
Divisible Loads Scheduling in Hierarchical
Memory Systems with Time

and Energy Constraints

Maciej Drozdowski(B) and J ↪edrzej M. Marsza�lkowski

Institute of Computing Science, Poznań University of Technology,
Piotrowo 2, 60-965 Poznań, Poland

{Maciej.Drozdowski,Jedrzej.Marszalkowski}@cs.put.poznan.pl

Abstract. In this paper we consider scheduling distributed divisible
computations in systems with hierarchical memory for energy and time
performance criteria. Hierarchical memory allows to conduct computa-
tions on big data sets using out-of-core processing instead of coercing
application data fit into core storage. However, out-of-core computations
are more costly both in time and energy. A model for scheduling divis-
ible loads under time and energy criteria is introduced. Two types of
scheduling algorithms are proposed and evaluated: a single-installment
algorithm which builds optimum schedules but may use out-of-core stor-
age, and a set of multi-installment algorithms which use limited memory
but require more communications.

Keywords: Scheduling · Divisible loads · Hierarchical memory · Energy
efficiency · Performance evaluation

1 Introduction

Providing electricity and bearing its cost has become a key element in designing
and running big data centers and supercomputing installations [9]. Dissipating
heat generated in computations is currently one of the limitations to the further
growth of the CPU speeds [8]. Hence, energy efficiency is a very active research
area and recent advantages in this field are closely analyzed [14].

In this paper we study the trade-off between time performance and energy
cost in processing divisible loads on systems with hierarchical memory. Divisible
loads are data-parallel applications which can be divided into parts of arbitrary
sizes, and the parts can be processed independently in parallel. Divisible load
theory (DLT) has been proposed in [1,4] to analyze performance of distributed
computations and schedule them accordingly. Thus, DLT provides methods of
scheduling and analyzing performance of a broad class of distributed applications
operating on big data volumes [2,3,5,12]. Contemporary computer systems have
hierarchical memory organization. At the top of the hierarchy CPU registers
have the shortest access time, but they are scarcest. Processor caches establish
the next level of memory hierarchy. Main memory, here by convention referred
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 111–120, 2016.
DOI: 10.1007/978-3-319-32152-3 11

112 M. Drozdowski and J.M. Marsza�lkowski

to as RAM, has much bigger size but is again slower. The following levels of
memory hierarchy are based on external and networked storage: HDDs, NAS,
tapes, optical media, etc. In this study we reduce the above hierarchy to just two
types of memory: core comprising registers, caches, RAM, and out-of-core mem-
ory comprising all types of external storage. This partitioning has a practical
motivation. On the one hand, sizes of data (load) processed in big data appli-
cations far exceed size of CPU registers and caches. Hence, to a great extent,
core is transparent for a developer of such applications. On the other hand, core
accesses are managed by hardware, while out-of-core memory is accessed via soft-
ware wrappers (virtual memory, (networked) file systems), and consequently, it
is by orders of magnitude slower. Due to the limited core size a developer must
undertake steps to fit data in core. Contrarily, out-of-core storage offers nearly
unlimited storage but requires use of virtual memory or dedicated data manage-
ment subsystem [11]. Consequently, on-core and out-of-core computations have
different character both in the development and in performance.

Systems with hierarchical memory have been analyzed in DLT [7]. Energy
may be considered a special type of cost in DLT. Scheduling with monetary cost
has been considered in [13]. Energy in processing divisible loads on flat memory
systems has been subject of [6]. In this paper we combine nonlinear energy
consumption and computing time models specific for systems with hierarchical
memory. We analyze two types of solutions: a single-installment method which
sends load to processors once and multi-installment algorithms which send the
load in many iterations. Since the problem is bicriterial the trade-off between
time and energy will be analyzed.

Further organization of this work is as follows. In the next section we for-
mulate the scheduling problem and provide timing and energy use models. In
Sect. 3 algorithms solving the problem are proposed. Section 4 is dedicated to
evaluation of the proposed methods. Section 5 summarizes results of this work.

2 Problem Formulation

It is assumed that computations are performed in a single-level tree system with
root M0 (a.k.a. master, server, originator) and machines (computers,processors)
M1, . . . ,Mm at the leaves. The machines can be in one of four states: (1)
idle - consuming power P I , (2) starting - which takes time S and power PS ,
(3) networking - using power PN , (4) computing. Busy-waiting is considered the
same as networking state. Initially volume V of load is held by M0, M0 is in the
networking state, M1, . . . ,Mm are idle. M0 activates M1, . . . ,Mm which takes
energy SPS on each machine. Next load V is distributed in parts to machines
M1, . . . ,Mm. Transferring α units of load to Mi takes time αC, where C is com-
munication rate (in seconds per byte). M0 sends the load to processors one after
the other, i.e. load is distributed to slaves in the sequential manner. M0 acti-
vates Mis just-in-time which means that completion of the starting procedure
coincides with the beginning of receiving of the load to process. For simplicity of
exposition we assume that the time of returning results from Mis to M0 is very

Divisible Loads, Hierarchical Memory, Time, Energy 113

short compared to the whole schedule length T and can be neglected (this can
be easily relaxed in DLT [3,5,12]). The duration and energy cost of sending the
waking signal is negligible and starting some machine Mj can be performed in
parallel with some other machine Mi communicating with M0.

The time and energy of computations on load α depend on the load size,
precisely whether the load part fits in the main memory [7,10]. It is assumed
that the time of computing on load of size α is determined by a piecewise-linear
function τ(α) = max{a1α, a2α + b2}. The first component of τ corresponds
with computations in core with speed 1/a1, the second component represents
out-of-core computations. Function τ has two properties: τ(0) = 0 and τ(ρ) =
a1ρ = a2ρ + b2, where ρ is the size of main memory (RAM) available to the
application beyond which system starts using out-of-core memory. The energy
consumed in the computations is determined by an analogous function ε(α) =
max{k1α, k2α + l2} satisfying conditions ε(0) = 0, ε(ρ) = k1ρ = k2ρ + l2. The
problem considered here consists in constructing a schedule of minimum length
T and energy E. Since this problem is effectively bicriterial we will be solving
energy E minimization problem under constrained schedule length T .

3 Solution Methods

In this section we propose two strategies of load distribution. The first sends
the load to machines once. Consequently, load parts can be big and out-of-core
processing may be unavoidable. The second, iteratively distributes load chunks
of small size in multiple communications.

3.1 Optimum Single-Installment

A schedule for the current method is shown in Fig. 1a. In the schedule M0 busy-
waits S units of time for M1 initiation, then load V is distributed in parts
α1, . . . , αm to machines M1, . . . ,Mm, respectively. M0 communicates contin-
uously for time C

∑m
i=1 αi = CV and switches off. Thus, in the schedule of

length T , M0 consumes energy

E0 = PN (CV + S) + P I(T − CV − S).

Machine Mi remains idle until time C
∑i−1

i=1 αi (where
∑0

i=1 αi = 0), starts
in time S, receives its part of load in time Cαi, computes it in time τ(αi) and
switches off. Let us denote by ti = τ(αi) the time of computations on Mi and
by ei = ε(αi) the energy consumed in these computations. The duration of idle
intervals on machine Mi is T − S − Cαi − ti. The energy consumed by Mi is

Ei = PSS + PNCαi + ei + P I(T − S − Cαi − ti)

The problem of minimizing energy consumption E under limited schedule length
T can be formulated as a linear program:

114 M. Drozdowski and J.M. Marsza�lkowski

min
m∑

i=0

Ei (1)

S + C
i∑

j=1

αj + ti ≤ T i = 1, . . . ,m (2)

max{a1αi, a2αi + b2} = ti i = 1, . . . ,m (3)
max{k1αi, k2αi + l2} = ei i = 1, . . . ,m (4)

m∑

i=1

αi = V (5)

αi, ti, ei ≥ 0 i = 1, . . . ,m (6)

In the above formulation inequality (2) guarantees feasibility of the schedule on
each processor. Constraints (3), (4) instantiate functions τ(α), ε(α). We present
constraints (3), (4) in a simplified form which is accepted by contemporary
solvers (e.g. CPLEX), but it can be implemented in any LP solver by splitting
the max function into two inequalities and adding cost of exceeding constraints.
By Eq. (5) all work is executed.

3.2 Multi-Installment Methods

In the next three algorithms M0 sends load chunks of equal size α. Actual meth-
ods of calculating α for each specific algorithm will be given in the following.
The sequence of communications to M1, . . . ,Mm is repeated iteratively until
exhausting the load. The number of communications may be indivisible by m
and the size αf of the last sent chunk may be smaller than α. It is assumed
that computations on each of the machines M1, . . . ,Mm last longer than send-
ing the load to the remaining m − 1 machines. This imposes a requirement that
(m − 1)Cα ≤ τ(α) which can be reformulated as m ≤ a1/C + 1 for α ≤ ρ and
m ≤ a2/C +1+b2/(Cα) for α > ρ. Thus, the number of processors which can be
effectively exploited is limited and it is bigger when slower out-of-core processing
takes place. Now we derive schedule length T and energy E used when chunks
of size α are applied. For simplicity of exposition let m > 1.

S

S

S

T

S

a) b)

S

C

M

M

M3

Mm

M

C t

t

t3

tm

C 2

C 2

C 3

C 3

C m

C m

S

S

S

S

S
T

Nf

C CC C

C

C

C

C

C

C C f

C f (f)

C (

(

(

(

(

(

M

M

M3

Mm

M ...

...

Fig. 1. (a) Single-installment schedule. (b) Multi-installment schedule.

The number of complete distribution iterations in which each of m machines
obtain load α is No = � V

αm�. The number of chunks of size α in the last

Divisible Loads, Hierarchical Memory, Time, Energy 115

incomplete iteration is Nf = �(V − Nomα)/α�. Size of the last chunk is
αf = V − (mNo + Nf)α. Then, the schedule length is (cf. Fig. 1b):

T = S + No(Cα + τ(α)) +
{

NfCα + max{αfC + τ(αf), τ(α)} Nf > 0
max{(m − 1)Cα,αfC + τ(αf)} Nf = 0

Deriving energy consumption requires calculating idle time, computing and com-
munication durations on M1, . . . ,Mm. At the start of the schedule Mi is idle
until time C(i − 1)α. Thus, total energy used before machines activation is
EI

1 = P I
∑m

i=1(i − 1)Cα = P I(m − 1)m/2Cα. Starting m machines consumes
ES = PSmS units of energy. Energy consumed on M1, . . . ,Mm in the computa-
tions and communications is ER = (Nom+Nf)(PNCα+ε(α))+PNCαf +ε(αf).

Let us assume that αfC + τ(αf) < τ(α), i.e., the schedule ends on the
last machine receiving a chunk of size α (see Fig. 1b). The idle time on Mi ∈
{M1, . . . ,MNf

} is (Nf − i)Cα, on MNf+1 it is τ(α) − Cαf − τ(αf), and on
Mi ∈ {MNf+2, . . . ,Mm} it is τ(α) − (i − Nf − 1)Cα. Thus, total idle time on
M1, . . . ,Mm at the end of the schedule is

I =
Nf∑

i=1

(Nf − i)Cα + τ(α) − Cαf − τ(αf) +
m∑

i=Nf+2

(τ(α) − (i − Nf − 1)Cα).

Suppose that αfC+τ(αf) ≥ τ(α), which means that MNf+1 has no idle time.
Idle time on machines Mi ∈ {M1, . . . ,MNf

} is (Nf − i)Cα+τ(αf)+Cαf −τ(α)
and on Mi ∈ {MNf+2, . . . ,Mm} it is τ(αf)+Cαf − (i−Nf −1)Cα. Hence, total
idle time on M1, . . . ,Mm at the end of the schedule is

I =

Nf∑

i=1

((Nf − i)Cα + τ(αf) + Cαf − τ(α)) +
m∑

i=Nf+2

(τ(αf) + Cαf − (i − Nf − 1)Cα).

Energy wasted in idle waiting at the end of the schedule is EI
2 = P II.

It remains to calculate the energy consumed by the originator. M0 starts
in networking state and then it is continuously communicating or busy-waiting
until distributing the last piece of work. The idle time on M0 is max{τ(α) −
C(αf), τ(αf)}. Hence, the energy consumed on M0 is E0 = PNT + (P I −
PN)max{τ(α) − C(αf), τ(αf)}. Finally, total energy consumed by the meth-
ods using load chunks of fixed size α is

E = EI
1 + ES + ER + EI

2 + E0.

Below we outline multi-installment scheduling algorithms with their specific
ways of defining load chunk sizes α.

Simple Static Chunk (SSC) algorithm assumes that load chunk sizes are equal
to the size of available RAM memory, i.e. αSSC = ρ. Thus, SSC avoids using
out-of-core memory. A disadvantage of simple static chunk algorithm are the
final outstanding load chunks. It means that if q1 = �V/(ρm)� 	= �V/(ρm)� = q2
then in the last iteration of load distribution many processors may remain idle.

116 M. Drozdowski and J.M. Marsza�lkowski

Static Chunk with Underload (SCU) algorithm assumes αSCU = V/(q1m). Thus,
algorithm SCU sends load chunks of size at most ρ and avoids out-of-core process-
ing at the cost of one more iteration.

Static Chunk with Overload (SCO) attempts to round the number of commu-
nication iterations down, at the cost of possibly using out-of-core processing.
Hence, in SCO size of the load chunk is αSCO = V/(m max{1, q2}).

Guided Self-Scheduling (GSS) algorithm adapts the idea of the classic loop
scheduling algorithm [5]. Let V ′ be the size of load remaining on M0. Chunk
sizes are calculated as αGSS = min{V ′,max{1,min{V ′/m, ρ}}}. For V > ρ, the
algorithm starts with load chunk sizes of RAM size. When V ′ < ρ, GSS gradu-
ally decreases chunk sizes and thus minimizes the spread of machine completion
times. GSS does not send load chunk sizes smaller than some fixed size which
is denoted here as 1 by convention. This can be a result of data structures
representing the solved problem or some size which sufficiently amortizes fixed
overheads in processing one chunk. For V
 mρ the maximum number of usable
processors in GSS is the same as in the previous algorithms because initial load
chunks have size ρ. However, if V < mρ GSS uses chunks smaller than ρ, chunk
sizes decrease and communications are getting shorter. In such a situation GSS
is able to start more machines than SSC, SCU, SCO without entailing idle time
on M1, . . . ,Mm.

4 Performance Comparison

In this section we will analyze performance as consumed energy E vs sched-
ule length T . We will also analyze sensitivity of the algorithms to changing
problem size V and system parameters. Note, that only the single-installment
(SI) method is capable of changing energy consumption E with changing T .
A study of the E vs T trade-off computed by SI can be found in [10]. The
multi-installment methods do not offer such a trade-off and the only parame-
ter which can impact E and T , given computing system and problem size, is
the number of machines m. Hence, in the following figures we study impact
of m on E and T . In order to compare SI against multi-installment meth-
ods, the shortest schedules on the given number of machines m will be used
for SI method. Unless stated to be otherwise the system and application para-
meters were the following: V = 10 GB, a1 = 0.082 s/MB, a2 = 2.366 s/MB,
b2 = −2274.9 s, k1=13 J/MB, k2 = 294 J/MB, l2 = −280 kJ, C =7.8 ms/MB,
S = 10 s, P I = 14 W, PN = 91 W, PS = 101 W, ρ = 996 MB. It can be verified
that processing out-of-core is roughly 28 times slower per MB than processing
on-core. The energy consumption per MB is roughly 23 times higher out-of-core.
Communication rate C corresponds with communication speed of ≈1 Gb per
second. P I , S, PS represent a very light-weight system which quite effectively
switches from hibernation to the running state. The size of RAM accessible for
storing data is ρ = 996 MB. These values have been measured in a real system,
for an application consisting in searching for patterns in a big data file [6,10].

Divisible Loads, Hierarchical Memory, Time, Energy 117

Fig. 2. Time-energy diagram for the default system.

We start with a time-energy chart in Fig. 2 for the above reference parame-
ters, to introduce the phenomena guiding performance. The dependencies are
shown only partially for better visibility (but will be shown in their entirety in
the next figure). It can be observed that with growing m not only T decreases
but so does used energy E. Hence, the smallest m is shown on the right-hand-
side of the chart. Energy performance is ruled by the following effects. On the
one hand, growing number of machines shortens the schedule and the root M0

is using less energy. On the other hand, adding machines incurs energy cost. As
a result, it can be observed that energy first decreases with shortening of the
schedule, but then is starts to increase. This phenomenon can be observed in
the following figures. The shortest schedules are built by the single installment
method (SI, in the upper-left corner), but using m = 24 and more machines
has big cost in energy needed to start them. At these values of m it is possible
to fit the whole load V in core memories. Note that SI has apparent energy
use minimum at m ≈ 28. Big irregularities in time and energy can be observed
in SCO. Since V is not always divisible by mρ and rounding chunk sizes up
results in various values of the difference between α and ρ, even small excesses
of chunk sizes above ρ escalate time and energy consumption. Consequently,
SCO has big irregularity in performance and should be avoided. Results for the
simple static chunk (SSC) algorithm are shown for three chunk sizes: 680 MB,
996 MB, 998 MB, where ρ = 996MB. It can be seen that even small increase of
the chunk size beyond ρ has bad impact on the energy use. Chunks smaller than
ρ have advantage of shorter waiting time at the start of the schedule and better
load balance at its end. Hence, a small dominance of SSC with α < ρ for the
maximum usable number of machines. For the given parameters the maximum
number of processors which can be applied without idle time is m = 11. Static

118 M. Drozdowski and J.M. Marsza�lkowski

chunk with underload (SCU), SSC with α < ρ and guided-self-scheduling (GSS)
have very similar performance. Still, SCU suffers from minor irregularities in
performance (T,E for m = 11 are bigger than for m = 10) which are results of
uneven rounding of V/(mρ). Moreover, GSS is able to construct slightly shorter
schedule due to decreasing chunk sizes and consequently smaller dispersion of
processor completion times.

In Fig. 3a time-energy chart is shown for V = 10 G and V = 100 G. The
static chunk with overload (SCO) manifests great irregularities because T,E are
not monotonic with growing m. Due to this adverse feature SCO will be omitted
in the further discussion. The SI method greatly improves its performance with
growing m because it is becoming able to shift the load from the out-of-core to
the on-core processing for sufficiently big m. Finally, at V = 10 G and m > 11
its performance becomes comparable with multi-installment methods. In Fig. 3b
time-energy chart is shown for ρ = 100 MB and ρ = 10 GB. For SI dependencies
for ρ = 1 GB, 10 GB are shown because SI’s results for ρ = 100 MB are out of
the range shown in Fig. 3b. It can be seen that SI method is competitive with
the remaining algorithms only if the load is stored in core. What is more, under
such circumstances SI is able to build the best energy schedules (lower-left part
of the chart). SI is capable of constructing shorter schedules, but it activates
new machines which brings energy costs bigger than in the other methods. SSC
method for ρ = 10 G uses just one load chunk, schedule length T is constant,
and adding each new machine only increases energy costs. Surprisingly, energy
performance of the multi-installment methods for small ρ = 100 MB is better
than for ρ = 10 GB because small load chunks reduce initial and final idle times.
It can be also observed that GSS for ρ = 10 GB is capable of constructing
shorter schedules than other multi-installment methods because by shrinking
chunk sizes it is able to avoid idle times on processors and still activate more
of them, though using more energy. Both GSS and SI approach the minimum

a) b)

Fig. 3. Time-energy dependence (a) for V = 10 G and V = 100 G. (b) for varying ρ.

Divisible Loads, Hierarchical Memory, Time, Energy 119

a) b)

Fig. 4. Time-energy dependence (a) for S = 10 s and S = 0.1 s, (b) for changing a1.

schedule length determined by communication time: S + CV . However, GSS is
more energy-efficient.

In Fig. 4a time-energy relation is shown for two values of the startup time
S = 0.1 s and S = 10 s. Two effects of reducing startup time can be observed.
The schedules get shorter roughly by the startup time of the first processor, and
energy consumption is decreased by the amount of energy saved in the startup of
the machines. In Fig. 4b impact of changing processing rate a1 is analyzed. The
value of a1 can be changed by designing a faster algorithm to solve the considered
problem. Assuming, that this new application runs on the same computer, also k1
must decrease proportionally. Three values of a1 are shown: a1 = 0.1, 0.05, 0.02
which corresponds with an algorithm twice and five time faster. The number
of processors which can be activated by algorithms SSC, SCU decreases with
increasing processing speed (a1 decreases). Hence, this number decreases from
m = 13 machines for a1 = 0.1 to m = 3 for a1 = 0.02. Though time- and
energy-performance of all multi-installment algorithms is similar, GSS algorithm
has an advantage of using more machines than SSC, SCU and consequently
building shorter schedules though at higher energy costs. The SI method is able
to construct schedules of comparable length but by using more machines and
energy. The advantage in energy of multi-installment methods over SI grows
with decreasing a1 (i.e. increasing speed).

5 Conclusions

In this paper time- and energy-performance of scheduling algorithms for divis-
ible computations in systems with hierarchical memory has been studied.
The time- and energy-performance is determined by: (i) size of load chunks
which regulates on-/out-of-core processing, (ii) number of usable processors
which decide on minimum schedule length, (iii) amount of idle time which rule

120 M. Drozdowski and J.M. Marsza�lkowski

wasted energy. It turns out that intensive use of out-of-core computations is not
a good idea and should be avoided as demonstrated by SCO method. Yet, it
cannot be unanimously concluded that on-core processing is the only reasonable
choice because in more complex applications the results obtained in small pieces
still must be merged (which was not considered here). Hence, in such more com-
plex applications, e.g. in sorting, some degree of out-of-core computations maybe
acceptable. Algorithms SI and GSS are able to employ the biggest number of
processors and hence build the shortest schedules. However, SI is energetically
competitive only if whole load fits in core memories. Moreover, SI has much
higher computational complexity and requires information on system parame-
ters. GSS may perform quite many communications which in practice may be
cumbersome and costly. Here communication costs were limited by bounding
from below chunk size, but this may cripple performance. Thus, a more detailed
model of communication cost can be a subject of the further work. Overall,
GSS algorithm can be recommended as a good compromise of performance and
implementation simplicity.

References

1. Agrawal, R., Jagadish, H.V.: Partitioning techniques for large-grained parallelism.
IEEE Trans. Comput. 37, 1627–1634 (1988)

2. Berlińska, J., Drozdowski, M.: Scheduling divisible MapReduce computations. J.
Parallel Distrib. Comput. 71, 450–459 (2011)

3. Bharadwaj, V., Ghose, D., Mani, V., Robertazzi, T.: Scheduling Divisible Loads
in Parallel and Distributed Systems. IEEE Computer Society Press, Los Alamitos
(1996)

4. Cheng, Y.-C., Robertazzi, T.G.: Distributed computation with communication
delay. IEEE Trans. Aerosp. Electron. Syst. 24, 700–712 (1988)

5. Drozdowski, M.: Scheduling for Parallel Processing. Springer, London (2009)
6. Drozdowski, M., Marsza�lkowski, J.M., Marsza�lkowski, J.: Energy trade-offs analy-

sis using equal-energy maps. Future Gener. Comput. Syst. 36, 311–321 (2014)
7. Drozdowski, M., Wolniewicz, P.: Out-of-core divisible load processing. IEEE Trans.

Parallel Distrib. Syst. 14, 1048–1056 (2003)
8. Fuller, S.H., Millett, L.I.: Computing performance: game over or next level? Com-

puter 41, 31–38 (2011)
9. Katz, R.H.: Tech titans building boom. IEEE Spectr. 46(INT), 36–49 (2009).

http://www.spectrum.ieee.org/feb09/7327
10. Marsza�lkowski, J.M., Drozdowski, M., Marsza�lkowski, J.: Time and energy per-

formance of parallel systems with hierarchical memory. J. Grid Comput. (2015,
accepted). doi:10.1007/s10723-015-9345-8

11. Mills, R.T., Yue, C., Stathopoulos, A., Nikolopoulos, D.S.: Runtime and program-
ming support for memory adaptation in scientific applications via local disk and
remote memory. J. Grid Comput. 5, 213–234 (2007)

12. Robertazzi, T.: Ten reasons to use divisible load theory. IEEE Comput. 36, 63–68
(2003)

13. Sohn, J., Robertazzi, T.G., Luryi, S.: Optimizing computing costs using divisible
load analysis. IEEE Trans. Parallel Distrib. Syst. 9, 225–234 (1998)

14. The Green 500, November 2014. http://www.green500.org/

http://www.spectrum.ieee.org/feb09/7327
http://dx.doi.org/10.1007/s10723-015-9345-8
http://www.green500.org/

	Divisible Loads Scheduling in Hierarchical Memory Systems with Time and Energy Constraints
	1 Introduction
	2 Problem Formulation
	3 Solution Methods
	3.1 Optimum Single-Installment
	3.2 Multi-Installment Methods

	4 Performance Comparison
	5 Conclusions
	References

