuration, energy efficiency and energy savings can be
increased considerably.
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1 Introduction

The major challenge that microprocessor designers will face in the coming decade
is not just power, but also energy efficiency. Although Moore’s Law [1] continues
to offer solutions with more transistors, power budgets limit our ability to use
them. However, there are promising solutions such as heterogeneous many-core
architectures that will provide higher performance at lower energy requirements
and reduced leakage. Recent research shows that integrated CPU-GPU proces-
sors have the potential to deliver more energy efficient computations, which is
encouraging chip manufacturers to reconsider the benefits of heterogeneous par-
allel computing [3–8]. Chip manufacturers such as Intel, NIVIDIA, and AMD
have already announced such architectures, i.e., Intel Sandy Bridge, AMD’s
Fusion APUs, and NVIDIA’s Project Denver.

Despite some criticisms [9,10], Amdahl’s law [11] and Gustafson-Barsis’s Law
[12] are still relevant at the dawn of a heterogeneous many-core computing era.
Both laws are simple analytical models that help developers to evaluate the
actual speedup that can be achieved using a parallel program. They represent
two points of view that are not contradictory, but rather complement each other.
However, neither of these laws is perfect. Amdahl’s Law and Gustafson-Barsis’s
Law do not account for overheads associated with the creation/destruction
of processes/threads and with maintaining cache coherence. Neither do they
account for other types of serial tasks such as identification of critical sections,
synchronization, lock management, and load balancing.
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Furthermore, the future relevance of the laws requires their extension by
the inclusion of constraints and architectural trends demanded by modern mul-
tiprocessor chips. In [13] we extended Amdahl’s law according to the work of
Woo and Lee [2] and applied it to the case of a hybrid CPU-GPU multi-core
processor. In this work we repeat on our previous study, but this time we extend
the Gustafson-Barsis’s Law. The main contributions of this paper are as follows:

– To define and formulate two metrics: speedup and performance per watt.
– Using the above metrics, to evaluate the energy efficiency and scalability of

three processing schemes available for heterogeneous computing: symmetric,
asymmetric and simultaneous asymmetric.

– For each processing scheme, to examine how performance and power are
affected by different chip configurations.

– Finally, to analyze and compare the outcomes of the three analytical models
and to show how considerable energy savings can be achieved by choosing the
optimal chip configuration.

2 Symmetric Processors

In this section we reformulate Gustafson-Barsis’s Law to capture the necessary
changes imposed by power constraints. We start with the traditional definition
of a symmetric multi-core processor and continue by applying energy constraints
to the equations following the method of Woo and Lee [2].

2.1 Symmetric Speedup

Gustafson-Barsis’s Law begins with a parallel computation and estimates how
much faster the parallel computation is than the same computation executing
on a single core. Gustafson argues that, as processor power increases, the size
of the problem set also tends to increase. This is why the speedup determined
by Gustafson-Barsis’s Law, also called scaled speedup, is the time required by a
parallel computation divided into the time hypothetically required to solve the
same problem on a single core.

According to the Gustafson-Barsis’s Law, a typical program has a serial por-
tion that cannot be parallelized (and therefore can be executed only by a single
core) and a parallel portion that can be parallelized (and therefore can be exe-
cuted by any number of cores in the processor). Let the parallel execution time
of the program be normalized to 1, and let the serial and parallel portions be
denoted by s and p respectively. Then the following equation concisely describes
the law:

Speedups = s + (1 − s) · c = c + (1 − c) · s (1)

where c is the number of cores and s is the fraction of a program’s execution
time that is spend in serial code (0 ≤ s ≤ 1).
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Fig. 1. Performance per watt as a function of the number of CPU cores of a symmetric
multi-core processor when kc = 0.3

2.2 Symmetric Performance per Watt

To model power consumption in realistic scenarios, we introduce the variable kc

to represent the fraction of power a single CPU core consumes in its idle state
(0 ≤ kc ≤ 1). In the case of a symmetric processor, one core is active during the
sequential computation and consumes a power of 1, while the remaining (c − 1)
CPU cores consume (c − 1)kc. During the sequential computation period, the
processor consumes a power of 1+(c−1)kc. Thus, during the parallel computation
time period, c CPU cores consume c power. It requires s and (1 − s) to execute
the sequential and parallel codes, respectively, so the formula for the average
power consumption Ws of a symmetric processor is as follows.

Ws =
s · {1 + (c − 1) · kc} + (1 − s) · c

s + (1 − s)
(2)

Next, we define the performance per watt (Perf/W) metric to represent the
amount of performance that can be obtained from 1 watt of power. Perf/W is
basically the reciprocal of energy. The Perf/W of a single CPU core execution is
1, so the Perf /Ws achievable for a symmetric processor is formulated as follows.

Perf
Ws

=
Speedups

Ws
=

c + (1 − c) · s

s · {1 + (c − 1) · kc} + (1 − s) · c
(3)

Figure 1 plots the performance per watt for a symmetric multi-core processor
as modeled by Eq. (3), showing that the performance per watt decreases rapidly
for a small number of cores. However, as the number of cores increases, so does
the problem size, and the inherently serial portion becomes much smaller as a
proportion of the overall problem. Therefore, the performance per watt remains
almost constant as the number of cores increases and reflects the assumption
that the execution time remains fixed.
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3 Asymmetric CPU-GPU Processors

In this section, an asymmetric CPU-GPU processor where CPU and GPU cores
are integrated on the same die and share the same memory space and
power budget will be referred to as a hybrid processor .

We assume that a program’s execution time can be composed of a time period
where the program runs sequentially (s), a time period where the program runs
in parallel on the CPU cores (α), and a time period where the program runs
in parallel on the GPU cores (1 − α). Note that in this case it is assumed
that the program runs in parallel on the CPU cores or on the GPU
cores, but not on both at the same time. Simultaneous asymmetric
processing will be the topic of the next section.

To model the power consumption of an asymmetric processor we introduce
another variable, kg, to represent the fraction of power a single GPU core con-
sumes in its idle state (0 ≤ kg ≤ 1). We introduce two further variables, α and
β, to model the performance difference between a CPU core and a GPU core.
The first variable represents the fraction of a program’s execution time that is
parallelized on the CPU cores (0 ≤ α ≤ 1), while the second variable represents
a GPU core’s performance normalized to that of a CPU core (0 ≤ β). For exam-
ple, comparing the performance of a single CPU core (Intel Core-i7-960 multi-
core processor) against the performance of a single GPU core (NVIDIA GTX
280 GPU processor) yields values of β between 0.4 and 1.2.

We assume that one CPU core in an active state consumes a power of 1 and
the power budget (PB) of a processor is 100. Thus, g = (PB−c)/wg is the number
of the GPU cores embedded in the processor where variable wg represents the
active GPU core’s power consumption relative to that of an active CPU core
(0 ≤ wg).

3.1 Asymmetric Speedup

Now, if the sequential code of the program is executed on a single CPU core
the following equation represents the theoretical achievable asymmetric speedup
(speedupa).

Speedupa = s + N · (1 − s) · {α · c +
(1 − α) · g

β
} (4)

where N is the number of hybrid processors. Each hybrid processor contains c
CPU cores and g GPU cores.

3.2 Asymmetric Performance per Watt

To model the power consumption of an asymmetric processor we assume that
during the sequential computation phase, one CPU core is in active state and
the amount of power it consumes is 1, the c−1 idle CPU cores consume (c−1)kc

and the g idle GPU cores consume g · wg · kg. During the parallel computation
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Fig. 2. Asymmetric perf/W as a function of the number of hybrid processors and
various CPU-GPU chip configurations for s = 0.3, wg = 0.25, α = 0.5, kc = 0.3,
kg = 0.2 and β = 1.0.

on the CPU cores, the CPU cores consume c and the g idle GPU cores consume
g · wg · kg. During the parallel computation on the GPU cores, the GPU cores
consume g · wg and the idle CPU cores consume c · kc.

Let Ps, Pc, and Pg denote the power consumption during the sequential, CPU,
and GPU processing phases, respectively.

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc = α · (1 − s) · {c + g · wg · kg}
Pg = (1 − α) · (1 − s) · {g · wg + c · kc}

It requires time (1 − p) to perform the sequential computation, and times
α · p and (1−α) · p to perform the parallel computations on the CPU and GPU,
respectively, so the average power consumption Wa of an asymmetric processor
is as follows.

Wa = Ps + Pc + Pg (5)

Consequently, Perf /Wa of N asymmetric processors is expressed as

Perf
Wa

=
s + N · (1 − s) · {α · c + (1−α)·g

β }
Ps + N · (Pc + Pg)

(6)

Figure 2 shows the performance per watt of an asymmetric processor for
s = 0.3 as a function of the number of hybrid processors and as a function of CPU
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cores within each hybrid processor. It can be seen that the Perf /Wa decreases
slowly with the increase in the number of hybrid processors, as expected, and
decreases faster as the number of the CPU cores increases. Furthermore, the
optimal Perf /Wa is obtained for a chip configuration of 1 CPU core and 396
GPU cores.

4 CPU-GPU Simultaneous Processing

In the previous analysis we assumed that a program’s execution time is divided
into three phases as follows: a sequential phase where one core is active, a CPU
phase where the parallelized code is executed by the CPU cores, and a GPU
phase where the parallelized code is executed by the GPU cores. However, the
aim of hybrid CPU-GPU computing is to divide the program while allowing the
CPU and the GPU will execute their codes simultaneously.

4.1 Simultaneous Asymmetric Speedup

We conduct our analysis assuming that the CPU’s execution time overlaps with
the GPU’s execution time. Such an overlap occurs when the CPU’s execution
time α · p · c equals the GPU’s execution time (1−α)·p·g

β . Let α′ denote the value
of α that applies to this equality:

α′ =
g

g + c · β

We assume that the sequential code of the program is executed on a single
CPU core. Thus, the following equation represents the theoretical achievable
simultaneous asymmetric speedup (speedupsa):

Speedupsa = s + N · (1 − s) · {α′ · c}
= s + N · (1 − s) · { (1 − α′) · g

β
} (7)

where N is the number of hybrid processors. Each hybrid processor contains c
CPU cores and g GPU cores.

4.2 Simultaneous Asymmetric Perf/W

To model the power consumption of an asymmetric processor in a simultaneous
processing mode, we assume that one core is active during the sequential com-
putation and consumes a power of 1, while the remaining c − 1 idle CPU cores
consume (c − 1)kc and g idle GPU cores consume g · wg · kg. Thus, during the
parallel computation time period, c active CPU cores consume c and g active
GPU cores consume g · wg. It requires (1 − p) to execute sequential code and
α′ · p to execute the parallel codes on the CPU and the GPU simultaneously,
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Fig. 3. Simultaneous Asymmetric Perf/W as a function of the number of hybrid proces-
sors and various CPU-GPU chip configurations for s = 0.3, wg = 0.25, kc = 0.3,
kg = 0.2 and β = 1.0.

so the average power consumption of an asymmetric processor in a simultaneous
processing mode is

Wsa = Ps + Pc + Pg (8)

where

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc + Pg = α′ · (1 − s) · {c + g · wg}

Consequently, Perf /Wsa of N asymmetric processors in a simultaneous
processing mode is expressed as follows.

Perf
Wsa

=
s + N · (1 − s) · {α′ · c}

Ps + N · (Pc + Pg)
(9)

Figure 3 shows the performance per watt of an asymmetric processor, as
modeled by Eq. (9), for s = 0.3 as a function of the number of hybrid proces-
sors and as a function of CPU cores within each hybrid processor. It can be
observed that the Perf /Wsa slightly decreases with the increase in the number
of hybrid processors. When the performance of the CPU cores dominates, the
graph increases rapidly as the number of CPU cores increases (and the number
of GPU cores is decreases). Then, it reaches the point beyond which the perfor-
mance per watt decreases very rapidly because the dominance of the GPU cores
is negligible.
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Fig. 4. Symmetric (s) Asymmetric (a) and Simultaneous Asymmetric (sa) Perf/W as
a function of the number of CPU cores for one hybrid processor and for s = 0.3,
wg = 0.25, α = 0.5 and β = 2.0.

5 Synthesis

Figure 4 shows the performance per watt of the three processing schemes that
were studied in this research (symmetric (s), asymmetric (a), and simultaneous
asymmetric (sa)) and how they are affected by chip configuration. First, it can be
observed that the chip configuration has no effect on Perf /W while processing
in symmetric mode, as can be expected. In simultaneous asymmetric processing
mode, Perf /W improves with increasing number of CPU cores until it reaches
peak performance for a chip configuration of approximately 85 CPU cores and
60 GPU cores. Beyond this point, Perf /W decreases rapidly to a point where the
contribution of the GPU cores is negligible. On the other hand, in asymmetric
processing mode, a chip configuration consisting of a single CPU core yields an
optimal performance per watt, and any attempt to increase the number of CPU
cores in the chip organization leads to a significant decrease in performance per
watt.

6 Related Work

Hill and Marty [14] studied the implications of Amdahl’s law on multi-core hard-
ware resources and proposed the design of future chips based on the overall chip
performance rather than core efficiencies. The major assumption in that model
was that a chip is composed of many basic cores and their resources can be com-
bined dynamically to create a more powerful core with higher sequential per-
formance. Using Amdahl’s law, they showed that asymmetric multi-core chips
designed with one fat core and many thin cores exhibited better performance
than symmetric multi-core chip designs.
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Woo and Lee [2] developed a many-core performance per energy analyti-
cal model that revisited Amdahl’s Law. Using their model the authors investi-
gated the energy efficiency of three architecture configurations. The first archi-
tecture studied contained multi-superscalar cores, the second architecture con-
tained many simplified and energy efficient cores, and the third architecture was
an asymmetric configuration of one superscalar core and many simplified energy
efficient cores. The evaluation results showed that under restricted power budget
conditions the asymmetric configuration usually exhibited better performance
per watt. The energy consumption was reduced linearly as the performance was
improved with parallelization scales. Furthermore, improving the parallelization
efficiency by load balancing among processors increased the efficiency of power
consumption and increased the battery life.

Sun and Chen [15] studied the scalability of multi-core processors and reached
more optimistic conclusions compared with the analysis conducted by Hill and
Marty [14]. The authors suggested that the fixed-size assumption of Amdahl’s
law was unrealistic and that the fixed-time and memory-bounded models might
better reflect real world applications. They presented extensions of these models
for multi-core architectures and showed that there was no upper bound on the
scalability of multi-core architectures. However, the authors suggested that the
major problem limiting multi-core scalability is the memory data access delay
and they called for more research to resolve this memory-wall problem.

Esmaeilzadeh et al. [16] performed a systematic and comprehensive study to
estimate the performance gains from the next five multi-core generations. Accu-
rate predictions require the integration of as many factors as possible. Thus, the
study included: power, frequency and area limits; device, core and multi-core
scaling; chip organization; chip topologies (symmetric, asymmetric, dynamic,
and fused); and benchmark profiles. They constructed models based on pes-
simistic and optimistic forecasts, and observations of previous works with data
from 150 processors. The conclusions were not encouraging.

7 Conclusions

The analysis of three analytical models of symmetric, asymmetric, and simulta-
neous asymmetric processing using two performance metrics with regard to vari-
ous chip configurations suggest that future many-core processors should be a pri-
ori designed to include one or a few fat cores alongside many efficient thin cores
to support energy efficient hardware platforms. Moreover, to achieve optimal
scalability and energy savings, a dynamic configuration mechanism is required
for identifying and implementing the optimal chip organization.



132 A. Marowka

References

1. Moore, G.: Cramming more components onto integrated circuits. Electronics
38(8), 114–117 (1965)

2. Woo, D.H., Lee, H.S.: Extending Amdahl’s law for energy-efficient computing in
the many-core era. IEEE Comput. 38(11), 32–38 (2005)

3. Kumar, R., et al.: Heterogeneous chip multiprocessors. IEEE Comput. 38(11),
32–38 (2005)

4. Mantor, M.: Entering the Golden Age of Heterogeneous Computing. C-
DAC PEEP 2008. http://ati.amd.com/technology/streamcomputing/IUCAA
Pune PEEP 2008.pdf

5. Kogge, P., et al.: ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems. DARPA, Washington, D.C (2008)

6. Fuller, S.H., Millett, L.I.: Computing performance: game over or next level? IEEE
Comput. 44(1), 31–38 (2011)

7. Borkar, S.: Thousand core chips: a technology perspective. In: Proceedings of 44th
Design Automation Conference (DAC 2007), pp. 746–749. ACM Press (2007)

8. Marowka, A.: Back to thin-core massively parallel processors. IEEE Comput.
44(12), 49–54 (2011)

9. Hillis, D.: The Pattern on the Stone: The Simple Ideas that Make Computers
Work. Basic Books, New York (1998)

10. Shi, Y.: Reevaluating Amdahl’s Law and Gustafson’s Law (1996). http://www.
cis.temple.edu/shi/docs/amdahl/amdahl.html

11. Amdahl, G.M.: Validity of the single-processor approach to achieving large-scale
computing capabilities. In: Proceeidngs of American Federation of Information
Processing Societies Conference, pp. 483–485. AFIPS Press (1967)

12. Gustafson, J.L.: Reevaluating Amdahl’s law. Comm. ACM 31, 532–533 (1988)
13. Marowka, A.: Analytical modeling of energy efficiency in heterogeneous proces-

sors. Comput. Electr. Eng. J. 39(8), 2566–2578 (2013). Elsevier press
14. Hill, M.D., Marty, M.R.: Amdahl’s law in the multicore era. IEEE Comput. 41,

33–38 (2008)
15. Sun, X.-H., Chen, Y.: Reevaluating Amdahl’s law in the multicore era. J. Parallel

Distrib. Comput. 70, 183–188 (2010)
16. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.C.:

Dark silicon and the end of multicore scaling. In: Proceeding of 38th International
Symposium on Computer Architecture (ISCA), pp. 365–376, June 2011

http://ati.amd.com/technology/streamcomputing/IUCAA_Pune_PEEP_2008.pdf
http://ati.amd.com/technology/streamcomputing/IUCAA_Pune_PEEP_2008.pdf
http://www.cis.temple.edu/shi/docs/amdahl/amdahl.html
http://www.cis.temple.edu/shi/docs/amdahl/amdahl.html

	Extending Gustafson-Barsis's Law for Dual-Architecture Computing
	1 Introduction
	2 Symmetric Processors
	2.1 Symmetric Speedup
	2.2 Symmetric Performance per Watt

	3 Asymmetric CPU-GPU Processors
	3.1 Asymmetric Speedup
	3.2 Asymmetric Performance per Watt

	4 CPU-GPU Simultaneous Processing
	4.1 Simultaneous Asymmetric Speedup
	4.2 Simultaneous Asymmetric Perf/W

	5 Synthesis
	6 Related Work
	7 Conclusions
	References


