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Preface

This volume comprises the proceedings of the 11th International Conference on Par-
allel Processing and Applied Mathematics – PPAM 2015, which was held in Krakow,
Poland, September 6–9, 2015. It was organized by the Department of Computer and
Information Science of the Częstochowa University of Technology together with with
the AGH University of Science and Technology, under the patronage of the Committee
of Informatics of the Polish Academy of Sciences, in cooperation with the ICT COST
Action IC1305 “Network for Sustainable Ultrascale Computing (NESUS).” The main
organizer was Roman Wyrzykowski.

PPAM is a biennial conference. Ten previous events have been held in different
places in Poland since 1994. The proceedings of the last six conferences have been
published by Springer in the Lecture Notes in Computer Science series (Nałęczów,
2001, vol. 2328; Częstochowa, 2003, vol. 3019; Poznań, 2005, vol. 3911; Gdańsk,
2007, vol. 4967; Wrocław, 2009, vols. 6067 and 6068; Toruń, 2011, vols. 7203 and
7204; Warsaw, 2013, vols. 8384 and 8385).

The PPAM conferences have become an international forum for exchanging ideas
between researchers involved in parallel and distributed computing, including theory
and applications, as well as applied and computational mathematics. The focus of
PPAM 2015 was on models, algorithms, and software tools that facilitate efficient and
convenient utilization of modern parallel and distributed computing architectures, as
well as on large-scale applications, including big data problems.

This meeting gathered more than 190 participants from 33 countries. A strict ref-
ereeing process resulted in the acceptance of 111 contributed presentations, while
approximately 43 % of the submissions were rejected. Regular tracks of the conference
covered important fields of parallel/distributed/cloud computing and applied mathe-
matics such as:

– Numerical algorithms and parallel scientific computing
– Parallel non-numerical algorithms
– Tools and environments for parallel/distributed/cloud computing
– Applications of parallel computing
– Applied mathematics, neural networks, evolutionary computing, and metaheuristics

The plenary and invited talks were presented by:

– David A. Bader from the Georgia Institute of Technology (USA)
– Costas Bekas from IBM Research — Zurich (Switzerland)
– Pete Beckman from the Argonne National Laboratory (USA)
– Christopher Carothers from the Rensselaer Polytechnic Institute (USA)
– Barbara Chapman from the University of Houston (USA)
– Willem Deconinck from the European Centre for Medium-Range Weather Forecast

(UK)
– Geoffrey C. Fox from Indiana University (USA)



– Dieter Kranzlmueller from the Ludwig-Maximilians-Universität München
(Germany)

– Vladik Kreinovich from the University of Texas at El Paso (USA)
– Alexey Lastovetsky from the University College Dublin (Ireland)
– Carlos Osuna from ETH Zurich (Switzerland)
– Srinivasan Parthasarathy from the Ohio State University (USA)
– Enrique S. Quintana-Orti from the Universidad Jaime I (Spain)
– Thomas Rauber from the University of Bayreuth (Germany)
– Daniel Reed from the University of Iowa (USA)
– Rizos Sakellariou from the University of Manchester (UK)
– Boleslaw K. Szymanski from the Rensselaer Polytechnic Institute (USA)
– Manuel Ujaldon from Nvidia
– Jeffrey Vetter from the Oak Ridge National Laboratory and Georgia Institute of

Technology (USA)
– Richard W. Vuduc from the Georgia Institute of Technology (USA)
– Torsten Wilde from the Leibnitz Supercomputing Centre (LRZ) (Germany)

Important and integral parts of the PPAM 2015 conference were the workshops:

– Minisympsium on GPU Computing organized by José R. Herrero from the
Universitat Politecnica de Catalunya (Spain), Enrique S. Quintana-Ortí from the
Universidad Jaime I (Spain), and Robert Strzodka from Heidelberg University
(Germany).

– The Third Workshop on Models, Algorithms and Methodologies for Hierarchical
Parallelism in New HPC Systems organized by Giulliano Laccetti and Marco
Lapegna from the University of Naples Federico II (Italy), and Raffaele Montella
from the University of Naples Parthenope (Italy).

– Workshop on Power and Energy Aspects of Computation organized by Jee Choi
from the IBM T.J. Watson Research Center (USA), Piotr Luszczek from the
University of Tennessee (USA), Leonel Sousa from the Technical University of
Lisbon (Portugal), and Richard W. Vuduc from the Georgia Institute of Technology
(USA).

– Workshop on Scheduling for Parallel Computing— SPC 2015 organized by Maciej
Drozdowski from the Poznań University of Technology (Poland).

– The 6th Workshop on Language-Based Parallel Programming Models — WLPP
2015 organized by Ami Marowka from the Bar-Ilan University (Israel).

– The 5th Workshop on Performance Evaluation of Parallel Applications on Large-
Scale Systems organized by Jan Kwiatkowski from the Wrocław University of
Technology (Poland).

– Workshop on Parallel Computational Biology — PBC 2015 organized by Bertil
Schmidt from the University of Mainz (Germany) and Jarosław Żola from the
University at Buffalo (USA).

– Workshop on Applications of Parallel Computations in Industry and Engineering
organized by Raimondas Čiegis from the Vilnius Gediminas Technical University
(Lithuania) and Julius Žilinskas from the Vilnius University (Lithuania).
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– Minisymposium on HPC Applications in Physical Sciences organized by Grzegorz
Kamieniarz and Wojciech Florek from the A. Mickiewicz University in Poznań
(Poland).

– The Second Workshop on Applied High-Performance Numerical Algorithms in
PDEs organized by Piotr Krzyżanowski and Leszek Marcinkowski from Warsaw
University (Poland) and Talal Rahman from Bergen University College (Norway).

– Minisymposium on High-Performance Computing Interval Methods organized by
Bartłomiej J. Kubica from the Warsaw University of Technology (Poland).

– Workshop on Complex Collective Systems organized by Paweł Topa and Jarosław
Wąs from the AGH University of Science and Technology (Poland).

– Special Session on Efficient Algorithms for Problems with Matrix and Tensor
Decompositions organized by Marian Vajtersic from the University of Salzburg
(Austria) and Gabriel Oksa from the Slovak Academy of Sciences.

– Special Session on Algorithms, Methodologies, and Frameworks for HPC in
Geosciences and Weather Prediction organized by Zbigniew Piotrowski from the
Institute of Meteorology and Water Management (Poland) and Krzysztof Rojek
from the Częstochowa University of Technology (Poland).

The PPAM 2015 meeting began with four tutorials:

– Scientific Computing with GPUs, by Dominik Göddeke from the University of
Stuttgart (Germany), Robert Strzodka from Heidelberg University (Germany), and
Manuel Ujaldon from the University of Malaga (Spain) and Nvidia.

– Advanced Scientific Visualization with VisNow, by Krzysztof Nowiński, Bartosz
Borucki, Kerstin Kantiem, and Szymon Jaranowski from the University of Warsaw
(Poland).

– Parallel Computing in Java, by Piotr Bała from the Warsaw University of Tech-
nology (Poland) and Marek Nowicki, Łukasz Górski, Magdalena Ryczkowska from
the Nicolaus Copernicus University (Poland).

– Introduction to Programming with Intel Xeon Phi, by Krzysztof Rojek and Łukasz
Szustak from the Częstochowa University of Technology (Poland).

An integral part of the GPU Tutorial was the CUDA quiz with participants chal-
lenged to maximize the performance on a common GPU model. The winner was Miłosz
Ciżnicki from the Poznan Supercomputing and Networking Center. The winner
received the prize of a Tesla K40 GPU generously donated by Nvidia for the conference
given its role of PPAM sponsor. The second and third prizes were granted, respectively,
to MichałAntkowiak and Łukasz Kucharski, both from the A. Mickiewicz University in
Poznań.

Nvidia also donated another prize, GeForce GTX480 GPU, for the authors of the
best paper presented at the Minisymposium on GPU Computing. This prize was
awarded to Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens from
the University of Mons, who presented the paper “IVM-Based Work Stealing for
Parallel Branch-and-Bound on GPU.”

Special Session on Algorithms, Methodologies, and Frameworks for HPC in Geo-
sciences and Weather Prediction: Contemporary and future applications of numerical
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weather prediction, climate research, and studies in geosciences demand multidisciplinary
advancements in computing methodologies, including the use of multi-/manycore
processors and accelerators, scalable and energy-efficient frameworks, and big data
strategies, as well as new or improved numerical algorithms. This includes, for example,
development of scalable, high-resolutionmethods for integration offluid PDEs and efficient
iterative solvers, highly optimized ports to modern hardware (CPU, GPU, Xeon Phi), code
development and portability strategies, and libraries for handling geophysical datasets.

The special session served as a multidisciplinary forum for the discussion of state-
of-the-art research and development toward the next-generation geophysical fluid
solvers and weather/climate prediction applications.

The special session featured a number of invited and contributed talks, covering
recent advances in numerical algorithms, accelerator methodologies, energy-efficent
computing, and large dataset managements, including:

• Algorithms and tools for the extreme-scale numerical weather prediction (invited
plenary talk by Willem Deconinck et al.)

• Adaptation of COSMO Consortium weather and climate numerical models to
hybrid architecures (invited plenary talk by Carlos Osuna et al.)

• Highly efficient port of the GCR solver using high-level stencil framework on
multi- and many-core architectures (by M. Ciżnicki et al.)

• Autotuned scheduler for time/energy optimization for a fully three-dimensional
MPDATA advection scheme on the hybrid CPU-GPU clusters (by K. Rojek et al.)

• Parallel alternating direction implicit preconditioners for all-scale atmospheric
models (by Z. Piotrowski et al.)

The organizers are indebted to the PPAM 2015 sponsors, whose support was vital to
the success of the conference. The main sponsor was Intel Corporation and the other
sponsors were: Nvidia, Action S.A., and Gambit. We thank all the members of the
international Program Committee and additional reviewers for their diligent work in
reviewing the submitted papers. Finally, we thank all of the local organizers from the
Częstochowa University of Technology and the AGH University of Science and
Technology, who helped us run the event very smoothly. We are especially indebted to
Grażyna Kołakowska, Urszula Kroczewska, Łukasz Kuczyński, Adam Tomaś, and
Marcin Woźniak from the Częstochowa University of Technology; and to Krzysztof
Zieliński, Kazimierz Wiatr, and Jacek Kitowski from the AGH University of Science
and Technology.

We hope that this volume will be useful to you. We would like everyone who reads
it to feel invited to the next conference, PPAM 2017, which will be held during
September 10–13, 2017, in Lublin, the largest Polish city east of the Vistula River.

January 2016 Roman Wyrzykowski
Jack Dongarra
Ewa Deelman

Konrad Karczewski
Jacek Kitowski

Kazimierz Wiatr
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Abstract. The acceleration of inexpensive ARM-based computing
nodes with high-end CUDA enabled GPGPUs hosted on x86 64 machines
using the GVirtuS general-purpose virtualization service is a novel app-
roach to hierarchical parallelism. In this paper we draw the vision
of a possible hierarchical remote workload distribution among differ-
ent devices. Preliminary, but promising, performance evaluation data
suggests that the developed technology is suitable for real world
applications.
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1 Introduction

The High Performance Cloud Computing is now offering an outstanding elas-
tic infrastructure providing the performances required by most e-science appli-
cations. Public, private, hybrid and campus clouds are production level reali-
ties managing virtual clusters instanced on cloud infrastructures in a relatively
straightforward fashion [10]. This issue impacts on science democratization in
a scenario where the scientific computing massively relies on general purpose
graphics processing units (GPGPUs) to accelerate data parallel computing tasks
especially using NVIDIA CUDA framework [7].

The virtualization currently provided by popular open source hypervisors
(XEN, KVM, Virtual Box) does not allow software based transparent use of
accelerators as CUDA based GPUs while VMWare and XEN support GPU
on the basis of hardware virtualization provided natively by NVIDIA GRID
devices [8].

In this paper we present the updated component GVirtuS (Generic Virtual-
ization Service) as results in GPGPUs software based transparent virtualization
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 3–14, 2016.
DOI: 10.1007/978-3-319-32152-3 1



4 R. Montella et al.

and remoting with the use of NVIDIA CUDA as main aim [4]. In the latest GVir-
tuS incarnation we enforced the architecture independence making it working
with both CUDA and OpenCL on Intel and ARM architecture.

While GVirtuS is a transparent and VMM independent framework to allows
an instanced virtual machine to access GPUs implementing various communica-
tor components (TCP/IP, VMCI for VMware, VMSocket for KVM) to connect
the front- end in guestOS and back-end in hostOS, rCUDA [2], GViM [6] and
vCUDA [15] are three recent research projects on CUDA virtualization in GPU
clusters and virtual machines as GPGPU library. They all use an approach sim-
ilar to GVirtuS.

The rest of the paper is organized in the following way: the Sect. 2 is about
how GVirtuS works on different architectures; the Sect. 3 is dedicated to the
design and technical issues about the latest version of GVirtuS; the Sect. 4 deals
with the scenarios and prototypal applications; the Sect. 5 shows the preliminary
evaluation results; the Sect. 6 is about the conclusions and the future directions
of this promising research.

2 GVirtuS on Heterogeneous Architectures

Different application fields motivate an ARM port of GVirtuS such as, but
not limited to Sensor as a Service [1], High Performance Internet of Things
(HPIoT) [9] and High Performance Cloud Computing (HPCC) [3].

In order to fit the GPGPU/x86 64/ARM application into our generic virtual-
ization system we mapped the back-end on the x86 machine directly connected to
the GPU based accelerator device and the front-end on the ARM board(s) using
the GVirtuS tcp/ip based communicator. GVirtuS as NVIDIA CUDA remoting
and virtualization tool achieve good results in terms of performances and system
transparency [11].

The CUDA applications are executed on the ARM board through the GVir-
tuS front-end. Thanks to the GVirtuS architecture, the front-end is the only
component needed on the guest side. This component acts as a transparent vir-
tualization tool giving to a simple and inexpensive ARM board the illusion to
be directly connected to a high-end CUDA enabled GPGPU device or devices
(Fig. 1).

The computing nodes of a regular old-style cluster behave as input/output
nodes for ARM based inexpensive sub-clusters. In this way the amount of heat
produced decreases while the high computing power demanding applications
have to be refactored in order to fit this new heterogenic approach. Thanks to
GVirtuS, these devices are seen by each of the ARM based sub-cluster computing
nodes as directly connected to them in a transparent way. This vision permits to
gain more computing power reducing the expensive, power hungry and heat pro-
ducing x86 64 based computing nodes. In the same way, this approach increases
the parallelism at the sub-cluster level and, last but not the least, unchain the
high-end GPGPU power to ARM based computing nodes [12].
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Fig. 1. The GVirtuS architecture independent from computing architecture (ARM,
x86 64) and acceleration model (CUDA, OpenCL).

3 Design and Technical Issues

In GVirtuS we used the classic split-driver approach based on front-end, com-
municator and back-end components.

The front-end is a module that uses the driver APIs supported by the plat-
form. The interposer library provides the familiar driver API abstraction to the
guest application. It collects the request parameters from the application and
passes them to the back-end driver, converting the driver API call into a cor-
responding frontend driver call. When a callback is received from the frontend
driver, it delivers the response messages to the application. In GVirtuS the front-
end is deployed on the virtual machine instance and it is implemented as a stub
library.

Fig. 2. The GVirtuS approach to the split driver model.
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The communicator maps the request parameters from the shared ring and
converts them into driver calls to the underlying wrapper library. Once the driver
call returns, the backend passes the response on the shared ring and notifies the
guest domains. The wrapper library converts the request parameters from the
backend into actual driver API calls to be invoked on the hardware. It also relays
the response messages back to the backend. The driver API is the vendor pro-
vided API for the device. The back-end is a component serving frontend requests
through the direct access to the driver of the physical device. This component
is implemented as a server application waiting for connections and respond-
ing to the requests submitted by frontends. In an environment requiring shared
resource the back-end must offer a form of resource multiplexing. Another source
of complexity is the need to manage multithreading at the guest application level
(Fig. 2).

The CUDA APIs version and GVirtuS are strictly dependent by each other
because the nature of the transparent virtualization and remoting. The use of
CUDA 6.5 APIs is strongly motivated by the following issues:

– The library design was no longer fitting with the split driver approach lever-
aged by GVirtuS and other similar products changed after CUDA 3.x;

– CUDA applications can be compiled directly on the ARM board with the
installation of ad hoc libraries available from NVIDIA;

– CUDA is strictly proprietary and no open source.

We target on two main goals: (1) provide a fully transparent virtualiza-
tion/remoting solution; (2) reduce the overhead of virtualization and remoting
so that the performance of the virtualized solution is as close as possible to the
one of the bare metal execution. The frontend library allows the development
of the frontend component and contains a single class, called Frontend. There is
only one instance of this class for each application using the virtualized resource.
This instance is in charge of the backend connection, which is based on an imple-
mentation of a Communication interface. This is a critical issue especially when
the virtualized resources have to be thread-safe as in the case of GPUs providing
CUDA support. The methods implemented in this class support request prepa-
ration, input parameters management, request execution, error checking and
output data recovery. The backend is executed on the host machine. It waits
for connections from frontends. As a new connection is incoming it spawns a
new process for serving the frontend requests. The CUDA enabled application
running on the virtual machine requests services to the virtualized device using
the stub library. Each function in the stub library follows these steps:

1. Obtains a reference to the single frontend instance;
2. Uses Frontend class methods for setting the parameters;
3. Invokes the Frontend handler method specifying the remote procedure name;
4. Checks the remote procedure call results and handles output data.

In order to implement the NVIDIA CUDA stack split-driver using GVirtuS a
developer has to implement the Frontend, Backend and the Handler subclasses.
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Fig. 3. Sharing high-end GPU accelerated devices hosed by x86 64 machines among
inexpensive Beowulf clusters based on ARM

For CUDA runtime virtualization the Handler is implemented as a collection
of functions and a jump table for the specified service. The frontend has been
implemented as a dynamic library based on the interface of the original libcud-
art.so library. As an improvement over the NVIDIA CUDA virtualization offered
by gVirtuS, we used the general-purpose virtualization service GVirtuS to pro-
vide virtualization support for CUDA, openCL and openGL. The CUDA driver
implementation is similar to the CUDA runtime except for the low-level ELF
binary management for CUDA kernels. A slightly different strategy has been
used for openCL and openGL support. The openCL library provided by nVIDIA
is a custom implementation of a public specification [5].

4 Scenarios and Prototypal Applications

Our test setup involves a Maxwell based development workstation; a virtual
machine instance powered by a NVIDIA GPU provided by the Amazon Web
Service Elastic Cloud Computing, inexpensive ARM based single board com-
puter (SBC) and a cluster made by 3 ARM based high-end SBC.

4.1 The Development Workstation

Workstation Genesis GE-i940 Tesla equipped with an i7- 940 2,93 133 GHz
fsb, Quad Core hyper-threaded 8 Mb cache CPU and 12 Gb RAM. The GPU
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subsystem is enforced by two NVIDIA GeForce Titan X 12 Gb RAM powered
by the Maxwell chipset and summing up 5376 CUDA cores. The testing system
has been built on top of the Ubuntu 14.04 Linux operating system, the NVIDIA
CUDA Driver, and the SDK/Toolkit version 6.5.

4.2 The Amazon Elastic Cloud Computing GPU Machine

We used an AWS g2.2xlarge instance intended for graphics and general-purpose
GPU compute applications. Those virtual machines run on High Frequency Intel
Xeon E5-2670 (Sandy Bridge) Processors. The g2 instances are provided by high-
performance NVIDIA GPUs, each with 1,536 CUDA cores and 4 GB of memory
(Fig. 3). We used this instance in order to setup a remote elastic virtual GPGPU
environment used locally by tiny ARM based devices and/or regular x86 64
machines. The AWS g2 GPU instance provides CUDA computing capabilities
2.x thanks to a CUDA GRID K250 device.

4.3 The Inexpensive ARM Single Board Computer (Low-End)

UDOO is a multi development platform solution for Android, Linux, Arduino
and Google ADK 2012. The board has been designed to provide a flexible envi-
ronment that allows exploring the new frontiers of the Internet of Things. We
used an UDOO Quad single computer board equipped by a Freescale i.MX 6
ARM Cortex-A9 CPU Quad core 1 GHz with a custom version of Ubuntu 12.04
Linux as GVirtuS consumer. This board is supported by 1 GB DDR3 RAM and
Gigabit Ethernet. The UDOO Quad single board computer has an integrated
GPU capabilities, but is not CUDA enabled.

4.4 The Cluster Based on High-End ARM Single Board Computer
(High-End)

In order to face with a real next generation high performance computing scenario,
we setup an experimental cluster made by 3 NVIDIA Jetson TK1 computing
nodes connected by a dedicated Gigabit Ethernet network to the developing
workstation mimic an accelerator server. Each computing node relies on 4-PLUS-
1 Cortex A15 r3 CPU architecture that delivers higher performance and is more
power efficient than the previous generation and a Kepler GPU architecture
that utilizes 192 CUDA cores to deliver advanced graphics capabilities, GPU
computing with NVIDIA CUDA 6.x support, breakthrough power efficiency and
performance for the next generation of gaming and GPU-accelerated computing
applications.

4.5 The Benchmark Experiment Setup

Our main goal is to access a remote CUDA GPGPU on an ARM powered SBC
in order to provide or expand its CUDA capabilities. The following scenarios
were tested:
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– Backend on X86/Frontend on X86;
– Backend on AWS X86/Frontend on X86;
– Backend on AWS X86/Frontend on low-end ARM 32bit;
– Backend X86/Frontend on high-end ARM 32bit cluster.

Matrix multiplication is an implementation of matrix multiplication that does
take advantage of shared memory. In this implementation, each thread block
is responsible for computing one square sub-matrix Csub of C and each thread
within the block is responsible for computing one element of Csub. Csub is equal
to the product of two rectangular matrices: the sub-matrix of A of dimension
(A.width, block size) that has the same row indices as Csub, and the sub-matrix
of B of dimension (block size, A.width) that has the same column indices as
Csub. In order to fit into the device’s resources, these two rectangular matrices
are divided into as many square matrices of dimension block size as necessary
and Csub is computed as the sum of the products of these square matrices. Each
of these products is performed by first loading the two corresponding square
matrices from global memory to shared memory with one thread loading one
element of each matrix, and then by having each thread compute one element of
the product. Each thread accumulates the result of each of these products into
a register and once done writes the result to global memory.

Vector addition is a very basic sample that implements element by element
vector addition. Used to test the simplest cuda functionalities.

Sorting networks implements bitonic sort and odd-even merge sort, algo-
rithms belonging to the class of sorting networks. While generally subefficient
on large sequences compared to algorithms with better asymptotic algorithmic
complexity (i.e. merge sort or radix sort), may be the algorithms of choice for
sorting batches of short- or mid-sized arrays.

MPI Matrix multiplication is an implementation of matrix multiplication that
does take advantage of distributed memory. In order to test GVirtuS on TK1
we chose to use a simple Matrix Multiply program that use MPI, to spawn the
processes and the data on the available machines, and CUDA to do the math.
The algorithm run as follows:

– The process with rank 0 initializes the matrices, coordinates the work and
collects the results. It is never involved in calculation;

– The matrix B is entirely sent to the entire worker processes;
– The rows of the matrix A are fairly divided between the worker processes.
– The worker processes do the entire needed math;
– The process with rank 0 collects from all the workers the portion of the matrix

C calculated.

The timing reported is referred to the whole process, considering the time
needed for the data passing and the data collecting.

5 Preliminary Evaluations

After running several tests, we can for sure assert the effectiveness of the designed
infrastructure. We can evaluate the overhead introduced by GVirtuS faced with
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the chance to run CUDA code on no CUDA enabled devices. Mainly, he bottle-
neck is the communications overhead due to the use of the TCP communicator.
This results in poor performances especially stressed out when the GPU remot-
ing is done outside the local dedicated network where the overhead is acceptable.
For more details about performances you can look at the following tables.

5.1 GPGPU Virtualization

The development workstation hosts a virtual machine running inside the user
space provided by the hypervisor. In this context we are neglecting the opti-
mization of the communicator component focusing on the interoperability of the
TCP/IP channel. The Table 1 reports the results of running both the frontend
and the backend on the same 64-bit machine and the same setup in a 32-bit
environment demonstrating there are no performance issues related with that.
This test is needed because both ARM configurations we used are 32-bit.

Table 1. Backend on X86/Frontend on X86.

Test Without
GVirtuS
(64-bit)

With
GVirtuS
(64-bit)

Without
GVirtuS
(32-bit)

With
GVirtuS
(32-bit)

MatrixMul 0.092 s 0.139 s 0.098 s 0.149 s

Vector addition 0.059 s 0.063 s 0.057 s 0.067 s

Sorting networks 8.539 s 8.787 s 8.482 s 8.676 s

5.2 Elastic Remote GPGPU Sharing

We explored a scenario in which GPUs are hosted elastically on a public cloud
in an infrastructure as a service fashion. We setup the backend on a g2.x2large
AWS EC2 instance.

Table 2. Backend on AWS X86/Frontend on X86.

Test Without GVirtuS With GVirtuS

MatrixMul 38.236 s 0.098 s

Vector addition 3.298 s 0.057 s

Sorting networks 144.6 s 8.482 s

The Table 2 represents the results of our test suite executed on a local machine
sharing CUDA enabled GPUs available on the cloud. This is a test used to
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Table 3. Backend on AWS X86/Frontend on ARM 32bit.

Test Without GVirtuS With GVirtuS

MatrixMul N/A 50.61 s

Vector addition N/A 3.368 s

Sorting networks N/A 257.5 s

demonstrate the feasibility of GPU remoting on an elastic resource. Is trivial the
wall clock time increase strongly using GPU remoting instead of local resources,
but the aim is to demonstrate it is working.

The Table 3 is about the same tests, but executed locally on an ARM based
single board computer. In this case, without the GPU remoting it could be
possible no test running on the ARM machine.

5.3 High-End ARM GPU Cluster

In this experiment we used the MPI Matrix multiplication program in order to
investigate about the behavior of GVirtuS in a scenario where a x86 machine is
used as an accelerator node of a high-end ARM based cluster. In our setup each
computing node is provided by an on-board K20A NVIDIA CUDA enabled GPU
with 192 cores, while the accelerator node is powered by a couple of NVIDIA
Titan X.

Table 4. ARM cluster CUDA accelerated locally and on X86 - Time.

Number of Without GVirtuS With GVirtuS Without GVirtuS With GVirtuS

processes 1600 × 1600 × 800 1600 × 1600× 3200 × 3200 × 1600 3200 × 3200×
800 1600

1 4294 s 830 s 7022 s 2378 s

2 2377 s 883 s 4033 s 2290 s

4 1663 s 1390 s 6440 s 3220 s

8 2037 s 2584 s 6648 s 4731 s

We have performed this benchmark with two problem size: 1600×1600×800
and 3200 × 3200 × 1600. The experiment compares the performance of the on-
board GPU and GVirtuS remoted one on both problems size. The ARM based
cluster is build on 3 nodes each provided by 4 CPU cores. The MPI Matrix
multiplication program uses MPI, but is not OpenMP enabled, so we performed
runs using up to 8 MPI process considering the results for one and two processes
as is, while runs for four and eight processes are to be considered good for
speculation and for planning the next experiments.
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Table 5. ARM cluster CUDA accelerated locally and on X86 - Performance in
GFLOPS.

Number of Without GVirtuS With GVirtuS Without GVirtuS With GVirtuS

processes 1600 × 1600 × 800 1600 × 1600× 3200 × 3200 × 1600 3200 × 3200×
800 1600

1 0.95 4.94 4.67 13.78

2 1.72 4.64 8.13 14.31

4 2.46 2.95 5.09 10.18

8 2.01 1.59 4.93 6.93

The Table 4 represents the results, as wall clock time, of our benchmarks run
with local and remoted CUDA acceleration for a number of MPI processes as 1,
2, 4 and 8. The Table 5 represents the same results as performance in GFLOPS.

Fig. 4. MPI Matrix multiplication performance with on board K20 GPU and GVirtuS
remoted NVIDIA Titan X.

The results in Fig. 4 demonstrate the use of GVirtuS remoted CUDA accel-
eration is convenient especially when the problems size increase: the weight of
the latency due to the communication decrease, as expected. The overall perfor-
mances are improved by the MPI parallel approach when the CUDA is used
locally, but the limited amount of node memory and number of nodes pre-
vented to investigate more in this direction. When the number of MPI processes
increases over the 2 the benchmarks are no more suitable for classic parallel
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programming efficiency and speedup analysis, but could be useful for some spec-
ulations about GVirtuS and its use in GPU remoting. The implementation of
a new version of the Matrix multiplication enabled for both distributed and
shared memory could provide a better performance test for this kind of applica-
tions especially when GVirtuS will fully support the multithreading.

6 Conclusions and Future Directions

The most challenging result achieved by our work described in this paper is the
implementation of a base tool unchaining the development of really distributed
and heterogenic hardware architectures and software applications. The exper-
iments we performed demonstrate how is convenient the path we followed as
trailblazer in the hunt for the next big thing in the off the shelf commodity
high performance computing clusters. We setup a sub-cluster made by high-end
ARM based boards provided by multicore ARM 32-bit CPUs and high band-
width network interfaces experiencing important improvements from the ARM
side, but even a better scalability because a more performing communication.
We setup a x86 64 machine and a low-end ARM SBC transparently accelerated
by a GVirtuS back-end running on an Amazon Elastic Computer Cloud GPU
instance. These experiments demonstrate the use of GVirtuS for GPU remoting
and multiplexing. The target of this research is the provisioning of a full produc-
tion software environment for advanced earth system simulations and analysis
based on science gateways, workflow engines and high performance cloud com-
puting [13] giving a support for the next generation of scientific dissemination
tools [14].
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Abstract. Distributed algorithms for graph searching require a high-
performance CPU-efficient hash table that supports find-or-put. This
operation either inserts data or indicates that it has already been added
before. This paper focuses on the design and evaluation of such a hash
table, targeting supercomputers. The latency of find-or-put isminimized
by using one-sided RDMA operations. These operations are overlapped
as much as possible to reduce waiting times for roundtrips. In contrast
to existing work, we use linear probing and argue that this requires less
roundtrips. The hash table is implemented in UPC. A peak-throughput of
114.9 million op/s is reached on an Infiniband cluster. With a load-factor
of 0.9, find-or-put can be performed in 4.5µs on average. The hash table
performance remains very high, even under high loads.

Keywords: Distributed hash table · High-performance computing ·
Partitioned global address space · Remote direct memory access

1 Introduction

A hash table is a popular data structure for storing maps and sets, since stor-
ing and retrieving data can be done with amortised time complexity O(1) [2].
A distributed hash table is a hash table that is distributed over a number of
workstations, connected via a high-performance network. This has the advan-
tage that more memory is available, at the cost of slower accesses due to network
latency and bandwidth limitations. In High Performance Computing (HPC) it
is desirable to have a fast and scalable distributed hash table, as it enables many
distributed algorithms to be implemented efficiently.

Nowadays high-performance networking hardware like Infiniband [7] is avail-
able. Infiniband supports Remote Direct Memory Access (RDMA), which allows
computers to directly access the memory of other machines without invoking
their CPUs. Moreover, RDMA supports zero-copy networking, meaning that no
memcopies are performed [14]. Experimental results show that one-sided RDMA
is an order of magnitude faster compared to standard Ethernet hardware [10].
Furthermore, scaling along high-performance Infiniband hardware is compara-
ble in price to scaling along standard Ethernet hardware [10]. In this paper, we
target supercomputers, i.e. many-core machines connected via Infiniband.

The Partitioned Global Address Space (PGAS) programming model com-
bines the shared and distributed memory models. Each process hosts a local
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 15–24, 2016.
DOI: 10.1007/978-3-319-32152-3 2
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block of memory. The PGAS abstraction combines all local memory blocks into
a single global address space, thereby providing a global view on the memory.
PGAS can make use of RDMA if used in a distributed setting [5]. In that case,
machine-local accesses to the global address space are handled via standard mem-
ory operations, and remote accesses are handled via one-sided RDMA. Several
PGAS implementations provide support for RDMA, including OpenSHMEM [1]
and UPC [4]. We use UPC, since it supports asynchronous memory operations.

Our goal is to implement a distributed hash table for the PGAS abstraction
that supports a single operation, namely find-or-put, that either inserts data
when it has not been inserted already or indicates that the data has been added
before. If necessary, find-or-put could easily be split into two operations find
and insert. Furthermore, the hash table should require minimal memory over-
head, should be CPU-efficient, and find-or-put should have minimal latency.

Our motivation for designing such a hash table is its use in distributed
symbolic verification (e.g. model checking), which only requires a find-or-put
operation and garbage collection in a stop-the-world scenario. Garbage collec-
tion is, however, omitted in the design of find-or-put presented in this paper.
We tried to minimize the number of roundtrips required by find-or-put while
keeping the hash table CPU-efficient by not relying on memory polling. Many
existing implementations are, however, either CPU-intensive [9] or require more
roundtrips [10,15], which motivated this research. We use linear probing and
argue that this scheme requires less roundtrips compared to alternative hash-
ing schemes. Furthermore, the design of find-or-put is more widely applicable
to any sort of memory-intensive application requiring a hash table, of which
distributed model checking is merely an example.

Previous work includes Pilaf [10], a key-value store that employs RDMA.
Pilaf uses an optimised version of Cuckoo hashing to reduce the number of
roundtrips. In Pilaf, lookups are performed via RDMA reads, but inserts are
handled by the server. Nessie [15] is a hash table that uses Cuckoo hashing and
RDMA both for lookups and inserts. HERD [9] is a key-value store that only
uses one-sided RDMA writes and ignores the CPU bypassing features of RDMA
to achieve higher throughput. FaRM [3] is a distributed computing platform that
exposes the memory of all machines in a cluster as a shared address space. A
hash table is built on top of FaRM that uses a variant of Hopscotch hashing.

This paper is organised as follows. Different hashing strategies are com-
pared in Sect. 2 and we argue that linear probing requires the least number
of roundtrips. Section 3 discusses the design of find-or-put. Section 4 shows
the experimental evaluation of find-or-put, covering hash table efficiency with
respect to latency, throughput, and the required number of roundtrips. Finally,
our conclusions are summarised in Sect. 5.

2 Preliminaries

To achieve best performance, it is critical to minimize the number of RDMA
roundtrips performed by find-or-put when targeting remote memory. This is
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because the throughput of the hash table is limited to the throughput of the
RDMA devices. Also, the waiting times for roundtrips contribute to the latency
of find-or-put. In this section some notation is given, followed by a number of
hashing strategies and their efficiencies with respect to the number of roundtrips.

2.1 Notation

A hash table T = 〈b0, . . . , bn−1〉 consists of a sequence of buckets bi usually
implemented as a standard array. We denote the load-factor of T by α = m

n ,
where m is the number of elements inserted in T and n the total number of
buckets. A hash function h : U → R maps data from some universe U = {0, 1}w
to a range of keys R = {0, . . . , r − 1}. Hash tables use hash functions to map
words x ∈ U to buckets bh(x) by letting r ≤ n. Let x ∈ U be some word. Then we
write x ∈ bi if bucket bi contains x, and otherwise x �∈ bi. We write x ∈ T if there
is some 0 ≤ i < n for which x ∈ bi, and otherwise x �∈ T . For some x, y ∈ U with
x �= y it may happen that h(x) = h(y). This is called a hash collision. A hash
function h : U → R is called a universal hash function if Pr[h(x) = h(y)] ≤ 1

n
for every pair of words x, y ∈ U .

2.2 Hashing Strategies

Ideally only a single roundtrip is ever needed both for finding and inserting data.
This can only be achieved when hash collisions do not occur, but in practice
they occur frequently. HERD only needs one roundtrip for every operation [9],
but at the cost of CPU efficiency, because every machine continuously polls for
incoming requests. We aim to retain CPU efficiency to keep the hash table usable
in combination with other high-performance distributed algorithms.

Chained hashing is a hashing scheme which implements buckets as linked
lists. Insertions take O(1) time, but lookups may take Θ(m) in the worst case.
It can be shown that lookups require Θ(1+α) time on average when a universal
hash function is used [2]. Although constant, the average number of roundtrips
required for an insert is thus more than one. Furthermore, maintaining linked
lists brings memory overhead due to storing pointers.

Cuckoo hashing [11] is an open address hashing scheme that achieves con-
stant lookup time and expected constant insertion time. Cuckoo uses k ≥ 2
independent hashing functions h1, . . . , hk and maintains the invariant that, for
every x ∈ T , it holds that x ∈ bhi(x) for exactly one 1 ≤ i ≤ k. Lookups thus
require at most k roundtrips, but inserts may require more when all k buckets
are occupied. In that case, a relocation scheme is applied, which may not only
require many extra roundtrips, but also requires a locking mechanism, which is
particularly expensive in a distributed environment. A variant on Cuckoo hash-
ing, named bucketized Cuckoo hashing [13], enables buckets to contain multiple
data elements, which linearly reduces the number of required roundtrips.

Hopscotch hashing [6] also has constant lookup time and expected con-
stant insertion time. In Hopscotch every bucket belongs to a fixed-sized neigh-
bourhood. Lookups only require a single roundtrip, since neighbourhoods are
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consecutive blocks of memory. However, inserts may require more roundtrips
when the neighbourhood is full. In that case, buckets are relocated, which may
require many roundtrips and expensive locking mechanisms.

Linear probing examines a number of consecutive buckets when finding
or inserting data. Multiple buckets, which we refer to as chunks, can thus be
obtained with a single roundtrip. When there is a hash collision, linear probing
continues its search for an empty bucket in the current chunk, and requests addi-
tional consecutive chunks if necessary. We expect chunks retrievals to require
less roundtrips than applying a relocation scheme, like done in Hopscotch.
Other probing schemes, like quadratic probing and double hashing, require more
roundtrips, since they examine buckets that are nonconsecutive in memory.

Cache-line-aware linear probing is proposed by Laarman et al. [12] in
the context of NUMA machines. Linear probing is performed on cache lines,
which the authors call walking-the-line, followed by double hashing to improve
data distribution. Van Dijk et al. [16] use a probe sequence similar to walking-
the-line to implement find-or-put, used for multi-core symbolic verification.

3 Design and Implementation

In this section the hash table structure and the design of find-or-put are dis-
cussed. We expect linear probing to require less roundtrips than both Cuckoo
hashing and Hopscotch hashing, due to the absence of expensive relocation mech-
anisms. We also expect that minimising the number of roundtrips is key to
increased performance, since the throughput of the hash table is directly limited
by the throughput of the RDMA devices. This motivates the use of linear probing
in the implementation of find-or-put. Unlike [12], we only use linear probing,
since it reduces latency compared to quadratic probing, at the cost of possible
clustering. We did not observe serious clustering issues, but if clustering occurs,
quadratic probing can still be used, at the cost of slightly higher latencies.

The latency of find-or-put depends on the waiting time for roundtrips to
remote memory (which is also shown in Sect. 4). We aim to minimize the waiting
times by overlapping roundtrips as much as possible, using asynchronous memory
operations. Furthermore, the number of roundtrips required by find-or-put is
linearly reduced by querying for chunks instead of individual buckets. We use
constant values C to denote the chunk size and M to denote the maximum
number of chunks that find-or-put takes into account. Figure 1 shows the
design of find-or-put. Design considerations are given in the following sections.

3.1 Memory Layout

In our implementation, each bucket is 64 bits in size. The first bit is used as a flag
to denote bucket occupation and the remaining 63 bits are used to store data.
When inserting data, the occupation bit is set via a cas operation to prevent
expensive locking mechanisms. If the hash table needs to support the storage of
data elements larger than 63 bits, a separate shared data array could be used.
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1 def find-or-put(data):
2 h ← hash(data)
3 s0 ← query-chunk(0, h)
4 for i ← 0 to M − 1:
5 if i < M − 1
6 si+1 ← query-chunk(i + 1, h)
7 sync(si)
8 for j ← 0 to C − 1:
9 if ¬occupied(p(i,j))

10 addr ← (h + iC + j) mod kn
11 b ← new-bucket(data)
12 val ← cas(ba, p(i,j), b)
13 if val = p(i,j)

14 return inserted

15 elif data(val) = data
16 return found

17 elif data(p(i,j)) = data
18 return found

19 return full

1 def query-chunk(i, h):
2 start ← (h + iC) mod kn
3 end ← (h + (i + 1)C − 1) mod kn
4 if end < start
5 return split(start, end)

6 else
7 S ← 〈bstart · · · bend〉
8 P ← 〈p(i,0) · · · p(i,C−1)〉
9 return memget-async(S, P )

1 def split(start, end):
2 S1 ← 〈bstart · · · bkn−1〉
3 S2 ← 〈b0 · · · bend〉
4 P1 ← 〈p(i,0) · · · b(i,|S1|−1)〉
5 P2 ← 〈p(i,|S1|) · · · p(i,C−1)〉
6 s1 ← memget-async(S1, P1)
7 s2 ← memget-async(S2, P2)
8 return 〈s1, s2〉

Fig. 1. The implementation of find-or-put, as well as the implementation of
query-chunk and split, which are used by find-or-put to query on the ith chunk.

The data elements are then stored in the data array and the corresponding
indices are indexed and stored in the hash table. In that case, an extra roundtrip
is required by find-or-put to access the data array.

The atomic cas(B, c, v) operation compares the content of a shared memory
location B to a value c. If they match, v is written to B and the former value at
location B is returned by cas. Otherwise, B is unchanged and its contents are
returned. The occupied(b) operation simply checks if the occupation bit of a
bucket b is set and the new-bucket(d) operation creates a new bucket with its
occupation bit set to true and containing d as data.

Assuming that the hash table is used by n processes t1, . . . , tn, we allocate a
shared table T = 〈b0, . . . , bkn−1〉 of buckets, such that each process owns k buck-
ets. In addition, we allocate two-dimensional arrays Pi = 〈p(0,0), . . . , p(M−1,C−1)〉
on every process ti in private memory, which we use as local buffers. The arrays
Pi are furthermore cache line aligned. This minimizes the number of cache misses
when iterating over Pi, thus reducing the number of data fetches from main-
memory. Cache lines are typically 64 bytes in size, so 8 buckets fit on a single cache
line. To optimally use cache line alignment we choose C to be a multiple of 8.

3.2 Querying for Chunks

In Fig. 1, when some process tj queries a chunk, it transfers C buckets from
the shared array T into Pj , so that tj can examine the buckets locally.
Because linear probing is used, several consecutive chunks might be requested.
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The query-chunk operation is used to query the ith consecutive chunk and
the sync operation is used to synchronize on the query, that is, waiting for its
completion.

It may happen that end < start (line 4 of query-chunk), in which case the
chunk wraps around the kn-sized array T because of the modulo operator (line 2
and line 3). Then the query has to be split into two, as the chunk spans over two
nonconsecutive blocks of shared memory. This is done by the split operation.

The memget(S, P ) operation is supported by many PGAS implementations
and transfers a block of shared memory S into a block of private memory P
owned by the executing process. Then memget-async is a non-blocking version
of memget, as it does not block further execution of the program while waiting for
the roundtrip to finish. Instead, memget-async returns a handle that can be used
by sync, which is a blocking operation used to synchronize on the roundtrip.
This allows work to be performed in between calls to memget-async and sync.
The query-chunk operation itself returns one or two handles, and sync can be
used to synchronize on them.

3.3 Designing find-or-put

In Fig. 1, the call find-or-put(d) returns found when d ∈ T before the call and
returns inserted when d �∈ T before the call. Finally, full is returned when
d �∈ T and d could not be inserted in any of the MC examined buckets.

The algorithm first requests the first chunk and, if needed, tries a maximum
of M−1 more chunks before returning full. Before calling sync(si) on line 7, the
next chunk is requested by calling query-chunk(i + 1, d) on line 6. This causes
the queries to overlap, which reduces the blocking times for synchronization on
line 7 and thereby reduces the latency of find-or-put.

By iterating over a chunk, if a bucket p(i,j) is empty, find-or-put tries to
write data to the bucket ba in shared memory via a cas operation (line 12). The
former value of ba is returned by cas (line 12), which is enough to check if cas
succeeded (line 13). In this case, inserted is returned, otherwise the bucket has
been occupied by another process in the time between the calls to query-chunk
and cas. It may happen that data is inserted at that bucket, hence the check at
line 15. If not, the algorithm returns to line 8 to try the next bucket. If p(i,j) is
occupied, find-or-put checks if data ∈ p(i,j) (line 17). In that case, found is
returned, otherwise the next iteration is tried.

4 Experimental Evaluation

We implemented find-or-put in Berkeley UPC, version 2.20.2, and evaluated
its performance by measuring the latency and throughput under various con-
figurations. We compiled the implementation using the Berkeley UPC compiler
and gcc version 4.8.2, with the options upcc -network=mxm -O -opt. All exper-
iments have been performed on the DAS-5 cluster [8], using up to 48 nodes, each
running CentOS 7.1.1503 with kernel version 3.10.0. Every machine has 16 CPU
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Fig. 2. The left plot shows the average latency of find-or-put (in microseconds) and
the right plot shows the average number of roundtrips performed by find-or-put under
different load-factors (α) and chunk sizes (C). Both plots show empirical data.

Table 1. The left table shows the latencies (in μs) and average number of roundtrips
(Rt.) required by find-or-put to find a suitable bucket under various load-factors
(α). The right table shows the total throughput (×106) of find-or-put under a mixed
workload using various machines and processes per machine (Procs/M).

C = 8 C = 16 C = 32 C = 64 C = 128
α Lat. Rt. Lat. Rt. Lat. Rt. Lat. Rt. Lat. Rt.

0.5 3.69 1.0 3.71 1.0 3.99 1.0 4.17 1.0 4.50 1.0
0.6 3.74 1.1 3.72 1.0 4.00 1.0 4.18 1.0 4.50 1.0
0.7 3.90 1.3 3.78 1.1 4.00 1.0 4.18 1.0 4.51 1.0
0.8 4.50 2.1 4.00 1.4 4.09 1.1 4.20 1.0 4.52 1.0
0.9 7.70 5.7 5.64 3.2 4.92 2.0 4.54 1.4 4.66 1.1

Procs Machines
/M 1 2 32 48

1 189.46 1.28 8.51 11.73
2 326.36 2.21 16.09 22.05
4 709.52 3.83 28.76 37.82
8 898.34 6.18 49.41 63.36
16 - 10.17 81.55 114.85

cores, 64 GB internal memory and is connected via a high-performance 48 Gb/s
Mellanox Infiniband network. All experiments have been repeated at least three
times and the average measurements have been taken into account.

4.1 Latency of find-or-put

We measured the latency of find-or-put using various chunk sizes while increas-
ing the load-factor α. This is done by creating two processes on two different
machines, thereby employing the Infiniband network. Both processes maintain
a 1 GB portion of the hash table. The first process inserts a sequence of unique
integers until α reaches 0.92, which appears to be our limit. The hash table
started to return full when using 8-sized chunks and having α > 0.92. The
average latencies and the number of roundtrips have been measured at intervals
of 0.02, with respect to α. These measurements are shown in Fig. 2 and Table 1.

The differences between latencies are very small for α ≤ 0.5, no matter the
chunk size. For α = 0.5, the average latency when using 64-sized chunks is 13%
higher compared to 8-sized chunks (shown in Table 1). However, the average
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Fig. 3. Both plots show the average speedups with respect to the total throughput of
find-or-put. The left plot shows the speedup with 1 machine, scaling from 1 to 16
processes. The right plot shows the speedup when scaling from 2 to 48 machines (i.e.
using the Infiniband network) and scaling from 1 to 16 processes per machine.

latencies increase vastly for C ≥ 64. For example, compared to 8-sized chunks,
the latency is already 22% higher for C = 128.

Moreover, the average latencies also increase vastly for α > 0.5 when a low
chunk size is used. By having small chunk sizes, more roundtrips are required by
find-or-put to find the intended bucket, especially when α ≥ 0.8. By using a
larger chunk size, higher load-factors are supported at the cost of slightly higher
latencies. The average number of roundtrips directly influences the average laten-
cies, which shows the importance of minimizing the number of roundtrips.

4.2 Throughput of find-or-put

The throughput of the hash table has been measured in terms of find-or-put
operations per second (ops/sec). We scaled the number of machines from 1 to 48
and the number of processes per machine from 1 to 16. Each process owns a
1 GB portion of the hash table and inserts a total of 107 random integers. Three
different workloads have been taken into account, namely:

– Mixed: 50 % finds and 50 % inserts
– Read-intensive: 80 % finds and 20 % inserts
– Write-intensive: 20 % finds and 80 % inserts

To get the proper find/insert ratio, each workload uses a different strategy to
select the random integers. We used C = 32 and M = 32 in every configuration.

A subset of the measurements is shown in Table 1, and Fig. 3 shows speedups
with respect to the total throughput, that is, the total sum of the throughputs
obtained by all participating processes. In Fig. 3, the local speedups (left) are cal-
culated relative to single-threaded runs. The remote speedups (right) are calcu-
lated relative to 2 machines, each having 1 process, thereby taking the Infiniband
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network into account. Only throughputs under a mixed workload are presented,
because the other workloads show very similar behaviour.

By comparing local throughput (i.e. using one machine) with remote through-
put (i.e. using at least two machines), we observed a performance drop of several
orders of magnitude. The local throughput reaches a peak of 8.98 × 108 ops/s.
By using a mixed workload, the local throughput is up to 88 times higher than
the peak-throughput obtained with two machines. A remote peak-throughput
of 11.5 × 107 is reached, which is still 7.8 times lower than the local peak-
throughput.

The local throughput reaches a speedup of 5x with 8 processes (see Fig. 3)
under a mixed workload. We observed a vast decrease in local speedup when more
than 8 processes were used. However, when we use the Infiniband network, the
performance remains stable, even when more than 8 processes per machine are
used. The remote throughput reaches a speedup of 90x (with 48 machines, each
having 16 processes) compared to 2 machines, each having 1 process. Compared
to the single-threaded runs, a speedup of 0.61x is reached with 48 machines.
This is expected; single-machine runs have better data-locality, as they do not
use the network. Nonetheless, the entire memory of every participating machine
can be fully utilized while maintaining good time efficiency.

4.3 Roundtrips Required by find-or-put

The average number of probes required by Pilaf during a key lookup in 3-way
Cuckoo hashing with α = 0.75 is 1.6 [10]. Nessie requires more roundtrips, since
it uses 2-way Cuckoo hashing, which increases the chance on hash collisions
compared to 3-way Cuckoo hashing. Our design requires only 1.04 probes on
average for C = 32 and 1.006 probes for C = 64. Compared to Pilaf, this is an
improvement of 53% with 32-sized chunks.

Regarding the number of inserts, Pilaf is more efficient, as all inserts are
handled by the server, at the cost of CPU efficiency. As part of the insertion
procedure, a lookup must be performed to find an empty bucket. After that,
the insert can be performed via cas, thereby requiring one extra roundtrip, in
addition to the lookup operation. Therefore, our inserts are also more efficient
than Nessie’s inserts.

5 Conclusion

To build an efficient hash table for shared memory it is critical to minimize the
number of roundtrips, because their waiting times contribute to higher latencies.
The number of roundtrips is limited by the throughput of the RDMA devices.
Lowering the number of roundtrips may directly increase the throughput.

Linear probing requires less roundtrips than Cuckoo hashing and Hopscotch
hashing due to chunk retrievals, asynchronous queries, and the absence of relo-
cations. Experimental evaluation shows that find-or-put can be performed in
4.5µs on average with a load-factor of 0.9 for C = 64. This shows that the
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hash table performance remains very high, even when the load-factor gets big.
Furthermore, the entire memory of all participating machines can be used.

Table 1 shows that, in most cases, only one call to query-chunk would be
enough for find-or-put to find a suitable bucket, especially for small values of
α and large values of C. As future work, it would be interesting to dynamically
determine the value of C to reduce the number of roundtrips. Moreover, we plan
to use the hash table in a bigger framework for symbolic verification.
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Abstract. Matrix multiplication (MM) is a computationally-intensive
operation in many algorithms used in scientific computations. Not only
one of the kernels in numerical linear algebra, the problem of matrix
multiplication is also fundamental for almost all matrix problems such
as least square and eigenvalues problem. The performance analysis of
the MM needs to be re-evaluated to find out the best-practice algorithm
on novel architectures. This motivated the analysis which is presented
in this article and which is carried out by means of the new modelling
framework that the authors have already introduced (L. D’Amore et al.
On a Mathematical Approach for Analyzing Parallel Algorithms, 2015).
The model exploits the knowledge of the algorithm and the multilevel
parallelism of the target architecture and it could help the researchers
for designing optimized MM implementations.

Keywords: Matrix-matrix multiply · Performance analysis · Multilevel
paralllelism

1 Introduction

The authors proposed a performance model for analysing parallel algorithms.
The model assumes that the (parallel) algorithm is represented as a set of oper-
ators related to each other according to a rule of dependence. Furthermore, the
model has a parameterized formulation intended to exploit the different charac-
teristics of the computing machines such as reconfigurable hardware devices [13].

Here we consider the matrix multiplication (MM) algorithm and we apply
the performance model. The algorithm is simple and has not any ambition of
optimization (many efforts are spent in the field of linear algebra and recent
examples can be found in [1,9,11,12]), instead, our aim is to discuss how easily
some implementation choices could be addressed giving rise to different perfor-
mance results. The focus is on the “opportunity” of implementing the algorithm
in hybrid distributed/shared memory computing environments, obtaining the
most important information before the implementation. The implementations
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of MM algorithm will be composed from multiplications with sub matrices. The
general MM algorithm can be decomposed into multiple calls to matrix multipli-
cation. These themselves can be decomposed into multiple calls to inner-kernels.
The aim now is to understand how these lowest level kernels can attain high
performance, then so will the MM algorithm. This paper attempts to describe
how to apply the performance model that the authors have developed so as to
make it accessible to a broad audience.

2 Matrix Multiplication

Given two matrices A, B ∈ �n×n and the computational problem

Bn2 ≡ MMn×n := A · B, (1)

we introduce the sub problems matmulin
3 ×n

3
, for i = 0, . . . , 26 which are defined

as follows:
Bn

3 ×n
3

≡ matmulin
3 ×n

3
:= Ci + Ai · Bi, (2)

with Ai ∈ �n
3 ×n

3 , Bi ∈ �n
3 ×n

3 and Ci ∈ �n
3 ×n

3 blocks of A, B and C, respec-
tively. Finally, we introduce the decomposition

D27(MMn×n) := {matmulin
3 ×n

3
}0≤i<27. (3)

From (1)–(3), the decomposition matrix is:

MD =

⎡
⎢⎣
matmul0n

3 ×n
3
matmul1n

3 ×n
3
matmul2n

3 ×n
3

· · · matmul8n
3 ×n

3

matmul9n
3 ×n

3
matmul10n

3 ×n
3
matmul11n

3 ×n
3

· · · matmul17n
3 ×n

3

matmul18n
3 ×n

3
matmul19n

3 ×n
3
matmul20n

3 ×n
3

· · · matmul26n
3 ×n

3

⎤
⎥⎦ (4)

The set D27(MMn×n) is made of 27 subproblems matmul
(i+j+k)
n
3 ×n

3
∈ D27, and

the problem MMn×n has concurrence degree rD = 9 and dependence degree
cD = 3.

Suppose that the computing environment can be represented by means of
the machine M1,1 which has

– P = 1,
– OpM1,1 = {⊗, ...} where ⊗ :=matrix-matrix multiply,
– L = 2 two memory levels,
– rmemi (read) and wmemj (write) as memory accesses operators on blocks of

size n
3 × n

3 ,
– tmem1 := tblockmem,
– for each ⊗, 1 read (before the execution) and 1 write (after the execution) are

needed.

According to D27, the sequential algorithm AD27,M1,1 on M1,1 is made of
the 27 operators ⊗ corresponding to the 27 sub-problems. The execution matrix
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corresponding to AD27,M1,1 on M1,1 has rE = 27 rows and only one column, i.e.
cE = 1. It is the following matrix:

ME =

⎡
⎢⎢⎢⎣

⊗0

⊗1

...
⊗26

⎤
⎥⎥⎥⎦ (5)

while the memory matrix AMAD27,M1,1
has rMEM = 52 rows and cMEM = 1

column, and it can be described in the following way:

AMAD27,M1,1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

rmem0(·)
wmem0(·)
rmem1(·)
wmem1(·)

...
rmem26

wmem26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

The execution time of algorithm AD27,M1,1 is

T (AD27,M1,1) = rE · Tr (7)

where Tr is the execution time of the row r of the matrix given in (5). It is equal
to the execution time of the ⊗ operator (since they are all the same).
Let C(⊗) denote the complexity of ⊗ operator, then (7) becomes:

T (AD27,M1,1) = 27 · C(⊗) · tcalc (8)

The memory access time of the software corresponding to AD27,M1,1 , is

TM (SW (AD27,M1,1(A))) = rmem1 · tblockmem = 54 · tblockmem, (9)

and its execution time is

T (SW (AD27,M1,1)) = T (AD27,M1) + TM (SW (AD27,M1,1))
= 27 · C(⊗) · tcalc + 54 · tblockmem

(10)

2.1 The Algorithm at the First Level of Decomposition

We consider the machine M9,9 such that

– P = 9 (which we call nodes), which are organized in a 3 × 3 logical grid,
– OpM9,9 = {⊗, ...} where ⊗ = matrix-matrix multiply,
– L = 3 (two memory levels plus one level for communications),
– transi denotes the memory access operator which moves a block of size n

3 × n
3

in time tblockcom
1,

1 Note that typically tblockcom >> tblockmem.
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– each node can transfer a single block concurrently, that is the machine can
transfer 9 blocks at the same time.

– for a broadcast step, each node performs a transfer (one send, other eight
receive).

– for a rolling step, each node performs two transfers (send and receive one
block).

Starting, each node has a n
3 × n

3 block of each matrix. If matmul(p · i) is the
subproblem matmulp·i

n
3 ×n

3
∈ D27, the algorithm AD27,M9,9 is the following (i.e.

the so called Broadcast Multiply Rolling (BMR) Algorithm [10]) (Fig. 1):

for p=1 to 3
nodes on the i-th grid diagonal broadcast their A block

to all its grid row;
the node i solves matmul(i*p);
if p<3, each node sends its B block to the upper one

on the same column of the grid (rolling).
endfor

Fig. 1. The starting matrices blocks distribution among the nodes.

The execution matrix of AD27,M9,9 is

ME =

⎡
⎣

⊗0 ⊗1 ⊗2 ⊗3 ⊗4 ⊗5 ⊗6 ⊗7 ⊗8

⊗9 ⊗10 ⊗11 ⊗12 ⊗13 ⊗14 ⊗15 ⊗16 ⊗17

⊗18 ⊗19 ⊗20 ⊗21 ⊗22 ⊗23 ⊗24 ⊗25 ⊗26

⎤
⎦ (11)

and it is perfectly parallel. The memory matrix is

AMAD27,M9,9
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

trans0(·) trans1(·) trans2(·) ... trans8(·)
trans9(·) trans10(·) trans11(·) ... trans17(·)
trans18(·) trans19(·) trans20(·) ... trans26(·)
trans27(·) trans28(·) trans29(·) ... trans35(·)
trans36(·) trans37(·) trans38(·) ... trans44(·)
trans45(·) trans46(·) trans47(·) ... trans53(·)
trans54(·) trans55(·) trans56(·) ... trans62(·)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)
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The execution time of each row of ME , is the execution time of the ⊗ operator.
If rE = 3 is the number of rows of EAD27,M9,9

, the execution time of the BMR
algorithm AD27,M9,9 is

T (AD27,M9,9) = rE · Tr = 3 · C(⊗) · tcalc (13)

Since rmem = 7, the memory access time of the software SW (AD27,M9,9) is

TM (SW (AD27,M9,9)) = rmem9 · tblockcom = 7 · tblockcom (14)

and its execution time is

T (SW (AD27,M9,9)) = T (AD27,M9,9) + TM (SW (AD27,M9,9))
= 3 · C(⊗) · tcalc + 7 · tblockcom.

(15)

Finally, the speed up of the software SW (AD27,M9,9) is

Sp(SW (AD27,M9,9)) =
T (SW (AD27,M1,1))
T (SW (AD27,M9,9))

=
26 · C(⊗) · tcalc + 52 · tblockmem

3 · C(⊗) · tcalc + 7 · tblockcom
(16)

2.2 The Sequential Algorithm at the Second Level of Decomposition

Consider the subproblem matmulin
3 ×n

3
and the decomposition

D′
n
3 −1 = {matvecin

3 ×n
3
}0≤i<(n

3 −1) (17)

where
matvecin

3 ×n
3

:= multiply of a block Ai of
n

3
× n

3
elements and a vector Bi of

n

3
elements.

(18)

All the subproblems are independent, so the decomposition matrix of
matmulin

3 ×n
3

is

MD′
n
3 −1

=
[
matvec0n

3 ×n
3
matvec1n

3 ×n
3
... matvec

n
3 −1
n
3 ×n

3

]
(19)

and matmulin
3 ×n

3
has concurrence degree n

3 and dependence degree 1.
Let us introduce the machine M′

1,1 corresponding to a generic node of M9,9.
Suppose that M′

1,1 is such that

– P = 1,
– OpM′

1,1
= {�, ...} where �= matrix-vector multiply,

– L = 2,
– rmemvi (read) or wmemvj (write) denote the memory accesses operators

moving a vector of size n
3 in time tmem := tvecmem

2.

2 Typically tvecmem ≤ tblockmem.
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Since all the subproblems must be solved one after another, the execution
matrix of AD′

n
3 −1,M′

1,1
is

ME =

⎡
⎢⎢⎢⎣

�0

�1

...
�n

3 −1

⎤
⎥⎥⎥⎦ (20)

Since we assume that for the execution of each operator, it is required one read
(before the execution) and one write (after the execution) of a vector of size
n
3 + 1, the memory matrix has

rmem,D′
n
3 −1

=
(n

3
+ 2

)
· n

3

rows. The execution time of each row of the matrix in (20) is the execution time
of the � operator. If

rE,D′
n
3 −1

=
n

3
is the number of rows of EAD′

n
3 −1

,M′
1,1

, the execution time of the algorithm

AD′
n
3 −1,M′

1,1
is

T (AD′
n
3 −1,M′

1,1
) = C(⊗) · tcalc = rE1D′

n
3 −1

· Tr

=
n

3
· C(�) · tcalc =

n

3
· 2 ·

(n

3

)2

· tcalc

= 2 ·
(n

3

)3

· tcalc

(21)

and the memory access time of the software SW (AD′
n
3 −1,M′

1,1
) is

TM (SW (AD′
n
3 −1

,M′
1,1

)) = rmem,D′
n
3 −1

· tveccom =
(n

3
+ 2

)
· n

3
· tvecmem. (22)

Finally, the execution time of the software SW (AD′
n
3 −1,M′

1,1
) is

T (SW (AD′
n
3 −1

,M′
1,1)) = T (AD′

n
3 −1

,M′
1,1

) + TM (SW (AD′
n
3 −1

,M′
1,1

))

= 2 ·
(n

3

)3

· tcalc +
(n

3
+ 2

)
· n

3
· tvecmem

(23)

2.3 The Parallel Algorithm at the Second Level of Decomposition

We consider the machine M′
1·8 made of 8 cores/threads for each node of M9,9.

Let us assume that M′
1·8 is such that

– P = 8,
– OpM′

1·8 = {�, ...} where � =matrix-vector multiply,
– L = 2,
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– rmemvi (read) or wmemvj (write) denote the memory access operators on
a vector of n

3 elements concurrently in time tvecmem between the memory
levels. Note that tvecmem ≤ tblockmem.

Then, if matvec(t · i) denotes subproblem matvect·in
3 ×n

3
∈ D′

n
3 −1, we get the

Multi Thread Matrix multiply Algorithm AD′
n
3 −1,M′

1·8 :

for i:=1 to n/(9*8)
each thread t solves matvec(t*i)

endfor

The first 8 of the n
3 subproblems can be solved independently by the 8 cores, and

so on until they are all completed. Hence, the execution matrix of the algorithm
AD′

n
3 −1,M′

1·8 has rE = n
3·8 = n

24 rows and if we assume that n
3 is a multiple of 83,

the algorithm is perfectly parallel.
Assuming that for the execution of each operator, it is required to read (before

the execution) and to write (after the execution) the vector of size n
3 + 1 and

that the cores can transfer their vectors concurrently, that is the machine can
concurrently transfer 8 vectors, the memory matrix AMAD′

n
3 −1

,M1·8
has

rmem,D′
n
3 −1

=
(n

3
+ 2

)
· n

24

rows. The execution time of each row of the execution matrix is the execution
time of the � operator. If rE = n

24 is the number of rows of EAD′
n
3 −1

,M′
1·8

, the

execution time of the algorithm AD′
n
3 −1,M′

1·8 is

T (AD′
n
3 −1,M′

1·8) = rE · Tr =
n

24
· C(�) · tcalc =

n

24
· 2 ·

(n

3

)2

· tcalc. (24)

If we denote by rmem,D′
n
3 −1

=
(
n
3 + 2

) · n
24 the number of rows of the mem-

ory access matrix of the algorithm AD′
n
3 −1,M1·8 , the memory access time of the

software SW (AD′
n
3 −1

,M1·8) we are going to implement is

TM (SW (AD′
n
3 −1

,M1·8)) = rmem,D′
n
3 −1

· tvecmem =
(n

3
+ 2

)
· n

24
· tvecmem (25)

and the execution time of the software SW (AD′
n
3 −1,M1·8) is

T (SW (AD′
n
3 −1

,M1·8)) = T (AD′
n
3 −1

,M′
8,8

) + TM (SW (AD′
n
3 −1

,M8,8))

=
n

24
· 2 ·

(n

3

)2

· tcalc +
(n

3
+ 2

)
· n

24
· tvecmem.

(26)

3 There is no loss of generality.
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Finally, the speed up is

Sp(SW (AD′
n
3 −1,M′

1·8)) =
T (SW (AD′

n
3 −1,M′

1,1
))

T (SW (AD′
n
3 −1,M1·8))

=
2 · (

n
3

)3 · tcalc +
(
n
3 + 2

) · n
3 · tvecmem

n
24 · 2 · (

n
3

)2 · tcalc +
(
n
3 + 2

) · n
24 · tvecmem

> 1

(27)

Let A′
Dn

3 −1,M9·8 denote the algorithm that uses 9 nodes and 8 cores per node.
We get the following expression of the speed up the algorithm that uses 1 level
of parallelism in M9,9

Sp(SW (AD27,M9,9)) =
T (SW (AD27,M1,1))
T (SW (AD27,M9,9))

=
26 · C(⊗) · tcalc + 52 · tblockmem

3 · C(�) · tcalc + 7 · tblockcom (28)

which should be compared to the speed up of the algorithm that uses 2 levels of
parallelism in M9·8

Sp(SW (AD′
n
3 −1

,M9·8 )) =
T (SW (AD27,M1,1)

T (SWAD′
n
3 −1

,M9·8)

=
26 · (n

3
· C(�) · tcalc+ (n

3
+ 2) · tvecmem

)
+ 52 · tblockmem

3 · n
24

· (C(�) · tcalc+ (n
3
+ 2
) · tvecmem

)
+ 7 · tblockcom

(29)

By specializing the parameters we can estimate the performance gain that
we get using two levels of parallelism instead of one.

3 Conclusion

Matrix multiplication is one of the fundamental kernels in numerical linear alge-
bra, for almost all matrix problems such as least square problem eigenvalue prob-
lem and data assimilation problem [5–8,14]. Future designs of microprocessors
and large HPC systems will be heterogeneous in nature, relying on the integra-
tion of two major types of components. On the first hand, multi/many-cores
CPU technology have been developed and the number of cores will continue to
escalate because of the desire to pack more and more components on a chip while
avoiding the power wall, instruction level parallelism wall, and the memory wall.
On the other hand special purpose hardware and accelerators, especially Graph-
ics Processing Units (GPUs) are in commodity production, and have outpaced
standard CPUs in floating point performance in recent years, and have become
as easy, if not easier to program than multi-core CPUs. Finally, reconfigurable
architectures such as Field programmable Gate Arrays (FPGAs) offer several
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parameters such as operating frequency, precision, amount of memory, number
of computation units, etc. These parameters define a large design space that
must be explored to find efficient solutions.

To address this scenario, it is undoubted that performance analysis of MM
algorithm should be re-evaluated to find out the best-practice algorithm on novel
architectures. This motivated the work to investigate the performance of the
standard MM algorithm, by means of the new modelling framework that the
authors have introduced.

This paper attempts to describe how to apply the performance model that
the authors have developed so as to make it accessible to a broad audience. The
model exploits the knowledge of the algorithm and the target architecture and it
could help the researchers for designing optimized implementations on emerging
computing architectures, such as that one developed in [3,4].
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Abstract. This paper describes approach to distributed node failure
detection and communicator recovery in MPI applications with dynamic
resource allocation. Failure detection is based on a recent proposal for
user-level mitigation. The aim of this paper is to identify distributed and
scalable approach for node failures detection and mitigation. Failed MPI
communication recovery is realized with experimental implementation
for MPI level resource allocation. Re-allocation of resources is used to
replace failed node and enable application continuation with a full per-
formance. Experimental results and performance of proposed techniques
are discussed for schematic application scenarios.
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Dynamic execution

1 Introduction

Recent advances in HPC systems design result in increase of node level par-
allelism. One can expect this trend will continue up to developing substantial
multi-element processing units in a form of many-core hyper-threaded comput-
ing nodes with a dozens of cores. No matter which model of software parallelism
is exploited, the case of fault tolerance is significant for applications reliability
and handling of hardware failures.

The most popular model that ensures both high performance and scalability
on systems composed of large shared memory nodes is the hybrid parallelism.
Usually the latter term refers to at least two levels of different parallelisation
techniques coupled together. On the top level, preferred technique is message
passing and distributed memory model such as MPI. On the lower level, dif-
ferent shared memory models usually provide better scalability for a range of
applications classes. Popular choice there are OpenMP or other threading mod-
els. Such a combination of inter- and intra-node computing techniques is referred
to as hybrid parallelism.

In the case of the MPI as a choice for the highest level of parallelisation
technique, fault tolerance is widely studied area still not yet standardized.
A number of approaches have been explored in this connection. Both library
c© Springer International Publishing Switzerland 2016
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specific implementation [6] and MPI functionality extension approaches [7] have
been proposed until now without successful adoption in a form of standard-
ized definition. A recent proposal of fault tolerance primitives called User Level
Failure Mitigation (ULFM) [3] has attracted wide recognition.

Nested parallelism on the intra-node communication level is supported within
MPI model. At least two choices are possible there: either multi-process approach
provided by MPI-3 shared memory windows [8] or multi-threading implemented
inside MPI processes with chosen threading library. For both of these choices it
is usually practical to use dedicated MPI communicator that allows intra-node
synchronization. There are also advanced developments on extending this idea
to a dynamic endpoints communicators [5] that will be probably included into
a future version of the MPI standard.

For all the realizations of intra-node parallelism any type of failure result in
a damage of associated communicator. Moreover, usually any serious hardware
failure is actually resulting in whole node failure and loss of communication, no
matter what the scale of the system is. It is expected that for larger systems with
massive inter-node parallelism hardware failures will occur more often comparing
to application lifetime. For either single multi-threaded process or multi-process
execution on the failed node, the associated intra-node communicator is doomed
to failure.

This paper presents basic schemes for failed communicators recovery and
reconstruction that enable hybrid parallel application to mitigate node failures.
Section 2 gives summary on the distributed detection of intra-node communi-
cator failures, Sect. 3 describe reconstruction approach with a use of dynamic
resource allocation. Section 4 contains an analysis of the experiments on the
proposed techniques for node failure mitigation and a discussion of the perfor-
mance for the proposed approach. The key contributions of the described work
are the following:

– study on the distributed node failure detection using currently available imple-
mentations of the MPI user level failure mitigation approach,

– application of the dynamic resource allocation from the MPI level for failed
node reconstruction,

– experiments on the performance and scalability of the proposed techniques.

2 Detecting Node Failures

2.1 User-Level Failure Mitigation Model

The MPI standard [9] defines basic abstraction for handling failures. The
default approach is to use MPI ERRORS ARE FATAL error handler. In this
case all application processes are immediately terminated if any type of failure
occurs. This is also a common choice for most of the legacy MPI codes that
are in fact no fault-tolerant. Another approach, supported by MPI, is to use
MPI ERRORS RETURN handler which gives possibility to post some process
local operation before application is terminated. ULMF model is extending the
latter approach, enabling application to continue its execution after the failure.
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ULFM is a set of functions extending MPI API functionality with primitives
for handling process failures explicitly in the application code. It is designed to
provide mechanisms for failure detection, notification, propagation and commu-
nication recovery. Details of this MPI extension are described in [3]. While this
enables MPI application to detect process failures and mitigate them, recon-
struction and recovering application consistency are not a part of the extension
and remain user responsibility.

Process failures are indicated with specific return codes of MPI communica-
tion routines. Either MPI SUCCESS or MPI ERR PROC FAILED error codes
are returned for completion or failure respectively. If global knowledge of failure
is required, already started communication can be revoked to assert consistency,
raising MPI COMM REVOKED error code on all active communication. Func-
tions for local failure acknowledgement and collective agreement on the group
of survived processes are provided with the ULMF model.

ULFM extensions are partly implemented in the MPICH project (as for
beginning of 2015, version 3.2 pre-release) and in a specific OpenMPI branch
(version 1.7ft) dedicated for fault-tolerance studies. First analyses of the ULFM
model performance and limitations have already appeared in [4] and real MPI
applications with fault tolerance implemented with ULFM have been studied
in [1].

Since ULFM model seems likely to be adopted, it is worth to target hybrid
parallel applications using this approach. Node failure mitigation is addressed in
this paper.

2.2 Intra-node Communicators

MPI model uses abstract communicator construct to represent a group of
processes and their interactions. It provides elegant way of separating different
communication scopes for collective communication. Also it is an abstraction
that allows to express different communication schemes with groups and vir-
tual topologies. More complicated communication designs can be described with
either intra-communicator for a single group of processes or inter-communicator
for separating two distinct groups of processes participating in the communica-
tion (referred to as local group and remote group).

It is practical to express nested parallelism in the hybrid MPI applications
with dedicated communicators. This encapsulates intra-node communication and
synchronization. It allows separation between intra- and inter-node communica-
tion which may overlap. Also it enables fine-grain synchronization depending on
the application design. As a result communication costs may be reduced and
eventually message exchange optimized on the MPI internal level. MPI pro-
vides convenient functionality with MPI COMM SPIT TYPE which partitions
global communicator into a disjoint subgroups of given type. The only standard-
ized type is MPI COMM TYPE SHARED which returns groups associated with
shared memory nodes. This exposes intra-node shared memory regions for local
processes.
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This approach is natural for two level parallelism with MPI+MPI model that
is composed of MPI communication across the nodes and MPI shared memory
windows within the node. It was showed that such model of hybrid parallelism
is beneficial for some application classes [8].

Other hybrid parallel applications based on MPI+X approach (where X
denotes some other parallel programming model, e.g. OpenMP) may also require
logical separation of intra- and inter-node communication. This is quite common
approach for reducing total number of MPI messages and its exchange rate.

2.3 Node Failure Detection

In this paper dedicated intra-node communicator is considered. While comput-
ing node fails, respective communicator disappears and fault-tolerant application
needs to handle with corrupted communicator. With a choice of ULFM model
for mitigating node failures, one must decide on detection technique. Two dis-
tinct approaches that aims distributed detection are described in this paper.
Distributed method is defined as not involving all processes participating in the
MPI COMM WORLD communicator (global communicator).

First approach relies on the MPI inter-communicators. In this case each of the
intra-node communicators has its counterpart communicator acting as remote
group of processes. This scheme is depicted on Fig. 1. Local group and its remote
neighbour form an inter-communicator. This seemingly complicated construct
allows detection of node failures locally. Broken node and associated processes
group are identified with a use of ULMF detection function. Unfortunately, inter-
communicators were not fully supported by ULFM implementations at the time
of this research.

Latter approach does not involve inter-communicators. The most straight-
forward way of detecting failed processes is to test MPI COMM WORLD. This
kind of process failures detection is not scalable while all processes are involved.
More distributed attempt is proposed with a special communicators structure.
Each inter-node shared memory communicator delegates one “leader” process.
These processes participate in “leaders” communicator. This special communi-
cator allows to connect processes between distinct nodes as shown on Fig. 2.

Local 
communicator

Remote 
communicator

Inter-communicator

Node 0 Node 1

Local ranks Remote ranks

Fig. 1. Pairing local and remote node communicators in inter-communicator for local
notification.
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Local 
communicator

Remote 
communicator

Node 0 Node 1

Local ranks Remote ranks

Local leader Remote leader Leaders communicator

Fig. 2. Leaders communicator for inter-node communication and notification.

Members of the “leaders” communicator notify failures locally. Node failure is
detected and group of failed processes is identified without involving global oper-
ations on the MPI COMM WORLD level.

3 Dynamic Reconstruction

3.1 Communicator Reconstruction

When the failed communicator is identified, reconstruction is possible. The choice
of reconstruction approach depends on application type and user requirements. If
communicator needs to be recreated to continue execution, then new processes
are spawned. Spawning means dynamic creation of processes in the MPI ter-
minology. Spawned processes eventually build new communicator to swap and
restore failed one. Such approach introduces significant overheads due to process
spawning as discussed in [3]. It is also required that application would support
restore of lost data of the failed communicator member processes. At least two
choices are considered in previous studies: either using checkpoints to dump
application state in a selected points of execution or to replicate node private
data on different remote node. Both choices require significant changes on the
application level and these are discussed in [1].

3.2 Dynamic Resource Allocation

Another essential issue concerning node-communicator reconstruction is resource
utilization. If performance degradation or increased node memory load are not
acceptable, over-subscription of processes on the remaining set of nodes is a bad
solution. Recreated processes need to be spawned on a new node. New resource
need to be granted to application. This is usually not immediate nor possible
with a general purpose HPC systems that execute many user jobs simultaneously.

One of the possible solution is to use dynamic resource allocation. It was
showed that resizing node allocation is possible and basic implementation was
presented for the hydra process manager of the MPICH library and Slurm
resource management infrastructure. The details of this work are described
in [10].
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Proposed approach allows resizing Slurm allocation directly from the MPI
spawn call. This is available from application code as depicted on diagram Fig. 3.
It is implemented with hydra process manager (part of the MPICH library) and
the Slurm allocation techniques using the Process Management Interface (PMI)
API. PMI is the interim layer that provides MPI processes control [2]. In the
case of modern implementations, MPI process spawning model is implemented
with PMI infrastructure. For two common MPI implementations, MPICH is
providing PMI layer implementation tightly integrated within its own process
manager called hydra while OpenMPI has similar approach with closely related
project called PMIx.

Process ManagerPMI

User job (Slurm) Job extension

User application MPI

MPI Library

Fig. 3. Dynamic allocation scheme with process and resource managing layers.

Three modes of resource allocation were implemented and provided sup-
port for different applications requirements. Immediate allocation mode provides
access to the resources only if currently available. It raises an error in the other
case. Immediate mode was implemented using native Slurm request features.
Non-blocking mode gives immediate return to execution after the allocation
request. It was intended to use a helper thread to track allocation status. Block-
ing mode returns only if resources are successfully allocated. It is using Slurm
blocking request. While blocking and non-blocking modes depend on external
conditions and availability of the resources were not addressed in experiments
discussed in the next section.

4 Experimental Results

In this section experimental results are described. Synthetic application was
implemented to test the performance of proposed node failure detection and
reconstruction approach. It focuses on node failures in case of hybrid paral-
lelism. Application kernel is a two level reduction with a local operation over
node’s shared memory and a global MPI reduce operation across nodes. If global
reduction raises fault error, failed node is detected and associated communica-
tor is re-created. This schematic kernel aims to reproduce nested parallelism
and it’s typical communication pattern. Reconstruction of the failed communi-
cator allocates new node dynamically with a use of described resource allocation
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technique. Experiments were performed using beta release if the MPI library
which was the only choice available supporting ULFM extension. More com-
plex communication schemes were considered to behave unstable and schematic
application was selected as reliable test at this stage.

Two types of experiments was executed. One type addressed absolute per-
formance of the proposed node failure detection and application reconstruction.
Node failure detection overhead was analysed using high precision timer. Per-
formance of the dynamic reconstruction of failed nodes was measured with a
focus on dynamic allocation time and process spawning time. Other type of
experiments tested relative cost of application reconstruction against the cost
of application restart including the cost of resource allocation and application
re-initialization.

4.1 Absolute Performance

Performance of the described node failure detection without usage of inter-
communicators was addressed. Time overhead introduced by the proposed detec-
tion scheme was measured. Time cost versus a number of participating nodes was
studied. Averaged results are shown on Fig. 4. Time measurements was based
on a CPU cycles. The choice of the time measure was motivated by insufficient
precision of the MPI Wtime function.

Detection scheme was tested for up to 24 nodes running from 4 to 16 local
processes using MPI COMM TYPE SHARED sub-communicators. It was found
that scalability is limited more by a number of processes per node that by the
actual number of nodes. This exposes limitations of the remote process interac-
tions used in a detection scheme.

Cost of the dynamic process allocation used in reconstruction is shown on
Fig. 5. Time spend waiting for reallocation of failed nodes was compared to the
process spawning cost. As expected spawning new processes were associated with
overheads [3]. Dynamic allocation implementation was corrected and time was

Fig. 4. Relative time spent in detection phase in the case of schematic hybrid parallel
application.
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Fig. 5. Left: relative cost of the spawn and allocate operations for increasing number
of nodes. Right: Time cost in seconds of spawning processes and allocating additional
nodes.

greatly improved comparing to the previous results [10]. Nevertheless significant
overheads were observed for dynamic allocation of nodes, due to user job resizing
which involves many, possibly slow, system components. Experimental results
were collected using “immediate” allocation mode. Presented time measurements
are averaged over the series of experimental runs. Despite using a pool of reserved
nodes for experiments, results still tend to be highly biased by the internal Slurm
allocation procedures.

4.2 Relative Performance

To demonstrate practicality of the discussed approach, cost of the detection and
dynamic reconstruction of failed nodes was compared to cost of re-scheduling and
re-initialization of the schematic mini-application. Overall approach should also
contain full application state recovery, including state of failed node’s memory. It
can use memory image cached on the remote node that is periodically updated
which obviously introduces significant memory footprint and synchronization
overhead. Other choices are possible but were not addressed in the described
work. Instead of studying application specific state recovery that is discussed in
[4], neglected costs of job re-scheduling and MPI related re-initialization were
addressed.

Experiment tested average time needed to detect and dynamically re-allocate
resources in case when half of nodes used failed. Collected results show that
despite its obstacles, reconstruction with dynamic node allocation is practical
approach. It still needs less time to recover than complete re-initialization of
application including resource re-allocation. This test does not take into account
time required to recover application to a state before the failure. Obviously re-
scheduling of application also require new job creation, in case of scheduling
system. Moreover additional waiting is required if nodes are no longer available
to the user. Results of these relative performance comparison are summarized
on Fig. 6.
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Fig. 6. Relative costs of detection and dynamic allocation versus cost of complete job
re-initialization.

5 Summary and Future Work

Node failure detection and associated application reconstruction is important
issue in case of hybrid parallelism. In this paper distributed approach for node
failure detection is proposed and possible implementation choices with ULFM
extension of the MPI standard discussed. This is the attempt to enable scalable
and fault-tolerant applications with a hybrid parallelism. Performance of the
proposed approach was invalided and experimental tests are discussed. Limita-
tions and performance issues were identified. This work is related to unstable
and experimental implementation of ULFM extension and other more scalable
approaches are still available. Possible choices are described in this paper and
are easy to apply with more refined and stable implementations.

Another contribution of this paper to the discussion on fault-tolerant MPI
applications is proposal for communicator reconstruction involving dynamic
resources allocation. It is demonstrated as practical alternative for application
restart in case of node failures. Implementation of the proposed mechanism is
described and experimental results included. Identified limitations are related to
immediate allocation and need to be addressed with better Slurm integration.
The case of non-blocking allocation requests and pending for resources still need
to be refined to provide more capabilities and integrity.
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Abstract. We present a numerical algorithm for solving large scale
Tikhonov Regularization problems. The approach we consider introduces
a splitting of the regularization functional which uses a domain decom-
position, a partitioning of the solution and modified regularization func-
tionals on each sub domain. We perform a feasibility analysis in terms
of the algorithm and software scalability, to this end we use the scale-up
factor which measures the performance gain in terms of time complexity
reduction. We verify the reliability of the approach on a consistent test
case (the Data Assimilation problem for oceanographic models).

Keywords: Tikhonov regularization · Large scale inverse problems ·
Parallel algorithm · Data assimilation

1 Introduction and Motivation

The solution of large scale inverse and ill posed problems arises in a variety of
applications, such as those in the earth/climate science, including earth obser-
vation (remote sensing) and data assimilation [8,14], or those arising in image
analysis, including medical imaging, astronomical imaging and restoration of dig-
ital films [2,4,5,9,10,15]. A straightforward solution of such problems is mean-
ingless because the computed solution would be dominated by errors. Therefore
some regularization must be employed. In this paper we focus on the standard
Tikhonov Regularization (TR) method [16]. The efficient solution of TR prob-
lems critically depends on suitable numerical algorithms. Several strategies have
been proposed in the literature. Basically, the approaches are based on the Con-
jugate Gradient iterative method, or on the Singular Value Decomposition. How-
ever, because of their formulation, these approaches are intrinsically sequential
and none of them is able to address in an acceptable computational time large
scale applications. For such simulations we need to address methods which allow
us to reduce the problem to a finite sequence of sub problems of a more man-
ageable size, perhaps without sacrificing the accuracy of the computed solution.
Indeed, we need to employ scalable parallel algorithms.
c© Springer International Publishing Switzerland 2016
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Here, scalability refers to the capability of the algorithm to:

– exploit performance of emerging computing architectures in order to get a
solution in a suitable acceptable time (strong scaling),

– use additional computational resources effectively to solve increasingly larger
problems (weak scaling).

In the present work we introduce a computational model which starts from a
decomposition of the global domain into sub domains. On these sub domains
we define local regularization functionals such that the minimum of the global
regularization functional can be obtained by collecting the minimum of each
local functional. The (global) problem is decomposed into (local) sub problems
in such a way. The resulted algorithm consists of several copies of the original
one, each one requiring approximately the same amount of computations on
each sub domain and an exchange of boundary conditions between adjacent sub
domains. The data is flowing across the surfaces, the so called surface-to-volume
effect is produced.

A research collaboration between us, the Argonne National Laboratory in
Chicago, the Imperial College London, the University of California Santa Cruz,
and the Barcelona Supercomputing Center, within the H2020-MSCA-RISE-2015
Project NASDAC (iNnovative Approaches for Scalable Data Assimilation in
oCeanography) give us the opportunity to work on variational Data Assimi-
lation (DA) in Oceanographic Models [7,9]. Then we applied this approach to
the (DA) inverse problem which is ill posed and variational approaches used for
solving it are essentially derived from the TR formulation.

2 Preliminary Concepts

Here we introduce some notations we use in the next sections. For more details
see [6].

Definition 1 (The Inverse problem). Given the linear operators M ∈ �N×N

and H ∈ �S×N , and the vector v ∈ �S×1, where N >> S. Assume that H is
highly ill conditioned. To compute u : Ω �→ �N×1 such that

v = H[u] (1)

subject to the constraint u = uM where uM = M[u]. ♠
The TR approach provides the approximation u(λ) of u, where λ is the

regularization parameter, as follows [13]

Definition 2 (The TR problem). To compute

u(λ) = argminuJ(u) (2)

where
J(u) = ‖Hu − v‖2R + λ‖u − uM‖2B, (3)
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is the TR problem of (1) and, where ‖ · ‖B and ‖ · ‖R denote the weighted norms
with respect to the error covariance matrices B and R and λ is the regularization
parameter. ♠
Definition 3 (Domain Decomposition). Let

Ω =
p⋃

i=1

Ωi Ωi ⊂ �3 (4)

be the decomposition of Ω ⊂ �3 where Ωi ⊂ �3 are such that Ωi ∩ Ωj = Ωij 
= ∅
when the subdomains are adjacent. ♠

Starting from a decomposition of the domain Ω, we now introduce the local
TR functionals. A local TR functional, which describes the local problems on
each sub-domain Ωi, is obtained from the TR functional J in (3), by adding a
local constraint defined on the overlapping regions in Ωij . This is in order to
enforce the continuity of each solution of the local DA problem onto the overlap
region between adjacent domains Ωi and Ωj .

Definition 4 (Local TR functional). Let Hi,ui,vj , (uM)i,Ri and Bi, be the
restrictions on Ωi of H,u,v and uM ,R and of B, respectively. Let uj be the
restriction on Ωj of u, Bij be the restriction of B on the overlapping region Ωij.
Finally, let λi and ωi be the (local) regularization parameters. Then

ui(λi, ωi) = argminuiJ(Ωi, λi, ωi)

where

J(Ωi, λi, ωi) = ‖Hiui − vi‖2Ri
+ λi‖ui − (uM)

i‖2Bi

+ ωi‖ui/Ωij − uj/Ωij‖2Bij
(5)

is the minimum of the local TR functional J(Ωi, λi, ωi). ♠
In [6] the authors proved that

u(λ) =
∑
i=1,p

uEOi(λi, ωi), (6)

where
uEOi(λi, ωi) : Ωi �→ Ω

and

uEOi(λi, ωi) :=
{
ui onΩi

0 elsewhere

This result states that the minimum of J , in (2), can be regarded as a piece-
wise function obtained by patching together ui, i.e. the minimum of the opera-
tors J(Ωi, λi, ωi); it means that, by using the domain decomposition, the global
minimum of the operator J can be obtained by patching together the minimum
of the local functionals J(Ωi, λi, ωi).

In the following we refer to the decomposition of TR functional as the DD-TR
model.
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2.1 The Algorithmic Scalability

Large-scale problems are computationally expensive and their solution requires
designing of scalable approaches. Many factors contribute to scalability, including
the architecture of the parallel computer and the parallel implementation of the
algorithm. However, one important issue is the scalability of the algorithm itself.
We use the following measure

Definition 5 (Scalable Algorithm). If p ∈ N , and p > 1, the algorithm
associated to the decomposition given in (4) is

A(Ω, p) := {A(Ω1),A(Ω2), . . . ,A(Ωp)}

where A(Ωi) is the local algorithm on Ωi. ♠
Definition 6 (Scale up factor). Let p1, p2 ∈ N and p1 < p2. Let T (A(Ω, pi)),
i = 1, 2 denote the time complexity of A(Ωi, pi), i = 1, 2. ∀ i 
= j we define the
(relative) scale up factor of A(Ω, p2), in going from p1 to p2, the following ratio:

Sp2,p1(N) =
T (A(Ω, p1))

(p2/p1)T (A(Ω, p2))
.

♠
We observe that:

1. if N is fixed and p ∼ N we get the so called strong scaling.
2. if N → ∞ and r is kept fixed, then we get the so called weak scaling.

3 The Case Study

Let t ∈ [0, T ] denote the time variable. Let utrue(t, x) be the evolution state of a
predictive system governed by the mathematical model M with utrue(t0, x), t0 =
0 as initial condition. Here we consider a 3D shallow water model. Let v(t, x) =
H(utrue(t, x)) denote the observations mapping, where H is a given nonlinear
operator which includes transformations and grid interpolations. According to
the real applications of model-based assimilation of observations, we will use the
following definition of Data Assimilation (DA) inverse problem [13,14]. Given

– DN (Ω) = {xj}j=1,...,N ∈ �N : a discretization of Ω ⊂ �3;
– M: a discretization of M;
– uM

0 = {uj
0}M

j=1,...,N ≡ {u(t0, xj)}M
j=1,...,N ∈ �N : numerical solution of M on

DN (Ω). This is the background estimates, i.e. the initial states at time t0; it
is assumed to be known, usually provided by a previous forecast.

– uM = {uj}j=1,...,N ≡ {u(xj)}j=1,...,N ∈ �N : numerical solution of M on
DN (Ω);

– utrue = {u(xj)true}j=1,...,N : the vector values of the reference solution of M
computed on DN (Ω) at t fixed;
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– v = {v(yj)}j=1,...,nobs: the vector values of the observations on DN (Ω);
– H(x) � H(z) + H(x − z): where H ∈ �N×nobs is the matrix obtained by the

first order approximation of the Jacobian of H and nobs << N ;
– R and B the covariance matrices of the errors on the observations v and on

the system state uM, respectively. These matrices are symmetric and positive
definite (see [6] for details).

We assume that N = nx × xy × nz and nx = ny = n while nz = 3. Since the
unknown vectors are the fluid height or depth, and the two-dimensional fluid
velocity fields, the problem size is N = 3n2. H is assumed to be a piecewise
linear interpolation operator whose coefficients are computed using the points of
model domain nearest the observation values. We assume utrue be the solution
of M as given in [1]. Observation values are randomly chosen among the values
of utrue.

Definition 7 (The DA Inverse problem). Let uDA be the solution of:

v = H[uDA]

subject to the constraint:
uDA = uM. ♠

DA is an ill posed inverse problem [14]. The local DD-TR operator, defined on
a subdomain Ωi, is (see Eq. (5), with λi = ωi = 1)):

Ji(ui) = (Hiui − vi)TRi(Hiui − vi) + (ui − (uM)
i
)TBi(ui − (uM)

i
)

+ (ui − uj)TBij(ui − ui). (7)

In [3,7] the authors provided the reliability of DD-TR model for DA problem. In
this paper we present results of an implementation of the model on two different
computing architectures. We evaluate the efficiency of these implementations by
analysing the strong and weak scalability of the algorithm by using the scale up
factor defined in Sect. 2.1.

4 The DD-TR Algorithm on Two Reference Computing
Architectures

In this paper, our testbed is a distributed computing environment composed of
computational resources, located in the University of Naples Federico II campus,
connected by local-area network. More precisely, the testbed is made of:

– A1: a 288 CPU-multicore architecture made of distributed memory blades
each one with computing elements sharing the same local memory for a total
of 3456 cores.

– A2: a GPU+CPU architecture made of the 512 threads NVIDIA Tesla con-
nected to a quad-core CPU.
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If nproc denotes the number of processing elements of the reference architectures,
we have nproc = 64 for A1, and nproc = # threads-blocks, for A2. We assume
a 2D uniform decomposition of DN (Ω) along the (x, y)-axis, that is the x-axis
is divided by s and the y-axis by q then, the size of each subdomain DN (Ωi) is
r = nlocx × nlocy × nlocz where:

nlocx =
nx

s
+ 2ox , nlocy =

ny

q
+ 2oy , nlocz = nz. (8)

These dimensions include the overlapping (2ox × 2oy).
We use the LBFGS method for computing the minimum of DD-TR func-

tionals [11,17]. Then, following result specifies the scale up factor of algorithm
A(DN (Ω), p) in our case study [6]:

Proposition 1. If the time complexity of A(DN (Ω), 1) is T (N) = O(f(N))
flops, on a problem of size N , where f(N) ∈ Π3, the scale up factor of the
algorithm A(DN (Ω), p) is

Sp,1(N) = α(r, p) p2. (9)

Remark: Let tflop denote the unitary time required by one floating point oper-
ation. As a result, the execution time needed to algorithm A(DN (N), 1) for
performing T (N) floating point operations, is

Tflop(N) = T (N) × tflop.

Multiplying and dividing the (9) by tflop we get

α(r, p)p2 =
Tflop(N)

pTflop(N/p)
. (10)

Finally, we give the following

Definition 8. Let S
V := Toh(N/p)

Tflop(N/p) denote the surface-to-volume ratio. It is a
measure of the amount of data exchange (proportional to surface area of domain)
per unit operation (proportional to volume of domain). ♠

In [12] authors define Tnproc(N), the execution time of A(N, p), as given
by time for computation plus an overhead which is given by synchronization,
memory accesses and communication time also.

Tnproc(N) := Tnproc
flop (N) + Tnproc

oh (N)
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where

– A1: Tnproc
flop (N) is computing time required for the execution of T (N) floating

point operations; Tnproc
oh (N) is overhead time of T (N) data which includes

communications among CPU processors.
– A2: Tnproc

flop (N) := TCPU (N) + TGPU (N), where
• TCPU (N) is the CPU execution time for the execution of T (N) floating

point operations,
• TGPU (N) is the GPU execution time for the execution of T (N) floating

point operations.
and Tnproc

oh (N) includes the communications time between host (CPU) and
device (GPU) and time for memories accesses.

Here we assume that

TGPU (N) := TGPU
flop (N) + TGPU

mem (N), (11)

where TGPU
mem (N) is the time for global and local memories transfers into the

device (GPU) and TGPU
flop (N) is the computing time required for execution of

floating point operations.

Finally, for A2, Tnproc
oh (N) ≡ TGPU

mem (N), since the communications between
host (CPU) and device (GPU) in the algorithm we implement occur just at the
begin and the end for I/O transfers and, for this reason, it can be neglected in
our considerations.

4.1 Discussion

Table 1 shows results obtained for A(Ω, p) on A1 for a problem size O(106) and
O(107) by using nproc = p and Table 2 shows execution time of the algorithm
A(Ω, p) running on A2 for a problem size O(107) by using # thread-blocks= 2p.

In Table 2, TCPU (N) is execution time that CPU needs for building data.
These data are transferred just once as well as output data so we have that
TGPU
oh (N) is reduced to the time of I/O transfer. For this reasons we evaluate the

performance of DD-TR implementation on GPU by analysing TGPU (N). Toh(N)
can be estimates by dividing DN , which is size of processed data espressed in
GB by the bandwidth value BW which is the rate of data transfer espressed in
GB/seconds: Toh(N) := DN

BW
secs .

We have DN = 3.7 GB which gives Toh � 3.7/208 s � 0.017 s. Our consider-
ations will focus on values of TGPU

flop (N) reported in Table 3. We now discuss the
software scalability as shown in Tables 1 and 3. To this end, we introduce

slocnproc :=
Tflop(N/p)
Tnproc(N/p)

, (12)

which denotes the speed up of the (local) algorithm A(DN (Ωi), N/p) for solving
the local problem on subdomain DN (Ωi). Let us express the measured scale up
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Table 1. Results on A1: Execution time and scale up factor of A(Ω, p) for different
values of N = 3n2 and nproc = 2p.

n nproc Tnproc(N) Measured Snproc,8 Snproc,8

O(106) 8 2.0545e+02 1.0 1

16 6.3316e+01 3.25 4

32 2.0005e+01 10.27 16

64 8.7835e+00 23.39 64

n nproc Tnproc(N) Measured Snproc,16 Snproc,16

O(107) 8 − − −
16 3.9091e+03 1.0 1

32 9.9952e+02 3.91 4

64 2.7584e+02 14.17 16

Table 2. Execution time of algorithm A(Ω, p) running on A2 for a problem size O(107)
and nproc = #thread − blocks.

N p nproc TGPU (N)

O(107) 1 2 0.144

2 4 0.044

4 8 0.025

8 16 0.024

factor in terms of slocnproc. We have:

Smeasured
1,nproc :=

Tflop(N)
p · (Tflop(ri) + Toh(N/p))

. (13)

From the (12) and the (13) it follows that

Smeasured
1,nproc =

Tflop(N)
pTflop(N/p)

slocnproc
+ pToh(N/p)

=
slocnproc

Tflop(N)
pTflop(N/p)

1 + slocnprocToh(N/p)

Tflop(N/p)

. (14)

Table 3. Results on A2: Values of TGPU
flop and measured scale upfactor compared with

theoretical once.

N p TGPU
flop (N) Measured Snproc,2 Snproc,2

O(107) 1 0.127 - -

2 0.027 4.7 4

4 0.008 15.9 8

8 0.007 18.1 16
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As we need to guarantee that the so-called surface-to-volume effect on each local
DA problem is produced [2,4,9,10], we assume:

0 ≤ S

V
< 1 − 1

slocnproc

< 1.

Let

α :=
slocnproc

1 + slocnprocToh(N/p)

Tflop(N/p)

=
slocnproc

1 + slocnproc
S
V

,

from (14) it comes out that

Smeasured
1,nproc = αS1,nproc.

Finally, it holds that

(i) if slocnproc = 1 then

α < 1 ⇔ Smeasured
nproc,1 < Snproc,1;

(ii) if slocnproc > 1 then

α > 1 ⇔ Smeasured
nproc,1 > Snproc,1;

(iii) if slocnproc = p then

1 < α < p ⇒ Smeasured
nproc,1 < pSnproc,1;

Hence, we may conclude that if

slocnproc ∈]1, p] ⇒ Smeasured
nproc ∈]Snproc,1, p Snproc,1[.

It is worth noting that in our experiments, in A1, local DA problems are sequen-
tially solved, then

slocnproc = 1

while in A2, local DA problems have been concurrently solved on the GPU
device, so

slocnproc > 1

Thus the above analysis validates the experimental results both in terms of
strong and weak scaling.
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Abstract. Current parallel performance analysis tools are typically
based on either measurement or modeling techniques, with little integra-
tion between both approaches. Researchers developing predictive models
have to build their own validation experiments. Conversely, most appli-
cation profiling tools do not produce output that can be readily used to
generate automatically approximated models.

The Tools for Instrumentation and Analysis (TIA) framework was
originally designed to bridge the gap between analytical complexity mod-
eling and performance profiling tools. Through loosely coupled, but well
integrated components, TIA provides both profiling on a specified set of
metrics for source-annotated regions of parallel code, and analysis facil-
ities to help find and validate an appropriate performance model.

This methodology can also be applied to power performance. In this
work, we enhance TIA with energy measurement capabilities through our
Energy Measurement Library (EML). We test the augmented framework
by performing power performance profiling and analysis tasks for a sim-
ple computation.

Keywords: Analytical modeling · Performance analysis · Energy
modeling · Power measurement

1 Introduction

Energy performance is currently a key factor in the design of HPC systems and
software, with the move towards ultrascale infrastructure requiring significant
advancements in computation energy efficiency. Thus, the attention of many
researchers of HPC software has turned towards energy performance analysis.

To guide energy consumption optimization decisions, analysis tools and tech-
niques that are both powerful and simple to use are essential. These tools typi-
cally fall under one of two approaches: performance measurement and profiling
of actual application code, and analytical modeling aiming to predict real per-
formance in many systems.
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 57–65, 2016.
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There is a clear relationship between the modeling and profiling processes:
theoretical models need experimental data to validate them, and experimental
data often offers insight on an appropriate analytical model. However, many
analysis tools strictly focus on profiling and visualization. While this special-
ization is not without merits in itself, lack of integration with modeling tools
can also lead to significant effort for researchers in building their own model
validation or model parameter fitting experiments.

Some attempts exist in the direction of an integrated profiling-modeling
analysis solution, typically focusing on performance modeling. In this paper,
we build on top of the Tools for Instrumentation and Analysis (TIA) frame-
work, extending it to add energy measurement capabilities through our Energy
Measurement Libray (EML) component.

The rest of this paper is structured as follows: Sect. 2 gives a brief overview
of prior work related to software energy measurement and energy performance
analysis. Section 3 explains both the TIA model of analysis and tooling, describ-
ing how energy measurement has been integrated through EML. In Sect. 4, we
describe the instrumentation of a simple matrix multiplication experiment. The
obtained results are used to showcase energy performance capabilities and show
the analysis stage in Sect. 5. Lastly, Sect. 6 presents our conclusions and planned
future work.

2 Background

Numerous system and application performance models have been developed in
literature. Of these, many recent studies deal with energy consumption modeling
in computation systems [8,17]. Some also take into account algorithmic energy
performance properties [6,13]. In most cases reviewed, validation experimenta-
tion or model generation processes are not automatically performed.

The rapidly evolving landscape of energy measurement tools is making the
lack of enery-aware profiling tools less of a likely cause. By now, most of the major
parallel performance toolsets (such as TAU [15], Paraver [12] or Vampir [10]) have
been updated to expose hardware-counter based power measurements (often
collected through PAPI [3]). Smaller and more narrowly focused energy-specific
APIs, such as PowerAPI [14], pmlib [1] or our Energy Measurement Library
(EML) [4], have also been publicly released.

Explicit profiling tool support for the modeling process of parallel code is
not as widespread in HPC, although prior work exists in this area. The Perfor-
mance Analysis and Characterization Environment (PACE) [11] uses a hierar-
chy of model objects representing applications, subtasks, parallel communication
patterns and hardware. The Prophesy system [16] allows for whole-application
model development based the idea of composing kernel performance models
through a coupling parameter characterizing their interaction.

Another approach can be found in the Dimemas simulator, capable of build-
ing simple application behavior and platform component models from Paraver
event traces [12]. A recent study [5] defines a method, now integrated in the
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Scalasca framework, for building rough performance models (forgoing model
accuracy to increase coverage of critical scalability bottleneck testing) from pro-
filing data obtained from the Score-P [7] instrumentation framework.

For this experience, we use a modeling-oriented analysis environment, the
Tools for Instrumentation and Analysis (TIA) framework. This choice is driven
by both its modular design and our familiarity with the TIA codebase, as
we intend to extend the framework using EML to achieve energy modeling
capabilities.

3 The TIA Framework

The TIA framework was conceived as a hybrid approach between theoretical
complexity analysis and performance profiling techniques [9]. It is based on the
previously published CALL system [2], from which TIA inherits its instrumen-
tation system and modular tool structure.

3.1 Model for Performance Analysis

In the original CALL system, analysis started with the researcher deriving
theoretical complexity formulas, in terms of both architecture-dependent and
architecture-independent parameters. These are embedded in the application
source code as CALL annotations (C preprocessor #pragma cll directives) for
each segment of code to be analyzed (called an individual experiment in this
model).

TIA implements a similar scheme, while decoupling model development from
the annotation and profiling stage. It is no longer required for the user to commit
to a complexity formula at annotation time.

The TIA framework is mainly comprised of a source-to-source translator
for annotated C programs, closely related to the original call, and a R static
analysis package (Fig. 1).

Fig. 1. The TIA model
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This annotated source is converted to instrumented code by the translator.
When compiled and run, the resulting application then produces trace files for
each compute node containing data for each annotated experiment.

3.2 The call Translator

The call translator takes C source with annotations and replaces them in the
emitted program with instrumentation code, including both the framework’s own
runtime support library (cll.h) and any required measurement libraries (such
as PAPI).

This translator is extensible through user modules called drivers, of which
there are two types: communications and observables drivers.

Communications drivers instruct call with knowledge of the underlying
communication APIs for message-passing parallel applications. An instance of
this would be automatic barrier synchronization of experiments in MPI-based
applications.

Observables drivers can interface with both platform native APIs and
portable APIs (such as PAPI) to equip call with measurement capabilities from
different sources. Some of them, like the PAPI driver or an UNIX stdlib-based
time driver (UNISTD) come already bundled with the framework.

3.3 The cll Analysis Package

The cll analysis package for the R environment, developed for TIA as a replace-
ment to CALL’s prior llac R package [9], includes import functions for the call
output format, as well as processing and filtering utilities for the experimental
data.

Its main feature is the ability to either fit the experimental data to a user-
provided model, or try to automatically generate a suitable model as a linear
combination of user-provided metrics and parameters.

3.4 Energy Performance Analysis

The proposed model is general enough to apply to energy performance analy-
sis. Additionally, the modular design of the tool allows to extend its profiling
capabilities to include energy measurement through an appropriate observables
driver.

We implement this driver based on our Energy Measurement Library
(EML) [4]. The library has been previously presented as an open-source C
abstraction layer over any software energy measurement API. It is designed
to be itself extensible to add device support through drivers.

4 Energy Analysis Experiment

In this section, we present a simple experiment as a usage example to illustrate
the TIA energy performance analysis process. Our target code is a naive matrix
multiplication implementation.
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4.1 Experimental Setup

The test is run in a machine with an Intel Xeon E5-2660 processor, which exposes
the Intel Running Average Power Limit interface to hardware counter CPU
energy measurements. This is one of the metrics currently supported by EML.

4.2 Instrumentation

We first annotate the code with TIA directives:

#pragma cll for(N=MIN; N<=MAX; N+= STRIDE)

/* TIA experiment: initialization */

#pragma cll init CLOCK , \

EML_ENERGY_RAPL = init [0]*N*N

for(i=0;i<N;i++)

for(j=0;j<N;j++)

A(i,j) = B(i,j) = (i == j);

#pragma cll end init

/* TIA experiment: multiplication */

#pragma cll mat CLOCK , \

EML_ENERGY_RAPL = mat [0]*N*N*N

for(i = 0; i < N; i++) {

for(j = 0; j < N; j++) {

sum = 0;

for(k = 0; k < N; k++)

sum += A(i, k) * B(k, j);

C(i,j) = sum;

}

}

#pragma cll end mat

#pragma cll end for

Both initialization and multiplication are enclosed in #pragma cll directives
delimiting the beginning and start of an experiment, and giving it a name (init,
mat). A list is then given indicating desired metrics to be included: in this case,
both the standard CLOCK metric (system time) and the EML ENERGY RAPL metric
(total energy consumption seen by RAPL) provided by the EML driver are
recorded.

Finally, the user can provide a complexity formula to be used for the TIA
automatic model generation feature, which attempts to find the linear combina-
tion of terms that best approximate experiment data gathered for the desired
metrics according to a quality criterion. Presently, constants are denoted by the
experiment name plus array subscript notation (init[0]), while other terms
denote variables. Non-linear terms can be expressed here: in the above exam-
ple, we are suggesting N2 (N*N) as a term for the init model, and N3 (N*N*N)
for mat.

Note that it is possible to use measured metrics as part of these formulas by
simply representing them as symbolic terms and performing further fitting from
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the R analysis environment, although this is not yet an automatic process. Later
on, this would be further simplified by introducing support to refer to metrics
directly in the formula for automatic analysis.

5 Results

Averaging 10 runs of the instrumented code with different matrix sizes, we obtain
a trace file with the following energy consumption data (Table 1):

Table 1. RAPL energy consumption data

Size Energy [J]

init mat

500 0.19 40.02

750 0.23 173.94

1000 0.31 419.80

1250 0.48 954.19

1500 0.66 1777.57

1750 0.89 3290.00

2000 1.14 4651.50

We can now import the trace file in R through the cll package. At this
stage, cll provides a number of data preprocessing functions such as filtering
and outlier elimination or joining of multiple trace files.

The main utility is cll.fit function. It receives trace data and a list of terms
and searches the space of models built as a linear combination of these terms
for the best fit. For example, this would be a full search for the mat experiment
for all models built from the terms N , N2 (some output has been omitted for
brevity):

> cll.fit(matdata , type="full",

var.list=list("N", "N*N"))

[...]

Coefficients:

Estimate Std. Error t value

(Intercept) 1.753e-01 9.206e-03 19.04

I(N * N * N) 1.338e-10 6.322e-12 21.17

Term Weights:

weight terms

1 0.9999998 (Intercept)

2 0.8999677 N*N*N
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3 0.1000321 N*N

4 0.0000000 N

Best Top Models:

weight model

1 0.8999677 EML_ENERGY_RAPL ~ I(N * N * N)

2 0.1000321 EML_ENERGY_RAPL ~ I(N * N)

The compute stage has cubic complexity on the problem size, as expected.
For more complex programs, the cll.fit function can be instructed to consider
more factors and other metrics as terms.

Lastly, the package includes functions to produce basic graphical visualiza-
tions of predictions and model fit graphs (Fig. 2). More sophisticated represen-
tations can take advantage of the plotting functionality in the R environment.
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Fig. 2. Generated model (red) from measurements (black) (Color figure online)
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6 Conclusions

We have shown that the modular design of both the TIA framework and EML
makes them suitable for composition as part of larger analysis frameworks. Addi-
tionally, we have presented a simple example application in which the framework
can assist in finding a theoretical model, improving experiment platform inde-
pendence through observables drivers and providing basic visualization facilities.

Future work will be directed towards a production-ready modular analysis
framework. This involves streamlined installation and usage processes, improved
visualization and statistical capabilities, and a user interface for the analysis
package. The EML component is also expected to undergo further API develop-
ment and improve device support in coming releases.
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Abstract. In the paper we focus on analysis of performance and power
consumption statistics for two modern environments used for comput-
ing – volunteer and cluster based systems. The former integrate com-
putational power donated by volunteers from their own locations, often
towards social oriented or targeted initiatives, be it of medical, mathe-
matical or space nature. The latter is meant for high performance com-
puting and is typically installed in a dedicated computing centre. While
volunteer systems allow to obtain high computing power, they are not
meant for dense computations and do not feature state-of-the-art hard-
ware. Clusters offer best of the best at the cost of high purchase and
maintenance cost. In the paper we give computational efficiency sta-
tistics for Atlas@Home, Asteroids@Home and BOINC cross-project and
compare these to clusters such as Cray XC30, SuperMUC and TRYTON.

Keywords: Performance · Power consumption · Volunteer computing ·
Cluster computing

1 Introduction

Today, high performance computing can be performed within powerful work-
stations and servers thanks to multicore CPUs and accelerators such as GPUs
or Intel Xeon Phi coprocessors. Reaching towards exaflop performance requires
integration of such nodes into systems such as clusters1 or volunteer based sys-
tems. These have reached around 33 (Tianhe-22) and 8 PetaFlop/s (BOINC3)
performance. However, this comes at a cost of considerable power consumption,
either in an HPC center (over 17 MW for Tianhe-2) or in individual volunteers’
homes. Measurement and consideration of energy consumption is important both
from the cost point of view and negative side effects on the environment. Future
clusters are suggested to be developed with an upper bound on power consump-
tion of 20 MW maximum [1].

1 http://www.top500.org.
2 http://top500.org/system/177999.
3 http://boinc.berkeley.edu/.
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In this paper we focus on volunteer computing and comparison to cluster
computing in the aforementioned respects. In volunteer computing energy con-
sumption might be important from the following points of view:

1. individual – which CPUs offer better performance/power ratio?
2. global – possibly in order to provide guidance to individuals willing to donate

computing power to specific projects – in this case several performance met-
rics of a single CPU or GPU need to be considered for various classes of
computational code.

2 Related Work

Energy consumption is becoming a concern and is addressed in both cluster and
volunteer based systems. For instance in paper [2] the authors proposed theoret-
ical and practical solutions to data partitioning and scheduling in environments
that consist of many potentially distributed clusters, each of which may consist
of multicore CPUs and GPUs. Various optimizers may be defined, with an exam-
ple given for minimization of application execution time with an upper bound
on the total power consumption of the compute devices used for application exe-
cution. In the context of volunteer computing, paper [3] suggests that focus is
mostly given towards project with real practical impact, partly because energy
consumption has become an important factor.

There exist several practical solutions and systems that perform distributed
computations in the volunteer fashion:

1. BOINC4 [4] is probably the most recognized system of this type of all. In
BOINC clients run a dedicated client that fetches parts of work from a cen-
tral server, sends results back and repeats the process. The system can send
a packet to more than one volunteer in order to increase dependability of
computations at the cost of processing power. Paper [5] describes scalability
of the distribution mechanisms found in BOINC that allow processing of over
23 million tasks per day.

2. Comcute [6,7] can be thought of as an extension of the ideas deployed in
BOINC, with two major design and implementation differences:
– Computations are performed within a web browser on the client side, as

opposed to a dedicated client application. This relieves the user from the
need for installation and related safety concerns. However, the associated
cost is lower performance compared to native code. In Comcute, a special
mechanism was implemented for selection of the best performing technol-
ogy supported on the client side (either JavaScript, Java, Flash etc.).

– management of computations on the server side is also distributed and is
performed by many servers elected for this purpose. This increases reliabil-
ity of processing for a project that can survive failures of some management
servers.

4 http://boinc.berkeley.edu/.

http://boinc.berkeley.edu/
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3. WeevilScout prototype framework [8] implements the concept of processing
within a browser but is limited to the JavaScript technology.

4. CrowdCL [9] is an open source framework for volunteer computing that
enables to perform computations within a webpage. CrowdCL provides both
the server and client codes. On the client side, JavaScript, CrowdCLient, Ker-
nelContext, WebCL and OpenCL are used to run computations possibly on
CPUs or other compute devices.

5. In [10] the authors proposed an architecture and a solution in which the tradi-
tional volunteer computing is extended with mobile devices. The latter have
become both powerful with multicore processors and energy efficient. The
solution extends the traditional distributed computing model with decentral-
ized distribution points. Roles such as task distribution point, task execution
point and task distribution and execution point can be assigned to clients.
The authors presented both running times and energy consumption of indi-
vidual clients for an experimental distributed architecture for processing a
prediction of a protein structure.

Several works have addressed modeling of computations in volunteer based
systems, often adopting probabilistic models. Paper [11] contains models for
phases in volunteer processing with distinction of the following stages: distribu-
tion, in progress (computations) and validation. Distributions such as Weibull,
mixture of Gaussian distributions are suggested. Paper [12] describes comput-
ers of Internet users including core count and memory sizes. In paper [13] we
presented modeling of computational effort (in credits) in a volunteer system
required for processing of a task that requires processing of a certain number of
data packets with known computational requirements on a reliable machine. In
volunteer computing, the client may be available for a limited time only and if
processing of a data packet has not been finished within a time frame, it would
need to be repeated by another volunteer. The paper assesses actual overheads of
a real volunteer environment based on real BOINC statistics. Energy consump-
tion was also considered in selected works, from various perspectives. In paper
[14] the authors propose usage of aggressive volunteer computing in an environ-
ment with multi-core computers. As the number of cores is constantly increasing,
the authors suggest that aggressive volunteer computing in which computations
are assigned to computers already active doing native jobs can bring consider-
able savings in energy consumption. According to their findings, on average this
strategy saved around 50 % energy compared to clusters and 33 % compared to
the traditional volunteer approach. In paper [15] the authors analyze a slightly
different aspect of volunteer computing related to energy consumption. Namely,
if control over volunteers’ computers is regained by their owners or users it may
result in wasted energy for volunteer jobs. The authors prested an approach
using reinforced learning for determination of computers on which jobs should
be deployed and demonstrated 30 % to 50 % of energy savings by doing that. In
paper [16] the author evaluates impact of CPU throttling on energy consumption
when performing jobs in a volunteer system. Specifically, the author compares
a dedicated machine with full load, a system in which BOINC restricted CPU
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load to 20 % and a scenario with fine-grained CPU throttling in which the appli-
cation goes to sleep after predefined, relatively short intervals. According to
experiments this gave savings in energy consumption by around 40 %.

3 Estimating CPU Power Consumption
of Volunteer Nodes

To obtain the average expected CPU power consumption of a volunteer node we
performed statistical analysis based on data made available by BOINCstats5. For
analysis we choose two popular Physics and Astrophysics projects Atlas@Home
and Asteroids@Home. The Atlas@Home project was started in 2014, while Aster-
oids@Home begun in 2012. These projects are relatively new. For additional com-
parison we analyse data from the Boinc combined set, which lists information
collected from all projects since the beginning of the BOINC initiative. These
lists give us reliable information regarding particular CPU models used in these
projects and multiplicity of each CPU model used in a particular project. Fur-
thermore, in order to make our comparison as fair as possible we filtered the raw
volunteer data and selected for further analysis only those entries which showed
non zero computational activity for the last month, week and day. This allowed
us to treat those volunteers similar to clusters which are dedicated computational
resources. Apart from the aforementioned filtering we did not discriminate any
volunteers.

For each of the aformenetioned CPU models, we used TDP (Thermal Design
Power) given by CPU manufacturers as a CPU power consumption metric. While
it can be argued that momentary CPU power draw while performing intensive
computations may exceed the TDP specification, voluntary computing patterns
are typically long-term, where any excessive power draw is guaranteed to activate
hardware thermal protection mechanisms which, either by introducing additional
wait cycles, limiting clock frequency and/or core voltage will limit the average
CPU power consumption to stay within the manufacturer-stated value.

In each case considered, we calculated the expected TDP (ETDP) value from
the set of all CPUs listed in a project as follows: let NCPU be a total number of
all CPUs considered; let NT be a number of CPUs of type T in the set; finally
let PT be a TDP value specified for a CPU of type T expressed in Watts. Then,
an expected TDP value for a given project p can be calculated as:

ETDPp =
∑
T

NT

NCPU
· PT (1)

In the following sections each considered project is characterised and its ETDP
value is given, using data obtained from BOINCStats in January, 2015.

5 http://www.boincstats.com.

http://www.boincstats.com
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3.1 Atlas@Home Expected CPU Power Consumption

The Atlas@Home project, started in 2014, lists 367 different CPUs, for a
total sum of 3159. The first place is taken by 77 instances of Six-Core AMD
Opteron(tm) Processor 2435 which makes for a total share of 2.4375 %. The sec-
ond place is held by 73 instances of AMD FX(tm)-8350 Eight-Core Processor
and the third by 72 instances of Intel(R) Core(tm) i7-3770 CPU @ 3.40 GHz.
The calculated ETDP for this project equals 78.4 W.

3.2 Asteroids@Home Expected CPU Power Consumption

The Asteroids@Home project, started in 2012, lists 1538 different CPU versions.
Unlike in Atlas@Home project, where we were able to calculate ETDP across all
CPUs, we limit our calculations to the first 300 different CPUs listed, for a total
sum of 65920. The first place is taken by 6941 instances of ARMv7 Processor
rev 0 which makes for a total share of 10.5 % of a considered CPU subset. The
second place is held by 2188 instances of ARMv7 Processor rev 1 and the third
by 1156 instances of Intel(R) Core(tm) i7-3770 CPU @ 3.40 GHz. The 300th
(final considered) entry is 58 instances of an Intel(R) Core(tm) i5-2467M CPU
@ 1.60 GHz. Beyond that point, individual CPU versions listed fall rapidly in
instance numbers to low double digit values and we consider them as statistical
noise rather than a useful data point for analysis. The calculated ETDP for this
project equals 58.9 W.

3.3 BOINC Cross-Project Expected CPU Power Consumption

Analogous to Asteroids@Home, we evaluate only a subset of a total set of all
listed CPU versions. Our subset consists of 490 most frequently appearing CPU
variants, for a total of 11089271 instances. The first place is held by 587999
instances of Intel(R) Core(tm) i7-3770 CPU @ 3.40 GHz (a 5.3 % of a considered
subset). The second place is taken by 461115 instances of Intel(R) Xeon(R) CPU
X5355 @ 2.66 GHz (a 4.16 % of a subset) and the third place belongs to Intel(R)
Core(tm) i5-3470 CPU @ 3.20 GHz with 436775 instances (3.94 % of a subset).
The closing (490th) entry is Intel(R) Pentium(R) CPU G2030 @ 3.00 GHz with
3427 instances (0.031 %). The calculated ETDP for this project equals 72.6 W.

4 Estimating Computational Power of Volunteer Nodes

With the goal of comparing voluntary computing with traditional clusters we
had to choose a common performance metric. The first and most obvious choice
was a number of floating point operations per second (FLOPS). However, this
presented unexpected difficulties. First of all, BOINC project uses its own sys-
tem of BOINC Credits awarded to a volunteer after computations are performed.
There is a mapping between a Boinc Credit and a FLOP6, however, it appears
6 http://boinc.berkeley.edu/wiki/computation credit.
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that Credits are awarded differently (for different amount of work) between
projects and, while there appears to be an effort to provide coefficients7 to cred-
its of different projects, it is not clear, whether statistics on BOINCStats use
normalised credits, credits specific to a project, or a mixture of both. Another
big problem with Boinc Credits is, that they do not differentiate between work
performed using CPU and work done on a GPU (or another accelerator). This
makes Credits data next to useless for any meaningful comparison.

With the above in mind, it was necessary to look for another computational
power metric, preferably with data available for most of CPUs listed in the
project statistics. We decided to use CPU Mark data available for most proces-
sors considered. In very few cases, where the CPU under consideration was not
benchmarked, we had to supply extrapolated data.

For each considered project, we calculated the expected CPU Mark
(EMARK) value from the set of all CPUs listed in a project as follows: let
NCPU be a total number of all CPUs considered; let NT be a number of CPUs
of type T in the set; finally let MT be a CPU Mark benchmark result specified
for a CPU of type T . Then, an expected CPU Mark value for a given project p
can be calculated as:

EMARKp =
∑
T

NT

NCPU
·MT (2)

The CPU sets examined for each considered project were identical with descrip-
tion given in Sect. 3. The benchmark data was obtained from PassMark(R) Soft-
ware CPU Benchmarks8. The resulting EMARK values for all projects are given
in Table 1.

Table 1. EMARK values calculated for considered BOINC projects

Atlas@Home Asteroids@Home BOINC combined

5984 4085 3286

5 Comparison of Volunteer and Cluster Computational
Efficiency

To compare computational efficiency between volunteer computing and tradi-
tional clusters, we had to obtain identical metrics for a cluster. Additionally, to
guarantee a fair comparison, it was necessary to pick a CPU-only cluster. Using
data from November 2014 issue of the Top500 List9 we selected Cray XC30 listed
as the 13th most powerful supercomputer. The Cray XC30 system, located in

7 http://boincstats.com/en/stats/-1/cpcs.
8 www.cpubenchmark.net.
9 http://www.top500.org.
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United States, is based on Intel(R) Xeon(R) E5-2697v2 12Core @ 2.7 GHz. The
number of cores listed is 225984, which translates to 18832 CPUs. The cluster
uses an Aries interconnect and runs the Cray Linux Environment. The speci-
fied TDP value for this CPU is 130 W and the CPUMARK benchmark result is
23549 CPU Marks.

We also decided to have a look at a CPU-only cluster from the Novem-
ber 2012 issue of the Top500 list, which corresponds to the time frame when
Asteroids@Home project was initiated. We selected the 6th entry on the list:
the SuperMUC from Leibnitz Rechenzentrum based on 18432 Intel(R) Xeon(R)
E5-2680 CPUs @ 2.7 GHz. This CPU has a TDP of 130 W and the CPUMARK
benchmark result is 13251 CPU Marks.

For an additional data point we examined TRYTON Supercomputer10 from
TASK Academic Supercomputing Centre in Gdańsk, Poland. Built in 2015,
TRYTON is based on 2966 Intel(R) Xeon(R) E5-2670 v3 @ 2.3 GHz CPUs.
This CPU has a TDP of 120 W and the benchmark result is 17481 CPU Marks.

With that data available we can calculate a computational efficiency metric
expressed in CPU Marks per Watt of CPU power. The final results are presented
in Table 2.

Table 2. Computational efficiency (in CPU Marks/W) comparison of selected clusters
and BOINC projects

Atlas@Home Asteroids@Home BOINC Combined Cray XC30 SuperMUC TRYTON

76.3 69.4 45.3 181.2 101.9 145.7

6 Summary and Future Work

We examined computational efficiency (computational power related to CPU
power consumption) of selected BOINC projects, as well as all BOINC projects
combined. We performed the same analysis for three representative clusters.
From the efficiency figures presented in Table 2 it can be seen, that clusters have
computational efficiency advantage over voluntary computing, with an advantage
factor range of 4.0 to 1.3, depending on a particular pair compared. However,
when comparing pairs of similar date of origin, we can see advantage factors
in range of 1.46 – 2.37. This can be explained easily, as clusters are designed
as homogeneous environments built with the then state-of-the-art components,
while volunteer projects group together volunteers with a wider range of hetero-
geneous computing hardware.

It can be observed, that BOINC Combined has the lowest efficiency and
that the efficiency increases with date of project origin. This is expected, as
the Combined statistics list all processors, also relatively very old ones, which
negatively impacts the results.

10 http://task.gda.pl/kdm/sprzet/tryton/.
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In this paper, when estimating power consumption we focused on CPU power
consumption using TDP because this data is well documented and available. We
are aware that the total power consumption is also influenced by cooling and
auxiliary equipment. However, available data is not sufficient for a meaningful
comparison. Similarly, extending EMARK with use of accelerators is an inter-
esting future project once enough data is available.

A very interesting future project would be to perform similar efficiency analy-
sis on combined computational resources, taking into consideration both CPU
and accelerators. However, at the moment there appears to be not enough data,
especially on the volunteer computing side, for such analysis.

Finally, even though efficiency numbers themselves seem to clearly be in
favour of traditional clusters, it must not be forgotten, that voluntary computing
movement, in addition to the substantial computing power made available, has
a very important educational role of disseminating awareness of science and
research goals to the wide population.
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Abstract. Scheduling of programs for hierarchical architectures of Chip
Multi-Processor (CMP) modules interconnected by global data networks
is the subject of this paper. The CMP modules are of double nature:
architecturally specialized modules which execute time-critical compu-
tations and standard CMP modules which interconnect the specialized
ones. Inside application programs, so called architecturally supported
regions are identified meant for efficient execution on dedicated architec-
turally supported modules. Programs are represented by macro dataflow
graphs built of architecturally supported nodes and program glue nodes.
The paper proposes a new task scheduling algorithm for programs meant
for execution in such CMP-based systems. The algorithm is based on
list scheduling with modified ETF (Earliest Task First) heuristics. It is
assessed by experiments based on simulation of program execution which
shows parallel speedup improvements.

Keywords: Parallel programming · Program graph scheduling ·
Parallel architectures · Heterogeneity

1 Introduction

Putting a large number of cores inside a processor chip in the Networks on Chip
(NoCs), Systems on Chip (SoCs) or Chip Multi-Processors (CMPs) technolo-
gies [1,2] sets new challenges in the design of core interconnection networks.
Designers have to be conscious of technology limitations, such as power dissipa-
tion, wire delays, signal cross talks and silicon area, which make designing large
monolithic CMPs problematic. The self-imposing solution are modular hierar-
chical structures of many CMPs interconnected by an external global network
with improved efficiency and scalability. Although already viable in the current
chip technology, the ideas of core clustering inside CMPs nor CMPs clustering
have not been yet investigated in a mature way.

In globally interconnected systems of CMPs modules some CMPs can be
strongly architecturally supported to provide high parallel speedup for some
time-critical computations, while other CMPs can remain standard multicore
c© Springer International Publishing Switzerland 2016
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processors. Usually, the architecturally supported CMPs are more intelligent
and more difficult to be designed. Such architecturally supported CMP mod-
ules usually impose some particular requirements on program structures. This
means at least identification of so called architecturally supported regions in the
program code. Special features of programs imply special task scheduling algo-
rithms to optimize program execution including adequate graph representation
of programs with architecturally supported region nodes.

Scheduling algorithms have been intensively studied for years. Most of tech-
niques like list scheduling, clustering or evolutionary algorithms focus on homo-
geneous architectures [3,4,8,9]. Extensive surveys of such scheduling algorithms
can be found in [4–6]. There are also works dealing with heterogeneous archi-
tectures [7], but heterogeneity there is limited to different speed of processing
units. In this paper, we assume a different idea of heterogeneity. The system is
built of two classes of globally connected computing units (architecturally sup-
ported and standard CMP modules). Consequently, we use a macro data flow
graph representation in which program graphs consist of two kinds of nodes:
architecturally supported and glue nodes.

Our previous paper [10] presents an improved ETF-based list scheduling
algorithm [3] for such program and system assumptions. It aims at obtaining
better schedules by taking special attention of the order of in which ready graph
nodes are scheduled. For this, program graph nodes are assigned scheduling
priorities based on static, topological properties of the graph. They do not take
task computing nor communication times into account. The priorities are first
assigned to architectural nodes after their division into layers, using an analysis
of an architectural task activation graph. These priorities are next propagated
to glue nodes to control glue node selection during list scheduling to prevent too
early execution of such glue nodes, which are not needed for execution of the
topologically nearest architectural nodes.

This paper presents a new scheduling algorithm for the program and system
assumptions as above, based on modified ETF heuristics with a different defin-
ition of task node priorities in the program graphs. Contrary to the previously
proposed algorithm, here the priorities are not defined based exclusively on static
topological properties of program graphs, but they are determined dynamically
based on simultaneous scheduling of the input program graph and scheduling
of an equivalent architecturally supported region activation graph. The paper
examines the influence of some structural properties of program graphs on the
make-spans of such defined program scheduling method and compares its results
to those of standard ETF scheduling.

The paper is composed of 4 main parts. The first part presents general sys-
tem architectural assumptions, the idea of architecturally-supported program
regions, and describes structuring of programs for execution in the assumed
system architecture. The second part presents the proposed task scheduling
algorithm with architecturally supported regions. The third part introduces the
program graph measures used for the selection of the adequate scheduling algo-
rithm. The fourth part presents comparative experimental results obtained by
simulated use of the proposed algorithm.
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2 Architecture-Supported Regions in Application
Programs

The general structure of the assumed parallel multi-CMP system with a global
data exchange network is presented in Fig. 1(a). We have two kinds of CMPs in
this system: Architectural CMPs – ACMPs, which have architecture optimized
for execution of some critical program functions and General-Purpose CMPs –
GCMPs, similar to typical commercial multicore processors. A program for such
architecture can be logically divided into two types of fragments (see Fig. 1b):

– Architecturally-Supported Regions (ASR), whose execution will be accelerated
using ACMPs, which can correspond to subroutines and are treated as graph
nodes (“architectural nodes”). An ASR will usually have a parallel internal
structure. We assume, that the ASR program graph has already been mapped
to cores in an ACMP by a separate special scheduling algorithm. Papers [8,9]
describe different kinds of such scheduling algorithms meant for heuristic opti-
mization of exemplary ASR modules for efficient execution of parallel matrix
multiplication in the ACMP architecture based on communication on the fly.
The architecture is especially efficient for parallel programs featuring strong
sharing of processed data.

– The glue code, not showing features for special hardware acceleration, which
fills gaps between ASRs and will be executed using a set of GCMPs. The glue
code is represented as glue nodes.

(a) (b)

Fig. 1. The general system structure (a) and an application program graph (b)

Formally, a program is described by a macro data flow graph G = (V,E),
where V , E are the set of nodes and edges of the graph, respectively. The set V
can be divided into two disjoint sets of nodes Vs and Va, such that V = Vs ∪ Va,
Vs ∩ Va = ∅, where Va contains architectural nodes corresponding to ASRs,
while Vs contains glue nodes which exist between nodes from Va. This division
may be determined automatically by a compiler, or manually by a programmer.
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(a) (b) (c)

Fig. 2. Motivation for introduction of priorities in the ETF heuristics.

Each node is characterized by its weight representing time needed for execution
of instructions included in this node (on ACMP or GCMP, respectively), which
is determined automatically by a compiler. Each edge has a weight representing
volume of data transmitted with a communication, which such edge represents.

3 Task Scheduling with Architecturally Supported
Regions

The assumed multi-CMP architecture requires a proper scheduling algorithm to
exploit all its advantageous features. We propose an algorithm, which is derived
from the list scheduling technique with the Earliest Task First (ETF) heuristics,
but was modified to adjust to the proposed computation model. This algorithm
schedules glue nodes to GCMPs and architectural nodes to ACMPs to eliminate
stalls of both kinds of resources.

List scheduling is a basic technique for scheduling parallel tasks and ETF [3]
is one of the most popular heuristics used for list scheduling. Unfortunately, it
has some disadvantages when used in scheduling for heterogeneous systems like
that assumed in this paper. The ETF heuristics examine all ready task nodes
and selects one with the earliest possible start time. If there are several ready
nodes with the same earliest start time, any of them can be selected. It may
cause that some nodes would be executed, which should be delayed since their
results will be required much “later” in the graph. An example of such situation
is depicted in Fig. 2a. Assuming, that the executive system has 1 GCMP with
1 core, 1 ACMP, and weights of all glue nodes G1-G3 are the same, a classical
ETF-based list scheduling would give a schedule shown in Fig. 2b. But execution
of node G1 should be delayed until nodes G2 and G3 are executed. Then G3
can be executed in parallel with execution of architecturally supported region
ASR1, giving a better makespan as in Fig. 2c.

The proposed algorithm aims at minimal program execution time by obtain-
ing permanent loads of ACMP and GCMP modules. The node selection method
is modified by special ordering of nodes in the program graph. The nodes are so
classified to assure selection in the first place of such ready glue nodes, whose
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(a) (b)

Fig. 3. Conversion of glue subgraphs (a) to edges in RAG (b)

results are required for execution of the topologically nearest ASRs in the graph.
The selected glue nodes are scheduled on available processing resources without
delaying higher classified graph nodes.

The general algorithm consists of 2 phases. First, the Region Activation
Graph (RAG) of the input program graph is created. Then, the program graph
is scheduled using list scheduling with modified ETF-based heuristics enriched
by an analysis of RAG to set priorities of the ASR and glue nodes.

3.1 Region Activation Graph

A Region Activation Graph (RAG) RAGG = (Va, E
′) is an acyclic unweighted

directed graph derived from the original program graph described in previous
sections. Nodes in RAGG correspond to ASR nodes in an initial graph G (the
Va set), while edges depict data dependencies between the ASRs. For two nodes
u, v ∈ Va, an edge u → v ∈ E′ exists in RAGG, if there is a directed path between
u and v in G containing only glue nodes. Two ASRs are data-dependent if there
exists at least one directed path between them in G with only glue nodes. Two
data-dependent ASR nodes are connected in RAGG with an edge replacing the
subgraph consisting of glue nodes and edges on all paths between the two ASRs
in G. Subgraphs corresponding to different RAGG edges may intersect, so some
glue nodes can be in more than 2 edges in RAGG.

Figure 3a presents a part of an input program graph with 4 architectural
nodes (ASR1-ASR4) connected with a set of glue nodes. Figure 3b shows a RAG
obtained after converting the sets of glue nodes to inter-ASR edges. There are
directed paths which connect ASR1 with ASR3 and ASR4 and also directed
paths from ASR2 to ASR4. Therefore, we obtain 3 edges in the resulting RAG.
There is no directed paths between ASR2 and ASR3 in the input graph, thus,
there is no edge between these nodes in RAG.
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Algorithm 1. List scheduling algorithm with modified ETF heuristics
1: {Input: a program graph G = (V,E)}
2: Determine Region Activation Graph RAGG = (Va, E

′), based on graph G.
3: Let V R

a ⊆ Va be the set of nodes without predecessors in RAGG.
4: Let VH be the set of glue nodes without predecessors in G (ready nodes), corre-

sponding to edges leading to nodes from V R
a (high priority ready glue nodes). Let

VL be the set of other ready glue nodes. Let VA be the set of ready architectural
nodes from graph G.

5: while VH ∪ VL ∪ VA is not empty do
6: Find the node u ∈ VA (if available) with the earliest possible execution start

time. Let p be the index of a free ACMP, on which execution of u is possible.
7: Find the node v ∈ VH (if available) with the earliest execution start time. Let q

be the core index, on which execution of v is possible.
8: Find the node w ∈ VL (if available) with earliest execution start time and for

which execution ends before execution of the node v found in the previous step
may start. If the node v was not found, select any node w ∈ VL with the earliest
execution start time. Let r be the core index, on which execution of w is possible.

9: if the node u has been found then
10: Schedule u for execution on pth ACMP and remove it from VA.
11: Virtually schedule u in RAGG and remove it from V R

a .
12: for all descendants u′ of u in RAGG do
13: if u′ becomes ready in RAGG then
14: Insert u′ in V R

a . Move from VL to VH all nodes corresponding to edges
leading to u′ in RAGG.

15: end if
16: end for
17: else
18: if the node w has been found then
19: Schedule the node w for execution on the core r and remove it from VL.
20: Insert to VL all the descendants of the node w, for which all their predeces-

sors have already been scheduled.
21: else
22: Schedule the node v for execution on the core q and remove it from VH .

Insert to VH (or VL) all the descendants of the node v, for which v was the
last scheduled predecessors and which correspond to edges leading to ready
nodes in RAGG (other nodes in RAGG, respectively).

23: end if
24: end if
25: end while

3.2 Scheduling Algorithm Based on RAG Topology Analysis

The proposed scheduling algorithm assumes RAG analysis to delay execution
of glue nodes not used for execution of the soonest ASR nodes. The algorithm
concurrently schedules the initial program graph and its RAG. Classical list
scheduling divides all nodes into three sets: already scheduled nodes, nodes which
are ready for execution (with all predecessors scheduled) and nodes waiting for
completion of their predecessors. In the original ETF heuristics, all ready nodes
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are examined and one of them is chosen. Based on RAG analysis, we introduce
two subsets of ready glue nodes: the high priority nodes needed for execution of
the topologically nearest ASRs in the graph and the low priority nodes needed
for execution of topologically more distant ASRs. The topologically nearest ASR
nodes are such, which are also ready for execution in the RAG of the scheduled
program graph. At every scheduling step, the glue nodes, which correspond to
edges in the RAG leading to currently ready nodes in the RAG, have high
priority, while other glue nodes have low priority. If an ASR node is scheduled,
we also simulate its assignment to the same computing resources in the RAG
of the scheduled graph. As a result of this assignment, the descendants of the
scheduled node in the RAG may become ready – then all the low priority ready
glue nodes on the ASR incoming edges obtain high priority.

The pseudo-code of the proposed scheduling algorithm is shown as Algo-
rithm1. It follows list scheduling principles. Each time, when a glue node is to
be assigned to a GCMP, first the high priority nodes are considered. Low pri-
ority glue nodes are scheduled only when their execution doesn’t impede high
priority nodes. Such node selection strategy assumes that architectural nodes
can be executed as soon as possible on ACMPs. Additionally, GCMPs if free,
can execute glue nodes, which are required for further computations.

Time complexity of the algorithm remains polynomial, although with a higher
degree than list scheduling with standard ETF heuristics. All the additional steps
have polynomial complexity, including for instance computation of a RAG and
layers using breadth first graph traversals as well as transfers of ready nodes
between VL and VH sets in the loop.

4 Graph Metrics for Right Selection
of the Scheduling Algorithm

We have compared make-spans obtained for different program graphs. Experi-
ments show, that comparison results depend on features of the graphs in terms of
topology, weights of nodes and edges but also on resources available for program
execution. In our study we deal with layered program macro data flow graphs,
built of node layers and edges for inter-node communication between layers.
A layer in such program graph contains all architectural nodes, which have the
same depth in the program RAG, plus all the glue nodes, which provide data
for these architectural nodes.

In list scheduling of a program graph a node may be scheduled too early,
which may lead to an un-optimal use of processor time for other ready nodes. We
introduce a metrics, which we call Cumulated Activation Stride (CAS) of a
program graph to measure the potential of the graph for this non-optimality. The
metrics is determined starting with a traversal of a program graph by breadth
first search, in which for every node a layer of a deepest architectural region
activating this node is determined (max act layer(v)):

1. For each glue node v, determine its layer number, layer(v) (they depend only
on architectural nodes of the graph and their dependencies in RAG).
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2. For each glue node v, determine max act layer(v) – the maximal layer num-
ber in which this node may be activated, by computing the maximum over
the following values, depending on all the predecessors u of node v:
(a) If v has no predecessors, then max act layer(v) = 0.
(b) If u is an architectural node, max act layer(v) = layer(u) + 1. It means,

that node v should be treated in exactly the same way as glue nodes from
layer layer(u) + 1, because it is activated within this layer.

(c) If u is a glue node, then max act layer(v) = max act layer(u). The node
u can be activated earlier then needed, so we consider its max act layer,
not its layer number.

After all the glue nodes in the graph are examined, we determine the Acti-
vation Stride for each glue node v:

activation stride(v) = layer(v) − max act layer(v)

This value will be non-zero only for nodes, which become ready before archi-
tectural nodes preceding their layer are completed.

The Cumulated Activation Stride metrics CAS(G) for graph G is defined
as the sum of node activation strides multiplied by node weights over all glue
nodes, divided it by the product of sum of glue node weights and the maximal
layer number in the graph (Arch(G) and Glue(G) correspond to architectural
and glue nodes of the graph G, respectively):

CAS(G) =

∑
v∈Glue(G) activation stride(v) ∗ weight(v)

maxu∈Arch(G)layer(u) ∗ ∑
v∈Glue(G) weight(v)

So defined metrics will be equal to 0 if all the glue nodes are activated
by architectural nodes, which precede their layers. The maximal value may be
obtained for a graph, in which there are no glue nodes in all layers except the last
one, and all these nodes are ready at the beginning of the program graph exe-
cution (they have no predecessors). Since the maximal stride cannot be greater
than the maximum layer number, CAS(G) cannot exceed 1. It also does not
change if all the weights in the graph are multiplied by the same constant.

Figure 4 presents an exemplary program graph with layered structure. Each
layer is composed as a set of uniform subgraphs containing nodes Aji, Bji and
Mji. Nodes Aji and Bji are glue nodes, while nodes Mji are architectural
nodes. The long, black edge corresponds to communication between layers, which
activates node B1i+2. The other activation edge of nodes Bji corresponds to read
of initial data from shared memory. Node B1i+2 in layer i + 2 is activated by
architectural node from layer i−1, therefore its activation stride equals 3 (layers
are computed with respect to architectural nodes, not glue nodes).

5 Experimental Results

To evaluate and compare performance of the presented scheduling algorithm,
the following exemplary iterative application program was considered:



Parallel Programs Scheduling with Architecturally Supported Regions 85

func benchmark(stride) {
// Let i be the iteration number
for i=1 to N pardo

// Let j be the path number
for j = 1 to K pardo

// select parts of the results of the previous iteration
a[i, j] = A(m[i − 1, 1],m[i − 1, 2], ...,m[i − 1, N ]);
// if i ≤ stride then initial data are read
b[i, j] = B(u[i, j],m[i − stride, j]);
m[i, j] = M(a[i, j], b[i, j]);

end for
end for

}
This program corresponds to a computational algorithm, which includes com-

mon functions A(), B() and M() on elements of square matrices, such as matrix
addition and multiplication. We assume, that functions A() and B() have irregu-
lar internal structure and are not promising for faster implementation in ACMP
modules. Therefore they will be treated as glue nodes in the program graph.
M() is a parallel matrix multiplication based on recursive matrix decomposi-
tion into quarters. The stride parameter corresponds to the activation stride
for computations of B() functions which provide data for M() regions. A vec-
tor u[] and matrices m[0, 1..N ] are initial parameters of the program used for
computation. A single iteration of the outer loop creates a layer of subgraphs
(each subgraph corresponds to an iteration of the inner loop), which are mutu-
ally independent. Macro dataflow graph of a part of the considered exemplary
program for stride = 3 is shown in Fig. 4.

Fig. 4. Exemplary program graph with communication between layers that causes
non-zero strides for nodes Bji; Mji – architectural matrix multiplication nodes.
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(a) (b) (c)

Fig. 5. Parallel execution improvement of the proposed algorithm with 2, 4 and 8
ACMPs and 2, 4, 8 or 16 GCMPs for graphs with activation strides 1, 2, 4, 8 and 16.

All graphs for experiments were generated with K = 8 (8 paths) and N = 16
(16 layers). For parallel execution of such graph, the maximal number of 8 ACMP
and 16 GCMP modules is needed. We have considered a set of graphs for a range
of values for parameter stride: 1 which corresponds to a graph with no strides,
2, 4, 8 and 16, which corresponds to a graph, in which all the B nodes are ready
at the beginning of computations. The graph is uniform due to node weights,
which were selected in the arbitrary way: all A and M nodes have weights equal
to 8000 units, while B nodes have weights equal to 6500.

The graphs were scheduled for executive systems with a range of ACMP (2,
4 and 8) and GCMP (2, 4, 8 and 16) modules. ACMP modules execute only
one ASR node at a time. GCMP modules were assumed to contain 1 computing
core. We scheduled the graphs with a standard ETF-based scheduling algorithm
and compared it to the schedules obtained with the proposed algorithm. We
examined parallel schedule improvement computed as a ratio of execution time
obtained by the reference algorithm to execution time of a graph scheduled with
the proposed algorithm (Fig. 5).

Experiments show that the proposed algorithm performs in general better
than classical ETF-based list scheduling. The results depend on the number of
both ACMP and GCMP modules applied. The biggest execution time improve-
ment was equal to 1.34 for 8 ACMP and 8 GCMP modules and graphs with
stride = 16. The smallest average improvement was obtained for the smallest
(2) and the biggest (16) number of GCMP modules. This is due to the fact, that 2
GCMPs are insufficient to prepare data for 16 ACMPs on time (both algorithms
are forced to serialize parallel computations), and 16 is the number of GCMPs
needed for optimal execution of the graph, therefore the standard algorithm
was capable of finding good schedule for such system. For some combinations of
ACMP, GCMP and stride parameters one can observe improvements, which are
smaller than 1. The parallel improvements are computed in comparison to ETF-
based list scheduling algorithm, not the sequential execution. Therefore, it must
be considered, how ETF deals with the graph for a given number of resources.
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Table 1. Values of CAS(G) for graphs generated for different values of the stride
parameter and different relative weights of the B nodes.

Relative weight of B nodes Activation Stride

1 2 4 8 16

20 % 0.000 0.009 0.025 0.049 0.070

40 % 0.000 0.015 0.043 0.086 0.123

60 % 0.000 0.021 0.058 0.115 0.165

80 % 0.000 0.025 0.069 0.139 0.198

100 % 0.000 0.028 0.079 0.158 0.226

120 % 0.000 0.031 0.087 0.173 0.248

140 % 0.000 0.033 0.093 0.187 0.267

160 % 0.000 0.035 0.099 0.199 0.284

180 % 0.000 0.037 0.104 0.209 0.298

(a) (b)

Fig. 6. Parallel speedup improvement as a function of the CAS(G) for different relative
weights of the B-type nodes.

We assume, that for those configurations, ETF was able to find a solution, which
was better than the one found by the proposed algorithm.

We have also examined the relation between the CAS metrics of the graph
G and schedule improvement. In the assumed graph, the value of CAS depends
on the stride parameter, which influences the topology of a graph, but also on
weights of B nodes. We have checked a range of graphs, which differ in weights
of B nodes. We have assumed a series of B node weights being a percentage
of the B node weight (100 %) in the uniform graph used in the experiment
discussed above. Experiments were done for the number of both ACMP and
GCMP modules equal to 8. The results for other combinations of ACMP and
GCMP numbers show similar tendencies to those shown in the paper. The values
of CAS measures of examined graphs are shown in Table 1.

Figure 6 shows correspondance of the parallel improvement to the CAS met-
rics of graphs. Improvements for the graphs with CAS metrics equal to 0
(stride = 1) are the smallest in general and equal to 1. In such graphs all the glue
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nodes are activated in their layers and therefore the standard ETF-based algo-
rithm has no chance to make a wrong scheduling decision. With the increase of
the CAS metrics we can observe a better improvement obtained by the proposed
algorithm. Graphs with higher CAS contain more nodes that can be scheduled
too early, when compared to their layer. Also, these nodes are heavier, therefore,
they have bigger impact on the overall schedule. It makes such graphs harder
to be correctly scheduled – especially with the standard ETF scheduling. Due
to a different way of handling of ready nodes, the proposed algorithm shows
much better resistance to such situations. Execution of the questionable nodes
is delayed, which allows faster start of architectural nodes from previous lay-
ers and better resource use, leading to better schedules. The best improvements
were noticed for graphs with the biggest CAS value (stride = 16).

6 Conclusions

The paper has presented parallel program scheduling algorithms for the modu-
lar system architecture based on globally interconnected standard and architec-
turally supported CMPs. The proposed scheduling algorithm is based on ETF
heuristics improved by an analysis of the RAG. The additional analysis enables
better use of both architectural and general purpose modules. It leads to better
parallel speedups in the case of graph structures “difficult” for the standard ETF
schedulers for adequate composition of the executive system.

The experiments with the proposed algorithm show, that it can deliver better
schedules than standard ETF-based list algorithm. The experimental results
have shown dependencies of the quality of obtained schedules on the proposed
graph property metrics. Complexity of the standard ETF scheduling is smaller
than complexity of the presented improved algorithm, therefore for graphs with
small CAS values it is enough to use the standard ETF algorithm – the schedules
are the same or very close to the schedules obtained with the improved algorithm,
but they may be computed faster. For graphs with high values of CAS, it is
profitable to use a better, although more complicated algorithm we propose.
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Abstract. Scheduling of scientific workflows in IaaS clouds with pay-
per-use pricing model and multiple types of virtual machines is an
important challenge. Most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality the
actual runtime may vary. To address this problem, we propose an adap-
tive scheduling algorithm for deadline constrained workflows consisting
of multiple levels. The algorithm produces a global approximate plan for
the whole workflow in a first phase, and a local detailed schedule for
the current level of the workflow. By applying this procedure iteratively
after each level completes, the algorithm is able to adjust to the run-
time variation. For each phase we propose optimization models that are
solved using Mixed Integer Programming (MIP) method. The prelimi-
nary simulation results using data from Amazon infrastructure, and both
synthetic and Montage workflows, show that the adaptive approach has
advantages over a static one.

Keywords: Cloud · Workflow · Scheduling · Optimization · Adaptive
algorithm

1 Introduction

Scientific workflow is a widely accepted method for automation of complex com-
putational processes on distributed computing infrastructures, including IaaS
clouds [7]. When using clouds and their pay-per-use pricing model with multiple
types of virtual machine (VM) resources, usually called instances, the problem of
scheduling and cost optimization becomes a challenge. The specific problem we
address in this paper is that most static scheduling algorithms assume that the
estimates of task runtimes are known in advance, while in reality these estimates
may be inaccurate. These discrepancies may be a result of inherent uncertainty
in performance models of the application, or may be caused by unexpected
dynamic behavior of the infrastructure. On the other hand, dynamic scheduling
approaches that adapt to such uncertainties cannot be easily used for scheduling
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under deadline or budget constraints, since meeting a constraint requires some
form of advance planning based on estimates.

In this paper, we propose an adaptive scheduling algorithm for deadline con-
strained workflows that consist of multiple levels. Such levels are present in real
scientific workflows and they often have up to 1 000 000 tasks [7,13]. The main
idea behind the algorithm is to produce a global approximate plan for the whole
workflow in a first phase, and a local detailed schedule for the current level of the
workflow. The algorithm is then invoked iteratively after each level completes
the execution, in this way being able to adjust to the runtime variation from
the estimated execution times. Another advantage of this approach is that we
can reduce the complexity of scheduling of the whole workflow by reducing it
into two smaller problems that can be solved using Mixed Integer Programming
(MIP). The algorithm has been evaluated by simulation using data from Amazon
infrastructure and workflows from Pegasus Workflow Gallery [13].

This paper is organized as follows: in Sect. 2 we discuss other scheduling mod-
els and algorithms for workflows. Section 3 contains detailed description of the
algorithm proposed in this paper, and its illustration on a simple example is given
in Sect. 4. In Sect. 5 we outline the optimization models used. Then in Sect. 6
we show results for real workflows. Finally, in Sect. 7 we present conclusions and
future work.

2 Related Work

Mathematical programming has been applied to the problem of workflow
scheduling in clouds. The model presented in [12] is applied to scheduling small-
scale workflows on hybrid clouds using time discretization. Large-scale bag-of-
task applications on hybrid clouds are addressed in [4]. The cloud bursting
scenario described in [3], where a private cloud is combined with a public one,
also addresses workflows. None of these approaches addresses the problem of
inaccurate estimates of actual task runtimes.

Adaptive approach is known from engineering systems [1]. Dynamic algo-
rithms for workflow scheduling in clouds have been proposed e.g. in [17], where
they assume the dynamic stream of workflows. In [9] the goal is to minimize
makespan and monetary cost, assuming an auction model, which differs from
our approach where we assume a cloud pricing model of Amazon EC2.

Fig. 1. DAG example

In our earlier work [14], we also used the MIP
approach to schedule multi-level workflows, but the
dynamic nature of cloud is not considered. We have
also analyzed the impact of uncertainties of runtime
estimations on the quality of scheduling for bag-of-
task in [15] and workflow ensembles in [16], with the
conclusion that these uncertainties cannot be always
neglected.

Task estimation for workflow scheduling is a
non-trivial problem, but several approaches exist,
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Fig. 2. High level flow of scheduling algorithm.

e.g. those based on stochastic modeling and workflow reductions [5]. It is also
possible to create performance models to estimate workflow execution time using
application and system parameters, as proposed in [18]. The error of these esti-
mates is less than 20 % for most cases, which gives a hint on the size of possible
uncertainties.

3 Adaptive Scheduling Algorithm

Our algorithm provides an adaptive method for optimizing cost of workflow exe-
cution in IaaS clouds, under a deadline constraint. We assume that the workflow
tasks can be divided by their levels, where a level of a task is a length of the
longest path from an entry node. Tasks from one level can have different esti-
mates of execution time. It can be considered as a hybrid between static and
dynamic scheduling algorithms.

The algorithm requires: (a) workflow (see Fig. 1) represented as directed
acyclic graph (DAG), where nodes represent tasks and edges dependencies
between them; (b) information about available infrastructure, i.e. the perfor-
mance and cost of available VM instance types; and (c) global deadline for the
whole workflow. We assume that (a) all tasks in each level are independent and
can be executed in parallel on multiple VMs; (b) each VM has price per hour
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and a performance metric called CCU (which is a result of a benchmark, as in
Cloud Harmony Compute Units [6]); (c) each task has estimated size which is
execution time on a VM with performance of 1 CCU; (d) tasks in one level could
have different estimated size; and (e) execution time of a task on given VM is
inversely proportional to VM performance expressed in CCU.

The objective of the algorithm is to minimize the execution cost under a
deadline constraint. The algorithm is run before each level of tasks begins its
execution. Each time it consists of two phases. In the first global planning phase,
the algorithm uses an approximation that tasks in each level are uniform, and
finds assignments between the tasks and VMs for the whole workflow. In the
second local planning phase, a detailed plan is prepared for the closest level of
individual tasks. After a level completes, the algorithm takes into account the
real execution time of already completed tasks, and based on that updates the
remaining time. Thanks to that it is able to adjust to differences between an
estimated and actual execution time.

The algorithm is shown in Fig. 2, and consists of the following steps.

1. First, the information about workflow, available infrastructure (list of VMs)
and global deadline are loaded.

2. In this step (global planning phase) algorithm assigns VMs to levels. For each
level, we calculate average estimated task execution time and we pass it as
input. The aim of this optimization is to find assignments between VMs and
levels with minimal total cost under global deadline. As a result, the algorithm
returns information which VMs are assigned to each level and also how many
tasks should be executed on each VM. It also returns estimated execution
time and cost for levels.

3. If the solver does not find a solution, the optimization is run again without
deadline constraint, but with time minimization as an objective. This may be
the case when the deadline is too short. We then fallback to minimization of
deadline overrun and we ignore the cost objective.

4. Next, we perform local planning phase that assigns individual tasks to VMs
in the current level. It uses the results from step 2 as an input: VMs assigned
to this level and number of tasks which should be executed on each VM. The
objective of optimization is to minimize the total execution time. Total cost is
not taken into account, because the VMs are already chosen and the estimated
execution time for each one is known – so the cost does not change. As a result
the algorithm returns information on which VM task will be executed.

5. Then we execute tasks on VMs assigned in local planning phase and collect
the actual task execution time. Tasks may be executed on real VMs instances
or in a cloud simulator (which allows to test many scenarios easily).

6. The algorithm finishes if there are no remaining levels to be scheduled.
7. We update remaining total time with actual execution time and perform

planning for remaining part of the workflow, repeating process from step 2.
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4 Illustrative Example

To illustrate the operation of our algorithm, we prepared an example using the
simple workflow from Fig. 1. The input is provided in Table 1. The workflow
consists of 3 levels, so the algorithm is executed in three iterations, as shown in
Table 2. The resulting execution times and costs in all iterations are presented
and commented in Fig. 3.

Table 1. Example input to the algorithm: estimated task sizes, VM performance and
costs for the workflow shown in Fig. 1. We assume the global deadline is 15.
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Fig. 3. Execution time and cost of the algorithm, shown level by level. In the first
iteration, the global planning phase estimates the completion time of level 1 is 8 (purple
bar) and the local planning estimates it to be 9 (solid line). In iteration 2, it turns out
that the level L1 finished at time 5 (grey bar). Both global and local planning for level
2 (red bar and solid line) predict the finish time for time 9. The actual execution of
level 2 completes in time 13 (grey bar), so in iteration 3 both global and local phases
plan the execution of level 3 (orange bar) to complete just within the deadline). The
execution in iteration 4 shows that the level 3 actually completed as planned (Color
figure online).

5 Optimization Models

We use three optimization models in the algorithm: the first one for global plan-
ning phase, the second one in the case when deadline cannot be met, and the
third one for the local planning. Since the domain is discrete, each model belongs
to a mixed-integer programming (MIP) class. In all three models we assume for
simplicity that VMs start immediately and have no latency. Thanks to that the
problems are solved quicker. On the other hand, we assume that all possible
delays are included in the error of estimates, which is taken into account in step
7 of the algorithm. Here we outline the main features of the models, and for the
details we refer to the source code in the public repository [8].
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Table 2. Planning and execution flow for illustrative example. The assignments of
tasks to VMs change whenever the actual execution time differs from the estimated
one.

Model used in global planning phase assigns VMs and sub-deadlines to
each level, but instead of scheduling individual tasks, it uses an approximation
of average task runtimes. For each level, it calculates an average task size, and
based on this, an estimated cost of executing its tasks on a given VM. As a
result, it is known which VMs should be used for each level and how many tasks
should be executed on selected VM. The objective is to minimize total cost of
the whole workflow execution.

Input to this approximate planning is defined with the following data: m is
number of VMs, n is number of levels, V is a set of VMs, L is a set of levels,
d is global deadline, Ll is number of tasks in level l, T a

l,v is average estimated
execution time of task from level l on VM v, pv is cost of running VM v for one
time unit, Cl,v = pvT

a
l,v is average estimated cost of executing task from level l

on VM v.
The search space is defined with the following variables: Al,v is binary matrix

which tells if VM v will execute at least one task from level l, Ql,v is integer
matrix which tells how many tasks from level l will be executed on VM v, T e

l

is vector of real numbers which stores execution time for level l (estimated sub-
deadlines), T v

l,v is matrix which stores execution time for VM v on level l. Al,v

is used as an auxiliary variable to simplify defining constraints.
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The objective is to minimize total cost: Minimize:
L∑
l

V∑
v
Cl,v ∗ Ql,v. We con-

strain the search space to keep the total execution time below the deadline, to
divide the deadline into sub-deadlines and to enforce them, and to ensure that
all the tasks from all the levels are executed.

Model used in global planning phase when deadline cannot be met is
used when searching for solution using the first model fails. It can happen e.g.
when real execution time of previous level takes much more time than expected.
Comparing to the previous model, the algorithm ignores global deadline con-
straint and the objective function minimizes total time of workflow execution:

Minimize:
L∑
l

T e
l .

Model used in local planning phase assigns VMs to each task from a single
level. The goal is to minimize time of level execution, which is equal to the time
of the longest working VM. The input to this optimization problem is defined
with the following data: m is number of VMs, k is number of tasks in current
level, K is a set of tasks, V is a set of VMs (only VMs assigned to current level –
results from global planning phase), T e

k,v is an estimated execution time of task
k on VM v, Nv is a number of tasks which will be executed on VM v (results
from global planning phase).

Search space is defined with the following variables: Ak,v is binary matrix
which tells if task k will be executed on VM v, T r

v is vector of real numbers
which tells how long does each VM v work, w is helper variable which stores the
longest working time for VMs from V .

The objective is to minimize time of the longest working VM: Minimize:
max(T r

v |v ∈ V ) that is implemented as Minimize: w. We constrain the search
space to ensure that all the tasks are executed, to assign given number of tasks on
each VM, and to assign the correct value to w which is the longest working VM.

Implementation of Algorithm and Models. Optimization models are imple-
mented in CMPL modeling language [19]. As a solver we use CBC [11]. Input
data is loaded from DAG files (workflows) and JSON files (infrastructure). The
simulator which executes the tasks and introduces the runtime variations is
implemented in Java. Source code (including optimization models) is available
in the repository [8].

6 Evaluation Using Synthetic Workflows

For evaluation of the algorithm we implemented a simple simulator. Its goal is to
execute one level of tasks on the assigned VMs and to introduce the runtime vari-
ation of task execution times to simulate the behavior of the real infrastructure.

We present here the results of our adaptive algorithm obtained using Montage
workflow [13] representing astronomical image processing, consisting of 5000
tasks. As estimates of task sizes we used data from the logs of our earlier runs
performed on Amazon EC2 [10]. We used the m3.large as a reference VM type
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and for performance estimation of other instance types we used the ECU value
as provided by Amazon [2]. As the error of estimates we introduced a normal
distribution with the standard deviation of 0.25. Since the real Montage workflow
consists of very small tasks (having execution time in the order of seconds), we
artificially extended them by multiplying their execution time by 3600. The
deadline was set to 3500 time units (hours).
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(a) Static Algorithm (b) Adaptive Algorithm

Fig. 4. Execution time plot for Montage 5000 workflow with random errors of estimates.

We compared our adaptive algorithm to its static scheduling variant as a
baseline. The static scheduling works in the same way as our algorithm, but it
plans all the levels in advance. This means it does not update the global and
local planning phases after execution of each level, so it does not adjust to the
runtime variations.

Figure 4 shows the results of the static and adaptive scheduling algorithms,
presented in the same convention as in the illustrative example (Fig. 3). We
can observe that in the plot (b) the adaptive algorithm adjusts to the actual
execution time after each level, while the static algorithm (a) does not, which
leads to the deadline overrun.

Figure 5 presents how the completion time and total cost depend on the vary-
ing estimation error µ. The errors were generated using the normal distribution
with the standard deviation of 0.25 and the mean of µ, with µ from −0.25 (over-
estimation) to 0.25 (underestimation). In plot (a) we observe that our adaptive
algorithm succeeds to meet the deadline in more cases than the static algorithm.
Even for the largest error (µ = 0.25) the deadline overrun is only 5 %, while
for the static algorithm it is over 25 %. On the other hand, plot (b) shows that
the adaptation costs more, i.e. in most cases the cost is higher for adaptive algo-
rithm, but never more than by 5 %. This is explained by the need to choose more
expensive VMs to complete the workflow before the deadline.

In addition to Montage, we tested our algorithms using other workflows from
the gallery [13]. Generally, we observed similar behavior as in the case of Mon-
tage. Sample results are shown in Fig. 6, where overestimation and underestima-
tion represent error distribution shifted by -0.25 and 0.25, respectively. Relative
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Fig. 5. Workflow execution time/cost depending on the estimation error.
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Fig. 6. Plots with normalized execution time/cost for other workflows.

execution time is normalized to the deadline, while the relative cost is normalized
to the cost of execution with exact estimates (errors with µ = 0 and standard
deviation of 0.25). The deadline overrun for large errors is caused by the fact
that when the task runtimes are underestimated in the final level, the algorithm
cannot adjust to them. Improving the algorithm would require adding a learning
capability to predict the estimation error based on previous levels, which will be
the subject of future work.

7 Conclusions and Future Work

In this paper we presented the adaptive algorithm for scheduling workflows in
clouds with inaccurate estimates of run times. The preliminary evaluation results
have shown that the implemented algorithm works as designed, and is able to
meet the given deadline while minimizing the cost.
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The algorithm adapts to the actual situation at runtime: when tasks exe-
cute quicker than estimated – the algorithm selects slower (and cheaper) VMs,
and minimizes the total cost. When tasks execute slower than estimated – the
algorithm selects faster (and more expensive) VMs, which increases total cost,
but allows not exceeding the deadline for the whole workflow. When deadline is
exceeded (or it is not possible to plan execution under deadline) then the algo-
rithm minimizes the total time regardless of cost. When estimated execution
time for tasks from the same levels has a big variation, then there are visible
differences between estimated time in global planning phase and local planning
phase. When execution of tasks is longer is final levels (which is the worst case
scenario) then the total cost increases, but this is general problem for all adaptive
scheduling algorithms.

During implementation and evaluation we found out a few ways that could
be enhanced in future work. They include improvement of pricing in optimiza-
tion models by e.g. reusing already assigned VMs, extending models with data
transfer time and cost, or splitting levels with many tasks on smaller ones on
‘logic’ independent levels. It would be also interesting to improve task estimation
(i.e. take into account multi-core CPUs) or use machine learning in estimating
task execution time. After more systematic testing, we plan to use this algorithm
as a part of engine to executing workflows in computing clouds.
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Abstract. Min-Min is a classical heuristic for scheduling tasks to
heterogeneous computational resources, which has been applied either
directly or as part of more sophisticated heuristics. The time complex-
ity of the direct implementation of Min-Min is O(mn2) for scheduling n
tasks on m machines. This has motivated the use of simpler heuristics and
parallel implementations of Min-Min for the sake of acceptable runtimes
in large scenarios. Recently, we have proposed an efficient algorithm for
computing Min-Min, whose time complexity is O(mn). In this work, we
study mult-many core versions of this new algorithm. The experimental
evaluation of our proposal shows important runtime reductions compared
to the sequential version.

Keywords: Min-Min heuristic · Parallel implementation · Heteroge-
neous computing

1 Introduction

The performance of a distributed heterogeneous computing (HC) platform
depends, to great extent, on the scheduling algorithm applied to assign tasks
to computing resources. Since the number of tasks and resources in, for exam-
ple, any Grid-like computational system, may be very large, and minimizing
the overall execution time for a set of tasks is an NP-hard problem [6,7], several
heuristic methods have been proposed and analyzed in the literature [2,13,26]. Of
course, the overall performance depends on both the performance of the schedul-
ing algorithm, which determines the time required to compute a schedule, and
the quality of the schedule, which determines the time required to complete the
execution of the set of tasks. Min-Min is a classical greedy heuristic [11, Algo-
rithm D] that usually yields good schedules in moderate execution times [13] for
small-medium scenarios. For this reason, Min-Min has been widely used as the
base for more sophisticated scheduling algorithms [2,8,18,20,23,25,27], e.g., to
generate initial solutions for population-based heuristics [24].

A direct implementation of Min-Min requires O(mn2) operations [11] to
schedule n tasks on m machines, which makes impracticable its application when
the number of tasks is large. For this reason, with the aim of reducing the compu-
tation time, some authors have proposed other heuristics [4,23] loosely inspired
c© Springer International Publishing Switzerland 2016
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on Min-Min, and other authors have explored the use of parallel computing tech-
niques, including multi-core implementations [19] and GPU-based implementa-
tions [3,19]. Recently, we have proposed an efficient sequential implementation
of Min-Min that requires O(mn log n) operations1 [5] and yields a great per-
formance improvement in practice. A similar algorithm, based on a heap data
structure, was independently presented in [21]. Similar ideas have also been pro-
posed in [8] for a different problem setting.

In this paper, we study high performance computing (HPC) implementa-
tions of Min-Min based on this new sequential algorithm. Particularly, we pro-
pose three different parallel implementations, two shared memory variants and a
hybrid CPU-GPU version, and we perform an experimental evaluation in order
to understand the benefits of each proposal. The results demonstrate that HPC
techniques yield important runtime reductions, which makes the construction of
very large schedules in very short times possible (e.g., scheduling 128 K tasks on
4 K machines takes a few seconds). Beyond improving the performance in direct
applications of Min-Min, these results encourage the use of this heuristic as part
of more sophisticated scheduling schemes for large scenarios.

The rest of the paper is structured as follows. In Sect. 2, we introduce the task
scheduling problem, the classical direct implementation and the recently pro-
posed two-stage implementation of Min-Min. Then, in Sect. 3, we propose three
different two-stage parallel implementations. These proposals are then evaluated
experimentally in Sect. 4. Finally, we discuss some conclusions and future work
in Sect. 5.

2 The Min-Min Scheduling Heuristic

Consider a set M of m machines and a set T of n tasks. For J ∈ T and i ∈ M ,
we denote by E(i, J) the expected time to compute (ETC) task J on machine
i. A schedule S is a mapping that assigns a machine to each task, i.e., S(J)
denotes the machine where task J is assigned to be executed on. Given an ETC
for all tasks and machines, the makespan of S, denoted f̂(S), is the estimated
time required to execute all tasks according to schedule S, i.e.,

f̂(S) = max
i∈M

⎧
⎨
⎩

∑
J:S(J)=i

E(i, J)

⎫
⎬
⎭ . (1)

Since minimizing f̂(S) is computationally unaffordable for large problem
instances, schedules are usually obtained in practice following a heuristic app-
roach.

Algorithm 1 implements the Min-Min heuristic [11]. The algorithm iterates
through a loop in Step 5 assigning, in each iteration, a task Jmin to a machine
imin (Step 23). The loop is repeated while the variable U , which maintains
the set of tasks that have not been assigned yet, is nonempty. The variable
1 The time complexity is O(mn) for fixed numeric precision implementations.
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t(i) maintains, for each machine i, the sum of the execution time of all tasks
assigned so far to i. In each iteration of the loop in Step 5, Jmin and imin

are selected such that the completion time of Jmin on imin, which is given by
t(imin) +E(imin, Jmin), is minimized among all machines in M and all tasks in
U . This selection is formulated as a two-step minimization, implemented through
two nested loops. The inner loop in Step 9, selects a task Ĵ that minimizes the
completion time for a fixed machine i, where the minimization is over the set U
of non-assigned tasks. The outer loop in Step 7 iterates over all machines i ∈ M ,
and selects a machine for which the completion time of the task Ĵ determined in
the inner loop is minimum. As observed in [11, Theorem 1], it is readily verified
that Algorithm 1 requires Θ(mn2) operations.

input : A set T , a set M , and the ETC E(i, J) for all J ∈ T, i ∈ M

1 foreach i ∈ M do
2 t(i) = 0

3 end
4 Set U = T
5 while U �= ∅ do
6 minCT = +∞
7 foreach i ∈ M do
8 iMinCT = +∞
9 foreach J ∈ U do

10 cT ime = t(i) + E(i, J)
11 if cT ime < iMinCT then
12 iMinCT = cT ime

13 Ĵ = J

14 end

15 end
16 if iMinCT < minCT then
17 minCT = iMinCT

18 Jmin = Ĵ
19 imin = i

20 end

21 end
22 t(imin) = minCT
23 S(Jmin) = imin

24 U = U \ {imin}
25 end

Algorithm 1. Min-min heuristic.

2.1 An Efficient Sequential Algorithm

Notice that, for each machine i, Algorithm 1 selects tasks for execution on i
in nondecreasing order of expected time to compute. Thus, the two-step mini-
mization performed in Algorithm 1 to obtain Jmin and imin is simplified if, for
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each machine, the set T of tasks is sorted in that order. This idea is exploited in
Algorithm 2, which we have proposed recently in [5]. For the sake of concrete-
ness, we assume that tasks and machines are enumerated as J = {1 . . . n} and
M = {1 . . .m}, respectively, and the ETC is given by an n × m matrix E. We
follow, loosely, Matlab style notation and denote by E(i, :) the i-th row of E,
which contains the ETC of all tasks for a fixed machine i.

Algorithm 2 consists of two stages. In Stage 1, the loop in Step 1 iterates over
the set of machines and, for each i ∈ M , sorts, in Step 2, the elements of E(i, :)
in nondecreasing order. Simultaneously, Step 2 also computes a permutation
Perm(i, :) of the set {1 . . . n} such that Perm(i, j), 1 ≤ j ≤ n, is the task whose
expected time to compute occupies position j in the sorted version of E(i, :).
In addition, for each machine i, a variable n(i) maintains the smallest index
within Perm(i, :) such that the task Perm(i, n(i)) has not been assigned yet,
and a variable t(i) maintains the sum of the expected time to compute of all
tasks assigned so far to i. In Stage 2, the loop in Step 7 follows essentially the
same steps as Algorithm 1, except that, since tasks have been sorted, the loop
in Step 9 of Algorithm 1, which selects a task Ĵ that minimizes the completion
time, reduces to picking the first non-assigned task in the sorted array of tasks.
This is performed by the loop in Step 10 of Algorithm 2.

The time complexity of Algorithm 2 depends on the implementation of Step 2.
In the usual situation in which ETC matrix entries are represented with a fixed
numeric precision, Algorithm 2 requires O(mn) operations [5] using a radix
exchange sort algorithm [10]; it requires O(mn log n) operations otherwise.

3 Parallel Implementations of Min-Min

In this section we present three variants of parallel implementations of
Algorithm 2. Firstly, we describe a straightforward Matlab implementation,
which just exploits parallel support of natively implemented Matlab routines.
In Sect. 3.2 we describe a highly optimized C/C++ shared memory parallel
implementation, and in Sect. 3.3, we discuss a hybrid CPU-GPU version.

3.1 A Simple Parallel Implementation

Our first parallel implementation of the Min-Min heuristic follows a simple yet
efficient strategy, which consists in using the multithreaded sort function of
Matlab [14]. Sort, as many other functions in Matlab, can automatically run
on multiple computational threads in a multicore machine. This naive approach
has the advantage that it is extremely simple and it does not require any parallel
programming skills. This version will be referred to as pM.

3.2 An Optimized Shared Memory Parallel Implementation

In this subsection we describe pSM, a parallel shared memory implementation
of Algorithm 2, implemented in C using the well known OpenMP API. Both
stages of the algorithm are parallelized in pSM.
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input : A set T , a set M , and the ETC E(i, J) for all J ∈ T, i ∈ M
// Stage 1

1 foreach i ∈ M do
2 [E(i, :), P erm(i, :) ] = sort(E(i, :))
3 t(i) = 0
4 n(i) = 1

5 end
// Stage 2

6 Set U = T
7 while U �= ∅ do
8 minCT = +∞
9 foreach i ∈ M do

10 while Perm(i, n(i)) �∈ U do
11 n(i) = n(i) + 1

12 end
13 cT ime = t(i) + E(i, n(i))
14 if cT ime <= minCT then
15 minCT = cT ime
16 Jmin = Perm(i, n(i))
17 imin = i

18 end

19 end
20 t(imin) = minCT
21 S(Jmin) = imin

22 U = U \ {imin}
23 end

Algorithm 2. An efficient implementation of Min-Min.

In Stage 1, since the set of tasks can be sorted independently for each
machine, each of the m calls to sort in Step 2 can be computed in parallel.
Since the distribution of the ETC of tasks for each machine is unknown a priori,
we assume that independent sorts are equally balanced. For this reason, we use
a static mapping between the chunks that need to be computed and the execut-
ing threads. Step 2 of Algorithm 2 is implemented using a sort routine adapted
from the source code publicly available authored by Michael Herf [9], which
implements the radix exchange sort algorithm [10] for floating point numbers.

In Stage 2, the selection of a machine imin and task Jmin with minimum
completion time (Step 9) can also be parallelized; an optimal algorithm requires
m/p + log log p + O(1) comparisons on p processors [22]. In our implementa-
tion we use the reduction parallel pattern [15], where each thread performs a
reduction independently on some subset of the set of machines M , and then
the results are synchronized choosing the machine and task with the overall
minimum completion time.
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3.3 A Hybrid CPU-GPU Implementation

In this subsection, we explore the use of Graphics Processing Units (GPUs) to
accelerate the computation of the Min-Min heuristic.

The architecture of GPUs is designed following the principle of devoting
more transistors to computation than traditional CPUs. As a consequence, cur-
rent GPUs have a large number of small cores and are usually referred to as
many-cores processors. Based on the CUDA platform [17] for GPU program-
ming, GPUs can be viewed as a set of shared memory multicore processors.
When a CUDA kernel is called, a large number of threads are generated on
the GPU (modern GPUs can execute thousands of threads in parallel). The
group of all the threads generated by a kernel invocation is divided for their
execution into warps that are the basic scheduling units in CUDA and consist
of 32 consecutive threads. A warp executes one common instruction at a time;
when threads of a warp have to execute different instructions (which is known
as thread divergence), the execution is serialised.

In order to design an algorithm that runs efficiently on GPU, we should
consider the following aspects: avoid thread divergence to fully exploit GPU
resources, minimize data transfers between main memory and GPU since they
are expensive operations, and make coalesced accesses to the GPU global mem-
ory since this reduces the number of memory transactions and thus increases
the instruction throughput (warp accesses to global memory can be coalesced if
they refer to addresses in the same segment of memory).

Stage 1 of Algorithm 2 is well suited to GPU, as there exist efficient algo-
rithms to compute many sorts concurrently in a GPU. On the other hand, Stage 2
is not well suited to GPU implementation. Even though this stage is a reduc-
tion, the accesses to global memory are often not coalesced since each thread is
processing the tasks of a different machine, and each thread runs out of work
rapidly, wasting the potential of the platform.

For these reasons, we designed a hybrid CPU-GPU implementation that com-
putes Stage 1 in the GPU and Stage 2 in the CPU. This version, which we refer
to as pCPU+GPU, is implemented using the CUDA programming language.
Step 2 of Algorithm 2 is implemented using the segmented sort routine authored
by Sean Baxter [1], which uses merge sort [12] and the odd-even transposition
algorithm [16] for sorting networks.

In pCPU+GPU, the ETC matrix and the original Perm matrix are com-
pletely transferred from main memory to the GPU, then the tasks are sorted for
each machine in the GPU, and finally the updated Perm matrix is transferred
back to main memory in order to proceed to the execution of Stage 2 in CPU.

4 Experimental Evaluation

The experimental platform is a PC with a 4 cores Intel i7-3770 processor at
3.40 GHz, 16 GB of RAM, using the CentOS Linux 6.3 operating system, con-
nected to a Tesla K20c with 2496 CUDA cores at 705 MHz and 5 GB of RAM.
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Table 1. Runtime in seconds (mean ± std) and speedup of pM.

Scenario Single Thread Runtime Four Threads

Runtime Speedup

8192 × 256 0.252 ± 2.5e-3 0.169 ± 1.8e-3 1.49×
16384 × 512 1.093 ± 1.9e-3 0.716 ± 8.1e-3 1.53×
32768 × 1024 4.673 ± 1.3e-2 3.022 ± 8.7e-3 1.55×
65536 × 2048 23.373 ± 2.5e-1 16.457 ± 2.8e-1 1.42×

131072 × 4096 100.529 ± 9.4e-1 75.298 ± 1.2e0 1.34×

Table 2. Runtime in seconds (mean ± std) and speedup of pSM.

Scenario Single Thread Runtime Two Threads Four Threads

Runtime Speedup Runtime Speedup

8192× 256 0.043 ± 6.9e-4 0.026 ± 7.2e-4 1.64× 0.021 ± 4.7e-4 1.99×
16384× 512 0.148 ± 9.1e-4 0.082 ± 9.4e-4 1.80× 0.061 ± 1.1e-3 2.41×
32768× 1024 0.770 ± 1.2e-2 0.381 ± 3.5e-3 2.02× 0.239 ± 2.1e-2 3.22×
65536× 2048 4.364 ± 2.2e-2 2.277 ± 2.8e-2 1.92× 1.173 ± 2.4e-2 3.72×
131072× 4096 20.740± 1.3e-1 10.512± 6.3e-2 1.97× 5.376 ± 1.1e-1 3.86×

The test set was designed to evaluate the performance of the parallel imple-
mentations of Algorithm 2 in several scenarios, with different number of tasks
and machines. It consists of 5 scenarios, each composed of 20 instances of the
same size. The number of tasks in the different scenarios ranges from 8192 to
131072, and the number of machines ranges from 256 to 4096 (8192 × 256,
16384 × 512, 32768 × 1024, 65536 × 2048 and 131072 × 4096). All the results
reported are the average over the 20 different instances of each scenario on inde-
pendent runs.

The instances for the three smallest scenarios were taken from the reposi-
tory publicly available at http://par-cga-sched.gforge.uni.lu/instances/etc/. The
instances for the two largest scenarios were created using the generator publicly
available at http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP.

In the first place, we analyze the performance of pM. Table 1 presents the exe-
cution time in seconds of pM running with one and four threads. The table also
includes the speedup of the parallel four threaded execution over the sequential
execution. The maximum speedup value obtained is 1.55, for the scenarios with
32768 tasks and 1024 machines, which is not close to a linear scalability (4×).
These results are not surprising since pM only computes in parallel the first
stage of Algorithm 2. Although the improvement in performance of the parallel
execution is modest in magnitude, it is an interesting result from a practical
point of view since pM involves no parallelization effort.

Let us now analyze the performance of pSM. Table 2 presents the runtime
in seconds rounded to three figures of pSM executing with one, two and four
threads. The table also includes the speedup of the parallel executions over the

http://par-cga-sched.gforge.uni.lu/instances/etc/
http://www.fing.edu.uy/inco/grupos/cecal/hpc/HCSP
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Table 3. Runtime in seconds (mean ± std) and speedup of pCPU+GPU for Stage 1.

Scenario pSM pCPU+GPU Speedup pCPU+GPU Speedup

Sort Sort Sort Total Total

8192 × 256 0.006± 0.0e1 0.003 ± 4.7e-4 2.00× 0.009 ± 7.5e-4 0.64×
16384 × 512 0.026 ± 5.1e-4 0.014 ± 4.1e-4 1.86× 0.035 ± 1.2e-3 0.74×
32768 × 1024 0.119 ± 1.7e-3 0.060 ± 5.0e-4 1.98× 0.137 ± 1.3e-3 0.87×
65536 × 2048 0.805 ± 2.3e-2 0.260 ± 4.9e-4 3.10× 0.567 ± 3.6e-3 1.42×

131072 × 4096 3.218± 1.0e-1 1.139± 9.4e-4 2.86× 2.369 ± 2.0e-3 1.36×

sequential execution. The maximum speedup value of the two threaded execu-
tion is 2.02× for the scenarios with 32768 tasks and 1024 machines, and remains
stable for larger scenarios. On the other hand, the maximum speedup value
(3.86×) of the four threaded execution is obtained for the largest scenario, which
is close to a linear speedup. The higher speedup values are obtained when solv-
ing instances from larger scenarios, showing that larger scenarios allow pSM to
better profit from the parallel computation of the threads. These results indicate
that Algorithm 2 is well suited to parallel computing.

Finally, we examine the performance of pCPU+GPU. Table 3 presents the
runtime of the sort routine of the pCPU+GPU implementation and the total exe-
cution time for Stage 1 on the GPU, including the data transfers from main mem-
ory to GPU and in the opposite direction. The table also includes the speedups
over the pSM execution with four threads of the sort routine.

For the settings of this experiment, we observe that the total speedup
increases with the instance size except for the largest scenario. The explanation
for the slight degradation in relative performance with respect to the 65536×2048
scenario is that, due to GPU memory restrictions, the computation of Stage 1
of Algorithm 2 for the largest scenario needs to be divided in two parts. Indeed,
every instance requires 4 GB of RAM to store the ETC and permutation matri-
ces, which, together with the additional memory required by the sort library,
makes impossible to store the whole data in the 5 GB of RAM of the Tesla
K20c.2

Table 3 shows that the GPU outperforms the CPU for sorting the tasks
in all cases and, in the largest two scenarios, the difference in performance
even compensates the transfer overhead, yielding a global speedup greater than
unity. These results demonstrate that involving GPUs for solving Stage 1 of
Algorithm 2 can be highly profitable (notice from Tables 2 and 3 that Stage 1
consumes more than half of the total time in pSM for these two scenarios). In
practice this stage can be solved concurrently in CPU and GPU by partitioning
the rows of the ETC matrix in two sets, and sorting each set in a different type
of processing unit. A partition that yields the best load balance depends on the
specific hardware characteristics of the CPU, the GPU, and the transfer bus.

2 The real available free memory is 4.92 GB.
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5 Conclusions and Future Work

In this article we have studied, from an empirical perspective, the application of
parallel techniques to accelerate recent implementations of Min-Min.

The parallel implementations proposed in this work achieve important run-
time reductions. Specifically, both pSM and pCPU+GPU are able to solve
instances with 65536 tasks and 2048 machines in about one second, and instances
with 131072 tasks and 4096 machines in about five seconds. These improvements
allow using Min-Min for the scheduling of very large scenarios with a negligible
overhead and, additionally, help to include Min-Min as a part of more sophisti-
cated scheduling strategies.

As part of future research, the results in this paper could be complemented
with a model capable of estimating the performance of the aforementioned HPC
variants of Min-Min on different platforms, as a function of the problem instance
size and certain hardware specifications, such us size and performance of cache
memories, RAM memory, and the GPU features. Another line of future work
is to address the scheduling problem in a dynamic environment using Min-Min.
Specifically, after Stage 1 is completed, the first tasks of the schedule can start
executing as soon as they are assigned in the first iterations of Stage 2. When
new tasks arrive in the meanwhile, they can be efficiently inserted if the tasks
are maintained in sorted lists. On the other hand, if a new machine becomes
available, the set of pending tasks need to be sorted for the new machine. The
small execution times reported in this paper make this scheme faceable.
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Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., Freund, R.F.: A comparison of
eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)
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Abstract. In this paper we consider scheduling distributed divisible
computations in systems with hierarchical memory for energy and time
performance criteria. Hierarchical memory allows to conduct computa-
tions on big data sets using out-of-core processing instead of coercing
application data fit into core storage. However, out-of-core computations
are more costly both in time and energy. A model for scheduling divis-
ible loads under time and energy criteria is introduced. Two types of
scheduling algorithms are proposed and evaluated: a single-installment
algorithm which builds optimum schedules but may use out-of-core stor-
age, and a set of multi-installment algorithms which use limited memory
but require more communications.

Keywords: Scheduling · Divisible loads · Hierarchical memory · Energy
efficiency · Performance evaluation

1 Introduction

Providing electricity and bearing its cost has become a key element in designing
and running big data centers and supercomputing installations [9]. Dissipating
heat generated in computations is currently one of the limitations to the further
growth of the CPU speeds [8]. Hence, energy efficiency is a very active research
area and recent advantages in this field are closely analyzed [14].

In this paper we study the trade-off between time performance and energy
cost in processing divisible loads on systems with hierarchical memory. Divisible
loads are data-parallel applications which can be divided into parts of arbitrary
sizes, and the parts can be processed independently in parallel. Divisible load
theory (DLT) has been proposed in [1,4] to analyze performance of distributed
computations and schedule them accordingly. Thus, DLT provides methods of
scheduling and analyzing performance of a broad class of distributed applications
operating on big data volumes [2,3,5,12]. Contemporary computer systems have
hierarchical memory organization. At the top of the hierarchy CPU registers
have the shortest access time, but they are scarcest. Processor caches establish
the next level of memory hierarchy. Main memory, here by convention referred
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 111–120, 2016.
DOI: 10.1007/978-3-319-32152-3 11
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to as RAM, has much bigger size but is again slower. The following levels of
memory hierarchy are based on external and networked storage: HDDs, NAS,
tapes, optical media, etc. In this study we reduce the above hierarchy to just two
types of memory: core comprising registers, caches, RAM, and out-of-core mem-
ory comprising all types of external storage. This partitioning has a practical
motivation. On the one hand, sizes of data (load) processed in big data appli-
cations far exceed size of CPU registers and caches. Hence, to a great extent,
core is transparent for a developer of such applications. On the other hand, core
accesses are managed by hardware, while out-of-core memory is accessed via soft-
ware wrappers (virtual memory, (networked) file systems), and consequently, it
is by orders of magnitude slower. Due to the limited core size a developer must
undertake steps to fit data in core. Contrarily, out-of-core storage offers nearly
unlimited storage but requires use of virtual memory or dedicated data manage-
ment subsystem [11]. Consequently, on-core and out-of-core computations have
different character both in the development and in performance.

Systems with hierarchical memory have been analyzed in DLT [7]. Energy
may be considered a special type of cost in DLT. Scheduling with monetary cost
has been considered in [13]. Energy in processing divisible loads on flat memory
systems has been subject of [6]. In this paper we combine nonlinear energy
consumption and computing time models specific for systems with hierarchical
memory. We analyze two types of solutions: a single-installment method which
sends load to processors once and multi-installment algorithms which send the
load in many iterations. Since the problem is bicriterial the trade-off between
time and energy will be analyzed.

Further organization of this work is as follows. In the next section we for-
mulate the scheduling problem and provide timing and energy use models. In
Sect. 3 algorithms solving the problem are proposed. Section 4 is dedicated to
evaluation of the proposed methods. Section 5 summarizes results of this work.

2 Problem Formulation

It is assumed that computations are performed in a single-level tree system with
root M0 (a.k.a. master, server, originator) and machines (computers,processors)
M1, . . . , Mm at the leaves. The machines can be in one of four states: (1)
idle - consuming power P I , (2) starting - which takes time S and power PS ,
(3) networking - using power PN , (4) computing. Busy-waiting is considered the
same as networking state. Initially volume V of load is held by M0, M0 is in the
networking state, M1, . . . , Mm are idle. M0 activates M1, . . . , Mm which takes
energy SPS on each machine. Next load V is distributed in parts to machines
M1, . . . , Mm. Transferring α units of load to Mi takes time αC, where C is com-
munication rate (in seconds per byte). M0 sends the load to processors one after
the other, i.e. load is distributed to slaves in the sequential manner. M0 acti-
vates Mis just-in-time which means that completion of the starting procedure
coincides with the beginning of receiving of the load to process. For simplicity of
exposition we assume that the time of returning results from Mis to M0 is very
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short compared to the whole schedule length T and can be neglected (this can
be easily relaxed in DLT [3,5,12]). The duration and energy cost of sending the
waking signal is negligible and starting some machine Mj can be performed in
parallel with some other machine Mi communicating with M0.

The time and energy of computations on load α depend on the load size,
precisely whether the load part fits in the main memory [7,10]. It is assumed
that the time of computing on load of size α is determined by a piecewise-linear
function τ(α) = max{a1α, a2α + b2}. The first component of τ corresponds
with computations in core with speed 1/a1, the second component represents
out-of-core computations. Function τ has two properties: τ(0) = 0 and τ(ρ) =
a1ρ = a2ρ + b2, where ρ is the size of main memory (RAM) available to the
application beyond which system starts using out-of-core memory. The energy
consumed in the computations is determined by an analogous function ε(α) =
max{k1α, k2α + l2} satisfying conditions ε(0) = 0, ε(ρ) = k1ρ = k2ρ + l2. The
problem considered here consists in constructing a schedule of minimum length
T and energy E. Since this problem is effectively bicriterial we will be solving
energy E minimization problem under constrained schedule length T .

3 Solution Methods

In this section we propose two strategies of load distribution. The first sends
the load to machines once. Consequently, load parts can be big and out-of-core
processing may be unavoidable. The second, iteratively distributes load chunks
of small size in multiple communications.

3.1 Optimum Single-Installment

A schedule for the current method is shown in Fig. 1a. In the schedule M0 busy-
waits S units of time for M1 initiation, then load V is distributed in parts
α1, . . . , αm to machines M1, . . . , Mm, respectively. M0 communicates contin-
uously for time C

∑m
i=1 αi = CV and switches off. Thus, in the schedule of

length T , M0 consumes energy

E0 = PN (CV + S) + P I(T − CV − S).

Machine Mi remains idle until time C
∑i−1

i=1 αi (where
∑0

i=1 αi = 0), starts
in time S, receives its part of load in time Cαi, computes it in time τ(αi) and
switches off. Let us denote by ti = τ(αi) the time of computations on Mi and
by ei = ε(αi) the energy consumed in these computations. The duration of idle
intervals on machine Mi is T − S − Cαi − ti. The energy consumed by Mi is

Ei = PSS + PNCαi + ei + P I(T − S − Cαi − ti)

The problem of minimizing energy consumption E under limited schedule length
T can be formulated as a linear program:
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min
m∑

i=0

Ei (1)

S + C
i∑

j=1

αj + ti ≤ T i = 1, . . . , m (2)

max{a1αi, a2αi + b2} = ti i = 1, . . . , m (3)
max{k1αi, k2αi + l2} = ei i = 1, . . . , m (4)

m∑
i=1

αi = V (5)

αi, ti, ei ≥ 0 i = 1, . . . , m (6)

In the above formulation inequality (2) guarantees feasibility of the schedule on
each processor. Constraints (3), (4) instantiate functions τ(α), ε(α). We present
constraints (3), (4) in a simplified form which is accepted by contemporary
solvers (e.g. CPLEX), but it can be implemented in any LP solver by splitting
the max function into two inequalities and adding cost of exceeding constraints.
By Eq. (5) all work is executed.

3.2 Multi-Installment Methods

In the next three algorithms M0 sends load chunks of equal size α. Actual meth-
ods of calculating α for each specific algorithm will be given in the following.
The sequence of communications to M1, . . . , Mm is repeated iteratively until
exhausting the load. The number of communications may be indivisible by m
and the size αf of the last sent chunk may be smaller than α. It is assumed
that computations on each of the machines M1, . . . , Mm last longer than send-
ing the load to the remaining m − 1 machines. This imposes a requirement that
(m − 1)Cα ≤ τ(α) which can be reformulated as m ≤ a1/C + 1 for α ≤ ρ and
m ≤ a2/C +1+b2/(Cα) for α > ρ. Thus, the number of processors which can be
effectively exploited is limited and it is bigger when slower out-of-core processing
takes place. Now we derive schedule length T and energy E used when chunks
of size α are applied. For simplicity of exposition let m > 1.
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Fig. 1. (a) Single-installment schedule. (b) Multi-installment schedule.

The number of complete distribution iterations in which each of m machines
obtain load α is No = � V

αm�. The number of chunks of size α in the last
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incomplete iteration is Nf = �(V − Nomα)/α�. Size of the last chunk is
αf = V − (mNo + Nf )α. Then, the schedule length is (cf. Fig. 1b):

T = S + No(Cα + τ(α)) +
{

NfCα + max{αfC + τ(αf ), τ(α)} Nf > 0
max{(m − 1)Cα,αfC + τ(αf )} Nf = 0

Deriving energy consumption requires calculating idle time, computing and com-
munication durations on M1, . . . , Mm. At the start of the schedule Mi is idle
until time C(i − 1)α. Thus, total energy used before machines activation is
EI

1 = P I
∑m

i=1(i − 1)Cα = P I(m − 1)m/2Cα. Starting m machines consumes
ES = PSmS units of energy. Energy consumed on M1, . . . , Mm in the computa-
tions and communications is ER = (Nom+Nf )(PNCα+ε(α))+PNCαf +ε(αf ).

Let us assume that αfC + τ(αf ) < τ(α), i.e., the schedule ends on the
last machine receiving a chunk of size α (see Fig. 1b). The idle time on Mi ∈
{M1, . . . , MNf

} is (Nf − i)Cα, on MNf+1 it is τ(α) − Cαf − τ(αf ), and on
Mi ∈ {MNf+2, . . . , Mm} it is τ(α) − (i − Nf − 1)Cα. Thus, total idle time on
M1, . . . , Mm at the end of the schedule is

I =
Nf∑
i=1

(Nf − i)Cα + τ(α) − Cαf − τ(αf ) +
m∑

i=Nf+2

(τ(α) − (i − Nf − 1)Cα).

Suppose that αfC+τ(αf ) ≥ τ(α), which means that MNf+1 has no idle time.
Idle time on machines Mi ∈ {M1, . . . , MNf

} is (Nf − i)Cα+τ(αf )+Cαf −τ(α)
and on Mi ∈ {MNf+2, . . . , Mm} it is τ(αf )+Cαf − (i−Nf −1)Cα. Hence, total
idle time on M1, . . . , Mm at the end of the schedule is

I =

Nf∑

i=1

((Nf − i)Cα + τ(αf ) + Cαf − τ(α)) +
m∑

i=Nf+2

(τ(αf ) + Cαf − (i − Nf − 1)Cα).

Energy wasted in idle waiting at the end of the schedule is EI
2 = P II.

It remains to calculate the energy consumed by the originator. M0 starts
in networking state and then it is continuously communicating or busy-waiting
until distributing the last piece of work. The idle time on M0 is max{τ(α) −
C(αf ), τ(αf )}. Hence, the energy consumed on M0 is E0 = PNT + (P I −
PN )max{τ(α) − C(αf ), τ(αf )}. Finally, total energy consumed by the meth-
ods using load chunks of fixed size α is

E = EI
1 + ES + ER + EI

2 + E0.

Below we outline multi-installment scheduling algorithms with their specific
ways of defining load chunk sizes α.

Simple Static Chunk (SSC) algorithm assumes that load chunk sizes are equal
to the size of available RAM memory, i.e. αSSC = ρ. Thus, SSC avoids using
out-of-core memory. A disadvantage of simple static chunk algorithm are the
final outstanding load chunks. It means that if q1 = �V/(ρm)� 	= �V/(ρm)� = q2
then in the last iteration of load distribution many processors may remain idle.
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Static Chunk with Underload (SCU) algorithm assumes αSCU = V/(q1m). Thus,
algorithm SCU sends load chunks of size at most ρ and avoids out-of-core process-
ing at the cost of one more iteration.

Static Chunk with Overload (SCO) attempts to round the number of commu-
nication iterations down, at the cost of possibly using out-of-core processing.
Hence, in SCO size of the load chunk is αSCO = V/(m max{1, q2}).

Guided Self-Scheduling (GSS) algorithm adapts the idea of the classic loop
scheduling algorithm [5]. Let V ′ be the size of load remaining on M0. Chunk
sizes are calculated as αGSS = min{V ′,max{1,min{V ′/m, ρ}}}. For V > ρ, the
algorithm starts with load chunk sizes of RAM size. When V ′ < ρ, GSS gradu-
ally decreases chunk sizes and thus minimizes the spread of machine completion
times. GSS does not send load chunk sizes smaller than some fixed size which
is denoted here as 1 by convention. This can be a result of data structures
representing the solved problem or some size which sufficiently amortizes fixed
overheads in processing one chunk. For V 
 mρ the maximum number of usable
processors in GSS is the same as in the previous algorithms because initial load
chunks have size ρ. However, if V < mρ GSS uses chunks smaller than ρ, chunk
sizes decrease and communications are getting shorter. In such a situation GSS
is able to start more machines than SSC, SCU, SCO without entailing idle time
on M1, . . . , Mm.

4 Performance Comparison

In this section we will analyze performance as consumed energy E vs sched-
ule length T . We will also analyze sensitivity of the algorithms to changing
problem size V and system parameters. Note, that only the single-installment
(SI) method is capable of changing energy consumption E with changing T .
A study of the E vs T trade-off computed by SI can be found in [10]. The
multi-installment methods do not offer such a trade-off and the only parame-
ter which can impact E and T , given computing system and problem size, is
the number of machines m. Hence, in the following figures we study impact
of m on E and T . In order to compare SI against multi-installment meth-
ods, the shortest schedules on the given number of machines m will be used
for SI method. Unless stated to be otherwise the system and application para-
meters were the following: V = 10 GB, a1 = 0.082 s/MB, a2 = 2.366 s/MB,
b2 = −2274.9 s, k1=13 J/MB, k2 = 294 J/MB, l2 = −280 kJ, C =7.8 ms/MB,
S = 10 s, P I = 14 W, PN = 91 W, PS = 101 W, ρ = 996 MB. It can be verified
that processing out-of-core is roughly 28 times slower per MB than processing
on-core. The energy consumption per MB is roughly 23 times higher out-of-core.
Communication rate C corresponds with communication speed of ≈1 Gb per
second. P I , S, PS represent a very light-weight system which quite effectively
switches from hibernation to the running state. The size of RAM accessible for
storing data is ρ = 996 MB. These values have been measured in a real system,
for an application consisting in searching for patterns in a big data file [6,10].
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Fig. 2. Time-energy diagram for the default system.

We start with a time-energy chart in Fig. 2 for the above reference parame-
ters, to introduce the phenomena guiding performance. The dependencies are
shown only partially for better visibility (but will be shown in their entirety in
the next figure). It can be observed that with growing m not only T decreases
but so does used energy E. Hence, the smallest m is shown on the right-hand-
side of the chart. Energy performance is ruled by the following effects. On the
one hand, growing number of machines shortens the schedule and the root M0

is using less energy. On the other hand, adding machines incurs energy cost. As
a result, it can be observed that energy first decreases with shortening of the
schedule, but then is starts to increase. This phenomenon can be observed in
the following figures. The shortest schedules are built by the single installment
method (SI, in the upper-left corner), but using m = 24 and more machines
has big cost in energy needed to start them. At these values of m it is possible
to fit the whole load V in core memories. Note that SI has apparent energy
use minimum at m ≈ 28. Big irregularities in time and energy can be observed
in SCO. Since V is not always divisible by mρ and rounding chunk sizes up
results in various values of the difference between α and ρ, even small excesses
of chunk sizes above ρ escalate time and energy consumption. Consequently,
SCO has big irregularity in performance and should be avoided. Results for the
simple static chunk (SSC) algorithm are shown for three chunk sizes: 680 MB,
996 MB, 998 MB, where ρ = 996MB. It can be seen that even small increase of
the chunk size beyond ρ has bad impact on the energy use. Chunks smaller than
ρ have advantage of shorter waiting time at the start of the schedule and better
load balance at its end. Hence, a small dominance of SSC with α < ρ for the
maximum usable number of machines. For the given parameters the maximum
number of processors which can be applied without idle time is m = 11. Static
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chunk with underload (SCU), SSC with α < ρ and guided-self-scheduling (GSS)
have very similar performance. Still, SCU suffers from minor irregularities in
performance (T,E for m = 11 are bigger than for m = 10) which are results of
uneven rounding of V/(mρ). Moreover, GSS is able to construct slightly shorter
schedule due to decreasing chunk sizes and consequently smaller dispersion of
processor completion times.

In Fig. 3a time-energy chart is shown for V = 10 G and V = 100 G. The
static chunk with overload (SCO) manifests great irregularities because T,E are
not monotonic with growing m. Due to this adverse feature SCO will be omitted
in the further discussion. The SI method greatly improves its performance with
growing m because it is becoming able to shift the load from the out-of-core to
the on-core processing for sufficiently big m. Finally, at V = 10 G and m > 11
its performance becomes comparable with multi-installment methods. In Fig. 3b
time-energy chart is shown for ρ = 100 MB and ρ = 10 GB. For SI dependencies
for ρ = 1 GB, 10 GB are shown because SI’s results for ρ = 100 MB are out of
the range shown in Fig. 3b. It can be seen that SI method is competitive with
the remaining algorithms only if the load is stored in core. What is more, under
such circumstances SI is able to build the best energy schedules (lower-left part
of the chart). SI is capable of constructing shorter schedules, but it activates
new machines which brings energy costs bigger than in the other methods. SSC
method for ρ = 10 G uses just one load chunk, schedule length T is constant,
and adding each new machine only increases energy costs. Surprisingly, energy
performance of the multi-installment methods for small ρ = 100 MB is better
than for ρ = 10 GB because small load chunks reduce initial and final idle times.
It can be also observed that GSS for ρ = 10 GB is capable of constructing
shorter schedules than other multi-installment methods because by shrinking
chunk sizes it is able to avoid idle times on processors and still activate more
of them, though using more energy. Both GSS and SI approach the minimum

a) b)

Fig. 3. Time-energy dependence (a) for V = 10 G and V = 100 G. (b) for varying ρ.
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a) b)

Fig. 4. Time-energy dependence (a) for S = 10 s and S = 0.1 s, (b) for changing a1.

schedule length determined by communication time: S + CV . However, GSS is
more energy-efficient.

In Fig. 4a time-energy relation is shown for two values of the startup time
S = 0.1 s and S = 10 s. Two effects of reducing startup time can be observed.
The schedules get shorter roughly by the startup time of the first processor, and
energy consumption is decreased by the amount of energy saved in the startup of
the machines. In Fig. 4b impact of changing processing rate a1 is analyzed. The
value of a1 can be changed by designing a faster algorithm to solve the considered
problem. Assuming, that this new application runs on the same computer, also k1
must decrease proportionally. Three values of a1 are shown: a1 = 0.1, 0.05, 0.02
which corresponds with an algorithm twice and five time faster. The number
of processors which can be activated by algorithms SSC, SCU decreases with
increasing processing speed (a1 decreases). Hence, this number decreases from
m = 13 machines for a1 = 0.1 to m = 3 for a1 = 0.02. Though time- and
energy-performance of all multi-installment algorithms is similar, GSS algorithm
has an advantage of using more machines than SSC, SCU and consequently
building shorter schedules though at higher energy costs. The SI method is able
to construct schedules of comparable length but by using more machines and
energy. The advantage in energy of multi-installment methods over SI grows
with decreasing a1 (i.e. increasing speed).

5 Conclusions

In this paper time- and energy-performance of scheduling algorithms for divis-
ible computations in systems with hierarchical memory has been studied.
The time- and energy-performance is determined by: (i) size of load chunks
which regulates on-/out-of-core processing, (ii) number of usable processors
which decide on minimum schedule length, (iii) amount of idle time which rule
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wasted energy. It turns out that intensive use of out-of-core computations is not
a good idea and should be avoided as demonstrated by SCO method. Yet, it
cannot be unanimously concluded that on-core processing is the only reasonable
choice because in more complex applications the results obtained in small pieces
still must be merged (which was not considered here). Hence, in such more com-
plex applications, e.g. in sorting, some degree of out-of-core computations maybe
acceptable. Algorithms SI and GSS are able to employ the biggest number of
processors and hence build the shortest schedules. However, SI is energetically
competitive only if whole load fits in core memories. Moreover, SI has much
higher computational complexity and requires information on system parame-
ters. GSS may perform quite many communications which in practice may be
cumbersome and costly. Here communication costs were limited by bounding
from below chunk size, but this may cripple performance. Thus, a more detailed
model of communication cost can be a subject of the further work. Overall,
GSS algorithm can be recommended as a good compromise of performance and
implementation simplicity.
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Abstract. This study has investigated how scaled performance is
affected by the energy constraints imposed on dual-architecture proces-
sors. Theoretical models were developed to extend the Gustafson-Barsis
Law by accounting for energy limitations before examining the three
processing modes available to hybrid processors: symmetric, asymmet-
ric, and simultaneous asymmetric. Analysis shows that by choosing the
optimal chip configuration, energy efficiency and energy savings can be
increased considerably.

Keywords: Energy efficiency · Gustafson-Barsis’s Law · Hybrid archi-
tecture · Performance per watt · Modeling techniques

1 Introduction

The major challenge that microprocessor designers will face in the coming decade
is not just power, but also energy efficiency. Although Moore’s Law [1] continues
to offer solutions with more transistors, power budgets limit our ability to use
them. However, there are promising solutions such as heterogeneous many-core
architectures that will provide higher performance at lower energy requirements
and reduced leakage. Recent research shows that integrated CPU-GPU proces-
sors have the potential to deliver more energy efficient computations, which is
encouraging chip manufacturers to reconsider the benefits of heterogeneous par-
allel computing [3–8]. Chip manufacturers such as Intel, NIVIDIA, and AMD
have already announced such architectures, i.e., Intel Sandy Bridge, AMD’s
Fusion APUs, and NVIDIA’s Project Denver.

Despite some criticisms [9,10], Amdahl’s law [11] and Gustafson-Barsis’s Law
[12] are still relevant at the dawn of a heterogeneous many-core computing era.
Both laws are simple analytical models that help developers to evaluate the
actual speedup that can be achieved using a parallel program. They represent
two points of view that are not contradictory, but rather complement each other.
However, neither of these laws is perfect. Amdahl’s Law and Gustafson-Barsis’s
Law do not account for overheads associated with the creation/destruction
of processes/threads and with maintaining cache coherence. Neither do they
account for other types of serial tasks such as identification of critical sections,
synchronization, lock management, and load balancing.
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 123–132, 2016.
DOI: 10.1007/978-3-319-32152-3 12
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Furthermore, the future relevance of the laws requires their extension by
the inclusion of constraints and architectural trends demanded by modern mul-
tiprocessor chips. In [13] we extended Amdahl’s law according to the work of
Woo and Lee [2] and applied it to the case of a hybrid CPU-GPU multi-core
processor. In this work we repeat on our previous study, but this time we extend
the Gustafson-Barsis’s Law. The main contributions of this paper are as follows:

– To define and formulate two metrics: speedup and performance per watt.
– Using the above metrics, to evaluate the energy efficiency and scalability of

three processing schemes available for heterogeneous computing: symmetric,
asymmetric and simultaneous asymmetric.

– For each processing scheme, to examine how performance and power are
affected by different chip configurations.

– Finally, to analyze and compare the outcomes of the three analytical models
and to show how considerable energy savings can be achieved by choosing the
optimal chip configuration.

2 Symmetric Processors

In this section we reformulate Gustafson-Barsis’s Law to capture the necessary
changes imposed by power constraints. We start with the traditional definition
of a symmetric multi-core processor and continue by applying energy constraints
to the equations following the method of Woo and Lee [2].

2.1 Symmetric Speedup

Gustafson-Barsis’s Law begins with a parallel computation and estimates how
much faster the parallel computation is than the same computation executing
on a single core. Gustafson argues that, as processor power increases, the size
of the problem set also tends to increase. This is why the speedup determined
by Gustafson-Barsis’s Law, also called scaled speedup, is the time required by a
parallel computation divided into the time hypothetically required to solve the
same problem on a single core.

According to the Gustafson-Barsis’s Law, a typical program has a serial por-
tion that cannot be parallelized (and therefore can be executed only by a single
core) and a parallel portion that can be parallelized (and therefore can be exe-
cuted by any number of cores in the processor). Let the parallel execution time
of the program be normalized to 1, and let the serial and parallel portions be
denoted by s and p respectively. Then the following equation concisely describes
the law:

Speedups = s + (1 − s) · c = c + (1 − c) · s (1)

where c is the number of cores and s is the fraction of a program’s execution
time that is spend in serial code (0 ≤ s ≤ 1).
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Fig. 1. Performance per watt as a function of the number of CPU cores of a symmetric
multi-core processor when kc = 0.3

2.2 Symmetric Performance per Watt

To model power consumption in realistic scenarios, we introduce the variable kc

to represent the fraction of power a single CPU core consumes in its idle state
(0 ≤ kc ≤ 1). In the case of a symmetric processor, one core is active during the
sequential computation and consumes a power of 1, while the remaining (c − 1)
CPU cores consume (c − 1)kc. During the sequential computation period, the
processor consumes a power of 1+(c−1)kc. Thus, during the parallel computation
time period, c CPU cores consume c power. It requires s and (1 − s) to execute
the sequential and parallel codes, respectively, so the formula for the average
power consumption Ws of a symmetric processor is as follows.

Ws =
s · {1 + (c − 1) · kc} + (1 − s) · c

s + (1 − s)
(2)

Next, we define the performance per watt (Perf/W) metric to represent the
amount of performance that can be obtained from 1 watt of power. Perf/W is
basically the reciprocal of energy. The Perf/W of a single CPU core execution is
1, so the Perf /Ws achievable for a symmetric processor is formulated as follows.

Perf
Ws

=
Speedups

Ws
=

c + (1 − c) · s

s · {1 + (c − 1) · kc} + (1 − s) · c
(3)

Figure 1 plots the performance per watt for a symmetric multi-core processor
as modeled by Eq. (3), showing that the performance per watt decreases rapidly
for a small number of cores. However, as the number of cores increases, so does
the problem size, and the inherently serial portion becomes much smaller as a
proportion of the overall problem. Therefore, the performance per watt remains
almost constant as the number of cores increases and reflects the assumption
that the execution time remains fixed.
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3 Asymmetric CPU-GPU Processors

In this section, an asymmetric CPU-GPU processor where CPU and GPU cores
are integrated on the same die and share the same memory space and
power budget will be referred to as a hybrid processor .

We assume that a program’s execution time can be composed of a time period
where the program runs sequentially (s), a time period where the program runs
in parallel on the CPU cores (α), and a time period where the program runs
in parallel on the GPU cores (1 − α). Note that in this case it is assumed
that the program runs in parallel on the CPU cores or on the GPU
cores, but not on both at the same time. Simultaneous asymmetric
processing will be the topic of the next section.

To model the power consumption of an asymmetric processor we introduce
another variable, kg, to represent the fraction of power a single GPU core con-
sumes in its idle state (0 ≤ kg ≤ 1). We introduce two further variables, α and
β, to model the performance difference between a CPU core and a GPU core.
The first variable represents the fraction of a program’s execution time that is
parallelized on the CPU cores (0 ≤ α ≤ 1), while the second variable represents
a GPU core’s performance normalized to that of a CPU core (0 ≤ β). For exam-
ple, comparing the performance of a single CPU core (Intel Core-i7-960 multi-
core processor) against the performance of a single GPU core (NVIDIA GTX
280 GPU processor) yields values of β between 0.4 and 1.2.

We assume that one CPU core in an active state consumes a power of 1 and
the power budget (PB) of a processor is 100. Thus, g = (PB−c)/wg is the number
of the GPU cores embedded in the processor where variable wg represents the
active GPU core’s power consumption relative to that of an active CPU core
(0 ≤ wg).

3.1 Asymmetric Speedup

Now, if the sequential code of the program is executed on a single CPU core
the following equation represents the theoretical achievable asymmetric speedup
(speedupa).

Speedupa = s + N · (1 − s) · {α · c +
(1 − α) · g

β
} (4)

where N is the number of hybrid processors. Each hybrid processor contains c
CPU cores and g GPU cores.

3.2 Asymmetric Performance per Watt

To model the power consumption of an asymmetric processor we assume that
during the sequential computation phase, one CPU core is in active state and
the amount of power it consumes is 1, the c−1 idle CPU cores consume (c−1)kc

and the g idle GPU cores consume g · wg · kg. During the parallel computation
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Fig. 2. Asymmetric perf/W as a function of the number of hybrid processors and
various CPU-GPU chip configurations for s = 0.3, wg = 0.25, α = 0.5, kc = 0.3,
kg = 0.2 and β = 1.0.

on the CPU cores, the CPU cores consume c and the g idle GPU cores consume
g · wg · kg. During the parallel computation on the GPU cores, the GPU cores
consume g · wg and the idle CPU cores consume c · kc.

Let Ps, Pc, and Pg denote the power consumption during the sequential, CPU,
and GPU processing phases, respectively.

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc = α · (1 − s) · {c + g · wg · kg}
Pg = (1 − α) · (1 − s) · {g · wg + c · kc}

It requires time (1 − p) to perform the sequential computation, and times
α · p and (1−α) · p to perform the parallel computations on the CPU and GPU,
respectively, so the average power consumption Wa of an asymmetric processor
is as follows.

Wa = Ps + Pc + Pg (5)

Consequently, Perf /Wa of N asymmetric processors is expressed as

Perf
Wa

=
s + N · (1 − s) · {α · c + (1−α)·g

β }
Ps + N · (Pc + Pg)

(6)

Figure 2 shows the performance per watt of an asymmetric processor for
s = 0.3 as a function of the number of hybrid processors and as a function of CPU
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cores within each hybrid processor. It can be seen that the Perf /Wa decreases
slowly with the increase in the number of hybrid processors, as expected, and
decreases faster as the number of the CPU cores increases. Furthermore, the
optimal Perf /Wa is obtained for a chip configuration of 1 CPU core and 396
GPU cores.

4 CPU-GPU Simultaneous Processing

In the previous analysis we assumed that a program’s execution time is divided
into three phases as follows: a sequential phase where one core is active, a CPU
phase where the parallelized code is executed by the CPU cores, and a GPU
phase where the parallelized code is executed by the GPU cores. However, the
aim of hybrid CPU-GPU computing is to divide the program while allowing the
CPU and the GPU will execute their codes simultaneously.

4.1 Simultaneous Asymmetric Speedup

We conduct our analysis assuming that the CPU’s execution time overlaps with
the GPU’s execution time. Such an overlap occurs when the CPU’s execution
time α · p · c equals the GPU’s execution time (1−α)·p·g

β . Let α′ denote the value
of α that applies to this equality:

α′ =
g

g + c · β

We assume that the sequential code of the program is executed on a single
CPU core. Thus, the following equation represents the theoretical achievable
simultaneous asymmetric speedup (speedupsa):

Speedupsa = s + N · (1 − s) · {α′ · c}
= s + N · (1 − s) · { (1 − α′) · g

β
} (7)

where N is the number of hybrid processors. Each hybrid processor contains c
CPU cores and g GPU cores.

4.2 Simultaneous Asymmetric Perf/W

To model the power consumption of an asymmetric processor in a simultaneous
processing mode, we assume that one core is active during the sequential com-
putation and consumes a power of 1, while the remaining c − 1 idle CPU cores
consume (c − 1)kc and g idle GPU cores consume g · wg · kg. Thus, during the
parallel computation time period, c active CPU cores consume c and g active
GPU cores consume g · wg. It requires (1 − p) to execute sequential code and
α′ · p to execute the parallel codes on the CPU and the GPU simultaneously,
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Fig. 3. Simultaneous Asymmetric Perf/W as a function of the number of hybrid proces-
sors and various CPU-GPU chip configurations for s = 0.3, wg = 0.25, kc = 0.3,
kg = 0.2 and β = 1.0.

so the average power consumption of an asymmetric processor in a simultaneous
processing mode is

Wsa = Ps + Pc + Pg (8)

where

Ps = s · {1 + (c − 1) · kc + g · wg · kg}
Pc + Pg = α′ · (1 − s) · {c + g · wg}

Consequently, Perf /Wsa of N asymmetric processors in a simultaneous
processing mode is expressed as follows.

Perf
Wsa

=
s + N · (1 − s) · {α′ · c}

Ps + N · (Pc + Pg)
(9)

Figure 3 shows the performance per watt of an asymmetric processor, as
modeled by Eq. (9), for s = 0.3 as a function of the number of hybrid proces-
sors and as a function of CPU cores within each hybrid processor. It can be
observed that the Perf /Wsa slightly decreases with the increase in the number
of hybrid processors. When the performance of the CPU cores dominates, the
graph increases rapidly as the number of CPU cores increases (and the number
of GPU cores is decreases). Then, it reaches the point beyond which the perfor-
mance per watt decreases very rapidly because the dominance of the GPU cores
is negligible.
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5 Synthesis

Figure 4 shows the performance per watt of the three processing schemes that
were studied in this research (symmetric (s), asymmetric (a), and simultaneous
asymmetric (sa)) and how they are affected by chip configuration. First, it can be
observed that the chip configuration has no effect on Perf /W while processing
in symmetric mode, as can be expected. In simultaneous asymmetric processing
mode, Perf /W improves with increasing number of CPU cores until it reaches
peak performance for a chip configuration of approximately 85 CPU cores and
60 GPU cores. Beyond this point, Perf /W decreases rapidly to a point where the
contribution of the GPU cores is negligible. On the other hand, in asymmetric
processing mode, a chip configuration consisting of a single CPU core yields an
optimal performance per watt, and any attempt to increase the number of CPU
cores in the chip organization leads to a significant decrease in performance per
watt.

6 Related Work

Hill and Marty [14] studied the implications of Amdahl’s law on multi-core hard-
ware resources and proposed the design of future chips based on the overall chip
performance rather than core efficiencies. The major assumption in that model
was that a chip is composed of many basic cores and their resources can be com-
bined dynamically to create a more powerful core with higher sequential per-
formance. Using Amdahl’s law, they showed that asymmetric multi-core chips
designed with one fat core and many thin cores exhibited better performance
than symmetric multi-core chip designs.
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Woo and Lee [2] developed a many-core performance per energy analyti-
cal model that revisited Amdahl’s Law. Using their model the authors investi-
gated the energy efficiency of three architecture configurations. The first archi-
tecture studied contained multi-superscalar cores, the second architecture con-
tained many simplified and energy efficient cores, and the third architecture was
an asymmetric configuration of one superscalar core and many simplified energy
efficient cores. The evaluation results showed that under restricted power budget
conditions the asymmetric configuration usually exhibited better performance
per watt. The energy consumption was reduced linearly as the performance was
improved with parallelization scales. Furthermore, improving the parallelization
efficiency by load balancing among processors increased the efficiency of power
consumption and increased the battery life.

Sun and Chen [15] studied the scalability of multi-core processors and reached
more optimistic conclusions compared with the analysis conducted by Hill and
Marty [14]. The authors suggested that the fixed-size assumption of Amdahl’s
law was unrealistic and that the fixed-time and memory-bounded models might
better reflect real world applications. They presented extensions of these models
for multi-core architectures and showed that there was no upper bound on the
scalability of multi-core architectures. However, the authors suggested that the
major problem limiting multi-core scalability is the memory data access delay
and they called for more research to resolve this memory-wall problem.

Esmaeilzadeh et al. [16] performed a systematic and comprehensive study to
estimate the performance gains from the next five multi-core generations. Accu-
rate predictions require the integration of as many factors as possible. Thus, the
study included: power, frequency and area limits; device, core and multi-core
scaling; chip organization; chip topologies (symmetric, asymmetric, dynamic,
and fused); and benchmark profiles. They constructed models based on pes-
simistic and optimistic forecasts, and observations of previous works with data
from 150 processors. The conclusions were not encouraging.

7 Conclusions

The analysis of three analytical models of symmetric, asymmetric, and simulta-
neous asymmetric processing using two performance metrics with regard to vari-
ous chip configurations suggest that future many-core processors should be a pri-
ori designed to include one or a few fat cores alongside many efficient thin cores
to support energy efficient hardware platforms. Moreover, to achieve optimal
scalability and energy savings, a dynamic configuration mechanism is required
for identifying and implementing the optimal chip organization.
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Abstract. A novel approach to form the free schedule of tiles compris-
ing statement instances of the program loop nest is presented. Forming
both valid tiles and free scheduling are based on the transitive closure of
loop nest dependence graphs. Under the free schedule, tiles are executed
as soon as their operands are available. To describe and implement the
approach, loop dependences are presented in the form of tuple relations.
A discussed algorithm is implemented in the open source TRACO com-
piler. Experimental results exposing the effectiveness of the introduced
algorithm and speed-up of parallel programs, produced by means of this
algorithm, are discussed.

Keywords: Loop nest tiling · Transitive closure · Dependence graphs ·
Coarse-grained parallelism · Free scheduling

1 Introduction

Tiling is a very important iteration reordering transformation for both improving
data locality and extracting loop parallelism. Loop tiling for improving locality
groups loop statement instances in a loop iteration space into smaller blocks
(tiles) allowing reuse when the block fits in local memory. On the basis of a valid
schedule of tiles, parallel coarse-grained code can be generated.

To our best knowledge, well-known tiling techniques are based on linear or
affine transformations of program loop nests [6,9,10,13,20]. In paper [5], we
describe the limitations of affine transformations and present how the free-
scheduling of loop nest statement instances can be formed by means of the
transitive closure of program dependence graphs. In this paper, we demonstrate
how the approach, presented in our paper [5], can be adapted to form the free-
scheduling of valid tiles. To generate both valid tiles and free-scheduling, we
apply the transitive closure of dependence graphs. The proposed approach allows
generation of parallel tiled code even when there does not exist an affine trans-
formation allowing for producing a fully permutable loop nest. This approach is
a result of a combination of the polyhedral model and the iteration space slicing
framework.
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 133–142, 2016.
DOI: 10.1007/978-3-319-32152-3 13
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2 Background

A considered approach uses the dependence analysis proposed by Pugh and Won-
nacott [16] where dependences are represented by dependence relations. Depen-
dences of a loop nest are described by dependence relations with constraints
presented by means of the Presburger arithmetic.

A dependence relation is a tuple relation of the form [input list ]→[output
list ]: formula, where input list and output list are the lists of variables and/or
expressions used to describe input and output tuples and formula describes the
constraints imposed upon input list and output list and it is a Presburger formula
built of constraints represented with algebraic expressions and using logical and
existential operators. A dependence relation is a mathematical representation of
a data dependence graph whose vertices correspond to loop statement instances
while edges connect dependent instances. The input and output tuples of a
relation represent dependence sources and destinations, respectively; the relation
constraints point out instances which are dependent.

Standard operations on relations and sets are used, such as intersection (∩),
union (∪), difference (−), domain (dom R), range (ran R), relation application
(S′ = R(S) : e′ ∈ S′ iff exists e s.t. e → e′ ∈ R, e ∈ S). In detail, the description
of these operations is presented in papers [11,16].

The positive transitive closure for a given relation R, R+, is defined as follows
[11]: R+ = {e → e′ : e → e′ ∈ R ∨ ∃e′′s.t. e → e′′ ∈ R ∧ e′′ → e′ ∈ R+}.
It describes which vertices e′ in a dependence graph (represented by relation R)
are connected directly or transitively with vertex e.

Transitive closure, R∗, is defined as follows [12]: R∗ = R+ ∪ I, where I
the identity relation. It describes the same connections in a dependence graph
(represented by R) that R+ does plus connections of each vertex with itself.

The composition of given relations R1 = {x1 → y1|f1(x1, y1)} and
R2 = {x2 → y2|f2(x2, y2)}, is defined as follows [11]: R1 ◦ R2 = {x →
y|∃z s.t. f1(z, y) ∧ f2(x, z)}.

3 Finding Free Scheduling

The algorithm, presented in our paper [5], allows us to generate fine-grained par-
allel code based on the free schedule representing time partitions; all statement
instances of a time partition can be executed in parallel, while partitions are
enumerated sequentially. The free schedule function is defined as follows.

Definition 1 [7,8]. The free schedule is the function that assigns discrete time
of execution to each loop nest statement instance as soon as its operands are
available, that is, it is mapping σ : LD → Z such that

σ(p) =

⎧
⎨
⎩

0 if there is no p1 ∈ LD s.t. p1 → p
1 + max(σ(p1), σ(p2), ..., σ(pn)); p, p1, p2, ..., pn ∈ LD;
p1 → p, p2 → p, ..., pn → p,
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where p, p1, p2, ..., pn are loop nest statement instances, LD is the loop nest
domain, p1 → p, p2 → p, ..., pn → p mean that the pairs p1 and p, p2 and p, ...,pn
and p are dependent, p represents the destination while p1, p2, ..., pn represent
the sources of dependences, n is the number of operands of statement instance
p (the number of dependences whose destination is statement instance p).

The free schedule is the fastest legal schedule [8]. In paper [5] we presented
fine-grained parallelism extraction based on the power k of relation R.

The idea of the algorithm is the following [5]. Given relations R1, R2, ..., Rm,

representing all dependences in a loop nest, we first calculate R =
m⋃
i=1

Ri and then

Rk, where Rk = R ◦ R ◦ ...R︸ ︷︷ ︸
k

, “◦” is the composition operation. Techniques of

calculating the power k of relation R are presented in the following publications
[12,17] and they are out of the scope of this paper. Let us only note that given
transitive closure R+, we can easily convert it to the power k of R, Rk, and vice
versa, for details see [17].

Given set UDS comprising all loop nest statement instances that are ready to
execution at time k = 0 (Ultimate Dependence Sources), each vertex, represented
with the set Sk = Rk(UDS) − R+ ◦ Rk(UDS), is connected in the dependence
graph, defined by relation R, with some vertex(ices) represented by set UDS
with a path of length k. Hence at time k, all the statement instances belonging
to the set Sk can be scheduled for execution and it is guaranteed that k is as
few as possible.

4 Loop Nest Tiling Based on the Transitive Closure
of Dependence Graphs

In this paper, to generate valid tiled code, we apply the approach presented in
paper [4], which is based on the transitive closure of dependence graphs. Next,
we briefly present the steps of that approach.

First, we form set TILE(II ,B), including iterations belonging to a paramet-
ric tile, as follows TILE(II ,B) = {[I ]|B*II + LB ≤ I ≤ min(B*(II + 1) +
LB − 1,UB) AND II ≥ 0}, where vectors LB and UB include the lower and
upper loop index bounds of the original loop nest, respectively; diagonal matrix
B defines the size of a rectangular original tile; elements of vector I represent
the original loop nest iterations contained in the tile whose identifier is II ; 1 is
the vector whose all elements have value 1; here and further on, the notation
x ≥ (≤)y where x, y are two vectors in Z

n corresponds to the component-wise
inequality, that is, x ≥ (≤)y ⇐⇒ xi ≥ (≤)yi, i=1,2,...,n.

Next, we build sets TILE LT and TILE GT that are the unions of all the tiles
whose identifiers are lexicographically less and greater than that of TILE (II ,
B), respectively:

TILE LT ={[I ] | exists II ′ s. t. II ′ ≺ II AND II ≥ 0 AND B*II+LB ≤
UB AND II ′ ≥ 0 and B*II ′ + LB ≤ UB AND I in TILE(II ′,B)},
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TILE GT ={[I ] | exists II ′ s. t. II ′ � II AND II ≥ 0 AND B*II+LB ≤
UB AND II ′ ≥ 0 and B*II ′ + LB ≤ UB AND I in TILE(II ′,B)},
where “≺” and “�” (here and further on) denote the lexicographical relation
operators for two vectors. Then, we calculate set

TILE ITR = TILE − R+(TILE GT),

which does not include any invalid dependence target, i.e., it does not include
any dependence target whose source is within set TILE GT. The following set

TVLD LT = (R+(TILE ITR) ∩ TILE LT) − R+(TILE GT)

includes all the iterations that (i) belong to the tiles whose identifiers are lexico-
graphically less than that of set TILE ITR, (ii) are the targets of the dependences
whose sources are contained in set TILE ITR, and (iii) are not any target of a
dependence whose source belong to set TILE GT. Target tiles are defined by the
following set TILE VLD = TILE ITR ∪ TVLD LT.

Lastly, we form set TILE VLD EXT by means of inserting (i) into the first
positions of the tuple of set TILE VLD elements of vector II : ii1, ii2, ..., iid;
(ii) into the constraints of set TILE VLD the constraints defining tile identifiers
II ≥ 0 and B*II + LB ≤ UB . Target code is generated by means of applying
any code generator allowing for scanning elements of set TILE VLD EXT in the
lexicographic order, for example, CLooG [1].

5 Free Scheduling for Tiles

The algorithm presented in this paper is a combination of the approaches pre-
sented in the two previous sections. First, we generate tiled code as it is described
in Sect. 4, then we find free scheduling for tiles of the tiled code. For this pur-
pose, first, we form relation, R TILE, which describes dependences among tiles
as follows

R TILE :={[II ]−>[JJ ]: exist I , J s.t. (II,I ) in TILE VLD EXT (II ) AND
(JJ,J ) in TILE VLD EXTi(JJ ) AND J in R(I )},
where II , JJ are the vectors representing tile identifiers; vectors I , J comprise
iterations belonging to tiles whose identifiers are II , JJ , respectively.

The following step is to calculate set, UDS, including the tile identifiers
which state for tile ultimate dependence sources and/or independent ones as
follows: UDS=II SET − range (R TILE), where set II SET = {[II ]|II ≥
0 and B*II + LB ≤ UB} represents all tile identifiers.

Now, we apply the algorithm presented in paper [5] to form free-scheduling
for tiles of tiled code. With this purpose, we calculate the transitive closure
and power k of relation R TILE and next calculate set Sk, representing the
free schedule, as follows Sk = R TILEk(UDS)− (R TILE+ ◦R TILEk(UDS)).
Finally, we extend the tuple of set Sk with variable k and variables representing
statement instances of a parametric target tile(together with corresponding con-
straints) and generate code applying any code generator, for example, CLooG to
scan iterations within set Sk in the lexicographical order. Algorithm 1 presents
the discussed above idea in a formal way.
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Algorithm 1. Parallel tiled code generation based on the free schedule
Input: A loop nest of depth d ; constants b1, b2, ..., bd defining the size of a rectangular

original tile, relation R representing all the dependences in the loop nest.

Output: Code enumerating time partitions according to the free schedule, tiles for each

time partition (in parallel), and statement instances in each tile.

Method:

1. Apply the algorithm, presented in paper [4] to the original loop nest to generate sets

II SET, TILE VLD, TILE VLD EXT, and tiled code.

2. Form relation, R TILE, which describes dependences among tiles but ignores

dependences within each tile as follows

R TILE :={[II ]−>[JJ ]: exist I, J s.t. (II,I ) in TILE VLD EXT (II ) AND (JJ,J )

in TILE VLD EXT (JJ ) AND J in R(I )},
where II, JJ are the vectors representing tile identifiers, TILE V LD EXT is the set

returned by step 1.

3. Calculate set, UDS, including the tile identifiers which state for tile ultimate

dependence sources and/or independent ones as follows

UDS :=II SET − range (R TILE),

4. Calculate set

Sk= R TILEk(UDS) − (R TILE+◦R TILEk(UDS)).

5. Extend set Sk as follows: insert in the first its tuple position symbolic variable k

responsible for representing time under the free schedule; insert in the last its tuple

positions the elements of set TILE V LD returned by step 1; insert into the constraint

of set Sk the constraint of set TILE V LD.

6. Apply to the set, returned by step 5, CLooG [1] and postprocess the code generated by

CLooG to get the following code structure

seqfor for k //enumerating time partitions

parfor Sk //enumerating tile identifiers contained in set Sk

//formed in step 4 for a given value of k

seqfor TILE_VLD //enumerating statement instances comprised in

//set TILE_VLD defined by the tile identifiers

//represented by the previous parfor loop

6 Illustrative Example

In this section, we illustrate steps of Algorithm 1 by means of the following loop:

for(i=1; i<=6; i++)

for(j=1; j<=6; j++)

a[i][j] = a[i+1][j-1];

We use the ISL library to carry out operations on relations and sets required
by the presented algorithm. A dependence relation, returned by Petit, the Omega
project dependence analyzer, is the following

R:= {[i,j,v] -> [i’,j’,v’] : ( i’ = 1+i and j’ = j-1 and v = 6 and v’ = 6

and 1 <= i <= 5 and 2 <= j <= 6 )},
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where here and further on “6” states for the statement identifier represented via
the corresponding line number in the original loop nest.

The algorithm presented in paper [4] returns the following set
TILE V LD EXT representing both tile identifiers and statement instances
within each target tile.

TILE_VLD_EXT:= { [i0, i1, i2, i3, 6] : i0 >= 0 and i2 >= 1 + 2i0 and

i2 <= 6 and i3 >= 1 + 2i1 and i3 <= 6 and i3 >= 1 and i3 <= 3 + 2i0 +

2i1 - i2; [i0, i1, 2 + 2i0, 2i1, 6] : i0 <= 2 and i0 >= 0 and i1 <= 2

and i1 >= 1; [i0, 2, 2 + 2i0, 6, 6] : i0 <= 2 and i0 >= 0 }.

Using relation R and set TILE V LD EXT , we form realtion R TILE that
is of the form below.

R_TILE:= { [i0, i1, 6] -> [1 + i0, -1 + i1, 6] : i0 >= 0 and i0 <= 1 and

i1 <= 2 and i1 >= 1; [i0, 2, 6] -> [1 + i0, 2, 6] : i0 <= 1 and i0 >= 0 }.

Set UDS is the following {[0, jj, 6] : jj ≤ 2 and jj ≥ 0}.
Using the appropriate functions of the ISL library to calculate relations

R TILEk and R TILE+, we calculate set Sk according to the formula in step 4
of Algorithm 1, and extend set Sk as presented in step 5 of Algorithm 1, to get:

Sk:= { [i0, i0, i2, i3, i4, 6] : i3 >= 1 + 2i0 and i4 >= 1 + i2 and

i2 <= 2 and i3 <= 2 + 2i0 and i0 >= 0 and i4 <= 2 + 2i2 and i4 >= 2 +

2i0 + 2i2 - i3 and i0 <= 2 and 2i4 <= 6 + 4i0 + 5i2 - 2i3 }.

Finally, we apply to set Sk the GLooG code generator and postprocess the
code returned by CLooG to yield the following OpenMP C code.

1. for (c0 = 0; c0 <= 2; c0 += 1)

2. #pragma omp parallel for

3. for (c2 = 0; c2 <= 2; c2 += 1)

4. for (c3 = 2 * c0 + 1; c3 <= 2 * c0 + 2; c3 += 1)

5. for (c4 = max(c2 + 1, 2 * c0 + 2 * c2 - c3 + 2);

c4 <= min(2*c0 + 2 * c2 - c3 + c2/2 + 3, 2 * c2 + 2); c4++)

6. a[c3][c4]=a[c3+1][c4-1];

where line 1 presents the serial for loop enumerating time partitions; line 2 rep-
resents the two OpenMP directives (parallel for) pointing out that the iterations
of the for loop in line 3 can be executed in parallel; the for loops in line 1 and
line 3 enumerate tile identifiers, whereas the for loops in line 4 and line 5 scan
iterations within a tile. Figure 1 presents original tiles, while Fig. 2 shows target
tiles returned by the algorithm, presented in paper [4] (depicted by dashed lines),
and the three time partitions (k=0, 1, 2) for the illustrative example.
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Fig. 1. Original tiles Fig. 2. Target tiles and time partitions

7 Experimental Study

The presented algorithm has been implemented in the optimizing compiler TRA
CO, publicly available at the website http://traco.sourceforge.net. For calculat-
ing R+ and Rk, TRACO uses the corresponding functions of the ISL library
[17]. To evaluate the effectiveness of proposed approach, we have experimented
with NAS Parallel Benchmarks 3.3 (NPB) [14].

From 431 loops of the NAS benchmark suite, Petit is able to analyse 257
loops, and dependences are available in 134 loops (the rest 123 loops do not
expose any dependence). For these 134 loop nests, ISL is able to calculate
R TILEk for 58 ones and accordingly TRACO is able to generate parallel tiled
code for those programs. Such a limitation is not the limitation of the algorithm,
it is the limitation of the corresponding ISL function.

To check the performance of parallel tiled code, produced with TRACO,
the following criteria were taken into account for choosing NAS programs: (i) a
loop nest must be computationally intensive (there are many NAS benchmarks
with constant upper bounds of loop indices, hence their parallelization is not
justified), (ii) structures of chosen loops must be different (there are many loops
of a similar structure).

Applying these criteria, we have selected the following five NAS
loops: BT rhs 1 (Block Tridiagonal Benchmark), FT auxfnct.f2p 2 (Fast
Fourier Transform Benchmark), UA diffuse 5, UA setup 16 and UA transfer 4
(Unstructured Adaptive Benchmark).

To carry out experiments, we have used a computer with Intel i5-4670
3.40 GHz processors (Haswell, 2013), 6 MB cache and 8 GB RAM. Source and
target codes of the examined programs are available in http://sourceforge.net/
p/issf/code-0/HEAD/tree/trunk/examples/fstile/.

Table 1 presents execution time and speed-up for the studied loop nests.
Speed-up is the ratio of sequential and parallel program execution times, i.e.,
S=T (1)/T (P), where T (P) is the parallel program execution time on P proces-
sors. Speedups were computed against the serial original code execution time.

http://traco.sourceforge.net
http://sourceforge.net/p/issf/code-0/HEAD/tree/trunk/examples/fstile/
http://sourceforge.net/p/issf/code-0/HEAD/tree/trunk/examples/fstile/
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Table 1. Speed-up of parallel tiled loop nests for 4 CPU cores.

Program Loop up. bounds Time of serial Block Time of parallel Speed-up

run (in seconds) size run (in seconds)

FT auxfnct.f2p 2 N1, N2, N3=500 6.857 16 0.817 8.393

32 0.795 8.625

N1, N2, N3=600 13.403 16 1.176 11.397

32 1.228 10.914

BT rhs.f2p 1 N1, N2, N3=200 2.87 16 0.892 3.217

32 1.112 2.581

N1, N2, N3=300 10.598 16 2.936 3.610

32 3.549 2.986

UA diffuse.f2p 5 N1, N2, N3, N4=100 0.444 16 0.209 2.124

32 0.187 2.374

N1, N2, N3, N4=200 10.875 16 3.85 2.825

32 3.556 3.058

UA setup.f2p 16 N1, N2, N3=1000 1.325 16 0.662 2.002

32 0.445 2.978

N1, N2, N3=1100 15.285 16 0.976 15.661

32 0.746 20.489

UA transfer.f2p 4 N1, N2, N3=700 5.541 16 0.742 7.468

32 0.745 7.438

N1, N2, N3=1000 22.751 16 1.501 15.157

32 1.499 15.177

Experiments were carried out for 4 CPUs. Analysing the data in Table 1, we
may conclude that for all parallel tiled loops, positive speed-up is achieved. It
depends on the problem size defined by loop index upper bounds and a tile size.
It is worth to note that for the FT auxfnct.f2p 2 and UA transfer 4 programs,
super-linear speed-up is achieved, i.e., the speed-up is greater than 4 – the num-
ber of CPUs used. This phenomenon could be explained by the fact that the
data size required by the original program is greater than the cache size when
executed sequentially, but could fit nicely in each available cache when executed
in parallel, i.e., due to increasing program locality.

8 Related Work

There has been a considerable amount of research into tiling demonstrating
how to aggregate a set of loop iterations into tiles with each tile as an atomic
macro statement, starting with pioneer paper [10] and those presenting advanced
techniques [6,9,19].

One of the most advanced reordering transformation frameworks is based
on the polyhedral model. Let us remind that “Restructuring programs using
the polyhedral model is a three steps framework. First, the Program Analysis
phase aims at translating high level codes to their polyhedral representation and
to provide data dependence analysis based on this representation. Second, some
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optimizing or parallelizing algorithm uses the analysis to restructure the programs
in the polyhedral model. This is the Program Transformation step. Lastly, the
Code Generation step returns back from the polyhedral representation to a high
level program” [3].

All above three steps are available in the approach presented in this paper.
But there exists the following difference in step 2: in the polyhedral model “a
(sequence of) program transformation(s) is represented by a set of affine func-
tions, one for each statement” [3] while the presented approach does not find
and use any affine function. It applies the transitive closure of a program depen-
dence graph to specific subspaces of the source loop iteration space. At this
point of view the program transformation step is rather within the Iteration
Space Slicing Framework introduced by Pugh and Rosser [15], where the key
step is calculating the transitive closure of a program dependence graph.

Papers [10,18] are a seminal work presenting the theory of tiling techniques
based on affine transformations. These papers present techniques consisting of
two steps: they first transform the original loop into a fully permutable loop nest,
then transform the fully permutable loop nest into tiled code. Loop nests are fully
permutable if they can be permuted arbitrarily without altering the semantics
of the source program. If a loop nest is fully permutable, it is sufficient to apply
a tiling transformation to this loop nest [18].

Papers [2,5] demonstrate how we can extract coarse- and fine-grained par-
allelism applying different Iteration Space Slicing algorithms, however they do
not consider any tiling transformation.

Wonnacott and Strout review implemented and proposed techniques for tiling
dense array codes in an attempt to determine whether or not the techniques
permit on scalability. They write [19]: “No implementation was ever released for
iteration space slicing”. This permits us to state that TRACO, which implements
the algorithm, presented in this paper, is the first compiler where Iteration Space
Slicing is applied to produce parallel tiled code based on the free-schedule of tiles.

9 Conclusion

In this paper, we presented a novel approach based on a combination of the
Polyhedral Model and the Iteration Space Slicing framework. It allows gener-
ation of parallel tiled codes which demonstrate significant speed-up on shared
memory machines with multi-core processors. The usage of the free schedule
of tiles instead of that of loop nest statement instances allows us to adjust the
parallelism grain-size to match the inter-processor communication capabilities of
the target architecture. In the future, we plan to present an extended approach
allowing for tiling with parallelepiped original tiles.
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Abstract. The aim of this paper is to show that well known SPARSKIT
SpMV routines for Ellpack-Itpack and Jagged Diagonal formats can be
easily and successfully adapted to a hybrid GPU-accelerated computer
environment using OpenACC. We formulate general guidelines for sim-
ple steps that should be done to transform source codes with irregu-
lar data access into efficient OpenACC programs. We also advise how
to improve the performance of such programs by tuning data struc-
tures to utilize hardware properties of GPUs. Numerical experiments
show that our accelerated versions of SPARSKIT SpMV routines achieve
the performance comparable with the performance of the corresponding
CUSPARSE routines optimized by NVIDIA.

Keywords: Sparse matrices · SpMV · GPUs · OpenACC · CUSPARSE

1 Introduction

Recently, GPU-accelerated computer architectures have become very attractive
for achieving high performance execution of scientific applications at low costs
[1,2], especially for linear algebra computations [3,4]. Unfortunately, the process
of adapting existing software to such new architectures can be difficult. Compute
Unified Device Architecture (CUDA) programming interface can be used only
for NVIDIA cards, while the use of OpenCL (Open Computing Language [5])
leads to a substantial increase of software complexity.

SPARSKIT is a well known package tool for manipulating and working with
sparse matrices [6]. It is a very good example of widely used valuable software
packages written in Fortran. Unfortunately, it does not utilize modern computer
architectures, especially GPU-accelerated multicore machines. The new imple-
mentation of the most important SPARSKIT routines for NVIDIA GPUs has
been presented in [7].

Sparse matrix-vector product (SpMV) is a central part of many numeri-
cal algorithms [6,8]. There are a lot of papers presenting rather sophisticated
techniques for developing SpMV routines that utilize the underlying hardware
of GPU-accelerated computers [9–13]. Unfortunately, these methods are rather
complicated and usually machine-dependent. However, the results presented
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 143–152, 2016.
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in [14] show that simple SPARSKIT SpMV routines using CSR (Compressed
Sparse Row) format [6] can be easily and efficiently adapted to modern multi-
core CPU-based architectures. Loops in source codes can be easily parallelized
using OpenMP directives [15,16], while the rest of the work can be done by a
compiler. Such parallelized SpMV routines achieve the performance comparable
with the performance of the SpMV routines available in libraries optimized by
hardware vendors (i.e. Intel MKL).

OpenACC is a new standard for accelerated computing [17]. It offers compiler
directives for offloading C/C++ and Fortran programs from host to attached
accelerator devices. Such simple directives allow to mark regions of source code
for automatic acceleration in a vendor-independent manner [18]. However, some-
times it is necessary to apply some high-level transformations of source codes
to achieve reasonable performance [19–21]. Paper [22] shows attempts to apply
OpenACC for accelerating SpMV. However, the authors consider only some mod-
ifications of the CSR format and apply other GPU-specific optimizations (just
like communication hiding).

In this paper we show that well known SPARSKIT SpMV routines for
Ellpack-Itpack (ELL) and Jagged Diagonal (JAD) formats [6] can be easily and
successfully adapted to a hybrid GPU-accelerated computer environment using
OpenACC. We also advise how to improve the performance of such programs
by tuning data structures to utilize hardware properties of GPUs applying some
high-level transformation of the source code. The paper is structured as fol-
lows. Section 2 describes ELL and JAD – two formats which are suitable for
GPU-accelerated computations. We show how to apply some basic source code
transformations to obtain accelerated versions of SpMV routines. In Sect. 3 we
present pJAD - a new format, which allows to outperform SpMV routine for
JAD. Section 4 discusses the results of experiments performed for a set of test
matrices. We also compare the performance of our OpenACC-accelerated rou-
tines with the performance of SpMV for the HYB (ELL/COO) format [23].
Finally, in Sect. 5 we formulate general guidelines for simple steps that should
be done to transform irregular source codes into OpenACC programs.

2 SPARSKIT and SpMV Routines

ELL format for sparse matrices assumes the fixed-length rows [24]. A sparse
matrix with n rows and at most ncol nonzero elements per row is stored column-
wise in two dense arrays of dimension n× ncol (Fig. 1). The first array contains
the values of the nonzero elements, while the second one contains the corre-
sponding column indices.

JAD format removes the assumption on the fixed-length rows [7]. Rows of
a matrix are sorted in non-increasing order of the number of nonzero elements
per row (Fig. 2). The matrix is stored in three arrays. The first array a contains
nonzero elements of the matrix (i.e. jagged diagonals), while the second one (i.e.
ja) contains column indices of all nonzeros. Finally, the array ia contains the
beginning position of each jagged diagonal. The number of jagged diagonals is
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Fig. 1. ELL format for sparse matrices

Fig. 2. JAD format for sparse matrices

stored in jdiag. Optionally, we can consider just another array rlen containing
lengths of all rows [11]. Elements of this array can be easily calculated (even in
parallel) using the following formula

rlen(i) = |{j : 1 ≤ j ≤ jdiag ∧ ia(j + 1) − ia(j) ≥ i}|, i = 1, . . . , n. (1)

Figure 3 shows Fortran subroutines which implement SpMV for ELL and JAD.
Note that SPARSKIT subroutines amuxe and amuxj were originally written in
Fortran 77, but here we present their equivalents written in Fortran 90.

OpenACC provides the parallel construct that launches gangs that will
execute in parallel. Gangs may support multiple workers that execute in vector
or SIMD mode [17]. This standard also provides several constructs that can be
used to specify the scope of data in accelerated parallel regions. It should be
noticed that proper data placement and carefully planned data transfers can be
crucial for achieving reasonable performance of accelerated programs [19].

In our OpenACC program, a GPU is responsible for performing SpMV while
the host program has to read data and initialize computations. The acceler-
ated subroutines accamuxe and accamuxj are presented in Fig. 4. From the
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Fig. 3. SPARSKIT SpMV for ELL (left) and JAD (right)

developer’s point of view, the OpenACC parallel construct together with
vector length should be used to vectorize loops. In case of amuxe, the sim-
plest way to accelerate SpMV is to vectorize the loops 6–8 and 10–12. Then,
the loop 9–13 would repeat generated kernel ncol times. However, it is better
to apply the loop exchange. In accamuxe, the outermost loop 9–16 is vectorized.
Similarly we obtain accamuxj. In case of this routine we can observe that the
loop 11–19 works on rows, thus we have to provide the length of each row in
rlen. Note that to avoid unnecessary transfers, we use the clause present to
specify that the data already exist in the device memory.

Fig. 4. Accelerated versions of SpMV for ELL (left) and JAD (right)
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3 Optimizing SpMV Using pJAD Format

Our version of SpMV for JAD can be further optimized. We can improve memory
access by aligning (padding) columns of the arrays a and ja. Thus, in each
column we add several zero elements and each column’s length should be a
multiple of a given bsize. Then, each block of threads will have to work on
rows of the same length. The number of elements in a and ja will be increased
to the size which is bounded by nnz + jdiag · (bsize − 1), where nnz is the
number of nonzero elements (Fig. 5). This modified format can be called pJAD
(i.e. padded JAD format). Similar modifications have been introduced in [25].
However, Kreutzer et al. consider bsize equal to the length of half-warp, what
is specific for NVIDIA GPUs. They also assume that threads with a block can
be responsible for processing various amount of data. Figure 6 shows the source
code of accpamuxj. Note that the array brlen contains the length of each block
of rows of a given size bsize.

Fig. 5. pJAD format and its data structures

4 Results of Experiments

Our OpenACC implementation of the SpMV routines has been tested on a com-
puter with two Intel Xeon X5650 (6 cores each with hyper- threading, 2.67 GHz,
48 GB RAM) and two NVIDIA Tesla M2050 (448 cores, 3 GB GDDR5 RAM
with ECC off), running under Linux under with NVIDIA CUDA Toolkit version
6.5 and PGI Accelerated Server version 15.4, which supports OpenACC [26].
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Fig. 6. Accelerated SpMV routine for pJAD format

Table 1 summarizes the results obtained for a set of test matrices chosen from
Matrix Market [27] and University of Florida sparse matrix collection [28].

The set contains various matrices with different number of rows and nonzero
elements. The largest cage15 has over 5 · 106 rows and almost 108 nonzero ele-
ments. For each matrix we provide the number of rows (columns), number of
nonzero entries, average number of nonzero entries per row, maximum number of
nonzero elements within a row. We also show the performance (in GFLOPS) of
accelerated versions of SpMV for ELL, JAD and pJAD. The last column shows
the performance of CUSPARSE SpMV routine using HYB (i.e. hybrid format
[23]). In Table 1, the best performance for each matrix is underlined.

The HYB sparse storage format is composed of a regular part stored in ELL
and an irregular part stored in COO. CUSPARSE conversion operation from
CSR to HYB partitions a given sparse matrix into the regular and irregular parts
automatically or according to developer-specified criteria [23]. For our tests, we
have chosen the first option.

We can observe that for almost all matrices pJAD format achieves better
performance than ELL and JAD. ELL outperforms pJAD only for matrices
cry1000, af23560, majorbasis, ecology2, atmosmodl, where all rows have almost
the same number of nonzero elements (i.e. nnz/n ≈ maxnz) or where the number
of nonzero elements is rather big in comparison with the number of rows (i.e.
n � nnz for nd24k). It should be noticed that for some matrices ELL exceeds
the memory capacity of Tesla M2050 (pre2, torso1, inline 1 ). The performance
of pJAD is a little bit worse than the performance of HYB, because pJAD
format requires re-permutation of the result’s entries. For some matrices with
nnz/n � maxnz, pJAD outperforms HYB (i.e. af23560, bcsstk36, bbmat, cfd1,
torso1, ldoor). Note that for cage15, CUSPARSE routine for conversion from
CSR to HYB has failed because memory capacity has been exceeded.
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Table 1. Results of experiments for a set of test matrices

Matrix n nnz nnz/n maxnz ELL JAD pJAD HYB

cry10000 10000 49699 5.0 5 3.99 3.79 3.37 2.11

poisson3Da 13514 352762 26.1 110 2.14 3.40 3.54 4.41

af23560 23560 484256 20.6 21 12.03 11.88 11.94 9.05

g7jac140 41490 565956 13.6 153 1.21 3.23 3.39 4.90

fidapm37 9152 765944 83.7 255 4.97 6.19 6.78 6.84

bcsstk36 23052 1143140 49.6 178 4.34 11.64 13.52 9.21

majorbasis 160000 1750416 10.9 11 15.20 13.78 13.80 14.01

bbmat 38744 1771722 45.7 126 6.03 7.73 8.88 7.34

cfd1 70656 1828364 25.9 33 12.84 12.77 13.21 12.83

ASIC 680ks 682712 2329176 3.4 210 0.28 4.32 4.46 7.54

FEM 3D thermal2 147900 3489300 23.6 27 13.09 13.13 14.95 14.98

parabolic fem 525825 3674625 7.0 7 9.80 9.33 9.83 11.58

ecology2 999999 4995991 5.0 5 13.83 12.00 12.84 15.76

pre2 659033 5959282 9.0 628 — 6.59 7.32 8.74

boneS01 127224 6715152 52.8 81 9.96 9.51 11.43 12.58

torso1 116158 8516500 73.3 3263 — 10.70 11.73 6.96

thermal2 1228045 8580313 7.0 11 5.92 4.80 5.03 8.65

atmosmodl 1489752 10319760 6.9 7 13.67 12.42 12.68 15.55

bmw3 2 227362 11288630 49.7 336 2.16 11.58 14.17 16.08

af shell8 504855 17588875 34.8 40 13.56 14.69 17.59 19.48

cage14 1505785 27130349 18.0 41 6.40 9.48 11.05 12.79

nd24k 72000 28715634 398.8 520 11.46 4.23 4.52 12.52

inline 1 503712 36816342 73.1 843 — 9.89 11.74 12.26

ldoor 952203 46522475 48.9 77 9.05 12.52 15.43 14.68

cage15 5154859 99199551 19.2 47 5.86 9.12 10.49 —

5 Conclusions and Future Work

We have shown that well known SPARSKIT SpMV routines for ELL and JAD
formats can be easily and successfully adapted to a hybrid GPU-accelerated
computer environment using OpenACC. Such routines achieve reasonable per-
formance. Further improvements can be obtained by introducing the new data
formats for sparse matrices to utilize specific GPU hardware properties. Numer-
ical experiments have justified that the performance of our optimized SpMV
routines is comparable with the performance of the routine provided by the
vendor. We have also discussed when the use of considered formats would be
profitable. We believe the use of OpenACC and accelerated Fortran routines
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can be attractive for people who prefer to develop applications using high-level
directive programming techniques instead of complicated CUSPARSE API.

The general guidelines for semiautomatic acceleration of irregular codes using
OpenACC can be summarized as follows:

1. Define regions where data should exist on accelerators. Try to reduce transfers
between host and accelerators.

2. Try to vectorize outermost loops within your code. Vectorized loops should
have sufficient computational intensity, namely the ratio of the number of
computational operations to the number of memory operations should be
greater than one.

3. If necessary, apply loop exchange and inform the compiler that loops are safe
to parallelize using the independent clause in OpenACC loop constructs.

4. Try to keep threads within gangs (or blocks in terms of CUDA) working on
the same amount of data.

5. The best performance occurs when coalesced memory access takes place
[29,30]. Threads within gangs should operate on contiguous data blocks.

6. Tune your data structures by aligning data in arrays. It can be done by data
structure padding.

In the future, we plan to implement some other important routines from
SPARSKIT, especially well-known solvers for sparse systems of linear equations.
We also plan to implement multi-GPU support using OpenACC and OpenMP
[31]. The full package with the software will soon be available for the community.
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2 ICAMS, Ruhr-University Bochum, 44801 Bochum, Germany
g.sutmann@fz-juelich.de

Abstract. The construction of neighbour lists based on the linked cell
method is investigated in the context of particle simulation methods
within the OpenMP shared memory programming model. Various imple-
mentations are studied which avoid memory collisions and race condi-
tions. Performance and optimisation considerations are made along with
run time behaviour and memory requirements. Performance models are
proposed, which reproduce the measured runtime behaviour and which
provide insight into the performance dependence on specific system para-
meters. Benchmarks are performed for different implementations on a
number of multi-core architectures and thread numbers up to 240 are
considered on the Xeon Phi architecture in the SMT mode, so that per-
formance can be studied for a large number of threads working concur-
rently on the construction of linked cells on a shared memory partition.

1 Introduction

Particle simulation methods, e.g. Molecular Dynamics (MD) [4], Smoothed Parti-
cle Hydrodynamics [6] or element free methods [7], are nowadays applied to large
scale systems, composed of millions or even billions of particles. For systems,
composed of particles interacting via short range potentials or local propagation
rules large scale simulations can be executed on massively parallel computers
applying domain decomposition schemes [8,10]. This reduces the calculation of
interactions to finite spatial regions administrated by either single CPUs, nodes
or many-core accelerators. For short range interactions it is usually sufficient
to communicate with adjacent processors so that the total number of commu-
nications is constant. Domain decomposition is therefore a suitable method to
design and implement algorithms which scale to a large number of processors.
However, scaling starts to saturate if the surface area of a domain and the related
effort in communication of data between neighbour processors become as time
consuming as the work within the volume part of a domain. This usually occurs
for strong scaling problems, where the number of processors is increased for a
given problem size.

For programming models, based on a distributed memory paradigm, like
MPI. a compute node which is composed of a number of cores of O(10) or
c© Springer International Publishing Switzerland 2016
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even O(100) administers the same number of computational domains, which all
have to communicate explicitly their data. Although the data exchange between
cores which have access to the same memory can be implemented efficiently, the
ratio of total surface area to total domain volume increases proportionally with
the number of subdivisions of cartesian directions. Therefore, in order to avoid
explicit communication between domains administered on the same compute
node, hybrid programming models are an attractive alternative. While the num-
ber of domains per node is reduced to one and communication between compute
nodes is performed by MPI, a shared memory programming model like OpenMP
[1] can be applied to exploit multi-core parallelism on the nodes. Until now
there it is no clear decision, whether pure distributed memory models like MPI
or a hybrid implementation like MPI plus OpenMP are most successful. How-
ever, modern multi-core architectures implement simultaneous multi-threading
(SMT) features, which allow to allocate more threads than available compute
cores while still benefitting from an efficiency gain due to parallel pipeline exe-
cution on the cores, which makes hybrid programming models indispensable for
exploiting maximum performance offered by modern computers.

To calculate interactions between particles most efficiently and to avoid a
quadratical complexity with the number of degrees of freedom, neighbour list
techniques have been developed which reduce the evaluation between particles
to linear complexity. It is the construction of neighbour lists which can be a bot-
tleneck in the parallel performance in a hybrid scheme or a single node OpenMP
implementation. One reason is that for every particle i located on the proces-
sor the local environment of particles j is stored into a data structure, which
is later on used for a fast evaluation of interactions. Since particles most often
perform mutual movements and undergo diffusion, the location in physical space
gets uncorrelated with the position in memory over time, and consequently race
conditions can occur when different threads access the memory locations in the
list arrays (as it is the case for linked-cell lists [9]) or have to respect sequential
ordering (as it is for Verlet lists [11]).

There is a number of works, focusing on either parallel sorting under OpenMP
[12] or the analysis and performance of linked cell methods [9,11]. However, to
our best knowledge there is no in depth discussion about the implementation
and performance analysis of linked cell methods under OpenMP.

In the following we will consider the implementation of linked-cell lists in
more detail and especially compare different implementations for a shared mem-
ory programming model based on OpenMP with a special focus on the avoidance
of race conditions due to simultaneous memory access by different threads at
the same time. We will consider implementations based on OpenMP pragmas
critical and atomic, which ensure non-conflicting memory access for execution
blocks or single statements but which often lead to a quasi-serialisation of pro-
gram execution or might even end in wrong execution sequences, as will be dis-
cussed later on. As an alternative multi-array implementations, lock statements
and their hybrid implementation are studied, which provide a large improvement
of scalability up to 240 threads/node. Benchmarks are conducted on a number
of architectures are tested in order to check general trends of the findings.
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2 Linked-Cell Lists

2.1 Method

When the range of interaction between particles is limited in space by a dis-
tance Rc, called the cutoff radius, a common sorting method is to subdivide
the physical space into equal cells of length Lc ≥ Rc. This ensures that a
particle i, located in a cell, which is characterised by a cartesian index triplet
{ix, iy, iz} has an effective search space for interaction partners in the index
range {ix ± 1, iy ± 1, iz ± 1}, which gives a maximum of 27 cells to be accessed.
If symmetry considerations between particle interactions can be made (like
Newton’s principle of action-counteraction in MD simulations), the search space
can be further reduced to the local cell, where a particle is located plus 13
neighbour cells. In principle one can have a larger number of sub-cells for
each particle in order to approximate better the spherical shape of the inter-
action range. However, if the size of a cell is chosen too small, the num-
ber of cells, located within the search volume around a particle i, increases
and might exceed the number of particles, which actually interact with i,
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Fig. 1. Schematic of linked-
cell list construction. Arrows
indicate how particles are
linked together. The head-
array stores the index of the
latest sorted particle in the
cell.

so that during a search a large number of cells
is empty resulting in both an unfavourable com-
putational and a memory access overhead, which
eventually slows down the simulation. In practical
cases, most often the cell size is in the order of
the cutoff radius, whereas an optimal size of cells
was found in different studies [11] to be close to
Rc/2. The main procedure in the linked-cell list
consists in sorting the particles into cells in an
ordered way (cmp. Fig. 1). Algorithm 1 shows a
pseudo-code for the procedure, which also demon-
strates that the complexity of the method is O(N).
The array of particles is scanned in an ordered
way (although in principle also arbitrary sequences
would be allowed) and the first particle which is
sorted into the cell links to the null-index (or any other index, which is outside
the index space of the particle set). Each following particle in the same cell is
linked then to the index of the particle sorted last into the same cell.

2.2 Race Conditions

Linked-cell lists are efficient for storing particle geometric neighbourhood infor-
mation in memory which grows linearly with particle number. For the imple-
mentation with OpenMP the problem of race conditions arises, if no natural
sorting of the particles is already in place. Assuming the general case, where
particles with indices i ∈ {1, N} are distributed randomly over a volume Ω,
where the linked-cell list is applied. If the the loop over particles is parallelized
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Algorithm 1. Serial linked-cell algorithm
1: head(1:nc) ← 0 � initialize cell head
2: for ( all particles i ) do � run over all particles in system or domain
3: ic ← compute ic(r(i), Lc) � compute cell index from coordinates r and cell

length Lc

4: list(i) ← head(ic) � update particle list with current entry point of computed
cell

5: head(ic) ← i � update entry point of computed cell to index of actual particle
6: end for

with OpenMP, each thread operates on a different chunk of particles with con-
tiguous index ranges. In the general case the particles are not localised within
a defined sub-volume and in general for active volumes of distinct threads p
and q it is Ωp

⋂
Ωq �= ∅. This implies that distinct threads partially operate on

the same volume elements. In the case where two threads treat particles i and
j which are to be sorted into the same linked-cell at the same time, there is
high risk for a race-condition and the algorithm gets error prone. The risk for
race conditions gets larger with increasing global or local density. Sorting a large
number of particles into the same cell, the collision probability increases.

The probability for race-conditions, prc, can be quantified in the following
way. Let N be the number of particles, which are simulated on nth threads and
nc the number of cells into which the system is subdivided.

If a given particle, ithr
, administrated by thread r is considered, then the

probability for another particle iths
, administrated by thread s to be both in the

same cell, ck, is given by p(ithr
, iths

∈ Ωck) = 1/nc.
Furthermore, the probability that r �= s, i.e. that both particles are on dif-

ferent threads, is p(r �= s) = (nth − 1)/nth and therefore, the probability for a
race condition of a particle pair is given by

prc = p(ithr
, iths

∈ Ωck) × p(r �= s) (1)

=
1
nc

nth − 1
nth

(2)

These considerations are made for a particle pair and therefore on average one
has to consider N/nth of these operations in every time step for every thread.
Since two particles on different threads were considered, the total number of
counts has to be multiplied by nth/2. These considerations provide the num-
ber of particle pairs on different threads in a given loop iteration. If there are
ng statements, accessing global memory out of nl statements in the loop, then
the number of threads being located coincidently at global memory statements
is ng/nl (neglecting memory latencies and complexity of operations). There-
fore, the total number of memory collisions in each time step can be estimated
approximately as



Multi-threaded Construction of Neighbour Lists 157

nrc = prc × N

nth
× nth

2
× ng

nl
(3)

=
1
nc

nth − 1
nth

× nth

2
× ng

nl
(4)

=
1
2

N

nc

ng

nl
(nth − 1) (5)

This result shows that the number of race conditions follows a simple depen-
dence on N,nc and nth. In order to test this theoretical prediction with mea-
surements, test scenarios were conducted to check the number of race conditions,
which are to be expected in realistic scenarios. To this aim, systems were defined
with number of particles N ∈ {103, 108} for different number of cells, into which
the particles were sorted via the linked-cell method. The number of cells was
modified according to nc ∈ {103, 1003}. The number of threads was varied in
the range nth ∈ {1, 240}, where for the case nth = 1, no race conditions should
appear, which therefore served as a control run. Race conditions were identi-
fied in the following way: if two particles located in the same cell but managed
on different threads are treated at the same time and therefore threads try to
access the same memory location at the same time, the information of one par-
ticle is overwritten and therefore this particle is not properly sorted into the
linked-cell structure. If the resulting list is read in a second step and particle
information is reconstructed a number of particles is not stored in the list due to
race-conditions. Therefore, the number of lost particles is a measure for the num-
ber of race-conditions. We note that the probabilistic model, suggested below is
a lower limit for the number of race conditions since multiple memory collisions
or other side effects due to collisions are not taken into account. In a comparison
with the measured numbers for race conditions, we find a very good agreement
between model and numerical experiment (cmp. Fig. 2. The theoretical model
can be understood as an upper limit for the number of race conditions, which is
in very good agreement with measurements.

As a consequence of the predictions and measurements, correctness of opera-
tions has to be ensured by either synchronisation operations between the threads
or by ensuring fully asynchronous or disjunct operations of threads on the mem-
ory. Therefore, an implementation of the linked-cell algorithm under OpenMP
programming model has to respect the fact that multiple threads can work on
overlapping volume elements. The avoidance of risk can be achieved either by
data structures or OpenMP commands or the combination of both. In the fol-
lowing we will implement and compare the following scenarios: application of
array copies, plain use of OpenMP locks, locks with caches in synchronous and
asynchronous mode and the combination of locks and array copies.

3 Parallel Implementations

3.1 OpenMP with Critical and Atomic

The constructs, offered by OpenMP to access memory exclusively by one thread,
are the critical environment and the atomic and lock statements. We have
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Fig. 2. Number of race conditions for the linked cell algorithm as a function of num-
ber of cells, nc, and number of threads, nth, when no synchronisation steps between
threads are considered. Compared are measurements on JUQUEEN with the proba-
bilistic model, Eq. 5 for N = 104 (left) and N = 106 (right).

implemented all three of them but have found that only the lock-statement
offers an acceptable solution to achieve both avoidance of race conditions and
scalability. The difference between the three constructs is obvious: critical is the
strongest statement to enforce memory thread-safety. The whole block which is
inside the critical region is executed exclusively on a single thread, blocking all
the other threads to avoid possible race conditions. If a loop is protected by a
critical statement this implies a serialisation and has the obvious consequence
that the implementation is not scalable. Even worse, the overhead by adminis-
trating the critical regions by the threads adds on top and results, in general, in
a longer execution time than running on a single thread without critical.

Atomic ensures exclusive access of a memory location on a single thread.
Compared to the serial implementation this mainly involves the introduction
of atomic statements “#pragma omp atomic write” before the head- and list-
items in lines 1, 5 and 1, 4 in Algorithm1, respectively. However, if there are
multiple data accesses in a loop which depend on each other, a finite probability
exists to get asynchronous execution between the threads within a loop. With
respect to the serial version of the linked cell algorithm (Algorithm 1) this occurs
when one thread is updating the head item (cmp. Algorithms 1 and 5) immedi-
ately before an other thread is mapping the list item onto head. If particles are
located on different threads but geometrically located within the same cell, this
will result in mismatches of list-entries where finally particles are lost from the
list. Depending on the parameters of the simulation setup (number of particles
N , number of cells nc and number of threads nth) the number of such collisions
does vary but in every tested simulation scenario we found that a small per-
centage of particles was lost from the system due to race conditions, which, as a
consequence, declassifies this method from practical use for the construction of
linked cell list.

3.2 Copies of Arrays

The safest way to avoid race conditions on a multi-threaded architecture is to
assure that every thread is operating on its own memory space. Since the linked
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cell algorithm has the dual characteristics of locality in cell-index space but non-
locality in particle-index space, the cell array has to be copied for each thread
to ensure that an OpenMP paralleled do-loop over particles does not collide in
memory with another thread if particle positions fall into the same cell. For
small number of cells and threads this method might be still appropriate and
manageable. But for large number of threads the danger exists that the allocation
of the cell structure consumes a big portion of memory space potentially leading
to memory problems and consequently to limitations of system size. Compared
to the serial implementation, the copied version requires a minor extension of
the algorithm (cmp. Algorithm 2). Since information is now stored for the same
cell on different threads, this information has to be combined in a final step,
since for further processing of the linked cell scheme (e.g. in the force routine),
parallelisation is to be explored on a cell level, where the number of cells is
distributed with its complete information over the threads. Therefore, not only
the last particle found within a cell on a thread has to be stored (t last(th)),
but also the first one (t first(th)), in order to efficiently concatenate the list
structure without running over all list entries. Considering two threads with
information of a given cell, ic. The particles are linked together on each thread via
the list-array. If, on any thread, list(i) → 0 points to zero, the list is finished
on this thread. A concatenation of information from two threads into a new array
can be easily performed via two operations: (1) head(ic) ← t last(th2), (2)
list(t first(th2)) ← t last(th1). Since the first operation has only to be
performed once for each cell, this implies that if information about particles in
a given cell is distributed over nth threads, (nth +1) operations are necessary to
concatenate the linked cell structure for every cell. For large number of cells this
does not only imply a memory bottleneck for the nth copies of the cell structure,
but also (nth +1)×nc operations are necessary to concatenate the list array. As
shown in Algorithm2, this operation can be parallelised over cells, so that every
thread has to perform (nth + 1)nc/nth operations.

3.3 OpenMP Locks

Extension of the serial linked cell algorithm invokes the extension via set-
ting “OMP SET LOCK(locks(ic))” before statement Algorithm 1 line 4 and
“OMP UNSET LOCK(locks(ic))” after statement Algorithm 1 line 5. The array
locks takes care on the simultaneously locking of ic if it is a multidimensional
array. To model the performance of the locked linked-cell implementation, one
can consider the following steps. The creation of locks will first of all induce
an overhead, since a memory location has to be exclusively tagged by a thread
and all other threads have to check whether a memory address, which is to be
accessed by a given thread is locked or free to write. This locking and unlocking
of addresses is measured as τl. Since the loop runs over all particles, the total
overhead time for the lock-operation is given as Tl = Nτl. Compared to the serial
execution time Ts = Nτs, this will lead to an execution time on a single thread
of TL(1) = Tl+Ts or on nth threads as TL(nth) = (Tl+Ts)/nth = (1+α)Ts/nth,
where α = τl/τs was introduced. On the other hand it was shown before that the
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Algorithm 2. Copied linked-cell algorithm
1: t head(1:nc) ← 0; t last(1:nc) ← 0 � initialize arrays for first and last particle in

a cell on each thread
2: #pragma OMP PARALLEL PRIVATE(i,ic,tid)
3: tid ← OMP GET THREAD NUM()
4: for ( all particles i on tid ) do � run over all particles administrated by thread tid

5: ic ← compute ic(r(i), Lc) � compute cell index from coordinates r and cell
length Lc

6: list(i) ← t head(tid, ic) � map cell entry index to list
7: if ( t head(tid, ic) = 0 ) t last(tid, ic) ← i � store initial particle of the cell in

t last
8: t head(tid, ic) ← i � over write cell entry index with current particle index
9: end for

10: #pragma OMP END PARALLEL DO
11:
12: #pragma OMP PARALLEL DO PRIVATE(ic,tid,sid,last)
13: for ( all cells ic ) do � combine information from all threads
14: for ( all threads nth − 1 : 0 : −1 ) do � run over all particles in reverse order

from nth − 1 to 0
15: if ( t head(tid, ic) �= 0 ) then � if cell information is not empty on thread

tid
16: head(ic) ← t head(tid, ic)
17: last ← t last(tid, ic)
18: for ( sid ← tid − 1 : 0 : −1 ) do � concatenate lists from different

threads
19: if ( t head(sid, ic) �= 0 ) then � if cell information is not empty on

thread sid
20: list(last) ← t head(sid, ic) � end of list is updated with head of

thread sid
21: last ← t last(sid, ic) � set pointer to the last element of cell ic
22: end if
23: end for
24: exit thread loop
25: end if
26: end for
27: end for
28: #pragma OMP END PARALLEL DO

number of race conditions, nrc (Eq. 5). as function of threads, cells and particles
can be considerable. If we consider the effect of a lock to prevent the occurrence
of race conditions, we can assume in a first approximation that this is the num-
ber of threads which will be cumulated in the locks and induce some additional
waiting time until the locks are released. Since the access time of a thread on a
locked memory location may occur at any instance during the locked state, the
average waiting time for a thread will be τl/2. Therefore, the performance and
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Fig. 3. Performance on the Xeon Phi for synchronisation between threads with locks.
Compared are results for measured data with the probabilistic model, Eq. 7, for
N = 104 (left) and N = 106 (right).

scalability of the locked version of linked cell list can be expressed as

TL(N,nc, nth|α) = N
τl + τs

nth
+ nrc

τl
2

(6)

= Nτs

(
1 + α

nth
+

α

4
nth − 1

nc

)
(7)

It is obvious that the first term in Eq. 7 presents a scalable contribution which is
inversely proportional to the number of threads. However, the second term will
contribute to a saturation, which is mainly dependent on the number of cells. As
we have seen before a high collision probability in memory is given, when many
particles are located in a cell operated by a large number of threads. Therefore,
from this representation it might be even expected that the performance can
be slowed down with increasing number of threads. In Fig. 3 we compare per-
formance results for the lock variant of the linked cell algorithm on a Xeon-Phi
processor with 60 cores, which allows according to the four-way SMT usage of
the cores the application of 240 threads. The comparison is made for particle
systems of N = 104 and 106 particles. Although not perfect, the main charac-
teristics of the performance model are found for the Xeon-Phi, especially the
slowing down behaviour in performance for large number of threads and small
number of cells. Furthermore, it is seen that the qualitative behaviour for the
cases is well reproduced and that the results differ mainly throughout the scal-
ing factor Nτs introducing the dependence on the number of particles. For large
number of threads and large number of cells a deviation gets more apparent for
the case N = 104, where the execution time is increased relative to the model
prediction. We attribute this behaviour to memory access, where random mem-
ory addresses (distribution of particle indices) has a relatively larger scatter on
the same size of grid cells and thread numbers.

3.4 Combination of Copies and Locks

Buffered copy-lock: As was shown before, setting and unsetting the lock intro-
duces a considerable overhead to the execution time. Therefore, reducing the
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number of locks is desirable, which can be achieved by an extension of the sim-
ple copy-lock version. Each thread allocates a private memory segment of size
nb, which is smaller than the complete replication of a cell structure and which
serves as a buffer to store information of the particle index and the correspond-
ing cell, where it is located. To reduce memory collision probability between
threads during storage of buffer information, the global grid structure is copied
ncp times. If the buffer is filled, the thread sets a lock on one of these copies of
the grid array, which is not locked by another thread, constructs the linked list
information from the buffer and continues with filling the buffer anew. This is
repeated, until the particles, attributed to the thread are fully treated. The free
parameters, which have to be specified are the size of the buffer and the num-
ber of copies of the grid structure. When all threads have finished, the number
of grid copies are concatenated to a single linked cell structure, similar to the
copy-variant.

Fig. 4. Scalability comparison between JUQUEEN (left) and Xeon Phi (right) for
different test scenarios for variations in particle number and densities, ρ = N/nc in
the system. From top to bottom: (i) N = 105, nc = 125000, ρ = 0.8; (ii) N = 106,
nc = 125000, ρ = 8. Ordinates of JUQUEEN and Xeon Phi have the same range to
allow direct comparison.
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4 Discussion

We have studied the scalability of the linked cell method on two different archi-
tectures, the IBM BlueGene/Q (JUQUEEN [2]) with 16 cores/node and a Xeon
Phi 5110P with 60 compute cores, which is mounted to an Intel Xeon E5-2650
CPU [3]. Starting point of the study was for both machines a sequential version
of the linked-cell algorithm, Algorithm1. One goal of the work was to test the
scalability of the algorithm in a multi-core environment where many threads
concurrently work on the same problem accessing the same shared memory.
Employing a 4-way SMT mode on each architecture, comparisons could be made
on JUQUEEN for up to 64 threads (16 cores/node) and on Xeon Phi for up to
240 threads. The algorithmic problem in the study shows up in the construction
of the lists, where an index ordered array in memory is accessed, i.e. particle
positions, but where results of the sorting are stored, in general with random
memory access. Depending on the size of the array, it is not kept in cache and
therefore a risk of random memory accesses is given leading easily to mem-
ory bandwidth limited performance (memory bandwidth is 6.4 GB/s/core on
JUQUEEN and 320 GB/s in total on Xeon Phi). In addition there is an indi-
rect memory addressing,characteristic for linked cell algorithm, which makes it
difficult to vectorize. A method was proposed in Reference [5], where the main
loop was split into two parts of which one could be vectorized. This does not
avoid the main problem of the linked cell method and therefore, we have cho-
sen not to concentrate on a possible vectorized implementation. Possibly the
Xeon Phi might benefit to some extend from a partial vectorisation, but the
main features, as observed in the present study are likely to be conserved. Here
we concentrated on different thread safe implementations showing very different
scalability properties (see Fig. 4). As a starting point the number of potential
collisions in memory in a multi-threaded environment was demonstrated for a
simple model which followed rather well the actual findings from simulations. As
standard implementations within OpenMP standard the critical, atomic and
lock statements are offered. It could be shown that while critical leads to a
serialisation of the execution and atomic does not prevent race conditions in the
algorithm, only lock is able to map the algorithm on a thread safe implemen-
tation. As was observed for both architectures, lock induces some considerable
overhead and leads to considerable longer execution times (≈ 5 times) on a single
thread. A faster implementation is given by a copy version, where each thread is
working on its own local copy of the grid structure. Although this was observed
to give fastest results for large number of particles and cells at moderate num-
ber of threads, this implementation comes soon to its end, because of its large
memory demand. Especially in the SMT mode, where more threads are invoked
than physical cores, strong saturation is observed, which might be due to cache
coherency across the threads, i.e. SMT is strongly hindered if after changes in an
array location, updates on the other threads have to be done. This situation is
also observed for the buffered copy-variants, where the number of copies is varied
between 2 and 32 in the studies. Although locks have to be set for every copy the
performance is improved for large number of particles and cells since the number
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of locks is inversely reduced by the number of entries nb in the buffer, which is
nb = 2 × 104 for all cases studied here. Although a strong performance degra-
dation is observed for the different copy versions for small number of cells and
particles, it is interesting to observe a reverse behaviour , i.e. small number of
copies shows the best runtime behaviour for copy versions. It is, however, a mat-
ter of fact that the induced overhead, induced in the concatenation step of the
copied grid arrays, leads to a worse performance than the sequential implemen-
tation. We have to stress here that a bad performance is always to be expected
for the case where the number of particles gets smaller than the number of cells,
leading to overhead in the copy versions when iterating over empty cells in the
concatenation step. Also, from Algorithm 2 it is clear that a formal complexity of
O(n2

th) is induced, although for a small density of particles there will be never a
quadratic execution (if N/nc < nth). For large densities, however, the quadratic
behaviour will appear as a pre factor, limiting scalability for large nth.

It has to be mentioned that all algorithms, which were considered in the
present study, show a degraded efficiency with respect to the single thread per-
formance. For the case of N = 106 particles and nc = 503 cells the efficiency
is reduced to ≈ 11% and ≈ 17% on JUQUEEN and Xeon Phi, respectively.
This can be explained either with too much work in copying data and gathering
information between the threads, enhanced for large number of threads, or degra-
dation is due to a too large prefactor in OpenMP specific operations, e.g. the
lock statement. Considering, however, the efficiency of an algorithm compared
to itself, the scaling behaviour is not bad. E.g., the algorithm including locks
for thread synchronisation shows an efficiency of 70% (95%) and 60% (82%) on
JUQUEEN and Xeon Phi, where numbers in brackets refer to efficiencies before
entering hyperthreading mode.

From the present study we can conclude that the application of the lock
statement gives acceptable results, whereas efficiency degradation is always
present due to the considerable overhead introduced by setting and unsetting
the locks. Therefore, for small number of threads and N/nc ≥ 1 copy variants
are an attractive implementation for the small nth, in several cases up to the
number of threads where SMT mode gets important. There are other ideas,
introducing asynchronous models for locking arrays and for partially vectorising
the loops, which is in progress and will be communicated in future.
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Abstract. In this paper, we explore the mapping of the NumCIL C#
vector library where operations are offloaded to the Bohrium runtime
system and evaluate the performance gains. By using a feature-rich lan-
guage, such as C#, we argue that productivity can be increased. The
use of the Bohrium runtime system allows all vector operations written
in C# to be executed efficiently on multi-core systems.

We evaluate the presented design through a setup that targets a 32
core machine. The evaluation includes well-known benchmark applica-
tions, such as Black Sholes, 5-point stencil, Shallow Water, and N-body.

Keywords: C# · NumCIL · Bohrium · High performance · High pro-
ductivity · Vector programming · Array programming

1 Introduction

We have previously introduced the NumCIL library [13] for performing linear
algebra in C#, using an approach known as vector programming, array pro-
gramming or collection programming [12]. In such an approach, the programmer
writes high-level operations on multidimensional vectors rather than looping over
the individual elements. One of the primary benefits of such an approach is that
it leaves the program more readable because it is more of a description of what
should be done, rather than how it should be done. This approach can greatly
speed up the development cycle, as the developer can focus on the structure of
compact expressions, rather than explictily specify details such as loop indicies.

The Bohrium runtime system [10] is a related project aiming to deliver archi-
tecture specific optimizations. In Bohrium, a program will use the C or C++
interface to describe multidimensional vectors and request various operations on
these. The execution of these operations is deferred until the program requires
access to the result. This lazy evaluation approach enables the Bohrium run-
time to collect a number of scheduled instructions and perform optimizations on
these. The optimizations are an ongoing research project.

Since Bohrium uses a common intermediate representation of the scheduled
operations, it is possible to apply different optimization strategies to different
execution targets. The Bohrium intermediate representation also enables exe-
cution of Bohrium bytecode on multi-core CPU’s, GPGPU’s and even cluster
setups.
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 166–175, 2016.
DOI: 10.1007/978-3-319-32152-3 16
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In this article, we only evaluate the performance using a multi-core
CPU. A more detailed description of the Bohrium system is available in
Kristensen et al. [10].

By adding an extension to the NumCIL library, the vector operations
expressed in C# can be forwarded to the Bohrium runtime system. This
enables the programmer to have a rapid development cycle, without even having
Bohrium installed. Once the program is tested for correctness, the unmodified
program can then be executed with Bohrium support, such that all vector oper-
ations are executed with an efficient multi-core implementation.

2 Related Work

The array programming approach is in widespread use over a number of different
programming languages, including Ada [5], CoArray Fortran [8], Chapel [3],
NumPy [9] and numerous others. The NumPy approach differs in that it has
no explicit support in Python but is implemented using Pythonic constructs
in such a way that it seems natural to Python programmers. This approach
means that nothing needs to change, in the Python programmers toolchain, to
take advantage of the array programming found in NumPy. This non-intrusive
approach with a natural language integration is the inspiration for the NumCIL
library.

The idea of using language features to add support for vector programming
instead of modifying the language is also found in the C++ libraries Armadillo
[11] and Blitz++ [16]. The Armadillo library leverages existing linear algebra
systems to achieve high performance but does so at template instantiation time,
rather than at runtime.

The RyuJIT [4] compiler adds support for smaller vectors by converting vec-
tor operations to SIMD instructions. This approach helps in handling memory
access and accelerates the execution time, but does require changes to the run-
time system and does not offer any features for larger arrays. The RuyJIT is
scheduled to ship with Microsoft’s .Net framework 5 [4]. The Mono runtime [17]
offers the Mono.Simd library with similar capabilities, implemented as a library
with special support from the runtime [18].

The ideas for providing an intermediate representation of the requested oper-
ations, and performing optimizations on this, are also found in the, now discon-
tinued, Intel Array Building Blocks (ArBB) project [7]. The ArBB system relies
on a special compiler and an extended C++ syntax to describe computational
kernels. When executing a batch of instructions, a number of optimization tech-
niques are applied, such as removal of scratch memory, loop fusion, etc.

The Bohrium runtime system [10] is similar to ArBB and Chapel, in that the
programmer uses vectors and describes what should be done, rather than how
it is done. Internally this is achieved by means of a vector-oriented byte-code,
i.e. simple instructions for a pseudo vector processing system. This abstraction
allows Bohrium to be programming language agnostic, and is used to express a
flat C API. With this API, it is possible to support a number of programming
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languages, such as Python, C++ and C#, in which the developer uses some
array-library to interact with Bohrium.

The programming model used by Bohrium and NumCIL is very similar to
the one found in NumPy [9], for which there also exists a Bohrium interface. In
that sense, NumCIL fills the same role as NumPy, by providing an abstraction
for interacting with Bohrium.

3 Implementation

The NumCIL library consists of three main item types: Multidimensional views,
data storage and operators. The views are applied to the data storage to select
a subset of the flat data storage, and project it into multiple dimensions, using
offset, stride and skip values. Applied operators affect only the subset of the data
that view projects, which greatly reduces the need for copying data into appropri-
ately sized containers. The implementation of the multidimensional views found
in NumCIL are compatible with NumPy’s ndarrays [9] and also the Bohrium
data views.

The primary design goal for the Bohrium extension to NumCIL has been
to allow a non-intrusive addition. This allows code already written and tested
with NumCIL to use the Bohrium runtime system without any changes. The
non-intrusive design is achieved by hooking into the DataAccessor class, which
is normally a simple wrapper for an array. By replacing the NumCIL factory
instance that produces DataAccessor items, it becomes possible to provide
Bohrium enabled data accessors.

Table 1 shows a simple multidimensional program written with Num-
CIL. It illustrates how a flat array can be projected into multiple dimen-
sions, and how the data can be broadcasted into larger dimensions. The
program can be executed in Bohrium, simply by adding the statement
NumCIL.Bohrium.Utility.Activate(); prior to running the code.

If the program in Table 1 is executed with Bohrium loaded, the variable “a”
will not be allocated until it is needed in the very last line. In that very last line,
the allocation, multiplication, addition and summation is executed in Bohrium
as a single instruction batch. Depending on the Garbage Collector, the batch
may or may not contain instructions to deallocate the memory as well.

When a Bohrium enabled data accessor is created, it can be created with or
without existing data. If there is no existing data, as with “a”, an empty array
is allocated by the Bohrium system and a handle for this is maintained by the
data accessor. If existing data is already present, as with “c”, the data accessor
behaves as a non-Bohrium enabled data accessor facilitating access to the array
data. This ensures that data is always kept where it is already allocated and not
copied needlessly.

When an operation is applied to a multidimensional view that is referencing
a Bohrium enabled data accessor, such as the multiplication, the views involved
are created in Bohrium and an instruction matching the requested operation is
emitted to the Bohrium runtime system. However, emitting the operation does
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Table 1. A simple vector program with NumCIL

nothing more than adding the operations to the current batch. Since the CLR is
using a garbage collected approach, there is a chance that the GC will run before
the operations are executed. If the GC runs, it can reuse the memory occupied
by non-referenced items, and it may also choose to move existing data to a new
location, and thus invalidating a pointer to the data. This problem is exacerbated
by the introduction of temporary storage when compiling a composite statement
as shown in Table 2.

Table 2. A composite expression and the equivalent single expression version

All of the temporary variables shown in Table 2 will be short lived and elim-
inated when the GC runs. In order to avoid issues with the GC, it is possible to
Pin the memory when obtaining a pointer to the data. As long as the pointer
is Pinned, the GC will not attempt to move or reuse the data. Since multiple
multidimensional views may point to the same data, as with “a” and “b”, a
reference counting scheme is used to defer the Unpinning until the last reference
is out of scope. This further ensures that data is not copied but used where it is
located, with minimal overhead.

When a Bohrium enabled data accessor is created without existing data, only
the view data is initialized, and the data storage is kept uninitialized. When the
operations eventually execute, the Bohrium runtime will allocate only the needed
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data. This allows for using more memory than what is physically available on
the machine with no side effects.

When data is requested by the CIL, i.e. for the summation operation which
returns a scalar, all pending operations need to execute to ensure that the data
observed by the application is seeing the expected results. This is accomplished
by performing a Bohrium sync command on the target data, and then requesting
a flush of all pending instructions.

In the case where the data being requested is not backed by a CIL array, an
extra instruction is inserted that will copy the data allocated by Bohrium into
a freshly created CIL array. This copy operation is done prior to the sync and
flush commands, such that the intermediate storage can easily be eliminated by
the Bohrium runtime system, thus allowing the results to be written directly to
the CIL array.

If the user is only requesting a single element from the data, the entire data
stays in the Bohrium allocated memory region, and only the requested element
is copied into a CIL variable. This greatly reduces memory usage if only single
elements are requested in a large array, such as when reading only the border
values. If the user is writing to a single element in data that is not backed by a
CIL array, all pending operations are flushed before writing the element directly
into the memory region allocated by Bohrium. Table 3 shows the different states
the DataAccessor goes through.

Table 3. State flow for a Bohrium enabled NumCIL DataAccessor

4 Results

To evaluate the performance of the library, we have implemented a number of
computational cores for classic simulations. The benchmarks are all implemented
in C# and run using Mono 3.2.8 on Ubuntu 14.04.02. In order to provide a
reasonable baseline, the benchmarks are also implemented with NumPy 1.8.2
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and executed with Python 2.7.6. The hardware platform has two AMD Opteron
6272 CPUs with a total of 32 cores and 128 GB DDR3 memory with 4 memory
busses. GCC version 4.8.2 was used to compile the Bohrium runtime. Source
code is available for the Bohrium and NumCIL packages [15], as well as for the
benchmarks [14].

Various options were used when executing the C# benchmarks. The basic
Managed mode is using only C# and CIL functionality. The Unsafe configura-
tion, utilizes the option to bypass array bounds checks within the CIL runtime,
by accessing the data through memory pointers, with so-called unsafe code.
The Unsafe configuration does not appear to influence the execution times on
Mono, but is shown here as it does have an effect on the Microsoft .Net run-
time [13]. When executing the benchmarks with Bohrium enabled, the number
of utilized threads are varied to give an indication of the scalability.

The NumPy versions execute faster than the C# versions of the same code in
general. There are two main reasons for this. Firstly, the NumPy implementation
is written mostly in C, which means that none of the Python overhead is present.
Secondly, the Mono JIT compiler does not perform various optimizations, such as
efficient function inlining. When using the Microsoft .Net runtime, the execution
times are roughly half of the Mono results, and approximately 20 % faster than
the NumPy code [13]. On the Windows platform, we would expect NumCIL by
itself to perform roughly 50 % faster than the reported Mono results, but when
coupled with Bohrium, only metadata is handled by the .Net runtime, and thus
the obtained execution times would be the same.

4.1 General Observations

The speedup does not exceed a factor of 4, even when using 32 cores. This limi-
tation stems from the current execution mode in Bohrium, where each operation
is executed individually. This approach has the effect that each operation will
read all memory inputs and write all memory outputs for each operation, even
if the inputs or outputs are needed for other operations. As the inputs and out-
puts are vectors, the caches are not utilized, effectively limiting the output to
the bandwidth of the memory system.

This issue, and many other performance issues, can be mitigated through a
technique known as loop fusion, where loop traversals are transposed, such that
less memory access is required. Even though these optimizations are not yet
implemented in Bohrium, we still see speedups. Once these optimizations are
fully implemented in Bohrium, the NumCIL library will automatically perform
even better.

4.2 Black-Scholes Model

The Black-Scholes model is a financial method for estimating the price of stock
options [1]. It can be considered an embarrassingly parallel computation kernel,
similar to Monte-Carlo π, but with a heavier computational workload. As shown
in Fig. 1, the performance gains from the Bohrium runtime are fairly low, due
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to the current configuration not being able to efficiently fuse the operations,
causing a high load on the memory system. As the memory system is saturated,
adding execution units does not improve performance.
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Fig. 1. BlackScholes 3200000, 36 iterations

4.3 Heat Equation

The Heat Equation benchmark is implemented as a 5-point stencil and simulates
thermal dispersion in a material. The stencil is applied ten times to a 5000× 5000
element array of single precision floating point numbers. The computation is
simple additions, using multiple parallel accesses to the same memory. Even
though the Mono implementation has some drawbacks and performs significantly
slower than NumPy, the Bohrium runtime can re-use memory allocations, which
allows for significant speedups [6]. Despite the low computational complexity,
the Bohrium runtime can speed up execution when using all cores Fig. 2.

4.4 n-Body Simulation

The n-body simulation is implemented in a naive manner, yielding a O = N2

complexity. For each time-step, the forces of all bodies on all bodies are com-
puted, and their velocities and positions are updated. The Mono runtime slightly
outperforms the NumPy version for this benchmark. When the Bohrium run-
time is activated, it is capable of memory re-use and runs over twice as fast on
a single core, with speedup on up to 16 threads Fig. 3.

4.5 Shallow Water

The Shallow Water simulation [2] is performed on a grid of 5000 by 5000 sin-
gle precision numbers, over ten discrete timesteps, simulating water movements.
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Fig. 2. HeatEquation 5000 × 5000, 10 iterations
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Fig. 3. nBody 5000, 10 iterations
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Many independent computations on each element dominate the computations,
yielding irregular memory accesses. The NumPy implementation is more than
twice as fast as the Mono version. The Bohrium runtime can improve this even
further, by almost a factor of two, yielding a total speedup of four times, com-
pared to the basic Mono performance Fig. 4.

5 Conclusion

We have implemented and evaluated an extension to the NumCIL library, which
enables completely transparent support for execution of existing programs with
the Bohrium runtime system.

From the benchmarks, it is clear that even with the sub-par performance from
the Mono JIT compiler, the Bohrium runtime system can deliver substantial
speedups.

Given the high-level language features in C#, it is clear that the NumCIL
library can be used for rapid development, and when paired with the Bohrium
runtime, it also yields high performance.

Even with the speedups reported here, a number of additional optimiza-
tions are being developed for the Bohrium runtime, including loop fusion and
NUMA-aware memory handling. Once these optimizations are implemented in
Bohrium, the loosely coupled approach used in NumCIL will automatically give
even greater performance boosts.
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Abstract. Many big data applications are usually categorized as irreg-
ular. Irregular problems feature unpredictable and unstructured proper-
ties in terms of the program flow, data access pattern and typically use
pointer-based data structures such as graphs. The problems are data,
compute and communication intensive in nature. The algorithms are
therefore designed and implemented on high performance architectures.
The first stage of the parallel algorithm design is data partitioning. In this
stage, the data is sub-divided into equally sized disjoint elements such
that the communication volume among the processors is minimized. If
the data is represented as a graph, it can be stated as the graph parti-
tioning problem, which is NP-hard. In this work, we consider the meta-
heuristic, ant brooding algorithm based on larval sorting by ants to solve
the graph partitioning problem. The parallel ant brooding algorithm is
implemented on a cluster using MIT’s Julia language. We test the paral-
lel algorithm on different benchmark and synthetic graphs. We compare
our Julia parallel implementation with Julia sequential and C sequential
implementations. We found that the performance of Julia is comparable
to C with good scalability, and the parallel Julia implementation achieves
speedup greater than 1 for a synthetic graph with 200 vertices and 1000
edges.

Keywords: Julia language · Ant brooding · Graph partitioning

1 Introduction

Many big data applications such as social, biological and complex networks,
are usually categorized as irregular. Irregular problems [1] feature very unpre-
dictable/unstructured properties for their program flow and data access patterns.
These problems typically use pointer-based data structures such as graphs. They
are data/communication intensive. Therefore, algorithms for these problems are
designed and implemented on high performance computing architectures.

The first stage in designing algorithms for such problems on a parallel com-
puter is data partitioning. The purpose of this stage is to partition the data
among the processors such that the data locality is maximized and communica-
tion among processors is minimized. When the data structure is represented as
a graph, the problem can be stated as a graph partitioning problem.
c© Springer International Publishing Switzerland 2016
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Given a graph G = (V,E) where V is the set of vertices and E is the set
of edges, the k-way graph partitioning problem [2] is solved by partitioning the
graph into k nonempty disjoint subsets of vertices such that the number of edges
connecting two partitions is minimized. The graph partitioning problem is NP-
hard. Therefore, heuristics [3] have been proposed to find approximate solutions
to this problem.

Well-known sequential partitioning algorithms include Kernighan-Lin algo-
rithm [4], spectral bisection method [5], and k-means algorithm [6]. An alterna-
tive method for solving the graph partitioning problem, is to transform the prob-
lem into identifying the “natural” clusters by constructing a bijective mapping
between the graph vertices and points in a geometric space [7]. The clustering
approach is invaluable when k is not known in advance.

In recent decades, meta-heuristics to solve graph partitioning/clustering
problems in various applications have been considered. Meta-heuristics are gen-
eral algorithmic frameworks that are designed to solve complex optimization
problems [8]. In the literature, ant colony optimization [9], particle swarm opti-
mization [10] and hybrid heuristics [11] have been considered.

In this paper, we focus on the ant brooding algorithm based on larval sorting
by ants [7,12,13] for the graph partitioning problem from a graph clustering
approach. We develop a parallel ant brooding algorithm and implement it in
Julia parallel programming language. The paper is organized as follows: In the
next section, we discuss the ant brooding algorithm followed by the parallel
algorithm (Sect. 3) and its implementation in Julia. Sections 4 and 5 provide
evaluations and results, respectively. And finally, Sect. 6 concludes the paper.

2 The Ant Brood Sorting Algorithm

Ant brooding was proposed by Deneubourg et al. [12] as a distributed sorting
algorithm to cluster robots. In the algorithm, the ant-like robots move randomly
deciding whether to pick up or drop off objects based on the fraction of nearby
points occupied by objects of the same type in their limited memory. Deneubourg
et al.’s model was extended by Lumer and Faieta introducing a dissimilarity
measure [13]. In this new approach, the simulation evolves in discrete time steps.
At each step, a randomly selected ant can either pick or drop an object at its
current location based on the following probabilities function.

Ppick (i) =
(

kp

kp + f (i)

)2

(1)

Pdrop (i) =

{
2f (i) if f (i) < kd

1 otherwise
(2)

where kp and kd are set to educated guesses that allow the customization of the
probability of pick up, Ppick, and drop, Pdrop. f (i) is the local density estimator
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of the object i and the ant’s current neighborhood. The local density estimator
is defined by

f (i) =

{
1
l

∑
j

(
1 − d(i,j)

α

)
if f > 0

0 otherwise
(3)

The dissimilarity, d (i, j), between the object i and current neighbor object j
is scaled by a constant α ∈ (0, 1]. Then, it is normalized by l representing
the neighborhood size (for example in a 3 × 3 area, l = 8). The dissimilarity
measure is extended from Euclidean distance to the graph dissimilarity measure
by Kuntz et al. [7] in solving graph partitioning problem using ant brooding.
The dissimilarity between two objects, now represented as vertices, depend only
on their respective neighborhood relationships.

Let N (vi) be the set of vertices adjacent to vi and including vi: N (vi) =
{vj ∈ V ; (vi, vj) ∈ E} ∪ {vi}. Then the dissimilarity matrix can be expressed as

d(vi, vj) =
|N (vi) �N (vj)|

|N (vi)| + |N (vj)| (4)

where the � operator is the symmetric difference (union minus intersection),
while the |·| is the set cardinality operator.

Handl et al. [14] compared the performance of the ant brooding cluster-
ing algorithm with k-means, agglomerative hierarchical clustering and one-
dimensional self-organizing maps, concluding that the strengths of the algorithm
include scalability, the capability to work with any kind of data that can be
described in terms of symmetric dissimilarities, as well as, automatically deter-
mine the number of clusters without assumption on its shape.

Inspired by the decentralized manner ants cluster objects, our approach maps
each ant to a thread on a parallel architecture. Ants work concurrently and
independently to solve the problem.

3 Parallel Ant Brooding Algorithm in Julia

3.1 Julia Language

Julia [15] has been in development since 2009. Currently, it is an open source
project that was started by the Massachusetts Institute of Technology and
rapidly has become an emerging programming language alternative to R, Mat-
lab, Octave, Python, and SciLab, or even C, C++ and Fortran.

Julia has gained enormous popularity since it combines the high-level pro-
gramming style, with a high performance dynamic programming language and
a familiar syntax, similar to Python, Matlab and R. It is dynamically typed,
supporting polymorphism, metaprogramming, recursivity, user-defined paramet-
ric types, and multiple dispatch, among others [16]. For parallel processing,
Julia provides a variety of specialized primitives and macros. For the distrib-
uted memory programming, the primitive remote call executes instructions on
a remote processor, while the remote references are used to refer to an object



Parallel Ant Brood Graph Partitioning in Julia 179

stored in remotely. As well, distributed array data structures, pmap and DAr-
ray, and shared arrays (in an experimental stage) for system shared memory,
like SharedArray, are provided to facilitate the development. Julia also provides
a group of primitives for scheduling tasks, general parallel computing set of
instructions, a cluster management inter-phase, besides a vectorization set of
instructions.

3.2 Modifications to the Basic Ant Brooding Model

Relaxed Drop Behavior. A major issue with the basic model [13] is that ants
easily pick up objects but do not drop them after many iterations. This issue
may not be obvious in the sequential implementation because the clustering is
formed gradually by ants. In parallel implementation, however, all the ants move
simultaneously on the grid, and it is less likely for high-similarity neighborhoods
to emerge gradually. In order to encourage the drop behavior of ants, we modified
the drop function as the following:

Pdrop (i) =

{
1 if f (i) > 1
f (i)2 otherwise

(5)

More Intelligent Ants. Instead of moving the ants one cell at a time on the
grid, we assume that the ants are more intelligent so they are able to perceive a
neighborhood size l that is larger than or equal to 8, the default size. In addition,
the program maintains a stack of free vertices and allows the ants to jump to
the positions of these vertices directly after they become unloaded. Loaded ants
continue to walk step-wise for exploration. This modification greatly improves
the speed of the algorithm without affecting the solution quality.

3.3 Data Structures

The Lumer and Faieta algorithm [13] relies on the sequence of how ants are
selected to randomly walk, pick or drop objects, therefore, the variables holding
the position of objects or vertices are accessible only by one ant at a time. In
contrast, the parallel implementation requires a shared data structure that holds
information about the objects or vertices randomly distributed over the search
space, denoted as objectcoordinates. Also, each ant must store, in its local memory,
its current coordinates and the object it is carrying, denoted as antcoordinates

and antcarry respectively. The data structure holding the vertices and edges of
the graph, G, is passed to local memory as it is frequently accessed.

The passing of data structures is benefited from the “pass-by-sharing” [17]
feature of the Julia language, which means that values are not copied when they
are passed by functions, instead, pointers that refer to the passed values are
passed to the caller function.
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Algorithm 1. Asynchronous Parallel Ant Brooding Algorithm
Input: Nants, G, dim, l, Pprocs, kp, α, and Niter

Output: objectcoordinates after Niter iterations
1 Initialization;
2 Assign positions of random objects to Nants ants;
3 Distribute ants over Pprocs

4 for iter ← 1 to Niter do
5 foreach p in Pprocs do
6 foreach ant, ak owned by p do
7 map (move to next position);
8 map (
9 if ak is unloaded and antcoordinates is dissimilar and occupied then

10 pickup object according to Eq. 1
11 end
12 else
13 if ak is loaded and antcoordinates is empty and carrying object

is similar then
14 drop object according to Eq. 5
15 end

16 end
17 )

18 end

19 end

20 end

3.4 Program Flow

Let Nants denote the number of ants. The core of the parallel implementation
is the load distribution among the ants, where in most cases the kth-ant, ak,
receives the (Nants)

−1 part of the workload. Let Pprocs be the pool of avail-
able processors. Each processor is assigned a given number of ants. We assume
Nants ≥ Pprocs. The ants iterate for Niter iterations. We designed an asynchro-
nous parallel algorithm (Algorithm 1) that passes the iteration control to each of
the ants, leaving the ants to run freely at different speeds on the algorithm. The
algorithm is initialized with the number of ants Nants, a graph G, a grid with
dimension dim, the neighborhood size l ≥ 8, the pool of available processors,
Pprocs, the variables, kp and α, that govern the decisions of the ants, and finally
the number of iterations, Niter. The first step in the algorithm is to assign posi-
tions of random objects to the Nants ants (line 2). Then, all ants are distributed
among the Pprocs processors.

Each ant at each processor performs the instructions from step 7 to 15 in a
loop for Niter iterations. The behavior of the ant can be summarized into three
actions: move to a new position, pickup objects (vertices), or drop objects. Due
to the randomness of the objects’ position, the load on each ant is not known
in advance. We use Julia’s pmap function to achieve dynamic scheduling. We
also use @simd macro for vectorization that exploits SIMD instructions when
executing loops.
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4 Evaluations

4.1 Cluster Retrieval

The output of ant brooding is the coordinates of the vertices on the grid, without
clustering labels. Although the layout may reveal obvious structures to human
eyes, we need to translate this implicit information to explicit membership labels
for the computer. Since ant brooding improves the clustering quality by chang-
ing the geometric positions of the objects, an Euclidean distance based cluster
retrieval algorithm will render good result. For simplicity, we use k-means [6]
together with our modified ant brooding algorithm for the cluster retrieval.

4.2 Metrics

To evaluate the clustering quality, we introduce the mean intra-cluster distance
(MICD) to measure the cluster “compactness”, but in order to evaluate the effect
of all the clusters we use its sum of squares, SS (MICD). This metric should
tend to minimize ideally if the clustering is of good quality

SS (MICD) =
∑

n

MICD2
n =

∑
n

( ∑
vi∈Cn

‖vi − μn‖
|Cn|

)2

(6)

where ‖·‖ is the Euclidean distance, and Cn is the n cluster of vertices with
centroid in μn. To measure “sparsity” among clusters, we use the sum of squares
of the inter-clusters distance (SSICD). This metric should tend to maximize
ideally if the cluster is of good quality. That is,

SSICD =
∑

i

∑
j

‖μi − μj‖2 (7)

The ratio SSICD/SS(MICD) normalizes the two metrics. A greater value of
this ratio indicates a better clustering quality overall. We measure the solution
quality of ant brooding by comparing the ratio SSICD/SS(MICD) for the
clusters retrieved by k-means before and after ant brooding.

For performance, we compare the run time of Julia parallel implementation
with Julia sequential and C sequential implementations.

4.3 Experiments

We perform all of our experiments on a cluster with 12 CPUs (Intel Xeon CPU
E5-2430 v2 @ 2.50 GHz), 4 GB system memory and IvyBridge. communication
network. To test the robustness of the algorithm, we evaluate our parallel ant
brooding algorithm on three common benchmark graphs for clustering, including
karate club [18] (34 nodes, 78 edges, 2 clusters), dolphins [19] (62 nodes, 159
edges, 2 clusters), football [20] (115 nodes, 613 edges, a hierarchical community
structure), and a recursive matrix (R-MAT) graph [21] (200 nodes, 1000 edges),
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which is a synthetic graph that mimics the power-law distribution [22] of real
world networks.

The selection of ant brooding parameters is based on the heuristic by Handl
et al. [14]. Let |V | denote the number of vertices on the graph, The number
of ants Nants is roughly in the order of 0.1 ∗ |V |, the grid dimension dim is in
the order of 2

√
10 ∗ |V |, number of iterations Niter is in the order of 2000 ∗ |V |.

It is also suggested [7] that a value that is close to 1 for the scaling constant
α leads to visual separation of clusters on a grid. We experiment on the input
graphs with different combinations of the above parameters, as well as other user
defined parameters kp and l. The best parameter settings are shown in Table 1.
In each iteration, one ant makes one move within a small neighbourhood l, but
the complexity of calculating dissimilarity in this neighbourhood is O(|V |), the
computational complexity of our parallel algorithm is therefore Niter ∗ Nants ∗
O(|V |)/Pprocs. By substituting Niter with 2000 ∗ |V | and Nants with 0.1 ∗ |V |,
we get O(|V |)3/Pprocs, where Pprocs is not a constant.

Table 1. Ant brooding parameter settings

Graph Niter Nants dim l kp α

Karate 100000 4 20 48 0.3 1.0

Dolphins 100000 6 25 48 0.3 1.0

Football 100000 10 30 48 0.3 1.0

R-MAT 10000 20 50 80 0.3 1.0

5 Results

We present the visual display in Fig. 1 for the input graphs on the Cartesian
plane before and after ant brooding. In all cases, ant brooding turns a random
projection of vertices into a placement of noticeable clusters. The algorithm
correctly identifies the two clusters in karate club and dolphins. The football
graph has a hierarchical clustering structure [20]. The algorithm clearly separates
the two clusters on the top level and the two lower level clusters shown on the
left side of the grid. Fine level clustering result can also be observed on a higher
resolution of the grid. For R-MAT graph, the algorithm is able to display clusters
with different sizes, and the one vertex in the upper middle of the grid represents
an outliner that does not belong to any other clusters.

We fine tune the results obtained from ant brooding by applying a
k-means algorithm, where k is chosen such that it produces the highest
SSICD/SS(MICD) ratio. We assume that k represents the number of proces-
sors on a parallel machine. Table 2 confirms that our algorithm improves
SSICD/SS(MICD) of the clustering on all the graphs.
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(a) Karate (b) Dolphins

(c) Football (d) RMAT

Fig. 1. Graph Layout before and after Ant Brooding

In terms of performance, we implement the algorithm in sequential and in
parallel. We implemented the algorithm sequentially in both C and Julia to
test the efficiency of the two languages. As shown in Table 3, for karate and
dolphins, the execution time of Julia sequential is several folds of that of C
sequential, and the same observation for Julia parallel versus Julia sequential.
This is expected because the language overhead still occupies a large portion
of the total execution time. When the graph size gets larger, the performance
of Julia sequential and Julia parallel gets consistently better compared to C
sequential that scales almost linearly with the graph size. Julia parallel is able
to achieve speedup greater than 1 for the R-MAT graph with 200 nodes and
1000 edges. The reader may notice that in average, the executions of R-MAT on
all three programs are faster than those of football graph, although the R-MAT
graph is bigger. This is because the executions of R-MAT uses less iterations to
achieve good solution quality (refer to Table 1). The cluster retrieval is considered
as a post-processing step of ant brooding algorithm. Therefore, its execution time
is not included in the performance measurement of ant brooding.
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Table 2. k-means clustering before and after ant brooding

Before ant brooding After ant brooding

Graph k SS(MICD) SSICD SSICD/SS(MICD) SS(MICD) SSICD SSICD/SS(MICD)

Karate 2 66.7 105.4 1.6 44.6 257.0 5.8

Dolphins 2 124.9 181.8 1.5 136.6 314.2 2.3

Football 3 177.8 836.6 4.7 76.3 1666.9 21.9

R-MAT 6 433.4 11621.4 26.8 320.0 13493.5 42.2

Table 3. Performance comparison of ant brooding implementations

Execution time (seconds)

Graph k C sequential Julia sequential Julia parallel Speedup

Karate 2 0.57 2.75 8.66 0.31

Dolphins 2 2.51 5.46 8.90 0.61

Football 3 10.69 9.59 15.8 0.60

R-MAT 6 9.10 9.70 8.53 1.13

6 Conclusions

We developed an asynchronous parallel ant brooding algorithm in Julia language
for solving the graph partitioning problem from a graph clustering approach.
The ant brooding algorithm is a good mapping technique to identify clusters on
different types of graphs with small intra-cluster distances and large inter-cluster
distance. We show that our parallel Julia implementation has comparable speed
to C with good scalability, and successfully achieves speedup for the R-MAT
graph with 200 nodes and 1000 edges. Meanwhile, parameter tuning remains a
challenge to generalize ant brooding algorithm to work with any types of graphs.
For future work, we will experiment with larger graphs and improve our modified
algorithm to accommodate this large data size.
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Abstract. In the recent years it can be observed increasing popularity
of parallel processing using multi-core processors, local clusters, GPU
and others. Moreover, currently one of the main requirements the IT
users is the reduction of maintaining cost of the computer infrastruc-
ture. It causes that the performance evaluation of the parallel applica-
tions becomes one of the most important problem. Then obtained results
allows efficient use of available resources. In traditional methods of per-
formance evaluation the results are based on wall-clock time measure-
ments. This approach requires consecutive application executions and
includes a time-consuming data analysis. In the paper an alternative app-
roach is proposed. The decomposition of parallel application execution
time onto computation time and overheads related to parallel execution
is use to calculate the granularity of application and then determine its
efficiency. Finally the application scalability can be evaluates.

Keywords: Parallel processing · Scalability of parallel application ·
Granularity concept

1 Introduction

In the recent years there has been rapid development of new technologies related
to the evolution of the technical possibilities offered by computer hardware -
increasing calculation speed, decreasing communication time, increasing band-
width communications, etc. Moreover it can be observed increasing popularity
of parallel processing by using multi-core processors, clusters, GPU and others.
Equally important as the evolution of the information systems are changes of
the requirements of the IT users. Increasingly, the basic requirement of the IT
users are not systems, offering improved processing speed, but ones that will
reduce the cost of maintaining infrastructure. It causes that performance eval-
uation constitutes an intrinsic part of every application development process.
c© Springer International Publishing Switzerland 2016
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In parallel programming the goal of the design process is not to optimise a sin-
gle metrics, a good design has to take into consideration memory requirements,
communication cost, efficiency, implementation cost, and others. Therefore per-
formance evaluation of parallel programs is very important for the development
of efficient parallel applications.

In the paper [1] three categories of performance metrics have been proposed.
The first are speedup metrics that show how faster results can be obtain when
using some number of processing units comparing with using only one processing
unit. The second one are efficiency metrics that determine the percentage of CPU
utilization during parallel program execution. And finally scalability, which say
how application behaves when increasing the number of available processing
units and/or the size of the problem being solved. In the paper all of these
metrics will be used for performance evaluation of parallel application.

In general the performance analysis can be carried out analytically or through
experiments. The paper focusses on the second approach. Independently on the
used measurement method during experimental performance evaluation of par-
allel programs is the need to measure the run time of sequential and parallel
programs, which is time consuming. In the paper the method, which overcomes
above problem is proposed. Basing on the concept of granularity and decom-
position of the parallel application execution time onto the computation time
and the overhead time presented in [2,3] we show that by measurement only
wall-clock time and computation time it is possible to evaluate the performance
of parallel programs. The paper extends previous one by presentations results
of experiments performed up to 4096 processing units (cores) and by scalability
analysis.

The paper is organised as follows. Section 2 briefly describes different perfor-
mance metrics and two main approaches to scalability analysis - strong and weak
scalability. How granularity can be used in performance evaluation is presented
in Sect. 3. The next section illustrates the experimental results obtained during
evaluation of two parallel algorithms, strong and weak scalability are considered.
Finally, Sect. 5 outlines the work and discusses ongoing work.

2 Performance Metrics and Scalability Analysis

During performance evaluation of parallel applications different metrics are used
[4]. The first one is the parallel run time (truntime). It is the time from the
moment when computation starts to the moment when the last processor fin-
ishes its execution and is composed of three different times: computation time
(tcomp) is the time spent on performing computation by all processors, commu-
nication time (tcomm) is the time spent on sending and receiving messages by
all processors and idle time (tidle) is when processors stay idle. The next com-
monly used metric is speedup, which captures the relative benefit of solving a
given problem using a parallel system. There exist different speedup definitions.
Generally the speedup (S) is defined as the ratio of the time needed to solve the
problem on a single processor to the time required to solve the same problem
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on a parallel system with p processors. Theoretically, speedup cannot exceed the
number of processors used during program execution, however, different speedup
anomalies can be observed [5]. Both above mentioned performance metrics do
not take into account the utilisation of processors in the parallel system. While
executing a parallel algorithm processors spend some time on communicating
and some processors can be idle. Then the efficiency (E) of a parallel program
is defined as a ratio of speedup to the number of used processors. In the ideal
parallel system the efficiency is equal to one but in practice efficiency is between
zero and one, however because of different speedup anomalies, it can be even
greater than one.

The last performance metrics is scalability of the parallel system. It can be
considered in different ways, we can use it for hardware, algorithms, data bases,
execution environment, etc. One can say that currently it is one of the most
important performance metrics. In general it can be say that it is a metrics,
which consider the “system” capacity to increase speedup in proportion to the
number of available processors. There are a lot of approaches to modelling the
scalability, for example by using so called isoefficiency analysis [4], Universal
Scalability Model proposed by the Neil Gunther [6], H-isoefficiency function [7]
and others.

One can find two different approaches to way in which scalability is defined
[8]. The first one based on Amdahl law (1) is called strong scalability. The
strong scalability is also called scalability with a fixed size of the problem, it
means that our goal is to minimize the program execution time by using more
processing units. It means that we can say that system is scalable when increasing
number of processing units are used effectively. For example, when the number
of processing units equals 8 and the speedup received equals 8, too, then we
have excellent scalability. This approach is the pessimist because of indicates a
bounded speedup.

Speedup(n) =
T (1)
T (n)

=
1

(1 − p) + p
n

(1)

where n denotes the number of processing units, p denotes the non-scaled frac-
tion of the application parallel part and T (1), T (n) execution time at 1 and n
processors respectively.

The second one is weak scalability that based on Gustafson law (2). The
week scalability is also called the scalability with variable problem size, when the
problem size increased at the time when the number of processing units increased
(the input is fixed for each processor). We say that a system is scalable when the
efficiency (execution time)is the same for increasing the number of processors and
the size of the problem [4]. This approach is the optimistic because of indicates
an unlimited speedup.

Speedup(n) =
T (1)
T (n)

= 1 + (n − 1) ∗ p∗ (2)
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where n denotes number processing units, p∗ denotes the scaled fraction of the
application parallel part and T (1), T (n) execution time at 1 and n processors
respectively.

3 Using Granularity for Performance Analysis

In general the granularity of a parallel computer is defined as a ratio of the time
required for a basic communication operation to the time required for a basic
computation operation. Let’s define the granularity of the parallel algorithm sim-
ilarly as the ratio of the amount of computation to the amount of communication
within a parallel algorithm execution (G = Tcomp/Tcomm). Above definition can
be used for calculating the granularity of a single process executed during pro-
gram execution on each processor as well as for the whole program by using total
communication and computation times of all program processes. Then let’s use
the overhead function, which is a function of problem size and the number of
processors and is defined as follows [4]:

To(W,p) = p ∗ Tp − W (3)

where W denotes the problem size, Tp denotes time of parallel program execution
and p is the number of used processors.

The problem size can be defined as the number of basic computation opera-
tions required to solve the problem using the best serial algorithm. Let us assume
that a basic computation operation takes one unit of time. Thus the problem
size is equal to the time of performing the best serial algorithm on a serial com-
puter. Based on the above assumptions after rewriting the Eq. (3) we obtain the
following expression for parallel run time:

Tp =
W + To(W,p)

p
(4)

Recalling that the parallel run time consists of computation time, communi-
cation time and idle time, let’s assume that the main overhead of parallel pro-
gram execution is communication time. The total communication time is equal
to the sum of the communication time of all performed communication steps.
Assuming that the distribution of data among processors is equal then the com-
munication time can be calculated using equation Ttotal comm = p∗Tcomm. Note
that the above is true when the distribution of work between processors and
their performance is equal. Similarly, the computation time is the sum of the
time spent by all processors performing computation. Then the problem size W
is equal to p ∗ Tcomp. Therefore the expression for the efficiency takes the form:

E =
1

1 + Tcomm

Tcomp

=
1

1 + 1
G

=
G

G + 1
(5)

It means that using the concept of granularity we can calculate the efficiency
and speedup of parallel algorithms. Concluding above consideration it is possi-
ble to evaluate a parallel application using such metrics as efficiency, speedup
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and scalability by measuring only the computation and wall-clock times dur-
ing execution of parallel version of a program on a parallel computer. Deeper
presentation of the above discussion can be find in [2].

4 Case Studies

To confirm the usefulness of the theoretical analysis presented in the previous
sections the series of experiments were performed. During the experiments two
different algorithms were used: K-means and Monte Carlo method (calculation
of Pi number). The tests were executed on the BEM cluster at Wroclaw Centre
for Networking and Supercomputing (720 homogeneous nodes (2 procesors) Intel
Xeon E5 2670 v3). For both algorithms the strong scalability was checked and
weak scalability was check only for K-means algorithm.

To avoid the execution time anomalies [2] the experiments were performed
for data sizes sufficiently larger than CPU cache size and smaller than the main
memory limits for strong scalability analysis and for weak scalability analysis
the problem size increased proportionally to the number of used processors.
Because the experiments were performed in a multi-user environment the exe-
cution times depended on computer load, therefore the presented results are the
averages from the series of 10 identical experiments performed. Moreover the
results of measurement lying in the distance above 1.5 interquartile range of
the whole series were treated as erroneous and omitted, and the measurement
was repeated. To evaluate the accuracy of the new method the relative error
defined as S−S

S where S is the actual speedup and S is the estimated one has
been used. Moreover because of way in which different times have been mea-
sured for speedup calculation instead of granularity isogranularity defined as
(Giso = tcomp/toverhead) was used.

K-means is one of the algorithms that is used for solving the clustering prob-
lem [9]. It classifies a given data set into defined fixed number of clusters k
(predefined). In the first algorithm’s step so called centroids for each cluster
should be chosen - one for each cluster. These centroids can be defined in ran-
dom way however the better choice is to place them as much as possible far
away from each other. In the next step all points from the data set are assign
to the nearest centroid. After completion of this step the new centroids for each
cluster are calculated using the means metrics for the created clusters. Then we
repeated the second step using these new centroids. The process is continue as
long as the differences between coordinates of new and old centroids are satisfied.
Alternatively the process can be finished after predefined number of iterations.

The above algorithm was parallelized in the following simple way. The chosen
processor reads input data, and then distributes them to other processors. Each
processor received N/p data, when p is a number of available processors and N is
the number of input data. Then each processor generates the appropriate number
of centroids and exchanges information about them with other processors. After
completion of above step each processor has information about all the centroids
and performs the second step of the sequential algorithm. In the next step each
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processor calculates the data necessary to calculate new centroids (the number
of point in each cluster and sums of points coordinates) and exchange this infor-
mation with other processors. Then the new centroids are calculated, in parallel
by all processors (execution replication), and again the process returns to the
second step of sequential algorithm. The algorithm ends when the stop criterion
is met. Then the chosen processor collects clustering results from other proces-
sors and merge them. Description of Monte Carlo method is skiped because of
the common knowledge about it and the lack of space.

Below the results of experiments performed to check the strong scalability of
k-means algorithm and Monte Carlo methods are presented. In the experiments
performed for K-means algorithm different data set sizes were used. The number
of generated clusters was 1024 during all tests. Moreover different hardware
configurations by means different number of cores from each processor were
used. Received results are presented on Figs. 1, 2, 3 and 4.

Fig. 1. K-means algorithm speedup and estimated speedup - 2 cores at each node

The first test was performed using 2 cores from 2, 4, 8, 16, 32 and 64 proces-
sors, its results are presented on Fig. 1. As can be seen the actual speedup and
estimated speedup are very close, however when the size of data set is equal
245760 there are large differences between actual and estimated speedup and
the precise relative error is even over 16 % when using 128 cores, for other cases
is less than 5 %.

In the second test 4, 8, 16, 32, 64, 128 and 512 processing units (cores), four
from each processor were used. Results of this test are presented on Fig. 2. As
previously can be seen that the actual speedup and estimated speedup are very
close. In general the precise relative error was less then 2 %, however for problem
size 1966080 was slightly larger when using 512 cores.

In the third test 8, 16, 32, 64, 128, 256, 512 and 2048 processing units (cores),
eight from each processor were used. Results of this test are presented on Fig. 3.
In this test results are really satisfied, the precise relative error were between
1 % and 2 %.
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Fig. 2. K-means algorithm speedup and estimated speedup - 4 cores at each node

Fig. 3. K-means algorithm speedup and estimated speedup - 8 cores at each node

Fig. 4. K-means algorithm speedup and estimated speedup - 16 cores at each node
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In the last test performed for K-means algorithm 16, 32, 64, 128, 256, 512,
1024 and 4096 processing units (cores), sixteen from each processor were used.
Results of this test are presented on Fig. 4. As during the previous tests the
results were very good, the precise relative error values were between 0,2 % and
6 %, only for problem size equals 7864320 for 4096 processing unites was larger,
close to 15 %.

In the experiments performed for Monte Carlo method different data set
sizes were used. Moreover different hardware configurations by means different
number of cores from each processor were used. Received results are presented
on Figs. 5 and 6.

Fig. 5. Monte Carlo algorithm speedup and estimated speedup - 8 cores at each node

Fig. 6. Monte Carlo algorithm speedup and estimated speedup - 16 cores at each node

Results obtained for Monte Carlo methods similarly as for k-means algorithm
are very promising, the shape of diagrams are very close and the precise relative
error was not larger than 5 % in all cases. Considering the strong scalability we
can conclude that results of experiments show that both algorithms are scalable
in the limits of defined by the limits of performed tests.
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4.1 Experimental Results - Weak Scalability

During test related to checking weak scalability for k-means algorithm 8, 16, 32,
64, 128, 256, and 512 processing units (cores) randomly chosen have been used.
Problem sizes were from 122880 to 31457280 to satisfy requirements that during
program execution each processing unit should used the same amount of data.
Typically weak scalability is presented as a diagram using scaling efficiency. In
the paper we present it in different way proposed in the paper [10] by presenting
execution time and speedup in the tables (Tables 1 and 2).

Table 1. Execution time of parallel k-means algorithm

Problem size T1 T8 T16 T32 T64 T128 T256 T512

122880 2,918 0,364 0,182 0,091 0,046 0,023 0,0064 0,0047

983040 178,132 22,240 11,120 5,659 2,779 1,388 0,698 0,345

1966080 708,634 88,522 44,262 23,137 11,063 5,5308 2,554 1,385

3932160 2831,905 318,146 176,702 88,353 44,175 22,079 10,240 5,517

7864320 11337,77 1416,032 812,677 353,901 176,960 88,462 38,918 21,949

15728640 45318,33 5660,593 2830,199 1624,234 707,452 353,600 176,745 88,342

31457280 181417,6 22653,32 11325,1 5661,966 3249,23 1414,826 706,802 353,248

Table 2. Speedup of parallel k-means algorithm based on Gustafson’s model

Problem size S8 S16 S32 S64 S128 S256 S512

122880 7,946 15,744 31,297 61,302 117,931 70,688 0,0047

983040 7,948 15,822 31,431 62,546 122,945 240,221 408,803

1966080 7,972 15,868 31,232 62,909 125,105 81,220 483,412

3932160 7,958 15,843 31,630 63,024 125,784 100,921 495,631

7864320 7,982 15,837 31,672 62,941 125,793 118,578 475,919

15728640 7,913 15,808 31,536 63,008 125,728 250,092 498,543

31457280 7,930 15,883 31,582 55,060 125,540 125,300 499,833

From the Table 1, we can observe that for a problem size 983040 the run time
on 8 procesors equeals 22,24 s, then when 32 procesors are used and problem
size is increased to 1966080, the run time is very close 23,13 s. Similarly for 128
processors and problem size equeals 3932160 the run time is 22,07 s. Therefore
we can conclude that the speedup is scaling from 7,94 to 125,78 for workload
from 983040 to 3932160 when 128 instead 8 processors are available.

5 Conclusions and Future Work

In the paper the new way of scalability evaluation of parallel application is pro-
posed. Utilizing the separate measurements of wall-clock time and CPU time,
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it offers the possibility to estimate the application speedup and efficiency using
only the measurement for a single, parallel execution. For the method to be suc-
cessful it requires only the readily available data, without the need of installation
of additional software or application modifications. The experiments performed
proved that the estimation accuracy is sensitive to the simplifying assumption
taken. For all analysed algorithms the results obtained are similar: the shape
of diagrams is similar and the value of speedup is close. In the future works a
broader class of algorithms will be taken into consideration, as well as improving
the way of weak scalability evaluation will be considered.
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Abstract. The paper presents modeling of performance and power con-
sumption when running parallel applications on modern cluster-based
systems. The model includes basic so-called blocks representing either
computations or communication. The latter includes both point-to-point
and collective communication. Real measurements were performed using
MPI applications and routines run on three different clusters with both
Infiniband and Gigabit Ethernet interconnects. Regression allowed to
obtain specific coefficients for particular systems, all modeled with the
same formulas. The model has been incorporated into the MERPSYS
environment for modeling parallel applications and simulation of execu-
tion on large-scale cluster and volunteer based systems. Using specific
application and system models, MERPSYS allows to predict application
execution time, reliability and power consumption of resources used dur-
ing computations. Consequently, the proposed models for computational
and communication blocks are of utmost importance for the environ-
ment.

Keywords: Performance model · Energy consumption · Cluster com-
puting · MPI

1 Introduction

Modern parallel systems have increased in sizes considerably in recent years.
The most powerful cluster on the TOP500 list – Tianhe-2 features over
3 million cores, offers over 33 PFlop/s performance but at over 17 MWatts of
power consumption1. It should be noted that growth in performance of such par-
allel systems stems from incorporation of more and more computational cores
into the system. At the same time, such large clusters, due to a large number of
components, are prone to failures. This may effectively impact execution times
of parallel applications due to necessary checkpoints and restarts in order to
continue from the last consistent application state. For instance, for Sequoia
the reported failure rate reaches 1.25 per day [1]. Consequently, it is of utmost

1 www.top500.org.
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importance for developers to be able to assess application running times and
speed-ups taking into account not only the design and bottlenecks in the appli-
cation but also potential failures of such large scale cluster systems. On one
hand, if we assume a given input data size for an application then speed-up
will be dependent on the ratio of computations to communication, synchroniza-
tion and specific optimization techniques such as overlapping communication
and computations, piggybacking etc. On the other hand, hardware parameters
such as CPU, GPU performance as well as latency and bandwidth of an inter-
connect will also impact the speed-up. The aforementioned failure possibilities
will further limit performance because if a failure occurs then the application
will need to be restarted either from scratch or from the last saved checkpoint.
Consequently, a question should be asked what would be the optimal number of
CPUs in order to minimize the application running time given this constraints.
Furthermore, power-aware metrics are considered nowadays apart from perfor-
mance only. For instance, one of considered optimization goals is minimization of
application running time with a constraint on the total power consumption used
by computing devices [2]. Consequently, a good model for parallel applications
in a cluster based environment is still crucial for optimization, especially if it
addresses power-aware aspects along with performance. Our main contribution
is to provide a model related to the cluster performance, power consumption and
reliability estimations. We designed the set of formulas working exactly for our
simulation tool, we tested them and tuned for specific real environments.

2 Background and Related Work

A cluster model, or more generally, a hardware model needs to be introduced in
every simulator of running an application in a parallel environment.

GSSIM [3] provides a configurable solution, where it is possible to use the
default mode, where computation times are simply calculated as a linear function
of the processor clock, and communication times are analytically solved accord-
ing to the used network devices, their latencies and bandwidths. The power
consumption is based on the three schemes: constant where a device always con-
sumes the same power, the resource based, usually using values for idle and full
utilization of the resource and the application related where the exact values need
to be provided by the user. The model considered in this work is more focused on
the cluster environment, thus it concerns such operations like disk data transfers
or HyperThreading out-of-the box, without additional user configuration.

There are two main analytical models of the communication behavior in the
network of computation nodes, the one proposed by Hockney in [4] and LogP [5].
The former assumes the time of the message passing between nodes equals L +
m/B, where L is a latency of the network, B is a network bandwidth and m
is a message size. The latter assumes the message delivery time equals L + 2o,
where L is latency of the network, o is an overhead and an additional parameter
describing the modeled system: P – the number of nodes communicating each
other. However, it also assumes that the next message cannot be sent during the
gap time, denoted by g, thus the network can carry messages �L/g� at the time.
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While the gap parameter in the LogP model reflects the network contention,
it is suited for short messages only. Therefore, many variants were proposed.
The LogGP model [6] introduces an additional parameter: G – gap per byte,
thus the time of sending m bytes between two nodes can be presented as o +
(m − 1)G + o. The PLogP model [7] introduces additional dependency of the
gap and overhead parameters on the message size, and additionally distinguishes
overhead for sending and receiving the message: g(m), os(m) and or(m).

The HLoGP model [8] provides support for heterogeneous environment
introducing the parameter matrices instead of scalar model parameters, e.g.
L = {L11, . . . , LMM}, where M is a number of the nodes (which all can be
different from each other) and an additional vector reflecting the differences
between computational power of the nodes, i.e. P = {P1, . . . , PM}. Similarly the
computational power of the processor/cores is also considered in MLogP model
[9] where multicore processor architecture is taken into account. Finally LognP
models [10] enable the hierarchical performance analysis for layered systems,
including the impact of the memory and middleware on distributed communi-
cation.

3 Simulation Environment for Parallel Applications
Running on Cluster-Based Systems

Within project “Modeling efficiency, reliability and power consumption of multi-
level parallel HPC systems using CPUs and GPUs” sponsored by and covered by
funds from the National Science Center in Poland we created an environment for
simulation of parallel applications run on large-scale cluster, grid and volunteer
based systems. For an application run for a particular input data size on a given
system, the environment returns the following:

1. Application execution time.
2. Success/failure of the application – potential hardware failures have become

a concern in large scale parallel systems [1] because of the number of compo-
nents.

3. Energy consumed during execution of the application thanks to considering
power consumption of devices such as CPUs, GPUs and network intercon-
nects.

The distributed architecture of the system comprises the following compo-
nents:

1. A client-side system and application editor as well as a simulation panel:
(a) System model editor (Fig. 1). A user creates a model of the system

by selecting predefined computational components such as CPUs/GPUs
which are interconnected using predefined network types such as WANs,
LANs or buses within each node. The system model can be defined at
multiple levels starting at the top from WAN through LAN up to the
node/machine level. For each particular computational or network type
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Fig. 1. System model editor – an exemplary system

Fig. 2. Sample results

component the user selects one hardware component with specification
stored in a database. This includes single, double floating point perfor-
mance for CPUs/GPUs, power consumption etc. The user assigns labels
to particular computational components. Specifically, if a CPU or a GPU
is assigned a label e.g. “master” with cardinality 12 this means that
up to 12 processes or threads marked “master” in the application can be
run there. It is the scheduler described next that will decide how many
processes or threads with such a label will be launched on such a compu-
tational component. An exemplary system modeling an environment with
Intel Xeon E5-1620 CPUs for master and i7 2600k for slave processes is
shown in Fig. 1.

(b) Application editor. A user writes code of a parallel application using a
special Java type meta-language which uses a generalization of message
passing paradigms such as MPI. The application includes codes of vari-
ous processes/threads each marked with a distinct label such as “master”,
“slaveX”, “slaveY” etc. The code consists of computational or commu-
nication blocks and can contain any basic Java constructs such as for,
while loops, conditional instructions etc. Computational blocks take as
input data size, a function that determines the number of operations vs
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the input data size, optional software stack and optimizations. Commu-
nication blocks include point-to-point, barrier, broadcast, scatter, gather
similar to MPI.

(c) Simulation panel (Fig. 2). The panel allows definition of the number of
processes or threads with given labels and optionally a number of variables
for which values would be available from within the application code. The
panel allows starting a simulation and display of results. Figure 2 shows
exemplary results for running a parallel application in the MERPSYS
environment.

2. System server that acts as a proxy between users and simulators. It launches
and manages several simulations on a cluster in parallel. Upon termination
of a simulation, the client application displays results to the user.

3. Scheduler – an application that decides where the required number of
processes or threads should be launched considering slots available in the
system model.

4. Simulator – an application that simulates execution of the aforementioned
application on a large scale system. For each distinct label defined within
the application, the simulator starts a separate thread that simulates a given
number of processes/threads of this type. Proper scaling is used for both com-
putations and communication using the given number of processes/threads.
This allows simulation of thousands of processes/threads running the same
code using one simulation thread. The simulator offers two advantages over
running a real application: it allows consideration of application and system
sizes for which a real application could not be run due to resource limitations
(such as the limited RAM size), simulation time for an application can be
much shorter than the running time of a real application – this is possible
because of encapsulation of computations within computational blocks.

5. Hardware database which stores information about various hardware compo-
nents such as specific CPUs, GPUs, interconnects within nodes (such as PCI)
and among nodes (LANs, WANs etc.).

Consequently, it is important for the simulator to have detailed formulas for
CPUs, GPUs and interconnects for correct prediction of execution times and
energy consumption of particular blocks of code, either representing computa-
tions or communication among processes or threads of a parallel application.
Additionally, a rough estimate on successful execution of an application can be
derived that uses the number of the nodes involved in computations.

4 Model Formulas

Our model is based on the statistical approach. The measurements realized dur-
ing the experiments reflecting each simulated block were manually compared
to the commonly used formulas (e.g. in [11] for the group communication) and
the closest approximation was chosen. In general we used the expert knowledge
which reflects the internals of the MPI implementation and the cluster design.
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We used the hardware specific implementation (e.g. Infiniband for MVAPICH)
thus using of the already proposed models [11] directly could be misleading. For
regression we used two different error measurements i.e.: (i) mean percentage
error (MPE) in cases where the differences for small absolute value were impor-
tant (e.g. sending of short messages) in the model, and (ii) a traditional mean
squared error for others.

Table 1 presents the formulas of the proposed model. Their parameters are
split into two groups:

1. Input parameters that need to be provided for the application model, i.e.: the
number of instructions to be executed: h, the number of the active threads
executed on a particular node: pth, input data size: d and the number of the
nodes involved in computations: P .

2. Parameters related to a specific environment, constant during the execution
of an application on the modeled cluster, and dependent on the cluster hard-
ware, software (e.g. the operating system and/or the used message library
implementation) and their configuration, e.g. the number of cores in the CPU.
Their values were provided directly (like the mentioned number of cores) or
by the regression (for less obvious ones). Table 3 contains a complete list of
the parameters.

Table 1. Model formulas

Modeled block Execution time

Computation block (Ox) tox =

⎧
⎪⎨

⎪⎩

Tminh if pth ≤ Plow

Tlowh if pth ∈ (Plow, Phi〉
(Thi + Khipth)h if pth > Phi

Communication peer-to-peer (Cp2p) tp2p = Tp2p + Kp2p�d/Dtu�Dtu

Communication broadcast (Cbcast) tbcast = Tbcast + Kbcast�d/Dtu�Dtulog(P )

Communication scatter (Cscat) tscat = Tscat + Kscat�d/Dtu�Dtu
log(P )

P

Communication gather (Cgath) tgath = Tgath + Kgath�d/Dtu�Dtu
log(P )

P

Communication all-to-all (Ca2a) ta2a = Ta2a + Ka2a�d/Dtu�DtuP

Communication barrier (Cbar) tbar = Tbar + Kbarlog(P )

Read block from a network disk (Rdisk) trdisk = Trdisk + Krdisk�d/Dtu�Dtu

Write block to a network disk (Wdisk) twdisk = Twdisk + Kwdisk�d/Dtu�Dtu

Modeled block Power consumption

Any number of blocks on a single node pw =

⎧
⎪⎨

⎪⎩

PWlow + KWlow × pth if pth ≤ Plow

PWhi + KWhi × pth if pth ∈ (Plow, Phi〉
PWmax if pth > Phi

Modeled block Probability of the correct execution

Any number of blocks on a set of nodes s(Δt, P ) = e−λΔtP

A computation block Ox is a basic block which represents data processing
in the cluster and grid environment. We assume the most typical arithmetical
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or comparison operations performed on data. Such a block can be performed
sequentially or in parallel using different cores of the nodes processors.

We assumed that the time of parallel computation of a single instruction
is constant (Tmin) as long as the number of threads is lower than the num-
ber of cores, thus in this case the total time depends only of the number of
executed instructions: tox = Tminh. We assume a similar constant time (Tlow)
for HyperThreading however, in this case this time is longer: Tlow > Tmin, thus
tox = Tlowh. Finally, for the number of threads exceeding the number of (virtual)
cores, we assumed the time of the single instruction increases linearly with the
number of the threads: tox = (Thi + Khipth)h. Figure 3a presents the regression
results with a comparison to the real measurements for an exemplary computa-
tion block of 11 million instructions executed by a single thread.

We distinguish a number of communication blocks, including direct peer-to-
peer and group operations. The time for the former was assumed to be linear
to the size of the message, and for the latter we relied mainly on the analyti-
cal models (e.g. provided in [11]). For both types of formulas we introduced an
adjustment related to the (maximum) data transfer unit. Figures 4 and 5 present
the regression results in comparison to the real measurements for peer-to-peer,
barrier and broadcast blocks. Similarly, blocks related to the network disk I/O
operations were modeled, and appropriate formulas were proposed. Due to their
characteristics, we assumed the same time complexity as for peer-to-peer com-
munication.

During the experiments, we observed the electrical power load being strongly
dependent on the number of the active threads rather than on the type of oper-
ation (a specific computational block). Thus we proposed a model, in which the
power consumed at the moment (expressed in Watts), depends on the number
of used processor cores, which are directly involved in processing. For regression,
we assumed segmented and linear increase of power consumption. However, we
introduced a distinction between the power consumed by active threads assigned
to the real and logical (HyperThreading) cores. Obviously, after passing a cer-
tain threshold additional, active threads do not introduce additional increase in
power consumption. Figure 3b presents the power regression results in compari-
son to the real measurements.

5 Model Parameter Regression Results

The model parameters were derived for three different cluster environments:
Galera+ (all parameters including power), Galera (performance parameters
only) clusters, located in the Academic Computer Centre – TASK, and a KASK
cluster (performance parameters only) located at the Department of Computer
Architecture, Faculty of Electronics, Telecommunications and Informatics. All
these machines are located at Gdańsk University of Technology. The clusters
work under a Linux operating system and the measurements were performed for
the MVAPICH v1.8 MPI implementation.
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Fig. 3. Computation block regressions vs real measurements for Galera+: (a) execution
time, (b) power consumption

Fig. 4. Execution time regressions versus real measurements for Galera+: (a) peer-to-
peer, (b) barrier

Fig. 5. Broadcast execution time regression for Galera+: (a) 3D view (b) mapping to
2D versus real measurements

The Galera+ cluster consists of 192 computation nodes. Every node is
equipped with two Intel Xeon 2.27 GHz multicore processor units, with 6 physi-
cal and 12 logical (HyperThreading) cores each, 16 GB RAM, and network inter-
face cards. The cluster uses two interconnection networks: (i) Infiniband QDR
(40 Gbps) and (ii) GB Ethernet, supported by respective network switches. Addi-
tionally there is a 500 TB disk array exposed to the nodes using a Glustre remote
file system. The Galera cluster consists of 672 computation nodes. Every node is
equipped with two Intel Xeon 2.33 GHz multicore processor units, with 4 cores
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each, 8-32 GB RAM, and network interface cards. The cluster uses two intercon-
nection networks: (i) Infiniband DDR (20 Gbps) and (ii) GB Ethernet, supported
by respective network switches. Additionally the 500 TB disk array is exposed
to the nodes using a Lustre remote file system.

Table 2. Pearson coefficient squared (R2) calculated for the regression formulas versus
the real measurements

Formula R2 Galera+ R2 Galera R2 KASK

tox 0.9993 0.9999 0.9999

tp2p 0.9996 0.9998 0.9996

tbcast 0.9902 0.9688 0.9102

tscat 0.9643 0.9176 0.9668

tgath 0.9620 0.9374 0.9823

ta2a 0.9296 0.7858 0.8384

tbar 0.7324 0.9223 0.8527

trdisk 0.9999 0.9971 0.9976

twdisk 0.9988 0.9999 0.9999

pw 0.9062 — —

The KASK cluster consists of 10 computation nodes. Every node is equipped
with two Intel Xeon 2.8 GHz multicore processor units, with 2 physical and
4 logical (HyperThreading) computation cores each, 4 GB RAM, and net-
work interface cards. The cluster uses two interconnection networks: (i) Infini-
band (10 Gbps) and (ii) GB Ethernet, supported by the corresponding network
switches. Additionally there is a 4 TB disk array exposed to the nodes using
the NFS file system. The regression was performed numerically using the gath-
ered power and time measurements. The final results for three different clusters
are presented in Table 3. Figures 3, 4 and 5 present the charts with comparison
of some regression results to the real measurements and Table 2 provides the
evaluation with the Pearson coefficient squared (R2) for all estimated formulas.

6 Summary and Future Works

In the paper, we presented modeling of parallel processing in a cluster envi-
ronment that includes equations representing execution times of computational
and communication blocks, power consumption of such blocks as well as a sim-
ple estimate on reliability of computations. Furthermore, coefficients for these
computational and communication equations were found for three clusters and
power consumption and reliability indicated for Galera+ cluster located at Aca-
demic Computer Center, Gdańsk, Poland. These equations constitute an integral
part of an environment that allows simulation of parallel applications running on
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Table 3. Model instance parameters for Galera+, Galera and KASK clusters

Plow

Phi

Tmin μs

Tlow μs

Thi μs

Khi μs

Dtu

Tp2p μs

Kp2p μs

Tbcast μs

Kbcast μs

Tscat μs

Kscat μs

Tgath μs

Kgath μs

Ta2a μs

Ka2a μs

Tbar μs

Kbar μs

Trdisk μs

Krdisk μs

Twdisk μs

Kwdisk μs

PWlow

KWlow

PWhi

KWhi

PWmax

λ

large scale systems and prediction of execution time, potential failures and energy
consumed during a run. The environment with its basic components such as a
system editor, an application editor and a simulation panel with sample results
were presented. The system editor and consequently the simulator use the pre-
sented equations for simulation of runs of modeled parallel applications on the
three aforementioned clusters. This in turn allows estimation of execution times,
power consumption and reliability for various applications and configurations
including the number of nodes run on these clusters.

Acknowledgments. The work was performed within grant “Modeling efficiency, reli-
ability and power consumption of multilevel parallel HPC systems using CPUs and
GPUs” sponsored by the National Science Center in Poland based on decision no
DEC-2012/07/B/ST6/01516.
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Abstract. Large scale Web search engines have to process thousands of
queries per second and each query has to be solved within a fraction of
a second. To achieve this goal, search engines rely on sophisticated ser-
vices capable of processing large amounts of data. One of these services
is the search service (or index service) which is in charge of computing
the top-k document results for user queries. Predicting in advance the
response time of queries has practical applications in efficient adminis-
tration of hardware resources assigned to query processing. In this paper,
we propose and evaluate a query running time prediction algorithm that
is based on a discrete Fourier transform which models the index as a
collection of signals to obtain patterns. Results show that our approach
performs at least as effectively as well-known prediction algorithms in
the literature, while significantly improving computational efficiency.

Keywords: WAND · Inverted files · Multi-threading

1 Introduction

Large scale Web search engines are complex systems composed by several ser-
vices deployed on different clusters of processors interconnected by a high speed
communication network. In particular, the so-called index service where it is nec-
essary to determine the K most “suitable” Web documents for a given query, is
the most time consuming task. This service uses a document-similarity-to-query
function which running time depends on the query contents and the size of the
Web sample (usually huge), kept indexed in the distributed memory cluster of
processors supporting the index service. When similarity calculation functions
are used in tandem with cost-saving strategies such as the WAND [1] or the
Block-Max WAND [5], the cost is not linear on the dataset size. The WAND
strategy allows to skip documents with no chance of being part of the top K doc-
uments, making the running time cost unpredictable and widely variable across
queries. Additionally, unbalance is introduced among the distributed processors
and resources may be under-utilized.

In this context, running time prediction algorithms represent a non-trivial
problem which can be used to decide at run time the number of resources to be
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 210–220, 2016.
DOI: 10.1007/978-3-319-32152-3 20
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assigned to each incoming query under unstable conditions such as high query
traffic. In this paper, we propose a method suitable for this the Block-Max
WAND query evaluation strategy operating on an index service for a Web search
engine. The paper describes the method and compares it against a state of the
art method for the same problem [2] on a multi-thread environment.

The underlying data structure in the index service is the so called inverted
file, composed of a table of terms and for each term there is a posting list of
Web documents where the term appears and its in-document term frequency.
The similarity function scans the posting lists associated with the query terms
to determine the documents that are the most similar ones to the query.

Our prediction method uses the discrete Fourier transform (DFT) to obtain
a spectrum of the posting lists of terms stored in the inverted file. This process
is performed off-line. The information obtained with the DFT (which is repre-
sented as a vector with six descriptors) is used to feed a feed-forward neural
network with back-propagation which estimates the query running time on-line.
Figure 1(a) shows a general scheme of the proposed query running time predic-
tion method. The DFT has been previously used in other context like patter
recognition, data mining [10], etc. In the Web search engine domain, it has been
used as a scoring method to order the relevance of documents when related to a
specific query [7]. However, to the best of our knowledge, the novelty of our pro-
posal comes from the application of the DFT to significantly reduce the number
of dataset descriptors required to train the machine learning model.

Fig. 1. (a) General scheme. (b) Distribution of the scores of posting lists.

The remaining of this paper is as follows. Section 2 describes the Block-Max
WAND used in this work and related works. Section 3 presents our proposed
dynamic query time prediction algorithm. Section 4 presents our experiment
results and Sect. 5 presents conclusions.



212 O. Rojas et al.

2 Background and Related Work

Large scale Web Search Engines (WSE) have to manage huge quantities of doc-
uments while achieving the goal of effectively answering user queries within a
fraction of a second. WSEs are usually built as a collection of services hosted in
large clusters of multi-core processors wherein each service is deployed on a set
of processors supporting multi-threading. Services are software components exe-
cuting operations such as (a) calculation of the top-k documents that best match
an user query; (b) construction of the result Web page for queries; (c) advertising
related to query terms; (d) query suggestions, among other operations.

One important bottleneck in WSE is the service in charge of computing the
top-k documents for user queries, named search service (or index service), where
a ranking algorithm is executed on an inverted index (or inverted file) which
is a data structure used by all well-known WSEs. This index enables the fast
determination of the documents that contain the query terms and contains data
to calculate document scores for ranking. The index is composed of a vocabulary
table and a set of posting lists. The vocabulary table contains the set of relevant
terms found in the document collection. Each of these terms is associated with a
posting list which contains the document identifiers where the term appears in
the collection along with data used to assign a score to the document. To solve a
query, it is necessary to get from the posting lists the set of documents associated
with the query terms and then to perform a ranking of these documents in order
to select the top-k documents as the query answer [1,3].

2.1 Query Evaluation Process: WAND and Block-Max WAND

Ranking algorithms return the top-k documents for user queries. To quickly
process large inverted lists, these algorithms use dynamic pruning techniques
to avoid processing complete lists. Some ranking algorithms for inverted lists
have been proposed in the technical literature [1,5]. In this paper we use on the
current state-of-the-art WAND [1] and its variant BM-WAND [5], which achieve
significant benefits [5]. They use a pointer movement strategy based on pivoting
to skip many documents that would be evaluated by an exhaustive algorithm.

The WAND algorithm assumes a single threaded processor containing an
inverted index, which is usually kept in compressed format. The algorithm process
each query by looking for query terms in the inverted index and retrieving each
posting list. Documents referenced from the intersection of the posting lists allow
to answer conjunctive queries (AND bag of word query) and documents retrieved
at least from one posting list allow to answer disjunctive queries (OR bag of word
query). It uses a standard docID sorted index and it is based on two levels. In the
first level, some potential documents are selected as results using an approximate
evaluation. Then, in the second level those potential documents are fully evaluated
(e.g. using the BM25 or vector model) to obtain their scores.

Let us consider an additive document scoring model for document ranking,
i.e. for query q and document d we have Score(d, q) =

∑
t∈q∩d w(d, t), where

w(d, t) represents the score for term t in d. Each term t is associated with an
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upper bound UBt which corresponds to its maximum contribution to any doc-
ument score in the collection. The currently found top-k results are stored in a
heap, which is initially empty. The document with least score is located in the
root. The root score provides a threshold value which is used to decide the full
score evaluation of the remaining documents in the posting lists associated with
the query terms. The admission of a new document in the heap is produced when
the WAND operator is true, i.e. when the score of the new document is greater
than the score of the document with the minimum score stored in the heap. If
the heap is full, the document with the minimum score is replaced, updating
the value of the threshold. Documents with a score smaller than the threshold
score in the heap are skipped. This scheme allows skipping many documents
that would have been evaluated by an exhaustive algorithm.

The Block-Max WAND (BM-WAND) algorithm is proposed in [5]. It uses
compressed posting lists organized in blocks. Each block stores the upper bound
(Block max) for the documents inside that block in uncompressed form, thus
enabling to skip large parts of the posting lists by skipping blocks. This reduces
the cost of the WAND algorithm but does not guarantee correctness because
some relevant documents could be lost. To solve this problem, the authors pro-
pose a new algorithm that moves forward and backwards in the posting lists to
ensure that no documents are missed. Independently, the same idea was pre-
sented in [3].

2.2 Query Time Prediction Algorithms

One may think that queries terms with larger posting lists are more expensive
to process. However, the cost of processing a query cannot be directly related to
the posting list lengths of its terms when dynamic pruning techniques are used,
because many documents can be skipped. In this context and under different
user query bursts, query time prediction algorithms can be useful to determine
which resources are going to be allocated to a given query. In [4] a performance
query predictor is proposed. It is based on the relative entropy between a query
language model and the corresponding collection language model.

A query efficiency predictor is proposed in [2] for the WAND algorithm. The
algorithm is designed for a distributed search engine. This work shows that there
is a strong correlation between the distribution of postings in the query terms
and the response time of the query. Recently, the work in [6] detects the most
relevant parameters used in [2] and propose to optimize memory usage.

The work in [9] aims to achieve a minimum query response time when query
traffic is high, by adjusting the value of k (top-k document results) and the
threshold used by the WAND algorithm which increases the aggressiveness of
the pruning. In other words, it reduces the number of document retrieved for
each user query. The algorithm is configured to prune more or less aggressively,
depending on the expected duration of the query. The value of k is also esti-
mated in [8]. However, in this work the effectiveness of the search engine is not
compromised. The algorithm ensures the top-k document results.
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3 Proposed Query Time Prediction Algorithm

The score distribution w(t, d), the location of documents representing the upper
bounds in posting lists and the length of the posting lists, varies from term to
term. Figure 1(b) shows the score distribution of the posting lists of three terms.
The x-axis shows the documents sorted in ascending order by their identifiers,
and the y-axis shows the score w(t, d). A good query representation combines
different features that allow establishing a mathematical relationship between
the time required to process the query and the information of the inverted index.
We propose using the DFT to represent the main characteristics of posting lists
of query terms, such as the power spectral density of posting lists among others.
This characteristics will be used later to predict query response times.

Given a query q containing the terms tl with l ≥ 1, where each term has
a posting list Lt containing pairs < d,w(d, t) > where d is the document iden-
tifier and w(d, t) is the score of the term in the document (e.g. the frequency
of occurrence of the term t in the document d), our method works as follows.
We use information regarding the frequency spectrum of density functions Φt

obtained from the posting lists of the terms tl ∈ q, and also considers the infor-
mation related to the spectrum of frequency of the processing time T (tl, k) for
each term tl required to retrieve the top-k document results. The spectrum of
frequencies is obtained with the discrete Fourier transform DFT . In addition,
we use: (a) the size of each posting list st = |Lt| (i.e. the number of docu-
ments where the term appears), (b) the processing time for T (t, 10), T (t, 100),
T (t, 1000) and for T (t, 10000), and (c) the threshold value for the top-k docu-
ment. Then, we describe each term with a five dimension characteristic vector
ψ :< ψ0, ψ1, ψ2, ψ3, ψ4 >.

The density function XDFT of the posting lists of the term tl, describes the
search space Ωt of the posting list Lt. The XDFT of the processing times func-
tions T (t, k) describes the differences of the times required to process the posting
list of a term t with different k values. In practice, the values of XDFT [u] are the
u-th coefficients of Fourier and express the frequency content of a function or a
signal. In this analysis, the DFT of Φt, can be considered as a characterization of
the distribution of the values w(d, t), and therefore it can be seen as a function
of bulk density in the frequency domain.

We use the spectral power density of XDFT over w(d, t), because it represents
the cost of processing the signal in the frequency domain. It shows how the power
is scattered as a function of the frequency F = 1/10, which is the minimum
frequency (or fundamental frequency) of the DFT. The fundamental frequency
F = 1/10 describes the density of posting lists by using the convolution of the
broader sinusoidal signal. Thus, it describes well the posting lists that have a
higher density. We also use the magnitude of the spectrum of the fundamental
frequency F = 1/4 of the DFT for the posting lists and for the processing
times obtained for each term T (t, k), which describes the difference between
the processing times as the value of k increases in a quadratic way. Table 1
summarizes the descriptors used in our predictor.
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PSD of Φt of Frequency 1/10: ψ0 is the Power Spectral Density (PSD) of
the DFT of Φt in the fundamental frequency F = 1/10. The calculation is
|XDFT [u]{Φt}|2, u = 1. Φt (Eq. 1) is a vector containing the cumulative sums
on ΦG (Eq. 2) of scores w(d, t) of each document d ∈ Lt inside 10 intervals Ij .
Each j-th interval I is equi-spaced at the rate of #Postings/10 items. If there
are empty intervals, the cumulative sum is zero in those positions. Each value
of Φt,i is obtained with Eq. 3.

Φt =< Φt,1, Φt,2, ..., Φt,i, ...Φt,10 > (1)

ΦG = max{
∑
d∈Lt

w(d, t)}, t ∈ V (2)

Φt,i =
1

ΦG

∑
d∈Ii

w(d, t) (3)

DFT Magnitude of Rank-Score of Frequency 1/4: ψ1 is the magnitude
of the frequency spectrum of the DFT in the fundamental frequency F = 1/4
of the distribution of cumulative density of the documents scores from k = 1 to
k = {10, 100, 1000, 10000}.
#Postings: ψ2 is the number of documents where the term appears.
DFT Magnitude of Processing Times: ψ3 is the magnitude of the fre-
quency spectrum of the DFT obtained for the vector containing the process-
ing times T (t, k) of a term t at frequency T = 1/4. The vector elements are
< T (t, 10), T (t, 100), T (t, 1000), T (t, 10000) >. T (t, k) is the processing time
required to retrieve the top-k documents results for the term t.
Threshold: ψ4 score value (threshold) for the k − th document (top-k). If the
list has less than k documents, then ψ4 = 0.

To predict the query response time, we compute the query descriptor Ψq as
a six dimension vector < x0, x1, x2, x3, x4, x5 > as follows. For each term t ∈ q,
we add the corresponding descriptors tψ0 , tψ1 , tψ2 and tψ3 of each term in q, so
we compute an initial query vector with dimension four. Then, we include two

Table 1. Elements of the term descriptors.

Descriptor for term t

1. ψ0 : PSD of Φt at a frequency 1/10.

2. ψ1 : DFT magnitude of Rank-Score at a frequency 1/4.

3. ψ2 : #Postings

4. ψ3 : DFT magnitude for the processing times.

5. ψ4 : score value for the k − th document in the term list.

Additional descriptor S()

a. Sum: xi =
∑

t∈q tψi for i=0,1,2,3

b. Maximum: x4 = maxt∈q{tψ1}, x5 = maxt∈q{tψ4}
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additional descriptors computed as the max{tψ2} and max{tψ4} for each t ∈ q.
All vectors ψt are calculated off-line, while Ψq is obtained on-line.

For a given query q, the descriptors < x0, x1, x3 > represent the sum of
integrals obtained with the DFT (for a different feature) and the descriptor x2

represents the sum of documents, which gives an approximation to the search
space of q. We do not compute the sum of ψ4 for each term of the query, because
it is a lower bound of the score of the top-k and if there are several term lists
with high scores, the sum of those scores will increase the value of ψ4 and it will
lose its characteristic of lower bound. We also use the maximum values of ψ1

and ψ4 that are minimum bounds.
All descriptors using the DFT, are based on the use the fundamental fre-

quency F that depends on the period of P of the input signal. That is, the
distributions of w(d, t) with period of P = 10, the distributions of the cumu-
lative density with period of P = 4, and the distributions of processing time
with period of P = 4 where the fundamental frequency is F = 1/P . We use the
fundamental frequency to quantify how is the distribution of the high values of
the input signal. In our case, high values of the magnitudes of the DFT represent
a higher processing list costs, either in the spatial domain as in the time domain.

4 Experiment Results

4.1 Experimental Setup

Experiments were conducted on a Intel Processor Core i7-3820. We used a
50.2 million document corpus TREC ClueWeb09 (category B)1. We index this
corpus using the Terrier IR platform2. We select the first 14,289 queries from
the TRECMillion Query Track 2009. We use a feed-forward neural network with
back-propagation with six input neurons, one for each of the six dimension char-
acteristic vector ψ, and one output. We trained the neural network with 60 %
of the queries and we used 40 % for validation. We conducted experiments with
1, 5, 10, 25 and 50 neurons in the hidden layer. We used the transfer functions
log-Sigmoid in the hidden layer and transfer function lineal in the output layer.

We pruned the index to keep only data related to the terms of the query log.
We evaluated the prediction algorithms (our proposal and the Baseline approach
according to [2], which uses vectors with 42 descriptors to represent queries) over
two strategies to efficiently organize multi-threading in search engine proces-
sors [8]. We refer to a situation in which (1) multiple threads are assigned to a
given query and each thread keeps a local heap data structure to hold its cur-
rent local top-k results to then determine the global top-k results for the query
(LBM-WAND), and (2) one shared heap is kept for each active query to hold its
current global top-k results and the assigned threads access it in a concurrent
manner to process the respective query (SBM-WAND). We set k = 1000.

1 http://www.lemurproject.org/clueweb09.php/.
2 http://terrier.org/.

http://www.lemurproject.org/clueweb09.php/
http://terrier.org/


Running Time Prediction for Web Search Queries 217

4.2 Accuracy Evaluation

Table 2 shows results with different number of neurons in the hidden layer to
determine how much the precision of the algorithms can be improved with a
greater numbers of neurons. Running time is measured in seconds. r is the
Pearson’s correlation, and the root of the mean square error computed as:
RMSE =

√
(
∑

(xi − yi)2/N), where N is the number of queries used in the
experiment, xi is the response time for qi and yi is the predicted query time.

Table 2. Accuracy evaluation obtained with three query time prediction algorithms.
L stands for Local heap and S for shared heap.

Neurons of the Hidden Layer

1 5 10 25 50

r RMSE r RMSE r RMSE r RMSE r RMSE

Sequential BM-WAND

Baseline 0,898 0,049 0,923 0,043 0,908 0,047 0,862 0,059 0,844 0,063

Proposed 0,886 0,052 0,930 0,041 0,928 0,042 0,925 0,043 0,919 0,044

LBM-WAND / SBM-WAND

2 thread

Baseline-L 0,912 0,047 0,932 0,042 0,925 0,044 0,894 0,052 0,876 0,058

Proposed-L 0,895 0,051 0,944 0,038 0,940 0,039 0,941 0,039 0,918 0,046

Baseline-S 0,897 0,051 0,901 0,050 0,891 0,054 0,861 0,062 0,813 0,074

Proposed-S 0,880 0,055 0,926 0,043 0,929 0,043 0,906 0,049 0,903 0,050

4 thread

Baseline-L 0,920 0,044 0,945 0,037 0,928 0,043 0,921 0,045 0,884 0,055

Proposed-L 0,902 0,048 0,948 0,035 0,951 0,034 0,949 0,035 0,928 0,042

Baseline-S 0,897 0,052 0,905 0,050 0,901 0,051 0,865 0,061 0,853 0,064

Proposed-S 0,875 0,056 0,926 0,044 0,927 0,044 0,925 0,044 0,918 0,047

8 thread

Baseline-L 0,939 0,035 0,955 0,031 0,954 0,031 0,948 0,034 0,922 0,042

Proposed-L 0,927 0,039 0,956 0,030 0,963 0,028 0,967 0,026 0,954 0,031

Baseline-S 0,913 0,050 0,936 0,043 0,927 0,046 0,902 0,053 0,891 0,057

Proposed-S 0,892 0,055 0,938 0,042 0,938 0,042 0,925 0,047 0,919 0,048

Results show that a good prediction can be achieved with 5 neurons. From
this point on, results do not improve significantly. With more threads, the pre-
diction is more accurate, because processing times reported by each thread tends
to be lower (each thread access to a small portion of the index which reduces the
average query processing time). Also, the Pearson correlation between real and
estimated query times is greater than 0.8 with all approaches. Thus, there is a
positive correlation between the real and the estimated query response time.

Results reported with the LBM-WAND and the SBM-WAND algorithms
show that our proposal presents good query time estimations with errors
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Table 3. Average query response times in second reported by the real execution, and
the query times estimated by our proposal and the Baseline approach.

5 neurons of Hidden Layer

Real Baseline Proposed

Threads MQT max t MQT max t EM max e MQT max t EM max e

1T 0,133 1,062 0,133 0,839 0,025 0,376 0,134 0,909 0,025 0,370

2T-L 0,091 0,668 0,091 0,506 0,016 0,283 0,091 0,492 0,014 0,256

2T-S 0,075 0,586 0,076 0,422 0,015 0,489 0,075 0,364 0,014 0,222

4T-L 0,062 0,424 0,062 0,356 0,009 0,191 0,061 0,353 0,008 0,148

4T-S 0,043 0,323 0,043 0,263 0,008 0,305 0,043 0,195 0,008 0,132

8T-L 0,057 0,406 0,056 0,403 0,007 0,204 0,056 0,296 0,006 0,196

8T-S 0,036 0,256 0,035 0,240 0,006 0,104 0,034 0,206 0,006 0,093

values close to the ones reported by the Baseline. The neuronal network tends
to improve the precision of the prediction algorithms as more threads. With
8 threads the Pearson correlation is increased in average by 3,6 % for LBM-
WAND and by 1,1 % for SBM-WAND. The RMSE of LBM-WAND (baseline
and proposed) decreases by 37 % in average. Therefore, the LBM-WAND app-
roach tends to be more effective in terms of time prediction.

Table 3 shows the query processing times in seconds obtained with a real exe-
cution and the query times predicted by our proposal and the Baseline approach
using five neurons in the hidden layer of the neuronal network. Both prediction
algorithms were executed with the LBM-WAND and the SLB-WAND parallel
algorithms. MQT is the average time required to process queries. max t is the
maximum computation time achieved in the experiments. max e is the maxi-
mum observed error of the prediction. The average mean error of the prediction
is computed as EM = (

∑ |xi − yi|)/N, where N is the number of queries used
in the experiment, xi is the response time for qi and yi is the predicted time.

As expected query response time is reduced with more threads, because each
thread processes a smaller portion of the inverted index. In particular, the SBM-
WAND approach with 8 threads reports an average query response time of 0.036
which reduces by 73 % the time reported by the sequential algorithm (0.133 vs
0.036). The maximum query response time is reduced by 75 % (1.062 vs. 0.256)
and the EM is reduced by 76 % (0.025 vs. 0.006). In general, our proposal reports
the same EM as the baseline approach, but with lower maximum errors. These
results are achieved when using at least five neurons in the hidden layer.

4.3 Performance Evaluation

Table 4 shows running times in nanoseconds required to build the query vector
and the time required to predict the query processing time using 2 and 5 terms
and using 5, 10, 25 and 50 neurons in the hidden layer of the neuronal network.
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Table 4. Running time in seconds reported by our proposal and the Baseline approach.

Vector Construction Neuronal Network

Strategy 2 terms 5 terms 5 Neurons 10 Neurons 25 Neurons 50 Neurons

Baseline 22129 ns 31429 ns 6844 ns 9150 ns 14108 ns 23397 ns

Proposed 2095 ns 2376 ns 4610 ns 5238 ns 6984 ns 8894 ns

Table 5. Amount of memory required to build the vector for terms and for queries.

Vector for Terms Vector for Queries

Baseline 92 Bytes 213 Bytes

Proposed 45 Bytes 46 Bytes

Results show that our proposal is capable of reducing by 91 % the time
required to build the query vector using two terms in each query (22129 vs.
2095) and 94 % in the case of using 5 terms per query (31429 vs. 2376). With our
proposed prediction algorithm, the time required to predict the query response
time is 33 % lower than the time reported by the Baseline approach when using
a hidden layer with 5 neurons. With 50 neurons, our proposal reduces by 62 %
the time required to predict a query processing time.

Table 5 shows the memory required to build the vector for term of the inverted
list and the vectors used to describe the queries. Our proposal reduces by 51 %
the amount of memory used to store the terms descriptors and reduces by 78 %
the amount of memory required for the query vectors. Therefore, our proposed
algorithm drastically reduces on-line execution times and also the memory space
required to manage the vector descriptors.

5 Conclusion

We proposed a query running time predictor for the BM-WAND algorithms
based on two components: (1) a discrete Fourier transform (DFT), and (2) a
feed-forward neural network with back-propagation. The DFT is used to obtain
values for characteristics of the posting lists associated with the query terms.
These characteristics are used to train a neuronal network which is used to
predict the query execution time. We evaluate our proposed prediction algorithm
using two multi-threading query processing approaches. Results show that, with
both SBM-WAND and LBM-WAND parallel query processing approaches, our
proposal is capable of estimating the query execution time with a mean error
close to the one reported by the Baseline approach [2], with the benefit that our
proposal dramatically reduces the processing time per query and memory space.

In the near future we plan to evaluate the use of our predictor as part of a
scheduler devised to assign one or more threads to solve any given query.
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Abstract. Graph-based computations are used in many applications.
Increasing size of analyzed data and its complexity make graph analysis a
challenging task. In this paper we present performance evaluation of Java
implementation of Graph500 benchmark. It has been developed with the
help of the PCJ (Parallel Computations in Java) library for parallel and
distributed computations in Java. PCJ is based on a PGAS (Partitioned
Global Address Space) programming paradigm, where all communica-
tion details such as threads or network programming are hidden. In this
paper, we present Java implementation details of first and second kernel
from Graph500 benchmark. The results are compared with the existing
MPI implementations of Graph500 benchmark, showing good scalability
of PCJ library.

Keywords: High performance computing · Graph processing · PGAS ·
Parallel and distributed computation · Performance evaluation · Parallel
graph algorithms · Java

1 Introduction

Many computational problems can be formulated in the terms of graphs. Graphs
are very convenient when talking about relations in any context. That is why
they are commonly used in many scientific fields, for example in biology (to
model protein interactions or a food chain), in sociology (for social network
analysis), WWW mining, analysis of networks or data transfer processing.

Since size of analyzed problems increases, fast analysis and short time for
getting solution for the large graph is becoming more and more important [1].
Graphs of interest often consist of millions of vertices and processing of them is
not an easy task. From the computational point of view graph processing requires
intensive integer calculations and is different from traditional CPU intensive
floating point operations measured with, for example, LINPACK benchmark.
The important challenge is large memory demand to store and process graphs
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and in the case of parallel processing, huge amount of communication and syn-
chronization. In order to analyze supercomputers powers across the world in the
context of graph problems the Graph500 benchmark has been created [2].

Exploitation of graphs is ubiquitous, therefore new solutions, languages or
libraries are still being invented to improve performance and make programming
easy end efficient. Building systems that process vast amounts of data has been
made simpler by the introduction of the MapReduce framework [3], and its open-
source implementation Hadoop [4]. These systems offer automatic scalability to
extreme volumes of data, automatic fault-tolerance, and a simple programming
interface based around implementing a set of functions. However, it has been
recognized [5] that these systems are not always suitable when processing data
in the form of a large graph. Therefore dedicated tools for graph processing
has been developed. A good example are open source Graphlab [6], Ligra [7] or
Graph Processing System [8] as well as proprietary one such as Pregel [5].

Most of the tools for graph processing is using traditional programming lan-
guages such as C/C++. However the growing adoption of Java as programming
language for the data analytics opens requirement for new scalable solutions. The
parallel execution in Java is based on the Thread class or fork-join framework.
Recent addition to the Java parallelization capabilities is the Java Concurrency
Package introduced in Java SE5 and improved in Java SE6. All these features
can be used within single Java Virtual Machine which limits parallelization capa-
bilities to the single shared memory node.

One of the new programming tools for the parallel computing in Java is PCJ
library [9]. PCJ addresses increasing demand for easy and efficient tools to par-
allelize Java applications. The library is based on the PGAS (Partitioned Global
Address Space) model [10] which allows programmer to view a distributed mem-
ory system as a global address space. In PGAS model communication details are
hidden improving ease of programming. PGAS languages use one-sided commu-
nication which allows for access to the remote memory without involving threads
on the remote nodes. Unlike existing solutions based on the MPI or RMI, the
PCJ is written as pure Java library and does not use external libraries nor JNI
technology. The performance of the PCJ library has been already tested based on
the standard microbenchmarks such as ping-pong, broadcast and barrier showing
good scalability and performance up to thousands of cores [11].1

In this paper we present parallelization of the problem of a large graph tra-
versing. Our solution is based on the Java language and is parallelized with
the PCJ library. We have implemented Graph500 benchmark and evaluated its
performance. The obtained results are compared to the standard MPI implemen-
tation of the Graph500. The approach used in PCJ implementation of the first
kernel of Graph500 is different than those used in reference codes. The idea of
the second kernel algorithm is based on reference ‘MPI simple’ implementation
and has been adopted to PGAS Java library and one-sided communication.

1 PCJ has been appreciated as an efficient way of programming parallel applications,
receiving HPC Challenge Class 2 Best Productivity Award [12].
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Graph Generation (Edge List) 

Graph Construction

Breadth First Search

BFS Tree Validation

Kernel 1

Kernel 2
64 iterations

(Transformation to any sparse-efficient data structure
such as CSR or CSC)

Fig. 1. The Graph500 benchmark execution flow.

The rest of the paper is organized as follows: in the Sect. 2 we describe
Graph500 benchmark. Next section describes related work. Section 4 describes
basic features of the PCJ library. The parallelization of the Graph500 bench-
mark with the PCJ is described in the Sect. 5. The following section contains
performance evaluation of the solution. Paper is concluded by the conclusions
and remarks on future work.

2 Graph500 Benchmark

Graph500 was developed to help to analyze and evaluate performance of the
computers and computer clusters in the context of graph algorithms [2].

The flow of tasks in Graph500 is illustrated in Fig. 1. The benchmark provides
Graph Generator which constructs a graph in a form of an edge list. Each edge
is undirected and is represented with endpoints given in the tuple as start-vertex
and end-vertex. The Graph500 Generator adopts a Kronecker Graph model [13]
that simulates sparse, real networks with small diameter, which are scale-free
and their degree distribution follows a power law.

The size of a graph is specified by the following parameters: SCALE (the
logarithm base two of the number of vertices) and edgefactor (the ratio of the
graph’s edge count to its vertex count), which means that the total number of
vertices is N = 2SCALE and the number of edges equals M = edgefactor · N .

The benchmark has two computational kernels that are timed and included
in the performance information:

1. The first kernel transforms the edge tuples list obtained from the Graph
Generator and constructs an undirected graph in a format usable by second
kernel.

2. The second kernel performs a breadth-first search (BFS) of the graph from a
randomly chosen source vertex.

No subsequent modifications are permitted between kernels computations. After
both kernels have finished, there is a validation phase to check if the BFS result
is correct. There are 64 iterations of kernel 2 together with validation tests.
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3 Related Work

Graph500 benchmark provides several implementations: GNU Octave (may be
MatlabTM compatible), sequential, OpenMP, Cray XMT and a couple of imple-
mentations using MPI. The implementations differ in partitioning of a graph
(1D horizontal or 1D vertical) and sparse graph format used in the first kernel
(CSR or CSC). CSR (Compressed Sparse Row) is an efficient representation of
sparse graphs, where graph is stored in two one-dimensional arrays. The first
array holds all nonzero entries (end-points of the edges) of sparse adjacency
matrix reading rows in top-to-bottom order. The second array stores offsets
which indicate the start vertex of the edges. CSC (Compressed Sparse Col-
umn) is similar except that nonzero entries are read by columns in left-to-right
order and the second array stores offsets which indicate the end vertex of the
edges. All the Graph500 kernel 2 reference MPI implementations are based on
a level-synchronized breath-first search. The difference between them is in the
way of keeping current queue while doing BFS. In the two MPI implementa-
tions: ‘replicated-csr’ and ‘replicated-csc’ current queue is replicated across all
the nodes, while in simple and one-sided implementations every task hold its
own current queue. The types of communication between processors and the
partitioning of the graph among processors have impact on performance [14].
In PCJ kernel 1 algorithm we present new approach, in which threads does not
need to merge computed outcomes. Unlike in MPI implementation, in our solu-
tion after initial computations every thread is able to create its own part of CSR
outcome. The PCJ kernel 2 idea is based on ‘MPI simple’ reference implementa-
tion and has been adopted to PGAS Java library and one-sided communication.
The BFS which is a crucial part of Graph 500 benchmark and is a key part of
many algorithms has been widely studied [15].

The problem of graph processing has been studied in PGAS languages
recently [16]. Authors present fast PGAS implementation of graph algorithms
for the connected components and minimum spanning tree problems. With addi-
tional algorithmic and PGAS specific optimizations, authors achieved significant
speedups over both the best sequential implementation and the best single-node
SMP implementation for large, sparse graphs with more than a billion edges.

There is also several papers describing graph traversal in PGAS UPC lan-
guage [17,18], where authors present fast PGAS connected components algo-
rithms and an abstraction of Queues used to communication between tasks using
buffering. This implementation outperforms UPC-threads.

The PGAS X10 language has been used for creation of X-Pregel [19] a graph
processing system based on Google’s Computing Pregel model.

4 PCJ Library

There have been many solutions designed for parallel computations based on
Java language. Among them we can mention Java Grande, Titanium, Parallel
Java or ProActive. Most of these solutions have performance problems or they
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are difficult to use because they contain extensions to the Java Language and
are based on the translation of Java code to C. Currently there is lack of easy
and efficient tools designed for parallel and distributed computations in Java.

PCJ is a library for parallel and distributed computations in Java. It is based
on the PGAS (Partitioned Global Address Space) paradigm [10]. In this app-
roach all communication details such as threads or network programming are
hidden for the programmer, what allows to develop distributed applications eas-
ily. Unlike other implementations, PCJ does not need to use dedicated compiler
to preprocess code nor defines new language constructs. It has a form of Java
library which can be used without any modifications of the language. Programs
developed with PCJ can be run on the distributed systems with different JVM
running on the nodes.

5 Graph500 in PCJ

In this section we present the implementation details of the Graph500 benchmark
implemented in Java with the PCJ library. The implementation of first and
second kernel has been prepared.

5.1 Kernel 1

The aim of the first kernel is to transform the graph given in the form of edge
tuples list (the graph is undirected) to more optimized data structure that is
usable by second kernel [20]. The Graph500 specification does not impose specific
data structure. Since the graph is static and it does not change during compu-
tations. In PCJ implementation of Graph500 benchmark we chose to transform
the edge list to the CSR format.

The arrangement of vertices and edges of a graph on distributed memory
system is realized by 1D partitioning, which can be easily visualized by one-
dimensional decomposition of the adjacency matrix of the graph. All vertices
and edges of the original graphs are partitioned, so each processor owns N/p
vertices and its incident edges (p is a number of processors and N is a number
of vertices in a graph). In a case of undirected graphs all edges are stored twice.

In this representation all adjacent vertices of vertex are stored in a continuous
portion of memory. Adjacent vertices of vertex vi are next to adjacent vertices
of vertex vi+1. The offsets array stores the start point of each contiguous vertex
adjacency block. The data organization in this form is sparse-efficient, because
the accumulated storage of the distributed data structure would have the same
order as the storage that is needed for exactly the same data but on a single
machine. Unlike in MPI code, the data gathering and merging is not necessary,
because CSR representation for the original graph is just simple continuous
rewrite of outcomes from all threads.

The first step of the algorithm is to find maximum vertex identifier in a graph
edge tuples list. Every process looks through different chunk of edge tuples and
finds its maximum. Later the reduction is made and global maximum vertex is
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found. Having maximum vertex, processors compute the range of owned vertices
which is based on 1D partitioning. Graph vertices are distributed in the way
that every vertex is owned by exactly one task. Every task chooses only those
edges that are incident to its owned vertices. Later all tasks create the CSR
representation of a part of a graph, taking into consideration only owned vertices
and their incident edges. For a specific vertex, at first the number of all its
incident edges is computed (offsets) and later all endpoints are put into the
proper place of array holding edges.

Algorithm 1. Creation of CSR graph representation from a list of edge tuples.

Input: Undirected graph G(V, E) in the form of list of edge tuples L
Output: CSR representation of the graph G
1: for all processors in parallel do
2: localMax ← FIND-MAX(Lp) � Lp is a chunk of L processed by processor p
3: if processor 0
4: globalMax ← REDUCE(localMax)
5: BROADCAST(globalMax)
6: for all processors in parallel do
7: FIND-RANGE(globalMax) � range of vertices the processor owns
8: COMPUTE-CSR(L) � CSR computation for owned vertices

5.2 Kernel 2

The second kernel performs a breadth-first search traversal of a given graph.
The BFS starts from a distinguished vertex taken from the Graph Generator.
The source vertex is randomly sampled from the vertices in the graph. To avoid
trivial searches, only vertices with degrees at least one not counting self-loops
are taken.

PCJ implementation of the second kernel is also based on 1D vertex parti-
tioning of the graph. After the first kernel, original graph is kept in distributed
CSR format. Every thread holds its own subset of vertices together with adja-
cent edges. The implementation is based on level-synchronous BFS strategy. This
means that all vertices at a level k form vertex s are visited before vertices at
distance k + 1 (Fig. 2). The distance between two vertices is the shortest path
connecting those vertices. In PCJ implementation when vertices at level k are
discovering vertices at level k +1 a benign race condition is allowed as it does
not change the correctness of BFS result. It does not matter which vertex is
considered a predecessor in BFS result tree as far as the outcome is correct. The
PCJ algorithm uses the same idea as in MPI Simple reference implementation.

The BFS implementation uses two queues. At any time, current frontier
queue (CQ) keeps local vertices owned by specific task at the current level. The
next frontier queue (NQ) holds local vertices that are within one vertex away
from the current level and should be processed at the next level. The prede-
cessor array, which keeps information about parent vertices in BFS result tree
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is distributed among different tasks. Every PCJ thread maintains the informa-
tion about vertices he owns. Only the vertex owner can identify if the vertex
has already been visited or not. When the adjacent vertex does not belong to
the task then the notification needs to be send to its corresponding owner PCJ
thread. This leads to all-to-all communication. After visiting all of the vertices
at each level, the current frontier and next frontier queues are swapped.

The first step of the algorithm is to find task that owns source vertex. The
task marks start vertex as visited and adds it to local CQ. Later, search starts in
while loop. For all vertices in CQ all adjacent vertices needs to be visited. There
are two different situations relating to visiting adjacent vertices. When a newly
visited vertex is owned by the running task it simply becomes visited and is put
into the next queue. When the adjacent vertex is owned by a different thread
then the owner task needs to be notified that its vertex should be visited. The
owner thread checks if the vertex was visited. If no, it marks the vertex as visited
and puts it to the next queue, otherwise it is ignored. Vertices can be added to
queues multiple times and in different order. To mitigate the overhead connected
with sending large number of small communications, message coalescing has been
used. Multiple messages about adjacent vertices, destined to the same remote
task are grouped together and send in one put. At the end of each level all tasks
synchronize to check if there are any new vertices that need to be visited in the
next level. If NQ is empty for all tasks the BFS is complete. Otherwise, CQ and
NQ are swapped and search continues to the next level.

6 Results

All tests have been carried out on the distributed memory cluster with nodes
build of 28 cores (on two sockets) Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60 GHz
with 125 GB RAM. The nodes are connected within InfiniBand. We used 64-bit
JVM Oracle Java 8 and OpenMPI version 1.6.5 with gcc compiler.

Sample graphs in the form of edge tuples list and source vertices for BFS
implementation (kernel 2) used in performance tests has been generated from
Graph Generator of the Graph 500 benchmark. The performance has been tested
on graphs of SCALE =25 and SCALE = 26 with edgefactor = 16. Among others,
the performance is compared using TEPS (Traversed Edges per Second) metric.

We show performance of our solution and compare it with native MPI refer-
ence implementations. Figure 3 presents overall time and TEPS of Kernel 1 com-
putations for PCJ implementation compared with native reference MPI imple-
mentations. The scaling for graphs of SCALE 25 and 26 is similar. Weaker PCJ
result in TEPS may be connected with the algorithm because PCJ implemen-
tation while constructing CSR representation checks all edges to pick vertices
owned by particular node (see Algorithm 1, line 8). In this case the communi-
cation is not needed, which keeps the algorithm simple. On the other hand, the
MPI implementation uses merge instead, which gives better performance results.

The PCJ implementation tests have been carried out running 4 or 16
processes per node. Figure 4 shows that PCJ implementation results behave simi-
lar in case of one node (16 ppn) and 4 nodes (4 ppn). As PCJ algorithm is based
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Fig. 2. Undirected graph with source vertex as central point together with vertices in
first and second level (a). BFS schematic implementation (b).

Fig. 3. Kernel 1 overall execution time together with TEPS performance for the
SCALE 25 and 26. The PCJ running 4 PCJ threads per node is presented together
with the selected MPI implementations running 4 or 16 processes per node (marked as
4 ppn and 16 ppn respectively).

on the same idea as MPI simple code we compare this two implementations.
The PCJ implementation is slower and scales up to 4 or 8 threads. Since Ker-
nel 2 parallel processing requires significant amount of communication between
threads while exchanging information about visited vertices, this reflects lower
performance of the PCJ communication compare to MPI.
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Fig. 4. Kernel 2 overall execution time together with TEPS performance for the
SCALE 25. The PCJ running 4 or 16 PCJ threads per node is presented together
with the simple MPI implementation running 4 or 16 processes per node (marked as 4
ppn and 16 ppn respectively). As we show performance results up to 16 cores the tests
have been carried out using 4 nodes (for 4 ppn) and 1 node (for 16 ppn).

7 Conclusions and Future Work

In this paper we evaluated PCJ library for graph problems implementing Graph
500 benchmark. The PCJ library shows good performance for Kernel 1, however
performance for Kernel 2 leaves space for further improvements. The work on the
reason for such behavior has to be performed to check the source of the problem
which can be located in the algorithm design or in the PCJ communication while
using InfiniBand interconnect. The second reason is suggested by the comparison
of communication microbenchmarks for MPI and PCJ.
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Abstract. Post-sequencing DNA analysis typically consists of read
mapping followed by variant calling and is very time-consuming, even on
a multi-core machine. Recently, we proposed Halvade, a parallel, multi-
node implementation of a DNA sequencing pipeline according to the
GATK Best Practices recommendations. The MapReduce programming
model is used to distribute the workload among different workers. In this
paper, we study the impact of different hardware configurations on the
performance of Halvade. Benchmarks indicate that especially the lack of
good multithreading capabilities in the existing tools (BWA, SAMtools,
Picard, GATK) cause suboptimal scaling behavior. We demonstrate that
it is possible to circumvent this bottleneck by using multiprocessing on
high-memory machines rather than using multithreading. Using a 15-
node cluster with 360 CPU cores in total, this results in a runtime of
1 h 31 min. Compared to a single-threaded runtime of ∼12 days, this
corresponds to an overall parallel efficiency of 53 %.

Keywords: DNA sequencing · MapReduce · Hadoop · Cloudera · Dis-
tributed file systems

1 Introduction

Post-sequencing DNA analysis typically consists of the alignment of reads to a
reference genome (‘read mapping’) followed by the identification of differences
between the reference genome and the aligned reads (‘variant calling’). For both
tasks, numerous tools have been described in literature. Recently, the Broad
Institute has proposed the Best Practices recommendations [1] for a DNA variant
calling pipeline based on BWA [2] for read alignment, SAMtools [3]/Picard [4]
for data preprocessing and GATK [5,6] for variant calling. Especially for whole-
genome datasets, this pipeline is very time consuming with a single-core run-
time of ∼12 days to process the NA12878 dataset (Illumina Platinum genomes,
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 233–242, 2016.
DOI: 10.1007/978-3-319-32152-3 22
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1.5 billion paired-end reads, 100 bp, 50-fold coverage, human genome). Even
when enabling multithreading support in the individual tools, the execution
time for this dataset is still ∼5 days on a 24-core machine (dual socket Intel
Xeon E5-2695 v2 @ 2.40 GHz), indicative of a poor scaling behavior.

To deal with this bottleneck, we recently proposed Halvade [7], a parallel,
multi-node framework in which a variant calling pipeline has been implemented
according to the GATK Best Practices recommendations. Halvade relies on the
MapReduce programming model [8] to run multiple instances of existing tools
(BWA, SAMtools/Picard, GATK) in parallel both across and within nodes on
subsets of the data. Halvade is based on the simple observation that read map-
ping is parallel by read (i.e., aligning a certain read does not depend on the
alignment of other reads) while variant calling is parallel by genomic region (i.e.,
variant calling in a certain genomic region does not depend on variant calling in
other genomic regions). During the map phase, BWA is used to align reads to
a reference genome in parallel, whereas data preprocessing (SAMtools/Picard)
and variant calling (GATK) are handled during the reduce phase by operating
on different genomic regions in parallel. In between the map and reduce step,
the aligned reads are sorted according to genomic position using the MapReduce
sorting functionality. For details about the implementation of Halvade and the
tools involved we refer to [7].

In [7], it was demonstrated that Halvade strongly reduces the runtime: on
a 15-node cluster, each node containing 24 CPU cores and 64 GB of RAM, the
NA12878 is processed in 2 h 39 min. Additionally, it was shown that the multi-
node parallel efficiency of Halvade is excellent (around 90 %), which means that
the runtime is significantly reduced by using 15 nodes compared to using only
a single node. However, significant performance loss can still be observed within
each node. This can be seen from the overall performance: with a runtime of 2 h
39 min using 360 CPU cores (15 nodes × 24 cores/node), a speedup of ∼108 is
obtained compared to a single-threaded runtime of ∼12 days. This corresponds
to an overall parallel efficiency of about 30 %, suggesting the presence of cer-
tain performance bottlenecks. Understanding the performance of a sequencing
pipeline is a non-trivial matter. Certain components in the pipeline are very
compute-intensive (e.g. read alignment) whereas other components (e.g. data
preprocessing) are mostly data-intensive. Therefore, certain tools might be CPU
bound whereas others might be limited by I/O bandwidth. In order to bet-
ter understand the influence of hardware configuration on the performance of
sequencing pipelines, we have set up a range of benchmarks in order to identify
possible bottlenecks. Specifically, in this paper, we study the influence on the
total runtime of the amount of available RAM, the presence of NUMA domains,
the type of network interconnection, the use of solid-state disks versus hard-
disk drives and finally, the use of a distributed vs. centralized file system. We
demonstrate that the use of high-memory machines and NUMA optimizations
can further reduce the overall runtime whereas other hardware aspects have
only limited influence. Ultimately, this allows us to process the entire NA12878
dataset in 1 h 31 min, yielding an overall parallel efficiency of 53 %.



Performance Analysis of a Parallel, Multi-node Pipeline for DNA Sequencing 235

Halvade is written in Java using the Hadoop MapReduce 2.0 API. The source
is available at http://bioinformatics.intec.ugent.be/halvade under GPL license.

2 Dataset and Tool Versions

In all benchmarks variant calling was performed on a whole-genome DNA
sequencing dataset (NA12878, human genome, Illumina Platinum Genomes) or
a subset thereof. The full dataset consists of 1.5 billion 100 bp paired-end reads
(50-fold coverage) stored in two 43 GB compressed (gzip) FASTQ files.

For these benchmarks, GATK version 3.1.1, BWA version 0.7.12-r1044, BED-
Tools version 2.17.0, elPrep version 1.0 [9], SAMtools version 0.1.19 and Picard
version 1.112 were used. The dbSNP [10] database and human genome reference
found in the GATK hg19 resource bundle [11] were used.

3 Single Node Benchmarks

As the runtime of the complete NA12878 dataset on a single node is impractically
high, all benchmarks in this section were performed on a representative subset
of 131 million paired-end reads (about 9 % of the total number of reads). Bench-
marks in this section were run on a single 24-core node (dual Intel E5-2680v3 @
2.50 GHz) with 512 GB of RAM.

3.1 Influence of the Number of Tasks per Node

When running Halvade, the number of parallel tasks (mappers/reducers) per
node can have a big influence on performance. The number of tasks per node
corresponds to the number of instances of the individual tools (BWA, GATK,
etc.) that are being run in parallel on a machine. One scenario is to run only a
single task and to use the multithreading functionality of the tools to make use
of the available cores. An alternative scenario is to run multiple tasks in parallel
on the same node, each task then using only a fraction of the available cores.
Because of suboptimal multithreading scalability of certain individual tools, the
choice in number of tasks can have a big impact on runtime. This is illustrated
in Table 1 where the runtime is shown for three scenarios: (i) 1 task using 24
cores for multithreading; (ii) 4 tasks each using 6 cores for multithreading and
(iii) 24 tasks without multithreading. The sequential runtime (single core) of
the pipeline is ∼30.5 h. When allowing the individual tools to run 24 threads
on the same machine, the runtime reduces to ∼16.5 h, resulting in a very low
parallel efficiency of only 7.7 %. This poor scaling can be observed in both map
and reduce phase, but is especially pronounced in the reduce phase. It is caused
partly by the lack of multithreading support in some of the tools used, e.g.
BWA sampe and Picard. However, even the modules of GATK that do support
multithreading exhibit poor scaling behavior. When moving from multithread-
ing to multitasking as supported by Halvade, runtimes decrease significantly.

http://bioinformatics.intec.ugent.be/halvade
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Table 1. Runtime and parallel efficiency as a function of the number of tasks per node.

Map phase Reduce phase Total

Runtime Efficiency Runtime Efficiency Runtime Efficiency

Single-threaded 14 h 50min n/a 15 h 38min n/a 30 h 28min n/a

1 task × 24 threads 4 h 28min 13.84% 12 h 3min 5.41% 16 h 31min 7.69%

4 tasks × 6 threads 1 h 21min 45.78% 3h 6min 21.01% 4h 27min 28.53%

24 tasks × 1 threads 47min 78.80% 55min 71.06% 1h 42min 74.67%

Using 4 tasks with 6 threads each, runtime reduces to ∼4.5 h. When using 24
tasks without multithreading a runtime of only 1 h 42 min is obtained, corre-
sponding to a parallel efficiency of 74.7 %. We observed an increased CPU uti-
lization during pipeline execution when using 24 parallel tasks compared to using
multithreading in 1 task.

On this type of node, optimal runtime is achieved when using a maximum
number of tasks without multithreading. However, this is only possible because
the node provides a sufficient amount of RAM (512 GB in this case). Tests indi-
cate that certain GATK modules require almost 16 GB of RAM. Therefore, the
maximum number of tasks might be limited by the memory that is provided by
a node.

3.2 Influence of the Presence of NUMA Domains

Many recent systems make use of non-uniform memory access (NUMA) domains.
Each NUMA domain contains a number of CPU cores and part of the RAM.
Cores have faster access to memory that resides in the same NUMA domain
(‘local’ access) and slower access to memory that is outside this domain (‘remote’
access). Files on disk that are accessed by a tool are typically buffered in memory
by the Linux operating system. If different processes are accessing the same file,
this buffered copy of (part of) the file can be located in a different NUMA domain
than that of the core accessing it. If sufficient memory is available we can make
distinct copies of the reference file to each of the NUMA domains and as such
speed up the file access and seek times. We implemented this idea through the
use of wrappers around certain Java calls. In this wrapper the NUMA domain of
the assigned cores are determined and a copy is made for that domain on local
scratch if it was not yet created. This way each domain has its own local copy
which will be cached in the different NUMA domains.

Using 24 tasks on a single node and the entire NA12878 dataset, Fig. 1
shows the runtime of the different components (summed over all 24 tasks) of
the pipeline with and without the use of the wrappers. For most components,
the influence is only marginal with the ScoreRecalibrator module from GATK
being a notable exception. In that particular case, a reduction in runtime of 45 %
can be observed when using the wrappers. This is a process where a dbSNP data-
base file (roughly 10 GB) is intensively used to generate recalibration tables. In
this case, the improved NUMA data locality considerably improves runtime.
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Fig. 1. Comparison of the runtime (summed over all 24 parallel tasks) for each indi-
vidual tool/module used in Halvade with and without optimized NUMA locality.

4 Multi-node Benchmarks

4.1 Influence of the Use of Solid State Disks

Many tools within Halvade rely on local disk I/O (scratch). This includes reading
the reference genome and accessing the dbSNP database as well as writing and
reading intermediate data generated by the different GATK modules as well as
BWA-aln and BWA-sampe. We tested the performance difference between using
solid state drives (SSD) and regular hard disk drives (HDD). Test results indicate
only minimal differences in runtime. This is due to the relatively low overall disk
usage during the execution of the Halvade job. The disk I/O volume was measured
in intervals of one minute and converted to MB/s (see Fig. 2). With the exception
of a peak during sorting phase, the disk I/O is well below 100 MB/s (averaged over

Fig. 2. Disk I/O (scratch) observed on a worker node. Note that almost no data is
actually being read from disk as data are still cached in memory.
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one minute) which is well within the range of modern HDDs. During the entire job,
volumes read from disk were very low, leading us to the conclusion that almost all
data written to local disk was cached in memory by the operating system and again
accessed from memory in the next step.

4.2 Influence of the Interconnection Network

In between map and reduce phase, aligned reads are sorted according to genomic
position. This parallel sorting step involves the movement of large volumes of
data over the interconnection network. The network I/O volume was measured
in intervals of one minute and again converted to MB/s (see Fig. 3). Again, as
network I/O is below 100 MB/s, almost no performance benefit was observed by
using an Infiniband interconnect over a 10 Gbit Ethernet network.

Fig. 3. Network I/O observed on a single worker node.

4.3 Influence of the File System

Traditionally, MapReduce relies on the Hadoop Distributed File System (HDFS)
to read input and write final output data. In that case, data is stored on the
local disks of the worker nodes in a distributed fashion. Alternatively, central-
ized file systems such as IBM’s Generalized Parallel File System (GPFS) or the
Intel Enterprise Edition for Lustre software can be used. In that case, data is
stored on separate data nodes and transferred to the worker nodes through an
interconnection network. As the pipeline is rather compute-intensive, all three
systems were able to provide data to the worker nodes at a sufficiently high
rate, hence almost no performance difference was observed. However, the use of
Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition for Lustre
software has two advantages. First, it decreases the time spent during the sort &
shuffle phase compared with HDFS/GPFS. Second, Lustre uses less memory on
the worker nodes. This can be important on nodes with limited memory capac-
ity. For instance, on nodes equipped with 64 GB of RAM running 4 Halvade
tasks, we noticed that certain reduce tasks failed because of memory shortage.
The cause of this is the difference in coverage over the different genomic regions
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and thus some tasks will have more reads to process. These reduce tasks had to
be rescheduled causing an increase in runtime. On a 7-node cluster, the use of
Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition for Lustre
software decreased the runtime from 5 h 27 min (using HDFS) to 4 h 48 min on
the same cluster.

5 Benchmark of NA12878 Dataset on a 15-Node Cluster

Halvade was used to process the complete NA12878 dataset on a 15-node cluster,
each node containing 24 CPU cores (dual-socket Intel E5-2680v3 @ 2.50 GHz)
with 512 GB of RAM and three solid-state drivers (SSD) of 400 GB in RAID 0
to store intermediate data (local scratch). The nodes are interconnected through
an Infiniband network and access a GPFS storage through a second Infiniband
network. Note that Lustre was not available on this cluster. Cloudera CDH 5.3
is deployed as a Hadoop distribution by HanythingOnDemand [12]. Halvade
was configured to use 24 tasks per node, hence up to 360 tasks (24 tasks × 15
nodes) were run in parallel. NUMA optimizations were in place. On this cluster,
Halvade completed read alignment and variant calling of the NA12878 dataset in
1 h 31 min. Compared to a single-threaded runtime of ∼12 days, this represents
and overall speedup of a factor of ∼190 or a parallel efficiency of 53%.
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scheduling purposes.



240 D. Decap et al.

Fig. 5. Distribution of runtime of the different tasks. Each map task (1569 in total)
consists of aligning a chunk of ∼60 MB of the input FASTQ file to the reference genome.
Each reduce task (1303 in total) involves data preprocessing and variant calling in a
genomic region of about ∼2.3 Mbp.

We can now compare this result to previously reported results in [7]. A run-
time of 2 h 39 min was reported on a comparable 15-node cluster, however, in
that case the nodes were equipped with only 64 GB of memory. Therefore, it was
optimal to run only 4 parallel tasks per node instead of 24 causing significant loss
of efficiency within each node. On the other hand, running 360 tasks in parallel
significantly increases the task scheduling overhead and makes it more difficult
for the MapReduce framework to evenly distribute the workload among the dif-
ferent tasks. This can be clearly observed in Fig. 4 where a non-negligible load
imbalance can be observed in both the map and reduce phase. The underlying
cause for this is a rather large variation in task execution time (see Fig. 5). Ulti-
mately, with the current status of multithreading performance in the available
tools, it is still best to use as many tasks on a node as possible. Note that the
newer BWA-mem (also supported by Halvade) already features much improved
multithreading performance over BWA-aln/sampe.

6 Conclusion

We investigated the impact of different hardware configurations on the runtime
of Halvade, a parallel, multi-node framework that implements a variant calling
pipeline according to the GATK Best Practices recommendations. Halvade relies
on BWA for read mapping and GATK for variant calling.

Even though Halvade is primarily intended to allow for a multi-node paral-
lelization of sequencing pipelines, Halvade can be used to significantly speed up
post-sequencing analysis on a single node. This is because the overall parallel
efficiency of the individual tools is very low: a speedup of less than 2 is observed
when moving from single-threaded execution to multithreaded execution on a
24-core machine. Part of this poor scaling behavior can be explained by the fact
that BWA-sampe and Picard do not support multithreading, however, most of
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the GATK modules involved in the pipeline also do not exhibit good scaling
behavior. This scaling behaviour has also been observed in several other map-
ping tools in [13]. By using Halvade on high-memory nodes, multithreading can
be replaced by multitasking. The latter is far more efficient, which has also been
shown in [14], and a speedup of ∼18 is obtained on a 24-core machine.

Additionally, having much memory in a system allows to hold a copy of
buffered files in each of the NUMA domains. As such, CPU cores have access to
a copy in the local NUMA domain, thus avoiding remote memory access. For the
GATK ScoreRecalibrator module, this improves the runtime by nearly a factor
of two.

Other hardware aspects, such as local disk speed (solid state drives vs. regu-
lar hard disk drives), speed of interconnection network (Infiniband vs. Ethernet
networks) or file system (HDFS vs. GPFS) have only a minor influence on over-
all runtime. Even though a typical whole-genome dataset involves hundreds of
GB of input data and a multiple thereof of intermediate data, the sequencing
pipeline is mostly compute-intensive and hence, runtime is mostly influenced by
the compute capacity of a node, rather than I/O speed.

Finally, Intel Enterprise Edition for Lustre software was investigated. The
use of Intel’s Hadoop Adapter for Lustre included in Intel Enterprise Edition
for Lustre software simplifies the shuffle & sort which leads to better perfor-
mance. Additionally, Lustre uses less memory which can be important when
high-memory machines are not available.

With all optimizations in place, Halvade is able to complete read alignment
and variant calling of the complete NA12878 dataset in 1 h and 31 min on a 15-
node cluster, each node containing 24 CPU cores and 512 GB of RAM. Compared
to a single-threaded runtime of ∼12 days for this pipeline, this represents an
overall speedup of a factor of ∼190 or a parallel efficiency of 53%.
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CNRS UMR 7161, Palaiseau, France
alice.heliou@polytechnique.org

4 University of Rouen, LITIS EA 4108, TIBS, Rouen, France
laurent.mouchard@univ-rouen.fr

5 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

Abstract. An absent word of a word y of length n is a word that does
not occur in y. It is a minimal absent word if all its proper factors occur
in y. Minimal absent words have been computed in genomes of organ-
isms from all domains of life; their computation also provides a fast
alternative for measuring approximation in sequence comparison. There
exists an O(n)-time and O(n)-space algorithm for computing all minimal
absent words on a fixed-sized alphabet based on the construction of suf-
fix array (Barton et al., 2014). An implementation of this algorithm was
also provided by the authors and is currently the fastest available. In this
article, we present a new O(n)-time and O(n)-space algorithm for com-
puting all minimal absent words; it has the desirable property that, given
the indexing data structure at hand, the computation of minimal absent
words can be executed in parallel. Experimental results show that a mul-
tiprocessing implementation of this algorithm can accelerate the overall
computation by more than a factor of two compared to state-of-the-art
approaches. By excluding the indexing data structure construction time,
we show that the implementation achieves near-optimal speed-ups.

Keywords: Algorithms on strings · Absent words · Suffix array

1 Introduction

Sequence comparison is an important step in many tasks in bioinformatics. It
is fundamental in many applications; from phylogenies reconstruction to the
reconstruction of genomes. Traditional algorithms for measuring approximation
in sequence comparison are based on the notions of distance or of similarity
between sequences, which are generally computed through sequence alignment
c© Springer International Publishing Switzerland 2016
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techniques. An issue with using alignment techniques is that they are compu-
tationally expensive, requiring quadratic time in the length of the sequences—a
truly sub-quadratic algorithm for this problem seems highly unlikely [1]. This
has led to increased research into alignment free techniques [10].

Whole-genome alignments prove computationally intensive and have little
biological significance. Hence standard notions for sequence comparison are grad-
ually being complemented and in some cases replaced by alternative ones that
refer either implicitly or explicitly to the composition of sequences in terms of
their constituent patterns. One such notion is based on comparing the words that
are absent in each sequence. A word is an absent word of some sequence if it
does not occur in the sequence. Absent words represent a type of negative infor-
mation: information about what does not occur in the sequence. For instance,
considering the words which occur in one sequence but do not in another can be
used to detect mutations or other biologically significant events [17].

Given a sequence of length n, the number of absent words of length at most
n is exponential in n. However, the number of certain classes of absent words
is only linear in n. A minimal absent word of a sequence is an absent word
whose proper factors all occur in the sequence. Notice that minimal and shortest
absent words [18] are not the same; minimal absent words are a superset of
shortest absent words [15]. An upper bound on the number of minimal absent
words is known to be O(σn) [6,13], where σ is the size of the alphabet. This
suggests that it may be possible to compare sequences in time proportional to
their lengths, for a fixed-sized alphabet, instead of proportional to the product
of their lengths [10].

Recently, there has been a number of studies on the biological significance
of absent words in various species. The most comprehensive study on the sig-
nificance of absent words is probably [2]; in this, the authors suggest that the
deficit of certain subsets of absent words in vertebrates may be explained by the
hypermutability of the genome. It was later found in [9] that the compositional
biases observed in vertebrates in [2] are not uniform throughout different sets of
minimal absent words. Moreover, the analyses in [9] support the hypothesis that
minimal absent words are inherited through a common ancestor, in addition to
lineage-specific inheritance, only in vertebrates. In [8], the minimal absent words
in four human genomes were computed, and it was shown that, as expected,
intra-species variations in minimal absent words were lower than inter-species
variations. Very recently, in [17], it was shown that there exist three minimal
words in the Ebola virus genomes which are absent from human genome. The
authors suggest that the identification of such species-specific sequences may
prove to be useful for the development of both diagnosis and therapeutics.

From an algorithmic perspective, an O(n)-time and O(n)-space algorithm
for computing all minimal absent words on a fixed-sized alphabet based on the
construction of suffix automata was presented in [6]. An alternative O(n)-time
solution for finding minimal absent words of length at most �, such that � = O(1),
based on the construction of tries of bounded-length factors was presented in [5].
A drawback of these approaches, in practical terms, is that the construction of



Parallelising the Computation of Minimal Absent Words 245

suffix automata (or of tries) often have a large memory footprint. Hence, an
important problem was to be able to compute minimal absent words with more
memory-efficient data structures (cf. [4]).

The computation of minimal absent words based on the construction of suffix
arrays was considered in [15]; although this algorithm has a linear-time perfor-
mance in practice, the worst-case time complexity is O(n2). The first O(n)-time
and O(n)-space suffix-array-based algorithm was recently presented in [3] to
bridge this unpleasant gap. An implementation of this algorithm is currently,
and to the best of our knowledge, the fastest available for the computation of
minimal absent words. With the continuous efforts in whole-genome sequenc-
ing, the computation of minimal absent words remains the main bottleneck in
analysing a large set of large genomes [8,9,17]. Hence due to the large amounts
of data being produced, it is desirable to further engineer this computation.

Our Contribution. In this article, our contribution is threefold: (a) We present
a new O(n)-time and O(n)-space algorithm for computing all minimal absent
words on a fixed-sized alphabet; (b) We show that this algorithm has the desir-
able property that, given the relevant indexing data structure at hand, the com-
putation of minimal absent words can be executed in parallel; and (c) We make
available an implementation of this algorithm for shared-memory multiprocess-
ing programming. Experimental results, using real and synthetic data, show that
the overall computation is accelerated by more than a factor of two compared
to the state of the art. By excluding the indexing data structure construction
time, we show that the implementation achieves near-optimal speed-ups. This
is important as engineering further the involved indexing data structure con-
struction is an ongoing research topic [16], which is beyond the scope of this
article.

2 Definitions and Notation

To provide an overview of our result and algorithm, we begin with a few defini-
tions from [3]. Let y = y[0]y[1] . . y[n−1] be a word of length n = |y| over a finite
ordered alphabet Σ of size σ = |Σ| = O(1). We denote by y[i . . j] = y[i] . . y[j]
the factor of y that starts at position i and ends at position j and by ε the empty
word, word of length 0. We recall that a prefix of y is a factor that starts at posi-
tion 0 (y[0 . . j]) and a suffix is a factor that ends at position n − 1 (y[i . . n − 1]),
and that a factor of y is a proper factor if it is not the empty word or y itself.

Let x be a word of length 0 < m ≤ n. We say that there exists an occurrence
of x in y, or, more simply, that x occurs in y, when x is a factor of y. Every
occurrence of x can be characterised by a starting position in y. Thus we say that
x occurs at the starting position i in y when x = y[i . . i+m−1]. Opposingly, we
say that the word x is an absent word of y if it does not occur in y. The absent
word x, m ≥ 2, of y is minimal if and only if all its proper factors occur in y.

We denote by SA the suffix array of y, that is the array of length n of the
starting positions of all sorted suffixes of y, i.e. for all 1 ≤ r < n, we have
y[SA[r − 1] . . n − 1] < y[SA[r] . . n − 1] [12]. Let lcp(r, s) denote the length of the
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longest common prefix of the words y[SA[r] . . n − 1] and y[SA[s] . . n − 1], for all
0 ≤ r, s < n, and 0 otherwise. We denote by LCP the longest common prefix
array of y defined by LCP[r] = lcp(r − 1, r), for all 1 ≤ r < n, and LCP[0] = 0.
SA [14] and LCP [7] of y can be computed in time and space O(n).

In this article, we consider the following problem.

MinimalAbsentWords
Input: a word y on Σ of length n
Output: all tuples < a, (i, j) >, such that word x, defined by x[0] = a, a ∈ Σ,
and x[1 . . m − 1] = y[i . . j], m ≥ 2, is a minimal absent word of y

3 Algorithm pMAW

In this section, we present algorithm pMAW, a new O(n)-time and O(n)-space
algorithm for computing all minimal absent words of a word of length n using
arrays SA and LCP. We first start by explaining some useful properties from [15]
we use in algorithm pMAW. Then we present our algorithm in detail, and, finally,
we show how it can be adapted for parallel computing.

3.1 Useful Properties

A minimal absent word x[0 . . m − 1] of a word y[0 . . n − 1] is an absent word
whose proper factors all occur in y; equivalently, both the longest proper suffix
and prefix of x occur in y.

Definition 1. A repeated pair in a word y is a tuple < i, j,w > such that word
w occurs in y at starting positions i and j. A repeated pair is right (resp. left)
maximal, if y[i + |w|] �= y[j + |w|] (resp. y[i − 1] �= y[j − 1]) A repeated pair is
maximal if it is left maximal and right maximal.

Lemma 1 ([15]). If awb is a minimal absent word of a word y, where a and
b are letters and w a word, then there exist two positions i and j such that
< i, j,w > is a maximal repeated pair in y.

By Lemma 1, we can exhaustively compute minimal absent words by examining
all the maximal repeated pairs. To compute maximal repeated pairs, we consider
all right maximal repeated pairs and check the letters that occur just before.

Definition 2. Given the LCP array of a word of length n, we say that interval
[i, j], 0 ≤ i < j ≤ n − 1, is an LCP-interval of LCP-depth d if

– LCP[i] < d, and j = n − 1 or LCP[j + 1] < d
– LCP[k] ≥ d, for all i < k ≤ j
– LCP[k] = d, for at least one k, i < k ≤ j.

Right maximal repeated pairs are given by the suffix array with the notion of
LCP-interval. Indeed if positions i and j are in an LCP-interval of depth d then
< i, j, y[SA[i] . . SA[i] + d − 1] > is a right maximal repeated pair. Analogously,
if < i, j, w > is a right maximal repeated pair then i and j are in the same
LCP-interval of depth |w|.
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3.2 Computation of Minimal Absent Words

For the rest of this section we denote minimal absent words by maws. We
first pre-compute SA, LCP, and a bit-vector v such that v[i] = 1 if and only
if LCP[i] is a local maximum. We use rank and select data structures and
denote by MaxRank(k) the operation giving the number of 1’s in [0 : k) and
by MaxSelect(k) the operation giving the position of the kth 1. The following
function presents maws computation for a given interval [k1, k2) of SA and LCP.

Function ComputeMaws ( k1, k2, y, SA, LCP, MaxRank, MaxSelect)

SetLetter←∅; LifoPos.push(0); LifoSet.push(SetLetter);

foreach t ∈ [MaxRank(k1) + 1 : MaxRank(k2)] do

i←MaxSelect(t); left←i − 1; right←i + 1;

pos←LifoPos.top(); lpos←LCP[pos]; SetLetter←∅;

while 1 do

while pos > 0 and LCP[i] < lpos do

we pop from LifoPos the positions with an LCP value equal
to lpos; we pop their set of letters from LifoSet; we have
visited the whole LCP-interval of depth lpos, so we infer
maws using these sets and SetLetter; we update left and
right ; pos←LifoPos.top(); lpos←LCP[pos];

if LCP[i] > max(LCP[left], LCP[right], lpos) then

we have visited the whole LCP-interval of depth LCP[i], so
we infer maws with SetLetter, y[SA[i]−1], and

y[SA[left ]−1];

SetLetter←SetLetter ∪ {y[SA[i] − 1]};

if LCP[left] = LCP[i] or LCP[right] = LCP[i] then

LifoPos.push(i); LifoSet.push(SetLetter);

we push onto LifoPos all the successive neighbours of
interval (left,right) with an LCP value equal to LCP[i]; for
each of them we push onto LifoSet the letter preceding their
corresponding suffix; we update left and right ;

if LCP[right] ≤ LCP[left] < LCP[i] then i←left; left←i − 1;

else if LCP[right] > LCP[i] then we push onto stacks the
positions skipped and their corresponding set of letters;

break;

else i←right; right←i + 1

If i is a local maximum in the LCP array, then [i − 1, i] is the LCP-interval of
LCP-depth LCP[i] that contains i. Consequently our idea is to start the compu-
tation at the first local maximum of the LCP array and to visit the surrounding
positions in decreasing order of their LCP value. In this process we keep in the
array SetLetter the set of letters that occur before the repeated factor. When we
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LCP

j

8
y[SA[j] − 1]LCPj suffixes

w
w
w
w
w
w
w
w
w

A T T T. . .k-1 11 T
C A A G. . .k 8 A
C C A A. . .k+1 9 G
C G C T. . .k+2 9 A
C G T A. . .k+3 10 A
C G T T. . .k+4 11 A
C T A C. . .k+5 9 T
C T G C. . .k+6 10 A
G C G G. . .k+7 8 T

step i left right SetLetter Inferred maws and action on stacks
1 k+4 k+3 k+5 ∅
2 k+3 k+2 k+5 {A}
3 k+2 k+1 k+5 {A} we push k+2, k+1, and k+5

onto LifoPos; we push SetLetter,
k k+6 {G}, and {T} onto LifoSet

4 k+6 k+5 k+7 ∅ we infer 2 maws: AwCTA, TwCTG

5 k+5 k+4 k+7 {A} k+5 is already in LifoPos
6 k+7 k+4 k+8 {A,T} we pop k+5, k+1, and k+2 from

LifoPos and {T}, {G}, {A} from LifoSet
k {A,G,T} we infer 7 maws: GwCA, TwCA,

AwCC, TwCC, GwCG, TwCG, GwCT

Fig. 1. Illustration of the algorithm step by step for the interval [k, k+7). The example
is taken from the Lactobacillus casei genome (Accession #: NC010999). w = TCTGAGCG

is a common prefix of the considered suffixes and k = 2, 554, 910.

reach a local minimum we store its position on the SA array in the stack LifoPos,
and the current array SetLetter in the stack LifoSet. We will analyse them once
we have visited their whole LCP-interval. In this way, we consider each maximal
repeated pair and infer from them the whole set of maws using Lemma 1. An
example of this function is illustrated in Fig. 1. Contrary to MAW [3], the pre-
vious linear-time algorithm, in pMAW we do not consider our data structures
globally; we rather consider each LCP-interval independently. This important
property will allow us to use parallel computations, as shown in Sect. 3.3.

Overall Complexity. We use arrays SA and LCP, which can be computed in
time and space O(n) [7,14]. There also exists a representation which uses n+o(n)
bits of storage space and supports rank and select on a bit-vector of size n in
constant time [11]. We also use two stacks, LifoPos and LifoSet, where we push
and pop O(n) elements, each containing at most σ integers. Thus the whole
algorithm requires time and space O(σn). We obtain the following result.

Theorem 1. Algorithm pMAW solves problem MinimalAbsentWords in
time and space O(n).

The advantages of pMAW over existing works are as follows. It is (provably)
linear-time in the worst case as opposed to the one in [15]. Contrary to the linear-
time algorithm in [3], we explicitly compute the LCP-intervals. For a given depth,
LCP-intervals have no overlap, therefore we can consider them independently.

3.3 Parallelisation Scheme

Lemma 2. Let y be a word of length n over an alphabet of size σ and let � be
the length of the shortest minimal absent word of y. Then the following hold:

– For all k ∈ [0, � − 2], |{s ∈ [0,n − 1] : LCP[s] = k}| = (σ − 1)σk + 1;
– For all k ∈ [� − 1,n − 1], |{s ∈ [0,n − 1] : LCP[s] = k}| < (σ − 1)σk + 1.

Proof. Let k ∈ [0, n− 1], we denote by s0, . . . , sm−1, ordered increasingly, the m
elements of the set {s ∈ [0, n − 1] : LCP[s] = k}. For all i ∈ [0,m − 1], we have
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Compute arrays:
SA and LCP

Compute:
- positions of local maxima of LCP values
- the length � of the shortest minimal absent word

S
eq

u
en

tia
l
p
a
rt

For each 0 ≤ ki < ki+1 ≤ n − 1 such that LCP[ki] = � − 3, LCP[ki+1] = � − 3, and for all s in (ki, ki+1), LCP[s] �= � − 3

Go through [k0, k1],
compute maws

. . . Go through [ki, ki+1],
compute maws

. . . Go through [km−1, km],
compute maws

P
a
ra

llel
p
a
rt

Write the output

Fig. 2. Overview of Algorithm pMAW

y[SA[si −1] . . SA[si −1]+k−1] = y[SA[si] . . SA[si]+k−1] and y[SA[si −1]+k] <
y[SA[si] + k]. We consider the pair (si, si+1) with i ∈ [0,m − 2], there are two
cases:

– lcp(si, si+1) = k, so y[SA[si] . . SA[si] + k − 1] = y[SA[si+1] . . SA[si+1] + k − 1]
and y[SA[si − 1] + k] < y[SA[si] + k] ≤ y[SA[si+1 − 1] + k] < y[SA[si+1] + k].
The alphabet is of size σ; this can happen at most σ − 2 times consecutively.

– lcp(si, si+1) < k, so y[SA[si] . . SA[si] + k − 1] < y[SA[si+1] . . SA[si+1] + k − 1].
There are σk different words of length k; this can happen at most σk −1 times.

In the first case, we have an additional sub-case, when SA[si − 1] + k = n. Then
y[SA[si − 1] + k] is not a letter of the alphabet Σ, so we have one more position
with an LCP value equal to k. Thus, there are at most (σ − 1)σk pairs (si, si+1),
so there are at most (σ − 1)σk + 1 positions with an LCP value equal to k.

The equality holds if and only if all the words of length k + 1 appear in y, so
only if k < �′ − 1 where �′ is the length of the shortest absent word. A minimal
absent word is an absent word so � ≥ �′. Let x be a shortest absent word, then all
its proper factors occur in y because they are smaller than x, so x is a minimal
absent word. Therefore � = �′, the equality holds if and only if k ∈ [0, � − 2]. ��

By Lemma 2, the length � of the shortest minimal absent word of some word
of length n satisfies: � − 1 = min{k ≥ 0 : |{s ∈ [0, n − 1] : LCP[s] = k}| <
(σ −1)σk +1}. As the alphabet is of size σ, there are σk distinct words of length
k, but a word y of length n has exactly n + 1 − k factors of length k. Thus,
if σk > n + 1 − k there are absent words of size k in y. Consequently we have
� ≤ logσ(n + 1 − �) < logσ(n). Thus, we compute �, the length of the shortest
minimal absent word, in one pass over the LCP array by counting the number
of positions having an LCP value equal to d, for all d ∈ [0, �logσ(n)	].

According to Lemma 1 we can ignore positions having an LCP value lower
than � − 2 when computing minimal absent words. Hence, we focus on LCP-
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intervals of LCP-depth above or equal to � − 2: they are sufficient to exhaus-
tively compute the set of minimal absent words. Consequently we compute
the set of positions ki with i in [0, (σ − 1)σ�−3] such that LCP[ki] = � − 3.
[0, k0), [k0, k1), . . . , [km−1, km), [km, n), with m = (σ − 1)σ�−3, is a partition of
[0, n − 1]. This partition is such that, every LCP-interval of LCP-depth above or
equal to � − 2 is entirely included in one of the sub-intervals [ki, ki+1).

Therefore we can consider each one of these sub-intervals independently, and
thus parallelise the computation of minimal absent words. In each sub-interval
we go through the SA and LCP arrays starting at the first (from left to right)
local maximum and going down until we reach a local minimum, as described in
Sect. 3.2. For an overview of the algorithm pMAW inspect Fig. 2.

4 Experimental Results

We implemented algorithm pMAW as a programme to compute all minimal
absent words of a given sequence. The programme was implemented in the C
programming language, using Open Multi-Processing (OpenMP) API for shared-
memory multiprocessing programming, and developed under GNU/Linux oper-
ating system. It takes as input arguments a file in (Multi) FASTA format and
the minimal and maximal length of minimal absent words to be outputted; and
then produces a file with all minimal absent words of length within this range
as output. There are additional input parameters; for example, the number t
of available processing elements. The implementation is distributed under the
GNU General Public License (GPL), and it is available at http://github.com/
solonas13/maw, which is set up for maintaining the source code and the man-
page documentation. The experiments were conducted on a Desktop PC using 1
to 16 cores of 2 Intel Xeon E5-2670V2 Ten-Core CPUs at 2.50 GHz and 256 GB
of main memory under 64-bit GNU/Linux.

(a) Elapsed-time comparison
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(b) Relative speed-up of pMAW
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Fig. 3. Elapsed-time comparison of pMAW and MAW and relative speed-up of pMAW
for computing minimal absent words using synthetic DNA sequences

To evaluate the efficiency of our implementation, we compared it against the
corresponding performance of MAW [3], which is currently the fastest available

http://github.com/solonas13/maw
http://github.com/solonas13/maw
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implementation for computing minimal absent words. We generated three ran-
dom sequences of length 10 Mbp, 100 Mbp, and 1 Gbp, respectively, by using a
uniform frequency distribution of letters of the DNA alphabet. We computed
all minimal absent words of length at most 20 for each sequence. We considered
both the 5′ → 3′ and the 3′ → 5′ DNA strands. Figure 3a depicts elapsed-time
comparisons of pMAW and MAW, including the sequential part of the algorithm.
pMAW becomes the fastest in all cases when t ≥ 2 accelerating the computation
by more than a factor of two when t = 16. Notice that the y-axis is on loga-
rithmic scale. The measured relative speed-up of pMAW is illustrated in Fig. 3b.
The relative speed-up was calculated as the ratio of the runtime of pMAW on
1 core to the runtime of pMAW on t cores, excluding the sequential part of the
algorithm. The results highlight the excellent scalability of pMAW when the let-
ters have a uniform frequency distribution in the sequence. In this case, pMAW
achieves near-optimal speed-ups, confirming our theoretical findings.

To further evaluate the efficiency of our implementation, we compared it
against the corresponding performance of MAW using real data. We consid-
ered the genomes of Homo sapiens and Mus musculus, obtained from the NCBI
database (ftp://ftp.ncbi.nih.gov/genomes/). We computed all minimal absent
words of length at most 20 of the complete sequence of the Homo sapiens
(2, 937, 639, 113 bp) and Mus musculus (2, 647, 521, 431 bp) genomes—ignoring
unknown bases. We considered both the 5′ → 3′ and the 3′ → 5′ DNA strands.
Figure 4a depicts elapsed-time comparisons of pMAW and MAW, including the
sequential part of the algorithm. pMAW becomes the fastest in all cases when
t ≥ 2 accelerating the computation by more than a factor of two when t = 16.
Notice that the y-axis is on logarithmic scale. The measured relative speed-up of
pMAW is illustrated in Fig. 4b. The relative speed-up was calculated as the ratio
of the runtime of pMAW on 1 core to the runtime of pMAW on t cores, excluding
the sequential part of the algorithm. The results highlight the good scalability
of pMAW with real data. The computation is accelerated by a factor of 10 when
t = 16. The maximum allocated memory was 137 GB for both programmes.
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5 Final Remarks

The importance of our contribution here is underlined by the fact that any par-
allel algorithms for the construction of the involved indexing data structure can
be used directly to replace the sequential part of the algorithm proposed here
(see Fig. 2). This would result in a fully parallel algorithm for the computation of
minimal absent words. Our immediate target is to investigate the performance
of such an algorithm by using the parallel algorithms presented in [16] for con-
structing the suffix array and the longest common prefix array.
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Abstract. Searching similarities among 3D protein structures deposited
in macromolecular data repositories, like Protein Data Bank, is one of the
time-consuming processes performed in structural bioinformatics. When
performed in one-to-many or many-to-many model, the process requires
increased computational resources. Moreover, exponential growth of pro-
tein structures in the Protein Data Bank causes the necessity to pre-
pare computer systems to be able to deal with such huge volumes of
data. Cloud computing provides both, theoretically infinite computa-
tional resources and a great possibility of scaling systems out and up. In
this paper, we show how 3D protein structure similarity searching can be
scaled out on Microsoft Azure cloud and performed by a loosely coupled,
many-task computing system with local replicas of macromolecular data.

Keywords: Bioinformatics · Proteins · 3D protein structures ·
Similarity searching · Alignment · Superposition · Cloud computing ·
Parallel computing · Parallel systems · Scalability · Microsoft Azure

1 Introduction

3D protein structures (Fig. 1) allow to understand the functions of proteins at
a molecular level. Since protein structures exhibit high conservation in the evo-
lution of organisms [3], they have a unique feature of becoming indicators of
cellular functions, which can be used while identifying functions of newly dis-
covered proteins. Even if protein sequences diverged significantly during the
evolution, comparison of 3D protein structures and finding structural similar-
ities and common substructures allow to draw conclusions on functional simi-
larity of proteins from various, sometimes evolutionary distant organisms. This
emphasizes the great importance of 3D protein structure similarity searching
for scientific domains, such as structural bioinformatics, systems biology, and
indirectly, molecular modeling [14].

There have been a number of methods for protein structure similarity search-
ing developed in the last decades, including VAST [2], DALI [5], LOCK2 [19],
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Fig. 1. Crystal structure of Titin kinase, a part of the muscle protein titin, which is
essential in the temporal and spatial control of the assembly of the highly ordered
sarcomeres (contractile units) of striated muscle. The molecule has two chains, each of
which is more than three hundred amino acids (residues) long and, therefore, several
thousand atoms. PDB entry 1TKI [7] displayed as cartoons.

FATCAT [22], CE [20], FAST [24], TM-align [23], MICAN [9], CASSERT [11,13],
and others. However, despite of advances made in this area in recent years, pro-
tein structure similarity searching is still a time-consuming and computationally
intensive problem, especially when performed in one-to-many or many-to-many
model. This is caused by several factors, including (1) protein structure com-
plexity (hundreds of amino acids, and therefore, thousands of atoms), (2) com-
putational complexity of algorithms for 3D structure similarity searching, (3)
the exponential growth of the number of 3D structures in macromolecular data
repositories, such as the Protein Data Bank (PDB) [1] - as of Oct 15, 2015 there
were 112,968 structures in the PDB.

These factors cause that the scientific community develop new methods for
3D structure similarity searching and look for computing platforms that would
allow to scale computations, complete similarity searches much faster, and handle
the growing amount of macromolecular data. Cloud computing, which is a com-
puting model that allows a convenient, on-demand network access to a shared
pool of configurable computing resources [8], provides such a kind of scalable,
high-performance computational platforms. Cloud platforms, such as Microsoft
Azure, Amazon EC2, or Google App Engine, can be particularly beneficial for
institutions that need to quickly gain access to a computer system which has a
higher than average computing power.

The idea of Cloud computing that provides access to configurable computing
resources (such as networks, servers, storage, applications, and others) as a ser-
vice also became very interesting for scientific community. Scientists can now pro-
vision computing resources from cloud providers without having to build entire
computing infrastructure within their own institutions. This paper presents an
example of implementation of frequently performed process on the Cloud. In this
paper, we show how Microsoft Azure public cloud can be utilized to scale out
protein 3D structure similarity searching on many compute nodes.
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2 Related Works

Mentioned problems of protein structure similarity searching, such as high com-
plexity of 3D protein structures and relatively low efficiency of existing algo-
rithms in the face of the dynamic growth of macromolecular data, caused several
trials to parallelize the process on many computing nodes in order to increase
its efficiency. Recent attempts to speed up protein structure similarity searches
benefit from the concepts of Cloud computing and Big Data. Examples of these
attempts are Cloud4Psi [12], the system developed by C.L. Hung and Y.L. Lin [6]
and PH2 [4]. C.L. Hung and Y.L. Lin developed system for protein structure
alignment on Hadoop installed on own virtualized computing environment. The
system employs DALI and VAST algorithms for protein structure alignment and
authors developed their own refinement method to reduce the RMSD of the orig-
inal alignments. The system uses MapReduce computing paradigm to complete
the task. The PH2 system developed by S. Hazelhurst allows to store PDB files
in a replicated way on the Hadoop Distributed File System, and then, enables
formulation of SQL queries concerning various features of 3D protein structures.
PH2 also makes use of the MapReduce model.

On the other hand, Cloud4Psi for 3D protein structure similarity search-
ing, which was reported in our previous works [12], is a system that is fully
based on the concepts of Cloud computing model. The system uses computa-
tional resources of Microsoft Azure public cloud and provides dynamic scaling
in response to increasing demands. The theoretical model of the system was
described in [10]. Early tests reported in [12] have shown advantages of using
Clouds in scaling similarity searches against a repository of protein structures. In
this paper, we will show how the same process is performed in a modified archi-
tecture with local replicas of processed data and different scheduling schemes.

3 Microsoft Azure Cloud Platform

Microsoft Azure is Microsoft’s cloud platform that delivers services for build-
ing scalable web-based applications. Microsoft Azure allows developing, deploy-
ing and managing applications and services through a network of data centers
located in various countries throughout the world. Microsoft Azure is a public
cloud, which means that the infrastructure of the cloud is available for public
use and is owned by Microsoft selling cloud services. Microsoft Azure provides
computing resources in a virtualized form, including processing power, RAM,
storage space and appropriate bandwidth for transferring data over the net-
work, within Infrastructure as a Service (IaaS) service model. Moreover, within
Platform as a Service model, Azure also delivers a platform and dedicated cloud
service programming model for developing applications that should work in the
cloud. Basic tier of the Microsoft Azure platform provides five classes of vir-
tual machines (compute units): ExtraSmall, Small, Medium, Large, ExtraLarge.
They differ with the number of cores possessed, CPU/core speed and amount
of memory delivered, and efficiency of I/O channel. These compute units can
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be used while building custom cloud-based applications. Detailed features of
available compute units are listed in [21].

Microsoft Azure programming model provides an abstraction for building
cloud applications. Each cloud application is defined in terms of component roles
that implement the logic of the application. There are two types of roles that
can be used to implement the logic of the application: Web roles that provide a
web based front-end for the cloud service, and Worker roles used for background
processing, scalable computations, long running or intermittent tasks. Microsoft
Azure also provides a rich set of data services for various storage scenarios.
These data services enable storing, modifying and reporting on data in Microsoft
Azure: BLOBs that allow to store unstructured text or binary data (video, audio
and images), Tables that can store large amounts of unstructured non-relational
(NoSQL) data, Azure SQL Database for storing large amounts of relational data,
and others. An important element of the Azure programming model are mes-
saging mechanisms. Messaging mechanisms allow for effective communication
between components and processes running in the whole cloud service. Queues
are a general-purpose technology that can be used for messaging in a wide variety
of scenarios, including: communication between web and worker roles in multi-
tier Azure applications (like in our project), communication between on-premises
applications and Azure hosted applications in hybrid solutions, communication
between components of distributed applications running on-premises in different
organizations or departments of an organization.

4 Architecture of the System

We have designed and developed system for 3D protein structure similarity
searching, called CloudPSR (Cloud-based Protein Similarity Searching Runner),
working on the Microsoft Azure Cloud. The system has been developed based
on the Microsoft Azure programming model, including different types of roles
for computational purposes, messaging for communication, and various storage
components. General architecture of the system is presented in Fig. 2.

Outside users interact with CloudPSR through the Web role. The Web role
provides a web-based graphical user interface (GUI), which is used to specify
parameters of the search process and query protein structure. The system shall
do pairwise comparison of the query protein structure to structures in the repos-
itory located in the Storage BLOB. The pairwise comparison involves alignment
and superimposition of the query structure specified by a user and candidate
structure from the repository. Each such a comparison is independent, so it is
quite easy to parallelize the search on many compute units that are provisioned
in the Cloud. When the user starts the execution of the search process, the Web
role divides the search job into a number of smaller search tasks and sends these
tasks to the Input queue. The search job assumes comparison of a specified query
protein structure to all structures in the repository. Search tasks assume doing
these comparisons against a part of the repository. How large the part is depends
on the scheduling scheme that is used. In our system, we implemented and tested
two schemes.



258 D. Mrozek et al.

Fig. 2. General architecture of the CloudPSR system for 3D protein structure similarity
searching with local replicas of macromolecular data.

In the first scheduling scheme (S1) the whole repository is divided into n
parts, where n is equal to the number of Worker roles performing structure com-
parisons. Therefore, size of the search task construed as the number of candidate
protein structures is calculated as follows:

size(task) =
size(repository)

n
. (1)

In this scheduling scheme each Worker role is invoked only once for a collection
of protein structures from the repository, and withing this execution compares
many candidate protein structures, one by one.

In the second scheduling scheme (S2) each Worker role performs a single
comparison of the query structure to only one candidate from the repository.
Therefore, size of the search task construed as the number of candidate protein
structures:

size(task) = 1. (2)

In this scheduling scheme each Worker role is invoked m times:

m =
size(repository)

n
, (3)

and withing each execution compares only one candidate protein structure from
the repository. Both scheduling schemes are symbolically presented in Fig. 3.
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In both cases, the process is implemented as a parametric sweep. Search
task descriptors with sweep parameters determining the range of molecules to
be processed by a Worker role in a single execution are encoded as messages and
placed in the Input queue by the Web role. Worker roles consume these tasks and
perform similarity searches according to the obtained scheme. Queues provide
message delivery on First In, First Out (FIFO) basis. Messages are typically
consumed and processed by instances of the Worker role in the order in which
they were added to the queue. Each message is received and processed by only
one instance of the Worker role, except if there is a failure of one of the Workers.
In such cases, the failed task is performed by a different Worker. Queues also
introduce temporal decoupling of system components. Web roles and Worker
roles do not have to communicate directly or synchronously, because messages
containing descriptors of search tasks are stored durably in the Input queue.
Moreover, Web role does not have to wait for any reply from the Worker roles
in order to continue to process user’s search requests and generate messages.

Macromolecular data (repository of protein structures) are stored in a dedi-
cated container of Storage BLOB. Protein structures that are needed by particu-
lar Workers are temporarily replicated to local hard drives (Local Storage HDD)
according to the needs of a particular Worker role and according to assumed
scheduling scheme. Results are returned through the Output queue, and then,
presented to the user by the Web role. Additionally, they can be collected in
the Azure SQL Database, also located in the Cloud, for aggregated statistics
and future reuse. In scheduling scheme S1 Workers replicate large parts of the
repository (according to size(task)) before the alignment phase and return/save
results after finishing calculations for the whole part of repository assigned to
them (see Fig. 3). In scheduling scheme S2 single structures that are currently
needed for the alignment are replicated before each single alignment occurs, and
results are returned/saved directly after each alignment. In Fig. 3 both, data
replication and saving results phases for scheduling scheme S2 are parts of the
alignment steps for each protein Pi. Protein structure alignment is performed
with use of one of the popular algorithms. In the system, we have implemented
the newest versions of FATCAT algorithm reported in [18].

5 Algorithms for Protein Structure Similarity Searching

Through many years the scientific community designed and developed many
algorithms for 3D protein structure similarity searching. These algorithms rely
on various representative features of protein structures and have different effec-
tiveness. They also vary in quality of results returned. In the presented system we
have implemented jFATCAT rigid and jFATCAT flexible algorithms [18]. These
are new, enhanced versions of the Flexible structure AlignmenT by Chaining
Aligned fragment pairs allowing Twists (FATCAT) [22]. FATCAT has good rep-
utation among researchers and is publicly available through the Protein Data
Bank (PDB) website for those, who want to search for structural neighbors.
Moreover, the algorithm is used for pre-calculated all-to-all 3D-structure com-
parisons for the whole PDB that are updated on a weekly basis [17].
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FATCAT works on the basis of matching protein structures using Aligned
Fragment Pairs (AFPs) representing parts of protein structures that fit to each
other. It represents protein structures by means of local geometry, rather than
global features such as orientation of secondary structures and overall topology.
The algorithm constructs the alignment path that shows which parts of protein
structures can be treated as identical or similar. Moreover, FATCAT flexible
eliminates drawbacks of many existing methods by treating proteins as flexible
structures, not rigid bodies. It allows to enter twists in protein structures while
matching their fragments, which leads to finding new regions reflecting structural
similarity.

6 Experimental Results

Presented cloud-based architecture with implemented scheduling schemes was
tested in order to verify its performance and scalability. Tests of CloudPSR were
performed in Microsoft Azure cloud with the use of two Small-sized Web roles
and 1 to sixteen Small-sized Worker roles. Small-sized compute units for Web
and Worker roles were equipped with 1 CPU core, 1.6 GHz, RAM 1.75 GB, local
HDD 224 GB.
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Fig. 4. Dependency between execution time and the number of worker roles/compute
units for CloudPSR with both scheduling schemes S1 and S2, and for competitive
systems, when scaling from 1 to sixteen compute units. Horizontal line shows the
execution time for stationary, serial version of jFATCAT.

In Fig. 4 we can observe how the execution time changed with the grow-
ing number of compute units. Tests were performed by comparing 100 random
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pairs of protein structures from macromolecular data repository containing 1,000
sample protein structures taken from the Protein Data Bank. Scaling the sys-
tem horizontally from 1 to sixteen Worker roles allowed to decrease the execution
time from 2 h and 50 min to 13 min and 13 s for scheduling scheme S1, and from
2 h and 34 min to 19 min for scheduling scheme S2. Comparing CloudPSR to
other systems working in the Cloud we can see that it is faster than the system
developed by Hung and Lin [6], and slower than Cloud4Psi which has slightly
different architecture. We can also see that the stationary version of jFATCAT,
tested on a PC workstation with Intel Core i7-4700 CPU and 4GB RAM, is faster
then CloudPSR (and also other cloud-based systems) for a small number of com-
pute units engaged in computations, e.g. one to four units. CloudPSR with both
scheduling schemes catches up the performance of the stationary, serial version
of jFATCAT somewhere between four and six compute units. Cloud4Psi becomes
more efficient then the serial version much earlier, between two and four units,
and Hung an Lin system, which implements different alignment method, much
later, between six and eight compute units (but closer to eight compute units).
However, it should be noted that compute capabilities of Cloud virtual machines
used in tests were much worse than those of the PC workstation.

In Fig. 5 we can observe n-fold speedups as a function of the number of Worker
roles for CloudPSR with both scheduling schemes S1 and S2 and for other cloud-
based systems. When scaling the system horizontally from 1 to sixteen Worker
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systems, when scaling from 1 to sixteen compute units. Dashed line represents the
extrapolation of the speedup obtained by Hung and Lin.
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roles CloudPSR gained the acceleration ratio at the level of 14.30 for scheduling
scheme S1 and at the level of 9.62 for scheduling scheme S2, which is slightly
worse than the speedup gained by Cloud4Psi (14.50) and Hung and Lin’s system
(16.00, extrapolated based on reported results). While the acceleration achieved
by CloudPSR for scheduling scheme S1 is quite stable, it looses the dynamics for
the scheduling scheme S2 above eight Worker roles. When working according to
scheduling scheme S2, Worker roles have to perform the same preparation steps,
like decoding a message with search task descriptor and replicating small peace of
macromolecular data to the Local Storage, before they start a pairwise structure
comparison. They also have to execute some post-processing operations, like
storing results of the structure comparison in the Azure SQL Database, after
they finish the comparison and structural alignment. This proves that multiple
executions for single candidate structures from the repository are less efficient
than processing protein structures in larger packages. The latter strategy is also
employed in Cloud4Psi, hence its execution time is much better. On the other
hand, Hung and Lin compare proteins in pairs, one by one, without grouping
them into larger packages. As a consequence, the execution time of their system
is worse, even though they obtain better speedup.

7 Discussion and Concluding Remarks

Development of system architectures that possess the ability to adjust to the
increasing amount of work, such as the architecture of the CloudPSR presented
in the paper, is very important in the face of the dynamical growth of macro-
molecular data in the Protein Data Bank and other repositories for protein
structures. The value of such systems manifests especially in one-to-many simi-
larity searches run by users and many-to-many similarity searches performed for
pre-calculated comparisons for future re-uses.

CloudPSR represents scalable, cloud-based solution for 3D protein structure
similarity searching, alignment, and superposition. As opposed to the systems,
like PH2 [4] and the one developed by C.L. Hung and Y.L. Lin [6], CloudPSR
does not rely on Hadoop and MapReduce computing model. Moreover, by focus-
ing on 3D protein structure similarity searching it enables more complex calcu-
lations for protein structures than the PH2 system, which is one of the first
implementations of protein structure exploration on Hadoop clusters. In this
regard, the aim of the CloudPSR is convergent with the system developed by C.L.
Hung and Y.L. Lin, although both systems use different algorithms for the same
purpose. The architecture of CloudPSR has been designed for Microsoft Azure
public cloud using the role-based and queue-based model. From the viewpoint
of architecture, CloudPSR is more similar to its predecessor - Cloud4Psi [10,12],
also developed for Microsoft Azure cloud. However, architecture of the Cloud4Psi
contained additional Manager role for scheduling purposes and it worked without
local replicas of macromolecular data and according to the scheduling scheme
that divided the whole repository into packages. Architectural and scheduling
solutions let CloudPSR reach quite good acceleration ratio of 14.30 on sixteen
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Worker roles for scheduling scheme S1, which is only slightly worse than 14.50
reached by Cloud4Psi.

Performance tests have proved that CloudPSR enables shortening of the
search time significantly. The system with the presented architecture and
scheduling scheme S1 achieved good scalability, which is important for plan-
ning computations in the future. Finally, results of our experiments give a great
promise that by using Cloud computing paradigm we can scale scientific com-
putations on many computing nodes and compensate constant, massive influx
of data. Future works will be focused on the implementation of other scheduling
techniques and more sophisticated methods for controlling the activity of Worker
roles, e.g., methods that are based on artificial immune systems [15,16]. Such
bio-inspired techniques are widely used to solve many optimization problems.
We believe that it will be a correct step toward the coordination of distributed
systems containing a large number of compute units.
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Abstract. A (2+1)-dimensional partial differential equation model
describing spatial-lateral dynamics of edge-emitting broad-area semicon-
ductor devices is considered. A numerical scheme based on a split-step
Fourier method is implemented on a parallel computing cluster. Numer-
ical integration of the model equations is used for optimizing of existing
devices with respect to the emitted beam quality, as well as for creating
and testing of novel device design concepts.

Keywords: Traveling wave model · Numerical scheme · Simulations ·
Parallel computations · MPI · Semiconductor device · Broad area · Beam
quality improvement

1 Introduction

High power high brightness edge-emitting broad-area semiconductor (BAS)
lasers and optical amplifiers are compact, efficient and reliable light sources
playing a crucial role in different laser technologies, such as material processing,
precision metrology, medical applications, nonlinear optics and sensor technol-
ogy. BAS lasers and amplifiers have a relatively simple geometry [see Fig. 1(a)]
allowing an efficient energy pumping through a broad electric contact on the top
of the device and can operate at high power (tens of Watts) regimes.

However, BAS devices have one serious drawback: operated at high power,
they suffer from a low beam quality due to simultaneous irregular contribu-
tions of different lateral and longitudinal optical modes. As a result, the emitted
optical beam is irregular, has undesirable broad optical spectra, and large diver-
gence. Thus, a quality improvement of the beam amplified in BAS amplifiers or
generated by BAS lasers is a critical issue of the modern semiconductor laser
technology.

Seeking to understand the dynamics of BAS devices, to suggest improve-
ments of existing devices or to propose novel device design concepts we do a
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variety of related tasks. We perform modeling at different levels of complexity,
do mathematical analysis of the hierarchy of models, create and implement effi-
cient and robust numerical algorithms, and make numerical integration of the
model equations. Typically, all these steps are done within research projects in
cooperation with developers of the devices.

2 Mathematical Modeling and Numerical Algorithm

The dynamics of BAS devices can be described in different ways. The most
comprehensive approach resolving the spatio-temporal evolution of full semi-
conductor equations self-consistently coupled to the optical fields is given by 3
(space) +1 (time)-dimensional nonlinear PDEs. Since the height of the active
zone where the optical beam is generated and amplified (y dimension) is con-
siderably smaller than the longitudinal (z) and lateral (x) dimensions of a typ-
ical BAS device [see Fig. 1(a)], a significant simplification can be achieved by
averaging over the vertical direction and by describing certain effects phenom-
enologically. The resulting (2+1)-dimensional dynamical traveling wave (TW)
model [1] can be resolved numerically orders of magnitudes faster allowing for
parameter studies in an acceptable time.

Fig. 1. (a): Schematic diagram of a BAS device. (b): Simplified representation of the
BAS device, as considered by the (2+1)-dimensional TW model (Color figure online).

2.1 Basic (2+1)-Dimensional TW Model

The simplest version of the TW model is a degenerate system of second order
PDEs for the slowly varying complex amplitudes of the counter-propagating
optical fields, E(z, x, t) = (E+, E−)T [see white arrows in Fig. 1(b)], nonlinearly
coupled to a rate equation for the real carrier density distribution N(z, x, t). It
accounts for the diffraction of fields and diffusion of carriers in the lateral direc-
tion, whereas spatially non-homogeneous device parameters capture the geomet-
rical design of the device. The normalized TW model reads as

∂
∂tE =

[(−1 0
0 1

)
∂
∂z − i

2
∂2

∂x2

]
E +

[
B(N, ‖E‖2) − (α + iδ) I]

E + Fsp,

1
μ

∂
∂tN = D ∂2

∂x2 N + I(z, x) − R(N) − 2�e
[
E∗T B(N, ‖E±‖2)E]

,
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where μ is small, α, δ, Fsp, D, I, and R(N) = AN + BN2 + CN3 represent the
field losses, the built-in contrast of the refractive index, the spontaneous emission
noise, the carrier diffusion, the injected current density, and the spontaneous
recombination of carriers, respectively. The complex matrix B models the carrier
and photon density dependent semiconductor material gain, G(N, ‖E±‖2), the
carrier-induced changes of the refractive index, ñ(N), as well as the distributed
coupling of the counter-propagating fields κ±:

B11 = B22 =
G(N, ‖E‖2)

2
+ iñ(N), B12 = −iκ−, B21 = −iκ+.

Here, for example,

G(N, ‖E‖2) =
g′ log (max(N,N∗))

1 + ε‖E‖2 , ñ(N) = σ
√

N, κ+ = κ− ∈ R,

where g′, σ, ε, and N∗ are the differential gain, the refractive index scaling, the
nonlinear gain compression parameters, and the small positive carrier density
used to determine an appropriate cut-off of the logarithmic gain function.

In general, this model should be considered in the (laterally) unbounded
region Q = Qz,x × (0, T ], where Qz,x = {(z, x) : (z, x) ∈ (0, L) × R} is the
spatial domain, L represents the length of the device, x is the coordinate of
the unbounded lateral axis of the device, and T defines the length of the time
interval where we perform the integration. Far from the active zone, |x| � 1,
the optical fields and carriers usually are well damped. Thus, in our numerical
simulations we truncate the lateral domain at x = −X and x = X so that the
truncated domain Qt

z,x = {(z, x) : (z, x) ∈ (0, L) × [−X,X]} [large rectangular
in Fig. 1(b)] contains the considered BAS device [red area in the same figure].
Next, we assume either periodic boundary conditions [2,3] or mixed Dirichlet (for
the carrier densities)/approximate transparent (for the field functions) boundary
conditions [4].

The boundary conditions for the optical fields at the longitudinal edges of
the device, z = 0 and z = L, account for reflections of the counter-propagating
fields and optional injection of external optical beams, a0,L(x, t):

E+(0, x, t) = r0E
−(0, x, t) + a0(x, t), E−(L, x, t) = rLE+(L, x, t) + aL(x, t),

with r0 and rL denoting the complex field reflectivity parameters at the laser
facets.

2.2 Modifications of the TW Model

The basic TW model described above can be reduced to lower dimensional sys-
tems, allowing a more detailed analysis, understanding and control of specific
dynamical effects. Different types of model reduction and analysis were discussed
in Refs. [1,5–8]. On the other hand, different extensions of the basic TW model
allow to achieve a more precise description of various relevant properties of BAS
devices.
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First of all, an introduction of the couple of linear equations for induced
polarization functions P+(z, x, t) and P−(z, x, t) enables modeling of nontrivial
material gain dependence on the lasing frequency [9]:

Bnew = B − ID, DE± := g
(
E± − P±)

,
∂

∂t
P± = iωP± + γ

(
E± − P±)

.

Here, the parameters g, ω, and γ define the Lorentzian fit of the gain profile and
denote the amplitude, the central frequency, and the half width at half maximum
of this Lorentzian, respectively.

Another modification is related to the heating of the BAS device by the
injected current. It is known, that the gain and refractive index change functions
are depending on the local temperature of semiconductor material. A proper cou-
pling of the TW model with the full heat transport equation and the numerical
resolution of this extended model, however, is a challenging task due to different
time scales. Whereas the typical time scale of the thermal diffusion in semicon-
ductors is measured in microseconds, the carrier and the photon lifetimes are
given in nanoseconds and picoseconds, respectively. Thus, in order to simulate
the impact of the changing heating to the dynamics of BA lasers in a reasonable
time, we propose to use the following parametric approach. Namely, in Refs. [1,7]
we have proposed to model injection current induced heating by the linear non-
local dependence of the refractive index change and the gain peak frequency
shift on the inhomogeneous injection I(x, z):

δnew(z, x) = δ(z, x) +
∫∫

cT (z, x, z̃, x̃)I(z̃, x̃)dz̃dx̃,

ωnew(z, x) = ω(z, x) +
∫∫

νT (z, x, z̃, x̃)I(z̃, x̃)dz̃dx̃.

Here, thermal factors cT and νT describe local and nonlocal crosstalk thermal
effects in BAS devices with a single or several electrical contacts. This simple
model with the properly defined [7] contact-wise constant coefficients cT and νT

has allowed a proper theoretical reproduction of the state jumping behavior with
tuning of the injected currents [1].

Another useful extension of the basic TW model can be performed when
simulating an emitted field propagation through the external cavity (EC) and
its re-injection to the BAS device [see thick green arrow in Fig. 1(b)]. In the pres-
ence of the optical feedback from the EC, the optical injection function aL(x, t)
in the longitudinal boundary conditions should be replaced by the corresponding
(delayed) feedback term. The form of this term depends on the different compo-
nents within the EC as well as on the field propagation time along the EC.

For example, in the case of a simple EC composed of the collimating lens and
the flat mirror located perpendicularly to the optical axis of the BAS device, the
re-injection term can be given by a simple delayed term

aL(x, t) = t2L
√

Rec eiϕecE+ (L, x, t − 2dec/c0).

Here, tL =
√

1 − |rL|2 is the field amplitude transmission through the right facet
of the laser, Rec and ϕec are the field intensity reflection and phase change in
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the EC, whereas dec is the distance from the center of the right facet of the BAS
diode to the external reflector.

When the collimating lens is absent, and the reflector or the diffractive grat-
ing is located at the small angle αEC to the optical axis, the feedback term turns
to be more complicated [10]:

aL(x, t) ≈ t2L

√
−i

2decλ0
F ∫

x′∈R
E+ (L, x′, t − 2dec/c0) e−ik0ρ(x,x′)dx′.

Here, ρ(x, x′) is the shortest distance between two lateral points x′ and x at the
diode facet that the light takes to travel via the (infinitely broad) external reflec-
tor, whereas the operator F accounts for the spectral filtering by the external
grating.

Another external cavity including the lens, the refractive grating located at
the angle αec to the optical axis, and the small reflecting aperture was investi-
gated experimentally in Ref. [11]. The corresponding feedback term in this case
can be written as

aL(x, t) ≈ −r2
gT 2

L

2π

∫
R χ

(
λ0f cotαec

2πc0
ω − x

) ∫
R E+(L, x, t′)e−iωt′

dt′eiω(t−8f/c0) dω,

where ω denotes the relative optical frequency of the field, f is the focal distance
of the lense, rg and χ(x) are the field amplitude reflections at the grating and
the aperture (the step-function χ(x) is non-vanishing if only x belongs to the
aperture).

2.3 Performance of the Parallel Numerical Algorithm

Precise dynamic simulations of long and broad devices and tuning/optimization
of the model parameters require huge process time and memory resources.
A proper resolution of rapidly oscillating fields in typical BAS devices in a suffi-
ciently large optical frequency range requires a fine space (106−107 mesh points)
and time (up to 106 points for typical 5 ns transients) discretization. Dynamic
simulations of such devices can easily take several days or even weeks on a
single processor. Some speedup of computations is achieved by using problem-
dependent variable grid steps [4]. However, for extended parameter studies with
the numerical integration times up to 1000 ns parallel computers and parallel
solvers have to be employed.

For the numerical integration of the TW model, we use either a split-step fast
Fourier transform based numerical method [2] or a full finite difference scheme
[4]. The method of domain decomposition is used to parallelize the sequential
algorithm. Namely, the numerical mesh of the full problem defined by Nx lateral
and Nz longitudinal uniform discretization steps is splitted along the longitudi-
nal z-direction into K (K: number of processors) non-overlapping rectangular
subgrids of the similar size Nx × Nz,j , j = 1, . . . , K, Nz,j ≈ ceil(Nz/K) [2].

Exemplary simulations of three test problems on the parallel cluster of
computers (see Fig. 2) show a good scaling of the algorithm [2]. For example,
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the simulations performed on 32 processors give a speedup factor of 25. That
is, the simulations requiring two weeks of process time on a single processor
computer can be efficiently performed over a single night. For a larger number
of processes, the relative time needed for communications between them grows
and implies a saturation of the speedup (see an increasing deviation of the test
results from the ideal speedup in Fig. 2). More details on the performance and
scalability of the parallel algorithm can be found in Ref. [2].

Fig. 2. Speedup of computations in multi-process simulations of three test problems
defined on spatial meshes with Nx ×Nz = 1000×640, 1000×320, and 500×640 points
in lateral (x) and longitudinal (z) directions. Bullets of different color indicate tests
with 1, 2, 4 or 8 processes used on each node (Color figure online).

3 Application: Suppression of Mode Jumps in MOPAs

The TW model and our numerical algorithms were successfully used for simula-
tions of different BAS lasers and amplifiers, also showing good agreement with
experimental observations [1]. In many cases, our simulations have helped to
improve the design of the existing devices.

Fig. 3. Schematic representation of Master Oscillator Power Amplifier (MOPA).
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For example, the master oscillator (MO) tapered power-amplifier (PA) laser
shown in Fig. 3 was analyzed theoretically and experimentally in [1,12]. The
narrow waveguide of the distributed feedback (DFB) MO generates a stable
stationary optical field determined by a single transversal mode, which later is
amplified in the tapered PA part of the device. An ideal MOPA laser should be
able to maintain a good quality of the emitted beam. The operation of realistic
MOPA devices, however, is spoiled by the amplification of the spontaneous emis-
sion in the PA, by the small separation of the MO and PA electrical contacts,
and by the residual field reflectivity at the PA facet of the device.

Fig. 4. Simulated optical spectra of DFB MOPA devices with different DFB field
coupling coefficients κ for increased injected current. More than three days of parallel
32-processor computations on Nx × Nz = 400 × 800 spatial mesh with ∼ 2 · 107 time
steps were required for calculation of the data represented by each panel.

In Ref. [1] we have analyzed how this residual reflectivity and thermally
induced changes of the refractive index imply experimentally observable unwanted
switchings between operating states determined by adjacent longitudinal optical
modes. We have found that these bifurcations are due to the changing phase rela-
tions of complex forward- and back-propagating fields at the interface of the MO
and PA parts of the device. Simulations of a typical state-jumping behavior with
increasing injected current is shown in the left panel of Fig. 4. In the theoretical
paper [12] we have demonstrated that a proper choice of the field coupling para-
meter within the DFB MO part of the device makes it less sensitive to the optical
feedback, leading to a stabilization of the laser emission (see second and fourth
panels of Fig. 4).

4 Conclusions

In conclusion, we have presented several modifications of (2+1)-dimensional
Traveling Wave model used to describe the nonlinear dynamics of broad-area
edge-emitting semiconductor lasers and discussed implementation and perfor-
mance of corresponding numerical algorithms on the parallel cluster of com-
puters. We have found, that a speedup factor of typical problem simulations
performed on 32 processors is around 25. For a larger number of processors, the
saturation of this speedup factor is observed. Finally, we have presented an exam-
ple of practical optimization simulations of Master Oscillator Power Amplifier
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semiconductor laser. Here, 32-processor parallel computations of a single numer-
ical continuation diagram with the change of parameter took more than three
days. Thus, without parallelization of the numerical algorithm, an efficient study
of laser parameters in a reasonable time would not be possible.

Acknowledgments. This work was supported by EU FP7 ITN PROPHET, Grant
No. 264687 and by the Einstein Center for Mathematics Berlin under project D-OT2.
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4. Čiegis, R., Radziunas, M., Lichtner, M.: Effective numerical integration of travel-
ing wave model for edge-emitting broad-area semiconductor lasers and amplifiers.
Math. Model. Anal. 15, 409–430 (2010)

5. Radziunas, M., Botey, M., Herrero, R., Staliunas, K.: Intrinsic beam shaping mech-
anism in spatially modulated broad area semiconductor amplifiers. Appl. Phys.
Lett. 103, 132101 (2013)

6. Radziunas, M., Herrero, R., Botey, M., Staliunas, K.: Far field narrowing in spa-
tially modulated broad area edge-emitting semiconductor amplifiers. J. Opt. Soc.
Am. B 32, 993–1000 (2015)

7. Radziunas, M., Tronciu, V.Z., Bandelow, U., Lichtner, M., Spreemann, M.,
Wenzel, H.: Mode transitions in distributed-feedback tapered master-oscillator
power-amplifier. Opt. Quantum Electron. 40, 1103–1109 (2008)

8. Pimenov, A., Tronciu, V.Z., Bandelow, U., Vladimirov, A.G.: Dynamical regimes
of a multistripe laser array with external off-axis feedback. J. Opt. Soc. Am. B
30(6), 1606–1613 (2013)

9. Bandelow, U., Radziunas, M., Sieber, J., Wolfrum, M.: Impact of gain dispersion on
the spatio-temporal dynamics of multisection lasers. IEEE J. Quantum Electron.
37, 183–188 (2001)

10. Jechow, A., Lichtner, M., Menzel, R., Radziunas, M., Skoczowsky, D., Vladimirov,
A.: Stripe-array diode-laser in an off-axis external cavity: theory and experiment.
Opt. Express 17, 19599–19604 (2009)

11. Zink, C., Jechow, A., Heuer, A., Menzel, R.: Multi-wavelength operation of a single
broad area diode laser by spectral beam combining. IEEE Photonics. Technol. Lett.
26(3), 253–256 (2014)

12. Tronciu, V.Z., Lichtner, M., Radziunas, M., Bandelow, U., Wenzel, H.: Improv-
ing the stability of distributed-feedback tapered master-oscillator power-amplifiers.
Opt. Quantum Electron. 41, 531–537 (2009)



Application of the Parallel INMOST Platform
to Subsurface Flow and Transport Modelling

Igor Konshin1,2(B), Ivan Kapyrin1,3, Kirill Nikitin1,3, and Kirill Terekhov1,4

1 Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow 119333, Russia

igor.konshin@gmail.com
2 Dorodnicyn Computing Centre of the Russian Academy of Sciences,

Moscow 119333, Russia
3 Nuclear Safety Institute of the Russian Academy of Sciences,

Moscow 115191, Russia
4 Stanford University, Stanford, CA 94305, USA

Abstract. INMOST (Integrated Numerical Modelling and Object-
oriented Supercomputing Technologies) is a tool for supercomputer
simulations characterized by a maximum generality of supported com-
putational meshes, distributed data structure flexibility and cost-
effectiveness, as well as crossplatform portability. INMOST is a software
platform for developing parallel numerical models on general meshes.
User guides, online documentation, and the open-source code of the
library is available at http://www.inmost.org.

To demonstrate the power and efficiency of the specified technol-
ogy the solutions of subsurface flow and transport problems was consid-
ered. The efficiency of the parallel solution of the multiphase flow model
was shown for up to several thousands of cores. Real-life examples of
advective–diffusive–dispersive transport with sorption and decay model-
ing as well as a reactive transport problem were also considered.

Keywords: Numerical modelling · Software platform · Distributed
meshes · Subsurface flow and transport

1 Introduction

The solution of industrial boundary-value problems requires high quality approx-
imation and discretization of the problem. In addition to the high accuracy dis-
cretization it is necessary to use the general unstructured meshes that fit the
problem geometry. On the other hand, to increase the approximation accuracy
the usage of very large dimension meshes is required. It results in exploiting
of the distributed computations on a modern parallel computers. A developer
requires a tool that helps operating with distributed mesh data.

In general, the boundary-value problems solution consist of the following
stages:

– mesh generation;
c© Springer International Publishing Switzerland 2016
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– distribution of mesh data to processors;
– problem discretization;
– assembling linear system;
– solution of linear system;
– visualization of initial data and solution results.

A lot of existing softwares (STK, FMDB, MOAB, MSTK, OpenFOAM,
Salome and some others) try to operate with distributed mesh data. While solv-
ing a particular problem we were not able to find a library that completely
satisfies our requirements. Some of the libraries does not support operations
with arbitrary polygon elements, some are insufficiently reliable and their real-
izations are not effective, several libraries support only one layer of ghost cells,
some libraries does not support mesh modification during modelling, there is
no possibility (or some difficulties) with incorporating of user approximation
schemes, or there is no code portability between different computer platforms
(Windows, Linux). That is why a decision to develop our own mesh platform
INMOST was done [3–5,9].

2 Algorithmic Specification of INMOST Kernel

Mesh platform should support the following mesh elements:

– Vertex, which contains information on the position in the space;
– Edge, which consists of 2 or more vertices;
– Face, polygon in general case, which is based on a set of edges;
– Cell, polyhedron in general case, which is based on a set of faces.

These mesh elements suppose the following hierarchy (see Fig. 1):

Cell ⇒ Face ⇒ Edge ⇒ Vertex.

On the other hand the same hierarchy can be presented in the reverse order (see
Fig. 2).

Fig. 1. Basic mesh elements: Vertex, Edge, Face, Cell.

In addition, the mesh elements can be specified by their dimension (see
Fig. 3):

– (0D) Node: Vertex;
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Fig. 2. Elements composition: Cell ⇒ Face ⇒ Edge ⇒ Vertex.

– (1D) Edge: Line;
– (2D) Face: Triangle, Quad, Polygon;
– (3D) Cell: Tetrahedron, Hexahedron, Prism, Pyramid, Polyhedron.

One of the most important mesh function used on discretization stage is a
search of neighboring elements:

Cell ⇔ Face
� �
Vertex ⇔ Edge

Not only the above mentioned connections but a complete set of element con-
nections can be applied as well.

Fig. 3. Elements types.

Except for elements description to operate with mesh elements data is also
required. INMOST mesh platform gives such an opportunity: Elements – to
store the mesh configuration; Data – to store information in the mesh elements
(data types can be dense or sparse; integer, float, or binary; a single value or an
array of values); Tags – to connect the mesh data to the elements. To realize
the above mentioned opportunity the mesh functions should operate with: Data,
Tags, Elements, Set of elements, and Mesh.

But in spite of the wide set of the mesh functions, INMOST is not a mesh
generator although such a generator can be written on its base (see example
GridGen in [3]).

Except for the mentioned features, a user can require the following operations
to handle distributed mesh data:
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– Distribute mesh between processors;
– Specify ghost elements;
– Store data for elements in tags;
– Exchange tag data for ghost elements;
– Generate problem matrix from distributed data;
– Call parallel linear solver for distributed matrix;
– Perform global operations (min, max, sum, etc.);
– Save mesh data in a parallel format file (.pvtk, .pmf).

All the functions above are implemented in INMOST.
To distribute, redistribute, and balance the mesh data external packages

ParMetis and Zoltan can used as an internal INMOST function. The solution of
distributed linear systems generated during discretization can be performed by
PETSc, Trilinos, or by a set of internal linear solvers in the same interface.

3 Numerical Experiments

3.1 Two- and Three-Phase Black-Oil Modelling

We consider parallel two- and three-phase black-oil models with the nonlinear
monotone flux approximation presented in [7].

The first numerical test for a parallel version of three-phase black-oil model
was performed on the BlueGene/P cluster located in the Moscow State Univer-
sity and two parts of the INM cluster:

– BG/P system consists of relatively slow PowerPC 450 (850 MHz) cores with
2 GB RAM each.

– The first part of the INM cluster (INM-1) consists of nodes with two quad-core
Intel Xeon X5355 (2.66 GHz) or Intel Xeon E5462 (2.80 GHz) processors and
8 GB RAM per node.

– The second part of the INM cluster (INM-2) consists of nodes with two six-core
Intel Xeon X5650 (2.67 GHz) and 24 GB RAM per node.

The problem set-up is the following. The square region contains two wells
in the opposite corners: one injector and one producer with given bottom hole
pressures.

In our parallel simulation, we use parallel grid generation. At the first stage
the computational domain is split into subdomains which are distributed between
available cores. At the second stage each core constructs a local grid inside the
associated subdomain and exchanges ghost cells with neighbours. Only one layer
of ghost cells is sufficient due to the compact stencil of discrete operators. Grid
partitioning example is shown on Fig. 4.

The total grid dimensions are 128 × 128 × 16 which gives us total of 304 192
nodes (cells + boundary entities).

Linear systems were solved with the PETSc package. The chosen solver is
BCG iterations combined with the additive Schwarz preconditioner and ILU0
preconditioners in subdomains.



INMOST for Subsurface Flow and Transport 281

Fig. 4. Grid partitioning example.

Table 1. Relative speed-up of simulation, BG/P.

#cores Nodes/core #lit tinit tsol speed-up

8 38 024 71 024 68.8 s 28 549 s 1x

16 19 012 71 042 37.2 s 14 471 s 1.97x

32 9 506 71 648 19.6 s 7 464 s 3.82x

64 4 753 72 174 10.5 s 3 874 s 7.36x

128 2 377 73 806 5.9 s 2 059 s 13.86x

Table 1 shows the results of the parallel experiment on BG/P for 200 days
simulation. One can see good relative speed-up for up to 128 cores (2.4 k nodes
per core). The number of total nonlinear iterations is 648 and does not depend
on the number of cores. The number of linear iterations increases slightly as
#cores grows, while the initialization and computation times decrease almost
linearly. We note that the BG/P system has fast connection with relatively slow
computational cores.

Table 2 shows the results for INM-1 and INM-2 which have much faster cores
than BG/P. As expected, the relative speed-up is lower albeit satisfactory: up to
11x for 8-to-128 cores on INM-1 and 4.5x for 8-to-64 cores on INM-2.

Figure 5 presents the relative speed-up of the parallel computation which in
case of BG/P cluster is close to the ideal linear speed-up. Figure 6 shows the
diagram with computational times on three clusters.

The presented results demonstrate good quality of the developed parallel
data structure and algorithms, although we use the third-party PETSc linear
solver which also can be improved.

The second experiment deals with two-phase flow model on a massively par-
allel BG/P system with up to 8192 cores. Problem setup and grid construction
method is similar to the first test case. We consider 50 days simulation on 0.9
million cells nonorthogonal hexahedral grid (1.8 million unknowns).
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Table 2. Relative speed-up of simulation, INM-1 and INM-2 clusters.

INM-1 INM-2

#cores tinit tsol speed-up tinit tsol speed-up

8 9.9 s 12 506 s 1x 6.2 s 4 909 s 1x

16 5.2 s 6 182 s 2.02x 3.8 s 2 980 s 1.65x

32 3.0 s 3 756 s 3.33x 2.4 s 1 957 s 2.51x

64 1.7 s 1 926 s 6.49x 2.0 s 1 092 s 4.50x

128 1.0 s 1 131 s 11.06x – – –
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Fig. 5. Relative speed-up, BG/P, INM-1 and INM-2.

Table 3 presents number of linear and nonlinear iteration, initialization, grid
generation and total simulation times of the parallel experiment for two-phase
flow model. The reference results are taken for 512 cores run. One can see that the
total simulation time decreases, yet there is almost no speed-up for 1024-to-2048
and 4096-to-8192 pairs (see Fig. 7, left). This is explained by the reduction of the
subproblem sizes and the sharp increase of the number of the linear iterations
in these pairs (see Fig. 7, right).

The performed parallel experiments show that the INMOST platform is use-
able for parallel simulations even with severely low unknowns per core numbers
(down to 220 in the last test) and allows to achieve good scalability of the
numerical model with minimal changes of the serial code.

3.2 Groundwater Flow and Contaminant Transport Modelling

The platform may be efficiently applied for complex multidimensional prob-
lems demanding high-performance simulation of various coupled processes. An
example is the groundwater flow and contaminant transport in porous media
modellings [6]. One can observe the general trends in the development of
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Fig. 6. Solution times for parallel computation, BG/P, INM-1 and INM-2.

Table 3. Relative speed-up of the two-phase flow simulation, BG/P.

#cores #nonlit #lit tinit tgrid tsol speed-up

512 151 247 919 2.69 1.19 1478.7 1x

1024 151 190 099 1.80 0.70 559.0 2.64x

2048 150 333 369 1.34 0.49 536.2 2.76x

4096 148 291 533 1.53 0.41 296.7 4.98x

8192 147 402 742 1.91 0.46 296.0 5.0x

hydrogeological modelling codes. From the numerical point of view these are the
use of unstructured adaptive grids, the development of discretizations suitable
for this type of grids and parallelization (examples are the MODFLOW-USG
code [8] and the ASCEM project of US DOE [2].

The means for mesh and data storage, matrix and vector assembly imple-
mented in the platform were used to create the models of the following processes
on unstructured grids:

– saturated and unsaturated groundwater flow;
– advective–diffusive–dispersive transport with sorption and decay;
– reactive transport;
– density-driven flow.

On Fig. 8 we show the application of the code to the safety assessment of
a surface radioactive waste disposal facility. The problem features an adaptive
mesh composed of triangular prisms, and quite a specific geological structure
featuring 10 layers with heterogeneous hydraulic conductivity tensor. Combined
with Qt and VTK libraries the INMOST platform allows to organize a full
workflow for hydrogeological modelling: creation of a geological model, model
data setting, grid generation, numerical flow and transport modelling with the
ability to run in parallel, and finally the visualization of results. The broad
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Fig. 7. Left: reduction of computation time compared to 512-cores experiment. Right:
total number of linear iterations for simulation.

Fig. 8. Modelling the evolution of a contaminant plume from a surface waste disposal
in a realistic geological media.

options of the platform to attach data to mesh entities is widely used to impose
the boundary conditions, express the heterogeneity of the domain properties and
take into account various objects affecting the flow, namely wells, drains, rivers
and lake, pollution sources.

Another application is the reactive transport modelling using a combina-
tion of a domestic flow and transport code with a third-party chemical code
PHREEQC [1]. On Fig. 9 the results of five-spot test case are shown. The domain
is a parallelepiped [−100; 100] × [−100; 100] × [−5; 5] (in meters). Four injec-
tion wells are located close to the corners of the domain: points (−95;−95),
(95;−95), (95; 95), (−95; 95) in the X-Y plane with the well screen in the range
(−2; 2) meters along the Z-axis. A production well is located in the middle of
the domain. The injection intensity is 10 m3/day for each injection well, the pro-
duction rate is 40 m3/day. The boundaries are impervious. The porous media
is homogeneous and contains an ionic exchanger X. The injected liquids have
an equal concentration of strontium 3.3 · 10−9 Mol/l while the concentration of
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(c)(b)(a)

Fig. 9. Modelling groundwater flow and reactive transport of solute containing sodium
nitrate and strontium in the presence of ionic exchanger on the rock (T = 3000 days).
(a) Water head; (b) Nitrate concentration in groundwater; (c) Strontium concentration
in groundwater.

sodium nitrate varies from zero (lower left injection well) to 0.6 Mol/l (upper
left injection well) with a step 0.2 Mol/l (thus having 0.2 Mol/l in the lower right
and 0.4 in the upper right injection well). The initial solution in the media also
contains K, Cl, Ca, Mg, S, C in equilibrium with the media. The results of the
modelling are in good agreement with observed experimental data showing a
decrease in the strontium attenuation caused by the presence of sodium nitrate
in the injected solution. On Fig. 9 one can see that the higher the sodium nitrate
concentration will be, the less will strontium be sorbed causing a quicker pollu-
tion propagation. Note that in sequential mode the modelling of this problem for
1000 days on a very coarse mesh containing 1600 hexahedral cells took around
3 h on an Intel CoreI7 machine substantiating a strong need in parallelization.

Conclusions

In conclusion we would like to formulate the major benefits of INMOST:

– Cross-platform code;
– Supports parallel mesh generation;
– Supports various input/output mesh formats (.gmsh, .vtk, .pvtk, .gmv, inter-

nal .pmf);
– Mesh can be distributed and redistributed in parallel (works with Zoltan,

Parmetis and internal partitioner);
– Full set of mesh elements;
– Supports element markers and tag data of different types (integer, double,

byte, element);
– Basis for parallel grid modification (is under development now).

Acknowledgements. This work has been supported in part by RFBR grants 14-01-
00830, 15-35-20991.
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Abstract. In the paper an application of Ant Colony Optimization algo-
rithm for solving the two-dimensional inverse solidification problem of
binary alloy is presented. Aim of the considered problem lies in recon-
struction of the boundary condition on the basis of temperature values
measured in selected points of the cast. Presented approach is grounded
on two procedures: the finite difference method with application of the
generalized alternating phase truncation method and the parallelized Ant
Colony Optimization algorithm serving for minimization of a functional
representing the important part of the procedure.

Keywords: Swarm intelligence · Parallel ACO algorithm · Solidifica-
tion · Binary alloy

1 Introduction

With regard to the increasing level of complexity of the technical problems and
the increasing time needed to carry out the required calculations, the parallel
computations appeared to be very efficient. Parallel computing means that the
calculations are executed simultaneously [1], basing on the assumption that the
discussed large problem can be divided into smaller tasks solved concurrently.
One may distinguish several forms of parallel computing, that is the bit-level,
instruction level, data and task parallelism. To employ the parallel computing
the appropriate algorithm is needed, possible to parallelize.

Ant Colony Optimization (ACO) algorithm is this kind of algorithm, since
its structure enables to involve the parallel computations. ACO algorithm is
a swarm intelligence algorithm [2], grounds of which have been taken from the
observations of ants exploring the environment in search for the source of food.
During this search the ant marks the traversed path by using a chemical sub-
stance, called the pheromone, stimulating other members of the swarm to follow
the path. In this way the pheromone trace on the most attractive and promising
trails is intensified and on the long, leading to nowhere trails it is evaporated.
Such system of collective actions of simple individuals belonging to the swarm

c© Springer International Publishing Switzerland 2016
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creates some kind of artificial intelligence and is imitated in the algorithm by
the artificial “ants” representing the possible solutions of discussed problem dis-
persed in the investigated region and condensing their presence around the best
located solutions [3–5]. Authors of the current paper have already contributed in
developing the technical applications of ACO algorithm by using it in solving the
selected heat conduction problems [6,7]. Problems investigated in these exem-
plary references have been considered in one-dimensional space in dependance on
time, therefore the classical version of ACO algorithm was enough for our needs.
In the current paper we deal with a problem considered in two-dimensional space
and changing with time which results in significant prolongation of time needed
to execute the calculations. Therefore we decided to parallelize the ACO algo-
rithm which was possible, since in the procedure each swarm member is created
independently, so all the required computations can be carried out simultane-
ously for all the created individuals.

Problem taken up in this paper lies in solving the inverse solidification prob-
lem, more specifically, in reconstructing the heat transfer coefficient on boundary
of the region, together with the temperature distribution in the entire region.
The reconstruction will be carried out on the basis of temperature measurements
read in selected points of the domain, on the way of minimizing the functional
expressing differences between the calculated and measured values of temper-
ature with the aid of ACO algorithm, whereas the process of alloy solidifica-
tion will be described by the model called as the solidification in temperature
interval [8,9]. The used model, taking into account only the temperature dis-
tribution, is based on the heat conduction equation with the enclosed source
element including the latent heat of fusion and the volume contribution of solid
phase. Procedure of minimizing the mentioned functional requires the solution
of direct problem which will be realized by applying the finite difference method
combined with the generalized alternating phase truncation method [10–12].

2 Governing Equations

Two-dimensional domain Ω = [0, b] × [0, d], shown in Fig. 1 for the selected
moment of time, is occupied by a solidifying material. Region Ω is divided into
three subregions taken by the liquid and solid phase, separated by the interme-
diate two-phase zone (called the mushy zone) and the boundary Ω = Ω × [0, t∗]
is divided into five parts like it is defined in the figure.

Inside considered domain Ω the function T , describing the distribution of
temperature, satisfies the heat conduction equation

C �
∂

∂t
T (x, y, t) = λ ∇2T (x, y, t), (1)

where C denotes the substitute thermal capacity and � and λ are, respectively,
the mass density and thermal conductivity, whereas t describes the time variable
and x, y refer to the spatial locations. Thus, solving of this problem consists in
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Γ0 = {(x, y, 0); x ∈ [0, b], y ∈ [0, d]}
Γ1 = {(0, y, t); y ∈ [0, d], t ∈ [0, t∗]}
Γ2 = {(x, 0, t); x ∈ [0, b], t ∈ [0, t∗]}
Γ3 = {(b, y, t); y ∈ [0, d], t ∈ [0, t∗]}
Γ4 = {(x, d, t); x ∈ [0, b], t ∈ [0, t∗]}

Fig. 1. Domain of the problem for the selected moment of time t̄ (Γ̄i = Γi ∩ {t̄}) and
the general definition of boundaries

determination of function T fulfilling Eq. (1) as well as the initial condition on
boundary Γ0:

T (x, y, 0) = T0, (2)

where T0 denotes the initial temperature, the homogeneous condition of the
second kind on boundaries Γ1 and Γ2:

− λ
∂

∂n
T (x, y, t) = 0 (3)

and condition of the third kind on boundaries Γ3 and Γ4:

− λ
∂

∂n
T (x, y, t) = α(x, y, t)

(
T (x, y, t) − T∞

)
, (4)

where α denotes the heat transfer coefficient, T∞ expresses the ambient temper-
ature.

The substitute thermal capacity is a parameter appearing while modeling the
solidification process by using the one domain approach. It varies in dependence
on temperature and is defined as

C =

⎧
⎪⎨
⎪⎩

cl T > TL,

cmz +
L

TL − TS
T ∈ [TS , TL],

cs T < TS ,

(5)

where cl, cmz and cs denote, respectively, the specific heat of liquid phase, mushy
zone and solid phase, L describes the latent heat of fusion and TL and TS refer
to the liquidus and solidus temperatures. Values of density and the thermal
conductivity coefficient in Eq. (1) are also variable in dependence on temperature

� =

⎧
⎨
⎩

�l T > TL,
�mz T ∈ [TS , TL],
�s T < TS ,

λ =

⎧
⎨
⎩

λl T > TL.
λmz T ∈ [TS , TL].
λs T < TS .

(6)
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Thanks to the above expression of parameters C, � and λ as dependent on tem-
perature, Eq. (1) describes the distribution of temperature in the entire domain,
that is in the liquid phase, two-phase (mushy) zone and in the solid phase.

Goal of the investigated inverse problem is to determine the temperature
distribution in considered region Ω and to identify the heat transfer coefficient
on boundaries Γ3 and Γ4 in case when the values of temperature in selected
points (xi, tj) ∈ Ω are given

T (xi, yi, tj) = Uij , i = 1, 2, . . . , N1, j = 1, 2, . . . , N2, (7)

where N1 denotes the number of sensors and N2 refers to the number of mea-
surements read from each sensor.

For some assumed fixed form of heat transfer coefficient α problem (1)–(4)
turns into the direct problem which can be solved by using one of the known
methods dedicated for this kind of inverse problem. In this case we decided to
apply the finite-difference method supplied by the generalized alternating phase
truncation method [10,11]. In this method the temperature is replaced by the
enthalpy and the calculations are executed in three stages – in each stage the
domain is reduced to one phase (the liquid phase, mushy phase and solid phase,
respectively), so in every step of calculations the problem is replaced by three
one-phase direct solidification problems solved with the aid of finite-difference
method.

Thus, after solving problem (1)–(4) for the given form of heat transfer coeffi-
cient we are able to find the values of temperature Tij = T (xi, tj) corresponding
to the assumed form of coefficient α. Next, by using the calculated tempera-
tures Tij and the measured temperatures Uij we construct a functional express-
ing the error of approximate solution in the following way

J(α) =
N1∑
i=1

N2∑
j=1

(
Tij − Uij

)2
. (8)

On the way of minimizing functional (8), realized with the aid of ACO algorithm,
we are able to find the values of sought heat transfer coefficient such that the
reconstructed values of temperature will be as close as possible to the values of
measurements.

3 Ant Colony Optimization Algorithm

The Ant Colony Optimization is an algorithm of heuristic nature belonging to
the group of artificial intelligence algorithms imitating the behavior of the swarm
of ants sharing the information about traversed paths by leaving on the ground
a chemical substance, called pheromone, excreted by most of the ant species.
To mimic this specific way of communication between ants we use the following
algorithm, in which the vectors x of investigated region play the role of ants
forced to gather around the solution considered as the best (see also [3,6,7]).
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Pseudo-code of ACO algorithm:
1. Input data:

J(x) – minimized function, x = (x1, . . . , xn) ∈ D, where D is a domain
of the problem; m – number of ants in one population; I – number of
iterations; β – narrowing parameter.

2. Random selection of the initial ants location: xk = (xk
1 , . . . , x

k
n), where

xk ∈ D, k = 1, 2, . . . ,m.
3. Determination of the best located ant xbest in the initial ants population,

that is the ant for which the minimized function J takes the lowest value.
for i = 1 → I do

for j = 1 → I2 do
4. Parallel updating of the ants locations:

– parallel random selection of vector dxk, k = 1, ...,m, such that

−βi ≤ dxk
t ≤ βi;

– parallel creation of the new ants population:

xk = xbest + dxk, k = 1, 2, . . . ,m;

– parallel determination of values J(xk), k = 1, 2, . . . ,m.
5. Determination of the best located ant xbest in the current ant population.

end for
6. Narrowing of the ants dislocations range according to relation βi+1 =

0.1βi.
end for

Step 6 of the above procedure, in which the range of ants dislocations is
reduced, simulates the process of evaporation of the pheromone trail. Parameter
β is a measure of concentration of the ants around the best located one, sym-
bolizing the path leading to the source of food. Decreasing of this parameter
forces the ants to gather around the best location. And the way of generating
the new population of ants, such that each new ant is created independently,
allows to parallelize the procedure. Since the calculation of the value of function
(8) requires to solve the associated direct problem, we may execute the calcula-
tions independently for each tested solution, which about nine times decreases
the working time of the procedure. Another element, which should be taken
into account, is the heuristic character of the ACO algorithm causing that the
obtained result is the best, but the best one achieved in this specific run. Every
other execution of the procedure can give slightly different solution. It is not
any limitation of this kind of algorithms, it is just a specificity of the heuristic
algorithms. However, to ensure the best result the procedure must be repeated
some number of times and the best of received solution will be accepted as the
best one.
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4 Computational Example

Considered inverse solidification problem consists in identification of heat trans-
fer coefficient occurring in boundary condition (4) defined on boundaries Γ3

and Γ4 (see Fig. 1). Function α, describing this coefficient, will be sought as the
step function in the following form (where t1 = 40, t2 = 100 [s]):

α(x, y, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 for t ≤ t1 ∧ x ∈ [0, b] ∧ y = d,

α3 for t ∈ (t1, t2] ∧ x ∈ [0, b] ∧ y = d,

α5 for t > t2 ∧ x ∈ [0, b] ∧ y = d,

α2 for t ≤ t1 ∧ y ∈ [0, d] ∧ x = b,

α4 for t ∈ (t1, t2] ∧ y ∈ [0, d] ∧ x = b,

α6 for t > t2 ∧ y ∈ [0, d] ∧ x = b.

(9)

Solidification process carried out within domain Ω according to Eqs. (1)–(4)
is defined by the following values of material parameters:

b = d = 0.08 [m], t∗ = 400 [s], λl = 54 [W/(m K)], λs = 30 [W/(m K)], cl =
840 [J/(kg K)], cs = 668 [J/(kg K)], �l = 7000 [kg/m3], �s = 7500 [kg/m3], L =
272000 [J/kg], T∞ = 50 [K] and T0 = 1803 [K].

The exact values of the sought heat transfer coefficient are known and are
the following

α1 = 1200, α3 = 250, α5 = 500,

α2 = 800, α4 = 800, α6 = 250 [W/(m2 K)].

Thanks to this information we can compare the reconstructed values of coeffi-
cients αi with the exact ones and to evaluate the precision of obtained results.

The sought values were reconstructed on the basis of measurements of tem-
perature made on four thermocouples (N1 = 4) located 4 mm away from bound-
ary of the region. The readings of temperature were taken in two rounds, at
every 1 and 4 s, which gives us 400 and 100 measurement values (N2 = 400 or
N2 = 100, respectively). For investigating the precision and stability of obtained
approximate values of heat transfer coefficient we performed the calculations for
the exact as well as for the burdened input data. The burdened input data were
perturbed by the 1 % and 2 % random error of normal distribution.

The generalized alternating phase truncation method supported by the finite
difference method, applied for solving the direct problem associated with the
discussed inverse problem, was realized for the discretization grid of steps
Δx = b/100 and Δy = d/100 and for the time step Δt = 0.02. In our com-
putational experiment the same procedure was used for determining the values
treated later as the measurements, but to avoid the inverse crime in this case
we took the grid of different density. Parameters of the ACO algorithms used
for minimizing functional (8), that is the number of ants in one populations and
the number of external iterations were equal to m = 18 and I = 6, respectively.
Such values of parameters were the result of our test calculations performed
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for some well-known benchmark functions. We also took into account in that
issue our experiences gained while working on our previous papers (for exam-
ple on papers [6,7]). According to the literature [3] the decreasing coefficient of
the narrowing parameter β at the beginning of the procedure was taken as 0.1
but, basing on our experience, starting from the second iteration we decided to
change this value to 0.2. We did it to shorten the time of calculations because
thanks to this change the solutions gather faster around the best one. Another
way for shortening the execution time is the idea of parallelizing the ACO algo-
rithm. Thanks to this each run of the procedure took about 36 h, whereas the
execution time before this modification was about 330 h. It is a very reasonable
time for the task of discussed kind solved in two-dimensional space, especially
with regard to the fact that for computations we used the system of ordinary
PC computers with processor Intel Core i7-3930K 3.2 GHz. In this six physical
core processor with twelve logical cores we used in calculations ten logical cores
thanks to the intel’s hyperthreading technology. Another element, which should
be taken into account, is the heuristic nature of ACO algorithm, therefore, to
avoid the uncertainty of obtained results, in each case of initial data perturbation
and the number of measurements the computations were made eight times.

In Figs. 2 and 3 there are presented two collections of figures. The first one
shows the values of the objective functional (8) minimized by using the ACO
algorithm together with the mean and maximal relative errors in reconstructing
all six values αi in dependance on the iteration number (within each external
iteration I there is executed I2 internal iterations, therefore I = 6 means in fact
63 = 216 iterations) obtained for measurements taken at every 4 s and exact
input data. The second figure shows similar results only in the worst case of
input data, that is for measurements read with the same frequency but for 2 %
input data. Values of minimized functional suppose to decrease which can be
observed in both figures – for the exact input data the values approach to zero,
as expected, for the burdened input data the values also decrease, however not to
zero because of the perturbation. Consequence of the decreasing functional (8)
is that the mean and maximal reconstruction errors decrease as well, which is
the aim of the procedure and is visible in both figures.

Figure 4 displays the comparison of mean relative errors in reconstructing
all six values αi received for various noises of input data and both frequencies
of measurements. We may see that in all cases of input data the reconstruc-
tion errors are lower than the input errors. More detailed analysis of results is
collected in Table 1 presenting the reconstructed values of the heat transfer coeffi-
cient, relative percentage errors of these reconstructions and standard deviations
of results obtained in multiple executions of the procedure for the case of 100
measurements. Low values of errors and of standard deviations as well indicate
the precise and stable reconstruction of the sought coefficient. Similar conclusion
concerns the reconstruction of temperature. Relative and absolute errors of the
temperature reconstruction in all four points of the sensor locations for more
rarely read measurements and for various noises of input data are presented in
Table 2 and we can see that they are insignificant.
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Fig. 2. Values of the objective function (8) of the ACO algorithm (left figure) together
with the mean and maximal relative errors in reconstructing all values αi, i = 1, ..., 6,
(right figure) in dependance on the iterations number obtained for measurements taken
at every 4 s and exact input data
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(right figure) in dependance on the iterations number obtained for measurements taken
at every 4 s and 2 % perturbation of input data
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Table 1. Results of the calculations for measurements taken at every 4 s and for various
noises of input data (αi – reconstructed values of the heat transfer coefficient, δαi –
relative percentage error, sαi – standard deviation)

Noise i αi δαi [%] sαi

0% 1 1199.94 0.005 0.451

2 800.20 0.025 0.183

3 249.98 0.010 0.015

4 800.18 0.022 0.280

5 499.94 0.012 0.203

6 250.04 0.015 0.009

1% 1 1203.49 0.291 0.794

2 797.11 0.361 1.027

3 250.33 0.130 0.086

4 788.59 1.426 0.141

5 503.54 0.708 0.281

6 250.70 0.282 0.068

2% 1 1192.34 0.638 0.008

2 811.46 1.433 0.741

3 249.45 0.222 0.047

4 803.97 0.496 0.152

5 494.78 1.043 0.660

6 248.98 0.408 0.065

Table 2. Relative and absolute errors of the temperature reconstruction in all four
points of the sensors locations, for measurements taken at every 4 s and for various
noises of input data

Noise Sensor δmax [%] δmean [%] Δmax [K] Δmean [K]

0 % 1 0.0108 0.0016 0.1877 0.0205

2 0.0094 0.0011 0.1493 0.0137

3 0.0217 0.0008 0.3717 0.0095

4 0.0172 0.0012 0.2948 0.0145

1 % 1 0.1056 0.0409 1.7024 0.4786

2 0.1236 0.0439 2.1058 0.4770

3 0.3318 0.0506 5.7017 0.5935

4 0.4208 0.0504 7.2321 0.6476

2 % 1 0.1165 0.0346 1.5138 0.4041

2 0.1032 0.0297 1.5269 0.3416

3 0.3205 0.0122 5.5069 0.1473

4 0.0613 0.0145 0.7062 0.1792
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5 Summary

Goal of the paper was the presentation of the procedure for solving the inverse
problem in solidification of the binary alloy. Studied problem was solved thanks
to the application of two procedures: the generalized phase truncation method
and the Ant Colony Optimization algorithm with a modification consisted in par-
alleling the computations carried out for the individuals. Numerical verification
of the approach showed that in each discussed case of input data the reconstruc-
tion errors were comparable or significantly smaller than errors of input data and
values of the standard deviations of results were relatively small. The compar-
ison of the selected swarm intelligence algorithms and the genetic algorithm in
solving the two-dimensional inverse Stefan problem is investigated in paper [6],
where it is shown that the ACO and Artificial Bee Colony algorithms give the
results equally precise as the genetic algorithm, but they are faster in working.
In paper [7] the comparative analysis of three algorithms (ACO, ABC and Har-
mony Search algorithm) in solving the inverse Stefan problem is executed which
shows that the ant and bee algorithms give similarly precise and stable results
in the shortest time. The comparative study of the parallel ACO procedure and
selected other algorithms in solving the investigated problem is now in progress.

Acknowledgements. This project has been financed from the funds of the National
Science Centre granted on the basis of decision DEC-2011/03/B/ST8/06004.
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Abstract. We present a new Monte Carlo method which is based on the
original Bond Fluctuation Model (scBFM) for simulating polymeric sys-
tems in three dimensions. A body centered cubic lattice is used instead of
a simple cubic lattice. This modified Bond Fluctuation Model (bccBFM)
fulfills the same requirements as the original scBFM, namely excluded
volume and the cut-avoidance of bond vectors. Most remarkably the
algorithm allows for a very efficient parallelization. This leads to a per-
formance gain of about two orders of magnitude, when using graphics
processor units (GPU). The bccBFM shows universal behavior both for
static and dynamic properties and can be used to solve the same prob-
lems as the original scBFM, but provides an efficient implementation
especially on GPUs.

Keywords: Polymers · Monte Carlo · CUDA · Bond fluctuation model ·
Parallel algorithm · GPU

1 Introduction

Since the development of the Bond Fluctuation Method (BFM) by Carmesin
and Kremer in 1988 [1], and the extension to three dimensions by Deutsch and
Binder 1990 [2], the model has served as a basis for numerous computer simu-
lations of polymeric systems such as melts, networks, membranes, dendrimers,
copolymers, rings and others [3–9]. It models polymeric systems on a coarse-
grained level. Monomers are represented as cubes on a simple cubic lattice as
an efficient look-up table for neighbor interactions. Excluded volume interac-
tions were implemented by excluding multiple occupation of single lattice nodes.
One of the very remarkable features is the cut-avoidance of bond vectors, mean-
ing that a single chain can not intersect with itself or another chain preserving
the local and global topological constraints of the system. Thereby entangle-
ment effects could be properly simulated [2]. This feature is implemented very
efficiently by a special set of allowed bond vectors between the monomers [2].
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The model is very simple and easy to implement and runs very efficient on
modern computer systems. Therefore it can reach large length and time scales.

Here, we present a new version of this model which is based on the body
centered cubic lattice. This new model has the same remarkable features as the
original model, but allows for a very efficient parallelization giving a performance
gain of about two orders of magnitude between CPU and GPU.

The motivation for the development of the new algorithm stems from the
recent developments in high performance computing with the need of massively
parallel algorithms. Especially GPUs have become a powerful tool in simulat-
ing molecular systems [10]. The development of better programming models for
GPU [11] has made it possible to make use of this computing power. Our algo-
rithm makes use of the single instruction multiple data (SIMD) [12] model, by
performing the same instructions for every monomer. Excluded volume and bond
sharing conflicts which arise by moving all monomers in parallel, could be over-
come by defining four subsets in which every monomer can be moved in parallel
without conflicts. This is not possible for the original BFM (scBFM).

In Sect. 2, the model will be explained in detail. In Sect. 3, we compare the
different implementations of the BFM to each other. This is followed by our
conclusions and outlook.

2 The Model

The concept of our model is based on the original bond fluctuation model [1,2].
The differences have their origin in the underlying lattice type for modelling
the coarse-grained monomers and efficiently implementing the look-up table for
short-range non-bonded monomer interactions. Instead of a simple cubic lattice
(scBFM), we use a body-centered cubic lattice in this approach (bccBFM). The
bcc-lattice can be represented as two interpenetrating sc-lattices with lattice
constant a shifted by (1a , 1a , 1a) units as displayed in Fig. 1. The two simple
cubic sub-lattices are named even (X) and odd (O) referring to the case that
all coordinates of the monomer’s midpoint are only even or only odd. As a
consequence the used bcc-lattice is twice the size of the sc-lattice, but only half
of the nodes need to be accessed within this algorithm.

2.1 Excluded Volume

A single monomer is represented as a cube on one of the two sub-lattices, see
Fig. 1. It occupies one node for the midpoint on its lattice and 8 nodes on the
other sub-lattice. The length of one edge is two lattice units (2a). On the right-
hand side of Fig. 1 we display the model in two dimensions for simplicity. The
complete overlap of those cubes/monomers, or all nodes, is forbidden. But they
are allowed to “touch” each other meaning that they can occupy 1, 2 or 4 edge
nodes together (see Fig. 1). There is no algorithmic advantage in the bccBFM-
algorithm to populate all 9 nodes explicitly, instead only the one interior node
of the cube is sufficient. In the following, we restrict our explanation only to this
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Fig. 1. Sketch of a polymer in the new bccBFM in three dimensions (left) and projected
to two dimensions (right) for simplicity. We have only drawn the accessible nodes within
the bcc-lattice (O as odd sub-lattice and X as even sub-lattice) and highlight the four
subsets AO, AX, BO, and BX for parallelization. The monomer in the top left corner is
allowed to move to the new position (green) and thereby changing its position from
the odd (blue) to the even (red) sub-lattice (Color figure online).

center node. Thereby, the minimal distance due to excluded volume constraint
between the centers of mass of two monomers is two lattice units.

2.2 Set of Bond Vectors

The bond vector between connected monomers has to be chosen out of the
predefined set:

BbccBFM = P±

⎛
⎝

2
0
0

⎞
⎠ ∪ P±

⎛
⎝

2
2
0

⎞
⎠ ∪ P±

⎛
⎝

2
2
2

⎞
⎠ ∪ P±

⎛
⎝

3
1
1

⎞
⎠ , (1)

where P± stands for all permutations and sign combinations of a triple. We clas-
sify those bond vectors in a set of even and odd vectors. Even bond vectors con-
nect monomers on the same sub-lattice, whereas odd vectors connect monomers
between different sub-lattices. There are 26 different even and 24 different odd
bond vectors. The bond length can vary between b = 2, b =

√
8, b =

√
11,

and b =
√

12. The intersecting and crossing of strands formed by connected
monomers out of this set is forbidden, thereby entanglement interactions are
taken into account. The cut-avoidance preserves local topological constraints
and therefore the global topology, which has been proven by the algorithm of
Trautenberg et al. [13].

2.3 Algorithm

Sequential. During the elementary step of the Monte Carlo procedure, one
monomer is randomly chosen. The monomer displacement is randomly chosen
by one out of 8 diagonal move directions
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MbccBFM ∈ P± (1, 1, 1) (2)

with length ‖MbccBFM‖ =
√

3. The move is accepted, if the excluded volume
constraint is fulfilled and the new bond vectors belong to the set in Eq. (1).
Otherwise the move is rejected. The move vector MbccBFM in context with the
given constraints will not lead to any bond crossings during the simulation. For
long or short-ranged interactions between the monomers the Metropolis algo-
rithm [14] can be applied. As basic time unit in the simulation model we define
one Monte Carlo-Step (MCS) as one attempted Monte Carlo move per monomer
in average. This algorithm is repeated as long as necessary to equilibrate the sys-
tem and for sampling the observables.

Parallel. The bccBFM can be efficiently parallelized without additional rules
as necessary for the scBFM [15]. In order to parallelize the simulation we divide
all monomers into two subsets A and B, where every monomer is only connected
to monomers of the other subset. Monomers of the same subset are not directly
connected. Each of those two subsets can be divided again into two subsets, one
subset where all monomers are on the even lattice (X) and another one with all
monomers on the odd lattice (O) labeling the position of the monomer’s interior
node to be on the X or O-lattice. For parallelization all monomers are classi-
fied to belong to one of the four subsets AO, AX, BO, and BX (for illustration
see Fig. 1). During the simulation we randomly choose one of those subsets and
attempt to move every monomer in parallel with the same conditions as in the
sequential algorithm. This includes excluded volume, restricted bond vectors and
- optionally - Metropolis criteria to include thermal interactions. This classifi-
cation into four subsets guarantees implicitly that all bonds are in the allowed
set and excluded volume constraints are fulfilled after performing the accepted
moves in parallel. The instructions for a single monomer move applies for every
monomer within the subset AO, AX, BO, or BX and can be implemented on a
SIMD (Single Instruction Multiple Data) machine such as a GPU as a efficient
parallelized algorithm. We use the same time unit, MCS, as in the sequential
version to be the mean number of attempted moves per monomer.

3 Results

In this section, we test the sequential algorithm (bccBFM-CPU) and parallel
algorithm (bccBFM-GPU) and compare their results. For this we use the well
studied systems of polymer melts and single polymer chains [16–18]. We show
that the bccBFM shows universal behavior both for static and dynamic proper-
ties of polymers.

3.1 Static Properties

Single linear chains consisting of N = 16 to N = 1024 monomers were simulated
in a cubic simulation box with length 256 a under periodic boundary conditions.
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The radius of gyration R2
g was calculated as follows:

R2
g =

1
N

〈
N∑

i=1

(ri − rCOM)2〉, (3)

where N is the number of monomers of the chain, ri is the position of the ith
monomer, rCOM = 1/N

∑N
i=1 ri is the center of mass of the chain, and 〈. . . 〉

denotes the ensemble average. The results are displayed in Fig. 2.

Fig. 2. The chain extension as function of the concentration c normalized by the over-
lap concentration c∗ = N/ 4π

3
(R2

g0/b20)
3/2 in the bccBFM on CPU (filled red) and

GPU (open blue). Both variants confirm the theoretical prediction of dense system
(∼ c−0.23, dotted line) and the diluted case (∼ c0, solid line) for linear chains with
length N = 64, 128, 256 (from top to bottom: triangle up, triangle down, diamonds).
The concentration dependent radius of gyration R2

g divided by its average squared
bond length b2 is normalized by the value in the highly diluted case of a single chain
R2

g0/b20. No further rescaling between the data in the bccBFM on CPU and GPU have
to be applied. Inset: Radius of gyration R2

g0 in lattice units a for single chains with
length N in the bccBFM on CPU (crosses) and GPU (circles). Both variants show the
expected scaling with a slope of 2ν � 1.176 without further rescaling (solid line) (Color
figure online).

The bccBFM show the (expected) deviation [19] for shorter chains (N < 32)
on the scaling relation for single self-avoiding chains Rg0 ∝ Nν [16]. In the limit
of long chains both models reach the theoretical prediction of the exponent
ν ≈ 0.588 [20]. The average bond length for highly diluted systems, such as single
chains, is

√
〈b20〉bccBFM 
 3.1 in the parallel and sequential implementation.

In order to compare the scaling in the bccBFM, polymer solutions of var-
ious concentrations c have been simulated. We normalized R2

g/b2 with it’s



306 C. Jentzsch et al.

Fig. 3. Mean squared displacement of the inner monomer of a single chain in good
solvent g1(t) normalized to the mean squared bond length b20 as function of time t of
single chain with length N = 64, 128, 256, 512 (from top to bottom: black, red, green,
and cyan). Both variants confirm the theoretical prediction g1(t) ∼ t2ν/(1+2ν) ∼ t0.54

for t � τR and g1(t) ∼ t for t � τR. No further rescaling between the data in the
bccBFM on CPU and GPU (stroked and solid lines) have to be applied. Inset: Diffusion
coefficient D of a single chain with length N in the bccBFM on CPU and GPU (crosses
and circles). Both models confirm the Rouse-like behavior D ∼ 1/N (solid line) (Color
figure online).

value for the highly diluted case R2
g0/b20 (a single chain) and plotted it ver-

sus the concentration normalized by the dimensionless overlap concentration
c∗ = N/ 4π

3 (R2
g0/b20)

3/2 (see Fig. 2). In the diluted and the dense case the scaling
relation f (c/c∗) ∼ (c/c∗)m with scaling exponent m [16] should hold

R2
g/b2

R2
g0/b20

∼ f
( c

c∗
)

∼
{

c0 if c � c∗

c− 2ν−1
3ν−1 ∼ c−0.23 if c  c∗ . (4)

Both variants bccBFM-CPU and bccBFM-GPU show the same universal behav-
ior, and confirm the scaling relation.

3.2 Dynamic Properties

In order to describe the dynamics of the simulation model, the diffusion proper-
ties of polymer chains have been inspected. We start with the discussion of the
mean squared displacement (MSD) of the center of mass of the single chain as
function of time t which is defined as

g3(t) = 〈[rCOM(t) − rCOM(0)]2〉. (5)
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Fig. 4. Mean squared displacement of the inner monomer (black) g1(t), the inner
monomer relative to the center of mass (red) g2(t), the center of mass (green) g3(t),
and the end monomer (cyan) g4(t) for melts of linear chains with N = 128, 256, and
512 (solid, dashed and stroked lines) at c = 0.25 as function of time t simulated with
the bccBFM on GPU. All data confirm the theoretical predictions for dynamics, but
only chains with length N = 512 show the onset of the reptation dynamics (Color
figure online).

In the limiting case for a freely diffusing polymer chain the MSD g3(t) has a
linear dependence with time g3(t) = 6Dt. The diffusion constant D was extracted
for single chains of different lengths N in the bccBFM (see Inset Fig. 3). The
diffusion constant D scales with the chain length N as D ∝ 1/N . This is the
theoretical prediction of the Rouse-like [21] behavior as expected in the bccBFM.
Next, we analyze the mean squared displacement of the single monomers. We
define the mean squared displacement of the inner monomer of the chain g1(t),
the same displacement relative to the chain’s center of mass g2(t), and g4(t) as
mean squared displacement of the end monomer of the chain as

g1(t) = 〈[rN/2(t) − rN/2(0)]2〉
g2(t) = 〈([rN/2(t) − rCOM(t)] − [rN/2(0) − rCOM(0)])2〉
g4(t) = 〈[rN (t) − rN (0)]2〉

. (6)

For the short times the inner modes dominate the dynamic behavior and
chains in good solvent obey g1 ≈ g2 ∼ t2ν/(1+2ν) ∼ t0.54 [22]. For times larger
than the relaxation time τR the dynamics of the chain is purely diffusive: g1 ≈
6Dt. In Fig. 3 we compare the MSD g1(t) of a single chain between CPU and
GPU. Both variants confirm the theoretical predictions. No rescaling between the
data of the bccBFM on CPU and GPU has to be applied since the parallelization
does not require additional rules.
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In the framework of the reptation theory [16,17] one expect the following
scaling relations [16–18,23,24] for dense polymer system:

g1(t) ∼ g4(t) ∼

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

t1/2 if τ0 < t < τe

t1/4 if τe < t < τR

t1/2 if τR < t < τd

t1 if t > τd

g3(t) ∼

⎧
⎪⎨
⎪⎩

t1 if t < τe

t1/2 if τe < t < τR

t1 if t > τR

, g2(t) ∼

⎧
⎪⎨
⎪⎩

t1/2 if τ0 < t < τe

t1/4 if τe < t < τR

t0 if t > τR

. (7)

Here, τ0 is the monomer relaxation time, the constraint induced entanglement
time τe, the relaxation (Rouse) time τR, and τd the disentanglement time of the
tube. For testing the bccBFM we simulating polymer melts made out of linear
chains with length N at a volume fraction c = 0.25 in cubic box with length
256 a over several decades in time on the GPU. There are no data on CPU
available due to the long time scale needed for equilibration and statistics. In
Fig. 4 the different MSD for chain length N = 128, 256, and 512 as function of
time is shown. All data confirm the theoretical predictions for the diffuse and
sub-diffusive behavior. The melt with N = 512 shows the regimes for repetation
dynamics. Even longer chains are necessary to inspect this behavior in more
detail.

In summary, we find a very good agreement between the results of the sequen-
tial (CPU) and the parallel (GPU) algorithm. There is no shift on the time scales
in the dynamical behavior nor on the static properties. The bccBFM appears as
a powerful tool for simulation of dense polymeric systems.

3.3 Performance Optimizations

A challenging task is the comparison of the performance between both variants
of the bccBFM on CPU and GPU due to difficulties in the implementation
and technical setup. Therefore, we restrict ourselves to the general explanation
on techniques used on the GPU for gaining this significant speed-up. As useful
comparable quantity we report the measured performance p = t · N · n/treal
in attempted moves per second (att. moves/s) as the real-time treal (in seconds)
needed to perform a simulation of N ·n monomeric units for t simulation steps
(in MCS). Our testing system consists of a melt of n = 4096 linear chains with
length N = 128 under periodic boundary conditions in a cubic simulation box
V = 2563 at concentration c = 0.25. The sequential variant on CPU achieves a
performance of roughly p 
 8 ·106 att. moves/s on an Intel� Xeon� CPU E5620
@ 2.40 GHz (12 MB cache) under usual code optimization. For programming
the algorithm in C/C++ on GPUs the parallel computing CUDA�-framework
(Compute Unified Device Architecture-Release 4.2) by NVIDIA [11] was used
on a GeForce� GTX� 580 with 512 CUDA Cores. The parallelization of the
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application is realized by parallel execution units naming threads in an array
of blocks in a grid by kernel calls (for details see [25–27]). One thread will
be associated as elementary parallel movement of a monomeric unit checking
excluded volume, bond vector constraints, and Metropolis criterion and applying
or rejecting the invoking movement. The bond and lattice conflicts arising from
the parallel movement will implicitly be avoided by splitting all monomers in
the four subsets AO, AX, BO, and BX. Instead of checking one node in move
direction, the vicinity of 7 lattice nodes of the same sub-lattice (X or O) has to
be considered as very efficient parallelization strategy leading to a performance
of p 
 300 · 106 att. moves/s without innovative code optimization. A further
improvement can be done by using CUDA’s Textures1D [28,29] for accessing
the lattice look-up as linearized and buffered array yielding p 
 440 · 106 att.
moves/s. Checking the lattice occupation requires only the same sub-lattice,
therefore, we can re-address the linearized lattice with space filling Z-order-
curve [30]. This calculation is very demanding but enhances the caching of the
physical vicinity on the GPU [28,29] to provide a performance of p 
 580 · 106

att. moves/s. Further improvements by grouping the monomer position to four
consecutive int32 for coalesced memory load and avoidance of unused threads in
the kernel launch yield a performance of p 
 720·106 att. moves/s. A very specific
improvement is the reduction of the overall information needed for simulating
the system. The monomer position and connectivity can be merged onto one
int32 reducing the overall data transfer in the calculation. These improvements
lead to a performance of p 
 1050 ·106 att. moves/s on the GPU for the bccBFM
instead of p 
 8 · 106 att. moves/s for the sequential CPU version. In summary,
the highly optimized implementation of the bccBFM on the GPU runs with a
performance of two orders of magnitude faster as on the CPU.

4 Conclusion

We have introduced a highly parallelizable variant of the Bond Fluctuation
Model based on the body-centered cubic lattice. The underlying lattice serves
as an efficient look-up table for neighbor interactions and the subdivision into
four disjunct groups implicitly resolves bond and lattice conflicts and thereby
facilitates the parallelization. We have shown that the bccBFM shows universal
behavior both for static and dynamic properties for single polymer chains and
under dense conditions, and is found to be in agreement with theoretical pre-
dictions. In summary, a performance gain of two orders of magnitude for the
parallel algorithm can be realized as compared to sequential implementations.
The bccBFM allows to explore new length and time scales in polymeric systems
by using cost efficient and powerful GPUs. This has been proven by applying it
to large scale polymer brushes for a rather large parameter space [31].
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Abstract. We combined the genetic algorithm search procedure and
exact diagonalization method to obtain the fitting system with two-level
parallelism and optimally balanced workload which was implemented in
the HPC environment. Applying the system to the experimental mag-
netic susceptibility data of Cr8Ni molecule we obtained the non-uniform
exchange couplings parameters for more general models and we achieved
not only better agreement with experiment but we also demonstrated
that the values known in literature are systematically overestimated.

Keywords: Molecular nanomagnets · Genetic algorithms · Exact diag-
onalization

1 Introduction

Molecular nanomagnets based on transition metal ions have been very inten-
sively investigated [7]. Their popularity is mostly due to the fact that quantum
phenomena characteristic for a single molecule (like, e.g., quantum tunnelling or
step like field dependence of magnetization) can be observed in bulk samples.
It is possible because nanomolecules are magnetically shielded from each other
by organic ligands and the dominant interactions are those within the molecule.
There are also expectations that this kind of materials may find application in
quantum computing [2,8,13,18] and information storage [14].

A large family of molecular nanomagnets comprises ring-shaped molecules.
Most of them contain even number of antiferromagnetically interacting ions.
Only recently the first odd membered antiferromagnetic molecules have been
reported [1,3,4,10,11,19]. They are especially interesting because of magnetic
frustration which is expected to appear in this kind of materials.

The molecule (C2H11)2NH2Cr8NiF9[O2CC(CH3)3]18 (Cr8Ni in short), syn-
thesized by the Winpenny group [4,5], belongs to the chromium rings family [15].
It was obtained by doping the ion of nickel into the ring of eight ions of chromium
(Cr8) and represents an exemplary frustrated nanomagnet.

Antiferromagnetic interactions between the nearest chromium ions and
between chromium and nickel ions (respectively J = 16 K and J1 = 70 K) were

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-32152-3 29



Exact Diagonalization Approach for Molecular Nanomagnets Modelling 313

Fig. 1. The model of Cr8Ni molecule. The integers denote the positions of magnetic
ions within a ring.

initially obtained by fitting the magnetic susceptibility χ [4,5]. In the calcula-
tions equal value of the factor g = 2 was assumed for both types of ions and the
single-ion anisotropy was neglected. Parameters showing better fit to the sus-
ceptibility curve were proposed by Furukawa et al. [6] (J = 14.7 K, J1 = 85 K,
DCr = −0.42 K, DNi = −4.9 K). This time the realistic values of g was adopted,
1.98 for chromium and 2.20 for nickel, and the anisotropy was included. How-
ever, surprising deviations from the experimental results in the intermediate
temperature range have survived which motivated our study towards more gen-
eral modeling and advanced optimization techniques needed for accurate data
fitting.

2 Microscopic Models

The model of Cr8Ni molecule with an increased number of couplings is presented
in Fig. 1 and described by the following Heisenberg Hamiltonian:

H =
6∑

j=4

JS j · S j+1 + J1S1 · (S2 + S9) +
3∑

j=2

Jj(S j · S j+1 + S10−j · S11−j)

+
9∑

j=2

(
DCr(Sz

j )2 − gCrμB
B · S j

)
+ DNi(Sz

1 )2 − gNiμB
B · S1. (1)

We consider models with varying degrees of differentiation of exchange inte-
grals between chromium ions (Fig. 1). For all models the value of the coupling
between the chromium and nickel ions is denoted by J1, the value of the exchange
integral between the chromium ions closest to the nickel ion is denoted by J2 and
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the next in the order by J3 (see Fig. 1). Other couplings between the chromium
ions are denoted by J . The basic model, which we call 2J , is characterized by the
same couplings between the chromium ions J , i.e. J2 = J3 = J . Models proposed
by Cador et al. [4,5] and Furukawa et al. [6] denoted by C and F, respectively,
are variants of the model 2J . The 3J model has the exchange integral J2 between
chromium ions nearest to nickel ions and J3 = J . The last proposed model 4J
is the most general and corresponds to J2 �= J3 �= J . In our calculations the g
values are fixed and coincide with those quoted by Furukawa et al. [6].

Fig. 2. Magnetic susceptibility χx, χz and averaged susceptibility (green curve) cal-
culated for Cr6Ni with parameters of model F compared to susceptibility χ(D = 0) of
corresponding isotropic model (DCr = DNi = 0) (Color figure online).

The experimental data were obtained on a polycrystalline sample, therefore
it is important to calculate the susceptibility in both the z and x direction.
However, the calculations of the magnetic properties while the magnetic field is
applied in x direction would be too much time and memory consuming, making
our simulations impossible. Our calculations for systems with a reduced number
of chromium ions (Cr6Ni, Cr4Ni) showed a negligible impact of anisotropy on the
averaged magnetic susceptibility due to the relatively low value of anisotropy for
chromium and nickel. In the range of temperature for which experimental results
have been obtained for Cr8Ni [4,5] the susceptibility curve of Cr6Ni theoretical
ring for zero anisotropy practically coincides with that calculated for a non-
zero anisotropy and averaged using the formula χ = 1

3χz + 2
3χx, as shown on
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Fig. 2. It presents the susceptibility curves in the x and z directions, the curve
representing their averaged values and the curve for vanishing anisotropy. Using
this feature we could omit the x direction calculations and fully exploit the exact
diagonalization method described in the subsequent section.

3 Computational Methods

To obtain the precise values of the magnetic properties of the model we use the
exact diagonalization (ED) technique. The results obtained by this method are
numerically accurate, but a major constraint and challenge is the exponential
increase of the size of the matrix defined by (2S+1)n, where n stands for the size
of the system. It is very helpful to exploit fully symmetry of a given compound.
If the magnetic field is oriented along the z axis, the Hamiltonian takes a quasi-
diagonal form in the basis formed by eigenvectors of the total spin projection Sz

and can be divided into a number of submatrices labelled by quantum number M
and the symmetry of the eigenstates.

We used the MPI [21] library to paralellize the processes of the diagonal-
ization of separate submatrices. For the most efficient use of computing time of
all processes we implemented the Longest Processing Time algorithm [9]. In the
final version of our code we applied ScaLAPACK library [20] which not only
accelerates the diagonalization process, but also allows to paralellize the diago-
nalization of a single submatrix over all the computational cores at a single node
with shared memory.

For the fitting-based determination of the model parameters we used Genetic
Algorithm (GA) approach. It is proven to be useful when applied to a similar
problem of a smaller computational scale [12] or a formation of “classical atoms”
[17]. Fitting process comes down to an optimization problem, the domain at
which GA excels. To express the problem in terms of GA, the main points
are definition of specimen and fitness function. Specimen coding is a method
of translating a proposed solution into a specimen which is processed by GA
operators. In our case the specimen was a vector of the parameters of a given
model such as (J1, J), (J1, J2, J) or (J1, J2, J3, J). The fitness function defines
how well is the specimen fitted to the environment. The higher this value is, the
better solution a given specimen represents. GA naturally seeks the maximum
of the fitness function which should also be positively defined.

We have chosen Mean Squared Error (MSE) as a function to minimize which
is easy to be transformed into the fitness function defined as an inversion of
MSE. To compute MSE we use Eq. (2), where ei is the i-th experimental value
of a physical quantity and ci is a computed value using the model and parameters
encoded in the specimen:

MSE =
1
N

N∑
i=1

(ci − ei)2. (2)

GA processes a set of Ns specimens called a population. Each iteration of
GA is called a generation and consists of few steps during which specimens are
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chosen to participate in the next generation, to exchange the genetic information
and to be modified and evaluated again. Based on the values of fitness function
the specimens introduce their copies into the temporary population which is
partitioned into pairs of parents. The purpose of selection is to ensure that better
fitted specimens will have more children. The method of selection we chose is
a standard proportional roulette method.

The exchange of information is realized by the crossover operator which mim-
ics production of the offspring from two parent specimens. The method we choose
is a standard arithmetic crossover procedure [16]. The pairs of parents are cho-
sen randomly from the parents pool without returning. During this step the
temporary population effectively becomes a children population.

Random modification of a specimen (i.e., a set of the model parameters
forming a vector) is carried by the mutation operator. Its purpose is to introduce
diversity into the gene pool of the whole population. Our mutation method is
not a standard one. Each specimen has a fixed chance pms to be chosen as the
subject of mutation procedure. During the mutation procedure, each gene (i.e.,
the component of a given vector) has a fixed chance pmo to be mutated. Such
a two-phase approach allowed us to shape better the distribution of mutation.
The values of the corresponding parameters varied between successive runs from
0.1 to 0.5. Individual gene mutation can be described by the following formula

g′ = g · (α1 · c1 + 1) + α2 · c2, (3)

where g and g′ are the values of the gene before and after the mutation respec-
tively, α1 and α2 are random real numbers chosen with linear probability from
[−1, 1] range. The constant value of C1 describes the magnitude of the relative
value change. In our implementation c1 = 0.1 which means that the value g could
be changed by 10% at most. The second term in the sum is the absolute change
in value. It is needed to allow mutation to escape the region of near-zero values
for g. Since we had some knowledge about the parameters, we could choose it
arbitrarily so that it would not dominate expected values but still allowed to
effectively escape near-zero values. We decided that c2 = 0.1.

The mutated children become the new population which is evaluated before
starting the next iteration. The phase of the specimen evaluation is the most
time consuming part of the calculations in a given step, as it requires computing
the eigenvalues and eigenvectors from the physical model for each set of para-
meters represented by a specimen. However, this step requires no exchange of
information between specimens so that this stage can be easily parallelized and
effectively executed in the HPC infrastructure.

4 HPC Implementation of the Fitting System

We used the Huygens supercomputer to perform the large scale calculations.
Its nodes contained 16 IBM Power6 dual core processors per node. The queue
system allowed to use maximum nine nodes and the longest walltime was 48 h. As
our calculations were planned to last not less than a week we decided to run the
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comparatively not time demanding GA part of the software on our local cluster,
while both memory and time consuming ED part had to be run on Huygens. In
each iteration of GA a number of parameter sets (specimens) were generated,
which were then sent to Huygens as an input of ED program. After performing
the diagonalization and calculating the susceptibility, results were send back to
the local cluster allowing the GA to create next generation.

Fig. 3. Computing time balance. Upper row presents the allocation of tasks using one
set of parameters for eight and 16 processes. In the lower row all 32 processes are used
to compute tasks of two and four sets of parameters. Using four sets of parameters on
32 processes causes balanced work load on the node.

In principle we would be able to use three-level parallelization: specimens
in population, blocks in matrix representation and SMP parallelization of math
kernels to solve the eigenvalue problem for a given block. However, the maximal
allowed size of computing resources per job was too small to utilize such approach
efficiently.

For the most optimal use of computing time on Huygens we performed tests
of work balance on single node. One set of parameters could be effectively paral-
lelized on eight cores only and four sets were needed to equally load all 32 cores
(see Fig. 3). Using nine nodes we could perform effective simulations for 36 sets
of parameters at a time. Two sets of parameters were needed for each specimen
and the best specimen in generation remained unchanged, therefore we adjusted
the population size to 19. Each GA run consisted of 1000 generations.
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5 The Susceptibility Fits and Conclusions

We confirmed the temperature dependence of the susceptibility found for the
original model C [4,5], denoted C1 in Fig. 4. However, its variant C2 with realistic
g values is inaccurate. Our model 2J improved the quality of fit for the higher
temperatures range only compared to the C and F predictions (inset in Fig. 4)
but significant improvement in the quality of fit we obtained using the 3J model
(red curve in Fig. 4). Model 4J is characterized by an even smaller MSE value,
however the susceptibility values are very close to those calculated for the 3J
model. For the sake of the clarity we do not present the 4J model results on Fig. 4.
The parameters obtained in this work as well as the parameters of previously
proposed models are listed in Table 1.

Fig. 4. Temperature dependence of susceptibility for different models of Cr8Ni mole-
cule. Curves are specified in the legend. Symbols represent experimental data (log-linear
scale) (Color figure online).

We have not tried to establish neither the role of different couplings for the
quality of the fits nor the uncertainty in their values. However, it is clear from
the data in Table 1 that the values of couplings previously calculated are overes-
timated. In particular, the value of the microscopic model parameter J1 should
be substantially reduced. This outcome provides an evidence for uncertainties of
the parameter-fit estimates inherent to the optimization procedure which should
be very carefully performed.
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Table 1. Comparison between the parameters of the Cr8Ni molecule models:
C1 – Cador model [4,5], C2 – Cador model with realistic gCr and gNi values,
F – Furukawa model [6], 2J , 3J , 4J – models proposed in this paper.

Model J [K] J3 [K] J2 [K] J1 [K] gCr gNi

C1 16.00 J J 70.00 2.00 2.00

C2 16.00 J J 70.00 1.98 2.20

F 14.70 J J 85.00 1.98 2.20

2J 14.38 J J 64.76 1.98 2.20

3J 14.89 J 14.15 48.66 1.98 2.20

4J 13.55 15.23 15.75 46.20 1.98 2.20

In conclusion, we have established that the non-uniform coupling models
improve the susceptibility fit to experiment and predict lower values of magnetic
couplings than those determined in literature. This was accomplished performing
highly parallelized and optimally balanced extensive calculations in the HPC
environment as well as optimizing the quantitative measure of the fit by using
the genetic algorithm based procedure.
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Abstract. We suggest an augmented symmetry approach to reduce the
computational complexity of the DFT electronic structure calculations
based on the Wien2k package and to extend its applicability to the stud-
ies of heterogeneous ring-shape molecular nanomagnets. The approach
is tested for the reference chromium-based rings Cr8, Cr7Cd and Cr7Ni,
and a good agreement with the results of the previous standard studies
is reached with the substantial gain in the computing time.

Keywords: Molecular magnets · Chromium nanorings · Density func-
tional theory

1 Introduction

Scientific investigations of magnetic systems have been focused on single-
molecule complexes, specifically a subgroup of these materials known as mole-
cular rings [1–16]. These types of compounds consist of paramagnetic core and
organic ligand shell. They are ideal for investigating magnetic properties of spin
coupled systems, which depend mostly on transitional metals embedded in the
molecule. Unfortunately these systems are extremely difficult to analyse the-
oretically as their studies are time and resource consuming, especially using
the Wien2k package [17–19]. Thus there is a need for decreasing computational
complexity. So far several solutions to this problem have been proposed such as
different models [11–13] or using different computational packets (SIESTA [5],
NWChem [4], Gaussian [20]). In this paper we show that the investigation of
the Cr7M family of molecular rings using the WIEN2k package and augmented
symmetry leads to a substantial gain in the computing time without a loss of a
quality of the physical results.

2 Studied Molecules and Computational Details

The molecules that were the object of our study, are Cr8F8(Piv)16,
Cr7CdF8(Piv)16 and Cr7NiF8(Piv)16 [1,2] to which for short we refer as Cr8,
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 321–331, 2016.
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Cr7Cd and Cr7Ni. The Piv group is pivalic acid - trimethyl acetic acid
CO2C(CH3)3. The original synthesized homonuclear Cr8 molecule consists of
eight chromium atoms arranged in a ring. They lay almost in a single layer.
Each pair of Cr atoms is connected with each other by a single fluorine bridge
oriented inside a ring and two pivalic groups that span outside. For heteronu-
clear derivatives one Cr atom is substituted by Cd or Ni. The doped molecule is
presented in Fig. 1.

For computational reasons the molecules here are simplified by a process
called “hydrogen saturation” which replaces each methyl group CH3 of the
pivalic group by a single H atom. As a result the CO2C(CH3)3 becomes CO2CH3.
This process is applied once again, producing O2CH bridge which replaces the
whole pivalic group [15,16]. It allows us to reduce significantly the number of
atoms from 272 to 80, yet does not affect magnetic properties.

Fig. 1. The structure of the Cr7M molecule with hydrogen atoms in place of pivalic
groups. Chromium is gray, oxygen is red, carbon is brown, fluorine is blue and hydrogen
is yellow. Color green represents the substituting atom (Color figure online).

The crystallographic structures of the studied compounds have been
deposited in Cambridge Crystallographic Data Centre (CCDC). Records CCDC-
164814 and CCDC-164814 through CCDC-191623 contain the supplementary
crystallographic data used for this paper. These data can be obtained free of
charge at CCDC website: www.ccdc.cam.ac.uk/conts/retrieving.html.

The ab initio calculations are carried using all electron linearized augmented
plane wave (LAPW) method [21,22] implemented in WIEN2k computational
package [17–19]. The LAPW method uses muffin-tin radii (RMT) approximation
[23] to describe the atomic spheres. The values of the RMT parameters which
have been chosen for different elements are the same as in [6,16], i.e. 2.40, 1.20,

www.ccdc.cam.ac.uk/conts/retrieving.html
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1.24, 1.00 and 0.83 Bohrs for Cr, F, O, C and H, respectively. The parameters
defining the basis set are RKMAX = 2.0 and GMAX = 20. We account for the
exchange and correlation effects using the Perdew, Burke and Ernzerhof (PBE)
functional [24]. We do not include spin-orbit coupling in our calculations, as it
was already shown that the differences in the results are negligible [12,16] and
the single-ion anisotropy for the Cr ions is known to be very small [1,25,26].

3 Augmented Symmetry Approach

The Cr8 molecule posses rotational symmetry. The basic element consists of two,
neighboring chromium ions along with accompanying bridges. This 90◦ wide
sliver can be rotated around the axis perpendicular to the plane of the molecule
(the z axis) in order to reconstitute the whole ring. Schematic representation of
symmetry in Cr8 molecule is shown in Fig. 2(a). This symmetry can be used in
calculations regardles of the specific DFT method as long as the computational
software used for research implements such option. For example, WIEN2k uses
symmetries to reduce the number of inequivalent atoms in the structure (which
is the reason we use it in the first place), while SIESTA package [27] does not.
This reduction puts artificial constrains on the system in question. By lowering
the number of inequivalent atoms one reduces the number of degrees of freedom.
Lower amount of freedom means that less steps have to be made before self-
consistency is reached. In turn this leads to faster convergence of calculations.

Unfortunately what we gain in speed we loose in variety of spin configura-
tions we can investigate. As the properties of six chromium ions mimic those
of the remaining two, we are left only with four spin configurations: up-up, up-
down, down-up and down-down. However, due to symmetry of spin inversion
configuration up-up is identical to down-down and up-down to down-up. Thus
we are left only with two inequivalent states: antiferromagnetic and ferromag-
netic. Furthermore, the reduction of complexity based on internal symmetry of
the ring can be used only in case of Cr8 molecule. For heteronuclear rings sub-
stituting single chromium ion with some other element completely removes the
symmetry. This limitation applies also for homonuclear odd-number rings like
Cr9 synthesised recently [20].

In order to deal with these problems we have introduced augmented sym-
metry approach. Here the basic symmetry element is made up from half of the
ring. It consists of five, consecutive ions forming an 180◦ wide arc, and the doped
ion M is located on one of the ends of that arc. Now we rotate that arc 180◦

around an axis going through its ends. That way we reconstitute the whole
ring. Schematic representation of this augmented symmetry approach in Cr7M
molecule is shown in Fig. 2(b).

The augmented symmetry approach does not reconstruct the ring ideally.
This is due to the arrangement of atoms in the ring along the z axis (perpen-
dicular to the plane of the ring), specifically the metallic ions, which get slightly
distorted. Nonetheless these distortions are very small and do not influence prop-
erties of the molecule.
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(a) Cr8 (b) Cr7M

Fig. 2. Schematic representation of symmetry in Cr8 molecule and augmented symme-
try for Cr7M molecule. (a) The basic element consists of two, neighboring chromium
ions Cr(1) and Cr(2). This 90◦ wide sliver reconstitutes the whole ring by rotating
it around the axis perpendicular to the plane of the molecule by 90◦, 180◦ and 270◦.
(b) The basic element consists of five, consecutive chromium ions Cr(1), Cr(2), Cr(3),
Cr(4) and Cr(5). This 180◦ wide element reconstitutes the whole ring by rotating it
180◦ around the axis going through its ends.

The nature of distortion in augmented symmetry is presented in Fig. 3. For
original Cr8 molecule inequivalent chromium atoms lay in two separate layers.
These layers are separated along z axis by a distance of 0.15 Å. Since the whole
structure is reconstituted by rotation around z axis, the remaining atoms are
placed in these two layers (Fig. 3(a)). For Cr7M molecule in augmented symmetry
the third layer is created. Two parts of the rings — basic one and reconstituted —
are still identical, but are joined in a slightly different manner (Fig. 3(b)). These
differences are not significant. The distance between neighboring layers is 0.15 Å
and between outer-most layers is equal to 0.30 Å which is still small compared
to the size of the ring (distance between two opposing magnetic ions in the ring
is 8.85 Å).

One can try to avoid any geometrical error by reducing the number of sym-
metry operations and thus allowing for examination of configurations beyond
the obvious fully ferromagnetic and fully antiferromagnetic. However this still
applies only for the original Cr8 ring and not for Cr9 or Cr7M because the lack of
any symmetry in those structures excludes their reduction. In case of WIEN2k
this reduction is possible for Cr8, as long as the symmetry operations that are
used constitute one of the existing 230 crystallographic three-dimensional sym-
metry space groups. Octanuclear magnetic rings that we study consist of 80
atoms, among which eight can be considered magnetic ones. The original Cr8
molecule belongs to space group No. 75 (P4 unique axis c). Within this group
it has 20 nonequivalent atoms and two of them are magnetic which allows for
two nonequivalent spin configurations. By reducing the number of symmetries
we can change it to space group No. 3 (P2 unique axis c). Within this group
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(a) Cr8

(b) Cr7M

Fig. 3. Schematic representation of distortions in augmented symmetry for Cr7M mole-
cule in reference to symmetry in Cr8 molecule.

the molecule has 40 nonequivalent atoms and four of them are magnetic which
allows for four nonequivalent spin configurations and no geometrical distortion.
The Cr7M molecules belong to space group No. 1 (P1). Within this group they
have 80 nonequivalent atoms. For Cr7Ni eight of them are magnetic which allows
for 72 nonequivalent spin configurations. For Cr7Cd seven atoms are magnetic
which allows for 36 nonequivalent spin configurations. By applying augmented
symmetry approach we can reconstruct Cr7M molecules in space group No. 3
(P2 unique axis b). This however introduces geometrical distortion. Within this
group they have 41 nonequivalent atoms. For Cr7Ni five of them are magnetic
which allows for 16 nonequivalent spin configurations and for Cr7Cd four of them
are magnetic which allows for 8 nonequivalent spin configurations.

Some reduction of inequivalent positions can be obtained using chain models
[11–13]. Admittedly they reproduce the physical results very well but unfor-
tunately they significantly deform the compound. While augmented symmetry
slightly distorts the way two halves of the molecular ring are joined, the chain
models remove the ring-like shape of the molecule entirely by replacing it with
a one dimensional chain, effectively changing a single molecule into a proper
crystal.
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4 Extracting Exchange Couplings

The estimates of the magnetic couplings are usually obtained within the stan-
dard projected broken symmetry approach (PBS) [28]. Within this approach
the magnetic interactions are considered within Ising-like model expressed by
Heisenberg Hamiltonian

H =
N∑
i

Jiσiσi+1 , (1)

where N is the number of magnetic ions in the ring, σi is the classical spin
variable at site i equal to σi = ±Si, which is subject to the periodic boundary
condition σi = σi+N and Ji is the nearest-neighbor coupling between two ions at
positions i and i+1. The expression under the sum in (1) is the energy of a single
interacting pair and the whole sum is the energy of a whole ring. As shown in
Fig. 4 these pairs are parallel or anti-parallel and represent the high-spin (HS)
and the low-spin (LS) configuration, respectively.

(a) High-spin configuration (b) Low-spin configuration

Fig. 4. The magnetically interacting pair of neighboring ions with spins Si and Si+1.

For magnetically interacting pair of neighboring ions with spins Si and Si+1,
the excess energy of the configurations HS and LS considered in Fig. 4 amounts to

ΔEi = EHS
i − ELS

i = 2JiSiSi+1. (2)

If entire configuration consists only from HS pairs we call it the ferromagnetic
configuration (FM) and if it consists only from LS pairs than we call it anti-
ferromagnetic (AFM) even if the total spin of molecule is nonzero and can be
considered an ferrimagnetic one (as long as consecutive spins are alternating we
consider it AFM). The total energy gap ΔETOT between FM and AFM config-
urations is given by the sum of the ΔEi contributions described by (2) and can
be expressed as

ΔETOT = EFM − EAFM = 2
N∑
i

JiSiSi+1. (3)

For the homometallic Cr8 ring all the ions have the same spin Si = 3
2 and all

the couplings are Ji = JCr-Cr (like in Fig. 5(a)) so that (3) yields the coupling

JCr-Cr = ΔETOT/36.
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(a) Cr8 (b) Cr7Cd (c) Cr7Ni

Fig. 5. Schemata of nearest neighbor interactions for Cr8 (a), Cr7Cd (b) and Cr7Ni (c).

For the heterometallic Cr7Cd ring all seven Cr ions have the same spin Si = 3
2

and single Cd ion is non-magnetic. Then Fig. 5(b) and (3) imply the coupling

JCr-Cr = ΔETOT/27.

In the heterometallic Cr7Ni ring all the Cr ions have the same spin Si = 3
2

and a single Ni ion has spin SNi = 1. We assume that all the couplings between
Cr ions are the same and the couplings between Ni and Cr are different (like
in Fig. 5(c)). As a consequence, we have two coupling parameters and we need
energies of three different spin configurations. To that end we introduce another
configuration, which we call AM. In this configuration all Cr-Cr pairs are in LS
states and Ni-Cr pairs are in HS states. Following the same logic as before we
obtain final J parameters from expressions

JCr-Cr =
EFM − EAM

27
, JNi-Cr =

EAM − EAFM

6
.

5 Results and Discussion

The ground states for the Cr7M molecules are antiferromagnetic ones with the
total magnetic moment m = 0 for Cr8, m = 3µB for Cr7Cd and m = 1µB for
Cr7Ni. Magnetic moments obtained for Cr ions are of magnitude 2.71–2.78µB.
Magnetic moments obtained for Ni ions are of magnitude 1.50–1.54µB. The
values of magnetic moments for the remaining atoms, including Cd, are close to 0.
The magnetic moments are strongly localized on magnetic ions. The calculated
values are shown in Table 1.

These magnetic moments compare very well with other results, i.e. the ones
from [6] or [8]. In [6] results were obtained for Cr8 exploiting WIEN2k and full
structural symmetry as described in Sect. 3. There the magnetic moments for Cr
ions are of magnitude 2.68–2.82µB depending on the exchange and correlation
functional that was considered. Similar agreement takes place referring to [8].
The authors performed calculations for Cr7Cd and Cr7Ni using SIESTA package
[27] that does not implement symmetries. The magnetic moments found are of
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Table 1. Magnetic moments in units µB for magnetic ions in augmented symmetry. For
all cases two configurations are shown — antiferromagnetic (AFM) and ferromagnetic
(FM). For Cr7Ni additional configuration (AM) is given. Site numbering follows the
one in Fig. 2(b).

Cr8 Cr7Cd Cr7Ni

AFM FM AFM FM AFM FM AM

Total 0.00 24.00 3.00 21.00 1.00 23.00 5.00

Interstitial −0.01 1.64 −0.23 1.45 −0.03 1.63 −0.41

M(1) 2.72 2.77 0.00 0.01 −1.50 1.54 1.53

Cr(2) −2.72 2.76 2.73 2.74 2.70 2.76 2.75

Cr(3) 2.72 2.77 −2.72 2.78 −2.72 2.78 −2.72

Cr(4) −2.71 2.76 2.72 2.77 2.72 2.77 2.72

Cr(5) 2.72 2.77 −2.72 2.77 −2.73 2.77 −2.72

magnitude 2.86–2.89µB for Cr ions and 1.57µB for Ni ion. For the remaining
atoms, including Cd, the estimates reported are close to 0.

As for the interaction parameters J , they were estimated using the standard
projected broken symmetry (PBS) approach [28] stated in Sect. 4. For Cr8 mole-
cule the value of JCr-Cr parameter is 7.4 meV. For Cr7Cd molecule the value of
JCr-Cr parameter is 6.4 meV. No interaction between Cr and Cd ions is assumed
since Cd has no magnetic moment. For Cr7Ni molecule the value of JCr-Cr para-
meter is 6.6 meV and JNi-Cr is 4.2 meV.

Again these results compare very well with those known in literature, e.g. in
[6,8]. In [6] the value of JCr-Cr for Cr8 is 6.3 meV. In [8] the value of JCr-Cr for
Cr7Cd is 6.9 meV. For Cr7Ni molecule the value of JCr-Cr is 6.9 meV and JNi-Cr

between Ni and Cr ions is 5.1 meV. The values of J parameters in [8] differ
from those quoted here, because they are calculated using unprojected broken
symmetry (UBS) approach [29]. One can easily convert results obtained in PBS
and UBS by multiplying them by a certain factor. For Cr rings with Cd and Ni
this factor is 3

4 , so JUBS = 3
4JPBS and JPBS = 4

3JUBS.
The physical results were obtained using augmented symmetry approach on

a series of different machines. However, to demonstrate the advantages of our
approach the numerical calculations were carried out on a single platform with
Intel Xeon X5460 processors considering Cr8 ring only. Three different symmetry
groups were considered: the original (full) group No. 75, the augmented group
No. 3 and basic group No. 1 (no symmetry imposed). Both execution time and
memory consumption were measured for execution of the procedure “lapw0”
which implements usage of symmetry. This procedure is responsible for gener-
ation of energy potential from electronic density within WIEN2k package. The
exact results of this analysis are shown in Table 2. It is clear, that while the
augmented symmetry approach is not as effective as using the full symmetry
in the system, it still provides significant reduction of computational time and
moderate decrease in memory consumption.
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Table 2. Execution time t and memory consumption mem of single iteration of “lapw0”
procedure for different symmetry groups applied to Cr8. Results are given in absolute
units (hours and minutes for time and gigabytes for memory) as well as in relation to
the value of calculations without usage of symmetry. The values quoted are averaged
over series of iterations.

Symmetry t [hh:mm] t [%] mem [GB] mem [%]

None 01:20 100 2.5 100

Augmented 00:25 31 2.1 84

Full 00:09 11 1.6 64

6 Conclusions

We have shown that the augmented symmetry imposed on a system within the
Wien2k package not only speeds up calculations but also successfully reproduces
the results obtained using actual symmetry in a system [6] or no symmetry at
all [8]. Calculated exchange couplings and magnetic moments are in quantitative
agreement with other DFT theoretical investigations made for the Cr7M family
[6,8] and carried using SIESTA package and WIEN2k. We expect that our app-
roach will be applicable for other DFT packages exploiting symmetry and will
facilitate the quantitative analysis of more complex molecular nanomagnets, too.
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Abstract. A method for parallelization of Monte Carlo simulations
of 2 d lattice systems is proposed, in which lattice is distributed and
processed among parallel processes. Two ways of distributing the lat-
tice are proposed. In the first one the lattice is divided into stripes
of equal width, whereas in the second one the lattice is splitted into
blocks of minimum perimeter. Communication between processes is han-
dled by remote memory access MPI-2 protocols, but results for standard
MPI-1 communication are also presented for comparison. The scalability
of proposed method is tested on high performance multicomputers and
discussed on the basis of speedup and efficiency.

Keywords: Parallel processing · Distributed processing · One-sided
MPI communication · Monte Carlo simulations · Classical spin lattice
model · High performance computing

1 Introduction

Over the years Monte Carlo simulations proved to be one of the most important
tools not only in physics. Improving the performance of this method is then
topic of utmost importance. For lattice models, in which a simulated system is
a collection of particles on a two dimensional lattice, one of the most popular
methods are cluster algorithms, where the whole cluster is updated instead of
single particle. This method however cannot be used for models including inter-
actions with external magnetic field or chemical potential, i.e. simulations under
grand canonical ensemble, cannot benefit from cluster updates.

In this work we address the problem of increasing the performance of grand
canonical Monte Carlo by dividing the lattice into a processing grid. Each local
lattice is then handled by a single process and undergoes a normal Monte Carlo
procedure.Each process communicates with the ones processing the neighboring
parts of the lattice via MPI interface. By this means we aim to obtain a raise in
performance, which allows processing larger lattices.

Computations for larger systems are very important in a Monte Carlo pro-
cedure. As we cannot obtain results for macroscopic models directly, we need to
extrapolate results obtained for finite lattice sizes to infinity [1–5] or, in case of
phase transitions, to undergo finite-size scaling procedure [6]. For these proce-
dures the greater the lattice size, the more accurate the results.
c© Springer International Publishing Switzerland 2016
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2 The Simulated System

The model we aim to study using procedures described in this paper is the
extended Hubbard model with intersite magnetic interaction in the atomic limit
on the two dimensional square lattice, described by the following hamiltonian

H = U
∑
i

ni↑ni↓ − 2J
∑
〈i,j〉

sisj − μ
∑
i

ni, (1)

where U, J are coulomb and magnetic interaction parameters, respectively, ni↑
is the number of electrons at site i with spin ↑, si = ni↑ −ni↓ is the total spin at
site i, ni = ni↑ + ni↓ is the total number of particles at site i, μ is the chemical
potential.

∑
〈〉 describe summation over the nearest neighbors. The chemical

potential part of this Hamiltonian allows for simulations with fluctuating number
of particles in the system which means that the grand canonical ensemble is
applied.

Our Monte Carlo procedure for this model requires executing three com-
mands in each Monte Carlo step: CREATE, DESTROY and MOVE, responsible
for creating, destroying the particle and moving the particle on the lattice [7].
For testing purposes we reduce the complexity of the model by fixing concen-
tration at n = 1 and by taking the infinite coulomb potential U → ∞. Thus,
we arrive at the system with exactly one particle at each lattice site with the
only degree of freedom being the spin flip. This is the so-called Ising model [8],
described by the reduced Hamiltonian

H = −Jz
∑
〈i,j〉

sisj . (2)

Here each spin can take only two values ±1. As our system dimension d = 2,
we can represent it in the computer memory as just zeroes and ones in the
two-dimensional table.

3 Simulation Details

Our simulations require executing numerous Monte Carlo steps, each consisting
of N = L×L tries to flip a single spin for fixed values of model parameters with
the Gibbs probability

P ∼ e− ΔE
kT , (3)

where ΔE is the energy difference between the trial state x′ and the old state x
calculated using Eq. (2). One Monte Carlo step is completed when each lattice
site has been visited once. Thus we need to exploit the Metropolis algorithm
[9]. By this procedure we are forming a Markov chain of possible states of the
system. To avoid correlation with the initial state, the thermalization procedure
is applied, what means discarding part (1/4) of the Monte Carlo steps.

The problem of parallel Monte Carlo simulations, especially for the Ising
model, was previously analyzed with the use of multispin approach [14–16],
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as well as with cluster division [17,18]. Division of the lattice into checkerboard
domains, active and inactive, proved very successful [19], especially with the
use of graphics processing units (GPU), where this method solves the prob-
lem of data access bottleneck [20,21]. There were also publications concerning
parallel Monte Carlo simulations without lattice distribution and without any
modification to Markov Chain (“embarassingly parallel problem”) [22], as well
as with some modifications [23,24]. However, it should be noted, that the aim of
those studies was to increase the precision of simulations, not to reduce the time
of computations. Parallel cluster updates algorithms were also presented, both
for Wolff [25] and Swendsen-Wang [26,27] methods. A hot topic recently are
hardware simulations using field programmable gate arrays (FPGA) [28] that
allow for full lattice flip in a single computer cycle. Our work supplements those
results by describing a method of parallelization of processing lattice systems,
being a large step to study the extended Hubbard model with intersite magnetic
interactions in the atomic limit.

4 Communication Within Parallelized Monte Carlo
Simulations

Increasing size L of the lattice results in two challenges from computing per-
spective: longer computing time and greater memory needed for calculations. As
time increases proportionally to L2, one arrives very quickly at maximum lattice
size with realistic computing time. To address this problem we divide lattice
L × L among p parallel processes. In the first attempt each process gets a stripe
of the lattice of size L × L/p. Each stripe then undergoes a normal Monte Carlo
procedure and at the end results from all stripes are accumulated and presented.
As number of communication calls is proportional to the perimeter of local lat-
tice, different way of distributing the lattice was also tested in which each part
has minimum perimeter. This is accomplished by splitting the lattice to blocks,
according to the following function

for (int i=floor(sqrt(p));i>0;i--)
if(p%i==0 && Lx/i>2 && Ly/(p/i)>2)
{gridX=i;gridY=p/i;break;}

where Lx and Ly are original lattice sizes. Moreover, gridX and gridY are
number of processes in each dimension of processing grid. For p = x2 this way
will split the lattice into squares, for p equals to prime number into stripes, and
for other ways into two dimensional blocks. So at the worst case we arrive at the
same number of communication calls as with stripe splitting, at best we reduce
it significantly (from 2(p + 1)/L to 4

√
p/p). Figure 1 shows the ratio of states

on the border to bulk ones versus number of parallel processes and Fig. 2 shows
lattice splitting according to block distribution.

The consequence of this approach is a problem arising when a trial site x′

happens to be on the border of the local lattice. As energy difference ΔE requires
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Fig. 1. The ratio of states at the border to all states plotted versus number p of parallel
processes taking part in our calculations.

Fig. 2. Lattice splitting for different numbers of parallel processes, numbers indicate
rank of the process. Only the leftmost lattice is dividable into squares, all other are
rectangles of unequal sides.

information not only of own spin state but also of its neighbors states, MPI
communication is necessary.

The standard way of communication using MPI involves both the sender
and the receiver taking active part in communication. As we cannot predict
which site at what time will be chosen, this implementation of special window
in each Monte Carlo step is required, in which all processes communicate with
all their neighbors and send all data of states on all borders. This results in
drastic decrease of performance and limits the expressiveness of the application,
as each send has to match a receive. Using of non-blocking communication does
not change the essence of the problem.

To solve this problem we propose to use remote memory access procedures
of MPI-2 standard with data of boundary states in MPI memory window [12].
As communication with MPI memory window is non-blocking and one-sided,
there is no disruption in calculations due to data transfer between nodes. The
MPI memory window is a contiguous memory region available to all processes in
specified communication group for read and write operations using MPI Get(),
MPI Put() and MPI Accu() functions. Synchronization and coherence of shared
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data is ensured by calling locking and unlocking memory window for data trans-
fer with MPI Win lock() and MPI Win unlock() functions. This process is visu-
alized in Fig. 3.

Fig. 3. An example of a piece of a lattice distributed among three processes. Process p
keeps information about neighbouring states in separate table borders which is put
in MPI window for remote memory access. One-sided communication is used to access
this table by neighboring processes p − 1, p + 1 and to access the data by process p.

5 Results

Our MC simulations were performed on multicomputer reef in the Supercom-
puting and Networking Center in Poznań built up of 22 nodes with two dual-core
Intel Xeon 3 GHz CPUs and of 122 nodes with two quad-core Intel Xeon 2.33 GHz
CPUs with OpenMPI and InfiniBand technology of interconnect links. Due to
availability of the cores we restricted our calculations to maximum of 20 nodes.
Execution times of these simulations for a single process (the number of parallel
processes p = 1) and stripe distribution were tL=100 ∼ 102 s, tL=1000 ∼ 103 s,
tL=10000 ∼ 104 s. For block distribution times were longer by order of four, due
to much greater communication overlay.

To evaluate results obtained from different lattice sizes L, different ways
of the lattice distributing and different numbers of parallel processes p, we have
calculated speedup S defined as S = tseq/tpar and efficiency E = S/p [13], where
tseq and tpar denote sequential and parallel execution times of our program,
respectively. For test purposes we drastically reduced the number of generated
Monte Carlo steps in our simulations what of course leads to physical results
being rather unreliable, but we have obtained reasonable computing times.
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Fig. 4. The dependence of speedup S and efficiency E on the number of parallel
processes p for splitting of the lattice into stripes with the use of one-sided commu-
nication and remote memory procedures of MPI-2. Different symbols corresponds to
different lattice sizes L as explained in the legend box.

Fig. 5. The dependence of speedup S and efficiency E on number of parallel processes
p for splitting lattice into blocks with the use of one-sided communication and remote
memory procedures of MPI-2. Different symbols corresponds to different lattice sizes
L as explained in the legend box.

Our results with the lattice distributed into stripes are presented in Fig. 4.
We observe the constant speedup and the decline of efficiency, as increase of the
number of parallel processes is outweighed by the number of spins at borders.
Thus, the overlay on communications between p parallel processes (proportional
to amount of data to be shared i.e. to 2pL) evidently is balanced to high degree
by the speedup of calculations when one increases the number p of parallel
processes. For small lattice sizes (L = 100) we observe the saturation of speedup
(see Fig. 4), indicating that further increasing the number of parallel processes
will not result in better performance. At best, distributing the lattice into stripes
for L = 1000 will reduce the time needed for calculations by four compared to
sequential algorithm. For L = 10000 no such saturation is observed, which is
very promising for further studies.
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The speedup and the efficiency for splitting the lattice into blocks are plotted
in Fig. 5. In Fig. 4 some decrease of efficiency is caused by overlay on commu-
nication. Relative large speedup variations for different number of processes p
are clearly seen, what is the size-effect of the different number of boundary
states as mentioned earlier. Greater than usual improvement of speedup is visi-
ble for p = x2, as the numbers of boundary states are minimum for those values.
Compared to stripe distribution, this kind of the lattice distribution allows for
reaching higher efficiency, with local maxima for lattice distributed into squares,
i.e. with p = 4, 9, 16.

Fig. 6. Speedup S versus number of parallel processes p for distributing lattice into
stripes using MPI-1 standard communication procedures.

As the reference point for different communication modes, Fig. 6 shows the
speedup calculated for stripe splitting using MPI-1 standard communication,
namely MPI Send() and MPI Recv() functions. In this kind of simulations after
each Monte Carlo step all processes send two messages containing values on
boundary states to their neighbors and then receive two messages from the
neighboring sites. To improve performance, communication of odd ID of par-
allel processes consist of sequence send, receive, send, receive while for
even IDs the sequence is receive, send, receive, send. The speedup is poor
compared to one-sided communication with remote memory access procedures
of MPI-2 presented in Figs. 4 and 5.

6 Parallel Grand Canonical Monte Carlo Simulations

As distributing the lattice among parallel processes can significantly increase
speedup in simulations for Ising-like model, the question arises how to apply it
to the model described by Hamiltonian (1). The difference of energy when con-
structing a new microstate in system described by this model depends only on
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Fig. 7. Magnetization M versus reduced temperature T/4J for Hubbard U-J model, γ
describes the maximum allowable distance for particle movement in the Monte Carlo
step. Figure 7(a) shows the data for the region of a transition of the first order and 7(b)
of the second order. Simulations were done for L = 20 using the sequential algorithm.

nearest-neighbor data, just like in the Ising model. As mentioned in Sect. 2, simu-
lations under grand canonical ensemble require three steps: creating, destroying
and moving a particle. Creating and destroying of a spin are local updates,
handled very similarly to those in Ising model. However, moving a particle is
problematic, as it requires information about two different sites on a lattice.

One way to solve this problem would be to introduce an extra layer of com-
munication, where each process asks for a free site on the same or other local
lattices. However, this would result in big increase of communication overlay
and would be troublesome to implement. Way around this problem would be to
restrict movement of particle to local lattice only. Figure 7 shows the influence
of maximum allowable movement γ on the quality of the results. For γ = 2 a
particle can move to the next-nearest neighbor site, with γ = L/2 it can move
on the whole lattice. In the region of the first order transition (Fig. 7a) reducing
the distance to next-nearest neighbors does not significantly influence on the
quality of results. For the second order transition (Fig. 7b) the results change
only slightly when varying maximum allowable distance for particle movement.

7 Conclusions

Despite the preliminary character of our results, they prove that distributed
processing of the lattice can be successfully performed for spin-lattice models.
The gain in performance is significant, especially for large systems, what looks
promising for further increasing of the number of parallel processes. The inter-
esting question arises, for how many more computer nodes the overlay on com-
munications is enough balanced by the speedup of calculations to keep realistic
time of processing in MC simulations of a spin lattice system.

Comparing different methods of lattice distribution favors splitting the lattice
into blocks, as reduced number of boundary states means reduced communica-
tion, which outweighs increased communication overlay. We would like to stress
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out, that the proposed method for increasing the effectiveness of simulations
operates on data access layer and keeps all the physics unchanged, in particular
the detailed balance. As such applying this method to 3d problems is rather
straightforward, as it requires only adding another dimension to the array hold-
ing the information of the sites and adding few more rows to the array holding
the information of neighboring sites.

We acknowledge the useful tools for effective operations on the distributed
lattice: remote memory access, the MPI memory window and one-sided commu-
nication [12]. Compared to MPI-2 procedures, cooperative way of sending data
of MPI-1 standard does not show improvement of performance, on the contrary,
the performance drops even for large lattices.

Distributing the lattice among parallel processes can be implemented for
grand canonical ensemble Monte Carlo simulations, with only slightly less accu-
racy in regions of second-order phase transitions. Thus we can apply this method
to lattice models with the external magnetic field or the chemical potential, such
as Hubbard U −J model [5] described by Hamiltonian (1). Our work is the first
step toward obtaining results for large lattices for this model.
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part of simulations was performed on multicomputers at Faculty of Physics of Adam
Mickiewicz University in Poznań.
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Abstract. We present a parallel preconditioner based on the domain
decomposition for the finite element discretization of multiscale elliptic
problems in 3D with highly heterogeneous coefficients. The proposed pre-
conditioner is constructed using an abstract framework of the Additive
Schwarz Method which is intrinsically parallel. The coarse space consists
of multiscale finite element functions associated with the wire basket,
and is enriched with functions based on solving carefully constructed
generalized eigen value problem locally on each face. The convergence
rate of the Preconditioned Conjugate Method with the proposed precon-
ditioner is shown to be independent of the variations in the coefficients
for sufficient number of eigenfunctions in the coarse space.

Keywords: Finite element method · Domain decomposition method ·
Additive Schwarz Method · Abstract coarse space

1 Introduction

In many applications, like in the porous media flow simulation where we model
flow of water, gas and oil in reservoirs and aquifers, we need to numerically solve
partial differential equations with highly heterogeneous coefficients representing
for instance the permeability. It is known that high contrast in the coefficients
causes many standard numerical methods to perform badly.

Domain decomposition methods are among the efficient solvers for systems
of equations arising from the finite element discretizations of elliptic partial dif-
ferential equations, cf. [22], and Additive Schwarz Methods (ASM) are among
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the most popular domain decomposition methods, cf. e.g. [3,11,15,16] and refer-
ences therein. In classical overlapping Additive Schwarz Methods the domain is
divided into overlapping subdomains, where local subproblems are defined, and
a coarse problem is defined globally for the scalability, cf. [22]. If subdomains
are such that, in each subdomain, the variations in the coefficients are not too
large, it is well known, that classical coarse spaces yield methods that are robust
with respect to the variation, cf. e.g. [4,15,22]. In the recent years, the research
has extended to highly heterogeneous coefficients, cf. e.g. [5–10,14,17–21,23,24].
In some of those works, the construction of coarse spaces have been based on
enriching their coarse spaces with eigenfunctions of some generalized eigenvalue
problems, cf. [1,6,7,9,14,21], resulting in methods that are robust with respect
to any heterogeneity. This has been the source of our inspiration in this paper.

We propose a parallel additive Schwarz preconditioner for the finite element
discretization of the self-adjoint elliptic second order problem in 3D with highly
heterogeneous and highly varying coefficients. Preconditioned conjugate gradi-
ents method (cf. [12]) is used to solve the resulting preconditioned system. The
preconditioner is based on the abstract Schwarz framework where the solution
space is decomposed into subspaces associated with the overlapping subdomains,
and a specially constructed multiscale coarse space associated with the wire bas-
ket of the decomposition, which is then enriched with functions based on solving
generalized eigenvalue problems defined locally over each face. The present work
is an extension to 3D of the recent work of [9] in 2D. The obtained bounds are
independent of the geometries of the subdomains, and the heterogeneities in the
coefficients.

The remainder of this paper is organized as follows, in Sect. 2 we present the
finite element discretization. In Sect. 3 we present our coarse space introducing
the multiscale finite element functions and the functions based on generalized
eigenvalue problem on each face. Section 4 contains a description of the over-
lapping additive Schwarz preconditioner, and in Sect. 5 we briefly discuss the
implementation issues.

2 Finite Element Discretization

The aim is to find an approximation to the solution of the following self-adjoint
second order elliptic differential problem: find u∗ ∈ H1

0 (Ω) such that

a(u∗, v) = f(v) ∀v ∈ H1
0 (Ω), (1)

where

a(u, v) =
∫

Ω

α(x)(∇u)T ∇v dx, f(v) =
∫

Ω

fv dx. (2)

Here Ω is a polygonal domain in the three dimensional space, f ∈ L2(Ω) and α
is a strictly positive and bounded function. Hence, we can always scale α by its
minimal value; we further assume that α ≥ 1.
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We introduce a quasi-uniform triangulation of the domain Ω, denoting
it with Th(Ω) = Th = {τ}, which consists of tetrahedrons τ , and we let
h = maxτ∈Th

diam(τ) be the parameter of Th, cf. e.g. [2] for more details.
Let Vh be the finite element space of continuous functions which are piecewise

linear over the triangulation Th and zero on the boundary ∂Ω. The degrees of
freedom are associated with the nodes or nodal points which are the vertices of
tetrahedrons.

Note that on each element τ ∈ Th the gradient ∇u|τ is a constant vector,
hence for u, v ∈ V h we have

∫
τ

α(x)∇uT ∇v dx = (∇uT
|τ∇v|τ )

∫
τ

α(x) dx, hence
we can assume that α(x) is piecewise constant over the elements of Th.

Remark 1. We can also consider a more general case when our differential prob-
lem is defined with the following symmetric bilinear form

∫

Ω

(∇u)T A(x)∇v dx,

where A(x) ∈ (L∞(Ω))3×3 is symmetric, and strictly positive definite over Ω in
the following sense:

∃ C1, C0 > 0, ∀x ∈ Ω, ∀ξ ∈ R
3 C0ξ

T ξ ≤ ξT A(x)ξ ≤ C1ξ
T ξ.

We can scale A and assume that C0 = 1 and the entries of A are piecewise
constant functions over the elements of Th. If the condition number of A|τ in
any τ ∈ Th remain uniformly bounded, we remark that the result of this paper
holds true also for this case.

The discrete FEM problem is formulated as follows: find uh ∈ Vh such that

a(uh, v) = f(v) ∀v ∈ Vh. (3)

The problem has a unique solution by the Lax-Milgram lemma and there are
error estimates, see e.g. [2] and references therein. By formulating the discrete
problem in the standard nodal basis {φi}xi∈Ωh

, we get the following system of
algebraic equations

Ahuh = fh (4)

where Ah = (a(φi, φj))i,j , fh = (fj)xj∈Ωh
with fj =

∫
Ω

f(x)ψi dx, and
uh = (ui)i with ui = uh(xi). Here uh =

∑
xi∈Ωh

uiφi. The resulting system
is symmetric and in general very ill-conditioned; any standard iterative method
may perform badly due to the ill-conditioning of the system.

In this paper we present a method for solving such systems using the pre-
conditioned conjugate method (cf. [12]) and propose an additive Schwarz pre-
conditioner (cf. [22]). Let Ω be partitioned into a collection of disjoint open and
connected substructures Ωk, such that Ω =

⋃N
k=1 Ωk. We assume that the trian-

gulation Th is aligned with the subdomains Ωk, that is any τ ∈ Th is contained
in one subdomain, hence, each subdomain Ωk inherits the local triangulation
Th(Ωk) = {τ ∈ Th : τ ⊂ Ωk}. Such a partition may be computed by a mesh par-
titioning software like e.g. METIS, cf. [13]. We make an additional assumption
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that the number of subdomains which share a vertex or an edge of an element
of Th is bounded by a constant. An important role is played by the interface
Γ =

⋃N
k=1 ∂Ωk\∂Ω. The non-empty intersection of two subdomains ∂Ωi ∩ ∂Ωj

not on ∂Ω is either a collection of 2D faces of elements of Th, in which case we
say that F ij = ∂Ωi ∩ ∂Ωj is a generalized closed face, or it is a collection of
closed edges of elements of Th, in which case we say that E ij = ∂Ωi ∩ ∂Ωj is
a generalized closed edge, or it is a vertex of Th. We define the wire basket of
this partition as the sum of the closed edges of the elements of Th, which are
not on ∂Ω but are contained in more than two substructures, in other words
those contained in any generalized edge, and we denote the wire basket by W.
We also define the local wire basket Wi = W ∩∂Ωi which will play a crucial role
in our analysis. We define the sets of nodal points, Ωh, ∂Ωh, Ωk,h, Fkl,h, Ekl,h,
Wk,h etc., as the sets of vertices of elements of Th, which are in Ω, ∂Ω,Ωk, Fkl,
Ekl, Wk etc., respectively.

3 Coarse Space

In our method, the key role is played by the global coarse space which is a space
of discrete harmonic functions (cf. Sect. 3.1 below) and which consists of two
space components: the multiscale coarse space component and the generalized
face based eigenfunction space component.

3.1 Discrete Harmonic Extensions

We start by defining the discrete harmonic extensions. Local subspaces Vh,k are
defined as restrictions, of the space Vh to Ωk, that is

Vh,k = {u|Ωk
: u ∈ Vh} = {v ∈ C(Ωk) : v|τ ∈ P1(τ), τ ∈ Th(Ωk), v|Ωk∩∂Ω = 0},

and we let
V 0

h,k = Vh,k ∩ H1
0 (Ωk).

Let the local discrete harmonic extension operator Hk : Vh,k → Vh,k be
defined as the unique solution to the following local problem:

{
ak(Hku, v) = 0 ∀v ∈ V 0

h,k

Hku = u on ∂Ωk.
(5)

where ak(u, v) =
∫

Ωk
α(x)∇uT ∇v dx. A function u ∈ Vh,k is discrete harmonic

in Ωk if u|Ωk
= Hku ∈ Vh,k. For u ∈ Vh, if all its restrictions to local subdomains

are discrete harmonic then u is said to be piecewise discrete harmonic over the
partition. Note that a discrete harmonic function in Vk,h is uniquely defined by
its values at the nodal points in ∂Ωk,h.
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3.2 Multiscale Coarse Space Component

We define the multiscale component of the coarse space here. We need a few
extra definitions. Let Vh(Fkl) be the space of all traces of functions from Vh

onto Fkl and let Vh,0(Fkl) be its subspace of functions taking zero values at the
nodal points of Wh ∩ Fkl,h, i.e. the nodal points on the boundary of Fkl.

Note that as α is piecewise constant over Th, it may have jumps across the
2D common faces of two neighboring elements (i.e. tetrahedrons) in Th. For any
face f ⊂ Fkl we define αf = max{α|τ1 , α|τ2} where τ1 ∈ Th(Ωk) and τ2 ∈ Th(Ωl)
are two neighboring elements such that f is their common face.

With each face Fkl, we associate a bilinear form aFkl,h : Vh(Fkl)×Vh(Fkl) →
R, which is defined as

aFkl,h(u, v) =
∑

f⊂Fkl

∫

f

αf∇u∇v ds,

where the sum is over the 2D faces of the elements of Th forming the face Fkl,
and the integral is over each such 2D face. Note that u ∈ Vh(Fkl) is continuous,
and its restriction to such a face f is a linear polynomial.

Analogously, associated with the face Fkl, we define a scaled discrete weighted
L2 inner product, a symmetric bilinear form bFkl,h : Vh(Fkl) × Vh(Fkl) → R, as

bFkl,h(u, v) =
∑

x∈Fkl,h

αxu(x) v(x),

where αx = maxx∈∂τ α|τ , i.e. is equal to the maximal value of α|τ over all
elements τ sharing the node x as a vertex.

Finally, we introduce the multiscale coarse space component Vms ⊂ Vh as
the space of functions whose degrees of freedom are associated with the nodal
points of Wh. For any function u ∈ Vms, on each face Fkl, it is defined as the
solution of the following generalized face problem,

{
aFkl,h(u|Fkl

, v) = 0 ∀v ∈ Vh,0(Fkl)
u|Fkl

= u on ∂Fkl = W ∩ Fkl.
(6)

and inside each subdomain, it is defined as the discrete harmonic extension in
the sense of (5). So, once u ∈ Vms is known at the nodal points of Wh, its values
at the nodal points of each face can be computed by solving (6), and then its
values at the nodal points of each subdomain can be computed by solving (5).

Proposition 1. The problem (6) has a unique solution.

Proof. Note that if the form aFkl,h(v, v) is zero for any v ∈ Vh,0(Fkl), then it
means that v is constant on each 2D face f ⊂ Fkl. The continuity of v yields
that v is equal to a single constant over all 2D faces contained in Fkl. Finally
this constant is zero because v is zero at the nodal points on the wire basket
(boundary of the face). This proves that the form is positive definite in Vh,0(Fkl).
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Let û be a function equal to u at the nodal points of ∂Fkl and equal to zero
at all nodal points in the interior of the face Fkl, i.e. not belonging to Wh. Then
ũ := uFkl

− û is in Vh,0(Fkl) and we can rewrite (6) as: find ũ ∈ Vh,0(Fkl) such
that

aFkl,h(ũ, v) = −aFkl,h(û, v) ∀v ∈ Vh,0(Fkl),

which obviously has a unique solution due the positive definiteness of the bilinear
form in Vh,0(Fkl).

Finally u ∈ Vms is discrete harmonic in Ωk and thus the values of u in Ωk,h

are uniquely defined by its values on the wire basket and on faces using (5). We
note that the dimension of Vms equals the number of all nodes in the set Wh.

3.3 Generalized Face Based Eigenfunction Space Component

We introduce a face based generalized eigenvalue problem: find (λ, ψ) ∈ R ×
Vh,0(Fkl) such that

aFkl,h(ψ, v) = λbFkl,h(ψ, v) ∀v ∈ Vh,0(Fkl) (7)

Since both bilinear forms are symmetric and positive definite in Vh,0(Fkl), there
exist real and positive eigenvalues and their respective bFkl,h-orthogonal and
normalized eigenvectors satisfying (7) such that

0 < λFkl
1 ≤ λFkl

2 ≤ . . . ≤ λFkl

M ,

and
bFkl,h(ψFkl

j , ψFkl
i ) = 0 j �= i, bFkl,h(ψFkl

j , ψFkl
j ) = 1.

Here M is the dimension of Vh,0(Fkl).
For any 1 ≤ n ≤ M we can define a orthogonal projection: πFkl

n : Vh,0(Fkl) →
span{ψFkl

j }n
j=1 ⊂ Vh,0(Fkl) as

πFkl
n v =

n∑
j=1

bFkl,h(v, ψFkl
j )ψFkl

j . (8)

By a simple algebraic argument (similar to those in [21] or [9]) we get the fol-
lowing lemma.

Lemma 1. The operator πFkl
n is aFkl,h-orthogonal projection and moreover

‖v − πFkl
n v‖2b,Fkl

≤ 1
λFkl

n+1

‖v − πFkl
n v‖2a,Fkl

∀v ∈ Vh,0(Fkl),

where ‖v‖2a,Fkl
= aFkl,h(v, v) and ‖v‖2b,Fkl

= bFkl,h(v, v).

We further assume that a nonnegative number n(Fkl), not greater than the
dimension of Vh,0(Fkl), is known or given for each face Fkl. Then for each eigen-
vector ψFkl

j , 1 ≤ j ≤ n(Fkl) we define ΨFkl
j ∈ Vh which is equal to ψFkl

j on
the face Fkl, zero on the remaining faces and everywhere on the wire basket W,
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and finally discrete harmonic inside each subdomain in the sense of (5) defining
uniquely its values at all interior nodes of the subdomain. We are now able to
introduce the face based eigenfunction space component which is

V Fkl

h,n = span{ΨFkl
j }n(Fkl)

j=1 , ∀Fkl ⊂ Γ.

Finally, our coarse space is defined as follows:

V0 := Vms +
∑

Fkl⊂Γ

V Fkl

h,n . (9)

4 Additive Schwarz Method (ASM) Preconditioner

We define our preconditioner utilizing the abstract framework of ASM, i.e. we
introduce a decomposition of the global space Vh into the sum of smaller sub-
spaces of Vh, and define symmetric positive definite bilinear forms on the sub-
spaces; cf. [22]. In our present work, we consider only the original bilinear form
a(u, v), i.e. (2), on each subspace.

The coarse space is defined in the previous section, cf. (9). The local subspace
Vk associated with the subdomain Ωk, is defined as the space of all functions
u ∈ Vh which take the value zero at all nodal points that lie outside Ωk. It is
easy to see that Vh =

∑N
k=1 Vk. Now, including the coarse space, we have the

following decomposition:

Vh = V0 +
N∑

k=1

Vk.

The additive Schwarz operator T : Vh → Vh is defined in terms of the pro-
jection like operators, Tk, k = 0 · · · N , as follows, i.e. T = T0 +

∑N
k=1 Tk, where

the coarse space projection like operator, T0 : Vh → V0, is defined as

a(T0u, v) = a(u, v) ∀v ∈ V0,

and the local subspace projection operators, Tk : Vh → Vk, are defined as

a(Tku, v) = a(u, v) ∀v ∈ Vk, k = 1, . . . , N.

Under the Schwarz framework, the problem (3) is then reformulated as the
following equivalent preconditioned system,

Tuh = g, (10)

where g = g0 +
∑N

k=1 gk with g0 = T0u
∗
h, gk = Tku∗

h, k = 1, . . . , N , and u∗
h the

exact solution. Note that the right hand side vectors, gk, k = 0 · · · , N, can be
calculated without explicitly knowing the exact solution.
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4.1 An Estimate of the Condition Number

We present the main result of this paper, namely, an estimate of the condition
number of the preconditioned system (3), which is given in the following theorem.

Theorem 1. There exist positive constants c and C such that

c(1 + max
Fkl

(λFkl
n+1)

−1)−1 a(u, u) ≤ a(Tu, u) ≤ C a(u, u) ∀u ∈ Vh,

where λFkl
n+1 and n = n(Fkl) are as defined in Sect. 3.3, and c, C are constants

independent of α, h and the number of subdomains.

A Sketch of the Proof. The proof is based on the abstract Schwarz frame-
work, where we need to verify the three key assumptions of the framework,
see [22] for the framework. The first two assumptions, that is, the local sta-
bility and strengthened Schwarz-Cauchy inequalities, follow immediately from
standard arguments. The last assumption, that is the assumption on the stable
decomposition, is less trivial.

We propose the following decomposition of u, u = u0 +
∑N

i=1 ui, with ui ∈ Vi

for i = 0, . . . , N . For any u ∈ Vh we let u0 ∈ V0 be defined as follows. Let
ums ∈ Vms be equal to u at all nodes of Wh. The restriction of u−ums to a face
Fkl is then a function in Vh,0(Fkl). Let ukl ∈ V Fkl

h,n be equal to πFkl
n (u−ums) (cf.

(8)). Note that ukl is zero at all wire basket nodes and discrete harmonic inside
subdomains. Now, by letting u0 = ums +

∑
Fkl⊂Γ ukl, and ui = Ih(θi(u − u0)),

where {θi} is the standard partition of unity with respect to the partition {Ωi}
and Ih the standard nodal interpolation operator.

Now using the above decomposition, and the estimates of Lemma 1 we can
show that

a(u0, u0) +
N∑

k=1

a(uk, uk) ≤ C(1 + max
Fkl

(λFkl
n+1)

−1)a(u, u),

where C is a constant independent of α, h and number of subdomains. The proof
of the theorem then follows from the abstract Schwarz framework, cf. e.g. [22].

Remark 2. The idea is to collect eigenfunctions with the smallest eigenvalues
(bad eigenmodes) into the coarse space, whereby removing their influence on the
convergence. Normally, the bad modes are associated with the channels (regions
with large coefficients) crossing the interface Fkl. The number of eigenfunctions,
n(Fkl), required for the robustness, can either be preassigned from experience
or chosen adaptively by setting a threshold and choosing those eigenfunctions
whose eigenvalues are smaller than the threshold.

Remark 3. Although, an explicit dependence on the mesh parameters does not
appear in the convergence estimate of Theorem 1, it is not difficult to tell that
this dependence is somehow hidden in the eigenvalues of the face eigenvalue
problems, and as soon as the influence of the bad eigenmodes have been removed,
it will start to show, at least numerically. However, if we choose the threshold,
cf. Remark 2, to be in the order of h

H , it is straightforward to see that the
convergence will be in the order of H

h .



Schwarz Preconditioner for Multiscale Elliptic Problems in 3D 353

5 Implementation Issues

In this section, we briefly discuss the implementation of our ASM preconditioner.
We propose to use the preconditioned conjugate gradient iteration (cf. e.g. [12])
for the system (10). Constructing the coarse space requires the solution of the
generalized eigenvalue problem (7) on each subdomain face (interface), the first
few eigenfunctions corresponding to the smallest eigenvalues are then included in
the coarse space. Prescribing a threshold λ0, and then computing the eigenpairs
with eigenvalues smaller than λ0, we can get an automatic way to enrich the
coarse space. The simplest way would be to compute a fixed number of eigenpairs,
e.g. n = 5 or so, this may however not guarantee robustness as the number of
channels crossing a face may be much larger. In each step of PCG we compute a
residual vector which requires solving the coarse problem and local subproblems,
cf. [22]. All these problems are independent so they can be solved in parallel. The
local subdomain problems are solved locally on their respective subdomains. The
coarse problem is global, and although its dimension equals the number of nodes
on the wire basket plus the number of local eigenfunctions, the coarse stiffness
matrix is quite sparse. However, if we add too many of the eigenfunctions, the
coarse space may become too large and the coarse problem too expensive, on
the other hand, if we add too few eigenfunctions then the condition number may
be too large and the convergence of the iterative scheme too slow.
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A Compact Parallel Algorithm for Spherical
Delaunay Triangulations
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Abstract. We present a data-parallel algorithm for the construction of
Delaunay triangulations on the sphere. Our method combines a vari-
ant of the classical Bowyer-Watson point insertion algorithm [2,14] with
the recently published parallelization technique by Jacobsen et al. [7].
It resolves a breakdown situation of the latter approach and is suitable
for practical implementation due to its compact formulation. Some com-
plementary aspects are discussed such as the parallel workload, floating-
point arithmetics and an application to interpolation of scattered data.

Keywords: Spherical delaunay triangulation · Parallel computing ·
Computational geometry · Interpolation

1 Introduction

Spherical geodesic grids are currently used in a number of models in weather
and climate research [8,15], offering global quasi-uniform resolution and lending
themselves to massive parallelism. The representation of geophysical data on
these large meshes has recently attracted new interest in several classical prob-
lems in computational geometry such as interpolation and grid generation [4,7].
A natural building block for many of these algorithms are the Delaunay trian-
gulation, which in two dimensions maximizes the minimum measure of angles
of all the triangles in the triangulation, and the Voronoi diagram, of which the
Delaunay triangulation is a dual graph.

Extensive literature exists on the construction of Delaunay tesselations where
the different types of algorithms can be classified into incremental insertion,
divide-and-conquer and gift-wrapping approaches [13]. The special case of spher-
ical meshes was treated, e.g., in [11]. However, algorithms for data-parallel execu-
tion have been studied in much less detail. An exception is the recent publication
by Jacobsen et al. [7], which simplifies the technically complex merge process of
local triangulations by independently triangulating spherical caps. A drawback
lies in the fact that the described approach theoretically suffers from breakdown
situations when the spherical caps are chosen too small. Moreover, the approach
in [7] is not a self-contained description in the sense that it delegates the local
subproblems to planar triangulation methods.

c© Springer International Publishing Switzerland 2016
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In this paper we combine the data-parallel approach [7] with a variant of
the incremental Bowyer-Watson algorithm from [1,2,14] for the sphere. Com-
bining the two algorithms offers several advantages: No stereographic projection
is required for the local problems, which substantially simplifies the algorithm.
Besides, the parallel construction does not rely on a proper a priori choice of
constants and it does not fail due to insufficient subset radii. The result is an algo-
rithm whose relative compactness may be attractive for practitioners although
divide-and-conquer methods run faster in the worst-case limit.

This paper is organized as follows: The details of the local and the parallel
components of the algorithm are described in Sect. 2. We briefly discuss com-
plementary aspects such as parallel workload and floating-point arithmetics. In
Sect. 3 numerical results are presented for large triangulations of several million
points and several hundred parallel processes. We also apply the algorithm to
interpolating functions of two variables on the sphere, which is of considerable
importance in meteorological applications, cf. [4].

2 Parallel Construction of the Delaunay Tesselation

2.1 Data-Parallel Algorithm

For the domain decomposition, we follow the approach by Jacobsen et al. [7]:
We are given a point set on the unit sphere {pi}i=1,...,N ⊂ S2. When executed in
parallel on q processes, the Delaunay triangulation is constructed in three steps:
Algorithm 1. Data-parallel algorithm
p.1. Cover the sphere by spherical caps with centers {qi}i=1,...,q, radii {θi}i.
p.2. Construct independent triangulations T1, . . . , Tq, see Sect. 2.2.
p.3. Synchronize and merge into a global tesselation T .

A triangle is Delaunay if its circumcircle encloses no other point from the
triangulation point set. This has consequences for data-parallel execution, since
simplices in the tesselation may not be Delaunay wrt. points that are not in the
local subset. Jacobsen et al. [7] therefore formulate a global Delaunay criterion:
If triangles with circumcenter ci and radius ri satisfy

‖ci − q‖ + ri < θ (1)

then this is sufficient for the Delaunay property in the global point set. Here,
‖ · ‖ denotes the geodesic on the sphere. The local algorithm that is discussed
below meets the criterion (1) by construction. The only remaining requirement
for the choice of subsets in step p.1 is that the whole sphere must be covered.

Several partitioning strategies are possible for the covering of the sphere: Our
approach is to construct an auxiliary triangulation of points v1, . . . ,vq, q � N ,
selecting {θk}q

k=1 as the largest radii of adjacent coarse triangle circumcircles,
see Fig. 1a, for example. Then the merge step p.3 merely consists of removing
duplicate triangles from the triangulation T based on their global vertex indices.
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(a)

s := −q

(b)

Fig. 1. Covering by spherical caps, generated by q = 200 spiral points (see Sect. 3).
Each cap gives rise to a local triangulation problem, executed by one parallel process.
Figure 1b: state of Algorithm 2 after insertion of 10 % of a global point set. The shaded
region denotes the set of cells that would presently violate the Delaunay condition (1),
i.e. t[Δ] > −1. The insertion loop terminates after the spherical cap with radius θ = 0.8
has been covered by the triangulation.

This operation is of time complexity O(#T q log(q)) applying a heap based q-
way merge. It should also be noted that for many applications the merging of
local tesselations (step p.3) is not at all required, especially when the Delaunay
triangulation serves as a building block for other parallel algorithms (see the
data-fitting algorithm in Sect. 3.2 as an example).

2.2 Local Algorithm

Each independent subtask p.2 is solved by Algorithm2 below, where the Delau-
nay construction by successive point insertion operates as follows: As points are
inserted into the triangulation, triangles are deleted whose circumcenters enclose
a new point p, evacuating a polyhedral cavity. New triangles then fill this cavity,
connecting p to its edges.

Compared to the classical Bowyer-Watson algorithm the main difference is
that the points are processed beginning at the center q of the spherical cap,
ordered along a search direction s := −q. Thus ordering the points by their dis-
tance to the cap center, the algorithm keeps track of the number of invalid trian-
gles created by points inside the given cap radius, where by the term invalid we
denote triangles that violate the global Delaunay condition (1). Even outside the
given radius, the algorithm keeps inserting sufficiently many points into the tri-
angulation until (at least) all triangles within the given radius satisfy the global
criterion. Only if all these triangles have been resolved, the algorithm stops. In
contrast to [7] the parallel method therefore does not fail due to an insufficient
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overlap of the local Delaunay triangulations. Figure 1b shows an intermediate
state of the algorithm.

Overall performance of the inner loop is improved by the following strategy,
cf. [1]: If the distance from the current point pi to the circumcircle center of a
triangle Δ is greater than the circumcircle radius, then this triangle does not
need to be considered any longer and is marked as “complete” (a[Δ] ← 1). The
inner loop is accelerated by keeping track of the smallest triangle index j0 which
is not yet complete. Whenever a triangle is removed from T , it is replaced by
a complete triangle T (j1) from the back of the triangulation list, in order to
increase j0.

The formulation of Algorithm 2 assumes that triangles and edges are indexed
in counter-clockwise order. Geometric in-circle and counter-clockwise tests are
explained, e.g., in [11]: A point p is inside the circumcircle made up of the points
Δ = {v1, v2, v3}, iff

circum circle(Δ,p) : det(v2 − p,v3 − p,v1 − p) > 0.

A point p is located counter-clockwise relative to a directed arc v1 → v2 when

ccw(v1,v2,p) : det(v1,v2,p) ≤ 0.

Robust evaluation of these expressions wrt. floating-point arithmetics requires
additional considerations, see Sect. 2.3.

The algorithm avoids the common technique of enclosing the vertices in a
large triangular bounding box (“super-triangle”) but instead connects all bound-
ary triangles to a “ghost point” [13]. An array o is used to store for each triangle
the edge opposite to the ghost point, or o[Δ] = −1 for interior triangles. When a
triangle Δ′ is formed by attaching a new point to the edge i of another triangle Δ,
then the following lookup table can be used to compute o[Δ]:

o[Δ′] ← Qi,o[Δ]+2 where Q :=

⎡
⎣

−1 −1 1 2
−1 2 −1 1
−1 1 2 −1

⎤
⎦.

2.3 Further Discussion

Estimate for the Size of the Auxiliary Triangulation. The question arises
if an algorithm that parallelizes with overlapping spherical caps is still efficient.
The following geometrical argument (which also holds for [7]) may provide some
insight: A global triangulation with np vertices contains nc = 2np − 4 cells.
Under the assumption of a uniform point density on the unit sphere, this yields
the following estimate for the average mesh size:

Δx ≈ (4π/nc)
1
2 = 2[π/(2np − 4)]

1
2 .
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Algorithm 2. Local algorithm

input : point set {pi}i=1,...,N ; spherical cap {s, θ}
output: triangulation T

1 sort the points {pi}i=1,...,N such that {pi · s}i increases monotonically

2 foreach edge e of the initial triangle {p1,p2,p3} do
3 append a triangle Δ := {e1, e2,g} with a “ghost point” g, set o[Δ] ← 0

4 j0 ← 0 ; k ← 0 ; a[·] ← 0 ; t[·] ← 1
5 foreach point pi, i = 4, . . . , N do
6 if (pi · s > − cos(θ)) and (k = 0) then exit loop
7 j ← j0; j0 ← −1 ; j1 ← max{l = j, . . . , #T | a[l] = 1}
8 clear e-list and o-list
9 foreach j ≤ #T where a[j] = 0 do

10 set c, r ← circumcenter, radius of T (j)
11 if (−pi · s < t[j]) then t[j] ← −1 ; k ← k − 1
12 jmin,0 ← j0 ; if (j0 = −1) then j0 ← j
13 if (o[j] �= −1) then
14 inside ← ccw(E(o[j]; j),pi)
15 else
16 inside ← circum circle(T (j),pi)

17 if inside then
18 append E(1, . . . , 3; j) to e-list and Q(1, . . . , 3; o[j] + 2) to o-list
19 if (t[j] > −1) then k ← k − 1
20 if (j1 > j) then
21 replace T (j) by T (j1)
22 j ← j − 1 ; j1 ← max{l = j, . . . , j1 | a[l] = 1}
23 else
24 replace T (j) by T (#T )

25 else if (o[j] = −1) then
26 if (pi − c) · s > r then a[j] ← 1 ; j0 ← jmin,0

27 remove duplicate edges from e-list
28 foreach edge e in e-list do
29 append triangle Δ := {e1, e2,pi} to T with center c, radius r
30 set o[Δ] := o-list(e)
31 if (cos(r) > pi · s) and (‖c + s‖ − r < θ) then
32 k ← k + 1 ; t[Δ] ← cos (‖c + s‖ + r)

33 remove j ∈ T where (o[j] �= −1) or ‖c(j) + s‖ + r(j) > ‖pi + s‖

From this we can estimate that the auxiliary triangulation with q points leads
to spherical caps with radius r0 ≈ 2[π/(2q − 4)]

1
2 . The number of points np,cap

contained in the spherical cap can, on the other hand, be approximated by:

np,cap = Acap
np

4π
= 2π[1 − cos(r0)]

np

4π
= (np/2)[1 − cos(r0)] . (2)

Inserting r0 into Eq. (2) and solving for q yields the following estimate:
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If each subtask of the parallel triangulation algorithm shall process a work-
load of np,cap points out of a given a point set with np points, then the size of
the auxiliary triangulation and the number of subtasks should be approximately
chosen as

q = 	2 + 2π acos−2(1 − 2np,cap/np)
 .

Equation (2) also allows for a basic estimate of the parallel efficiency Eq of
the algorithm: We make the simplifying assumption that the runtime T1 of
Algorithm 2 is linearly bounded by np. By Eq. (2) we have:

Eq =
T1

q Tq
=

2

q[1 − cos(
√

4π
2q−4 )]

.

The theoretical parallel efficiency is then limq→∞ Eq = 2/π ≈ 0.637. In fact,
the best known planar algorithms are not linear but have O(n log n) complexity
and we may expect superlinear speedup for the parallel version which does less
work than the corresponding serial algorithm. This holds true, however, only as
long as the parallel communication, the pre-sorting, and the merge process are
not taken into account.

Complexity of the Local Algorithm and Task Parallelization. The
worst-case complexity of the serial algorithm is of the order O(n2

p,cap). This esti-
mate, however, does not take into account the short-cut of the inner loop, which
skips triangles that have been marked by a[Δ] = 1. In practice, Algorithm2 runs
fairly well for the average case.

Since the point insertion strategy requires all parallel threads to share the
same view on the current state of the triangulation, the speed-up that can be
expected from (shared memory) task parallelism is inherently limited. The inner
loop (line 9 in Algorithm2) however, that evacuates the polyhedral cavity, may
be parallelized as follows:

1. In ll.20, do not remove triangles but “mark” them: a[Δ] ← 2.
2. Loop l.9 may then be executed in a thread-parallel fashion.
3. At regular intervals, e.g., every 50000 marked triangles, revisit triangles with

a[Δ] = 2 (single-threaded) and remove them. If possible, move “complete”
triangles from the back of the list as in the sequential variant of Algorithm2.

The sorting and the merging stages can take advantage of multiple threads as
well but have not been investigated here. Experimental results for the multi-
threaded version are shown in Sect. 3.

Robust Determinantal Tests. The influence of round-off errors in geometric
algorithms was already pointed out in Lawson’s original paper [9] for the evalu-
ation of determinants and the case of planar triangulations. We achieve robust
computation of determinants with a floating-point filter : According to [3] the
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absolute error of the floating-point approximation ẽ for the arithmetic expres-
sion

e := det
(
v1,v2,v3

)
, vi ∈ R

3, (3)

can be bounded by

|ẽ − e| ≤ ẽsup inde 2−p. (4)

Here, p is the mantissa length, p = 52 for the standard double precision data type,
and by ẽsup we denote an upper bound for |ẽ| which can be estimated for points
vi ∈ R

3 on the sphere based on the approximation |ṽj
i | ≈ |vi

j | ≤ 1. The index inde

denotes an operation-dependent integer value which can be computed a priori
see [3], e.g., for rules for the different arithmetic expressions (9 multiplications
and 5 additions/subtractions). In summary we have

ẽsup ≤ 6 and inde = 8.

Therefore, in view of Eq. (4), the following approach has proven to lead to a
sufficiently robust method with a reasonably small overhead: At runtime all
determinantal tests are evaluated in double precision. It is then assumed that
the floating-point evaluation of the determinant (3) has the correct sign, if

|d̃et
(
v1,v2,v3

)| > C := 6 · 8 · 2−52.

Only for cases where the determinant evaluates to smaller absolute values than
C0 := 1.1 · 10−14 > C we switch to quadruple (128 bit) precision.

3 Numerical Experiments

In this section we give experimental results for Algorithm 1. Two example point
sets are used:

A. np := 2, 000, 000 random points on the unit sphere, and
B. np := 2, 949, 120 points of the icosahedral-bisection grid used by the ICON

global atmospheric model [15].

3.1 Strong Scaling Tests

For our tests, the spherical caps are chosen at q generalized spiral points, a set
of points approximately equally spaced on the sphere [10]. In spherical coordi-
nates (θ, φ) these points are given by

θk := acos(hk) , hk := −1 + 2 (k − 1)/(q − 1), 1 ≤ k ≤ q,

φk :=

[
φk−1 +

3.6√
q(1 − h2

k)

]
(mod 2π), 2 ≤ k < q, φ1 := φq := 0 .
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Table 1. Timings of scaling results, compared to the sequential STRIPACK algo-
rithm [12]. Average in seconds over all processes; overall runtime including parallel
communication is given in parentheses. The lower part of the table shows results for
the hybrid variant, each run with 4 OpenMP threads.

STRIPACK Serial run q = 10 40

Set A 22.6–2464.4 641.69 131.18 (150.84) 40.81 (56.29)

Set B 189.06 960.89 194.02 (203.88) 61.99 (70.56)

100 200 400 800

Set A 14.40 (27.38) 7.36 (17.12) 4.31 (10.50) 2.26 (6.34)

Set B 20.77 (24.64) 10.29 (13.90) 6.21 (9.60) 3.20 (5.35)

100 × 4 200 × 4 400 × 4 800 × 4

Set A 8.32 (17.49) 4.48 (11.40) 2.83 (7.59) 1.71 (4.82)

Set B 11.40 (15.75) 5.93 (9.63) 3.83 (7.37) 2.32 (4.98)

Wallclock timings for Algorithm2 are given in Table 1. Here the setup of the
spherical caps (auxiliary triangulation) is negligible for the runtime measure-
ments. Comparison to results obtained with the well-known sequential STRI-
PACK algorithm [12] shows that with our implementation of Algorithm1 at
least q = 10 parallel processes are required to yield competitive wallclock tim-
ings. It can also be seen, however, that the timings of the STRIPACK package
differ widely depending on the ordering of point set. With the rare exception of
identical sorting keys {pi · s}i this is not the case for Algorithm 1. Results were
obtained on a Cray XC40 with Intel Haswell-E5-2670 processors and a hybrid
MPI/OpenMP implementation. Note that the multi-threaded experiments were
conducted with enabled hyperthreading, s. t. only 2 physical cores were required
per task.

Uniqueness of the Tesselation. If there exist coplanar points lying on a com-
mon empty circle, then the Delaunay triangulation is not unique. This situation
is not uncommon for point sets generated for computational meshes such as point
set B. When Algorithm 1 is computed in parallel, we avoid invalid tesselations
by deliberately disturbing the perfectly symmetric point sets. After cyclically
adding a constant ε � 1 to the point coordinates and re-normalization onto the
sphere the resulting triangulation proves to be unique in all considered tests.

3.2 Application to Barycentric Interpolation

In this section we briefly describe the application of the Delaunay algorithm
to the following data fitting problem on the sphere: Given data sites {xi}n

i=1

and real numbers {ri}n
i=1, find a function s defined on the unit sphere which

interpolates the data in the sense that

s(xi) = ri, i = 1, . . . , n.
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For the planar case many bivariate interpolation methods exist that have an
analog for the sphere and rely on an auxiliary triangulation, see, e.g., [6].

The barycentric interpolation scheme is one example for these methods. Let
a triangulation of the data sites xi be given. For practical applications it is
sufficiently accurate to make a polyhedral approximation of the spherical trian-
gles [4]. The weights {uj}3j=1 for a point p wrt. the planar triangle v1, v2, v3

are computed from the relations

p =
∑3

j=1
ujvj ,

∑3

j=1
uj = 1. (5)

In summary, we get a continuous interpolating function s(x) =
∑

j ujrj from
the following three steps:

1. Construct the Delaunay triangulation using Algorithm1.
2. Locate the containing triangle {vj}3j=1 for every destination point.
3. Compute the barycentric weights using formula (5).

If no assumptions on the set of destination points are made, Step 2 deserves
additional remarks: The containing triangles can be efficiently located by means
of an octree data structure of the triangle bounding boxes [5]. Traversing the
octree provides a short-list of triangles for which an inside triangle test must
be performed. For reasons of robustness this should combine several tests: We
chose to check the sides of the triangle with the dot product and, additionally,
to test for valid barycentric coordinates uj ∈ [0, 1].

Note that for data-parallel execution the Delaunay algorithm requires only
synchronization of the data site locations for Step 1, provided that the the data
sites and the destination points are both decomposed into the same (convex-
shaped) domains. Weights on each partition are then computed only for the
local partition of the global Delaunay triangulation. Therefore no communication
needs to be established for the Delaunay triangulation itself.
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Abstract. In this note we propose a local post-refinement technique,
which can be used to provide the overall conformity of tetrahedral and
hexahedral meshes meeting at the planar interface, which presents a quite
common situation in many simulations of real-life problems. The same
technique can be also used for the case of two adjacent non-matching
hexahedral meshes.
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mesh · Mesh conformity · Pyramidal finite element

1 Introduction

The issue of nonconformity of the overall mesh through various interfaces, where
(sub)-meshes of different types or with different geometric characteristics meet,
often appears in real-life problems, e.g. in computational fluid dynamics, see
[8–10] and references therein. In some situations one may need to provide the
overall conformity of such hybrid meshes using some computationally non-
expensive (local) post-refinements, for example for construction of reliable a
posteriori error estimates controlling computational errors of various types (see
e.g. [3] for some relevant discussion).

In this note we propose some local post-refinement technique that produces
a conforming mesh over the whole domain and keeps most of the original subdo-
main meshes intact. As we handle element faces of triangular and quadrilateral
shapes, introducing a new type of elements - in our case pyramids, as those hav-
ing faces of both shapes, is unavoidable (cf. [7]). Our approach is different from
those proposed in [7–10] for similar or close situations and can be considered as
certain generalization of the idea from our earlier work [3].

In what follows, all triangles, tetrahedra, quadrilaterals, and hexahedra, are
considered as closed sets. We will only deal with convex quadrilaterals and hexa-
hedra. Construction of finite element approximations on hybrid meshes consist-
ing of finite elements of different types is presented e.g. by Wieners in [11]. Rel-
evant material on constructing and handling various pyramidal finite elements
can be found in recent papers [1,5,6] by Kř́ıžek et al.
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2 Main Result

In Fig. 1, we illustrate some conforming post-refinement when triangular and
quadrilateral meshes meet along some line in the solution domain but do not
match each other. Using this technique, we can “eliminate” hanging nodes, pos-
sibly introducing some new (auxiliary but non-hanging) nodes. It is worth to
notice that no other types of elements (besides triangles and quadrilaterals) ever
appear in this two-dimensional situation.

Fig. 1. Some conforming post-refinement of non-matching triangular and quadrilateral
meshes. By bullets we mark the hanging nodes appearing in the common interface, the
circle (in the right) denotes the auxiliary node introduced.

In what follows, we present the generalization of this idea for the three-
dimensional case. Let the polyhedral domain Ω ⊂ R

3 be divided into two non-
overlapping subdomains Ω1 and Ω2 sharing a rectangular interface S (more
general situations will be discussed later on). Assume that in the subdomains
Ω1 and Ω2 conforming (face-to-face) tetrahedral and hexahedral meshes M1 and
M2, respectively, are independently generated. Obviously, M1 and M2 never
meet face-to-face across S. In Fig. 2 (left) we present an example of two non-
matching planar partitions, induced by tetrahedral and hexahedral meshes on
the interface S.

Now we show how to make a local post-refinement of M1 and M2 so that the
resulting overall hybrid mesh (consisting of tetrahedra, hexahedra and pyramids
- differently from the two-dimensional case, in 3D we unavoidably need some
new elements – pyramids – having both, triangular and rectangular faces, to
provide the overall conformity) over Ω = Ω1 ∪ Ω2 is conforming. Let

T = {Ti, i = 1, . . . , n} and Q = {Qj , j = 1, . . . , m}
denote the two partitions (into triangles and quadrilaterals) of S induced by the
tetrahedra and hexahedra from the meshes M1 and M2, respectively. It is clear
that

S =
⋃

i=1,...,n; j=1,...,m

Ti ∩ Qj . (1)
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Now consider only those sets from the right-hand side of (1) for which

meas2 (Ti ∩ Qj) > 0,

where the symbol meas2 denotes the area of the planar domains. They are con-
vex polygons, see Fig. 2 (right), and each of these polygons can be conformly
refined into several triangles using polygon’s nodal points only, see Fig. 3 (left).
The resulting triangulation, called coupling triangulation and denoted by T, is
conforming and it covers the whole interface S, see Fig. 3 (right).

Fig. 2. Traces of triangular (bold lines) and quadrilateral (dotted lines) faces of mesh
elements adjacent to the common interface S (left). An associated splitting of this
interface into convex polygons (right).

Fig. 3. Splitting of the convex polygons of the interface S into triangles (left). The
coupling triangulation T (right).

Let T = {tk, k = 1, . . . , �}, where tk are the elements of the coupling triangu-
lation. From the construction of the coupling triangulation, we observe that for
each k ∈ {1, . . . , �}, one has meas2 tk > 0 and there are indices ik ∈ {1, . . . , n}
and jk ∈ {1, . . . , m} such that

tk ⊆ Tik and tk ⊆ Qjk . (2)

Now we run over all triangles tk ∈ T and consider the mesh M1. For each
tk we find an unique tetrahedron in M1, which has the triangle Tik defined in
(2) as its face. Within this tetrahedron we form a subtetrahedron which is a
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Fig. 4. An illustration on splitting the tetrahedron from M1 adjacent to S.

Fig. 5. Splitting of tetrahedra which share only an edge with S providing the confor-
mity in the refined “tetrahedral part” Ω1.

convex hull of the triangle tk and the vertex of the taken tetrahedron opposite
to tk, see Fig. 4 (center). Finally, any tetrahedron from M1, having a face lying
on S, is refined as sketched in Fig. 4 (right). Still some hanging nodes and edges
may remain after the described above refinement of the tetrahedral mesh M1.
They actually appear in the tetrahedra that have only an edge on the interface
S. In order to get rid of them, we perform the next refinement step as follows.
Consider a triangle Ti ∈ T , i ∈ {1, . . . , n}. Mark by bullets those nodes on the
edges of the triangle Ti, which are induced by the coupling triangulation T, see
Fig. 5 (left). If some tetrahedron from M1 has only an edge lying on S then we
refine it in the manner of Fig. 5 (right). After the above described refinements of
relevant tetrahedra in M1 we produce a conforming tetrahedral mesh over Ω1

the traces of which on S coincide with the defined above coupling triangulation
T, for more details see [3].

Further, we show how we proceed with the “hexahedral part” of the domain,
i.e. with the mesh M2. For each tk ∈ T we can find an unique hexahedron in M2,
which has the quadrangle Qjk defined in (2) as its face, see Fig. 6 (left) where Qjk

is covered by a corresponding part of the coupling triangulation including the
triangle tk itself. Let us now select some point inside the hexahedron (marked
by the bullets in Fig. 6), and take it as an auxiliary node for the new mesh made
in the following way. First, we decompose the hexahedron into 6 pyramids being
convex hulls of this interior point and 6 faces of the hexahedron. The pyramid
with the quadrilateral base Qjk is further split into tetrahedra, using the traces
of the coupling triangulation, in the manner of Fig. 6 (right) (cf. Figure 4 with
a similar refinement for tetrahedra). Third, the reminding quadrilateral faces of
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Fig. 6. A hexahedron from the mesh M2 and its face lying on S with the splitting
induced by the coupling triangulation (left). Formation of a tetrahedron in this hexa-
hedron using the triangle tk and some auxiliary node (marked by bullet) inside (right).

Fig. 7. On splitting of faces of a hexahedron from “hexahedral part” Ω2.

the hexahedron (besides that one opposite to Qjk) we split by diagonals and
introduce four more new nodes for the new mesh, which are the intersection
points of these diagonals inside each face, see Fig. 7 (left). Fourth, on each of the
edges of the quadrilateral Qjk we mark by bullets all the vertices stemming from
the coupling triangulation and connect them to the intersection points inside
corresponding faces of the hexahedron in the manner of Fig. 7 (right). Now, we
proceed as follows: the splitting of the pyramid with the base Qjk was explained
earlier, the pyramid with the base opposite to Qjk is not split, and each of
the four remaining pyramids is split into tetrahedra which are the convex hulls
of that interior point (inside the hexahedron) and the triangles constituting the
splitting of the bases of the pyramids. We repeat this procedure for all hexahedra
adjacent to the interface S. It is obvious that the final refinement of the mesh
M2 is conforming, also it conformly fits the earlier described refinement of the
mesh M1. However, in addition to tetrahedra (and hexahedra) we are forced
now to introduce different mesh elements – pyramids.

3 Final Remarks, Open Problems

The above presented technique can also be applied for more general situations:

– Two adjacent domains Ω1 and Ω2, meet at the planar interface, which is not
a rectangle but any polygon (even nonconvex one).



370 S. Korotov and T. Rahman

– The case of two non-matching hexahedral meshes of adjacent polyhedral
domains meeting along some planar interface.

– The case of several polyhedral domains with different associated meshes
(tetrahedral or hexahedral ones) meeting at disjoint planar polygonal inter-
faces.

Usage of the coupling triangulation may lead, in principle, to thin tetrahe-
dral elements. However, due to recent results in the finite element analysis, see
e.g. [2,4], it does not bring difficulties in the context of finite element meth-
ods. Moreover, we can always avoid producing undesired tetrahedral shapes by
merging/shifting some nodes associated with thin triangles in the coupling tri-
angulation if needed.

An optimal selection of the interior points inside the hexahedra is an open
problem. We should also notice that the above approach does not seem be easily
modified to the case of general hexahedral meshes, i.e. those having some non-
convex elements. The above two issues will be addressed to in our next paper.
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equations · Substructuring

1 Introduction

The algorithmic landscape in computational fluid dynamics (CFD) has changed
in the last few years. While industrial codes stick to the well researched low-order
methods, high-order methods are gaining more and more interest in the scientific
community [2]. These methods, i.e. the discontinuous Galerkin and spectral
element methods (SEM), combine the convergence properties of spectral tech-
niques with the versatility of finite volumes or elements, fueling the movement
towards higher polynomial orders to lower the error.

Yet the application of higher polynomial degrees incorporates a major draw-
back: The tighter coupling inside the elements leads to more work which, fur-
thermore, scales super-linearly with the number of collocation points inside an
element [6]. Moreover, incompressible CFD codes spend up to 90% of the com-
putation time in pressure solvers, and these scale, hence, badly as well.

This paper focuses on regaining and retaining linear complexity throughout
the whole solution process of the pressure solver, from the operator execution,
to the preconditioner to the number of iterations. To achieve this, the static
condensation method [9], also known as Schur complement or substructuring,
is applied. The approach is well known for SEM [1], but the implementations
proposed in the literature scale super-linearly with the number of degrees of
freedom. This paper combines this method with further factorization techniques,
which were sketched briefly in [5], attaining linear complexity and paving parts
of the road to higher polynomial degrees.
c© Springer International Publishing Switzerland 2016
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2 Spectral-Element Discretization of the Helmholtz
Equation

The problem considered is the so-called Helmholtz equation [2]

λu − Δu = f (1)

in a domain Ω, where u is the function to solve for, f is the right-hand side, λ a
non-negative constant and Δ the Laplace operator. The equation is very widely
encountered in Navier-Stokes solvers, e.g., it is obtained when discretizing
diffusion terms implicitly or when solving the pressure equation. A Galerkin
formulation transforms (1) to the weak form, in which the domain Ω is decom-
posed into ne non-overlapping cuboidal elements Ωe. In each of these, a nodal
tensor-product basis is employed. For all three directions, Gauss-Lobatto-
Legendre (GLL) polynomials of degree p constitute the basis [2], as illustrated
for the two-dimensional case in Fig. 2. The specific node choice allows Gauss-
Lobatto quadrature for the integrals of the weak form for each direction in
every element. The resulting mass matrix of the standard element M is diago-
nal, whereas the stiffness matrix of the standard element L is a full matrix.

Using an element-wise storage, the discretized Helmholtz equation can be
written as

A ({Heue}e) = A ({Fe}e) (2)

where an array ue denotes the coefficients of a variable u inside an element Ωe.
For cuboidal elements

He = λM ⊗ M ⊗ M + L ⊗ M ⊗ M + M ⊗ L ⊗ M + M ⊗ M ⊗ L. (3)

For readability, the metric coefficients were omitted. The assembly operation,
A, also known as direct stiffness summation, joins contributions over element
boundaries and, for the described basis, reduces to the summation of nodal
contributions across adjoining element faces.

A tensor product C ⊗ B ⊗ A constitutes a matrix whose application corre-
sponds to the consecutive applications of A, B, and C in the first, second, and
third direction inside the element, respectively. For more details on the SEM the
reader is referred to [2,6] and for tensor products and their properties to [8] due
to restrictions of space.

Due to the tensor-product formulation of (3), the Helmholtz operator can
be evaluated in O (

p4
)

multiplications per element. While the number is far
lower than the expected O (

p6
)
, it still scales super-linearly with the number of

degrees of freedom and obstructs the path to higher polynomial degrees. The
following sections propose adequate methods to remedy this issue.

3 The Static Condensation Method

Equation (1) is of elliptic type, i.e. values in the interior of the domain solely
depend upon the boundary values and the right-hand side. The Galerkin
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formulation retains this property, but (2) works on all degrees of freedom, wast-
ing compute power and slowing the iteration process.

Reducing the number of degrees of freedom leads to a lower amount of work
for iterative solvers and has a positive effect on the condition of the system. One
approach to this end is the static condensation method, also known as Schur
complement method [9], the main idea of which is the eradication of unrequired
degrees of freedom from the equation system.

x2

x1

Condensation
=⇒

x2

x1

x3

x2

x1

Fw

Fe

Fs Fn

Fb

Ft

Fig. 1. Illustration of condensation. Left: Two-dimensional static condensation process
eliminating degrees of freedom inside the elements. Right: Exploded view of the faces of
one three-dimensional element, including compass notation for the faces and face collo-
cation nodes. For an unobstructed view boundary edges and vertices are not displayed.

Applying the static condensation to the whole domain is feasible for simple
geometries and leads to astonishingly fast solvers [7], but is not affordable for
more complex domains. This paper focuses, hence, on the usage of the method
inside each element, decreasing the number of degrees of freedom from O (

p3ne

)
to O (

p2ne

)
and fairing the condition number of the equation system. The first

result is a lower number of degrees of freedom, as depicted in Fig. 1. The second
one is a changed element Helmholtz operator in (2), which now incorporates
stronger coupling between element boundaries. Since only the change in the oper-
ator inside each element Ωe needs to be discussed, not the interaction between
elements, the element subscript is dropped.

The values in an element u can be categorized as either interior values uI

denoted by subscript I, or boundary values uB, denoted by subscript B, as illus-
trated in Fig. 2. When expanding the notation towards matrices, e.g. HBI maps
from the interior to the boundary, the equation system reads as(

HBB HIB

HBI HII

)(
uB

uI

)
=

(
FB

FI

)
, (4)

which in turn leads to

uI = H−1
II (FI − HIBuB) (5)

ĤuB := (HBB︸︷︷︸
Ĥprim

−HBIH−1
II HIB︸ ︷︷ ︸

Ĥcond

)uB = FB − HBIHIIFI︸ ︷︷ ︸
F̂

. (6)
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ξ2

ξ1

Fig. 2. Decomposition of a two-dimensional tensor-product element into boundary
nodes and inner nodes. Left: all nodes, middle: interior nodes, right: boundary nodes.

The operator of the condensed system, Ĥ, contains two parts: The primary
part Ĥ is the restriction of the original Helmholtz operator to the boundary
nodes, whereas the condensed part Ĥcond consists of the interaction between the
element boundary and the interior of the element. The condensed part requires
the inverse of the inner element Helmholtz operator, which can be expressed
in tensor-product form [8]

H−1
II = (S ⊗ S ⊗ S)D−1 (S ⊗ S ⊗ S)T . (7)

The diagonal matrix D is given, for the standard element, as

D = λI ⊗ I ⊗ I + Λ ⊗ I ⊗ I + I ⊗ Λ ⊗ I + I ⊗ I ⊗ Λ, (8)

where I is the identity matrix. The transformation matrix S and the eigenvalue
matrix Λ are defined by the generalized eigenvalue problem

STLIIS = Λ, STMIIS = I. (9)

4 Factorization of the Condensed Operator

The static condensation itself leads to fewer degrees of freedom. Yet this does
not imply that the operator requires fewer operations. While the primary part
of the Helmholtz operator can be implemented in a way that requires O (

p3
)

multiplications, the condensed part, Ĥcond, poses more problems. Due to the
diagonal mass matrix, the Helmholtz operator works along mesh lines in the
element, coupling the element interior only with values on the faces and neither
with the edges, nor with the vertices of the element. Hence, previous implemen-
tations mapped from faces to all faces, similar to Algorithm 1, requiring O (

p4
)

multiplications for application of the operator when using tensor products. Thus
they preferred the usage of matrix-matrix multiplications due to a lower number
of operations [1].

The usage of Algorithm 1 provides no gain in complexity compared to the
full Helmholtz operator, only in the condition number of the equation system.
The goal of this section is, hence, two-fold: First, derive an operator-evaluation
that scales linearly with the number of degrees of freedom, second, create an
algorithm which is competitive to a matrix-product based implementation of
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Algorithm 1. Evaluation of the condensed operator in a direct face-to-face
variant.
1: for all j ∈ I do
2: v̂Fj ←∑i∈I Ĥcond

FjFi
ûFi

Algorithm 1. The derivation is presented for the east face in compass notation, as
shown in Fig. 1, but the operators for the other faces can be deduced in the same
fashion. A subscript i in Fi denotes a variable on face i, where the short-hands
w, e, s,n,b, and t are employed for the faces west, east, south, north, bottom,
and top, respectively. The set I = {w, e, s,n,b, t} serves as a short-hand when
referring to all faces.

The condensed operator from face east to face east, Ĥcond
FeFe

, is

Ĥcond
FeFe

= HFeIH
−1
II HIFe

where the operators from the inner element to the face can be deduced from (3) as

HFeI = MII ⊗ MII ⊗ LpI (10)

HIFe = (MII ⊗ MII ⊗ LpI)
T = HT

FeI. (11)

The matrices are of size np×np, np×1, and 1×np, where np = p−1. Thus, the
operators in (10) and (11) can be applied in 3n3

p multiplications, if and only if the
row and column matrices are applied first and last, respectively. Yet the inverse
of the inner element Helmholtz operator requires O (

n4
p

)
multiplications due

to the three-dimensional tensor products. When merging both tensor-product
operations, the above expands to

Ĥcond
FeFe

= (MIIS ⊗ MIIS ⊗ LpIS)︸ ︷︷ ︸
HFeE

D−1 (MIIS ⊗ MIIS ⊗ LpIS)T︸ ︷︷ ︸
HEFe

. (12)

The left part, HFeE, is a mapping from the inner element eigenspace, denoted
by the subscript E, to face east, while the right part is the corresponding mapping
from the face to the eigenspace. Both consist of a tensor-product, either with a
reducing, or a prolonging matrix. Treating these matrices first, and last, respec-
tively, leads to 3n3

p multiplications for the operator. For the diagonal matrix D,
n3
p multiplications are required. Thus, one face to face operator can be imple-

mented in 7n3
p and, hence, Algorithm1 in 6 · 6 · 7n3

p = 252n3
p.

Linear scaling with the degrees of freedom, O (
p3

)
, was attained for the

condensed operator, but the leading coefficient is forbiddingly high, rendering
the technique quite irrelevant. But as all faces first map to the eigenspace, and
then to the faces, further factorization is possible: The contributions from the
different faces can be summed in the eigenspace, eliminating the need to map
from each face to every other one, leading to Algorithm 2. Evaluating it with
tensor products then only requires 37n3

p multiplications, compared to the 36n4
p

of a matrix-based implementation of Algorithm1.
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Algorithm 2. Evaluation of the condensed part that accumulates contributions
in the eigenspace and then maps back to the faces.
1: ũ ←∑i∈I ĤEFi ûFi

2: ṽ ← D−1ũ
3: for all j ∈ I do
4: v̂Fj ← ĤFjEṽ

Furthermore, the reconstruction of internal degrees of freedom and the com-
putation of the right-hand side for the condensed system need to be treated. Using
the same factorization techniques, both can be factorized to require 3n4

p + 19n3
p

multiplications. While still scaling super-linearly in the degrees of freedom, the
above attains a gain of one power compared to previous implementations [3].

5 Comparison of Operator Implementations

The last chapter focused upon operation counts to compare the different
algorithms. From this perspective a tensor-product based implementation of
Algorithm 2 starts being faster than a matrix-product implementation of Algo-
rithm1 at a polynomial degree of p = 3. Yet, the efficiency of implementations
will differ in practice. Tensor products require many low-dimensional matrix
operations, whereas highly-optimized libraries, e.g. BLAS, empower the usage
of large operators. Moreover, the “real-world” efficiency is influenced by the
capabilities of the compiler and the hardware.

This section compares three different implementations of the condensed oper-
ator Ĥ, all using different variants of the condensed part: A matrix-product
implementation of Algorithm1, short-handed MP1, a tensor-product implemen-
tation of Algorithm2, called TP2, and a matrix-product implementation of
Algorithm 2, named MP2.

For MP1, 36n4
pne multiplications are required per application, and compo-

nents of the primary part can be incorporated into the matrices. In TP2, 37n3
pne

multiplications are needed for the condensed part, whereas MP2 uses more
than 12n5

pne. This comparison will treat the latter two unfairly; both only require
the eigenvalues of the inner element Helmholtz operator in every element, and
constant matrices, whereas MP1 needs the face-to-face matrices in every ele-
ment. But storing these matrices is not feasible at the time being, e.g. for a
polynomial degree of p = 15 they would occupy more than one gigabyte of RAM
for just 128 elements. Thus, only meshes with constant element width are uti-
lized, and only one set of matrices is stored, leading to far higher cache efficiency
than normal for the method. To incorporate a more general method, the study
includes MP2.

For a Helmholtz parameter of λ = π, the operators were applied 100 times
for different polynomial degrees ranging between 2 and 32, each with 512 ele-
ments. The program was compiled with the Intel Fortran compiler v. 2015 and
run on one core of an Intel Xeon E5-2690. The Intel MKL provided DGEMM
from BLAS.
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Fig. 3. Comparison of three implementations: matrix-product face-to-face variant
(MP1), matrix-product face-to-eigenspace (MP2), and tensor-product based face-to-
eigenspace variant (TP2). Left: operator setup times for 512 elements, right: operator
runtimes for 512 elements.

Figure 3 depicts the runtimes for operator execution and setup. The setup
times show the expected O (

p5
)

and O (
p3

)
slopes for large p and are in the

same order as the operator execution or lower. Hence, they are negligible in an
iterative scheme.

The execution times exhibit three main features: First, the matrix-based vari-
ant MP2 is never the fastest, by a factor ranging from 2 to 50. Second, MP1 is the
fastest for low polynomial degrees, whereas from 10 upward TP2 takes over and
gets up to 5 times faster for p = 32. Third, the expected asymptotic behaviour
is seen for large polynomial degrees.

The new operator is not faster for all cases. As the tensor-product opera-
tions are far more numerous, this was to be expected. Yet, the linear scaling is
achieved, enabling higher polynomial degrees. Additionally, the storage require-
ments were lowered to O (

p3ne

)
, which allows for in-homogeneous meshes.

6 Factorization of the Preconditioner

For the case of the condensed equation, diagonal and block preconditioner were
investigated in [1] for a fixed number of elements. The face-wise version proved
to be rather efficient, lowering the condition number from O (

p2
)

to O (1), the
relation between condition number and number of elements was not investigated
in [1]. Yet the face-wise preconditioners need to be calculated and their storage
requirements scale with O (

p4ne

)
, as they were applied as matrices, destroying

linearity and exceeding memory for large polynomial degrees. But a slightly
altered preconditioner can be factorized: The condensed operator, introduced in
(6), from a face to itself can be factorized via (9), extracting MIIS on the left
and STMII on the right. The remainder is diagonal and can be combined with
the contributions from other elements. Hence, a block preconditioner can be
constructed by a eigenvalue transformation via S and the inverse of the diagonal
mentioned above. Its application costs O (

p3ne

)
multiplications and, thus, scales

linearly with the number of degrees of freedom.
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7 Efficiency of Resulting Solver

This section is concerned with the efficiency of the resulting solver compared to
standard solvers employed with the SEM. To this end, the Helmholtz equa-
tion (1) is solved on a domain Ω = [0, 2]3 with the continuous right-hand side

f (x) =
(
λ + 3π2

)
sin (πx1) sin (πx2) sin (πx3) , (13)

and homogeneous Dirichlet boundary conditions. The solution is

u (x) = sin (πx1) sin (πx2) sin (πx3) . (14)

The Helmholtz parameter is set to λ = 0, which leads to the harder to
solve Laplace equation and is the parameter required for pressure solvers. The
results for small Helmholtz parameters provided no large deviations. Three
solver implementations were compared, all based on the conjugate gradient
method (CG) [4]: A diagonally preconditioned version for the full equation sys-
tem (pfCG), a CG solver for the condensed one (cCG), and a block-preconditioned
variant (bpcCG) of the latter. The last two utilize the tensor-product variant of
Algorithm 2 to evaluate the element-wise condensed Helmholtz operator.

For polynomial degrees ranging from 2 to 32 and 8 elements in each direction,
i.e. ne = 512, the solvers were run 11 times, only the last 10 runtimes were
averaged. The iteration process stops after a reduction of the L2 residual by 12
orders of magnitude. Figure 4 visualizes the iteration count and the measured
runtimes of the solvers. The most prominent feature is the higher slope of the
iteration count of pfCG, which is due to the larger operation complexity and
higher condition number. While the slope of both condensed solvers is lower, the
preconditioned version outperforms the non-preconditioned one.

When comparing the runtimes of the solvers, the iteration count plays its
part, but is far less noticeable than expected: For low polynomial degrees, the
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Fig. 4. Iteration count and CPU time to solution for three different solvers (pfCG: full
system, preconditioned CG, cCG: CG solver for condensed system, and bpcCG: block-
preconditioned CG for the condensed system) when varying the polynomial degrees p
and keeping ne = 83. Left: iteration count, right: time to solution.
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runtimes of the condensed solvers are nearly indistinguishable and pfCG is only
by a factor of two slower. But starting from p = 8 on, a noticeable speedup
presents itself when using the condensed system and pfCG and bpcCG produce
nearly the same runtimes. While the iteration count of bpcCG is far lower, the
face-wise preconditioning requires additional 24n3

pne multiplications, penalizing
the method. Hence, the new solver only leads to gains from p = 12 on, where it
is faster than cCG by a factor of 1.5 to 2 and by a factor of up to 10 times faster
than pfCG. As the test case is rather easy, even for unpreconditioned solvers,
further work is required to evaluate the solvers, e.g. by using in-homogeneous
grids, possibly leading to further gains for the new method.

8 Conclusions

The paper proposed a solver for the Helmholtz equation on cuboidal elements
that heavily relies on tensor-product evaluations. Starting from a tensor-product
notation of the condensed Helmholtz equation, an implementation with lin-
ear scaling was derived. Its efficiency was compared with different approaches
and starting from a polynomial degree of 10, the proposed evaluation method
provided a runtime benefit over optimized matrix-based approaches for homo-
geneous grids. Furthermore, the storage requirements now only scale linearly
with the number of degrees of freedom, enabling the usage of higher polyno-
mial degrees. Additionally, the preprocessing steps of the condensation process
were sped up with the tensor-product evaluation, compared to older implemen-
tations [3].

Based on the new operator, a preconditioned conjugate gradient method was
implemented for the condensed system and compared to a standard solver for
the SEM. The combination of the new methods allows the usage of polynomial
degrees ranging from normal FEM up to spectral level, without any change in
algorithm. Moreover no assumptions were made on the grid topology, only the
shape of the elements is restricted to cuboidal.

The current implementation gains only a marginal advantage through the
preconditioning, the preconditioner is too cost-intensive for the linearly scaling
operator evaluation. Thus, future work will focus on lowering the amount of
operations for the preconditioner, to yield further performance gains with the
algorithm.
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Electronics Dresden’ (cfaed).
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Abstract. Image denoising is one of the fundamental problems in the
image processing. In a PDE based approach for image processing, the
simplest possible method for denoising is to solve the heat equation.
However such a diffusion equation will destroy sharp edges in the image.
An approach known for preserving the edges while denoising is called the
classical Rudin-Osher-Fatemi (ROF) method based on the total varia-
tion (TV) regularization. Recently, an algorithm, also known as the TV-
Stokes, based on two minimization steps involving the smoothing of the
tangential field and then the reconstruction of the image has been pro-
posed. The latter produces images without the blocky effect which we
observe in the case of the ROF model. An iterative regularization method
for the total variation based image restoration has recently been proposed
giving significant improvement over the classical method in the quality
of the restored image. In this paper we propose a similar algorithm for
the TV-Stokes denoising algorithm.

Keywords: Iterative regularization · Total variation · TV-Stokes ·
Denoising

1 Introduction

Recovering an image from a noisy and blurry image is an inverse problem which
is solved via variational methods, e.g. cf [1,7]. This requires the minimization of
some energy functional.

By the Euler-Lagrange formulation it results into a set of nonlinear partial
differential equations which are then solved using say, the gradient-descent iter-
ation, see for instance [12] for the classical model of Rudin, Osher and Fatemi
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(ROF model), which is based on the total variation (TV) regularization of the
intensity (gray level), and [9,11] for an improved model (TV-Stokes model) which
is based on the total variation regularization of the tangential field of the inten-
sity. The drawback of such algorithms is that their convergence is very slow,
particularly for large images. There exist now algorithms which are much faster,
those based on the dual formulation of the underlying models, see for instance
[2,3,8]

An iterative regularization algorithm for the ROF model has recently been
proposed, cf. [10], giving significant improvement over the classical method in
the quality of the restored image. The main purpose of this paper is to propose
a similar algorithm for the TV-Stokes model, and its dual formulation for faster
convergence. The paper is organized as follows: in Sect. 2 we present the iterative
regularization algorithm for the ROF model, and in Sect. 3 we propose a similar
algorithm for the TV-Stokes model. In Sect. 4 we describe Chambolle’s iteration
for the dual formulation of the TV-Stokes model, which we use for the numerical
experiments of Sect. 5.

2 Iterative Regularization for the TV Denoising

Let the noisy image d0 represented as scalar L2(Ω) function be given. The clas-
sical denoising method is based on the minimization problem:

min
d

∫

Ω

|∇d| dx +
λ

2

∫

Ω

(d0 − d)2dx, (1)

where λ is a constant which is used to balance between the smoothing of the
image and the fidelity to the input image. It is difficult to know how to choose
λ. An equivalent formulation of (1) is the following constrained minimization
problem, cf. e.g. [4]:

min
‖d0−d‖2

L2=σ2

∫

Ω

|∇d| dx, (2)

where σ is the noise level. One often has a reasonable estimate of the noise level.
In the original paper [12], a gradient projection method was used to solve (2).
The method is known for its good edge preserving capability. It suffers however
from its blocky effect on the resulting image. Not just that, it looses quite easily
the high frequency part of the image as well. The recently proposed iterative
regularization method [10], an algorithm which is based on the original TV
denoising algorithm, has proven to give a much better result than the constrained
denoising algorithm of ROF.

Given d0, λ, and v0 = 0. For k = 0, 1, 2, . . ., find the minimizer dk+1 of the
following minimization problem,

min
d

∫

Ω

|∇d| dx +
λ

2

∫

Ω

(d0 + vk − d)2dx, (3)

and update
vk+1 = vk + d0 − dk+1. (4)
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Algorithm: TV Iterative Regularization

Given d0 and λ ;

Initialize counter: k = 0 ;

Set: v0 = 0 ;

while not converged do

Initialize counter: n = 0 ;

Set: u0 = vk + d0 ;

while not converged do

Calculate un+1:

un+1 − un

Δt
= ∇ ·

( ∇un

|∇un|
)

+ λ(u0 − un) (5)

Update counter: n = n + 1 ;

end
Set: dk+1 = un ;

Update:
vk+1 = vk + d0 − dk+1 (6)

Update counter: k = k + 1 ;

end
Algorithm 1. Iterative regularization for ROF denoising.

For stopping the iterative procedure, a reasonable criterion to use is the discrep-
ancy principle, that is to stop the iteration the first time the residual ‖d0−dk‖L2

is of the same order as the noise level σ, cf. [10]. We know that the problem (3)
has a unique solution. It is shown in [10] that dk will converge to the original
noisy image d0 as we continue to iterate beyond the discrepancy point.

2.1 Discrete Algorithm

The algorithm consists of two loops. The first one, which will be the outer loop,
we call it the k-loop. In each iteration of the k-loop, we need the minimizer of
the classical ROF model, which we do by the descent technique, iterating over
an artificial time step to steady state.

2.2 Discretization

For the time discretization we use an explicit scheme, where, in each time step,
the nonlinear term is calculated using values from the previous time step and
is therefore a known quantity. Each vertex of the rectangular grid corresponds
to the position of a pixel or pixel center where the image intensity variable d is
defined, cf. Fig. 1 (Right).
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Fig. 1. Left: the computational grid with approximating points for the variables d, dx,
and dy, represented by ◦, �, and �, respectively. Right: mapping the computational grid
onto the pixels.

For the space discretization, we approximate the derivatives by finite dif-
ferences using the standard forward/backward difference operators D±

x and
D±

y , and the centered difference operators Ch
x and Ch

y , respectively in the
x and y directions, as D±

x f = ± f(x±h,y)−f(x,y)
h , D±

y f = ± f(x,y±h)−f(x,y)
h ,

Ch
y f = f(x+h,y)−f(x−h,y)

2h , and Ch
y f = f(x,y+h)−f(x,y−h)

2h for any function f , where
h correspond to the h−spacing. We introduce two average operators Ax and Ay

as Axf = (f(x, y) + f(x + h, y)) /2 and Ayf = (f(x, y) + f(x, y + h)) /2.
The discrete approximation of (5), thus, takes the following form:

∇ ·
( ∇un

|∇un|
)

+ λ(u0 − un) ≈ D−
x

(
D+

x un

Tn
1

)
+ D−

y

(
D+

y un

Tn
2

)
+ λ(u0 − un), (7)

where Tn
1 is defined as Tn

1 =
√(

D+
x un

)2
+

(
Ax(Ch

y un)
)2 + ε, and Tn

2 as Tn
2 =√(

D+
y un

)2
+ (Ay(Ch

xun))2 + ε. Here ε is a small number.

3 Iterative Regularization for the TV-Stokes

3.1 The TV-Stokes Denoising

Let the noisy image d0 represented as scalar L2(Ω) function be given. We com-
pute τ0 = ∇⊥d0. The algorithm is then defined in two steps, see [9,11]. In the
first step, writing the tangent vector as τ = (v, u), we solve the following mini-
mization problem:

min
τ

∫

Ω

(|∇v| + |∇u|) dx +
δ

2

∫

Ω

|τ − τ0|2 dx (8)

subject to ∇ · τ = 0, where δ is a constant which is used to balance between the
smoothing of the tangent field and the fidelity to the input tangent field. Once
we have the smoothed tangent field, we can get the corresponding normal field
n = (u,−v). In the second step, we reconstruct our image by fitting it to the
normal field through solving the following minimization problem:

min
d

∫

Ω

(
(|∇d| − ∇d

n
|n|

)
dx +

λ

2

∫

Ω

(d0 − d)2dx. (9)
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As before, let ‖d−d0‖2L2 = σ2 be the estimated noise variance. This can be esti-
mated using statistical methods. If the exact noise variance cannot be obtained,
then an approximate value may be used. In which case, a larger value would
result in over-smoothing and a smaller value would result in under-smoothing.

3.2 Iterative Regularization

Given d0, s0 = 0, δ and λ. For k = 0, 1, 2, . . ., in the first step, we compute
τ0 = ∇⊥(d0 + sk), and we solve the following minimization problem.

min
τ

∫

Ω

(|∇v| + |∇u|) dx +
δ

2

∫

Ω

|τ − τ0|2 dx, (10)

subject to ∇ · τ = 0.
Once we have the smoothed tangent field, we get the corresponding normal

field n = (u,−v). In the second step, we reconstruct our image by fitting it to
the normal field through solving the following minimization problem.

min
d

∫

Ω

(
(|∇d| − ∇d

n
|n|

)
dx +

λ

2

∫

Ω

(d0 + sk − d)2dx, (11)

and update sk+1 = sk+d0−dk+1. For stopping of the iterative procedure, we use
the discrepancy principle, that is to stop the iteration the first time the residual
‖d0 − dk‖L2 is of the same order as the noise level σ, cf. [10]. It is possible to
show that dk will converge to the original noisy imaged0 as we continue to iterate
beyond the discrepancy point.

3.3 Discrete Algorithm

The algorithm consists of two loops, the outer loop being the k-loop as before.
In each iteration of the k-loop, the two minimizing steps of the TV-Stokes algo-
rithms is performed. The discrete algorithm is in Algorithm 2 below.

3.4 Discretization

For the time discretization, we use an explicit scheme, where, in each time step,
the nonlinear term is calculated using values from the previous time step and
is therefore a known quantity. As before, each vertex of the rectangular grid
corresponds to the position of a pixel or pixel center where the image intensity
variable d is defined, cf. Fig. 1 (Right).

For the space discretization again we use a staggered grid, cf. Fig. 1 (Left).
We approximate the derivatives by finite differences using the standard for-
ward/backward difference operators D±

x and D±
y , and the centered difference

operators Ch
x and Ch

y , respectively in the x and y directions, as described in
Sect. 2.
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The discrete approximation of (15)–(17) are as follows

vn+1 − vn

Δt
= D−

x

(
D+

x vn

Tn
1 (v)

)
+ D−

y

(
D+

y vn

Tn
2 (v)

)
+ δ(v0 − vn) + D−

x qn (12)

un+1 − un

Δt
= D−

x

(
D+

x un

Tn
1 (u)

)
+ D−

y

(
D+

y un

Tn
2 (u)

)
+ δ(u0 − un) + D−

y qn (13)

qn+1 − qn

Δt
= D+

x vn + D+
y un (14)

where Tn
1 (u) is defined as Tn

1 (u) =
√(

D+
x un

)2
+

(
Ax(Ch

y un)
)2 + ε and Tn

2 (u)

as Tn
2 (u) =

√(
D+

y un
)2

+ (Ay(Ch
xun))2 + ε. Analogously, we define Tn

1 (v) and
Tn
2 (v) by replacing u with v.

Algorithm: TV-Stokes iterative regularization

Given d0, δ and λ ;

Initialize counter: k = 0 ;

Set: s0 = 0 ;

while not converged do

Initialize counter: n = 0 ;

Set: w0 = d0 + sk and (v0, u0) = ∇⊥w0, q0 = 0 ;

while not converged do

Calculate τn+1 = (vn+1, un+1):

vn+1 − vn

Δt
= ∇ ·

( ∇vn

|∇vn|
)

− δ
(

v
n − v

0
)
+

∂qn

∂x
(15)

un+1 − un

Δt
= ∇ ·

( ∇un

|∇un|
)

− δ
(

u
n − u

0
)
+

∂qn

∂y
(16)

qn+1 − qn

Δt
=

∂vn

∂x
+

∂un

∂y
(17)

Update counter: n = n + 1 ;

end

Set n = (un+1, −vn+1);

while not converged do

Calculate wn+1:

wn+1 − wn

Δt
= ∇

( ∇d

|∇d| − n

|n|
)

+ λ(w
0 − w

n
) (18)

Update counter: n = n + 1 ;

end

Set: dk+1 = wn+1 ;

Update:

sk+1 = sk + d0 − dk+1 (19)
Update counter: k = k + 1 ;

end

Algorithm 2. Iterative regularization for TV Stokes denoising.
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The discrete approximation of (18) is defined as follows

wn+1 − wn

Δt
= D−

x

(
D+

x wn

Tn
3

− n1

)
+ D−

y

(
D+

y wn

Tn
4

− n2

)
+ λ(w0 − wn) (20)

where Tn
3 is defined as Tn

3 =
√(

D+
x wn

)2
+

(
Ax(Ch

y wn)
)2 + ε and Tn

4 as Tn
4 =√(

D+
y wn

)2
+ (Ay(Ch

xwn)2 + ε. and nk, for k = 1 and 2, respectively as n1 =
u√

u2+(Ax(Ayv))2)+ε
and n2 = −v√

v2+(Ay(Axu))2)+ε
.

4 Chambolle’s Algorithm

In this section we present a dual approach for solving our TV Stokes iterative
regularization, cf. [5,6,8]. We consider the image in L2(Ω) be approximated on
the regular mesh and be represented as d ∈ R

N×N . The derivative matrices, cor-
responding to the u and v, are then computed naturally from d using appropriate
finite differences, which again constitute the pair of matrices corresponding to
the tangential vector τ = (v, u).

4.1 First Step

In the first step, we consider the minimization problem (10):

min
∇τ=0

∫

Ω

(|∇v| + |∇u|) dx +
δ

2

∫

Ω

|τ − τ0|2 dx. (21)

Using a dual formulation of the TV norm we can write
∫

Ω

(|∇v| + |∇u|) dx = max
G

∫

Ω

〈τ,∇ · G〉 dx,

where 〈x,y〉 = x1y1 +x2y2 for x,y ∈ R
2, and G = (g1,g2)T is the dual variable

such that gi ∈ C1
c (Ω)2 and |gi|∞ ≤ 1. Using this, (10) can be reformulated as

min
∇τ=0

max
G

∫

Ω

〈τ,∇ · G〉dx +
δ

2

∫

Ω

|τ − τ0|2 dx. (22)

Here ∇ · G = (∇ · g1,∇ · g2)T . We define the orthogonal projection ΠY onto
Y = {τ : ∇ · τ = 0} as

ΠY

[
τ1
τ2

]
=

[
τ1
τ2

]
− ∇
†∇ ·

[
τ1
τ2

]
. (23)

We note that ∇ · τ = 0 is equivalent to ΠY τ = τ ; using this, and exchanging
min and max, we get

max
G

min
τ

∫

Ω

〈τ,ΠY ∇ · G〉dx +
δ

2

∫

Ω

|τ − τ0|2 dx. (24)
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Minimizing with respect to τ we get

τ = τ0 − 1
δ
ΠY ∇ · G. (25)

Substituting it back, we obtain the dual problem:

min
G

∫

Ω

|ΠY ∇ · G − δτ0|2 dx. (26)

This problem can be solved using Chambolle’s fixed point iteration (cf. [3]):

Gn+1 =
Gn + Δt∇[ΠY ∇ · G − δτ0]
1 + Δt∇[ΠY ∇ · G − δτ0]

(27)

Fig. 2. Denoising of Lena image, with noise level ≈ 8, δ = .16 and μ = 0.20.

In practice we compute an approximation of ΠY using the following dis-
crete gradient, discrete divergence and discrete Laplace operator. For d ∈ R

N×N

representing an image on a 2D grid let

∇hd = (dDT ,Dd)T , ∇h · (p1, p2) = −p1D − DT p2, (28)

where D is differentiation matrix. Then 
h = −dDDT −DT Dd and the discrete
projection becomes: Πh

Y = I − ∇h(
h)†∇h. Because we know SVD of 
h, thus
the action of (
h)† can be computed using discrete cosine and sine matrices with
the aid of the Fast Fourier Transform requiring only O(N2 log2(N)) operations.

4.2 Second Step

In the second step, we have an unconstrained minimization problem (11). Using
the dual formulation of the TV norm, the problem can be reformulated as

min
d

max
g∈C1

c (Ω)2:|g|∞≤1

∫

Ω

d ∇ ·
(
g +

n
|n|

)
dx +

λ

2

∫

Ω

(d0 + sk − d)2dx. (29)
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Fig. 3. Denoising of fingerprint image, with noise level ≈ 6.4, δ = .16 and μ = 0.20.

Exchanging the min and max, and minimizing with respect to d, we get

d = d0 + sk − 1
λ

∇ ·
(
g +

n
|n|

)
. (30)

Substituting it back, we obtain the dual problem:

min
g

∫

Ω

∣∣∣∣λ(d0 + sk) − ∇ ·
(
g +

n
|n|

)∣∣∣∣
2

dx. (31)

Using Chambolle’s fixed point iteration we get

gn+1 =
gn + Δt∇[∇ ·

(
gn + n

|n|
)

− λ(d0 + sk)]

1 + Δt∇[∇ ·
(
gn + n

|n|
)

− λ(d0 + sk)]
. (32)

5 Numerical Results

The algorithm has been applied to the Lena and the fingerprint image, and
the results are shown in Figs. 2 and 3, respectively, showing three iterations of
the iterative regularization algorithm, with denoised images in the first row and
their corresponding difference images (difference between the noisy image and
the denoised image) in the second row. The preliminary results shown in the
figures proves that he proposed algorithm works well.

Acknowledgements. We would like to thank Bin Wu for the numerical experiments.
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Abstract. We present three variants of discretization of the station-
ary van Roosbroeck equations. They are the Composite Discontinuous
Galerkin Methods, in standard symmetric/non-symmetric version, and
the Weakly Over-Penalized Symmetric Interior Penalty method.

Numerical simulations of gallium nitride semiconductor devices are
presented. Results of these simulations serve as a base to perform the
convergence analysis of the presented methods. Errors of approximations
obtained with these methods are compared with each other.

Keywords: Drift-diffusion · van Roosbroeck equations · Composite
Discontinuous Galerkin Method · Weakly Over-Penalized Symmetric
Interior Penalty Method

1 Introduction

Modelling of the semiconductor heterostructures is important part of the design
process of new devices. Numerical simulations reduce costs of development by
replacing time-inefficient and expensive physical experiments, which must be per-
formed with sufficient care. Moreover a scientist does not have an insight into
the physics of the experiment to the extend available in the computer modelling.
On the other hand, numerical simulation allows to examine precisely every mod-
elled aspect of a device, to instantly analyze values which cannot be measured
physically, or where measurement is expensive and time-consuming.

In modelling of luminescent semiconductor devices, simulations with the
drift-diffusion model [1,2] are quite efficient. The drift-diffusion model consists of
three nonlinear elliptic differential equations. Unfortunately coefficients of these
equations are exponentially nonlinear in the unknown variables and they strongly
vary from one physical layer into another. To resolve this problem, we use the

c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 391–400, 2016.
DOI: 10.1007/978-3-319-32152-3 37
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Discontinuous Galerkin Method (DGM)[3,4], and since the boundaries of the
layers are known, we decided to apply Composite DGM [5]. Therefore we allow
discontinuities only at the interfaces between layers, and inside the layers we use
the standard conforming continuous Finite Element Method (FEM)[6]. Also, in
two- or three-dimensions, these method allows to use independent meshes inside
different layers. It is possible to make fine grid on more important parts of a
device and coarse grid on the rest.

2 Drift-Diffusion Model

The differential problem is to find functions ψ,Fn, Fp : Ω → R, where Ω is an
interval in R, polygon in R

2 or polyhedron in R
3, such that

∇ ·
(
ε0ε(x)∇ψ(x)

)
= −qC(x, ψ, n, p),

∇ · (
μn(x)n(x, ψ, Fn)∇Fn(x)

)
= qR(x, ψ, n, p), (1)

∇ · (
μp(x)p(x, ψ, Fp)∇Fp(x)

)
= −qR(x, ψ, n, p),

with Dirichlet boundary conditions on ΣD and homogeneous Neumann boundary
conditions on ΣN := ∂Ω\ΣD. In one dimension, we assume ΣN = ∅. We define

n(x) := Nc(x) exp
(Fn(x) − Ec(x) + qψ(x)

kT

)
,

p(x) := Nv(x) exp
(Ev(x) − Fp(x) − qψ(x)

kT

)
, (2)

The symbols’ meaning is as follows: ψ is the electrostatic potential, Fn and Fp are
the quasi-Fermi levels, n and p are the electron concentration and hole concen-
tration. Operator C is the electrostatic charge and R is the recombination rate,
and we assume that these operators do not involve differentiation of unknown
functions. Other symbols stand either for material parameters or for physical
constants, and we assume they are piecewise constant. We omit the description
of physical details of the drift-diffusion system. We refer the reader to [1,7,8].

Therefore the drift-diffusion system in the formulation (1) is a system of
nonlinear elliptic differential equations. This system is written in an unscaled
form, with the potential ψ in volts and quasi-Fermi levels Fn, Fp in joules.

3 Discretizations

3.1 Discrete Problem Definition

Discrete Space. Semiconductor luminescent devices are divided into physical
layers, which vary in material composition, doping level and physical properties.
We take into account this natural partition and we assume that we have E such
that Ω =

⋃
E∈E E and E1 ∩ E2 = ∅ for any E1, E2 ∈ E . Also, in computa-

tional practice, we often artificially split one physical layer to improve accuracy
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of numerical solutions. We assume that E is a triangulation [9] and we treat it
as a coarse grid for Composite Discontinuous Galerkin Method. Then we define
so-called broken Sobolev space Xs := {v ∈ L2(Ω) : ∀E ∈ E v|E ∈ Hs(E)}. We
will write vE := v|E .

Assume that for any E ∈ E we have triangulations TE := TE,hE
(E) of E,

where hE := max{diam(τ) : τ ∈ TE}. We define Th :=
⋃

E∈E TE , where h :=
max{hE : E ∈ E}. Then on every E we define a discrete space XhE

(E) of
piecewise linear functions on the triangulation TE :

XhE
:= XhE

(E) :=
{
pE ∈ C(E) : ∀τ ∈ TE pE

∣∣
τ

∈ P1(τ)
}

(3)

We assume that {Th}h is a regular family of triangulations with all finite ele-
ments being affine-equivalent to a single reference finite element, i.e. it satisfies
assumptions (H1), (H2) of [9].

Finally we define a discrete space Xh as Xh =
∏

E∈E XhE
(E). Let e be an

edge of some E ∈ E . Since E is a triangulation, then either e = ∂E1 ∩ ∂E2 for
some E1, E2 ∈ E or e ⊂ ∂E ∩ ∂Ω for some E ∈ E . Therefore we define operators
[·] := [·]e : X1 → L2(e), {·} := {·}e : X1 → L2(e) as

[p] :=

{
pE1

− pE2
if e = ∂E1 ∩ ∂E2,

pE if e = ∂E ∩ ∂Ω,

{p} :=

{
1
2

(
pE1

+ pE2

)
if e = ∂E1 ∩ ∂E2,

pE if e = ∂E ∩ ∂Ω,
(4)

where νE is a normal vector to E.
By Γ we denote a set of all internal and boundary edges of E . Then Γ is a

sum of disjoint sets ΓD, ΓN and ΓI , where

ΓD := {e ∈ Γ : e ⊂ ΣD}, ΓN := {e ∈ Γ : e ⊂ ΣN},

ΓI := {e ∈ Γ : e ⊂ int(Ω)}, ΓDI := ΓD ∪ ΓI .
(5)

Therefore ΓD (resp. ΓN ) contains edges lying on the boundary, where Dirichlet
(resp. Neumann) boundary conditions are imposed and ΓI comprises all internal
edges.

3.2 Composite Discontinuous Galerkin Method

We start with a general elliptic problem, which will be further used to construct a
Composite Discontinuous Galerkin discretizations. We propose three kind of dis-
crete problems: first one is based on Weakly Over-Penalized Symmetric Interior
Penalty (WOPSIP) method [10], while the other formulations rely on standard
symmetric and non-symmetric Discontinuous Galerkin Methods [3]. In each case
we use the composite formulation [5], i.e. inside every E ∈ E we use the Finite
Element Method on the triangulation TE .
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Differential Problem. Let Ω ⊂ R
d, d ∈ {1, 2, 3} be an interval or a rectangle

and let ∂Ω = ΣD ∪ ΣN , where ΣD ∩ ΣN = ∅. For d = 1 we assume ΣN = ∅.
Let ẑ ∈ H1(Ω) ∩ L∞(Ω) stands for a Dirichlet boundary condition on ΣD. Let
a ∈ L∞(Ω), 0 < a0 < a for some a0 ∈ R.

Our problem is to find z ∈ ẑ + H1
0,ΣD

(Ω) such that

a(z, ϑ) = f(ϑ) ∀ϑ ∈ H1
0,ΣD

(Ω),
∂z

∂ν

∣∣∣∣
ΣN

= 0, (6)

where

a(z, ϑ) :=
∫

Ω

a(x)∇z(x) · ∇ϑ(x)dx, f(ϑ) :=
∫

Ω

f(x)ϑ(x)dx.

In this general setting, the problem is linear.

Discrete Problems. All the problems to be presented are of the following
form. Find ph ∈ Xh such that for every ϕh ∈ Xh it satisfies

ah(ph,ϕh) = fh(ϕh),
ah(ph,ϕh) := A(ph,ϕh) + sC(ph,ϕh) + tC(ϕh,ph) + G(ph,ϕh)

fh(ϕh) := B(ϕh) + H(ϕh),

where

A(ph,ϕh) :=
∑
E∈E

∫

E

a(x)∇ph · ∇ϕhdx, B(ϕh) :=
∑
E∈E

∫

E

f(x)ϕhdx,

C(ph,ϕh) := −
∑

e∈ΓDI

∫

e

{a∇ph · ν}[ϕh]ds,

G(ph,ϕh) :=
∑

e∈ΓDI

ηe

∫

e

[ph][ϕh]ds, H(ϕh) :=
∑

e∈ΓD

ηe

∫

e

[ẑ][ϕh]ds,

ηe :=

{
2σeh

−q
E e ∈ ΓD, e ⊂ E ∈ E ,

σe

(
h−q

E1
+ h−q

E2

)
e ∈ ΓI , e ⊂ E1 ∩ E2, E1 ∈ E , E2 ∈ E .

(7)

Note that these operators depend on parameters of the elliptic problem a, f, ẑ,
and on penalty coefficients ηe. ηe is a penalty coefficient for an interface e, and
it depends on the triangulation parameters and penalty parameters σe > 0. Also
for d = 1 integrals over e simplify to

∫
e
f(x)ds = f(e).

The discrete problems which we would like to discuss vary by the definition
of operator ah. Depending on the problem, parameters s, t ∈ {0, 1}, q ∈ {1, 2}
will be chosen accordingly.
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Composite Weakly Over-Penalized Symmetric Interior Penalty
Method (CWOPSIP). We would like to apply the Weakly Over-Penalized
Symmetric Interior Penalty method (WOPSIP, [10]) to our generalized prob-
lem (6). We would like to allow discontinuities only on the edges of E ∈ E .

In this case we choose s = t = 0, so ah is very simple and it is symmetric.
However it comes at cost of high penalty parameter (q = 2).

Composite Non-symmetric Standard Discontinuous Galerkin Method
(CNDGM). The problem is formed by application of the Green theorem to
the differential problem on the subdomains E ∈ E and then by addition of the
penalty operators. Thus we take s = 1, t = 0, q = 1. The penalty parameters are
now inversely proportional to the first power of the triangulation parameters, in
contrast to WOPSIP method. Unfortunately this problem is not symmetric.

Composite Symmetric Standard Discontinuous Galerkin Method
(CSDGM). This problem results from symmetrization of the previous problem
(see [5]) by simply taking s = t = q = 1.

3.3 Comments on Theoretical Results

We are also working on the theoretical analysis of the solution existence and
error estimates of the discretizations of the drift-diffusion system. Our analysis
of CSDGM and CWOPSIP is undergoing and our results obtained so far inspired
us to perform the numerical simulations described in this paper.

These results refer to the equilibrium case for d ∈ {1, 2}, and also the formu-
lation of the problem is simplified (see for example [11,12]). By the equilibrium
case we mean a situation where no bias is applied to the device, i.e. a device is
disconnected from the power source [1]. Then, by physical arguments, the quasi-
Fermi levels are constant and in fact the only unknown function is the potential.
To prove the error estimates for the discretization proposed by us, we use sim-
ilar approach to presented in [13] for the Navier-Stokes equation. This method,
however, cannot be utilized for our problem in general, as it implies a differential
solution to be unique. This is generally not the case for the drift-diffusion system
in non-equilibrium case.

Therefore our early results indicate that in the equilibrium case for d = 1
the error estimate for the CWOPSIP method is ‖ψ − ψh‖H1(Ω) = O(h). Unfor-
tunately due to high penalty term, this estimate does not hold for d = 2 for the
general grids. We only have ‖ψ − ψh‖H1(Ω) = O(h1/2). However, if we use the
CSDGM, with normal penalty term, then we regain the original estimate, i.e.
‖ψ − ψh‖H1(Ω) = O(h).

Detailed proof of these results will be published elsewhere.

4 Numerical Experiments

In numerical experiments, we would like to check what are the convergence rates
of the discretizations presented in Sect. 3 achieved in practice. In simulations we
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Table 1. Schemata of devices used in the simulations.

use one-dimensional drift-diffusion system (1). Details of the algorithm used
for solution of nonlinear discrete equations is described in [14], and practical
applications of the presented methods may be found in [15].

We distinguish between two cases. In the equilibrium case, which is an object
of our theoretical study (see Sect. 3.3), we are generally interested only in error
of ψ, as other unknowns are constant by the physical reasons. On the other hand,
in the non-equilibrium case, there is some voltage applied to the contacts of a
device and all unknowns must be computed.

Unfortunately, there is no explicit solution given for any non-trivial devices,
therefore as a reference in computing errors we use CSDGM solutions with K =
1024, where K is a number of nodes per E ∈ E . For every function fK taken
into account, we compute the relative errors defined as

errorL2(Ω) :=
‖fK − fref‖L2(Ω)

‖fref‖L2(Ω)
, errorH1(Ω) :=

‖fK − fref‖H1(Ω)

‖fref‖H1(Ω)
, (8)

where fref is a numerical solution computed on a fine grid, as mentioned before.
Errors are presented in function of K. Note that h = c/K for some constant c.
Also we made the penalty parameters to be dependent on the average value of
elliptic equations’ coefficients (compare [5]). Otherwise we would have to choose
carefully the penalty parameter for every e ∈ ΓDI , what is impractical for com-
plex devices.

4.1 Results

We start from a simple device, a pn junction. It consists of two physical layers
(Table 1). We additionally divide these layers to introduce additional narrow
layers near the interface of the n-type, p-type and contacts of the device to
improve the convergence. Then in every layer we setup K equidistant nodes.
Simulation is in one-dimension.

We start with the equilibrium case (Table 2), where we present relative errors
of CNDGM, CSDGM and CWOPSIP numerical solutions for the potential ψ.
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Table 2. Relative errors of the potential ψ. Simulation were performed for the pn
junction in the equilibrium state.

CNDGM CSDGM CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: ψ

2 8.7e-02 4.6e-01 8.7e-02 4.6e-01 8.7e-02 4.6e-01

4 1.5e-02 5.8 2.3e-01 2.0 1.5e-02 5.8 2.3e-01 2.0 1.5e-02 5.8 2.3e-01 2.0

8 4.0e-03 3.8 1.2e-01 1.9 4.0e-03 3.8 1.2e-01 1.9 4.0e-03 3.8 1.2e-01 1.9

16 1.2e-03 3.3 5.8e-02 2.0 1.2e-03 3.3 5.8e-02 2.0 1.2e-03 3.3 5.8e-02 2.0

32 2.9e-04 4.1 2.9e-02 2.0 3.0e-04 4.1 2.9e-02 2.0 3.0e-04 4.1 2.9e-02 2.0

64 7.3e-05 4.0 1.4e-02 2.0 7.4e-05 4.0 1.4e-02 2.0 7.4e-05 4.0 1.4e-02 2.0

128 1.8e-05 4.0 7.2e-03 2.0 1.8e-05 4.0 7.2e-03 2.0 1.8e-05 4.0 7.2e-03 2.0

256 4.4e-06 4.1 3.5e-03 2.0 4.4e-06 4.1 3.5e-03 2.0 4.4e-06 4.2 3.5e-03 2.0

Table 3. Relative error of ψ, Fn and Fp. Simulation were performed for the pn junction
under 1 V bias.

CNDGM CSDGM CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: ψ

2 7.8e-02 4.8e-01 7.8e-02 4.8e-01 7.9e-02 4.8e-01

4 3.0e-02 2.6 2.7e-01 1.8 3.0e-02 2.6 2.7e-01 1.8 3.0e-02 2.6 2.7e-01 1.8

8 7.1e-03 4.3 1.3e-01 2.0 7.1e-03 4.2 1.3e-01 2.0 7.1e-03 4.2 1.3e-01 2.0

16 1.5e-03 4.9 6.7e-02 2.0 1.5e-03 4.9 6.7e-02 2.0 1.5e-03 4.9 6.7e-02 2.0

32 3.7e-04 4.0 3.4e-02 2.0 3.7e-04 4.0 3.4e-02 2.0 3.7e-04 4.0 3.4e-02 2.0

64 9.2e-05 4.0 1.7e-02 2.0 9.2e-05 4.0 1.7e-02 2.0 9.2e-05 4.0 1.7e-02 2.0

128 2.3e-05 4.0 8.3e-03 2.0 2.3e-05 4.0 8.3e-03 2.0 2.3e-05 4.0 8.3e-03 2.0

256 5.5e-06 4.1 4.1e-03 2.0 5.5e-06 4.1 4.1e-03 2.0 5.5e-06 4.1 4.1e-03 2.0

Function: Fn

2 3.0e-03 1.0 3.0e-03 1.0 1.3e-02 1.0

4 2.2e-03 1.4 1.0 1.0 2.2e-03 1.4 1.0 1.0 9.8e-03 1.4 1.0 1.0

8 1.5e-03 1.4 1.0 1.0 1.5e-03 1.4 1.0 1.0 7.1e-03 1.4 1.0 1.0

16 1.1e-03 1.4 9.8e-01 1.0 1.1e-03 1.4 9.8e-01 1.0 5.1e-03 1.4 1.0 1.0

32 7.5e-04 1.4 9.6e-01 1.0 7.5e-04 1.4 9.6e-01 1.0 3.6e-03 1.4 1.1 1.0

64 5.0e-04 1.5 9.3e-01 1.0 5.1e-04 1.5 9.3e-01 1.0 2.6e-03 1.4 1.1 0.9

128 3.2e-04 1.6 8.7e-01 1.1 3.3e-04 1.6 8.7e-01 1.1 1.8e-03 1.4 1.3 0.9

256 1.9e-04 1.7 7.6e-01 1.1 1.9e-04 1.7 7.6e-01 1.1 1.3e-03 1.4 1.7 0.8

Function: Fp

2 2.0e-03 1.0 2.0e-03 1.0 1.0e-02 1.0

4 1.6e-03 1.3 1.0 1.0 1.6e-03 1.3 1.0 1.0 7.6e-03 1.3 1.0 1.0

8 1.2e-03 1.3 1.0 1.0 1.2e-03 1.3 1.0 1.0 5.6e-03 1.4 1.0 1.0

16 8.5e-04 1.4 9.8e-01 1.0 8.5e-04 1.4 9.8e-01 1.0 4.1e-03 1.4 1.0 1.0

32 5.9e-04 1.4 9.6e-01 1.0 6.0e-04 1.4 9.6e-01 1.0 2.9e-03 1.4 1.1 1.0

64 4.0e-04 1.5 9.3e-01 1.0 4.0e-04 1.5 9.3e-01 1.0 2.1e-03 1.4 1.1 0.9

128 2.6e-04 1.5 8.7e-01 1.1 2.6e-04 1.5 8.7e-01 1.1 1.5e-03 1.4 1.3 0.9

256 1.5e-04 1.7 7.6e-01 1.1 1.5e-04 1.7 7.6e-01 1.1 1.0e-03 1.4 1.7 0.8
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Table 4. Relative error of the carrier concentrations n and p. Simulation were per-
formed for the pn junction under 1 V bias.

CNDGM CSDGM CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: n

2 2.0e-01 8.3e-01 2.0e-01 8.3e-01 2.0e-01 8.3e-01

4 1.5e-01 1.3 7.9e-01 1.0 1.5e-01 1.3 7.9e-01 1.1 1.5e-01 1.3 7.9e-01 1.1

8 6.7e-02 2.3 5.7e-01 1.4 6.7e-02 2.3 5.7e-01 1.4 6.7e-02 2.3 5.7e-01 1.4

16 2.0e-02 3.4 3.1e-01 1.9 2.0e-02 3.4 3.1e-01 1.9 2.0e-02 3.4 3.1e-01 1.9

32 5.0e-03 3.9 1.5e-01 2.1 5.0e-03 3.9 1.5e-01 2.1 5.0e-03 3.9 1.5e-01 2.1

64 1.3e-03 3.9 7.3e-02 2.0 1.3e-03 3.9 7.3e-02 2.0 1.3e-03 3.9 7.3e-02 2.0

128 3.2e-04 4.0 3.7e-02 2.0 3.2e-04 4.0 3.7e-02 2.0 3.2e-04 4.0 3.7e-02 2.0

256 7.6e-05 4.2 1.8e-02 2.0 7.6e-05 4.2 1.8e-02 2.0 7.6e-05 4.2 1.8e-02 2.0

Function: p

2 9.6e-02 7.4e-01 9.7e-02 7.4e-01 9.8e-02 7.5e-01

4 4.9e-02 2.0 5.8e-01 1.3 4.9e-02 2.0 5.8e-01 1.3 4.9e-02 2.0 5.8e-01 1.3

8 1.8e-02 2.7 3.2e-01 1.8 1.8e-02 2.7 3.2e-01 1.8 1.8e-02 2.7 3.2e-01 1.8

16 5.1e-03 3.5 1.5e-01 2.2 5.2e-03 3.5 1.5e-01 2.2 5.2e-03 3.5 1.5e-01 2.2

32 1.4e-03 3.7 6.8e-02 2.2 1.4e-03 3.7 6.8e-02 2.2 1.4e-03 3.7 6.8e-02 2.2

64 3.6e-04 3.9 3.3e-02 2.1 3.6e-04 3.9 3.3e-02 2.1 3.6e-04 3.9 3.3e-02 2.1

128 8.9e-05 4.0 1.6e-02 2.0 8.9e-05 4.0 1.6e-02 2.0 8.9e-05 4.0 1.6e-02 2.0

256 2.1e-05 4.2 7.9e-03 2.1 2.1e-05 4.2 7.9e-03 2.1 2.1e-05 4.2 7.9e-03 2.1

Table 5. Relative error of the potential ψ, n and p. Simulation were performed for
the laser under 2 V bias.

CNDGM CSDGM CWOPSIP

K L2(Ω) H1(Ω) L2(Ω) H1(Ω) L2(Ω) H1(Ω)

Function: ψ

16 1.4e-03 1.1e-01 1.2e-03 1.1e-01 1.4e-03 1.1e-01

32 4.5e-04 3.1 5.8e-02 1.9 4.5e-04 2.7 5.8e-02 1.9 4.5e-04 3.1 5.8e-02 1.9

64 1.4e-04 3.2 2.9e-02 2.0 1.4e-04 3.2 2.9e-02 2.0 1.4e-04 3.2 2.9e-02 2.0

128 3.8e-05 3.6 1.4e-02 2.0 3.9e-05 3.6 1.4e-02 2.0 3.9e-05 3.6 1.4e-02 2.0

256 9.4e-06 4.1 7.0e-03 2.1 9.6e-06 4.1 7.0e-03 2.1 9.6e-06 4.1 7.0e-03 2.1

Function: n

16 6.6e-02 6.0e-01 6.8e-02 6.1e-01 6.6e-02 6.0e-01

32 2.9e-02 2.2 4.4e-01 1.4 2.9e-02 2.3 4.4e-01 1.4 2.9e-02 2.2 4.4e-01 1.4

64 1.0e-02 2.9 2.7e-01 1.6 1.0e-02 2.9 2.7e-01 1.6 1.0e-02 2.9 2.7e-01 1.6

128 2.8e-03 3.5 1.4e-01 1.9 2.8e-03 3.5 1.4e-01 1.9 2.8e-03 3.5 1.4e-01 1.9

256 7.3e-04 3.9 7.2e-02 2.0 7.3e-04 3.9 7.2e-02 2.0 7.3e-04 3.9 7.2e-02 2.0

Function: p

16 1.2e-03 1.8e-01 1.1e-03 1.8e-01 1.2e-03 1.8e-01

32 3.0e-04 3.9 8.8e-02 2.0 3.1e-04 3.7 8.8e-02 2.0 3.0e-04 3.9 8.8e-02 2.0

64 7.6e-05 4.0 4.4e-02 2.0 7.8e-05 4.0 4.4e-02 2.0 7.7e-05 4.0 4.4e-02 2.0

128 1.9e-05 4.0 2.2e-02 2.0 1.9e-05 4.0 2.2e-02 2.0 1.9e-05 4.0 2.2e-02 2.0

256 4.6e-06 4.1 1.1e-02 2.0 4.7e-06 4.1 1.1e-02 2.0 4.6e-06 4.1 1.1e-02 2.0
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These results indicate clearly that errors of all these methods converge linearly
to zero in H1(Ω) norm as h → 0. For L2(Ω) norm, the errors drop quadratically
in h, as it would be expected for plain finite element method. Also note that for
given K errors are similar for all the presented discretization method.

Then we pass to non-equilibrium simulations for 1 V bias (Table 3). For the
potential ψ, the conclusion is as in equilibrium case. On the other hand, for
the quasi-Fermi levels the situation is much worse. For CNDGM and CSDGM
discretizations we observe sublinear convergence on both norms, and the H1(Ω)
convergence is much slower. For CWOPSIP, we observe L2(Ω) convergence only.
Having in mind that we do not have exact solution, it is hard to determine
whether there is any H1(Ω) convergence at all in any case.

However, in Table 4 we also included convergence results for derived func-
tions n, p. We did so because the drift-diffusion equations may be expressed
with a few sets of functions [16]. In particular, we can use ψ, n, p instead of
ψ, Fn, Fp. An argument in favor of the latter choice is that it simplifies the
equations. Also the carrier concentrations n, p may vary by dozens orders of
magnitude over computational domains, while quasi-Fermi functions stay on the
same level. Having in mind definition (2), we may think of Fn (resp. −Fp) as a
logarithm of n (resp. p). That said, we observe that for the carrier concentrations
n, p the situation is much more promising. Convergence is linear in ‖·‖H1(Ω) and
quadratic in ‖ · ‖L2(Ω). Errors are similar for all the methods taken into account.
This observation also explains, how could ψ convergence be as good as in equi-
librium case while Fn, Fp error is much worse, as generally the drift-diffusion
equations’ coefficients and right hand sides are directly dependent on n, p, not
on Fn, Fp.

In second approach we proceed to more complex device - blue InGaN laser.
The structure used in this simulation (Table 1) is simplified a little in comparison
with the real laser structure, but it resembles its essential features: a GaN base,
AlGaN claddings, an InGaN quantum well and an electron blocking layer.

The results are presented in Table 5. Generally they agree with the conclu-
sions drawn before, i.e. quadratic L2(Ω) convergence and linear H1(Ω) conver-
gence of ψ, n, p, but it can be seen later (from K above 64). Errors of all methods
are similar for a given K.

5 Conclusions

We presented three methods of discretization of the drift-diffusion equations with
Composite Discontinuous Galerkin Method [5]. These methods are based on the
standard symmetric and non-symmetric Discontinuous Galerkin Method [3], and
on Weakly Over-Penalized Interior Penalty Method [10].

We demonstrate results of one-dimensional numerical simulations of gallium
nitride semiconductor devices with the presented methods. These results indicate
that L2 convergence of the electrostatic potential and carrier concentrations is
quadratic and H1 convergence linear. We also observed sublinear L2 convergence
for the quasi-Fermi levels, while the H1 convergence is very slow, if it exists at
all. Errors of all three methods are on similar levels.
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Additive Nonoverlapping Schwarz for h-p
Composite Discontinuous Galerkin
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Abstract. A second order elliptic problem with piecewise constant
coefficient in 2-D or 3-D is considered. The problem is discretized by
a composite h-p finite element method, using continuous functions in
subregions where the coefficient is constant and applying discontin-
uous Galerkin interior penalty method to couple them. The result-
ing discrete problem is solved by a two-level nonoverlapping additive
Schwarz method. Condition number estimate of the preconditioned sys-
tem, depending on the relative sizes of the underlying grids and on the
relative degrees of finite elements used on the fine and coarse grids, is
provided. In particular, the rate of convergence of the method is inde-
pendent of the jumps of the coefficient.

Keywords: Nonoverlapping additive Schwarz method · Discontinuous
Galerkin h-p discretization · Interior penalty method · Discontinuous
coefficient

1 Introduction

In this paper we consider a second order elliptic equation

−div(�∇u) = f,

with homogeneous Dirichlet boundary condition, where the diffusion coefficient
� is a discontinuous, piecewise constant function. The problem is discretized by
a composite continuous–discontinuous Galerkin (cG–dG) finite element method,
using a continuous h-p discretization in regions where � is constant. A weighted
interior penalty method is then used to glue the solution across the interfaces
on which large jump of � may occur. Our goal in this paper is to analyze a two-
level nonoverlapping additive Schwarz method (ASM) preconditioner, see e.g. [7],
which introduces in a natural way a coarse grain parallelism and improves the
convergence rate of an iterative solver. Such problem has already been considered
by Dryja in [3] for linear finite elements in 2D, where a multilevel ASM was
designed and analyzed. Here, we generalize the approach of [3] to the case of h-p
composite cG–dG discretization.

This research has been partially supported by the Polish National Science Centre
grant 2011/01/B/ST1/01179.
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For the h-p, but dG–only discretization of the problem, with globally con-
stant coefficient, � ≡ 1, Antonietti and Houston [1] have proved that the condi-
tion number of the system preconditioned with two–level nonoverlapping ASM
is at most O(p2 H/h) where H is the coarse mesh size. However, numerical
experiments therein have revealed that if the coarse space contained piece-
wise polynomial functions of order p, the observed condition number behaved
rather like O(p H/h). In this paper we prove this conjecture for the cG–dG
h-p discretization, showing a more general result, that if the coarse space con-
tains piecewise polynomial functions of order q ≤ p, the condition number is
O(p2/max{q, 1}) · O(H/h). To author’s knowledge, this is the first theoretical
result of this kind. In addition, the bound holds independently of the jumps of the
diffusion coefficient �, provided the jumps of � are aligned with the coarse grid.

The paper is organized as follows. In Sect. 2, differential problem and its cG–
dG discretization are formulated. In Sect. 3, a nonoverlapping two-level ASM for
solving the discrete problem is designed and analyzed. We conclude with final
remarks in Sect. 5.

For nonnegative scalars x, y, we shall write x � y if there exists a positive
constant C, independent of: x, y, the fine and coarse mesh parameters h,H, the
orders of the finite element spaces p, q, and of jumps of the diffusion coefficient
� as well, such that x ≤ Cy. If both x � y and y � x, we shall write x � y.

The norm of a function f from the Sobolev space Hk(S) will be denoted by
||f ||k,S , while the seminorm of f will be denoted by |f |k,S .

2 Differential Problem and Its cG–dG h-p Discretization

Let Ω be a bounded open polyhedral domain in Rd, d ∈ {2, 3}, with Lipschitz
boundary ∂Ω. We consider the following variational problem for prescribed f ∈
L2(Ω) and � ∈ L∞(Ω):

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = (f, v)Ω , ∀v ∈ H1
0 (Ω), (1)

where
a(u, v) =

∫

Ω

�∇u · ∇v dx, (f, v)Ω =
∫

Ω

fv dx.

We assume that Ω can be partitioned into M nonoverlapping polyhedral sub-
regions D1, . . . , DM , Ω̄ =

⋃M
m=1 D̄m, with the property that � restricted to any

of these subregions is some positive constant. Thus, we allow for jumps of the
coefficient only across boundaries of these subregions. Problems of this kind
arise in many engineering applications, e.g. in modelling composite construction
materials or layered electronic devices.

In what follows we will analyze a preconditioner for a system of algebraic
equations arising from a discretization of (1) with composite cG–dG h-p finite
element method. The corresponding finite element spaces and the discrete prob-
lem are introduced in the following subsection.
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2.1 Finite Element Spaces and cG–dG h-p Discretization

Our discretization will follow the approach of [3], with necessary modifications
to incorporate higher order finite elements. Let us first introduce the coarse
mesh TH — an affine, shape-regular triangulation of Ω into N disjoint simplicial
subdomains (triangles in 2D, tetrahedrons in 3D), TH = {Ω1, . . . , ΩN}. We do
not assume that TH is matching, but we do require that the number of neighbors
is bounded for every element of TH by an absolute constant N . We also assume
that TH resolves the subregions {Dm} in the sense that each Dm, m = 1, . . . , M ,
is a sum of certain elements from TH . In this way, the jumps of � can only occur at
the boundaries of coarse mesh subdomains; inside Ωi the coefficient is constant:

�|Ωi
= �i > 0, i = 1, . . . , N.

In accordance with the above notation, if necessary, for any function ϕ defined
on Ω, we shall write ϕi to denote its restriction (not necessarily constant) to Ωi:

ϕi := ϕ|Ωi
.

For Ωi ∈ TH we define Hi = diam(Ωi) and further we set H = (H1, . . . , HN ).
By Γ 0 we denote the interface of the coarse mesh, that is, the set of all

common faces (edges in 2D) of elements from TH , so that e ∈ Γ 0 if and only if
e = ∂Ωi ∩ ∂Ωj is of positive measure for some i 	= j. An analogous set of faces
on ∂Ω will be denoted by Γ ∂ . Finally, we define Γ = Γ 0 ∪ Γ ∂ , the skeleton of
the coarse mesh.

Next, in each Ωi, i = 1, . . . , N , let us introduce an affine, shape regular,
quasi-uniform and matching simplicial triangulation Thi

(Ωi), where hi is the
mesh parameter, i.e. hi = max{diam(K) : K ∈ Thi(Ωi)}. We will refer to Thi

(Ωi)
as the local triangulation of subdomain Ωi. With p ≥ 1 and i = 1, . . . , N , we
define the corresponding local (continuous) finite element spaces as

V p
hi

(Ωi) = {v ∈ C(Ωi) : v|K ∈ Pp(K) ∀K ∈ Thi
(Ωi)},

where Pp is the space of polynomials of degree at most p, see Fig. 1.
Let h = (h1, . . . , hN ) collect the parameters of local meshes. We define the

global fine mesh on Ω,

Th = {K ∈ Thi
(Ωi) : i = 1, . . . , N}

and assume for simplicity that the mesh is shape regular and quasiuniform.
Finally we define the global finite element space over Th, in which we will approx-
imate the solution of (1), as

V p
h = {v ∈ L2(Ω) : v|Ωi

∈ V p
hi

(Ωi)}. (2)

It consists of piecewise polynomial functions, which are continuous inside sub-
domains Ωi, but may be discontinuous across the coarse mesh skeleton Γ .
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We discretize (1) by the composite cG–dG method, using the symmetric
weighted interior penalty discontinuous Galerkin method to enforce weak conti-
nuity across Γ , see for example [3,5]:

Find u∗
h ∈ V p

h such that

Ah(u∗
h, vh) = (f, vh)Ω , ∀vh ∈ V p

h , (3)

where
Ah(u, v) ≡ Ah(u, v) − Sh(u, v) − Sh(v, u)

and

Ah(u, v) ≡
N∑

i=1

(�∇u,∇v)Ωi
+

∑
e∈Γ

〈γ[u], [v]〉e, (4)

Sh(u, v) ≡
∑
e∈Γ

〈{�∇u} , [v]〉e. (5)

Here we use standard notation

(u, v)Ωi
=

∫

Ωi

u v dx and 〈u, v〉e =
∫

e

u v dσ.

In (4)–(5), for e ∈ Γ 0 such that e = ∂Ωi ∩ ∂Ωj , we define (recalling that by
convention ui = u|Ωi

):

{�∇u} = � (∇ui + ∇uj), [u] = ui ni + uj nj ,

where ni is the unit normal vector pointing outward Ωi, and (cf. [3])

� =
�i�j

�i + �j
.

Note that also {�∇u} = ωi�i∇ui + ωj�j∇uj , where ωi = �j/(�i + �j), as in [5];
in particular, we have ωi + ωj = 1 and ωi�i = ωj�j =

�i�j

�i + �j
= �. Moreover,

we set (cf. [6])

γ|e = δ · � p2

h
,

where h = min{hi, hj}, and δ is a positive penalty constant.
On e ∈ Γ ∂ which is a face of Ωi, we set {�∇u} = �i∇ui, [u] = ui ni and

γ = δ �ip
2/hi.

For sufficiently large δ the discrete problem (3) is well–defined, according to
the following lemma:

Lemma 1. There exists positive δ0 independent of h,H, p and � such that if
δ ≥ δ0, the bilinear form Ah(·, ·) is symmetric, positive definite, and there holds

Ah(u, u) � Ah(u, u) ∀u ∈ V p
h , (6)

that is, Ah(·, ·) is uniformly spectrally equivalent to Ah(·, ·).
Proof. The proof follows the lines of [3,6] and thus is omitted.

In what follows we shall take as granted that δ is a fixed constant such that
δ ≥ δ0.
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3 Nonoverlapping Two Level Additive Schwarz Method

The condition number of the discrete problem (3) can be prohibitively large,
affected by the degree of the polynomials used, the fine mesh size, and by the
magnitude of jumps in �. Thus, for an iterative solution of (3), some precondi-
tioning is necessary. In this section we consider a nonoverlapping ASM proposed
in [1] for a fully discontinuous Galerkin discretization of (1), i.e. when the finite
element functions are allowed inside Ωi. In this paper, we assume a subspace
consisting of functions discontinuous only across Γ .

Ω1

Γ
Ω2

Ω3 Ω4

h

H1

1

Fig. 1. Example decomposition into four subdomains Ω1, . . . , Ω4 in which the diffusion
coefficient � is constant. Continuous finite elements of order p are used inside subdomain
Ωi, but discontinuities are allowed across Γ .

Let us introduce a decomposition of V p
h :

V p
h = V0 +

N∑
i=1

Vi, (7)

where for i = 1, . . . , N the local spaces are

Vi = {v ∈ V p
h : v|Ωj

= 0 for all j 	= i}, (8)

so that Vi is a zero–extension of functions from V p
h (Ωi). Note that V p

h is a direct
sum of the local spaces.

The coarse space is

V0 = {v ∈ V p
h : v|Ωi

∈ Pq(Ωi) for all i = 1, . . . , N}
with 0 ≤ q ≤ p, so that V0 ⊂ V p

h . Observe that functions from V0 are in general
discontinuous across Γ .

The coarse space considered here is richer than the usual choice of subdo-
mainwise constant functions, e.g. [3]. In order to exploit the enlarged number of
degrees of freedom in the convergence analysis, we need the following approxi-
mation lemma which we state without proof due to space restrictions:
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Lemma 2. For any u ∈ H1(Ωi), i = 1, . . . , N , there exists u
(0)
i ∈ Pq(Ωi) such

that

|u − u
(0)
i |0,Ωi

� Hi

q̃
|u|1,Ωi

, (9)

|u − u
(0)
i |1,Ωi

� |u|1,Ωi
, (10)

|u − u
(0)
i |0,∂Ωi

�
(

Hi

q̃

)1/2

|u|1,Ωi
, (11)

where q̃ = max{q, 1}.
Proof. For q = 0, we choose as usual [7, Corollary A.15]

u
(0)
i = ūi :=

1
|Ωi|

∫

Ωi

u dx.

The proof for positive q easily follows from the properties of the Babuška–Suri
interpolant, cf. [2, Lemma 4.5] and [6, Lemma 4.4].

Using decomposition (7) we define local operators Ti : V p
h → Vi, i = 1, . . . , N ,

by “inexact” solvers

Ah(Tiu, v) = Ah(u, v) ∀v ∈ Vi,

so that on each subdomain one has to solve a (relatively) small system of lin-
ear equations for degrees of freedom restricted only to V p

hi
(Ωi) (see Sect. 4 for

details); for j 	= i we set (Tiu)|Ωj
= 0.

The coarse solve operator is T0 : V p
h → V0 defined analogously as

Ah(T0u, v0) = Ah(u, v0) ∀v0 ∈ V0. (12)

Finally, the preconditioned operator is

T = T0 +
N∑

i=1

Ti. (13)

Our main result here is the following theorem, which bounds the condition
number of T in terms of p, q, H and h.

Theorem 1. The preconditioned operator T defined in (13) is symmetric with
respect to Ah(·, ·) and satisfies

β−1Ah(u, u) � Ah(Tu, u) � Ah(u, u) ∀u ∈ V p
h ,

where

β =
p2

max{1, q} max
i=1,...,N

Hi

hi
.

Therefore, the condition number of the preconditioned operator T is O(β),
independently of the jumps in �.

Proof. Here we sketch the proof of the Theorem, following the abstract theory of
additive Schwarz methods, cf. [7, Theorem 2.7], and prove three key properties
for T0, T1, . . . , TN :
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Strengthened Cauchy–Schwarz Inequality. It is straightforward to verify that if
u ∈ Vi and v ∈ Vj with i, j ∈ {1, . . . , N} then Ah(u, v) = 0, if only Ωi and Ωj

are not neighbors, i.e. they do not share a face in E0
H . Thus, we conclude that

then
Ah(u, v) ≤ εijAh(u, u)1/2Ah(v, v)1/2

and the spectral radius of ε = (εij)N
i,j=1 is bounded by N which has been assumed

an absolute constant, see Sect. 2.1.

Local Stability. For all i = 0, 1, . . . , N

Ah(u, u) ≤ ω Ah(u, u) ∀u ∈ Vi,

with absolute constant ω. This is an obvious consequence of Lemma 1. Since
subdomainwise constant functions form a subspace in V0, and both bilinear forms
coincide on this subspace, we additionally conclude that ω ≥ 1.

Stable Decomposition. We have to prove that there exist: a decomposition of
u ∈ V p

h ,

u =
N∑

i=0

u(i) with u(i) ∈ Vi (14)

and C0 independent of h,H, p, q, �, such that

N∑
i=0

Ah(u(i), u(i)) ≤ C2
0Ah(u, u) ∀u ∈ V p

h . (15)

In order to construct the stable decomposition of u ∈ V p
h , we first define

u(0) ∈ V0 such that on each Ωi ∈ TH , i = 1, . . . , N ,

u(0)|Ωi
= u

(0)
i ,

where u
(0)
i is as specified in Lemma 2.

Next, for i = 1, . . . , N , we define u(i) ∈ Vi, as a zero-extension of the restric-
tion of u − u(0) to Ωi:

u(i) =

{
ui − u

(0)
i on Ωi,

0 elsewhere.

where we recall that by convention ui ≡ u|Ωi
.

Then for i = 1, . . . , N we have

Ah(u(i), u(i)) = �i|∇u(i)|20,Ωi
+

∑
e⊂∂Ωi

γe|[u(i)]|20,e.

We have by (10)

�i|∇u(i)|20,Ωi
= �i|∇(u − u

(0)
i )|20,Ωi

� �i|∇u|20,Ωi
.
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For the second term, using (11), we conclude that
∑

e⊂∂Ωi

γe|[u(i)]|20,e � �i
p2

hi

Hi

q̃
|∇u|20,Ωi

and in consequence

Ah(u(i), u(i)) � �i

(
1 +

p2

hi

Hi

q̃

)
|∇u|20,Ωi

.

Summing over all subdomains and making use of Lemma1 we arrive at
N∑

i=1

Ah(u(i), u(i)) � p2

q̃
max

i=1,...,N

Hi

hi
Ah(u, u).

It remains to obtain a bound for

Ah(u(0), u(0)) =
N∑

i=1

�i|∇u
(0)
i |20,Ωi

+
∑
e∈Γ

γ|[u(0)]|20,e.

Observe that by (10) we have |∇u
(0)
i |0,Ωi

≤ |∇(u − u
(0)
i )|0,Ωi

+ |∇u|0,Ωi
�

|∇u|0,Ωi
, so in consequence

N∑
i=1

�i|∇u
(0)
i |20,Ωi

�
N∑

i=1

�i|∇u|20,Ωi
� Ah(u, u).

Next, for any e ∈ Γ 0 such that e = ∂Ωi ∩ ∂Ωj we have

|[u − u(0)]|20,e � |(u − u(0))i|20,e + |(u − u(0))j |20,e + |[u]|20,e,

so, applying triangle inequality,

γ|e |[u − u(0)]|20,e � δ
�ip

2

hi
|ui − u

(0)
i |20,e + δ

�jp
2
j

hj
|uj − u

(0)
j |20,e + γ|e |[u]|20,e.

Since similar bound can also be obtained for e ∈ Γ ∂ , we conclude that

∑
e∈Γ

γ|[u(0)]|20,e �
∑
e∈Γ

γ|[u]|20,e +
N∑

i=1

�i
p2

hi
|ui − u

(0)
i |20,∂Ωi

.

Now, the first term is not greater than Ah(u, u) and the last term has already
been estimated by βAh(u, u). Thus we conclude that

Ah(u(0), u(0)) � βAh(u, u),

which completes the proof.

Remark 1. The approach described above can be generalized in several direc-
tions, e.g. allowing nonconforming meshes, varying FE degree and fully dis-
continuous elements inside subdomains Di. Moreover, the recently introduced
method, cf. [4], with a potential for increased amount of parallelism, can also be
adapted to the discretization considered here. The generalized theory will appear
in a forthcoming paper.
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4 Practical Remarks and Parallel Implementation

According to Theorem1, Krylov subspace based iterative methods, such as, for
example, the Conjugate Gradient method, will converge to the solution u of the
system

Tu = f (16)

at the rate proportional to the square root of β. In particular, Theorem1 guar-
antees that the convergence rate bound will remain constant when Hi and hi are
scaled by the same factor — a situation commonly considered when assessing
the weak scalability of an iterative solver. The same holds true when both p and
q are increased by the same factor.

Let us also remind the reader that the transformed equation (16) is just the
original discrete equation preconditioned in a specific way with a matrix–free
preconditioner [7], so that the Preconditioned Conjugate Gradient method can
easily be implemented. The action of the preconditioner, in turn, corresponds
to the solution of the local problems (8) which can straightforwardly be applied
in parallel; the coarse problem (12) is also solved independently of the local
problems.

5 Conclusions

A preconditioner based on a nonoverlapping additive Schwarz method for com-
posite continuous–discontinuous Galerkin h-p discretization of a second order
elliptic PDE with discontinuous diffusion coefficient has been analyzed.

It has been shown that if the coarse space is imposed on a mesh with para-
meter H and consists of subdomainwise polynomials of q–th order, then the
condition number is bounded by

O(p2/max{q, 1}) · O(H/h)

independently of the jumps of the diffusion coefficient �.
This result provides an explicit estimate of the condition number on the

polynomial degree used to define the coarse space. In particular, choosing q = p
for all subdomains, the condition number grows only linearly with p; on another
extreme, if q = 0, the dependence is quadratic, which can be quite disappointing
for high order approximations.

In addition, the condition estimate also retains the linear dependence on H/h
and the independence of the jumps of � — already known for nonoverlapping
ASM developed for low order discontinuous Galerkin approximations.

Acknowledgement. The author would like to thank Max Dryja for comments on
an early draft of the paper. This research has been partially supported by the Polish
National Science Centre grant 2011/01/B/ST1/01179.
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2. Babuška, I., Suri, M.: The h-p version of the finite element method with quasi-
uniform meshes. RAIRO Modél. Math. Anal. Numér. 21(2), 199–238 (1987)

3. Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontin-
uous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (2003). (electronic)
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Abstract. This paper unifies the representations of different kinds of
computer arithmetic. It is motivated by the book The End of Error by
John Gustafson [5]. Here interval arithmetic just deals with connected
sets of real numbers. These can be closed, open, half-open, bounded or
unbounded.

In an earlier paper [19] the author showed that different kinds of
computer arithmetic like floating-point arithmetic, conventional interval
arithmetic for closed real intervals and arithmetic for interval vectors and
interval matrices can all be derived from an abstract axiomatic definition
of computer arithmetic and are just special realizations of it. A computer
operation is defined via a monotone mapping of an arithmetic operation
in a complete lattice onto a complete sublattice.

This paper shows that the newly defined unum and ubound arith-
metic [5] can be deduced from the same abstract mathematical model.
To a great deal unum and ubound arithmetic can be seen as an exten-
sion of arithmetic for closed real intervals to open and half-open real
intervals, just to connected sets of real numbers. Deriving computer exe-
cutable formulas for ubound arithmetic on the base of pure floating-point
numbers (without the IEEE 754 exceptions) leads to a closed calculus
that is totally free of exceptions, i.e., any arithmetic operation of the set
+,−, ·, /, and the dot product for ubounds together with a number of
elementary functions always delivers a ubound as result. This wonder-
ful property is suited moving correct and rigorous machine computation
more into the centre of scientific computing.

Keywords: Computer arithmetic · Interval arithmetic · Axiomatic
definition · Unum and ubound arithmetic · Arithmetic for connected
sets of real numbers · Exact dot product · Exception-free computer
arithmetic

1 Introduction

The first section briefly reviews the development of arithmetic for scientific com-
puting from a mathematical point of view from the early days of floating-point
arithmetic to conventional interval arithmetic until the latest step of unum and
ubound arithmetic.
c© Springer International Publishing Switzerland 2016
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1.1 Early Floating-Point Arithmetic

Early computers designed and built by Konrad Zuse, the Z3 (1941) and the Z4
(1945), are among the first computers that used the binary number system and
floating-point for number representation [4,26]. Both machines carried out the
four basic arithmetic operations of addition, subtraction, multiplication, divi-
sion, and the square root by hardware. In the Z4 floating-point numbers were
represented by 32 bits. They were used in a way very similar to what today is
IEEE 754 single precision arithmetic. The technology of those days was poor
(electromechanical relays, electron tubes). It was complex and expensive. To
avoid frequent interrupts special representations and corresponding wirings were
available to handle the three special values: 0, ∞, and indefinite (for 0/0, ∞ · 0,
∞ − ∞, ∞/∞, and others).

These early computers were able to execute about 100 flops (floating-point
operations per second). For comparison: With a mechanic desk calculator or a
modern pocket calculator a trained person can execute about 1000 arithmetic
operations (somewhat reliably) per day. The computer could do this in 10 s. This
was a gigantic increase in computing speed by a factor of about 104.

Over the years the computer technology was drastically improved. This per-
mitted an increase of the word size and of speed. Already in 1965 computers
were on the market (CDC 6600) that performed 105 flops. At these speeds a
conventional error analysis of numerical algorithms, that estimates the error of
each single arithmetic operation, becomes questionable. Examples can be given
which illustrate that computers after very few operations sometimes deliver a
completely absurd result [30]. For example it can be easily shown that for a
certain system of two linear equations with two unknowns even today’s comput-
ers deliver a result of which possibly not a single digit is correct. Such results
strongly suggest to use the computer more for computing close two-sided bounds
on the solution rather than, as now, approximations with unknown accuracy.

1.2 The Standard for Floating-Point Arithmetic IEEE 754

Continuous progress in computer technology allowed extra features such as addi-
tional word sizes and differences in the coding and numbers of special cases. To
stabilize the situation a standard for floating-point arithmetic was developed
and internationally adopted in 1985. It is known as the IEEE 754 floating-point
arithmetic standard. Until today the most used floating-point format is double
precision. It corresponds to about 16 decimal digits. A revision of the standard
IEEE 754, published in 2008, added another word size of 128 bits.

During a floating-point computation exceptional events like underflow, over-
flow or division by zero may occur. For such events the IEEE 754 standard
reserves some bit patterns to represent special quantities. It specifies special
representations for −∞, +∞, −0, +0, and for NaN (not a number). Normally, an
overflow or division by zero would cause a computation to be interrupted. There
are, however, examples for which it makes sense for a computation to continue.
In IEEE 754 arithmetic the general strategy upon an exceptional event is to
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deliver a result and continue the computation. This requires the result of oper-
ations on or resulting in special values to be defined. Examples are: 4/0 = ∞,
−4/0 = −∞, 0/0 = NaN, ∞−∞ = NaN, 0·∞ = NaN, ∞/∞ = NaN, 1/(−∞) = −0,
−3/(+∞) = −0, log 0 = −∞, log x = NaN when x < 0, 4 − ∞ = −∞. When
a NaN participates in a floating-point operation, the result is always a NaN. The
purpose of these special operations and results is to allow programmers to post-
pone some tests and decisions to a later time in the program when it is more
convenient.

The standard for floating-point arithmetic IEEE 754 has been widely
accepted and has been used in almost every processor developed since 1985.
This has greatly improved the portability of floating-point programs. IEEE 754
floating-point arithmetic has been used successfully in the past. Many computer
users are familiar with all details of IEEE 754 arithmetic including all its excep-
tions like underflow, overflow, −∞, +∞, NaN, −0,+0, and so on. Seventy years
of extensive use of floating-point arithmetic with all its exceptions makes users
believe that this is the only reasonable way of using the computer for scientific
computing. IEEE 754 is quasi taken as an axiom of computing.

By the time the original standard IEEE 754 was developed, early micro-
processors were on the market. They were made with a few thousand transistors,
and ran at 1 or 2 MHz. Arithmetic was provided by an 8-bit adder. Dramatic
advances in computer technology, in memory size, and in speed have been made
since 1985. Arithmetic speed has gone from megaflops (106 flops), to gigaflops
(109 flops), to teraflops (1012 flops), to petaflops (1015 flops), and it is already
approaching the exaflops (1018 flops) range. This even is a greater increase of
computing speed since 1985 than the one from a hand calculator to the first
electronic computers! A qualitative difference goes with it. At the time of the
megaflops computer a conventional error analysis was recommended. Today the
PC is a gigaflops computer. For the teraflops or petaflops computer conventional
error analysis is no longer practical.

Computing indeed has already reached astronomical dimensions! With
increasing speed, problems that are dealt with become larger and larger. Extend-
ing pure floating-point arithmetic by operations for elements that are not real
numbers and perform trillions of operations with them appears questionable.
What seemed to be reasonable for slow speed computers needs not to be so for
computers that perform trillions of operations in a second. A compiler could
detect exceptional events and ask the user to treat them as for any other error
message.

The capability of a computer should not just be judged by the number of
operations it can perform in a certain amount of time without asking whether
the computed result is correct. It should also be asked how fast a computer
can compute correctly to 3, 5, 10 or 15 decimal places for certain problems. If
the question were asked that way, it would very soon lead to better computers.
Mathematical methods that give an answer to this question are available for
many problems. Computers, however, are at present not designed in a way that
allows these methods to be used effectively. Computer arithmetic must move
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strongly towards more reliability in computing. Instead of the computer being
merely a fast calculating tool it must be developed into a scientific instrument
of mathematics.

1.3 Conventional Interval Arithmetic

Issues just mentioned were one of the reasons why interval arithmetic has been
invented. Conventional interval arithmetic just deals with bounded and closed
real intervals. Formulas for the basic arithmetic operations for these intervals
are easily derived. Interval arithmetic became popular after the book [24] by
R.E. Moore was published in 1966. It was soon further exploited by other well
known books by G. Alefeld and J. Herzberger [1,2] or by E. Hansen [6,7] for
instance, and others. Interval mathematics using conventional interval arithmetic
has been developed to a high standard over the last few decades. It provides
methods which deliver results with guarantees.

Since the 1970-ies until lately [12,13,27,33] attempts were undertaken to
extend the arithmetic for closed and bounded real intervals to unbounded inter-
vals. However, inconsistencies to deal with −∞ and +∞ have occurred again
and again. If the real numbers R are extended by −∞ and +∞ then unusual
and unsatisfactory operations are to be dealt with like ∞ − ∞, 0 · ∞, or ∞/∞.

1.4 The Proposed Standard for Interval Arithmetic IEEE P1788

In April 2008 the author of this article published a book [20] in which the
problems with the infinities and other exceptions are definitely eliminated. Here
interval arithmetic just deals with sets of real numbers. Since −∞ and +∞ are
not real numbers, they cannot be elements of a real interval. They only can be
bounds of a real interval. Formulas for the arithmetic operations for bounded and
closed real intervals are well established in conventional interval arithmetic. It is
shown in the book that these formulas can be extended to closed and unbounded
real intervals by a continuity principle. For a bound −∞ or +∞ in an interval
operand the bounds for the resulting interval can be obtained from the formulas
for bounded real intervals by applying well established rules of real analysis
for computing with −∞ and +∞. It is also shown in the book that obscure
operations like ∞ − ∞ or ∞/∞ do not occur in the formulas for the operations
for unbounded real intervals. This new approach to arithmetic for bounded and
unbounded closed real intervals leads to an algebraically closed calculus which is
free of exceptions. It remains free of exceptions if the operations are mapped on a
floating-point screen by the monotone, upwardly directed rounding, for definition
see Definition 3. Intervals bring the continuum on the computer. An interval
between two floating-point bounds represents the continuous set of real numbers
between these bounds.

A few months after publication of the book [20] the IEEE Computer Soci-
ety founded a committee IEEE P1788 for developing a standard for interval
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arithmetic in August 2008. A motion, presented by the author, to include arith-
metic for unbounded real intervals where −∞ and +∞ may be bounds but not
elements of unbounded real intervals has been accepted by IEEE P1788.

With little hardware expenditure interval arithmetic can be made as fast as
simple floating-point arithmetic. The lower and the upper bound of an arith-
metic operation easily can be computed simultaneously. With more suitable
processors, rigorous methods based on interval arithmetic could be comparable
in speed to today’s approximate methods. As computers speed up, interval arith-
metic becomes a principal and necessary tool for controlling the precision of a
computation as well as the accuracy of the computed result.

Floating-point arithmetic and interval arithmetic are distinct calculi.
Floating-point arithmetic as specified by IEEE 745 is full of complicated con-
structs, data and events like rounding to nearest, overflow, underflow, +∞, −∞,
+0, −0 as numbers, or operations like ∞ − ∞, ∞/∞, 0 · ∞. In contrast to this
reasonably defined interval arithmetic leads to an exception-free calculus. It is
thus only reasonable to keep the two calculi strictly separate. Mentioning IEEE
754 arithmetic in IEEE 1788 already confronts the reader with all its complicated
constructs.

1.5 Advanced Computer Arithmetic

The book [20] deals with computer arithmetic in a more general sense than usual.
It shows how the arithmetic and mathematical capability of the digital computer
can be enhanced in a quite natural way. This is motivated by the desire and the
need to improve the accuracy of numerical computing and to control the quality
of computed results.

Advanced computer arithmetic extends the accuracy requirements for the ele-
mentary floating-point operations as defined by the arithmetic standard IEEE
754 to the customary product spaces of computation: the complex numbers, the
real and complex intervals, the real and complex vectors and matrices, and the
real and complex interval vectors and interval matrices. All computer approx-
imations of arithmetic operations in these spaces should deliver a result that
differs from the correct result by at most one rounding. For all these product
spaces this accuracy requirement leads to operations which are distinctly dif-
ferent from those traditionally available on computers. This expanded set of
arithmetic operations is taken as a definition of what is called advanced com-
puter arithmetic in [20]. Programming environments that provide advanced
computer arithmetic have been available since 1980 [9,10,12,22,33,34].

Advanced computer arithmetic is then used to develop algorithms for comput-
ing highly accurate and guaranteed bounds for a number of standard problems of
numerical analysis like systems of linear equations, evaluation of polynomials or
other arithmetic expressions, numerical integration, optimization problems, and
many others [12,13]. These can be taken as higher order arithmetic operations.
Essential for achieving these results is an exact dot product.
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In vector and matrix spaces1 the dot product of two vectors is a fundamental
arithmetic operation. It is fascinating that this basic operation is also a mean
to increase the speed of computing besides of the accuracy of the computed
result. Actually the simplest and fastest way for computing a dot product of two
floating-point vectors is to compute it exactly. Here the products are just shifted
and added into a wide fixed-point register on the arithmetic unit. By pipelining,
the exact dot product can be computed in the time the processor needs to read
the data, i.e., it comes with utmost speed. This high speed is obtained by totally
avoiding slow intermediate access to the main memory of the computer.

Any method that computes a dot product correctly rounded to the nearest
floating-point number also has to consider the values of the summands. This
results in a more complicated method with the outcome that it is necessarily
slower than a conventional computation of the dot product in floating-point
arithmetic. Experience with a prototype development in 1994 [3,17] shows that
a hardware implementation of the exact dot product can be expected to be
three to four times faster than the latter and it is faster by more than one
magnitude than any method for computing a correctly rounded dot product.
The main difference, however, is accuracy. There are many applications where a
correctly rounded or otherwise precise dot product does not suffice to solve the
problem. For details see [20,28,29,31].

The hardware needed for the exact dot product is comparable to that for a
fast multiplier by an adder tree, accepted years ago and now standard technology
in every modern processor. The exact dot product brings the same speedup for
accumulations at comparable costs.

In 2009 the author prepared a motion that requires inclusion of the exact
dot product as essential ingredient for obtaining high accuracy in interval com-
putations into the standard IEEE 1788. The motion was accepted. But in 2013,
however, the motion was weakened by the committee to now just recommending
an exact dot product. In practice a recommendation guarantees nonstandard
behavior for different computing systems.

Advanced computer arithmetic certainly is a much more useful extension to
pure floating-point arithmetic than all the exceptions provided by IEEE 754. All
forms of speculation need to be removed from computing.

1.6 Unum and Ubound Arithmetic

While about 70 scientists from all over the world have been working on a standard
for interval arithmetic for more than 6 years since August 2008, all of a sudden
like out of nothing John Gustafson publishes a book: The End of Error [5].
Reading this book became a big surprise. It is a sound piece of work and it is
hard to believe that a single person could develop so many nice ideas and put
them together into a sketch of what might become the future of computing.
Reading the book is fascinating. The situation very much reminds me to a text
by Friedrich Schiller in his work Demetrius. It says:

1 For real, complex, interval, and complex interval data.
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Was ist die Mehrheit? Die Mehrheit ist der Unsinn,

Verstand ist stets bei wen’gen nur gewesen.

For almost 60 years interval arithmetic was defined for the set IR of closed and
bounded real intervals. The End of Error expands this to the set JR of just
connected sets of real numbers. These can be closed, open, half-open, bounded,
or unbounded. The book shows that arithmetic for this expanded set is closed
under addition, subtraction, multiplication, division, also square root, powers,
logarithm, exponential, and many other elementary functions needed for tech-
nical computing, i.e., arithmetic operations for intervals of JR always lead to
intervals of JR again. The calculus is free of exceptions. It remains free of excep-
tions if the bounds are restricted to a floating-point screen, for proof see Sect. 2.
John Gustafson shows in his book that this new extension of conventional inter-
val arithmetic opens new areas of applications and allows getting better results.

2 Axiomatic Definition of Computer Arithmetic

Frequently mathematics is seen as the science of structures. Analysis carries three
kinds of structures: an algebraic structure, an order structure, and a topological
or metric structure. These are coupled by certain compatibility properties, as
for instance: a ≤ b ⇒ a + c ≤ b + c.

It is well known that floating-point numbers and floating-point arithmetic do
not obey the algebraic rules of the real numbers R. However, the rounding is a
monotone function. So the changes to the order structure are minimal. This is
the reason why the order structure plays a key role for an axiomatic
definition of computer arithmetic.

We begin by listing a few well-known concepts and properties of ordered sets.

Definition 1. A relation ≤ in a set M is called an order relation, and {M,≤}
is called an ordered set2 if for all a, b, c ∈ M the following properties hold:

(O1) a ≤ a, (reflexivity)
(O2) a ≤ b ∧ b ≤ c ⇒ a ≤ c, (transitivity)
(O3) a ≤ b ∧ b ≤ a ⇒ a = b, (antisymmetry)

An ordered set M is called linearly or totally ordered if in addition

(O4) a ≤ b ∨ b ≤ a for all a, b ∈ M . (linearly ordered)

An ordered set M is called

(O5) a lattice if for any two elements a, b ∈ M , the inf{a, b} and the sup{a, b}
exist. (lattice)

(O6) It is called conditional completely ordered if for every bounded subset S ⊆
M , the inf S and the supS exist.

2 Occasionally called a partially ordered set.
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(O7) An ordered set M is called completely ordered or a complete lattice if for
every subset S ⊆ M , the inf S and the supS exist. (complete lattice)

With these concepts the real numbers {R,≤} are a conditional complete
linearly ordered field.

In the definition of a complete lattice, the case S = M is included. Therefore,
inf M and sup M exist. Since they are elements of M , every complete lattice
has a least and a greatest element.

If a subset S ⊆ M of a complete lattice {M,≤} is also a complete lattice,
{S,≤} is called a complete sublattice of {M,≤} if the two lattice operations inf
and sup in both sets lead to the same result, i.e., if

for all A ⊆ S, infM A = infS A and supM A = supS A.

Definition 2. A subset S of a complete lattice {M,≤} is called a screen of M ,
if every element a ∈ M has upper and lower bounds in S and the set of all upper
bounds of a ∈ M has a least and the set of all lower bounds a greatest element
in S. If a minus operator exists in M , a screen is called symmetric, if for all
a ∈ S also −a ∈ S.

As a consequence of this definition a complete lattice and a screen have the
same least and greatest element. It can be shown that a screen is a complete
sublattice of {M,≤} with the same least and greatest element, [20].

Definition 3. A mapping : M → S of a complete lattice {M,≤} onto a
screen S is called a rounding if (R1) and (R2) hold:

(R1) for all a ∈ S, a = a. (projection)
(R2) a ≤ b ⇒ a ≤ b. (monotone)

A rounding is called downwardly directed resp. upwardly directed if for all
a ∈ M

(R3) a ≤ a resp. a ≤ a. (directed)

If a minus operator is defined in M, a rounding is called antisymmetric if

(R4) (−a) = − a, for all a ∈ M . (antisymmetric)

The monotone downwardly resp. upwardly directed roundings of a complete
lattice onto a screen are unique. For the proof see [20].

Definition 4. Let {M,≤} be a complete lattice and ◦ : M × M → M a binary
arithmetic operation in M . If S is a screen of M , then a rounding : M → S
can be used to approximate the operation ◦ in S by

(RG) a ◦ b := (a ◦ b), for a, b ∈ S.
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If a minus operator is defined in M and S is a symmetric screen of M , then
a mapping : M → S with the properties (R1,2,4) and (RG) is called a
semimorphism3.

Semimorphisms with antisymmetric roundings are particularly suited for
transferring properties of the structure in M to the subset S. It can be shown [20]
that semimorphisms leave a number of reasonable properties of ordered algebraic
structures (ordered field, ordered vector space) invariant.

If an element x ∈ M is bounded by a ≤ x ≤ b with a, b ∈ S, then by (R1) and
(R2) the rounded image x is bounded by the same elements: a ≤ x ≤ b,
i.e., x is either the least upper (supremum) or the greatest lower (infimum)
bound of x in S. Similarly, if for x, y ∈ S the result of an operation x ◦ y is
bounded by a ≤ x ◦ y ≤ b with a, b ∈ S, then by (R1), (R2), and (RG) also
a ≤ x ◦ y ≤ b, i.e., x ◦ y is either the least upper or the greatest lower bound
of x ◦ y in S. If the rounding is upwardly or downwardly directed the result is
the least upper or the greatest lower bound respectively.

In an earlier paper [19] the author applies the abstract formalism developed
here to the most frequent models, floating-point arithmetic and arithmetic for
closed real intervals. Essential properties and explicit formulas for the operations
in these models can directly be derived from the abstract setting given in this
section. We refrain from repeating this here and refer the reader to this earlier
paper. Abstract settings of computer arithmetic for higher dimensional spaces
like complex numbers, vectors and matrices for real, complex, and interval data
can be developed following similar schemes. We briefly sketch this in Sect. 4. For
more details see [20] and the literature cited there.

3 Unum and Ubound Arithmetic

In his recently published book The End of Error [5] John Gustafson develops a
computing environment for real numbers and for sets of real numbers which is
superior to conventional floating-point and interval arithmetic. A new number
format, the unum4, can more efficiently be used on computers with respect to
many desirable properties like power consumption, storage requirements, band-
width, parallelism concerns, and even speed. It gets mathematical rigor that
even conventional interval arithmetic is not able to attain.

By obvious reasons John Gustafson’s book strives for being upward com-
patible with IEEE 754 floating-point arithmetic and with traditional interval
arithmetic. From the mathematical point of view, however, there is no need for
doing this. Here we show that the new computing environment perfectly fits
into an abstract mathematical approach to computer arithmetic as sketched in
Sect. 2. Like conventional closed real intervals also unums and ubounds just deal
3 The properties (R1,2,4) and (RG) of a semimorphism can be shown to be neces-

sary conditions for a homomorphism between ordered algebraic structures. For more
details see [20].

4 Stands for universal number.
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with sets of real numbers. −∞ and +∞ are not real numbers. They are just used
as bounds to describe sets of real numbers. They are, however, themselves not
elements of these sets. There is absolutely no need for introducing entities like
−0,+0, NaN (not a number) or NaI (not an interval) in this new computing
environment. Focusing on the mathematical core of the new computing scheme
leads to several additional simplifications.

A unum (Fig. 1) is a bit string of variable length that has six subfields: the
sign bit s, exponent, fraction, uncertainty bit u (ubit), exponent size, and fraction
size. The first three subfields describe a floating-point number. If the ubit is 0,
the number is exact. If it is 1, it is inexact. An inexact unum can be interpreted
as the set of all real numbers in the open interval between the floating-point part
of the unum and the floating-point number one bit further from zero. The last
two subfields, the exponent size and the fraction size are used to automatically
shrink or enlarge the number of bits used for the representation of the exponent
and the fraction part of the unum depending on results of operations. This
automatic scaling adapts the word size to the needs of the computation. The
set of all unums is denoted by U. By the definition of unums −∞ and +∞ are
elements of U.

s exponent fraction u exp.size fract.size

Fig. 1. The universal number format unum.

A ubound is a single unum or a pair of unums that represent a mathematical
interval of the real line. Closed endpoints are represented by exact unums (ubit =
0), and open endpoints are represented by inexact unums (ubit = 1). So the ubit in
a unbound’s bound describes the kind of bracket that is used in the representation
of the ubound. It is closed, if the ubit is 0 and it is open, if the ubit is 1. We denote
the set of all ubounds by JU. Later we shall occasionally denote an element a∈ JU

by a= 〈a1, a2〉 where a1, a2 are floating-point numbers and each one of the angle
brackets 〈 and 〉 can be open or closed.

The ubit after the floating-point part of a unum can be 0 or 1. So the set of
unums U is a superset of the set of floating-point numbers, U ⊃ F. Nevertheless
the unums are a linearly ordered set {U,≤}. For positive floating-point numbers
the unum with ubit 0 is less than the unum with ubit 1 and for negative floating-
point numbers the unum with ubit 0 is greater than the unum with ubit 1. With
the following notations R := R∪{−∞,+∞} and F := F∪{−∞,+∞} the ordered
set {F,≤} is a screen of {R,≤}. It is now easy to see that as a bit string the
ordered set of unums {U,≤} is also a screen of {R,≤}. It is a larger, i.e., a finer
screen than {F,≤}.5

The directed roundings � resp. � can now be extended as mappings from
the extended set of real numbers R onto the set of unums U, � : R → U and

5 This makes it plausible that unum arithmetic can lead to better results than floating-
point arithmetic.
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� : R → U. It is easy to see that they are again related by the property:

� (−a) = − � a and � (−a) = − � a. (1)

These roundings � and � can most frequently be used to map intervals
or sets of real numbers onto ubounds. Here � delivers the lower bound and �
the upper bound. This allows to express the ubit of the unum by the bracket of
the ubound. Exact unums are expressed by closed endpoints, by square brackets.
A closed endpoint is an element of the ubound. Inexact unums are expressed by
open endpoints, by round brackets. An open endpoint is just a bound but not
an element of the ubound.

We illustrate these roundings by simple examples. We use the decimal number
system, a fraction part of three digits, and a space before the ubit. The following
results are possible:

� (0.543216) = 0.543 1 = (0.543, � (0.543216) = 0.543 1 = 0.544),
� (0.543) = 0.543 0 = [0.543, � (0.543) = 0.543 0 = 0.543],
� (−0.543216) = −0.543 1 = (−0.544, � (−0.543216) = −0.543 1 = −0.543),
� (−0.543) = −0.543 0 = [−0.543, � (−0.543) = −0.543 0 = −0.543].

Let now JR denote the set of bounded or unbounded real intervals where each
bound can be open or closed. So JR

6 denotes the set of open or closed or half-
open intervals of real numbers. Besides of the empty set every interval of JR

can be expressed by round and/or square brackets. If the bracket adjacent to a
bound is round, the bound is not an element of the interval; if it is square the
bound is an element of the interval.

With set inclusion as an order relation the ordered set {JR,⊆} is a complete
lattice. The infimum of two or more elements of {JR,⊆} is the intersection and
the supremum is the convex hull. The subset of JR where all bounds are unums
of U is denoted by JU. Then {JU,⊆} is a screen of {JR,⊆}. In both sets JR and
JU the infimum of two or more elements of JR and JU is the intersection and
the supremum is the interval (convex) hull. The least element of both sets JR

and JU is the empty set ∅ and the greatest element is the set R = (−∞,+∞).
Elements of JR and JU are denoted by bold letters.

Definition 5. For elements a, b ∈ JR we define arithmetic operations ◦ ∈
{+,−, ·, /} as set operations

a ◦ b := {a ◦ b | a ∈ a ∧ b ∈ b}. (2)

Here for division we assume that 0 /∈ b.

Explicit formulas for the operations a ◦ b, ◦ ∈ {+,−, ·, /} can be obtained in
great similarity to the operations in IR. For derivation see [20]. However, each
bound of the resulting interval in JR can now be open or closed.

It is a well established result that under Definition (2) JR is a closed calculus,
i.e., the result a ◦ b is again an element of JR. For details see [5].
6 We do not introduce a separate symbol for the subset of bounded such intervals here

as in the case of real intervals.
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Remark 1: A bound of the result a ◦ b in (2) is closed if and only if the ubit
of the adjacent number is zero, i.e., the number is an exact unum. This can only
happen if both operands for computing the bound come from closed interval
bounds. In case of an inexact unum in any of the operands the bound is open.

Let us now denote an interval a ∈ JR by a = 〈a1, a2〉, where each one of the
angle brackets 〈 and 〉 can be open or closed. Then we obtain by (2) immediately

−a := (−1) · a = (−1) · {x | a1 ≤ x ≤ a2} = {x | −a2 ≤ x ≤ −a1}
= 〈−a2,−a1〉 ∈ JR.

(3)

− 〈a1, a2〉 = 〈−a2,−a1〉. (4)

7More precisely: If the lower bound of the interval a is open (resp. closed) then
the upper bound of −a is open (resp. closed), and if the upper bound of a is
open (resp. closed) then the lower bound in −a is open (resp. closed).

With (4) subtraction can be reduced to addition by a − b = a + (−b).
If in (4) a ∈ JU, then also −a ∈ JU, i.e., JU is a symmetric screen of JR.
Between the complete lattice {JR,⊆} and its screen {JU,⊆} the monotone

upwardly directed rounding ♦ : JR → JU is uniquely defined by the following
properties:

(R1) ♦ a = a , for all a ∈ JU. (projection)
(R2) a ⊆ b ⇒ ♦ a ⊆ ♦ b, for a , b ∈ JR. (monotone)
(R3) a ⊆ ♦ a , for all a ∈ JR. (upwardly directed)

For a = 〈a1, a2〉 ∈ JR the result of the monotone upwardly directed rounding
♦ can be expressed by

♦ a = 〈 � a1, � a2〉. (5)

where again each one of the angle brackets 〈 and 〉 can be open or closed.
Similarly to the case of closed real intervals of IR we now define an order

relation ≤ for intervals of JR. For intervals a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ JR, the
relation ≤ is defined by a ≤ b :⇔ 〈a1 ≤ 〈b1 ∧a2〉 ≤ b2〉. So we have for instance:
[1, 2) ≤ (1, 2], or [−2,−1) ≤ (−2,−1].

For the ≤ relation for intervals compatibility properties hold between the
algebraic structure and the order structure in great similarity to the real num-
bers. For instance:

(OD1) a ≤ b ⇒ a + c ≤ b + c, for all c.
(OD2) a ≤ b ⇒ −b ≤ −a .
(OD3) 0 ≤ a ≤ b ∧ c ≥ 0 ⇒ a · c ≤ b · c.
(OD4) 0 < a ≤ b ∧ c > 0 ⇒ 0 < a/c ≤ b/c ∧ c/a ≥ c/b > 0.

With respect to set inclusion as an order relation arithmetic operations in
{JR,⊆} are inclusion isotone by (2), i.e., a ⊆ b ⇒ a ◦ c ⊆ b ◦ c or equivalently

7 An integral number a in a ubound expression is interpreted as ubound [a, a].
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(OD5) a ⊆ b ∧c ⊆ d ⇒ a ◦c ⊆ b ◦d , for all ◦ ∈ {+,−, ·, /}, 0 /∈ b,d for ◦ = /.
(inclusion isotone)

Setting c,d = −1 in (OD5) delivers immediately a ⊆ b ⇒ −a ⊆ −b which
differs significantly from (OD2).

Using (1), (4), and (5) it is easy to see that the monotone upwardly directed
rounding ♦ : JR → JU is antisymmetric, i.e.,

(R4) ♦ (−a) = − ♦ a , for all a ∈ JR. (antisymmetric).

Definition 6. With the upwardly directed rounding ♦ : JR → JU binary arith-
metic operations in JU are defined by semimorphism:

(RG) a ♦◦ b := ♦ (a ◦ b), for all a, b ∈ JU and all ◦ ∈ {+,−, ·, /}.

Here for division we assume that a/b is defined.

If a ubound a ∈ JU is an upper bound of a ubound x ∈ JR, i.e., x ⊆ a ,
then by (R1), (R2), and (R3) also x ⊆ ♦ x ⊆ a . This means ♦ x is the least
upper bound, the supremum of x in JU. Similarly if for x ,y ∈ JU, x ◦ y ⊆ a
with a ∈ JU, then by (R1), (R2), (R3), and (RG) also x ◦ y ⊆ x ♦◦ y ⊆ a , i.e.,
x ♦◦ y is the least upper bound, the supremum of x ◦ y in JU. Occasionally the
supremum x ♦◦ y ∈ JU of the result x ◦ y ∈ JR is called the tightest enclosure
of x ◦ y.

Arithmetic operations in JU are inclusion isotone, i.e.,

(OD5) a ⊆ b ∧ c ⊆ d ⇒ a ♦◦ c ⊆ b ♦◦ d , for ◦ ∈ {+,−, ·, /}, 0 /∈ b,d for ◦ = /.
(inclusion isotone)

This is a consequence of the inclusion isotony of the arithmetic operations in JR,
of (R2) and of (RG).

Since the arithmetic operations x ◦ y in JR are defined as set operations by
(2) the operations x ♦◦ y for ubounds of JU defined by (RG) are not directly
executable. The step from the definition of arithmetic by set operations to com-
puter executable operations still requires some effort. We discuss this question
in the next section. For details see also [5,20].

3.1 Executable Ubound Arithmetic

We now consider the question how executable formulas for ubound arithmetic
can be obtained. Let a = 〈a1, a2〉, b = 〈b1, b2〉 ∈ JR. Arithmetic in JR is
defined by

a ◦ b := {a ◦ b | a ∈ a ∧ b ∈ b}, (6)

for all ◦ ∈ {+,−, ·, /}, 0 /∈ b in case of division. The function a ◦ b is continuous
with respect to both variables. The set a ◦ b is the range of the function a ◦ b
over the product set a × b with or without the boundaries depending on the
open-closedness of a and b. Since a and b are intervals of JR the set a × b is
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a simply connected subset of R
2
, (R := R ∪ {−∞,+∞}). In such a region the

range a ◦ b of the function a ◦ b is also simply connected. Therefore

a ◦ b = 〈inf(a ◦ b), sup(a ◦ b)〉, (7)

i.e., for a , b ∈ JR, 0 /∈ b in case of division, a ◦ b is again an interval of JR.
The angle brackets on the right hand side of (7) depend on the open-closed

endpoints of the intervals a and b. The elements −∞ and +∞ can occur as
bounds of real intervals. But they are themselves not elements of these intervals.

Neither the set definition (6) of the arithmetic operations a ◦ b, ◦ ∈
{+,−, ·, /}, nor the form (7) can be executed on the computer. So we have
to derive more explicit formulas.

We demonstrate this in case of addition. By (OD1) we obtain a1 ≤ a and
b1 ≤ b ⇒ a1+b1 ≤ inf(a+b). On the other hand inf(a+b) ≤ a1+b1. From both
inequalities we obtain by (O3): inf(a + b) = a1 + b1. Analogously one obtains
sup(a + b) = a2 + b2. Thus

a + b = 〈inf(a + b), sup(a + b)〉 = 〈a1 + b1, a2 + b2〉.
Similarly by making use of (OD1,2,3,4) for intervals of JR and the simple

sign rules −(a · b) = (−a) · b = a · (−b),−(a/b) = (−a)/b = a/(−b) explicit
formulas for all interval operations can be derived, [20].

Actually the infimum and supremum in (7) is taken for operations with the
bounds. For bounded intervals a = 〈a1, a2〉 and b = 〈b1, b2〉 ∈ JR the following
formula holds for all operations with 0 /∈ b in case of division:

a ◦ b = 〈 min
i,j=1,2

(ai ◦ bj), max
i,j=1,2

(ai ◦ bj)〉 for ◦ ∈ {+,−, ·, /}. (8)

Now we get by (RG) for intervals of JU

a ♦◦ b := ♦ (a ◦ b) = 〈 � min
i,j=1,2

(ai ◦ bj), � max
i,j=1,2

(ai ◦ bj)〉

and by the monotonicity of the roundings � and � :

a ♦◦ b = 〈 min
i,j=1,2

(ai �◦ bj), max
i,j=1,2

(ai �◦ bj)〉.

For bounded and nonempty intervals a = 〈a1, a2〉 and b = 〈b1, b2〉 of JU the
unary operation −a and the binary operations addition, subtraction, multiplica-
tion, and division are shown in the following tables. For details see [20]. Therein
the operator symbols for intervals are denoted by +,−, ·, /.

Minus operator −a = 〈−a2,−a1〉.
Addition 〈a1, a2〉 + 〈b1, b2〉 = 〈a1 �+ b1, a2 �+ b2〉.
Subtraction 〈a1, a2〉 − 〈b1, b2〉 = 〈a1

�− b2, a2 �− b1〉.
In real analysis division by zero is not defined. In interval arithmetic, however,

the interval in the denominator of a quotient may contain zero. We consider this
case also.
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Multiplication 〈b1, b2〉 〈b1, b2〉 〈b1, b2〉
〈a1, a2〉 · 〈b1, b2〉 b2 ≤ 0 b1 < 0 < b2 b1 ≥ 0

〈a1, a2〉, a2 ≤ 0 〈a2 �· b2, a1 �· b1〉 〈a1 �· b2, a1 �· b1〉 〈a1 �· b2, a2 �· b1〉
a1 < 0 < a2 〈a2 �· b1, a1 �· b1〉 〈min(a1 �· b2, a2 �· b1), 〈a1 �· b2, a2 �· b2〉

max(a1 �· b1, a2 �· b2)〉
〈a1, a2〉, a1 ≥ 0 〈a2 �· b1, a1 �· b2〉 〈a2 �· b1, a2 �· b2〉 〈a1 �· b1, a2 �· b2〉

Division, 0 /∈ b 〈b1, b2〉 〈b1, b2〉
〈a1, a2〉/〈b1, b2〉 b2 < 0 b1 > 0

〈a1, a2〉, a2 ≤ 0 〈a2 �/ b1, a1 �/ b2〉 〈a1 �/ b1, a2 �/ b2〉
〈a1, a2〉, a1 < 0 < a2 〈a2 �/ b2, a1 �/ b2〉 〈a1 �/ b1, a2 �/ b1〉
〈a1, a2〉, 0 ≤ a1 〈a2 �/ b2, a1 �/ b1〉 〈a1 �/ b2, a2 �/ b1〉

The general rule for computing the set a/b with 0 ∈ b is to remove its zero
from the interval b and perform the division with the remaining set.8 Whenever
zero in b is an endpoint of b, the result of the division can be obtained directly
from the above table for division with 0 /∈ b by the limit process b1 → 0 or
b2 → 0 respectively. The results are shown in the table for division with 0 ∈ b.
Here, the round brackets stress that the bounds −∞ and +∞ are not elements
of the interval.

Division, 0 ∈ b b = 〈b1, b2〉 〈b1, b2〉
〈a1, a2〉/〈b1, b2〉 〈0, 0〉 b1 < b2 = 0 0 = b1 < b2

〈a1, a2〉 = 〈0, 0〉 ∅ 〈0, 0〉 〈0, 0〉
〈a1, a2〉, a1 < 0, a2 ≤ 0 ∅ 〈a2 �/ b1,+∞) (−∞, a2 �/ b2〉
〈a1, a2〉, a1 < 0 < a2 ∅ (−∞,+∞) (−∞,+∞)

〈a1, a2〉, 0 ≤ a1, 0 < a2 ∅ (−∞, a1 �/ b1〉 〈a1 �/ b2,+∞)

In the case that zero is an interior point of the denominator, two different ver-
sions to solve the problem can be offered. One could be to return the entire set of
real numbers (−∞,+∞). The other one would be to split the interval 〈b1, b2〉 into
the two distinct sets 〈b1, 0) and (0, b2〉. Division by these two sets leads to two dis-
tinct unbounded real intervals. The results of the two divisions are already shown
in the table for division by 0 ∈ b. The computer could return the two results as
an improper interval where the left hand bound is greater than the right hand
bound together with an appropriate information for the user. This second version
for division by an interval that contains zero as an interior point has been used to
develop the extended interval Newton method which allows computing all zeros
of a function in a given interval. For details see [20].
8 This is in full accordance with function evaluation: When evaluating a function over

a set, points outside its domain are simply ignored.
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Four kinds of unbounded intervals come from division by an interval of JU

that contains zero:

∅, (−∞, a〉, 〈b,+∞), and (−∞,+∞). (9)

Arithmetic for bounded intervals can easily be extended to these new elements.
The first rule is that any operation with the empty set ∅ returns the empty set
as result. By continuity reasons the rules for bounded real intervals can also be
executed if a bound becomes −∞ or +∞. Doing this, only rules for computing
with −∞ or +∞ are needed which are well established in real analysis. Obscure
operations like ∞ − ∞ or ∞/∞ do not occur. For proof see [20].

Intervals of JU are connected sets of real numbers. −∞ and +∞ are not
elements of these intervals. So multiplication of any such interval by 0 can only
have 0 as the result. This very naturally leads to the following rules:

(−∞, a〉 · 0 = 〈b,+∞) · 0 = (−∞,+∞) · 0 = 0. (10)

For intervals of JU we can now state:

Arithmetic for closed, open, and half-open, bounded or unbounded
real intervals of JU is free of exceptions, i.e., arithmetic operations for
intervals of JU always lead to intervals of JU again.

This is in sharp contrast to other models of interval arithmetic which consider
−∞ and +∞ as elements of unbounded real intervals. In such models obscure
arithmetic operations like ∞−∞,∞/∞, 0 ·∞ occur which require introduction
of unnatural superficial objects like NaI (Not an Interval).

High speed by support of hardware and programming languages is vital for all
kinds of interval arithmetic to be more widely accepted by the scientific comput-
ing community. Right now no commercial processor provides interval arithmetic
or unum and ubound arithmetic by hardware. In the author’s book Computer
Arithmetic and Validity – Theory, Implementation, and Applications, second edi-
tion 2013 [20] considerable emphasis is put on speeding up interval arithmetic.
The book shows that interval arithmetic for diverse spaces can efficiently be
provided on the computer if two features are made available by fast hardware:

I. Fast and direct hardware support for double precision interval arith-
metic and
II. a fast and exact multiply and accumulate operation or, an exact
dot product (EDP).

Realization of I. and II. is discussed at detail in the book [20]. It is shown that I.
and II. can be obtained at very little hardware cost. With I. interval arithmetic
would be as fast as simple floating-point arithmetic. The simplest and fastest
way for computing a dot product is to compute it exactly. To make II. conve-
niently available a new data format complete is used together with a few very
restricted arithmetic operations. By pipelining the EDP can be computed in the
time the processor needs to read the data, i.e., it comes with utmost speed. I.
and II. would boost both the speed of a computation and the accuracy of the
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result. Fast hardware for I. and II. must be supported by future processors. Com-
puting the dot product exactly even can be considerably faster than computing
it conventionally in double or extended precision floating-point arithmetic.

Modern processor architecture is coming very close to what is requested here.
See [8], and in particular pp. 1–1 to 1–3 and 2–5 to 2–6. These processors provide
register space of 16 K bits. Only about 4 K bits suffice for a complete register
which allows computing a dot product exactly at extreme speed for the double
precision format. We now discuss a frequent application of this.

4 A Sketch of Arithmetic for Matrices with Ubound
Components

The axioms for computer arithmetic shown in Sect. 2 also can be applied to define
computer arithmetic in higher dimensional spaces like complex numbers, vectors
and matrices for real, complex, interval and ubound data, for instance. Here we
briefly sketch how arithmetic for matrices with interval and ubound components
could be embedded into the axiomatic definition of computer arithmetic outlined
in Sect. 2.

Let {R,+, ·,≤} be the completely ordered set of real numbers and {U,≤} the
symmetric screen of unums. In the ordered set of n × n matrices {MnR,+, ·,≤}
we consider intervals JMnR and JMnU where all bounds can be open or closed.
Let PMnR denote the power set9 of MnR. Then PMnR ⊃ JMnR ⊃ JMnU. JMnR

is an upper10 screen of PMnR and JMnU is a screen of JMnR. We consider the
monotone upwardly directed roundings : PMnR → JMnR and ♦ : JMnR

→ JMnU. They are uniquely defined.
For matrices A,B ∈ JMnR the set definition of arithmetic operations

A ◦ B := {A ◦ B | A ∈A ∧ B ∈ B}, ◦ ∈ {+, ·} (11)

does not lead to an interval again. The result is a more general set. It is an
element of the power set of matrices. To obtain an interval again the upwardly
directed rounding from the power set onto the set of intervals of : PMnR

→ JMnR has to be applied. With it arithmetic operations for intervals A,B ∈
JMnR are defined by

(RG) A ◦ B := (A ◦ B), ◦ ∈ {+,−, ·}.
As in the case of conventional intervals subtraction can be expressed by negation
and addition.

The set JMnU of intervals of computer representable matrices is a screen of
JMnR. To obtain arithmetic for intervals A,B ∈ JMnU once more the monotone
upwardly directed rounding, now denoted by ♦ : JMnR → JMnU is applied:

(RG) A ♦◦ B := ♦ (A ◦ B), ◦ ∈ {+, ·}.
9 The power set of a set M is the set of all subsets of M .

10 For definition see [20].
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This leads to the best possible operations in the interval spaces
JMnR and JMnU.

Because of the set definition of the arithmetic operations, however, these best
possible operations are not directly executable on a computer. Therefore, we are
now going to express them in terms of computer executable formulas. For details
see [20].

To do this, we consider the set of n×n matrices MnJR. The elements of this
set have components that are intervals of JR. With the operations and the order
relation ≤ of the latter, we define operations + , · , and an order relation ≤ in
MnJR by employing the conventional definition of the operations for matrices.
With A = (a ij), B = (bij) ∈ MnJR let be

A + B := (a ij + bij) ∧ A · B :=

(
n∑

ν=1

a iν · bνj

)

∧ A ≤ B :⇔ a ij ≤ bij , i,j

= 1(1)n.

Here +, · are the operations in JR as defined in (2) and
∑

denotes the repeated
summation in JR.

Remark 2. The bounds of the components of the product matrix A · B will
be open in the majority of cases. This is a simple consequence of Remark 1. In
a bit weaker form this also holds for the addition A + B .

We now define a mapping

χ : MnJR → JMnR

which for matrices A = (a ij) ∈ MnJR with a ij = 〈a(1)
ij , a

(2)
ij 〉 ∈ JR,11 i, j =

1(1)n, has the property

χA = χ(a ij) = χ(〈a(1)
ij , a

(2)
ij 〉) := 〈(a(1)

ij ), (a(2)
ij )〉. (12)

Obviously χ is a one-to-one mapping of MnJR onto JMnR and an order
isomorphism with respect to ≤. It can be shown that χ is also an algebraic
isomorphism for the operations addition and multiplication, i.e.,

χA ◦ χB = χ(A ◦ B), ◦ ∈ {+, ·}.

For the proof in case of closed intervals a ij , bij ∈ IR see [20].
Whenever two structures are isomorphic, corresponding elements can be iden-

tified with each other. This allows us to define an inclusion relation even for
elements A = (a ij), B = (bij) ∈ MnJR by

A ⊆ B :⇔ a ij ⊆ bij , for all i,j=1(1)n.

and
(aij) ∈ A = (Aij) :⇔ aij ∈ Aij , for all i, j = 1(1)n.

11 The angle brackets 〈 and 〉 here denote the interval bounds. Each one of them can
be open or closed.
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This convenient definition allows for the interpretation that a matrix A =
(a ij) ∈ MnJR also represents a set of matrices as demonstrated by the following
identity:

A = (Aij) ≡ {(aij) | aij ∈ Aij , i,j=1(1)n}.

12Both matrices contain the same elements.
With the monotone upwardly directed rounding ♦ : JR → JU a rounding

♦ : MnJR → MnJU and operations in MnJU can now be defined by

♦ A := ( ♦ a ij),

A ♦◦ B := ♦ (A ◦ B), ◦ ∈ {+, ·}.

Now it can be shown (for the proof in case of closed intervals see [20]) that
the mapping χ establishes an isomorphism

χA ♦◦ χB = χ(A ♦◦ B), ◦ ∈ {+, ·},

i.e., the structures {MnJU, ♦+ , ♦· ,≤,⊆} and {JMnU, ♦+ , ♦· ,≤,⊆} can be
identified with each other.

This isomorphism reduces the optimal, best possible but not computer exe-
cutable operations in JMnU, to the operations in MnJU. We analyze these oper-
ations more closely.

For matrices A = (a ij), B = (bij) ∈ MnJU,a ij , bij ∈ JU arithmetic opera-
tions are defined by

A ♦+ B := ♦ (A + B) ∧ A ♦· B := ♦ (A · B)

with the rounding ♦ A := ( ♦ a ij). This leads to the following formulas for the
operations in MnJU:

A ♦+ B = ( ♦ (a ij + bij)) = (a ij ♦+ bij), (13)

A ♦· B = ♦ (A · B) =

(
♦

n∑
ν=1

(a iν · bνj)

)
. (14)

These operations are executable on a computer. The componentwise addition
in (13) can be performed by means of the addition in JU. The multiplications in
(14) are to be executed using the multiplication in JR. Then the lower bounds
and the upper bounds are to be added in R. Finally the rounding ♦ : JR → JU

has to be executed.
With a ij=〈a1

ij , a
2
ij〉, bij=〈b1ij , b2ij〉 ∈ JU, (14) can be written in a more explicit

form:

A ♦· B =

(
〈 �

n∑
ν=1

min
r,s=1,2

(ar
iνbs

νj), �
n∑

ν=1

max
r,s=1,2

(ar
iνbs

νj)〉
)

. (15)

12 The round brackets here denote the matrix braces.
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Here the products ar
iνbs

νj are elements of R (and in general not of U). The
summands (products of double length) are to be correctly accumu-
lated in R by the exact scalar product. Finally the sum of products is
rounded only once by � resp. � from R onto U. The angle brackets in (15)
denote the interval bounds. Each one of them can be open or closed. The large
round brackets denote the matrix braces. In the vast majority of cases the angle
brackets will be open. Only in the very rare case that a sum before rounding is
an exact unum the angle bracket is closed.

5 Short Term Progress

Compared with conventional interval arithmetic The End of Error [5] means a
huge step ahead. For being more energy efficient and other reasons it controls
the word size of the interval bounds in dependence of intermediate results and
keeps it as small as possible. To avoid mathematical shortcomings it extends the
basic set from closed real intervals to connected sets of real numbers. All this are
laudable and most natural goals. The entire step, however, may be too big to
get realized on computers that can be bought on the market in the near future.

So it may be reasonable to look for a smaller step which might have a more
realistic chance. As such the introduction of the ubit into the floating-point
bounds at the cost of shrinking the excessive exponent sizes of the IEEE 754
floating-point formats by one bit would already be a great step ahead. It would
allow an extension of conventional interval arithmetic to closed, open, half-open,
bounded, and unbounded sets of real numbers. By the way it would reduce the
register memory for computing the dot product exactly in case of the double
precision format, for instance, from excessive 4000 to only about 2000 bit. As
side effect the exact dot product brings speed and associativity for addition.
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ISBN 3-411-01517-9

17. Kulisch, U., Teufel, T., Hoefflinger, B.: Genauer und trotzdem schneller: Ein neuer
Coprozessor für hochgenaue Matrix-und Vektoroperationen. Titelgeschichte. Elek-
tronik 26, 52–56 (1994)

18. Kulisch, U.W.: Complete interval arithmetic and its implementation on the com-
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Abstract. One of the main advantages of cloud computing is that it
helps the users to save money: instead of buying a lot of computers to
cover all their computations, the user can rent the computation time
on the cloud to cover the rare peak spikes of computer need. From this
viewpoint, it is important to find the optimal division between in-house
and in-the-cloud computations. In this paper, we solve this optimization
problem, both in the idealized case when we know the complete informa-
tion about the costs and the user’s need, and in a more realistic situation,
when we only know interval bounds on the corresponding quantities.

Keywords: Cloud computing · Interval uncertainty

1 Formulation of the Problem

What is Cloud Computing. According to the official definition provided by
the US National Institute of Standards and Technology (NIST), “Cloud comput-
ing is a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, stor-
age, applications, and services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction” [20]. There are many
other definitions which concentrate on different aspects of cloud computing; see,
e.g., [8,17,23,28].

One of the important aspects of cloud computing is that instead of perform-
ing all the computations on his/her own computer, a user can sometimes rent
computing time from a computer-time-rental company.

How Much Computation Time Should We Rent? Renting is usually more
expensive than buying and maintaining one’s own computer, so if the user needs
the same amount of computations day after day, cloud computing is not a good
financial option. However, if a peak need for computing occurs rarely, it is often
cheaper to rent the corresponding computation time than to buy a lot of com-
puting power and idle it most of the time.

Once the user knows his/her computational requirements, the proper ques-
tion is: should we use the cloud at all? if yes, how much computing power should

c© Springer International Publishing Switzerland 2016
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we buy for in-house computations and how much computation time should we
rent from the cloud company? how much will it cost?

Finally, if a cloud company offers a multi-year deal with fixed rates, should
we take it or should we buy computation time on a year-by-year basis?

Why This Is Important. Surprisingly, while the main purpose of cloud com-
puting is to save user’s money, most cloud users are computer folks with little
knowledge of economics. As a result, often, they make wrong financial decisions
about the cloud use; see, e.g., [29]. It is important to come up with proper
recommendations for using cloud computing.

What We Do in This Paper. In this paper, we provide the desired financial
recommendations, first under the idealized assumption that we have a complete
information, and then, in a more realistic situation of interval uncertainty.

Comment. It is worth mentioning that in this paper, we only consider the finan-
cial aspects of cloud computing, i.e., the idea that we rent computing time. In
this analysis, we do not take into account “minimal management efforts” aspects
of cloud computing – e.g., the fact that the system automatically takes care of
allocating resources. Because we only use the financial aspects of cloud comput-
ing as renting computing time, our recommendations are applicable not only to
cloud computing per se, but to any situation when a user can buy computing
time – e.g., to renting computing time on mainframe computers.

2 How Much Computations to Perform In-House and
How Much In Cloud: Case of Complete Information

Main Idea. The overall computation costs can be decomposed into fixed costs
(buying computer(s)) and variable costs (maintaining computers). When we use
a cloud, there is no fixed cost (since we do not need to buy a computer), but the
variable cost is much higher. This is the main idea behind our computations.

Case of Complete Information: Description. Let us first consider the ide-
alized case when we have complete information about our needs and about all
the costs.

This means, first, that we know the cost of keeping a certain level of com-
putational ability in-house. Let us pick some time quantum (e.g., day or hour).
Then, the overall cost (fixed + variable) of buying and maintaining the corre-
sponding computers is proportional to these computer’s computational ability –
i.e., the number of computing operations (e.g., Teraflops) that these computers
can perform in this time unit. Let c0 denote the cost per unit of computations.
Then, if we buy computers with computational ability x0, we pay c0 ·x0 for these
computers.

This also means that we know the (variable) cost of computing in the cloud.
Let us denote this cost by c1. So, if one day, we need to perform x computations
in the cloud, we have to pay the amount c1 · x.

As we have mentioned, computing in the cloud is usually more expensive
than computing in-house. Part of this extra cost is the cost of moving data,
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another part is the overhead to support the computing staff, marketing staff,
etc. As a result, c1 > c0.

Complete knowledge also means that we know the user’s needs. This means
that for each possible computation need x, we know the probability that one of
the days, we will need to perform exactly x computations. These probabilities
can be estimated by analyzing the previous needs: if we needed x computations
in 10 % of the days, this means that the probability of needing x computations
is exactly 10 %.

The probability distribution is usually described either by a cumulative dis-
tribution function (cdf) F (x) = Prob(X ≤ x), or by the probability density
function (pdf) ρ(x) for which the probability to be within an interval [x, x] is
equal to the integral

∫ x

x
ρ(x) dx, and the overall probability is 1:

∫ ∞
0

ρ(x) dx = 1.
The relationship between pdf and cdf is straightforward:

• F (x) is the integral of pdf: F (x) =
∫ x

0
ρ(t) dt;

• vice versa, the pdf is the derivative of the cdf: ρ(x) =
dF

dx
.

What is the Cost of Buying x0 Computational Abilities and Doing
All Other Computations in the Cloud? We want to select the amount x0

of computing power to buy, so that everything in excess of x0 will be sent to
the cloud. We want to select this amount so that the expected overall cost of
computations is the smallest possible.

So, to find the corresponding value x0, let us compute how much it will cost
the user to buy x0 equipment and to rent all other computation time. We already
know that the cost of buying and maintaining an equipment with capacity x0 is
equal to c0 · x0.

The expected cost of using the cloud can be obtained by adding the costs
multiplied by the corresponding probabilities. We need computations in the cloud
when x > x0, For each such value x, we need to rent the amount x − x0 in the
cloud. The cost of such renting is c1 ·(x−x0). The probability of needing exactly
x computations is proportional to ρ(x). To be more precise, the probability that
we need between x and x + Δx computations is equal to ρ(x) · Δx; thus, the
expected cost of using the cloud is therefore equal to the sum of the products
(c1 · (x−x0)) · (ρ(x) ·Δx), i.e., to the value

∑
c1 · (x−x0) ·ρ(x) ·Δx. In the limit,

when Δx → 0, this sum tends to the integral
∫ ∞

x0
c1 · (x − x0) · ρ(x) dx. Thus,

the overall cost is equal to the sum of the in-house and in-the-cloud costs:

C(x0) = c0 · x0 + c1 ·
∫ ∞

x0

(x − x0) · ρ(x) dx. (1)

Let Us Use This Cost Expression to Find the Optimal Value x0. We
want to find the value x0 for which the cost expression (1) attains its small-
est possible value. To find this minimizing value, we need to differentiate the
expression (1) with respect to x0 and equate the corresponding derivative to 0.

To make this differentiation easier, let us transform the expression (1) by

using integration by parts
∫ b

a
u dv = u · v|ba − ∫ b

a
v du. Here, ρ(x) =

d(F (x) − 1)
dx

,
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so we can take u = x−x0 and v = F (x)−1. The product u·v = (x−x0)·(F (x)−1)
is equal to 0 on both endpoints x = x0 and x = ∞, so we get

C(x0) = c0 · x0 − c1 ·
∫ ∞

x0

(F (x) − 1) dx.

Since F (x) ≤ 1, it is convenient to swap the signs and get the expression

C(x0) = c0 · x0 + c1 ·
∫ ∞

x0

(1 − F (x)) dx. (2)

The derivative of this sum is equal to the sum of the derivatives. The deriv-
ative of the second term can be obtained from the fact that the derivative of

the integral is equal to the integrated function. Thus, the equation
dC(x0)

dx0
= 0

becomes c0 − c1 · (1 − F (x0)) = 0, i.e., equivalently,

F (x0) = 1 − c0
c1

. (3)

This formula can be simplified even further if we take into account that for
each p ∈ [0, 1], the value x for which F (x) = p is known as the p-th quantile. For
example, for p = 0.5, we have the median, for p = 0.25 and p = 0.75, we have
quartiles, for p = 0.1, 0.2, . . . , 0.9 we have deciles, etc.

So, we arrive at the following conclusion.

How Many Computations to Perform In-House: Optimal Solution. If
we know the costs c0 and c1 per computation in house and in the cloud, and
we also know the probability distribution F (x) describing the user’s needs, then
the optimal amount x0 of computational power to buy is determined by the
formula (3), i.e., x0 is a quantile corresponding to p = 1 − c0

c1
.

Once we know the optimal value x0, we can then compute the corresponding
cost by using the formula (2).

Discussion. In the extreme case when c1 = c0, there is no sense to buy anything
at all: we can perform all the computations in the cloud. As the cloud costs c1
increases, the threshold x0 increases, so when c1 is very high, it does not make
sense to use the cloud at all.

Example. The user’s need is usually described by the power law distribution,
in which, for some threshold t, we have:

• 1 − F (x) = 1 for x ≤ t and then

• 1 − F (x) =
(x

t

)−α

for some α > 0.

Power law is ubiquitous in many financial situations, see, e.g., [1–4,9,10,14–
16,18,19,21,22,24–27].

In this case, the formula (3) takes the form
(x0

t

)−α

=
c0
c1

.
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By raising both sides by the power −1/α and multiplying both sides by the
threshold t, we conclude that

x0 = t ·
(

c0
c1

)−1/α

= t ·
(

c1
c0

)1/α

. (4)

Substituting this expression into the formula (2), we can compute the
expected cost. This cost consists of two parts: c0 · x0 and the integral; we will
denote the integral part by I. Let us compute both parts and then add them up.
Here,

c0 · x0 = c0 · t ·
(

c1
c0

)1/α

= t · c
1−1/α
0 · c

1/α
1 (5)

Since 1 − F (x) = tα · x−α, the integral I takes the form

I =
∫ ∞

x0

(1 − F (x)) dx = c1 · tα ·
∫ ∞

x0

x−α dx = c1 · tα · x1−α
0

α − 1
.

Substituting the value (4) into this formula, we get

I = c1 · tα · t1−α ·
(

c1
c0

)(1−α)/α

· 1
α − 1

,

i.e., to

I = t · c
1−1/α
0 · c

1/α
1 · 1

α − 1
. (6)

By comparing (6) and (4), we can see that I = c0 · x0 · 1
α − 1

, thus

C(x0) = c0 · x0 + I = c0 · x0 ·
(

1 +
1

α − 1

)
= c0 · x0 · α

α − 1
.

Dividing both the numerator and the denominator of this fraction by α, we get
the final formula for the cost:

C(x0) = c0 · x0 · 1

1 − 1
α

. (7)

Discussion. The difference between the overall cost (7) and the in-house cost
c0 · x0 is the expected cost of using the cloud.

The larger α, the faster the probabilities of the need for computing power x
decrease with x, and thus, the smaller should be the expected cost of using the
cloud. And indeed, when α increases, the factor in (7) tends to 1, meaning that
the cost of in-the-cloud computations tends to 0.
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3 How Much Computations to Perform In-House and
How Much In Cloud: Case of Interval Uncertainty

Formulation of the Problem. In the previous section, we considered the
idealized case when we know the exact costs c0 and c1 and the exact probabilities
F (x). In practice, we rarely know the exact costs and probabilities. At best, we
know the bounds on these quantities, i.e.:

• we know the interval [c0, c0] of possible values of in-house cost c0;
• we know the interval [c1, c1] of possible values of the in-the cloud cost c1; and
• for each computation amount x, we know the interval [F (x), F (x)] of possible

values of the cdf F (x); these bounds are also known as a p-box; see, e.g., [5–7].

How to Select x0 in Case of Interval Uncertainty: Analysis of the
Problem. For any selection of the value x0, different values c0 ∈ [c0, c0] and
c1 ∈ [c1, c1], and for different functions F (x) ∈ [F (x), F (x)], the formula (2)
leads to different values of the cost C(x0).

We do not know the probabilities of different values ci or different functions
F (x), all we know is the bounds. In this case, the only information that we have
about the cost C(x0) corresponding to a selection x0 is that this cost belongs to
the interval [C(x0), C(x0)], where:

• the value C(x0) is the smallest possible value of the cost, and
• C(x0) is the largest possible value of the cost.

In such case of interval uncertainty, natural requirements leads to the following
decision making procedure [11–13]:

• we select a parameter αH ∈ [0, 1] that describes the user’s degree of optimism-
pessimism, and

• we select the alternative x0 for which the combination

αH · C(x0) + (1 − αH) · C(x0)

is the smallest possible.

Here:

• the value αH = 1 (corresponding to full optimism) means that we only consider
the best-case (optimistic) scenarios;

• the value αH = 0 (corresponding to full pessimism) means that we only con-
sider the worst-case (pessimistic) scenarios;

• values αH between 0 and 1 means that we take both best-case and worst-case
scenarios into account.

For the formula (2), it is easy to find the smallest and the largest value of
C(x0): from the formula (2), we get

C(x0) = c0 · x0 + c1 ·
∫ ∞

x0

(1 − F (x)) dx. (8)
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and
C(x0) = c0 · x0 + c1 ·

∫ ∞

x0

(1 − F (x)) dx. (9)

Thus, the above procedure means that we need to optimize the function

CH(x0) = c0,H · x0 + c1,H ·
∫ ∞

x0

(1 − FH(x)) dx, (10)

where we denoted
c0,H = αH · c0 + (1 − αH) · c0; (11)

c1,H = αH · c1 + (1 − αH) · c1; (12)

FH(x) = αH · F (x) + (1 − αH) · F (x). (13)

Differentiating the expression (10) with respect to x0 and equating the derivative
to 0, we conclude that c0,H = c1,H · (1 − FH(x0)), i.e., that

FH(x0) = 1 − c0,H

c1,H
. (14)

Resulting Recommendation. To find the optimal value x0:

• we should first find the parameter αH corresponding to the user’s optimism-
pessimism level;

• then, we compute the values c0,H = αH · c0 + (1 − αH) · c0, c1,H = αH · c1 +
(1 − αH) · c1, and the function FH(x) = αH · F (x) + (1 − αH) · F (x);

• after that, we find the value x0 for which FH(x0) = 1 − c0,H

c1,H
.

Once we find the optimal value x0, we can use the formulas (8) and (9) to find
the range of possible values of costs.

4 Auxiliary Question: When Is It Beneficial to Sign
A Multi-Year Contract?

Formulation of the Problem. Let us assume that we have an average yearly
amount X of computations to perform in the cloud, and we expect the same
amount for the few following years. For this year’s computations, the cloud
company offers us the rate of c1 per computation; for a T -year contract, the
price will be cT < c1. Shall we sign a contract?

Additional Information that We Need to Make a Decision. To decide
which is more beneficial, we need to take into account two things:

• first, computers improve year after year, so the computing cost steadily
decreases; let v < 1 be a yearly decrease in cost; this means that next year,
computing in the cloud will cost v · c1 per computation, the year after that
v2 · c1, etc.;
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• we also need to take into account that paying a certain amount a next year
is less painful that paying the same amount a this year, since we could invest
a, get interest, pay a next year, and keep the interest; from this viewpoint,
paying a certain amount a next year is equivalent to paying a · q this year,
where the discounting parameter q < 1 depends on the current interest rate.

Analysis of the Problem. In the case of year-by-year payments:

• we pay the amount c1 · X this year,
• we pay the amount v · c1 · X next year,
• we pay the amount v2 · c1 · X the year after,
• . . . , and
• we pay the amount vT−1 · c1 · X in the last (T -th) year.

By using discounting, we find out that:

• paying v · c1 · X next year is equivalent to paying q · v · c1 · X this year;
• paying v2 · c1 · X in Year 3 is equivalent to paying q2 · v2 · c1 · X this year;
• . . . , and
• paying vT−1 · c1 · X in Year T is equivalent to paying qT−1 · vT−1 · c1 · X this

year.

Thus, year-by-year payments are equivalent to paying the following amount right
away:

c1 · X + v · q · c1 · X + v2 · q2 · c1 · X + . . . + vT−1 · qT−1 · c1 · X
= c1 · X · (1 + q · v + q2 · v2 + . . . + qT−1 · vT−1).

By using the formula for the sum of the geometric progression, we conclude that
this cost is equal to

c1 · X · 1 − (q · v)T

1 − q · v
.

Alternatively, if we sign a contract, then we pay the same amount cT · X
every year. By using discounting, we find out that:

• paying cT · X next year is equivalent to paying q · cT · X this year;
• paying cT · X in Year 3 is equivalent to paying q2 · cT · X this year;
• . . . , and
• paying cT · X in Year T is equivalent to paying qT−1 · cT · X this year.

Thus, these payments are equivalent to paying the following amount right away:

cT · X + q · cT · X + q2 · cT · X + . . . + qT−1 · cT · X
= cT · X · (1 + q + q2 + . . . + qT−1).

By using the formula for the sum of the geometric progression, we conclude that
this cost is equal to

cT · X · 1 − qT

1 − q
.
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By comparing these two numbers, and dividing both sides of the resulting
inequality by the common factor X, we arrive at the following conclusion.

When It Is Beneficial to Sign a Multi-Year Contract: Recommenda-
tion. It is beneficial to sign a multi-year contract if

cT · 1 − qT

1 − q
≤ c1 · 1 − (q · v)T

1 − q · v
.
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Abstract. The technique for establishing order preference by similarity
to the ideal solution (TOPSIS) now is probably one of most popular
method for Multiple Criteria Decision Making (MCDM). The method
was primarily developed for dealing with real-valued data.

Nevertheless, in practice often it is hard to present precisely exact
ratings of alternatives with respect to local criteria and as a result these
ratings are seen as fuzzy values. A number of papers have been devoted
to fuzzy extension of the TOPSIS method in the literature, but only a
few works provided the type-2 fuzzy extensions, whereas such extensions
seem to be very useful for solution of many real-world problem, e.g., Mul-
tiple Criteria Group Decision Making problem. Since the proposed type-
2 fuzzy extensions of the TOPSIS method have some limitations and
drawbacks, in this paper we propose an interval type-2 fuzzy extension
of the TOPSIS method realised with the use of α-cuts representation of
the interval type-2 fuzzy values (IT2FV ). This extension is free of the
limitations and drawbacks of the known methods. The proposed method
is realised for the cases of perfectly normal and normal IT2FV s.

Keywords: Interval type-2 fuzzy extension · TOPSIS · α-cuts

1 Introduction

A technique for establishing order performance by similarity to the ideal solution
(TOPSIS) was first developed by Hwang and Yoon [18] for solving (MCDM)
problems.

Currently the TOPSIS method is very popular, but we cannot say that it is
the best one for the solution of all MCDM problems. In our opinion, the search
for some unique best method for the solution of MCDM problems is senseless.
In practice, we usually try to choose among a great number of existing methods
such that seems to be maximally appropriate to the specificity of the problem

c© Springer International Publishing Switzerland 2016
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and preferences of decision makers. Generally, the choice of the method for the
solution of MCDM problem is a context dependent problem [30].

In [15], we have shown that the classical TOPSIS method may be considered
as a modified weighted sum of local criteria. Although the weighted sum is the
most popular approach to the solution of MCDM problems in some cases it
cannot be used. An important property of weighted sum aggregation is that the
small values of some local criteria may be counterbalanced by large values of
other ones in the final assessment. For example, a high percent of goods of low
quality in most cases cannot be counterbalanced by low production costs, just as
the low professional qualifications of medical staff usually cannot be compensated
for by the high quality of diagnostic equipment and so on. In some fields, e.g.,
in ecological modelling, the weighted sum is not used for aggregation [27]. The
reason behind this is that in practice there are cases when if any local criterion
is totally dissatisfied then the considered alternative should be rejected from
the consideration completely. Since this compensative property of weighted sum
aggregation is in many applications undesirable, a decision maker may prefer to
use, e.g., weighted geometric aggregation and a more cautious decision maker
may prefer aggregation based on the “principle of maximal pessimism” [15].

Nevertheless, the general idea of TOPSIS method, i.e., establishing the order
of preference by similarity to ideal solution seems to be very attractive and fruit-
ful. Therefore, in [15] we introduced other types of local criteria aggregation in
the TOPSIS method and developed a method for the generalisation of different
aggregation modes. In classical methods for MCDM , the ratings and weights
of criteria are known precisely. In the classical TOPSIS method, the ratings of
alternatives and the weights of criteria are presented by real values, too. The
classical TOPSIS method has been successfully used in various fields [9,24].
A comprehensive survey of TOPSIS method applications is presented in [3].
However, sometimes it is difficult to determine precisely the real values of the
rating of alternatives with respect to local criteria, and as a result, these ratings
are presented as fuzzy values. Some papers have been devoted to fuzzy exten-
sions of the TOPSIS method in the literature, but these extensions are not
complete since the ideal solutions are usually presented as real values (not as
fuzzy values) or as fuzzy values which are not attainable in the decision matrix
[1,4,5,16,22,31]. In most of papers [1,2,6,8,11–13,19,23,28,29], a defuzzification
of elements of fuzzy decision matrix is used, which leads inevitable to the loss
of important information and may provide wrong results. On the other hand,
when we deal with the problem of multiple criteria group decision making, the
fuzzy rating of alternatives may be presented by different experts in different
ways. The use of type-2 fuzzy sets and operations on type-2 fuzzy values makes
it possible to avoid this problem. Such approach was used by Chen and Lee
[10] for the solution of group MCDM problem using trapezoidal interval type-2
fuzzy values in the framework of TOPSIS method. Unfortunately, in this work,
for evaluation of trapezoidal interval type-2 fuzzy values the heuristic expression
provided real-valued evaluation of rating of alternatives was used. A technique
based on generalised interval -valued trapezoidal fuzzy value in the framework of
TOPSIS method was proposed in [25]. The drawback of this work is that only
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reference points (real values) of interval-valued trapezoidal fuzzy values were
used for the evaluation of positive and negative ideal solutions.

Therefore, in this paper we propose a new approach to the interval type-2
fuzzy extension of TOPSIS method using the α-cuts representation of the inter-
val type-2 fuzzy values (IT2FV ). This extension is free of the limitations and
drawbacks of the known methods. Here we restrict ourselves to the consideration
only triangular perfectly normal and normal IT2FV s.

The rest of paper is set out as follows: In Sect. 2, we recall some basic def-
initions needed for the subsequent analysis. Section 3 is devoted to the interval
type-2 fuzzy extension of the TOPSIS method using the α-cuts. Section 4 con-
tains some concluding remarks.

2 Preliminaries

2.1 The Basics of the TOPSIS Method

Suppose a MCDM problem is based on m alternatives A1, A2,...,Am and n local
criteria C1, C2,...,Cn. Each alternative is evaluated with respect to the n criteria.
All the ratings are assigned to alternatives and presented in the decision matrix
D[xij ]m×n, where xij is the rating of alternative Ai with respect to the criterion
Cj . Let W = [w1, w2, ..., wn] be the vector of local criteria weights satisfying∑n

j=1 wj = 1.
The TOPSIS method consists of the following steps [18]:

1. Normalize the decision matrix:

rij =
xij√∑m
k=1 x2

kj

, i = 1, ...,m; j = 1, ..., n. (1)

Multiply the columns of normalized decision matrix by the associated weights:

vij = wj × rij , i = 1, ...,m; j = 1, ..., n. (2)

2. Determine the positive ideal and negative ideal solutions, respectively, as
follows:

A+ = {v+
1 , v+

2 , ..., v+n }
= {(maxi vij |j ∈ Kb) (mini vij |j ∈ Kc)},

(3)

A− = {v−
1 , v−

2 , ..., v−
n }

= {(mini vij |j ∈ Kb) (maxi vij |j ∈ Kc)},
(4)

where Kb is a set of benefit criteria and Kc is a set of cost criteria.
3. Obtain the distances of the existing alternatives from the positive ideal and

negative ideal solutions: two Euclidean distances for each alternatives are,
respectively, calculated as follows:

S+
i =

√∑n
j=1 (vij − v+

j )2, i = 1, ...,m,

S−
i =

√∑n
j=1 (vij − v−

j )2, i = 1, ...,m.
(5)
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4. Calculate the relative closeness to the ideal alternatives:

RCi = S−
i

S+
i +S−

i

, i = 1, 2, ...,m, 0 ≤ RCi ≤ 1. (6)

5. Rank the alternatives according to their relative closeness to the ideal alter-
natives: the bigger RCi, the better alternative Ai.

2.2 Type-2 Fuzzy Sets and Their α-cuts Representation

Here we present the basic terminology used in this paper.
A type-2 fuzzy set (T2FS) Ã is defined as follows:

Definition 1 [20,21].

Ã =
∫

∀x∈X

∫
∀u∈Jx⊆[0,1]

μÃ(x, u)/(x, u), (7)

where
∫ ∫

denotes the union over all admissible values of x and u, and μÃ(x, u)
is a type-2 membership function.

A T2FS is three dimensional (3D). The Vertical Slice (V S) is the two dimen-
sional (2D) plane in the u and μÃ(x, u) axes for a single value of x = x

′
, then

V S is defined by the equation

V S(x
′
) = μÃ(x

′
, u) ≡ μÃ(x

′
) =

∫
u∈J

x
′ fx′ (u)/u, (8)

where fx′ (u) ∈ [0, 1] is called the secondary grade and Jx represents the domain
of the secondary membership function called the secondary domain. Of course,
the V S is a type-1 fuzzy set (T1FS) in [0, 1]. The Vertical Slice Representation
(V SR) of T2FS is represented by the union of all the vertical slices.

The Footprint Of Uncertainty (FOU) is derived from the union of all primary
memberships:

FOU(Ã) =
∫

x∈X
Jx. (9)

According to [20], the FOU is represented by the lower and upper membership
functions:

FOU(Ã) =
∫

x∈X
[μÃ(x), μÃ(x)]. (10)

Interval type-2 fuzzy set (IT2FS) is defined to be a T2FS where all its secondary
grades are equal to 1 (∀fx(u) = 1). A IT2FS can be completely determined using
its FOU given in equation (10). The α-cuts of IT2FS Ã are defined in [17] as
follows: Ãα̃ = {(x, u) |fx(u) ≥ α̃}.

But as we are dealing with IT2FS this definition may be substantially sim-
plified. Since IT2FS can be completely determined using its FOU , the α-cuts
of IT2FS may be represented by the α-cuts of its FOU(Ã).

Definition 2. The α-cuts of IT2FS Â are presented as follows:
Âα =

{
x

∣∣∣μÂ(x) ≥ α, μÂ(x) ≥ α
}

.
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Definition 3 [17] (Perfectly Normal IT2FS). A IT2FS Â, is said to be per-
fectly normal if supμÂ(x) = supμ

Â
(x) = 1.

Since α-cuts of type 1 fuzzy sets are based on the corresponding intervals,
the α-cuts of IT2FS may be presented by corresponding intervals with interval-
valued bounds as follows:

Âα =
[[

xL
α, xL

α

]
,
[
xU

α , xU
α

] ]
. (11)

Then the perfectly normal interval type-2 fuzzy value (IT2FV ) may be presented
as follows:

Â =
⋃
α

α
[[

xL
α, xL

α

]
,
[
xU

α , xU
α

] ]
. (12)

Definition 4 [17] (Normal IT2FS). A IT2FS Â, is said to be normal if supμÂ

(x) = 1 and supμ
Â
(x) = h < 1, where h is the lower membership function height.

The normal IT2FV may be presented as follows:

Â =

{⋃
α

α[[xL
α , xL

α], [xU
α , xU

α ] ], α≤h,

⋃
α

α[xL
α, xU

α ], α>h,
(13)

An important problem in the implementation of TOPSIS method in the inter-
val type-2 fuzzy setting is the comparison of IT2FV s. Since our approach is
based on the α-cut representation of IT2FV the problem reduces to the interval
comparison. Based on the comparison of the most popular methods for interval
comparison, it was shown in [26] that to obtain a measure of distance between
intervals which additionally indicates which interval is greater/lesser, the follow-
ing value which represents the distance between the centers of compared intervals
A and B may be successfully used.

ΔA−B =
(

1
2
(aL + aU ) − 1

2
(bU + bL)

)
. (14)

3 An Extension of the TOPSIS Method Under Interval
Type-2 Fuzzy Uncertainty

3.1 The Case of Perfectly Normal Triangular Interval Type-2 Fuzzy
Values

Let A1,A2,...,Am be alternatives, C1,C2,...,Cn be local criteria and w1,w2,...,wn

be real-valued weights of local criteria such that
n∑

i=1

wi = 1. Let D
[
X̂ij

]
n×m

be

the decision matrix, where X̂ij is the perfectly normal interval type-2 fuzzy value
representing the rating of alternative Ai with respect to the criterion Cj .

Let xL
ij , xL

ij , xM
ij , xU

ij , xU
ij be the reference points of perfectly normal IT2FV

X̂ij It can be represented as follows

X̂ij =
{[

xL
ij , x

L
ij

]
, xM

ij ,
[
xU

ij , x
U
ij

] }
. (15)
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The first step of the method is the normalization of the decision matrix. In
[7], the following method for normalization of the decision matrix with ratings
presented by type 1 fuzzy values was proposed:

rij =

(
xL

ij

x+
j

,
xM

ij

x+
j

,
xU

ij

x+
j

)
, i = 1, 2, ...m, j ∈ Kb, (16)

where x+
j = maxj(xU

ij), j ∈ Kb,

rij =

(
x−

j

xU
ij

,
x−

j

xM
ij

,
x−

j

xL
ij

)
, i = 1, 2, ...m, j ∈ Kc, (17)

where x−
j = minj(xL

ij) , j ∈ Kc.
In (16) and (17), xL

ij ,x
M
ij , xU

ij are the reference points of triangular fuzzy
values.

We can see that normalizations of benefit and cost fuzzy ratings of alterna-
tives are made in different ways. As a result these normalizations preserve the
property that supports of normalized fuzzy numbers belong to the interval [0,1].

This method can be extended to use it for the normalization of decision
matrices with perfectly normal interval type-2 fuzzy ratings as follows:

r̂ij =

([
xL

ij

x+
j

,
xL

ij

x+
j

]
,
xM

ij

x+
j

,

[
xU

ij

x+
j

,
xU

ij

x+
j

])
, i = 1, 2, ...m, j ∈ Kb, (18)

where x+
j = maxj(xU

ij), j ∈ Kb,

r̂ij =

([
x−

j

xU
ij

,
x−

j

xU
ij

]
,

x−
j

xM
ij

,

[
x−

j

xL
ij

,
x−

j

xL
ij

])
, i = 1, 2, ...m, j ∈ Kc, (19)

where x−
j = minj(xL

ij), j ∈ Kc.
Using the normalization procedure based on the expressions (18) and (19),

from the normalized decision matrix is obtained. The next step is the obtaining
of positive ideal A+ and the negative ideal A− solutions, respectively. Then in
our case, the expressions (3) and (4) are extended as follows:

A+ =
{
ν̂+
1 , ν̂+

2 , ..., ν̂+
n

}
=

{([
ν+L
1 , ν+L

1

]
, ν+M

1 ,
[
ν+U
1 , ν+U

1

])
, ...,

([
ν+L

n , ν+L
n

]
, ν+M

n ,
[
ν+U

n , ν+U
n

])}
= {maxi {r̂ij}} |j ⊂ Kb, {mini {r̂ij}} |j ⊂ Kc}

(20)
A− =

{
ν̂−
1 , ν̂−

2 , ..., ν̂−
n

}
=

{([
ν−L
1 , ν−L

1

]
, ν−M

1 ,
[
ν−U
1 , ν−U

1

])
, ...,

([
ν−L

n , ν−L
n

]
, ν−M

n ,
[
ν−U

n , ν−U
n

])}
= {mini {r̂ij}} |j ⊂ Kb, {maxi {r̂ij}} |j ⊂ Kc}

(21)
In (20) and (21), r̂ij =

([
rL

ij , rL
ij

]
, rM

ij ,
[
rU

ij , rU
ij

])
.

We can see that to obtain the positive ideal A+ and negative ideal A− solu-
tions the operation of comparison of r̂ij is needed (see mini {r̂ij} and maxi {r̂ij}
in (20) and (21)).
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To avoid the use of the heuristic approaches to the perfectly normal interval
type-2 fuzzy values comparison, we shall represent r̂ij by the sets of correspond-
ing α-cuts. Then after comparison of r̂ij on α-cuts with the use of approach to
the interval comparison presented by the expression (14) we shall aggregate the
results of comparison into the final real-valued estimation of difference between
normal interval type-2 fuzzy values Δ(r̂ij − r̂oj), the sign of which indicates
what the compared normal interval type-2 fuzzy value is greater/lesser and the
abs(Δ(r̂ij − r̂oj)) represents the difference between them.

Therefore, first we should develop the method for comparison of interval
type-2 fuzzy value on the α-cuts.

At the first step we extend the conventional method for interval subtraction.
It is easy to see that α-cut of r̂ij may be presented by corresponding intervals
with interval-valued bounds (see (13)) as follows:

r̂ijα
=

[[
rL

ijα
, rL

ijα

]
,
[
rU

ijα
, rU

ijα

]]
. (22)

Using the formal extension of conventional operation of interval subtraction to
the case of perfectly normal interval type-2 fuzzy values we can present this
extended operation as follows:

rijα
− rojα

=
[[

rL
ijα

, rL
ijα

] − [
rU

ojα
, rU

ojα

]
,
[
rU

ijα
, rU

ijα

] − [
rL

ojα
, rL

ojα

]]
=

[[
rL

ijα
− rU

ojα
, rL

ijα
− rU

ojα

]
,
[
rU

ijα
− rL

ojα
, rU

ijα
− rL

ojα

]]

==
[
[rijα

− rojα
]L , [rijα

− rojα
]U

]
.

(23)

Then in the spirit of the method for interval comparison presented by the expres-
sion (14) we provide several averaging procedures (24, 25) obtaining finally the
real valued estimation of difference between compared perfectly normal interval
type-2 fuzzy values on the α-cuts Δ(rijα

− rojα
) (see (26)).

[[Δ(rijα
− rojα

)]] = 1
2

[
[rijα

− rojα
]L + [rijα

− rojα
]U

]

= 1
2

[[
rL

ijα
+ rU

ijα
,−rU

ojα
− rL

ojα

]
,
[
rL

ijα
+ rU

ijα
,−rU

ojα
− rL

ojα

]]
=

[[
ΔL (rijα

− rojα
)
]
,
[
ΔU (rijα

− rojα
)
]]

.

(24)

[Δ(rijα
− rojα

)] = 1
2

[[
ΔL (rijα

− rojα
)
]
+

[
ΔU (rijα

− rojα
)
]]

= 1
4

[
rL

ijα
+ rU

ijα
+ rL

ijα
+ rU

ijα
,− (

rU
ojα

+ rL
ojα

+ rU
ojα

+ rL
ojα

)]
.

(25)

Δ(rijα
− rojα

) = 1
8

(
rL

ijα
+ rU

ijα
+ rL

ijα
+ rU

ijα
− (

rU
ojα

+ rL
ojα

+ rU
ojα

+ rL
ojα

))
.

(26)
To get the final real valued estimation of difference between compared per-

fectly normal interval type-2 fuzzy values, we aggregate Δ(rijα
− rojα

) as follows:

Δ(r̂ij − r̂oj) =

∑
α

αΔ(rijα −rojα )∑
α

α (27)

The last expression indicates that the contribution of α-cut to the overall esti-
mation of Δ(r̂ij − r̂oj) increases along with the rise of its number.
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The second step is the obtaining the distances of the existing alternatives
from the positive ideal and negative ideal solutions.

Obviously, from the definitions (20) and (21) we have Δ(ν̂+
j −r̂ij) ≥ 0, j ∈ Kb,

Δ(r̂ij − ν̂+
j ) ≥ 0, j ∈ Kc, Δ(r̂ij − ν̂−

j ) ≥ 0, j ∈ Kc and Δ(ν̂j − r̂ij) ≥ 0, j ∈ Kb,
i = 1, 2, ...,m. Therefore the corresponding distances may be presented as follows
(see more detailed analysis in [15]).

S+
i =

∑
j∈Kb

wjΔ(ν̂+
j − r̂ij) +

∑
j∈Kc

wjΔ(r̂ij − ν̂+
j ) , i = 1, 2, ...,m, (28)

S−
i =

∑
j∈Kc

wjΔ(r̂ij − ν̂−
j ) +

∑
j∈Kb

wjΔ(ν̂j − r̂ij) , i = 1, 2, ...,m. (29)

3.2 The Case of Normal Interval Type-2 Fuzzy Values

In the case of normal IT2FV s for α > h we deal with usual intervals on α-
cuts (see expression 13). Therefore, the differences between compared normal
IT2FV s on the α-cuts such that α > h my be presented as the difference
between usual intervals represented by the expression (14). Hence the expression
(26) takes the form:

If α > h then

Δ (rijα
− rojα

) = 1
2

((
rL
ijα

+ rU
ijα

) − (
rL
ojα

+ rU
ojα

))
. (30)

If α ≤ h then

Δ(rijα
− rojα

) = 1
8

(
rL

ijα
+ rU

ijα
+ rL

ijα
+ rU

ijα
− (

rU
ojα

+ rL
ojα

+ rU
ojα

+ rL
ojα

))
.

(31)
The other needed for calculation expressions (20),(21),(27),(28),(29) are not
changed.

We have not found in the literature an example of the solution of MCDM
problem with the use of TOPSIS method under interval type-2 fuzzy uncer-
tainty, when the ratings of alternatives in the decision matrix are presented
by the triangular normal and perfectly normal IT2FV s. Therefore we cannot
compare our results with those obtained using other approaches.

Nevertheless, according to our experience [14] the use of approach based of
the direct interval extension of TOPSIS method with the operation of interval
comparison based on the operation of interval subtraction makes it possible to
avoid the problems concerned with the real-valued representations of intervals
by their lower or upper bounds which may lead to the wrong results.

It the current paper, we extend this operation to the case of intervals with
interval-valued bounds representing IT2FV s on the α-cuts.

As it was showed in [14], the use of α-cut representation of fuzzy values
allows us to avoid many problems of intermediate defuzzyfication of ratings and
fuzzy values comparison based on the representation intervals on α-cuts by their
real-valued representations. Therefore, in this paper we extend this approach to
the case of the use of TOPSIS method under interval type-2 fuzzy uncertainty.
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4 Conclusion

The extension of the TOPSIS method under interval type-2 fuzzy uncertainty
is proposed. This extension is provided by the use of α-cut representation of
triangular interval type-2 fuzzy values IT2FV s. To implement this approach,
a method for comparison of intervals with interval-valued bounds representing
IT2FV s on the α-cuts is proposed. This method is based on the extended oper-
ation of interval subtraction.

As illustrative examples, the numerical methods for the solution of MCDM
problems when the decision matrices are presented by the triangular normal and
perfectly normal IT2FV s are considered.
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Abstract. Solving parametric interval linear systems is one of the funda-
mental problems of interval computations. When the solution of a para-
metric linear system is a monotone function of interval parameters, then
an interval hull of the parametric solution set can be computed by solving
at most 2n real systems. If only some of the elements of the solution are
monotone functions of parameters, then a good quality interval enclo-
sure of the solution set can be obtained. The monotonicity approach,
however, suffers from poor performance when dealing with large scale
problems. Therefore, in this paper an attempt is made to improve the
efficiency of the monotonicity approach. Techniques such as vectorisation
and parallelisation are used for this purpose. The proposed approach is
verified using some illustrative examples from structural mechanics.
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1 Introduction

Solving systems of linear equations is essential in modern engineering. Highly
complex physical systems, which would require extremely complex formulae to
describe, are approximated with high accuracy by a very large set of linear equa-
tions. In order to get reliable results, uncertainty, which is inevitable in real life
problems, should be taken into account in any computations. Therefore, solv-
ing linear systems is one of the fundamental problems of interval computations,
wherein “to solve a system” usually means to enclose a parametric solution set
by an interval vector as tightly as possible.

The assumption that the coefficients of a linear system vary independently
within given ranges is rarely satisfied in practice. That is why recently a big
effort was made to develop methods that are able to solve the so-called para-
metric interval linear systems, i.e., linear systems with elements being functions
of parameters that are allowed to vary within given intervals. Until now, sev-
eral such methods have been developed, one can mention approximate methods
described in [4,5,11,17,18].

The tightest is the resulting interval vector, the better. The narrowest pos-
sible interval enclosure is called the interval hull solution (or simply the hull).
c© Springer International Publishing Switzerland 2016
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When the parametric solution is monotone with respect to all the parameters,
the hull can be computed by solving at most 2n real systems. The monotonicity
approach was investigated, e.g., in [6,12,15,20]. Generally, checking monotonic-
ity is a very complex task and for large scale problems the monotonicity based
methods are inefficient. Therefore, in this paper an attempt is made to reduce
the computational time of the monotonicity approach. Vectorisation and par-
allelisation techniques are used for this purpose. It is worth to add that the
monotonicity approach is extensively used in the interval global optimisation.
Thus, the improvement of the efficiency of the monotonicity approach will signif-
icantly influence the efficiency of the interval global optimisation and monotonic-
ity based methods.

The paper is organised as follows. The Sect. 2 contains preliminaries on solv-
ing parametric interval linear systems with two disjoint sets of parameters. In
the Sect. 3, the monotonicity approach for computing interval hull solution is
outlined. Section 4 presents general concepts of vectorisation and parallelisation.
This is followed by a description of the monotonicity approach. Next, some illus-
trative examples of truss structures and the results of computational experiments
are presented. The paper ends with concluding remarks.

2 Preliminaries

Italic font will be used for real quantities, while bold italic font will denote their
interval counterparts. Let I� denote a set of real compact intervals x = [x, x] =
{x ∈ R | x � x � x}. For two intervals a, b ∈ I�, a � b, a � b and a = b will
mean that, resp., a � b, a � b, and a = b ∧ a = b. I�n will denote interval vectors
and I�n×n will denote square interval matrices [10]. The midpoint x̌ = (x+x)/2
and the radius r(x ) = (x − x)/2 are applied to interval vectors and matrices
componentwise.

Definition 1. A parametric linear system

A(p)x = b(p) (1)

is a linear system with elements that are real valued functions of a K-dimensional
vector of parameters p = (p1, . . . , pK) ∈ �K , i.e., for each i, j = 1, . . . , n,

Aij : �K � (p1, . . . , pK) → Aij(p1, . . . , pK) ∈ �,
bi : �K � (p1, . . . , pK) → bi(p1, . . . , pK) ∈ �.

(2)

Functions describing the elements of a parametric linear system can be gen-
erally divided into affine-linear and nonlinear. However, nonlinear dependencies
can be easily reduced to affine-linear using affine arithmetic [1]. Therefore, the
following consideration are limited to the affine-linear case.

Remark: Obviously, the transformation from nonlinear to affine-linear depen-
dencies causes some loss of information [1], nevertheless, the approach based on
affine arithmetic is worth considering as it is simple and quite efficient.
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Definition 2. A parametric interval linear system with affine dependencies is
given by

A(p)x = b(p), (3)

where A(p) = A(0) +
∑K

k=1 A(k)pk, b(p) = b(0) +
∑K

k=1 b(k)pk, A(i) ∈ �n×n, and
b(i) ∈ �n (i = 1, . . . , K).

If the involved parameters are subject to uncertainty, which means that they
allowed to vary within given intervals (the interval-based model of uncertainty
is adopted in this paper), then a parametric interval linear system is obtained.

Definition 3. A parametric interval linear system is an infinite set (family) of
parametric real linear systems

{A(p)x = b(p) | p ∈ p} . (4)

The family (4) is usually written in a compact form as

A(p)x(p) = b(p). (5)

Definition 4. A parametric (united) solution set of the system (5) is a set of
solutions to all systems from the family (4), i.e.,

S(p) = { x | ∃p ∈ p, A(p)x = b(p)} . (6)

In order that the solution set be bounded, the parametric matrix A(p) must be
regular, i.e., A(p) must be non-singular for each p ∈ p.

In general case, the problem of computing the solution set (6) as well as its
hull are NP-hard. Therefore, usually an outer interval enclosure, i.e., the vector
x out ⊃ S(p), is computed instead. However, when the solution of a parametric
system is monotone with respect to all parameters, then the hull of the solution
set can be computed with polynomial cost in n and K. If the solution is monotone
with respect to some of the parameters, then a good quality outer solution can
be computed with polynomial cost in n and K.

3 Monotonicity Approach

For the sake of completeness of the paper, a brief reminder of the monotonicity
approach is presented below.

Let EK =
{
e ∈ RK | ek ∈ {−1, 0, 1}, k = 1, . . . , K

}
. For p ∈ I�K , e ∈ EK ,

pe
k = p

k
if ek = −1, pe

k = p̌k if ek = 0, and pe
k = pk if ek = 1.

Theorem 1. Let A(p) be regular and let the functions xi(p) =
{
A−1(p) · b(p)

}
i

be monotone on an interval box p ∈ I�K , with respect to each parameter pk

(k = 1, . . . , K). Then, for each i = 1, . . . , n,

{�S(p)}i =
[{

A
(
p−ei

)−1

b
(
p−ei

)}

i

,

{
A

(
pei

)−1

b
(
pei

)}

i

]
, (7)

where ei
k = sign ∂xi

∂pk
, k = 1, . . . , K.
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Now consider the family of parametric linear equations (4) and assume that
Aij(p) and bi(p) (i, j = 1, . . . , n) are continuously differentiable in p. If x is
a solution to the system A(p)x = b(p), then x = A(p)−1b(p), which means that
x is a function of p. Thus, the global monotonicity properties of the solution with
respect to each parameter pk can be verified by checking the sign of derivatives
∂x
∂pk

(p) on the domain p. The differentiation of the Eq. (1) with respect to pk

(k = 1, . . . , K) yields
{

A(p)
∂x

∂pk
(p) =

∂b

∂pk
(p) − ∂A(p)

∂pk
x(p)

∣∣∣∣ p ∈ p

}
. (8)

Since Aij(p), bj(p) are affine linear functions of p, thus ∂Aij

∂pk
, ∂bi

∂pk
are constant on

p. Hence, the approximation of ∂x
∂pk

(p) can be obtained by solving the following
K parametric linear systems

A(p)
∂x

∂pk
= b′(x ∗) (9)

where b′(x ∗) = {b(k) − A(k)x∗ | x∗ ∈ x ∗} and x ∗ is some initial solution to the
system (5).

For a fixed i (1 � i � n), let Dki denotes the interval estimate of { ∂xi

∂pk
(p) | p ∈

p} obtained by solving the Eq. (9). Now assume that each Dki (k = 1, . . . , K)
has a constant sign or equals 0. Then, in order to calculate the hull of {S(p)}i,
the elements of the vector ei must be determined as follows: ei

k = 1 if Dki � 0,
ei

k = 0 if Dki ≡ 0, and ei
k = −1 if Dki � 0. If the sign of some of the partial

derivatives was not determined definitely, then a new vector of parameters is
constructed by substituting the respective endpoints for interval parameters.
The process of determining the sign of derivatives restarts and continues until
no further improvement is obtained. The algorithm of the method is presented
below. Parts of code in Algorithm1 which are candidates for parallelisation and
vectorisation are indicated by comments.

4 Parallelisation and Vectorisation

Parallelisation is the process of converting sequential code into a multi-threaded
one in order to use available processors simultaneously. The parallelisation process
often also includes vectorisation, because contemporary central processor units
are able to perform operations on multiple data in a single instruction. This abil-
ity is called SIMD (single instruction multiple data). It allows to convert an
algorithm from a scalar implementation, in which a single instruction can deal
with one pair of operands at a time, to a vector process, where a single instruction
can refer to a vector of operands (series of adjacent values). Vectorisation can
be carried out either automatically by contemporary C++ compilers or forced
by a programmer usually by using an appropriate pragma. Vectorisation not
always brings performance improvement due to additional data movement and
pipeline synchronisation. Thus, the vectorisation can be profitable for loops that
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Algorithm 1. Monotonicity approach
x 0 ⊇ �{x | A(p)x = b(p) for some p ∈ p}
// potential candidate for parallelisation
for k = 1 to K do

// potential candidate for vectorisation
Dk ⊇ �{y | ∃p ∈ p A(p)y = ∂b/∂pk − ∂A(p)/∂pkx 0}

end for
// potential candidate for parallelisation
for i = 1 to n do

for k = 1 to K do
// Assign a value to eik based on Dki

end for
// potential candidates for vectorisation
xmin

i ⊇ �{x | A(p−e)x = b(p−e)}i

xmax
i ⊇ �{x | A(pe)x = b(pe)}i

x out
i = [xmin

i , xmax
i ]

end for

run for a suitable number of iterations. Such loops however, must meet certain
constraints including continuous access of memory, no data dependency and only
single exit from the loop.

The newest Intel and AMD processors implements Advanced Vector Exten-
sions (AVX) instruction set that operates on 256 bit SIMD registers. For double
precision floating point numbers this allows to perform basic mathematical oper-
ations on 4 numbers at once. Example of addition with SIMD is shown in Fig. 1.
In the experiments presented in this paper, the newest Intel C++ compiler (16.0)
is used. This compiler efficiently analyse the code and indicates which loops are
worth to be vectorised. It can also be forced to vectorise other loops by using
#pragma simd. Both these mechanisms are used in the experiments to improve
the efficiency of the monotonicity approach.

While vectorisation plays only a supporting role in parallelisation process, the
main benefit can be achieved by transforming the code so that it is able to utilise
many threads simultaneously. This is realised in either task parallelism model
(the so called fork-join parallelism) or single program multiple data (SPMD)
model. For a single multi-core processor the first model is usually implemented
as parallel constructs nest in a straightforward manner [21].

Fig. 1. Loops vectorisation
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Similarly to the vectorisation, parallelisation can be done automatically by
a C++ compiler or can be guided by a user. When using an Intel compiler three
methods can be used: Threading Building Blocks (TBB) or Cilk Plus (originally
developed in MIT) and auto parallelisation with OpenMP. The two first methods
use work-stealing strategy, in which each processor maintains its own local queue
and when the local queue is empty, the worker randomly steals work from victim
worker queues, while in OpenMP a master thread forks a specified number of
slave threads and divides a task among them. In our experiments all three types
of parallelisation are used.

5 Numerical Examples

To check the performance of the monotonicity approach some illustrative exam-
ples of structural mechanical systems are considered. The obtained results are
compared with the results given by a method (it should be added that there are
several such methods [2,4,12,17], however a great majority of them yields very
similar results, especially for the problem considered here) for computing outer
interval solution of parametric interval linear systems.

Fig. 2. Example 1: 5-bay 4-floor plane truss structure

Example 1 (5-bay 4-floor plane truss structure). For the plane truss structure
shown in Fig. 2 the displacements of the nodes are computed. The truss is sub-
jected to downward forces P2 = P3 = P4 = 20[kN] as depicted in the figure;
Young’s modulus Y = 2.0 × 1011[Pa], cross-section area C = 0.0001[m2], length
of horizontal bars is L = 10[m], and the lenght of vertical bars is H = 5[m]. The
truss is fully supported at the nodes 1 and 5. This gives 72 interval parameters.
Table 1 shows the relative times for various combinations of vectorisation and
parallelisation. The baseline has been set to the variant of the program that used
no vectorisation and no parallelisation. Tests have been run on the machine with
Intel Xeon 1220v2 CPU with 4 cores and no hyper-threading ability.

The times presented in the table show the benefits that can be achieved
by the vectorisation of the monotonicity algorithm, which are 10 % on average.
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Table 1. Comparison of the computation times for Example 1

Bridge 1 Bridge 4 Bridge 5 Bridge 6

no vectorisation; no parallelisation 76.09 76.38 77.06 77.27

forced vectorisation; no parallelisation 98.04 97.4 98.17 98.04

auto vectorisation; no parallelisation 69.61 69.79 70.09 70.18

auto vectorisation; auto parallelisation 69.14 71.76 21.26 21.67

no vectorisation; Cilk parallelisation 22.68 22.71 22.80 23.17

auto vectorisation; Cilk parallelisation 20.72 20.59 19.23 19.36

auto vectorisation; TBB parallelisation 18.68 19.93 19.03 19.06

Automatic parallelisation does not improve the processing times and in one
case it consumes even more time. This is due to the fact, that compiler cannot
be sure that the processing data are fully independent. When Cilk and TBB
methods have been used, the improvement is significant and when combined
with vectorisation they can improve the processing times up to four times.

Example 2 (Baltimore bridge built in 1870). Consider the plane truss structure
shown in Fig. 3 subjected to downward forces of P1 = 80[kN ] at node 11, P2 =
120[kN ] at node 12 and P1 at node 15; Young’s modulus Y = 2.1 × 1011 [Pa],
cross-section area C = 0.004[m2], and length L = 1[m]. Assume that the stiffness
of 23 bars is uncertain by ±5%. This gives 23 interval parameters.

Fig. 3. Example 2: Baltimore bridge

The comparison of the performance of different variants of code vectorisation
and paralellisation is presented in Table 2. Again the tests have been run on Intel
Xeon 1220v3 processor with 4 cores. For the more complex problem the benefit
in processing times is higher and equals up to 15 %. When we combine either
Cilk or TBB parallelisation method with vectorisation the overall improvement
reaches more than four times. The difference between both two fork-joint models
is unconvincing, so each of them can be successfully applied. The overall com-
putational experiments prove, that the more complex problem is the more is the
benefit from using parallelisation and vectorisation.
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Table 2. Comparison of the computation times for Example 2

Bridge 1 Bridge 4 Bridge 5 Bridge 6

no vectorisation; no parallelisation 150.08 150.29 149.52 149.86

forced vectorisation; no parallelisation 203.61 204.03 203.25 203.39

auto vectorisation; no parallelisation 131.73 131.32 130.59 130.55

auto vectorisation; auto parallelisation 131.21 130.11 129.61 129.56

no vectorisation; Cilk parallelisation 41.67 41.57 41.31 40.85

auto vectorisation; Cilk parallelisation 36.73 35.89 35.75 36.06

auto vectorisation; TBB parallelisation 36.09 35.57 35.39 35.76

6 Conclusions

Checking the sign of the derivatives is a clue to test the global monotonicity of
the solution of parametric linear systems. The global monotonicity enables cal-
culating the interval hull solution easily by solving at most 2n real systems. The
main deficiency of the monotonicity approach is its poor performance. As shown
by the performed experiments, the performance of the monotonicity approach
can be improved by using techniques such as vectorisation and parallelisation,
which are available for contemporary C++ and Fortran compilers like Visual
C++, Gnu cpp or Intel compiler in Parallel Studio XE.

The presented methodology can be applied to any problem which requires
solving linear systems with input data dependent on uncertain parameters. The
monotonicity approach is also a crucial acceleration techniques for interval global
optimisation applied for the problem of solving parametric interval linear sys-
tems. The improved version of monotonicity approach can significantly decrease
the computational time of the interval global optimisation.
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1 Introduction

Model-Predictive Control (MPC) can be applied for several systems. It has
important advantages with respect to classical PID controllers. They include
robustness and possibility of taking constraints on the control variables into
account. Also, it is natural to use it for nonlinear systems, while PID requires
linear ones – at least locally.

As it reduces the problem of finding the control to an optimization problem,
interval methods can be applied. This fact has been noticed by MPC experts,
who developed interval algorithms to compute the control, satisfying certain
conditions on the predicted behavior; cf. [5,16,17]. Yet the problem is hard and
it seems to high knowledge on interval algorithms is required to provide well-
tuned algorithms. General-purpose interval solvers do not seem to be adequate to
features of this specific problem. Hence, we would like to encourage other interval
researchers to contribute to this important topic. Some interesting examples of
such contributions are [6,21,22].

2 Model-Predictive Control

We want to compute the control uk =
(
uk(1), . . . , uk(nu)

)T ∈ R
nu at state k.

We might not know the current state xk =
(
xk(1), . . . , xk(nx)

)T of the sys-
tem precisely, but we have some information on it (e.g., the interval xk ⊆ R

nx

guaranteed to contain xk).
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For any sequence of controls uk, uk+1, . . . , uk+N we can compute predictions
of the states: xk+1|k, xk+2|k, . . . , xk+N |k. These predictions are made, based on
the model (hence the name of the approach) of the system:

xk+1 = f(xk, uk, wk), (1)

where wk is the disturbance. Function f(·) can, in general, be nonlinear.
In the simplest case, there are no disturbances, xk+1 = f(xk, uk) and – for a

known control policy – we can compute precise predictions of all future states.
If we have a quality measure Q(u, x), we can optimize it:

min
u

Q(u, x) (2)

s.t.
xl+1 = f(xl, ul), l = k, k + 1, . . . , l + N,

thus reducing a control problem to an optimization problem. In the above
formulae, we denote the whole sequences of controls and states by: u =
(uk, . . . , uk+N )T , x = (xk, . . . , xk+N )T .

What is the prediction horizon N? It depends on the problem what control
horizon we have. In general, the control horizon can be finite or infinite. The
prediction horizon is finite, usually, and its appropriate choice is crucial for both
correctness and convergence of the control algorithm. Details on how to choose
it can be found, e.g., in [22]; in our study we treat it as given.

When do we solve the above optimization problem and what control do we,
actually, apply? There are various possibilities (see, e.g., [21]), but usually, we
solve the optimization problem at each stage k, apply the first control uk and,
in the next stage, we re-compute further control variables.

Please note, the control is (or – can be) suboptimal, because:

– a finite horizon N is considered in each stage, while the process will (probably)
continue after it,

– the disturbances might affect the result.

2.1 Dual Mode MPC

PID regulators can be applied to linear systems – or at least linearized ones. In
a small vicinity of the linearization point (the state and reference control value),
PID regulators (and many other more or less traditional approaches to control)
perform reasonably well. The most important goal for MPC is to drive the system
into the proper region, where less sophisticated algorithms are sufficient.

Such an approach, i.e., switching between MPC and a less advanced algo-
rithm, is called dual mode MPC and is the most common situation (not the
only one, though – e.g., [6]) to apply interval methods; cf. [5,16]. We adopt this
approach, also.

In this case, the main feature of MPC, in which we are interested, is robust-
ness.
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When our goal is to change the system state robustly, the disturbances can
be treated in the min-max manner:

min
u

max
w

Q(x, u, w).

What we want is making the system move to the given state set for any possible
disturbances values.

This approach can be extended by using interval representations of random
variables (see, e.g., [11,14]). This results in robust optimization of the objective’s
expected value:

min
u

E
w

Q(x, u, w).

This interesting approach will not be considered in the paper, but can be a
fruitful subject of future research.

3 Implementation

We want to solve the equality-constrained optimization problem (2). There are
many instances of the interval branch-and-bound method that can be applied to
it; cf. [7,9,23].

Before we describe the overall algorithm, let us consider the constraints under
solution.

We adopt the notation of [10], where intervals and interval vectors are
denoted by boldface italics (e.g., x, y, etc.) while inclusion functions, evaluated
in interval arithmetic – by sanserif letters (e.g., f, g, etc.).

3.1 Solving Constraints

The problem has several non-typical properties. The most important of them
is the structure of constraints. Actually, they give explicit formulae for some
variables and it is very easy to process them using hull-consistency [4]. Also, this
is equivalent to narrowing using the interval Newton operator:

xl+1(i) = mid xl+1(i) − f(xl,ul) − mid xl+1(i)

∂

(
f(xl,ul)−xl+1(i)

)

∂xl+1(i)

= (3)

= mid xl+1(i) − f(xl,ul) − mid xl+1(i)
−1

=

= f(xl,ul)

This means, we can use the formulae:

xnew
k+1 = f(xk,uk), xk+1 = xk+1 ∩ xnew

k+1, (4)

for narrowing.
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Also, verifying xnew
k+1 ⊆ xk+1 proves that there is a (unique) solution – as in

other forms of the interval Newton operator (cf. [7,9,12,23]).
If we want to solve a constraint with respect to xk(i), i = 1, . . . , nx or to

uk(i), i = 1, . . . , nu, the situation is a bit more difficult. Unlike [18] we do not
assume that constraints can be reformulated to obtain explicit formulae for these
variables, so we have to use a Newton operator in a more traditional form. We
choose the Gauss-Seidel operator:

xnew
k (i) = x̌k(i) −

(
f
(
ǔk(i), x̌k(i)

) −
nx∑

j=1,j �=i

Ax
ij · (

xk(j) − x̌k(j)
)

+

−
nu∑
j=1

Au
ij · (

uk(j) − ǔk(j)
) − xk+1

)
/Ax

ii,

unew
k (i) = ǔk(i) −

(
f
(
ǔk(i), x̌k(i)

) −
nx∑
j=1

Ax
ij · (

xk(j) − x̌k(j)
)

+

−
nu∑

j=1,j �=i

Au
ij · (

uk(j) − ǔk(j)
) − xk+1

)
/Au

ii.

In the above formulae, Ax and Au are submatrices of the Jacobi matrix of
f(uk,xk) and quantities with a check denote midpoints (for brevity).

These narrowing operators are applied for all i = 1, . . . , nx and for all i =
1, . . . , nu – to narrow all xk’s and uk’s (it is an underdetermined equation, cf.
[12,13]).

Forward and backward iteration. In the beginning we narrow forward all states
starting from the initial state (to obtain initial bounds on xk for k = 1, . . . , N .
Then, we perform backward narrowing for states k = N − 1, N − 2, . . . , 1 to
narrow bounds for xk’s and uk’s.

Both forward and backward narrowing are performed after each bisection –
always starting at k, for which one of the control variable domains had been
bisected. As in [18], when no improvement is obtained for some xk, we break
narrowing as it will improve nothing further, without another bisection.

3.2 Branch-and-Bound Method

We have two kinds of variables: u and x. Boxes contain both of them – the pair
(u,x) – but bisection is performed over u’s, only. Ranges on x’s are computed
according to the transfer Eq. (4).

Our implementation is going to be parallel – the concurrency is obtained
using the task-based approach of TBB [2]. A convenient version of the b&b
algorithm is the one presented in [19]. It can be expressed by the pseudocode,
presented in Algorithm 1.
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Algorithm 1. Branch-and-bound method – Lyudvin’s version
Require: u(0),x(0), f,Q, ε
1: L = {(u(0),x(0))}
2: q = Q(u(0),x(0))
3: qopt = q {upper bound on the global minimum}
4: γ = q + widq

105
{threshold value}

5: repeat
6: for all (u,x) ∈ L do
7: narrow x and u
8: q = Q(u,x)
9: if (q < threshold) then

10: put (u,x) to Lcache

11: else
12: put (u,x) to Lother

13: end if
14: end for
15: while (Lcache! = ∅) do
16: take (u,x) from Lcache

17: process (u,x) using narrowing tests
18: update qopt, if possible
19: if (the box has been discarded) then
20: continue
21: else if (widu < ε) then
22: put (u,x) to Lsol

23: else
24: bisect u and put subboxes to Lcache or Lother, according to the objective

values
25: end if
26: end while
27: γ = γ · 1.1 {update the threshold value}
28: L = Lother

29: until Lother == ∅
30: discard all (u,x) ∈ Lsol such that Q(u,x) > qopt
31: return Lsol

3.3 Processing a Box

In the b&b schema, it is important to choose proper tools to process a single
box. Some of them have already been presented in Subsect. 3.1. Other techniques
include:

– discarding boxes for which the objective exceeds the value qopt; see Algo-
rithm1,

– using gradients to prune the boxes, cutting off regions with too high objective
value – in a similar manner as [20].

In this context, an interesting is to use so-called total derivatives.



Interval Model-Predictive-Control Solver 469

3.4 Total Derivatives

Q, as defined in (2), is q function of several variables uk and xk for k = 1, . . . , N .
Please note, these variables are not independent: each state xk depends on earlier
states and controls.

The gradient of a function is the vector of partial derivatives. But in our case
an interesting information is carried by the vector of all total derivatives with
respect to uk, i.e.:

dQ

duk
=

∂Q

∂uk
+

N∑
i=k+1

∂Q

∂xi
· dQ

dxi
. (5)

Thanks to using total derivatives, we can perform a form of the monotonicity
test (see, e.g., [9]), which would not be applicable, otherwise, as the problem is
equality constrained.

Unfortunately, computing total derivatives is a relatively time-consuming
operation, that would not always be worthwhile. Comparison of algorithm ver-
sions using total derivatives or not, will be presented in Sect. 4.

3.5 Wrapping Effect

Wrapping effect is encountered in virtually all problems in which interval com-
putations are chained – computing sequences, solving differential equations, dif-
ference equations, etc. Some papers, e.g., [5,17], suggest using the arithmetic of
zonotopes [15] to prevent the exponential increase of errors. Others, e.g., [18],
suggest using Taylor arithmetic.

The author tried to use zonotopes, but did not obtain satisfying results.
Even if the computations were a bit more precise, the overhead of computing
all the derivatives was very large. Computing f(·) in simple interval arithmetic
performed better.

This might be caused by some features of our implementation, e.g., we do
not use the cascade reduction, described in [15]. This is going to be subject to
future research.

Also, we tested switching between using and not using zonotopes, according
to the box width. If the maximal diameter is below a given threshold value, we
use the approximation based on zonotopes; for larger boxes – the traditional
interval arithmetic is used.

3.6 Filtering

In this paper we assume that we can observe the state of the system precisely.
However, in many practical problems the state is not measured with a significant
error. In this case, we have to estimate the current state value xk from current
(and possibly previous) system outputs yk.

Solving the equations system g(uk,xk) = yk using interval methods is
straightforward (cf. [8]). Also, zonotopes can be applied directly (see, e.g., [5]).
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4 Computational Experiments

Numerical experiments have been performed on a computer with 4 cores (allow-
ing hyper-threading), i.e., an Intel Core i7-3632QM with 2.2 GHz clock. The
machine ran under control of a 64-bit Manjaro 0.8.8 GNU/Linux operating sys-
tem with the GCC 4.8.2, glibc 2.18 and the Linux kernel 3.10.22-1-MANJARO.

The solver has been written in C++ and compiled using the GCC compiler
(with the option enabling C++11 standard). The C-XSC library (version 2.5.3)
[1] was used for interval computations. The parallelization was done with TBB
4.2, update 2 [2]. OpenBLAS 0.2.8 [3] was linked for BLAS operations.

The parallelization of four threads has been considered.

4.1 Example – The Pendulum Problem

This example is taken from [18]. We have a horizontally movable carriage on
which a pendulum in mounted. We want to set the acceleration u ∈ R of the
carriage to control position q and velocity q̇ of the pendulum. Specifically, we
want to set it to a zero position and keep it there.

The state is x = (q, q̇)T ∈ R
2. The initial state is assumed in [18] to be

(−π, 0)T

The system can be described by the following differential equations:

ẋ(1) = x(2), (6)
ẋ(2) = Ksin · sin x(1) − Kcos · u · cos x(2).

This results in the following transition equations:

xk+1(1) = xk(1) + δ · xk(2), (7)

xk+1(2) = xk(2) + δ ·
(
Ksin · sin x(1) − Kcos · u · cos x(2)

)
.

The objective to minimize is:

Q(u, x) =
N∑

k=1

(
u2

k + 0.5xk(1)2 + 0.5xk(2)2
)
.

Values of all parameters and bounds are given in tables in [18].

4.2 Numerical Results

We consider nine versions of the b&b algorithm. Description of each of them
consists of two parts:

– does it use zonotopes: “no zono”,”zono” or “zono-switch” – switching between
not using them for boxes with width exceeding a given threshold (equal to 1.0),

– does it use total derivatives: “no total”, “total” or tot-switch” – switching
between not using them for boxes with width exceeding a given threshold
(also, equal to 1.0).
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Table 1. Results the example with no additional constraints on states

Alg. version f evals ∇f evals obj.evals ∇ obj.evals ∇ total bisecs sol.boxes time

no zono, no total 62272197 5236810 10755619 5691059 — 2855715 661842 148.9 s

no zono, total 471898 1673420 142083 0 36263 22468 12 7.9 s

no zono, tot-switch 1591850 773594 409509 119795 14087 77126 12 5.8 s

zono, no total 56008017 56008062 9813837 5115933 — 2572451 587292 304.3 s

zono, total 623772 2696607 224399 0 46063 30951 8 12.1 s

zono, tot-switch 1781893 2370898 638748 132553 13089 87305 8 13.0 s

zono-switch, no total 55822335 55147023 9435497 5104823 — 2562597 587292 296.9 s

zono-switch, total 464108 1920419 140145 0 35737 22205 8 8.8 s

zono-switch, tot-switch 1590710 1545488 409112 119795 14003 77084 8 9.2 s

The following notation is used in the Table 1:

– alg. version: “no zono, no total”, “no zono, total”, “no zono, tot-switch”,
“zono, no total”, “zono, total”, “zono, tot-switch”, “zono-switch, no total”,
“zono-switch, total” or “zono-switch, tot-switch” (cf. the above paragraph),

– f evals – number of f’s evaluations,
– ∇f evals – number of f’s gradients evaluations,
– obj.evals – number of Q’s evaluations,
– ∇ obj.evals – number of Q’s gradients evaluations,
– ∇ total – number of Q’s total derivative’s vectors evaluations,
– bisecs –number of bisections,
– sol.boxes –number of resulting boxes in the list Lsol,
– time – execution time.

5 Conclusions

We presented an attempt to apply interval methods in solving MPC problems.
Results obtained by other researcher are compared briefly and commented.

It occurred very worthwhile to use total derivatives – both in terms of com-
putation time and accuracy. To the best knowledge of the author, using total
derivatives was an original idea, not considered in other papers. It is worth not-
ing that total derivatives work best for relatively small boxes (for too large ones,
their interval enclosures are too wide). Hence, switching between using or not
using them occurred to be worthwhile, also. It outperforms the version using
total derivatives always at least for the case of not using zonotopes. Improv-
ing the heuristic for this switching is going to be one of the subjects of future
research.

As for using zonotopes, our results differ from these obtained by others. E.g.,
using the Kühn method, based on zonotopes, did not occur worthwhile in our
experiments; cf. [5] or [17]. Reasons of that remain to be determined.

As for switching between using zonotopes and not using them, they give
intermediate results. The version not using zonotopes at all is always the most
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efficient – even, if a bit less accurate (higher number of solution boxes resulting
from the algorithm).

There are still wide possibilities of tuning the algorithm. They are going to
be studied in our future research.

Acknowledgments. The author is grateful to Adam Woźniak for inspiration, inter-
esting discussions, support and all the invaluable help.
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Abstract. An interval version of the conventional nine-point finite dif-
ference method for solving the two-dimensional Laplace equation with
the Dirichlet boundary conditions is proposed. This interval scheme is
interesting due to the fact that the local truncation error of the con-
ventional method is of the high (fourth) order, but it becomes of the
sixth order for square mesh. In the theoretical approach presented, this
error is bounded by some interval values and we can prove that the exact
solution belongs to the interval solutions obtained.

Keywords: Interval nine-point finite difference method · Interval arith-
metic · Laplace equation

1 Introduction

Interval methods together with interval arithmetic are eagerly developed since
the early papers by Sunaga [17] and Moore [11,12] appeared. Such methods
represent quite a new approach to numerical computations. It is due to the fact
that interval solutions obtained with such methods include the exact solution of
the problem. An approach that we can choose to construct an interval method
for solving the initial-boundary value problems is based on conventional finite
difference methods (FDMs). As examples, we can mention an interval FDM of
Crank-Nicolson type for solving the heat conduction equation with the Dirichlet
and mixed boundary conditions [5,6,9], an interval backward FDM for solving
the diffusion equation [4], an interval FDM for solving the wave equation [18,19],
an interval central FDM for solving the Poisson equation [3] and some interval
FDM applied for numerical modeling of skin tissue heating [10]. Verified solutions
of the 3D Laplace equation are also presented in [8]. Finally, an approach of
Nakao et al. [13]. They introduce the constructive a priori error estimates for a
full discrete approximation of the heat equation.

A conventional nine-point FDM was considered e.g. by Kantorovich and
Krylov [7], Orszag and Israeli [14], Rosser [15], Anderson et al. [1], Boisvert [2]
because of the high order of the local truncation error. This error is O

(
h4 + k4

)
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(compare also with [16]), but it becomes O
(
h6

)
for square mesh (see e.g. [7,15]).

An interval FDM for solving the Laplace equation with the Dirichlet boundary
conditions proposed in the paper is based on the conventional nine-point FD
scheme. In the theoretical approach presented, the local truncation error of the
conventional method is bounded by some interval values. In such a form it rep-
resents a scheme for computation of guaranteed results and we can prove that
the exact solution belongs to the interval solutions obtained.

2 Dirichlet Problem and Conventional Nine-Point Finite
Difference Method

We consider the Laplace equation with the Dirichlet boundary conditions

∇2u (x, t) ≡ ∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y) = 0, (x, y) ∈ Ω, (1)

u (x, y) = ϕ (x, y) , (x, y) ∈ ∂Ω. (2)

Subsequently, we take a rectangular domain Ω, with the boundary ∂Ω, such that
Ω = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}. We have u(0, y) = ϕ1(y), u(x, 0) = ϕ2(x),
u(a, y) = ϕ3(y), u(x, b) = ϕ4(x), and we also assume that ϕ1 (0) = ϕ2 (0),
ϕ2 (a) = ϕ3 (0), ϕ3 (b) = ϕ4 (a), ϕ4 (0) = ϕ1 (b).

First, we choose two integers n and m. Then, we find the mesh constants h
and k such that h = a/n and k = b/m. Hence, we get the grid points (xi, yj)
where xi = ih for i = 0, 1, . . . , n and yj = jk for j = 0, 1, . . . ,m.

Now we derive the nine-point finite difference scheme together with an appro-
priate local truncation error. First, we expand u in the Taylor series about (xi, yj)
and evaluate it at the points (xi+1, yj) and (xi−1, yj). We have

u (xi+1, yj) = u (xi, yj) +
∂u

∂x
(xi, yj) h +

1
2

∂2u

∂x2
(xi, yj) h2 +

1
6

∂3u

∂x3
(xi, yj) h3

+
1
24

∂4u

∂x4
(xi, yj) h4 +

1
120

∂5u

∂x5
(xi, yj) h5 +

1
720

∂6u

∂x6

(
ξ+i , yj

)
h6, (3)

u (xi−1, yj) = u (xi, yj) − ∂u

∂x
(xi, yj) h +

1
2

∂2u

∂x2
(xi, yj) h2 − 1

6
∂3u

∂x3
(xi, yj) h3

+
1
24

∂4u

∂x4
(xi, yj) h4 − 1

120
∂5u

∂x5
(xi, yj) h5 +

1
720

∂6u

∂x6

(
ξ−
i , yj

)
h6, (4)

where ξ+i ∈ (xi, xi+1), ξ−
i ∈ (xi−1, xi). We add the formulas (3)–(4) and we get

u (xi+1, yj) + u (xi−1, yj) = 2u (xi, yj) +
∂2u

∂x2
(xi, yj) h2 +

1
12

∂4u

∂x4
(xi, yj) h4

+
1

720
h6

[
∂6u

∂x6

(
ξ+i , yj

)
+

∂6u

∂x6

(
ξ−
i , yj

)]
. (5)

As a consequence of the Darboux's theorem we have

∂6u

∂x6
(ξi, yj) =

1
2

[
∂6u

∂x6

(
ξ+i , yj

)
+

∂6u

∂x6

(
ξ−
i , yj

)]
, (6)
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for some ξi ∈ (xi−1, xi+1). Subsequently, we use the notation

δ2xu(xi, yj) = u(xi+1, yj) − 2u(xi, yj) + u(xi−1, yj),

δ2yu(xi, yj) = u(xi, yj+1) − 2u(xi, yj) + u(xi, yj−1).

Then, with (6) the formula (5) can we written as
[
1 +

1
12

h2 ∂2

∂x2

]
∂2u

∂x2
(xi, yj) =

δ2xu(xi, yj)
h2

− 1
360

h4 ∂6u

∂x6
(ξi, yj) . (7)

Note that applying the above procedure with respect to yj we have
[
1 +

1
12

k2 ∂2

∂y2

]
∂2u

∂y2
(xi, yj) =

δ2yu(xi, yj)
k2

− 1
360

k4 ∂6u

∂y6
(xi, ηj) , (8)

for some ηj ∈ (yj−1, yj+1).
Now we substitute ∂2u/∂x2 (xi, yj) and ∂2u/∂y2 (xi, yj), obtained from (7)–

(8), to the Laplace Eq. (1) expressed at the grid points (xi, yj). We have

δ2xu(xi, yj)
h2

+
δ2yu(xi, yj)

k2

+
1
12

k2

h2

[
∂2u

∂y2
(xi+1, yj) − 2

∂2u

∂y2
(xi, yj) +

∂2u

∂y2
(xi−1, yj)

]

+
1
12

h2

k2

[
∂2u

∂x2
(xi, yj+1) − 2

∂2u

∂x2
(xi, yj) +

∂2u

∂x2
(xi, yj−1)

]
(9)

=
[
1 +

1
12

k2 ∂2

∂y2

]
1

360
h4 ∂6u

∂x6
(ξi, yj) +

[
1 +

1
12

h2 ∂2

∂x2

]
1

360
k4 ∂6u

∂y6
(xi, ηj) .

Then, we express the second derivatives of u in (9) as follows

∂2u

∂y2
(xi+1, yj) =

1
k2

δ2yu(xi+1, yj) − k2

12
∂4u

∂y4

(
xi, η

(1)
j

)
, (10)

∂2u

∂y2
(xi, yj) =

1
k2

δ2yu(xi, yj) − k2

12
∂4u

∂y4

(
xi, η

(2)
j

)
, (11)

∂2u

∂y2
(xi−1, yj) =

1
k2

δ2yu(xi−1, yj) − k2

12
∂4u

∂y4

(
xi−1, η

(3)
j

)
, (12)

∂2u

∂x2
(xi, yj+1) =

1
h2

δ2xu(xi, yj+1) − h2

12
∂4u

∂x4

(
ξ
(1)

i , yj+1

)
, (13)

∂2u

∂x2
(xi, yj) =

1
h2

δ2xu(xi, yj) − h2

12
∂4u

∂x4

(
ξ
(2)

i , yj

)
, (14)

∂2u

∂x2
(xi, yj−1) =

1
h2

δ2xu(xi, yj−1) − h2

12
∂4u

∂x4

(
ξ
(3)

i , yj−1

)
, (15)

where ξ
(1)

i , ξ
(2)

i , ξ
(3)

i ∈ (xi−1, xi+1) and η
(1)
j , η

(2)
j , η

(3)
j ∈ (yj−1, yj+1). Substitut-

ing (10)–(15) to (9), we obtain

α [u (xi+1, yj) + u (xi−1, yj)] + β [u (xi, yj+1) + u (xi, yj−1)] + u (xi+1, yj+1)

+ u (xi+1, yj−1) + u (xi−1, yj+1) + u (xi−1, yj−1) − 20u (xi, yj) = R̂i,j , (16)
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where

R̂i,j = c1

[
∂6u

∂x6
(ξi, yj) +

1
12

k2 ∂8u

∂y2∂x6
(ξi, yj)

]

+ c2

[
∂6u

∂y6
(xi, ηj) +

1
12

h2 ∂8u

∂x2∂y6
(xi, ηj)

]
(17)

+ c3

[
∂4u

∂y4

(
xi+1, η

(1)
j

)
− 2

∂4u

∂y4

(
xi, η

(2)
j

)
+

∂4u

∂y4

(
xi−1, η

(3)
j

)]

+ c4

[
∂4u

∂x4

(
ξ
(1)

i , yj+1

)
− 2

∂4u

∂x4

(
ξ
(2)

i , yj

)
+

∂4u

∂x4

(
ξ
(3)

i , yj−1

)]
,

α = 2
5k2 − h2

h2 + k2
, β = 2

5h2 − k2

h2 + k2
,

c1 =
h6k2

30 (h2 + k2)
, c2 =

k6h2

30 (h2 + k2)
, c3 =

k6

12 (h2 + k2)
, c4 =

h6

12 (h2 + k2)
.

From the boundary conditions we have

u (x0, yj) = ϕ1 (yj) , u (xn, yj) = ϕ3 (yj) , j = 0, 1, . . . ,m,

u (xi, y0) = ϕ2 (xi) , u (xi, ym) = ϕ4 (xi) , i = 1, 2, . . . , n − 1. (18)

Now we transform the exact formula (16) with (17)–(18) into the appropriate
separate forms in accordance with the position in the grid. Such approach is
reasonable in the case of an explicit formulation of the interval couterpart of the
conventional nine-point finite difference method. We have

u (x2, y2) + αu (x2, y1) + βu (x1, y2) − 20u (x1, y1)

= −u (x2, y0) − u (x0, y2) − u (x0, y0) − αu (x0, y1) − βu (x1, y0) + R̂1,1, (19)

u (x2, yj+1) + u (x2, yj−1) + αu (x2, yj) + β [u (x1, yj+1) + u (x1, yj−1)]

− 20u (x1, yj) = −u (x0, yj+1) − u (x0, yj−1) − αu (x0, yj) + R̂1,j ,

j = 2, 3, . . . ,m − 2, (20)

u (x2, ym−2) + αu (x2, ym−1) + βu (x1, ym−2) − 20u (x1, ym−1) = −u (x2, ym)

− u (x0, ym) − u (x0, ym−2) − αu (x0, ym−1) − βu (x1, ym) + R̂1,m−1, (21)

u (xi+1, y2) + u (xi−1, y2) + α [u (xi+1, y1) + u (xi−1, y1)] + βu (xi, y2)

− 20u (xi, y1) = −u (xi+1, y0) − u (xi−1, y0) − βu (xi, y0) + R̂i,1,

i = 2, 3, . . . , n − 2, (22)

u (xi+1, yj+1) + u (xi+1, yj−1) + u (xi−1, yj+1) + u (xi−1, yj−1) + α [u (xi+1, yj)

+u (xi−1, yj)] + β [u (xi, yj+1) + u (xi, yj−1)] − 20u (xi, yj) = R̂i,j ,

i = 2, 3, . . . , n − 2, j = 2, 3, . . . ,m − 2, (23)
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u (xi+1, ym−2) + u (xi−1, ym−2) + α [u (xi+1, ym−1) + u (xi−1, ym−1)] + βu (xi, ym−2)

− 20u (xi, ym−1) = −u (xi+1, ym) − u (xi−1, ym) − βu (xi, ym) + R̂i,m−1,

i = 2, 3, . . . , n − 2, (24)

u (xn−2, y2) + αu (xn−2, y1) + βu (xn−1, y2) − 20u (xn−1, y1) = −u (xn, y2)

− u (xn, y0) − u (xn−2, y0) − αu (xn, y1) − βu (xn−1, y0) + R̂n−1,1, (25)

u (xn−2, yj+1) + u (xn−2, yj−1) + αu (xn−2, yj) + β [u (xn−1, yj+1) + u (xn−1, yj−1)]

− 20u (xn−1, yj) = −u (xn, yj+1) − u (xn, yj−1) − αu (xn, yj) + R̂n−1,j ,

j = 2, 3, . . . , m − 2, (26)

u (xn−2, ym−2) + αu (xn−2, ym−1) + βu (xn−1, ym−2)− 20u (xn−1, ym−1) = −u (xn, ym)

− u (xn, ym−2)− u (xn−2, ym)− αu (xn, ym−1)− βu (xn−1, ym) + R̂n−1,m−1. (27)

The formulas (19)–(27) can be given in the following matrix form

Cu = ÊC + ÊL, (28)

where

ui = [u (xi, y1) , u (xi, y2) , . . . , u (xi, ym−1)]
T

, i = 1, 2, . . . , n − 1,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

D G 0 . . . 0 0 0
G D G . . . 0 0 0
0 G D . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . D G 0
0 0 0 . . . G D G
0 0 0 . . . 0 G D

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, u =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

u3

...
un−3

un−2

un−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ÊC =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eC 1

eC 2

eC 3

...
eC n−3

eC n−2

eC n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, ÊL =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eL 1

eL 2

eL 3

...
eL n−3

eL n−2

eL n−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (29)

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−20 β 0 . . . 0 0 0
β −20 β . . . 0 0 0
0 β −20 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −20 β 0
0 0 0 . . . β −20 β
0 0 0 . . . 0 β −20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α 1 0 . . . 0 0 0
1 α 1 . . . 0 0 0
0 1 α . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . α 1 0
0 0 0 . . . 1 α 1
0 0 0 . . . 0 1 α

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

and

eC 1,1 = −u (x2, y0) − u (x0, y2) − u (x0, y0) − αu (x0, y1) − βu (x1, y0) ,

eC 1,j = −u (x0, yj+1) − u (x0, yj−1) − αu (x0, yj) , j = 2, 3, . . . ,m − 2,

eC 1,m−1 = −u (x2, ym) − u (x0, ym) − u (x0, ym−2) − αu (x0, ym−1) (31)
−βu (x1, ym) ,
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eC i,1 = −u (xi+1, y0) − u (xi−1, y0) − βu (xi, y0) , i = 2, 3, . . . , n − 2
eC i,j = 0, i = 2, 3, . . . , n − 2, j = 2, 3, . . . ,m − 2, (32)

eC i,m−1 = −u (xi+1, ym) − u (xi−1, ym) − βu (xi, ym) , i = 2, 3, . . . , n − 2,

eC n−1,1 = −u (xn, y2) − u (xn, y0) − u (xn−2, y0) − αu (xn, y1) − βu (xn−1, y0) ,

eC n−1,j = −u (xn, yj+1) − u (xn, yj−1) − αu (xn, yj) , j = 2, 3, . . . , m − 2,

eC n−1,m−1 = −u (xn, ym) − u (xn, ym−2) − u (xn−2, ym) − αu (xn, ym−1) (33)
−βu (xn−1, ym) ,

eL i =
[
R̂i,1, R̂i,2, . . . , R̂i,m−1

]T
, i = 1, 2, . . . , n − 1. (34)

Note that dim C = (n − 1) × (n − 1) , dim u = dim ÊC = dim ÊL = (n − 1) × 1,
dim D = dim G = (m − 1) × (m − 1).

Remark 1. Let ui,j approximate u (xi, tj). If we also ignore the error terms
given in components of ÊL, then from (19)–(27) (or (28) with (29)–(34)) with
(17), we get the conventional nine-point finite difference method with the local
truncation error of order O

(
h4 + k4

)
.

3 Interval Nine-Point Finite Difference Method

Now we make the following assumptions about values in midpoints of the deriv-
atives included in the local truncation error R̂i,j of the conventional method.
For the interval approach applied to (16) (or (19)–(27)) with (17) we assume
that there exist the intervals M

(X)
i,j , M

(Y )
i,j , S

(X)
i,j , S

(Y )
i,j , Q

(X)
i,j , Q

(Y )
i,j , such that

the following relations hold

– for i = 1, 2, . . . , n − 1, j = 1, 2, . . . , m − 1, ξi ∈ (xi−1, xi+1), ηj ∈ (yj−1, yj+1),

∂6u

∂x6
(ξi, yj) ∈ M

(X)
i,j =

[
M

(X)
i,j , M

(X)
i,j

]
,

∂6u

∂y6
(xi, ηj) ∈ M

(Y )
i,j =

[
M

(Y )
i,j , M

(Y )
i,j

]
, (35)

∂8u

∂y2∂x6
(ξi, yj) ∈ S

(X)
i,j =

[
S

(X)
i,j , S

(X)
i,j

]
,

∂8u

∂x2∂y6
(xi, ηj) ∈ S

(Y )
i,j =

[
S

(Y )
i,j , S

(Y )
i,j

]
, (36)

– for i = 1, 2, . . . , n − 1, ξ
(1)

i , ξ
(2)

i , ξ
(3)

i ∈ (xi−1, xi+1),

∂4u

∂x4

(
ξ
(1)

i , yj+1

)
∈ Q

(X)
i,j =

[
Q(X)

i,j
, Q

(X)

i,j

]
, j = 0, 1, . . . ,m − 2,

∂4u

∂x4

(
ξ
(2)

i , yj

)
∈ Q

(X)
i,j =

[
Q(X)

i,j
, Q

(X)

i,j

]
, j = 1, 2, . . . ,m − 1, (37)

∂4u

∂x4

(
ξ
(3)

i , yj−1

)
∈ Q

(X)
i,j =

[
Q(X)

i,j
, Q

(X)

i,j

]
, j = 2, 3, . . . ,m,
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– for j = 0, 1, . . . ,m − 1, η
(1)
j , η

(2)
j , η

(3)
j ∈ (yj−1, yj+1),

∂4u

∂y4

(
xi+1, η

(1)
j

)
∈ Q

(Y )
i,j =

[
Q(Y )

i,j
, Q

(Y )

i,j

]
, i = 0, 1, . . . , n − 2,

∂4u

∂y4

(
xi, η

(2)
j

)
∈ Q

(Y )
i,j =

[
Q(Y )

i,j
, Q

(Y )

i,j

]
, i = 1, 2, . . . , n − 1, (38)

∂4u

∂y4

(
xi−1, η

(3)
j

)
∈ Q

(Y )
i,j =

[
Q(Y )

i,j
, Q

(Y )

i,j

]
, i = 2, 3, . . . , n.

Now we denote by Xi, i = 0, 1, . . . , n, Yj , j = 0, 1, . . . ,m the intervals such that
xi ∈ Xi and yj ∈ Yj . Furthermore, Φ1 = Φ1 (Y ), Φ2 = Φ2 (X), Φ3 = Φ3 (Y ),
Φ4 = Φ4 (X) denote interval extensions of the functions ϕ1 = ϕ1 (y), ϕ2 = ϕ2 (x),
ϕ3 = ϕ3 (y), ϕ4 = ϕ4 (x), respectively. If we substitute (35)–(38) to (19)–(27)
with (17), then we get an interval nine-point finite difference scheme of the form

U2,2 + αU2,1 + βU1,2 − 20U1,1 = −U2,0 − U0,2 − U0,0 − αU0,1 − βU1,0 + R1,1, (39)

U2,j+1 + U2,j−1 + αU2,j + β [U1,j+1 + U1,j−1] − 20U1,j = −U0,j+1 − U0,j−1

− αU0,j + R1,j ,

j = 2, 3, . . . ,m − 2, (40)

U2,m−2 + αU2,m−1 + βU1,m−2 − 20U1,m−1 = −U2,m − U0,m − U0,m−2

− αU0,m−1 − βU1,m + R1,m−1, (41)

Ui+1,2 + Ui−1,2 + α [Ui+1,1 + Ui−1,1] + βUi,2 − 20Ui,1 = −Ui+1,0 − Ui−1,0

− βUi,0 + Ri,1,

i = 2, 3, . . . , n − 2, (42)

Ui+1,j+1 + Ui+1,j−1 + Ui−1,j+1 + Ui−1,j−1 + α [Ui+1,j + Ui−1,j ]
+ β [Ui,j+1 + Ui,j−1] − 20Ui,j = Ri,j ,

i = 2, 3, . . . , n − 2, j = 2, 3, . . . ,m − 2, (43)

Ui+1,m−2 + Ui−1,m−2 + α [Ui+1,m−1 + Ui−1,m−1] + βUi,m−2 − 20Ui,m−1

= −Ui+1,m − Ui−1,m − βUi,m + Ri,m−1,

i = 2, 3, . . . , n − 2, (44)

Un−2,2 + αUn−2,1 + βUn−1,2 − 20Un−1,1 = −Un,2 − Un,0 − Un−2,0 − αUn,1

− βUn−1,0 + Rn−1,1, (45)
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Un−2,j+1 + Un−2,j−1 + αUn−2,j + β [Un−1,j+1 + Un−1,j−1]
− 20Un−1,j = −Un,j+1 − Un,j−1 − αUn,j + Rn−1,j ,

j = 2, 3, . . . ,m − 2, (46)

Un−2,m−2 + αUn−2,m−1 + βUn−1,m−2 − 20Un−1,m−1 = −Un,m − Un,m−2

− Un−2,m − αUn,m−1 − βUn−1,m + Rn−1,m−1, (47)

where

Ri,j = c1

[
M

(X)
i,j +

1
12

k2S
(X)
i,j

]
+ c2

[
M

(Y )
i,j +

1
12

h2S
(Y )
i,j

]

+c3

[
Q

(Y )
i+1,j − 2Q

(Y )
i,j + Q

(Y )
i−1,j

]
+ c4

[
Q

(X)
i,j+1 − 2Q

(X)
i,j + Q

(X)
i,j−1

]
(48)

and

U0,j = Φ1 (Yj) , Un,j = Φ3 (Yj) , j = 0, 1, ...,m,

Ui,0 = Φ2 (Xi) , Ui,m = Φ4 (Xi) , i = 1, 2, ..., n − 1. (49)

The interval method (39)–(47) with (48) can be also represented in the following
matrix form

CU = EC + EL, (50)

where

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

...
Un−3

Un−2

Un−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, EC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EC 1

EC 2

EC 3

...
EC n−3

EC n−2

EC n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, EL =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EL 1

EL 2

EL 3

...
EL n−3

EL n−2

EL n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (51)

Ui = [Ui,1, Ui,2, . . . , Ui,m−1]
T

, i = 1, 2, . . . , n − 1, (52)

and

EC 1,1 = −U2,0 − U0,2 − U0,0 − αU0,1 − βU1,0,

EC 1,j = −U0,j+1 − U0,j−1 − αU0,j , j = 2, 3, . . . , m − 2, (53)
EC 1,m−1 = −U2,m − U0,m − U0,m−2 − αU0,m−1 − βU1,m,

EC i,1 = −Ui+1,0 − Ui−1,0 − βUi,0, i = 2, 3, . . . , n − 2,

EC i,j = 0, i = 2, 3, . . . , n − 2, j = 2, 3, . . . ,m − 2, (54)
EC i,m−1 = −Ui+1,m − Ui−1,m − βUi,m i = 2, 3, . . . , n − 2,
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EC n−1,1 = −Un,2 − Un,0 − Un−2,0 − αUn,1 − βUn−1,0,

EC n−1,j = −Un,j+1 − Un,j−1 − αUn,j , j = 2, 3, . . . ,m − 2, (55)
EC n−1,m−1 = −Un,m − Un,m−2 − Un−2,m − αUn,m−1 − βUn−1,m,

EL i = [Ri,1, Ri,2, . . . , Ri,m−1]
T

, i = 1, 2, . . . , n − 1. (56)

Note that dim U = dim EC = dim EL = (n − 1) × 1.
The last thing that should be considered is the method for solving the interval

linear system of Eq. (50). Following [12] let us consider a finite system of linear
algebraic equations of the form Ax = b, where A is an n-by-n matrix and b is
an n-dimensional vector (the coefficients of A and b are real or interval values).
Then, from [12], we have the following theorem.

Theorem 1. If we can carry out all the steps of a direct method for solving
Ax = b in the interval arithmetic (if no attempted division by an interval con-
taining zero occurs, nor any overflow or underflow), then the system has a unique
solution for every real matrix in A and every real vector in b, and the solution
is contained in the resulting interval vector X.

Taking into account Theorem 1, we can formulate the subsequent theorem
that concerns the interval solution obtained with the interval nine-point finite
difference method considered. The interval solution is such that the exact solu-
tion belongs to it.

Theorem 2. Let us assume that the local truncation error of the nine-point
finite difference scheme can be bounded by the appropriate intervals. Moreover,
let Φ1 = Φ1 (Y ), Φ2 = Φ2 (X), Φ3 = Φ3 (Y ), Φ4 = Φ4 (X) denote interval exten-
sions of the functions ϕ1 = ϕ1 (y), ϕ2 = ϕ2 (x), ϕ3 = ϕ3 (y), ϕ4 = ϕ4 (x)
given in the boundary conditions (2) formulated for the Laplace Eq. (1). If
u (0, yj) ∈ U0,j, u (a, yj) ∈ Un,j, j = 0, 1, ...,m, u (xi, 0) ∈ Ui,0, u (xi, b) ∈ Ui,m,
i = 0, 1, ..., n and the linear system of Eq. (50) corresponding to the interval nine-
point finite difference method (39)–(47) can be solved with some direct method in
the interval arithmetic (if no attempted division by an interval containing zero
occurs, nor any overflow or underflow), then for the interval solutions considered
it can be shown that u (xi, tj) ∈ Ui,j, i = 1, 2, . . . , n − 1, j = 1, 2, . . . ,m − 1.

4 Conclusions

The main contribution of the paper is an explicit formulation of the nine-point
finite difference scheme together with the local truncation error terms that are
ignored in a conventional approach. Based on it we managed to propose some
interval nine-point finite difference scheme. Taking into account the matrix repre-
sentation (50), the interval method considered allows us to compute a guaranteed
result. Further research would concern an algorithm for an approximation of the
endpoints of the error terms with some possibly high order finite differences and
a computer implementation of the interval method in the interval conventional
or multiple-precision floating-point arithmetic.
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Abstract. The simulation of pedestrian movement is an important tool
to ensure safety whenever many people have to be evacuated or pass
through an environment. Although there are many simulation models
for pedestrian dynamics, crucial aspects of human behaviour are still
being neglected. One of those behaviours is the search strategy humans
use to find someone or something within a building. We present three
possible search strategies for pedestrian simulation. Two are often used
as default implementations: random search and the optimal solution. The
third more plausibly agrees with findings from psychology, neuroscience
and related fields: a nearest room heuristic. We compare and evaluate
the strategies, present simulation results for two concrete scenarios, and
give a recommendation for computer models of human search behaviour.

Keywords: Pedestrian dynamics · Search strategies · Cognitive heuris-
tics · Travelling salesman problem

1 Introduction

Whenever many people come together, it is important to consider how they
move, navigate or, more generally, behave to ensure their safety and comfort.
Studying these dynamics has become a wide and active research field [7]. The
resulting complex systems must be formally analysed, implemented and vali-
dated, that is, tested with controlled experiments or field observations.

One approach to study the collective dynamics of pedestrian behaviour is
through microscopic computer simulation of pedestrian and crowd motion (see
[9,34] for reviews). Cellular automata (e.g. [4]) and social force models (e.g. [15])
are two major approaches. Phenomena, such as congestions and lane formation,
were reproduced with these models. More recent alternatives are the Optimal
Steps Model [27,30] and the Gradient Navigation Model [8]. While most of the
models focus on the locomotion and route-choice of pedestrians, modern concepts
from psychology and neuroscience are rarely considered.

In emergencies, but also in daily life, pedestrians often seek a specific spatial
goal: the exit door, their missing family members, or a certain office. This leads
us to the question: How do people search? Chu and Law [5] introduced general
search behaviour for pedestrians in an evacuation simulation but did not give
information on how to model the concrete search strategy.

c© Springer International Publishing Switzerland 2016
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In psychology, biology, and neuroscience researchers investigate the mechan-
ics and strategies that animals and humans use to perceive, navigate and search
their surroundings [2,10,16,23]. However, at this point, human search strate-
gies are not sufficiently well understood to easily carry results over to computer
algorithms.

Our goal is to analyse three fundamentally different search strategies through
specific but relevant search scenarios so that we can give first recommendations
on when to use which strategy. Two of the strategies, the random search and
the shortest path, are well defined mathematical algorithms and therefore are
convenient for implementation. But are these good choices for the simulation of
human behaviour? The third strategy is based on heuristic decision making in
the spirit of [13]. For this heuristic, each agent searches the closest room that
has not been searched yet [3,33].

For the evaluation of the strategies, we draw on findings from biology, psy-
chology, and neuroscience that relate to our research questions. Due to the vast
amount and breadth of related literature, our discussion must remain incom-
plete. However, we hope to start a discussion on search strategies for simulation
models of pedestrian behaviour.

The contribution is structured as follows: First we describe the search prob-
lem formally and present the scenarios we use for our investigation. With this
background, we discuss the three search strategies and their plausibility. Then,
we show simulation results produced with the three strategies. Finally, we discuss
the impact of our study, its limitations, and future directions.

2 Search Geometry and Simulation Model

We limit our study to search tasks in a building well known to the person. This
has two main reasons. First, in everyday situations, pedestrians are likely to
be in a well known building, like their office building, their favourite shopping
mall, or their family home. Second, search in an unknown building would add
additional complexity and touch on additional fields, such as cognitive maps,
path integration, and visual landmarks [6].

In our study, virtual pedestrians – called agents – start their search in one
room of a building and try to find a target of which it does not know the location.
They do know, however, the locations of the entrances to all rooms. We assume
that, as soon as an agent enters a room, they realize whether or not the target
is in the room, that is, whether or not to stop the search.

We formally describe the building through a graph. The building consists of
M rooms, which are connected through N doors. On both sides of each door,
we place a vertex. Thus, we have 2N vertices in total. Each vertex is assigned
to the room in which it is located. Two vertices are connected by an edge if
they are assigned to the same room or if they are located at the two sides of
the same door. Hence, there are at least 2N − 1 and at most N(N + 1)/2 edges
in the graph. The weight on an edge is the Euclidean distance between the two
vertices. See Fig. 1 for an illustration of such a graph.
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Fig. 1. Example of a building and the corresponding graph. Left: map of the building
with arbitrarily numbered rooms (blue numbers), and vertices next to each door (yellow
rectangles). Right: graph representation (Color figure online).

This representation of a building is derived from the idea of visibility graphs
[1,18,22]. Alternative representations are, for instance, graphs with only one
vertex at each door, and graphs with rooms as vertices, which are dual to the
description with rooms as edges. For an overview of graph representations of
buildings see [11]. Other possible weights on the edges are heuristic assessments
of distances or the actual travelling time necessary to walk from one vertex to
another. However, whether any of these graphs accurately describes the repre-
sentation of a building in the human mind remains an open question.

In this study, we use the Optimal Steps Model [27,28] with the personal space
approach [30] for agent locomotion. Once a vertex is chosen as intermediate goal,
agents follow the shortest path to the target while avoiding close proximity to
other agents or walls. For more details on the microscopic pedestrian simulation
model see [27,28,30]. The search strategies themselves are independent of the
locomotion model.

3 Comparison of Search Strategies

We present three search strategies for two buildings in which the agents know all
rooms. A complete search would lead through all rooms for all three strategies.
Agents search rooms only once, assuming that they know which rooms they have
visited already. However, rooms can be entered several times. This may be the
case if a room has to be crossed to reach another room. The search path describes
the route the agent chooses to walk through the building until the target is found.
The length of the search path is the distance the agent covers to find the target
or to search all rooms. Each search algorithms compiles a list of targets for the
pedestrians and changes the target if required during the simulation. Hence, the
algorithms are executed at the beginning of the simulation and at each time step
of the locomotion model.
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3.1 Random Search

The agent randomly selects the next room among the rooms it has not yet
visited. No search direction or room in the building is prioritized in the search
sequence. The algorithmic formulation of this strategy is very simple and fast. It
has complexity O(M), where M is the number of rooms. It is easy to implement
an requires only a list of room numbers and a list of the vertices. See Algorithm1.
However, it is also an inefficient search strategy in terms of path lengths.

Algorithm 1. Random search.
1 initialise lists with vertices and room numbers based on the graph

representation of the building;
2 shuffle list of room numbers;
3 while search target not found do
4 target vertex is closest vertex from the first room of the room number list;
5 go to the target vertex;
6 delete first number from the list of room numbers;

In simple situations, humans are likely to find the shortest path connecting
all search targets, provided they have a complete understanding of the geometry.
This was shown in several experiments on path finding with multiple targets on
a picture or in a room [3,33]. Although the experimental results are limited to
small environments where all targets could be seen by the participants, it is
highly doubtful that pedestrians randomly search a well-known building. Still,
there may be cases, e.g. involving extreme stress or great geometrical complexity,
where human behaviour is correctly represented by a random search.

3.2 Optimal Search

For the optimal search, we additionally assume that agents know all distances
in the building. Formally, this means that they know the underlying graph of
the building with all weights on the edges. Furthermore, we assume that the
agents are capable of calculating the optimal way through the building, that
is, they minimise the length of the search path under the constraint that they
visit every room at least once. This optimisation problem is a modification of
the generalised travelling salesman problem [31] with possible repetitions of the
sets [19] and without return [21]. As a modification of a travelling salesman
problem, it is known to be NP-hard [21,25]. The algorithm for one agent is
shown in Algorithm2. For simplicity, we use a brute force backtracking algorithm
[24] to solve the implicit travelling salesman problem with a complexity of at
least O((N − 1)!), where N is the number of vertices. Other more, efficient
implementations (e.g. [17,25]) could be used but are not the focus of our study.

It has been shown that mammals have a detailed cognitive representation
of their neighbourhood [14]. Following these findings, we argue that humans
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Algorithm 2. Optimal search algorithm. To compute the optimal order,
we use a brute force backtracking algorithm [24].
1 initialise lists with vertices and room numbers based on the graph

representation of the building;
2 compute optimal vertex order (vertices may be represented in this list more

than once);
3 while search target not found do
4 target vertex is first vertex of the vertex list;
5 go to the target vertex;
6 delete first vertex from the vertex list;

also have a representation of their surroundings, at least in well-known limited
areas. This information may be enough to gauge rough distances but may still
be insufficient for a complete optimal search. Furthermore, humans are often
unable to optimise their decisions because they lack information, or because the
the problem is too difficult to solve [12,13]. Hence, we consider it questionable
that humans actually optimise their search path through a complete building
before starting the search, unless the buildings is very small and well-known.

3.3 Nearest Room Heuristic

As last strategy we propose that an agent searches the closest room next it
has not yet visited. This is inspired by the ability of humans to process and to
remember the layout of a building [14] and to plan their search path ahead. The
algorithm is formulated in Algorithm3. It has complexity O(M ·2N) where M is
the room number and N is the number of doors. Thus it needs more computation
time than the random search but is much faster than the optimal search.

Algorithm 3. Nearest room heuristic.
1 initialise lists with vertices and room numbers based on the graph

representation of the building;
2 while search target not found do
3 compute distances for all vertices in the vertex list to current position;
4 sort list (short to long distance);
5 target vertex is first vertex of the list;
6 go to the target vertex;
7 delete all vertices from the vertex list that are assigned to the current room;

This strategy has already been proposed as a heuristic humans might use
to solve travelling salesman problems [3,33]. Furthermore, it follows the psycho-
logical paradigm that humans employ fast and simple heuristics with limited
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information from the environment to solve problems [12,13,32]. Hence, we argue
that the nearest room heuristic is a plausible starting point to introduce search
behaviour that is based on psychological findings into pedestrian simulation.

3.4 Simulation Experiments

In this section, we look at two concrete simulation scenarios where agents search
for a missing person: a very simple building with five rooms and a slightly more
complex geometry with 200 agents seeking safety. We study the individual search
trajectories.

In Fig. 2, one agent starts its search in the middle room on the bottom. The
missing person is not in the building. Therefore, all rooms must be visited before
the search stops. With the random search, edges are used multiple times and the
whole search path is rather unstructured. Furthermore, for every new run of the
simulation, the sequence of visited rooms changes. Hence, the search time and
the length of the search path varies considerably. The optimal search provides
the fastest and shortest complete search route. With the nearest room heuristic,
the agents follows a path that is relatively close in length to the optimal path
but is not the same. In several other simple simulation experiments, we found
that the trajectory of the nearest room heuristic is often identical to the one
of the optimal search. However, we have not yet substantiated this observation
with a formal investigation.

Clearly, the success of a search strategy depends on the building’s topography,
the initial location of the searching person, and the location of the search target.
If we had put the missing person in the left room on the bottom in Fig. 2, then
the nearest room heuristic would yield the shortest search path. If the target
was located in the upper left room, the random search would have been the best
choice.

In the second scenario, we study the evacuation of a building with 200 agents,
including 6 agents that represent parents missing one child each. We assume that
the children remain at their starting positions – a reaction typical for frightened

Fig. 2. Trajectories (blue lines) of an agent searching a building. The agent starts in
the middle room on the bottom. Left: random search. Middle: nearest room heuristic.
Right: optimal search (Color figure online).
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Fig. 3. Screenshot of the evacuation of a building with 200 persons including 6 parents
(light blue circles with solid black border) and their 6 children (light green circles with
dotted black border) to the safe area at the right. The congestion at the door of the
upper right room is caused by two parents who try to enter the room against the flow
to search for their children (Color figure online).

individuals [20]. The parents search with the nearest room heuristic. They evac-
uate when reunited with their children. The other pedestrians evacuate individ-
ually.

Figure 3 shows a screen shot after a few seconds of simulation. In the lower
left room, the first parent has reunited with his or her child. At the door of the
upper right room, a congestion has formed. It is caused by two searching parents
trying to enter the room against the flow. This different behaviour of parents –
returning into a building against the evacuation route – can also be observed in
real evacuations [26,29].

4 Discussion

In this paper, we compared three possible search strategies for pedestrian sim-
ulation: the random search, the nearest room heuristic, and the optimal search.
We formally described the strategies as algorithms, used them for simulation,
and discussed their plausibility as models of human behaviour.
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Since humans are able to process and to remember at least the rough layout
of a building, random search seems limited to situations where these abilities
are severely inhibited by the circumstances. Findings from psychology suggest
that humans rather use simple heuristics to solve their problems. Thus, opti-
mal search, which demands enormous computational resources, does not seem
adequate either, except for very simple scenarios. However, the nearest room
heuristic often yields the same results suggesting that heuristic decision making
can be as efficient as mathematical optimisation. Furthermore the nearest room
heuristics is in accordance with the psychological paradigm that humans use
fast and simple heuristics to solve problems. In simulations experiments, agents
that adopted this strategy found a satisfying solution – often close to the opti-
mum. The search route was structured and the paths seemed realistic. Hence,
we propose the nearest room heuristic as default search strategy in computer
models.

Nonetheless, there is little doubt that humans use more complex strategies.
In particular, humans use additional information if available. In an evacuation,
for example, parents may have knowledge on likely locations of their missing
children. Furthermore, social interactions may provide additional guidance. To
us, incorporating more information processing – including uncertainty – seems a
promising next step in research on search strategies for pedestrian simulations.
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Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H., Wagner, D. (eds.)
Algorithms Unplugged, pp. 383–391. Springer, Berlin Heidelberg (2011)

25. Pop, P.C., Matei, O., Sabo, C.: A new approach for solving the generalized traveling
salesman problem. In: Blesa, M.J., Blum, C., Raidl, G., Roli, A., Sampels, M. (eds.)
HM 2010. LNCS, vol. 6373, pp. 62–72. Springer, Heidelberg (2010)

26. Proulx, G.: Evacuation from a single family house. In: Proceedings of the 4th Inter-
national Symposium on Human Behaviour in Fire. Robinson College, Cambridge,
UK, pp. 255–266 (2009)

www.sciencedirect.com/science/journal/23521465/2/
www.sciencedirect.com/science/journal/23521465/2/
http://www.sciencedirect.com/science/article/pii/S0377221712000288
http://www.sciencedirect.com/science/article/pii/S0377221712000288
http://www.ingentaconnect.com/content/asma/asem/2004/00000075/00000006/art00011
http://www.ingentaconnect.com/content/asma/asem/2004/00000075/00000006/art00011


496 I. von Sivers et al.
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Abstract. The paper presents a general framework studying issues of
effective load balancing and scheduling in highly parallel and distrib-
uted environments such as currently built Cloud computing systems. We
propose a novel approach based on the concept of the Sandpile cellular
automaton: a decentralized multi-agent system working in a critical state
at the edge of chaos. Our goal is providing fairness between concurrent
job submissions by minimizing slowdown of individual applications and
dynamically rescheduling them to the best suited resources.
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1 Introduction

In this paper, we consider the aspect of effective load balancing in cloud comput-
ing (CC) systems, i.e., the process of distributing the workload among various
computing nodes to improve both resource utilization and job response time. We
formulate a model defined as follows: given a set of virtual resources in the Cloud
(M1,M2, ...,Mn), a number of Cloud clients (U1, U2, ..., Uk) and a random set of
parallel applications (also jobs or tasks) run by the clients (J1, J2, ..., Ji), find
such an allocation of jobs to the resources to maximize the system throughput.

We are interested in parallel and distributed algorithms working in environ-
ments with only limited, local information. We propose a fully decentralized
and adaptive load balancing scheme to solve the studied problem. The working
hypothesis of our approach relies on the Self-Organized Criticality theory (SOC)
described by Bak in [1]. SOC describes a property of complex systems that con-
sists of a critical state formed by self-organization at the border of order and
chaos. To that aim, we extend the Sandpile cellular automaton, one of the first
systems where SOC properties were observed. In our model each CC node in the
system is characterized as a cell of the proposed automaton.

The remainder of this paper is organized as follows. In Sect. 2, we present the
works related to the distributed scheduling and load balancing in the Grid and
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Cloud computing systems. In Sect. 3, we describe the proposed Cloud system
model. Section 4 presents the proposed solution of dynamic load balancing and
scheduling scheme based on the Sandpile model. The experimental evaluation of
the proposed approach is given in Sect. 5. We end the paper in Sect. 6 with some
conclusions and indications for future work.

2 State of the Art

Distributed scheduling has been a widely studied subject in the context of real-
time systems, where users define time constraints for their jobs and applications.
In [5] authors proposed a dynamic load balancing algorithm based mainly on the
Peer-to-Peer (P2P) technology aiming at illustrating the application potentials
of gossiping protocols. Authors describe this problem analogously to averaging
a set of distributed numbers using decentralized aggregation and membership
management.

In [3] authors proposed a solution based on building a consensus over hetero-
geneous networks, i.e. networks whose nodes have different speeds. However, the
study assumes that all jobs are available in the system from the start, which sim-
plifies it into a static optimization problem instead of a dynamic one, considered
here.

In [4] authors proposed a decentralized load balancing approach designed
for computing jobs in computational P2P systems consisting of nodes which
know only their nearest neighbors defined by a one hop communication path.
Another decentralized scheduler for Bag-of-Tasks applications ensuring a fair
and efficient use of the resources by providing a similar share of the platform to
every application was presented in [2].

Finally, a self-organizing model for non-clairvoyant load-balancing in large-
scale decentralized systems was proposed in [6]. Authors employed the Sandpile
model with two different interconnection topologies, based on a ring and a small-
world graph and using a gossiping-based version of the agent system. Instead
of propagating a real avalanche, the gossiping protocol forwards the avalanche
virtually until a new state of equilibrium is found. The proposed solution was
found to reduce the overhead of intermediate migrations and increase the overall
throughput of the system.

3 Cloud Model

3.1 System and User Model

System consists of a set of geographically distributed Cloud nodes M1,M2, ...,Mm,
which are connected to each other via a wide area network. Each node Mi is
described by a parameter mi, which denotes the number of identical processors
Pi and its computational power si, characterized by a number of operations per
unit of time it is capable of performing [7].
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Users (U1, U2, ..., Un) submit their jobs to the system, expecting their com-
pletion before a required deadline. Job (denoted as Jj

k) is jth job produced
(and owned) by user Uk. Each job has varied parameters defined as a tuple
< rjk, sizejk, t

j
k, d

j
k >, specifying its release date rjk > 0; its size 1 ≤ sizejk ≤ mm,

that is referred to as its processor requirements or degree of parallelism; its exe-
cution requirements tjk defined by a number of operations and deadline djk.

3.2 Problem Formulation

A typical way of assessing system’s performance is measuring the completion
time of submitted jobs. However, in a system with non-zero release dates, the
completion time of the job is not appropriate to evaluate the actual performance.
Consequently, when scheduling multiple jobs, as far as fairness is concerned, the
most suited metric seems to be the maximum Slowdown (also known as Stretch).
The Slowdown of a job Jj

k is defined as the ratio of its response time under the
concurrent scheduling policy (Cj

k − rjk) over its response time in a dedicated
mode, i.e., when it is the only application executed on the whole platform:

ςi,jk =
Cj

k − rjk
pi,jk

. (1)

The objective is to allocate a batch of local jobs to the available Cloud nodes
Mi and minimize the global system Slowdown, ςmax thereby enforcing a fair
trade-off between all submitted applications. We consider minimization of the
time ςimax on each Cloud node Mi over the system in such a way that the global
Slowdown is defined as: ςmax = avgi{ςimax}. The resulting optimization problem
can be formulated as follows:

Minimize

(
ςmax

)
. (2)

We assume that there is no centralized control and the assignment of jobs to
available resources within the Cloud is governed exclusively by specialized agents
assigned to individual Cloud nodes. Agents interact with each other under a set of
rules specified by a Sandpile CA. Its specific mode of operation will be explained
in detail in the subsequent sections.

4 Dynamic Load Balancing and Scheduling Based on
Sandpile Model

4.1 Designing an Efficient Scheduler

To construct our Sandpile model-based scheduler, we employ a two - dimensional
grid, that is discrete and discontinuous concerning space and time. Let us use
two indices (x, y) to number the cellular automaton’s cells. Each cell represents
one of the distributed Cloud nodes M1,M2, ...,Mm, as defined in the previous
Section.
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Just like in a classic Sandpile automaton, every agent Ai is monitoring its
assigned resource denoted as Mi, waiting for a new event to alter the status of
the local queue (height of the grain slope). It can be either retrieving a job from
the client, new job being pushed into the queue from one of its neighbors or
a job failure enforcing recalculation of the local schedule. As soon as such an
event occurs, agent Ai estimates the potential changes in the local workload.
The following step is determined by a set of transition rules. If the resource is in
a state of equilibrium, the agent waits for further developments. Otherwise, the
transition rule is triggered and the agent initiates an avalanche, sending surplus
workload to the neighboring nodes.

The agent has the same objective as the whole platform: minimizing the
Slowdown metrics among all jobs in his local job queue. We rely on the relation
between the Slowdown and Completion Time of the job Jj

k executed on machine
Mi defined previously in Eq. 1. The first step in realizing this goal is construction
of an accurate availability summary which describes node’s capacity to process
new jobs submitted by clients. The availability of a node can be characterized by
the size (duration) of a free Time Slot that can be allocated to the arriving jobs.

Estimation of this parameter is based on the model proposed in [2] and
provided in the example depicted in Fig. 1 visualizing five jobs scheduled for
execution on exemplary CC node with two processing elements. Variables below
the Gantt chart (d11, ..., d

5
1) represent deadline values of each job in the local

queue. Let us further assume that a new job Jnew will be released to the system
at time rnew with execution time pnew and deadline dnew.

In the example of Fig. 1(b), deadline of the new job Jnew, dnew lies between
deadlines d3 and d4, respectively. Thus, the earliest starting time for the job
Jnew is after jobs J1, J2, and J3 (that is all jobs with dj < dnew) have been
completed. Similarly, the latest completion time for the job Jnew must ensure
that jobs J4 and J5 (that is all jobs with dj > dnew) will not miss their deadlines,
and also that deadline dnew is not exceeded. In practice, it enforces rescheduling
of jobs J4 and J5 to the end of the local job queue as visualized in Fig. 1(b).

We proceed by reconstruction of the local schedule at the time of arrival of
the new job Jnew, i.e., rnew. We begin by sorting the local job queue according
to the Earliest Deadline First scheduling policy and compute the latest starting
time of each job Jj such that no job Jj+1 with j + 1 ≥ j misses its specified
deadline. Let us further assume that a variable Ck denotes the moment at which
k − 1 job in the queue is expected to finish its execution. It can be calculated by
adding the remaining execution time of the k − 1 jobs to the starting time rnew,
as follows:

Ck = rnew +
k−1∑
j=1

pj . (3)

Then, assuming that the new job Jnew would be at position k in the local
queue, we can calculate the size of the available Time Slot τi that can potentially
be devoted to job Jnew between the moment at which the previous job is going
to finish (Ck), and the deadline of the new job (dnew) or the last moment at
which next job must start (xk+1), whichever comes first:
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τ = min(dnew, xk+1) − Ck. (4)

As visible in Fig. 1(c), the above procedure is performed individually for each
processor in the considered cloud node. By combining the data from separate
processors in each node we are able to provide a complete availability overview
necessary for dynamic rescheduling process performed by the proposed Sandpile
CA-based scheduler described in detail in the following Section.

(a)

(b)

(c)

Fig. 1. Estimation of the available Time Slot on node Mi: Jobs J1, J2 and J3 are
processed as soon as possible, while jobs J4 and J5 are processed as late as possible.
The size of the available free Time Slot τ may differ between processors.

4.2 The Sandpile Scheduler Dynamics

Our proposed solution is a local neighborhood diffusion approach which employs
overlapping domains to achieve system-wide load balancing and fairness between
individual Cloud nodes. We assume that the state of node Mi at the time t is
represented by a variable Si(t), while neighborhood Vi(t) defines the set of its
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neighbors Ni in the communication network. In our case, we consider the Moore
neighborhood (formed by z = 8 cells surrounding a given cell) with periodic
boundary conditions.

A set of possible states of our Sandpile scheduler consists of three modes:
whenever a resource becomes overburdened in comparison with its neighbors, its
local Maximum Completion Time, Ci

max exceeds the local average by a specified
threshold value

(
Ci

max −Ci
max > Cthreshold

)
. For simplicity’s sake we employ in

our work a value of threshold equal to Cthreshold = 1. Resources in such state are
considered as Overloaded. They will send all incoming traffic to their neighbors,
as well as any surplus workload that cannot be completed in a required time
frame (i.e., before deadline). Alternatively, transition to Overloaded state can
be triggered when the available Time Slot duration is equal to τi = 0. In such
cases, at least one job assigned to the machine will not meet its deadline, thus
negatively impacting the provided Quality of Service.

Resource that are not overburdened with workload can be considered as
Underloaded. Their estimated Maximum Completion Time, Ci

max is lower than
the local average

(
Ci

max−Ci
max > Cthreshold

)
, while the available free Time Slot

duration is usually longer than the local average
(
τi > τ

)
and they are capable

of accepting excessive workload from their Overloaded neighbors, as well as any
incoming workload submitted by users.

Resources in the Balanced state are characterized by the estimated Maximum
Completion Time, Ci

max close to the local average
(
|Ci

max−Ci
max| ≤ Cthreshold

)
.

They will run jobs, which exist in their local queue and will accept new jobs as
well. Such a state can be alternatively triggered by estimation of the free Time
Slots slightly smaller than the local average

(
0 � τi < τ

)
ensuring that they

are capable of meeting the deadline constraints of their local jobs.
Every agent (node) in our Sandpile scheduler (presented in Algorithm 1)

gathers up-to-date information in each transition time constructing complete
availability summary. Agents inform their nearest neighbors of their workload
levels (and free Time Slots, τi) and update this information throughout program
execution.

The rescheduling process is invoked whenever a new job Jnew arrives to node
Mi at time rnew (Algorithm 1: Line 8). It could be sent by the Cloud user, one
of the neighboring nodes or rescheduled due to earlier job failure. After estimating
the free Time Slot duration and Completion Time of the new job queue, state of
the node is updated according to previously defined transition rules (Algorithm1:
Line 11).

If the arrival of the job triggers the Overloaded transition rule (i.e., causes
workload imbalance), the excessive jobs will be sent to one of the available neigh-
bors. Scheduling agent will find a set of neighboring nodes which are suitable to
execute the job Jnew. Nodes are first sorted in a descending order according to
the available Time Slots and the job Jnew is sent to a machine with the longest
available free Time Slot (Algorithm 1: Lines 12–18).
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Algorithm 1. Pseudo-code of the CA-Stretch Scheduling Algorithm
1: Input: Q: Node’s Mi local job queue
2: Input: rnew: Release time of the job Jnew

3: Input: pnew: Processing time of the job Jnew on machine Mi

4: Input: Si: Current state of the machine Mi

5: Input: Vi: Neighborhood of the machine Mi

6: Initialize Iteration Counter, T ← 0
7: for all Ai ∈ A do {In parallel}
8: Trigger(Jnew)
9: Calculate Completion Time of Local Job Queue, Ci

max.
10: Calculate Free Time Slot Duration, τi.
11: Update Cell State, Si(tn) = f(Si(tn−1), Vi(tn−1))

12: if Si == Overloaded then
13: while Si == Overloaded do
14: for all Mi ∈ Vi do
15: Sort machines in Vi by non-decreasing Time Slots, τ1 ≤ τ2 ≤ ... ≤ τn.
16: Send job Jnew to the machine with the longest Time Slot, τi.
17: end for
18: end while
19: else
20: if τ ≥ pnew then
21: Add job Jnew to machine’s Mi queue.
22: Schedule job Jnew in the free Time Slot, τi.
23: else
24: for all Mi ∈ Vi do
25: Sort machines in Vi by non-decreasing Time Slots, τ1 ≤ τ2 ≤ ... ≤ τn.
26: Send job Jnew to the machine with the longest τi.
27: end for
28: end if
29: end if
30: Update Iteration Counter, T ← T + 1
31: end for

In a case of nodes in Underloaded and Balanced states, the job Jnew will be
added to their local queue. As long as the schedule can be accommodated before
the required deadline, a job will be allocated for execution in the available Time
Slots (Algorithm 1: Lines 21–22). Alternatively, an excessive job will be sent to
one of the neighboring nodes (Algorithm1: Lines 24–27). Because this process
may trigger new events in the adjacent nodes, the avalanches (migrations of
jobs) will iteratively continue throughout the entire system until a global state
of equilibrium is achieved.



504 J. Gasior and F. Seredynski

5 Experimental Analysis and Performance Evaluation

5.1 Simulation Testbed

To study the performance of the proposed dynamic load balancing and reschedul-
ing algorithm, we have conducted several simulation experiments under three
Cloud system scales: a small-scale Cloud system composed of m = 16 CC nodes,
a medium-scale Cloud system composed of m = 64 CC nodes and a large-scale
Cloud system composed of m = 144 CC nodes.

The number of processing elements in each node is generated by a Gaussian
probability distribution function with mean 6 and variance 1. The computational
capacity of the processing elements is similarly generated with mean 4 (instruc-
tion per time unit) and variance 1. The nominal bandwidth of the network con-
necting every two nodes is assumed to be generated with mean 2 (instructions
transferred per time unit) and variance 1. The number of users is fixed at 8, 32,
and 72 for the small-scale, medium-scale, and large-scale systems, respectively.

The execution requirements of submitted jobs are normally distributed with
mean 10 (instructions) and variance of 3 (instructions). Each job is composed of
a number of threads, where the number of threads is randomly and uniformly
selected from the following set (1, 2, 3, 4). For each client, the generation rate
of the new jobs is Poisson distributed with rate (mean) of 5 (time units). The
efficiency of the analyzed job scheduling methods is measured in terms of:

– Average Turnaround Time: denote the total number of simulated jobs as
N , the completion time of a single job Jj

k as Cj
k, the arrival time as rjk, and

the Average Turnaround Time is defined as:
∑N

j=1(C
j
k−rjk)

N ;
– Slowdown: the ratio of the response time under the concurrent scheduling

policy over its response time in dedicated mode.

5.2 Simulation Results

An efficient scheduler has to be scalable and capable of dealing with heterogene-
ity; good performance should not be only restricted to established architectures
but also be invariant to scale and type of architecture. We have considered mul-
tiple scenarios of heterogeneous architectures and compared the performance
of the proposed job scheduling algorithm (denoted further as CA-Stretch) with
that of several well known scheduling approaches, such as First Come First
Served (FCFS), Shortest Job First (SJF), Longest Job First (LJF) and Shortest
Remaining Time First (SRTF). We conducted several simulations with workload
size equal to 5000 jobs, scheduled within each Cloud system scale.

Figure 2(a) shows the average performance results of analyzed algorithms
under different system sizes. As can be seen, the proposed job scheduling algo-
rithm significantly outperforms other scheduling methods especially in large scale
CC systems. It has been also found that CA-Stretch scheduling scheme has shown
the best performance while producing the shortest Average Turnaround Time
and Slowdown results as depicted in Fig. 2(b) and (c), respectively.
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Fig. 2. Performance results of conducted experiments with multiple scheduling heuris-
tics for a total of n = 5000 jobs scheduled within m = 16, 64 and 144 CC nodes: (a)
Average Turnaround Time, (b) Slowdown.

This could be due to the fact that CA-Stretch is a job scheduling technique
balancing the arriving workload locally on individual Cloud nodes, in which
the workload that is assigned to each resource varies over time according to
its available computational capacity and availability of the free Time Slots in
a local schedule. As the job submission rate changes over time our solution is
capable of adaptively rescheduling the arriving workload to the most appropriate
resources. This avoids situations where some nodes become too busy or too idle.
This reduces the Average Turnaround Times of the jobs, and - in the effect -
decreases the overall system Slowdown, providing a fair trade-off between all
submitted jobs.

It can be also stated that the proposed scheduling procedure distributes the
submitted workload among the Cloud nodes considerably more evenly than other
compared techniques in all analyzed system scales, thus offering greater flexibility
and scalability. This is due to the fact that CA-Stretch takes into consideration
the amount and duration of the available Time Slots on each Cloud node to
evenly distribute the workload within the system, while the SOC properties of
the Sandpile model guarantee equalization of workload in all overlapping local
neighborhoods, and in the result, the whole simulated system platform.

6 Conclusions

We have proposed a novel parallel and distributed algorithm based on the
Sandpile cellular automata model for dynamic load balancing and rescheduling
in the Cloud environment. In our solution, computing resources are under the
control of agents which can interact locally within an established neighborhood.
In such a system, jobs arrive to resources and accumulate similarly to grains of
sand. When a given agent detects any inequalities, it sends excessive jobs to his
neighbors, often starting an avalanche, which may be propagated throughout
the entire system until a new state of equilibrium is met.
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We presented the rules of local interactions among agents providing a global
behavior of the system. We also addressed common issues of resource hetero-
geneity and communication overheads by taking several parameters into account
such as processing power of computing nodes and their communication latency.
Proposed decentralized scheduling approach is particularly convenient for large-
scale distributed environments. The objective of our scheduler is to ensure fair-
ness among applications, by minimizing the Slowdown of all submitted jobs. Our
solution inherits the benefits of both static and dynamics scheduling strategies.
The proposed algorithm is robust and scalable due to implemented on-demand
rescheduling mechanisms, which have a great impact on enhancing its perfor-
mance over other scheduling strategies in dynamic environments.
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Abstract. This contribution introduces an element of “aggressiveness”
into the Floor-Field based model with adaptive time-span. The aggres-
siveness is understood as an ability to win conflicts and push through the
crowd. From experiments it is observed that this ability is not directly
correlated with the desired velocity in the free flow regime. The influence
of the aggressiveness is studied by means of the dependence of the travel
time on the occupancy of a room. A simulation study shows that the
conflict solution based on the aggressiveness parameter can mimic the
observations from the experiment.

Keywords: Floor-Field model · Conflict solution · Aggressiveness

1 Introduction

This article focuses on a microscopic study of a simulation tool for pedestrian
flow. The object of the study is a simulation of one rather small room with
one exit and one multiple entrance, which may be considered as one segment
of a large network. The behaviour of pedestrians in such environment has been
studied by our group by means of variety experiments [4,6] from the view of the
boundary induced phase transition (this has been studied theoretically for Floor-
Field model in [9]). Observing data from these experiments we have found out
that each participant has different ability to push through the crowd. Therefore,
this article is motivated by the aim to mimic such behaviour by simple cellu-
lar model, which may be applied in simulations of apparently heterogeneous
scenarios as [13,16].

The original model is based on the Floor-Field Model [7,12,14] with adap-
tive time-span [5] and principle of bonds [10]. The adaptive time span enables
to model heterogeneous stepping velocity of pedestrians; the principle of bonds
helps to mimic collective behaviour of pedestrians in lines. It is worth noting
that there is a variety of modifications of the Floor-Field model capturing dif-
ferent aspects of pedestrian flow and evacuation dynamics. Quite comprehensive
summary can be found in [15].
c© Springer International Publishing Switzerland 2016
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In this article we focus on the solution of conflicts, which accompany all cellu-
lar models with parallel update, i.e., when more agents decide to enter the same
site/cell. In such case, one of the agents can be chosen at random to win the
conflict, the randomness can be executed proportionally to the hopping proba-
bility of conflicting agents [7]. The unresolved conflicts play an important role in
models of pedestrian evacuation. The aim to attempt the same cell may lead to
the blocking of the motion. This is captured by the friction parameter μ denot-
ing the probability that none of the agent wins the conflict. An improvement
is given by the friction function [17], which raises the friction according to the
number of conflicting agents.

In our approach we introduce an additional property determining the agent’s
ability to win conflicts, which may be understood as agent’s aggressiveness. This
characteristics has been inspired by the analyses of repeated passings of pedestri-
ans through a room under various conditions from free flow to high congestion.
As will be shown below, this characteristic significantly affects the time spent by
individual agents in the room, which is referred to as the travel time. Similar het-
erogeneity in agents behaviour has been used in [11], where the “aggressiveness”
has been represented by the willingness to overtake.

2 Experiment

The introduction of the aggressiveness as an additional model parameter is moti-
vated by the microscopic analyses of the experimental data from the experiment
“passing-through” introduced in [6]. The set-up of the experiment is shown in
Fig. 1. Participants of the experiment were entering a rectangular room in order
to pass through and leave the room via the exit placed at the wall opposite to
the entrance.

The inflow rate of pedestrians has been controlled in order to study the
dependence of the phase (free flow or congested regime) on the inflow rate α. In
order to keep stable flow through the room, pedestrians were passing the room
repeatedly during all runs of the experiment.

26 25 24 23

22 21 20 control bit

binary code

centre of mass

recognition
mark

Fig. 1. Taken from [6]. Left: experimental setting of the experiment, a = 7.2 m, b =
4.4 m. After the passage through the exit, participant returned to the area Y waiting for
another entry. Right: sketch of pedestrian’s hat used for automatic image recognition.
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Each participant has been equipped by a hat with unique binary code. The
automatic image recognition enables us not only to restore the pedestrians tra-
jectories but more over to assign all trajectories to individual participants. This
enables the study of individual properties of the pedestrians under a bride scale
of conditions, since for each participant there are 20 to 40 records of their
passings.

One of the investigated quantities is the travel-time TT = Tout−Tin denoting
the length of the time interval a pedestrian spent in the room between the
entrance at Tin and the egress at Tout. To capture the pedestrians behaviour
under variety of conditions, the travel time is investigated with respect to the
average number of pedestrians in the room N defined as

N =
1

Tout − Tin

∫ Tout

Tin

N(t)dt , (1)

where N(t) stands for the number of pedestrians in the room at time t. Figure 2
shows the scatter plot of all pairs (N ,TT ) gathered over all runs of experi-
ment and all participants.

The reaction of participants to the occupancy of the room significantly
differs. There are two basic characteristics that can be extracted: the mean
travel time in the free-flow regime (0–7 pedestrians) and the slope of the
travel-time dependence on the number of pedestrians in the congested regime

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

N_mean [peds]

T
T

 [
s]

Ped. 17 data
Ped. 17 model

Ped. 4 data

Ped. 4 model

Ped. 2 data
Ped. 2 model

Fig. 2. Scatter plot of the travel time TT with respect to the occupancy Nmean

extracted from the experiment. Three participants are highlighted. Their travel time is
approximated by the piecewise linear model. We can see that Ped. 2 has lower desired
velocity in free regime but higher ability to push through the crowd in comparison to
Ped. 4.
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(10–45 pedestrians). The former is given by the desired velocity, the latter reflects
the ability to push through the crowd, referred to as the aggressiveness. This
observation corresponds to the piece-wise linear model for each pedestrian

TT =
S

v0(i)
+ 1{N>7}(N − 7) · slope(i) + noise (2)

where S = 7.2 m, v0(i) is the free-flow velocity of the pedestrian i, slope(i) is the
unique coefficient of the linear model for pedestrian i. The breakpoint N = 7
depends from the room geometry. The weighted mean of the R2 value of the
model (2) is 0.688.

Detailed description of the experiment and its analyses has been presented
at the conference TGF 15 and will be published in the proceedings [3]. Videos
capturing the exhibition of the aggressive behaviour are available at http://
gams.fjfi.cvut.cz/peds.

3 Model Definition

The model adapts the principle of the known Floor-Field cellular model. The
playground of the model is represented by the rectangular two-dimensional lat-
tice L ⊂ Z

2 consisting of cells x = (x1, x2). Every cell may be either occupied by
one agent or empty. Agents are moving along the lattice by hopping from their
current cell x ∈ L to a neighbouring cell y ∈ N (x) ⊂ L, where the neighbourhood
N (x) is Moore neighbourhood, i.e., N (x) = {y ∈ L; maxj=1,2 |xj − yj | ≤ 1} .

3.1 Choice of the New Target Cell

Agents choose their target cells y from N (x) stochastically according to proba-
bilistic distribution P (y | x; state of N (x)), which reflects the “attractiveness”
of the cell y to the agent. The “attractiveness” is expressed by means of the
static field S storing the distances of the cells to the exit cell E = (0, 0), which
is the common target for all agents. For the purposes of this article, the euclid-
ean distance has been used, i.e., S(y) =

√|y1|2 + |y2|2. Then it is considered
P (y | x) ∝ exp{−kSS(y)}, for y ∈ N (x). Here kS ∈ [0,+∞) denotes the para-
meter of sensitivity to the field S.

The probabilistic choice of the target cell is further influenced by the occu-
pancy of neighbouring cells and by the diagonality of the motion. An occupied
cell is considered to be less attractive, nevertheless, it is meaningful to allow the
choice of an occupied cell while the principle of bonds is present (explanation of
the principle of bonds follows below). Furthermore, the movement in diagonal
direction is penalized in order to suppress the zig-zag motion in free flow regime
and support the symmetry of the motion with respect to the lattice orientation.

Technically this is implemented as follows. Let Ox(y) be the identifier of
agents occupying the cell y from the point of view of the agent sitting in cell
x, i.e. Ox(x) = 0 and for y �= x Ox(y) = 1 if y is occupied and Ox(y) = 0
if y is empty. Then P (y | x) ∝ (1 − kOOx(y)), where kO ∈ [0, 1] is again the

http://gams.fjfi.cvut.cz/peds
http://gams.fjfi.cvut.cz/peds
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parameter of sensitivity to the occupancy (kO = 1 means that occupied cell
will never be chosen). Similarly can be treated the diagonal motion defining
the diagonal movement identifier as Dx(y) = 1 if (x1 − y1) · (x2 − y2) �= 0 and
Dx(y) = 0 otherwise. Sensitivity parameter to the diagonal movement is denoted
by kD ∈ [0, 1] (kD = 1 implies that diagonal direction is never chosen).

The probabilistic choice of the new target cell can be than written in the
final form

P (y | x) =
exp

{ − kSS(y)
}(

1 − kOOx(y)
)(

1 − kDDx(y)
)

∑
z∈N (x) exp

{ − kSS(z)
}(

1 − kOOx(z)
)(

1 − kDDx(z)
) . (3)

It is worth noting that the site x belongs to the neighbourhood N (x), therefore
the Eq. (3) applies to P (x | x) as well.

3.2 Updating Scheme

The used updating scheme combines the advantages of fully-parallel update
approach, which leads to necessary conflicts, and the asynchronous clocked
scheme [8] enabling the agents to move at different rates.

Each agent carries as his property the own period denoted as τ , which repre-
sents his desired duration between two steps, i.e., the agent desires to be updated
at times t = kτ , k ∈ Z. Such principle enables to model different velocities of
agents, but undesirably suppresses the number of conflicts between agents with
different τ . To prevent this, we suggest to divide the time-line into isochronous
intervals of the length h > 0. During each algorithm step k ∈ Z such agents
are updated, whose desired time of the next actualization lies in the interval[
kh, (k+1)h

)
. A wise choice of the interval length h in dependence on the distri-

bution of τ leads to the restoration of conflicts in the model. It is worth noting
that we use the concept of adaptive time-span, i.e., the time of the desired actu-
alization is recalculated after each update of the agent, since it can be influenced
by the essence of the motion, e.g., diagonal motion leads to a time-penalization,
since it is

√
2 times longer. For more detail see e.g. [5]. This is an advantage over

the probabilistic approach introduced in [1].

3.3 Principle of Bonds

The principle of bonds is closely related to the possibility of choosing an occupied
cell. An agent who chooses an occupied cell builds a bond to the agent sitting in
the chosen cell. This bond lasts until the motion of the blocking agent or until
the next activation of the bonded agent. The idea is that the bonded agents
attempt to enter their chosen cell immediately after it becomes empty.

3.4 Aggressiveness and Solution of Conflicts

The partially synchronous updating scheme of agents leads to the kind of con-
flicts that two ore more agents are trying to enter the same cell. This occurs when
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Fig. 3. Conflict solution for γ1 < γ2. Left: more aggressive wins the conflict over two
less aggressive. Right: the conflict of two more aggressive can resolve by the blocking
of the movement.

more agents choose as their target cell the same cell, or when more agents are
bonded to the same agent, which becomes empty. The mechanism of the conflict
solution is the same in both cases. Each agent carries an information about his
ability to “win” conflicts which is here referred to as aggressiveness and denoted
by letter γ ∈ [0, 1]. The conflict is always won by agents with highest γ.

If there are two or more agents with the highest γ, the friction parameter
μ plays a role. In this article we assume that the higher is the aggressiveness
γ, the less should be the probability that none of the agents wins the conflict.
Therefore, the conflict is not solved with probability μ(1−γ) (none of the agents
move). With complement probability 1 − μ(1 − γ) the conflict resolves to the
motion of one of the agents. This agent is chosen randomly with equal probability
from all agents involved in the conflict having the highest γ. The mechanism of
the friction can be easily modified. An example of conflict solution is depicted
in Fig. 3.

4 Impact of the Aggressiveness Element

The effect of the aggressiveness has been studied by means of the simulation.
Results stressed in this article come from the simulations with parameters given
by Table 1. The values of τ and γ are distributed among agents uniformly and
independently on each other.

The simulation set-up has been designed according to the experiment,
i.e., the room of the size 7.2m × 4.4m has been modelled by the rectangular

Table 1. Values of parameters used for simulation.

kS kO kD h μ τ γ

3.5 1 0.7 0.1 s 0.5 {.25, .4} {0, 1}
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lattice 18 sites long and 11 sites wide. The size of one cell therefore corresponds to
0.4m×0.4m. The exit is placed in the middle of the shorter wall, the open bound-
ary is modelled by a multiple entrance on the opposite wall. New agents are enter-
ing the lattice stochastically with the mean inflow rate α [pedestrians/second].
The inflow rate is a controlled parameter. For more detailed description of the
simulation we refer the reader to [2].

It has been shown that such system evinces the boundary induced phase
transition from the free flow (low number of agents in the lattice) to the conges-
tion regime (high number of pedestrians in the lattice) via the transient phase
(number of pedestrians fluctuating between the low and high value). Therefore,
wise choice of different inflow rates α covering the all three phases, enables us to
study the dependence of the travel time TT on the average number of agents in
the lattice N . When simulating with parameters from Table 1, the correct
choice of inflow rate is α ∈ [1, 3].

Figure 4 shows the dependence of the travel time TT = Tout−Tin on the aver-
age number of agents in the lattice N calculated according to (1). Measured
data consisting of pairs (N ,TT ) are aggregated over simulations for inflow
rate values α ∈ {1, 1.5, 1.8, 2.0, 2.3, 2.7, 3.0}; for each inflow α twenty runs of the
simulation were performed. Each run simulates 1000 s of the introduced scenario
starting with empty room. Agents were distributed into four groups according
to their own period τ and aggressiveness γ, namely “fast aggressive” (τ = 0.25,
γ = 1), “fast calm” (τ = 0.25, γ = 0), “slow aggressive” (τ = 0.4, γ = 1), and
“slow calm” (τ = 0.4, γ = 0).

In the graph of the Fig. 4 we can see the average travel time for each group
calculated with respect to the occupancy of the room. It is evident that for
low occupancy up to 10 agents in the room the mean travel time for each group
levels at a value corresponding to the free flow velocity given by the own updating
period. For the occupancy above 20 agents in the lattice, the linear growth of
the mean travel time with respect to N is obvious. Furthermore, the average
travel time for fast-calm corresponds to the travel time of slow aggressive. The
Fig. 4 shows two auxiliary graphs presenting the dependence of TT on N
for systems with homogeneity in γ (left) or in τ (right). From the graphs we
can conclude that the heterogeneity in aggressiveness γ reproduces the desired
variance in the slope of the graph without the non-realistic high variance in free
flow generated by the heterogeneity of own updating frequency.

The influence is even more evident from the graph in Fig. 5 representing a
plot of all travel time entries with respect to the time of the exiting Tout. Right
graph shows the box-plots of the travel time for four groups measured after 500 s
from the initiation, i.e., in the steady state of the system. We can see that in this
view, the aggressiveness plays more important role than the desired velocity of
agents.
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0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

qv = 0

qv = 0.1

qv = 0.5

qv = 0.9

N_mean

m
ea

n(
T

T
)

γ=0, τ=0.25

γ=0, τ=0.4

γ=1, τ=0.25

γ=1, τ=0.4

0 10 20 30
0

5

10

15

20

0 50 100 150 200
0

50

100

150

N_mean

m
ea

n(
T

T
)

γ=0, τ=0.25

γ=0, τ=0.4

0 10 20 30
0

10

20

0 50 100 150 200
0

50

100

150

N_mean

m
ea

n(
T

T
)

γ=0, τ=0.3

γ=1, τ=0.3

0 10 20 30
0

10

20

Fig. 4. Dependence of the mean travel time TT on the average occupancy Nmean for
each group of agents. Gray lines represent the quantiles of the travel time regardless
to the groups. Top: heterogeneity in both, γ and τ . Bottom left: heterogeneity in τ .
Bottom right: heterogeneity in γ.

0 200 400 600 800 1000
0

100

200

300

400

T_out [s]

T
T

 [
s]

0

100

200

300

400

0 0 1 1
0.25 0.4 0.25 0.4

γ = 1, τ = 0.4

γ = 1, τ = 0.25

γ = 0, τ = 0.4

γ = 0, τ = 0.25

Fig. 5. Left: development of travel time TT in time for one run of the simulation. The
value TT is plotted against the time of the exit Tout to ensure that values corresponding
to the same time stem from similar conditions near the exit. Inflow rate α = 3 ped/s.
The agent group is indicated by the color. Right: box-plots of the travel time for entries
with Tin > 500 s (i.e. in the steady state) (Color figure online).



“Aggressiveness” in Floor-Field Model 515

5 Conclusions and Future Work

The article introduced a parameter of aggressiveness as an additional character-
istics of agents in the Floor-Field model with adaptive time. This parameter is
understood as an ability to win conflicts. Therefore the heterogeneity of agents
is given by their desired velocity (determined by the own period τ) and their
ability to win conflicts referred to as the aggressiveness.

The simulation study shows that the aggressiveness has significant influence
in the regime with high occupation of the room, i.e., in the dense crowd, and on
the other hand has no effect in the free flow, as desired. The linear dependence of
the travel time on the number of pedestrians in the agents neighbourhood seems
to be a good tool how to measure the ability of agents/pedestrians to push
through the crowd. The independence of this ability on the desired velocity of
agents is very important to mimic the aspect that some “fast” pedestrians can
be significantly slowed down by the crowd while some “slow” pedestrians can
push through the crowd more effectively.

We believe that such feature can be very useful in the simulation of the
evacuation or egress of large complexes as e.g. football stadiums, where the less
aggressive pedestrians (parents with children, fragile women) can be slowed down
and leave the facility significantly later than the average. The model reproduces
this aspect even in the case of the homogeneity in own period τ .

In the future we plan to study this aspect in more detail. Mainly we would like
to focus on the joint distribution of the desired velocity τ and the aggressiveness
γ among the population and study its impact by means of the proposed model.
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Abstract. The paper describes a microscopic simulation of traffic flow
phenomenon based on Cellular Automata and Multi-agent System. The
simulation enables the study of the complexity of the traffic system and
can provide current information about road capacity. A car is repre-
sented as a set of several neighboring cells, as an extension of Nagel-
Shreckenberg model devoted for urban traffic simulation. The car is
represented as an agent whose decisions are based on the actual situ-
ation on the road including neighboring cars decisions. The model also
contains traffic lights and mechanisms such as right-of-way, route plan-
ning or lane changing which help to simulate more complex behavior of
vehicles.

Keywords: Simulation · Traffic flow · Cellular Automata · Agent-based
model

1 Introduction

Nowadays computer simulations are often chosen to study plenty of phenom-
enons. It is a safe way to expand our knowledge without conducting many
expensive experiments. We can simulate phenomenons which are too difficult
or simply cannot be recreated in the field. One of these phenomenons is traffic
flow. Many scientists have become interested in methods, that would give the
best traffic model and provide similar results in real life. We are going to mention
two models that we have found especially interesting.

Nagel-Schreckenberg model [6] is a theoretical model of freeway traffic based
on Cellular Automata where the car is represented as one cell and contains
information only about velocity. In every iteration the car moves forward the
number of cells that is equal to its velocity. The model is too simple to simulate
all of the traffic occurring in the city, because it doesn’t simulate any road
regulations or the behavior of cars on crossroads. Another interesting model is
proposed by Rolf Hoffmann [5]. It is based on Global Cellular Automata (GCA)
with access algorithms to model traffic. This model uses dynamic links between
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 517–527, 2016.
DOI: 10.1007/978-3-319-32152-3 48
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potential global neighbors and gives us the possibility to change our neighbors
state, something that is not allowed in classical CA.

In this paper, the authors present the model of traffic flow based on Cellular
Automata and Multi-Agent System [1,3,7,10] containing simulation of cars and
traffic lights. The result of this work is an application based on modificated
Nagel-Schreckenberg model - extended by us to be used in urban environment.

2 Proposed Model

The main goal was to create traffic model with simple update rules, which takes
into account all urban circumstances such as traffic lights, changing lanes etc. We
propose discrete, non-deterministic, rule-based model, which extends well-known
Nagel-Schreckenberg model [6].

The Nagel-Schreckenberg model was originally designed for freeway traffic.
Hence it has some disadvantages in case of urban traffic simulation. The first one
is unrealistic acceleration and deceleration of vehicles. In the NaSch model the
system updates every second (dt = 1 s). This means that acceleration or decel-
eration rate of each vehicle equals 7.5 m/s2. This value is too high to represent
urban traffic where drivers accelerate and brake more smooth in comparison to
the highways (Table 1).

Table 1. Acceleration and deceleration rates (based on [2,9]).

Source Typical values ( m
s2

)

ITE (1982) Maximal acceleration: 1.5–3.6

Maximal deceleration: 1.5–2.4

Normal deceleration: 0.9–1.5

Gipps (1981) Normal acceleration: 0.9–1.5

Maximal breaking: 3.0

Firstbus (private communication) acceleration (buses): 1.2–1.6

Intelligent Driver Model (IDM) Acceleration: 1.0

Comfortable deceleration: 1.5

In order to adapt the model to city conditions, it was necessary to propose
several modifications.

2.1 Road Representation

We propose to divide the road network into smaller cells (1 m). Due to such a
spatial discretization each vehicle has to occupy more that one cell at a time-
step (according to its length). This solution is inspired by the work [4]. Each
car is divided into smaller parts: a head and a tail (other pieces). The most
important part is the head which determines the position of the car on the road.
This approach enables to distinguish several types of vehicles (for instance cars,
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Fig. 1. A comparison between NaSch model and modified model.

Fig. 2. Connections between cells at the road segment.

trucks, buses or HGVs). Each vehicle occupies as many cells as it is long (rounded
up to the nearest number). For instance, if the car is 4.5 m long, it occupies 5
cells (Fig. 1).

The whole road network is composed of single roads. Each road consists of
single sections which are divided into single cells. Road segments need to be
connected in order to enable traffic flow (Fig. 2).

At single road segment each cell has a connection with its neighbors, i.e. the
next cell, the previous one, and the cells on the left and right (if they exist). In
this approach the road network is similar to the graph where cells correspond to
the graph nodes (also called vertices) and connections between cells correspond
to graph edges.

2.2 Modification of NaSch Rules

In the proposed model the system updates every 500 ms (dt = 0.5 s). The possible
speeds of vehicles are shown in Table 2. In order to obtain the acceleration rates
of 1–2 m/s2 (for urban traffic) we introduced decimal fractions to represent speed
and acceleration of each vehicle.

We propose following modification of update rules:

1. Randomization (with the probability p = 0.15):

behaviourt+1 =

{
max(behaviourt+1 − 2,−2) if the vehicle is entering the road,
behaviourt+1 otherwise.

(1)

2. Accelerating or breaking:

vt+1 =

⎧
⎨
⎩

max(vt − dec, 0) if behavior < 0,
vt if behavior = 0,
min(vt + acc, vmax) if behavior > 0,

(2)
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Table 2. Speed discretization in the proposed model (n – number of cells, dt – time
step).

Speed [ n
dt

] Speed [m
s

] Speed [ km
h

]

10 20 72

9 18 64.8

8 16 57.6

7 14 50.4

6 12 43.2

5 10 36

4 8 28.8

3 6 21.6

2 4 14.4

1 2 7.2

where acc – acceleration which depends on a type of vehicle, dec – deceleration
which depends on the road situation.

3. Vehicle movement:
xt+1 → xt + vfloor, (3)

where vfloor is a speed rounded down.

We introduced variable behavior which represents the behavior of each
vehicle. Values less than 0 represent braking, 0 means that vehicle should keep its
speed, 1 means that it can accelerate (if the maximum velocity is not reached).
Randomization probability was by default set to 0.15.

2.3 Modeling of Car Behaviour

Each vehicle treats other drivers on the road like obstacles. There are two kinds
of obstacles:

– static – obstacles which don’t move (velocity always equals 0),
– dynamic – obstacles which can move (velocity ≥ 0).

Visibility of the obstacle depends on its type. There are obstacles which are
visible for every vehicle (e.g. cells occupied by other vehicles or traffic lights).
The other obstacles can be ignored by the approaching vehicle under certain
conditions (e.g. extreme points which are visible only for vehicles that have been
assigned to the specific route).

Behavior of each vehicle depends on the obstacles which are within its sight:

s(n) = dbnormal(vn) + vn, (4)

where dbnormal – normal braking distance (from vn to 0), vn – speed of vehicle n.
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Fig. 3. The example of two obstacle types – dynamic (p1) and static (p2).

At this distance the car is looking for obstacles of both types. If some obstacle
is found, the real distance is calculated. In case of dynamic obstacle, the real
distance is the distance plus its emergency stopping distance:

dreal = d + dbem(vobstacle), (5)

where d – distance to obstacle, dbem – emergency braking distance (from vobstacle

to 0), vobstacle – velocity of obstacle (equals 0 if obstacle is static) (Fig. 3).
Finally, the behavior of each vehicle is based on its speed and the minimum of

calculated real distances to obstacles that were found (if both types of obstacles
have been found):

dreal = min(dreal1 , dreal2), (6)

where: dreal1 , dreal2 – real distances to found obstacles.

2.4 Changing Lane and Route Assignment

There are two motivations to lane change maneuver:

– profitable – when it enables to keep higher speed and pass some slower cars
ahead,

– necessary – in order to reach some point of the road network (and it’s not
possible from the current lane of the road) (Fig. 4).

Regardless of driver’s motivation the safety criterion has to be satisfied before
the maneuver is allowed:

{
b(vb) + d1 − len > b(v),
b(v) + d2 > b(vf ), (7)

where b(vb), b(v), b(vb) – emergency braking distance of vehicles cb, c and cf ,
d1 – distance between cb and c, d2 – distance between c and cf , len – length
of vehicle c.

Fig. 4. The example of change lane maneuver.
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Fig. 5. The example of route assignment. Vehicles c1 and c2 are following route r1.
Vehicle c1 has to change lane in order to follow assigned route.

Necessary lane changing is connected with route planning. Routes are
assigned to vehicles approaching some crossroads. The point of such assign-
ment is so-called route planner (see Fig. 5). For each route there are also some
extreme points, which define the last possible road cells where the lane has to be
changed. If lane change maneuver is not allowed (due to safety criterion which
is not satisfied) the car has to stop before the extreme point and wait until the
road is clean.

2.5 Right-of-way

In an urban area there are a lot of intersections without traffic lights where
drivers must yield right-of-way. In proposed model such points are called priority
points. There are two kinds of priority points:

– crossing points – places where vehicles enter the main road,
– entering points – places where vehicles only cut some other road lane.

This cells are blocked when entering the road is not allowed due to approach-
ing vehicles. A priority point is connected with one or more checkpoints which
are situated on the main road at the collision points (see Fig. 6).

3 Simulation Results

In order to check proposed model two tests have been made. The first one was
carried out to obtain the relation between main traffic characteristics (velocity,
density and flow) by increasing traffic density. The second test was comparing
the arrival time of the bus at each bus stop with the real schedule.

3.1 The First Test

In the application a three-lane road was created in a shape of the loop. In
one point of the road a car generator was placed. On the opposite site of the



Simulation of Traffic Flow Based on Cellular Automata 523

Fig. 6. The examples of both types of priority points (a – crossing point, b – entering
point). Checkpoints are situated at the cross point of the roads.

loop the measurement point was placed. Measurement point has three counters:
cf (flow counter), vc (velocity counter) and dc (density counter) and it takes
three parameters: dtm (measurement interval) and dm (measurement distance).

Three traffic flow characteristics (flow, velocity and density) were calculated
in every measurement interval (formulas based on [8]):

Jn = · 60
dtm · nlanes

[veh/h/lane] (8)

vn =
cv

cf
[m/dt] (9)

ρn =
cd

dtm · 60 · ips · nlanes
· 1000

dm
[veh/km/lane] (10)

where dtm – measurement interval, dm – measurement distance, nlanes – number
of lanes, ips – iterations per second (Fig. 7).

The relation between traffic characteristics shows that the maximum flow
(occurred by density about 45 vehicles per hour) is about 1800 vehicles per hour
(at the single lane) and that the maximum density that can be reached is about
170 vehicles per kilometer (Fig. 8).

Fig. 7. The road designed for test purposes (left) and the example showing the place-
ment of measurement point (right).
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Fig. 8. Diagrams of relation between (from left): J(ρ), v(ρ), v(J).

3.2 The Bus Test

The second part of model validation was comparing the time at each bus stop
with the real schedule. All bus stops are shown in the Fig. 9. The whole route of
the bus normally takes 20 min.

To compare the times, 10 single tests had been made. The results are shown in
the Fig. 10. The minimum difference between schedule and simulation departure
equals only 1 s (at the bus stop number five), and the maximum reached 70 s (at
the first bus stop).

Fig. 9. All bus stops (line 168) in simulation area (in the order they are visited).

3.3 Traffic Jams in Simulation

The simulation showed that in some places traffic jams occur. Three examples of
such locations are most interesting. The jams happen on yield-controlled inter-
sections (without traffic lights) and they occurred in locations, which are also
very problematic in reality.

It was useful and important observation, which shows that measured traffic
data was correct and initial state of the simulation leads to the same traffic
problems as in real life (Fig. 11).
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Fig. 10. Graph showing times of departure at each bus stop.

Fig. 11. Traffic jams occurring during simulation.

3.4 Simulation Performance

Although the application is divided into two separate threads (first thread is
responsible for calculation and the second for visualization part) calculating
of vehicle positions in next iteration is not parallel. After some modifications
it could be implemented in parallel and for sure it would improve application
performance.

The essential part of model testing was to measure the time of calculations.
In order to obtain the maximum possible number of vehicles during the test we
generated, at every generation point, as many vehicles, as possible (the number
of vehicles reached over 1900). Obtained times (at each iteration of simulation)
are plotted on a graph (Fig. 12). Time of calculation depends on simulation area
– chosen area was the northwestern part of Cracow (Poland) with area containing
roads with length of 33 km (considering each lane separately).
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Fig. 12. The graph showing times of model calculations depending on number of
vehicles.

4 Conclusions

The purpose of this paper was to develop a new method to study phenomena
of traffic flow which combines Cellular Automata and Multi-Agent System. The
model includes more elements which affect the traffic flow and represent the
car as an autonomic unit whose decisions can affect other traffic participants
decisions. This model is also enhanced with traffic lights, right-of-way and lane
changing rules and route planning. The model can be further extended and the
application can be modified to enable parallel calculations.

One of the most valuable advantages of the application is that it can be used
as a powerful tool which can help to test different traffic scenarios on the roads
(before they are even built). The biggest advantage of this solution is reduction
of time, costs and resources.
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Abstract. We propose a microscopic stochastic model to describe 1D
pedestrian trajectories obtained in laboratory experiments. The model
is based on optimal velocity (OV) functions and an additive noise deter-
mined by the inertial Ornstein-Uhlenbeck process. After statistical esti-
mation of the OV function and noise parameters, we explore the model
by simulation. The results show that the stochastic approach gives a
good description of the characteristic relation between speed and spac-
ing (fundamental diagram) and its variability. Moreover, it can repro-
duce the observed stop-and-go waves, bimodal speed distributions, and
nonzero speed or spacing autocorrelations.

Keywords: Unidirectional pedestrian streams · Stochastic optimal
velocity model · Statistical estimation of the parameters · Ornstein-
Uhlenbeck process

1 Introduction

The analysis and modeling of pedestrian dynamics has attracted a lot of atten-
tion during the last decades [11,29]. Empirically, data have been obtained
from experiments in laboratory conditions [7,15] with software to automatically
extract the trajectories from video recordings [9]. These investigations allowed
to establish many features of pedestrian dynamics [30], e.g. the unimodal shape
of the fundamental flow-density diagram or the presence of stop-and-go waves as
characteristics of unidirectional pedestrian streams [30,31]. Interestingly, these
phenomena do not only hold for pedestrians but are also observed for vehicle or
bike motion in 1D showing a certain universality in streams composed of human
agents and related self-driven flows [39].

Numerous models have been developed to understand and analyze the char-
acteristics of self-driven flows [6,11,29]. The unimodal shape of the fundamental
diagram is already found in simple models like the Asymmetric Simple Exclu-
sion Process (ASEP) [22] where it is related to the exclusion principle. More
generally it is well explained microscopically by phenomenological monotone
relations between the agent speed and distance spacing with the neighbor (usu-
ally called optimal velocity (OV), see [3]). The relation reflects the tendency to
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 528–538, 2016.
DOI: 10.1007/978-3-319-32152-3 49
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respect safety spacings to avoid collision due to unexpected movements of the
neighbors. It is observed with both pedestrians [2] and drivers [4].

Nonlinear traffic waves and instability were the topics of the pioneering
papers in the 1950’s and early 1960’s [10]. Microscopic continuous models defined
by systems of differential equations were initially used [27]. The inertial optimal
velocity models based on the OV function and defined by systems of ordinary
or delayed equations are ones the most investigated traffic models [3,23]. Traffic
waves are analyzed through instability of uniform solutions [25] or mapping to
macroscopic soliton equations [20]. Generally speaking, it seems that the intro-
duction of delays and deterministic inertial mechanisms generates instability of
the uniform solution and the emergence and stable propagation of stop-and-go
waves.

Many microscopic models describing nonuniform dynamics are stochastic
[17]. A noise is added to differential systems of continuous models for both pedes-
trian [13,21] and road vehicle [33,34]. Yet, the stochastic aspect does not seem
to be preponderant in the dynamics, especially in the formation of stop-and-go
waves. In continuous pedestrian models, the noise is used for ambiguous situa-
tions (e.g. conflicts) in which two or more behavioral alternatives are equivalent
[13] or to model heterogeneous pedestrian behaviors [28]. Few studies have shown
that the noise plays a major role (see [12] for bidirectional streams and the for-
mation of lanes). For road traffic models, probabilistic distributions of the para-
meters are also used to model heterogeneous driving styles [26], and stochastic
noises are introduced to model perception errors [34] or to switch from a sta-
tionary state to an other [33]. The use of white noises or time-correlated ones
does not impact the global dynamics of the second order models [34].

In this paper, we show that the introduction of a specific additive noise in a
first order model can impact the dynamics and generate stop-and-go phenom-
ena without requirement of deterministic instabilities. The noise is relaxed at the
second order through a Langevin equation. After calibration, we observe by sim-
ulation that the model is able to give a good description of pedestrian dynamics
and notably the stop-and-go waves. The paper is organized as following. The
stochastic OV model is defined in Sect. 2. The description model calibration is
presented in Sect. 3. The simulation of the model and comparison to the real
data are done in Sect. 4. Conclusions are proposed in Sect. 5.

2 Stochastic Optimal Velocity Model

Initially, the optimal velocity model is a second-order model for which the speed
is relaxed to an optimal speed depending on the spacing (headway) [3]. The
relaxation is determined by an OV function V : Δx �→ V (Δx). Nowadays, any
approach based on the OV function is called OV model or extended OV model.
The minimal OV model is [27]

dxn(t) = V (Δxn(t)) dt, (1)

with xn(t) the position of agent n at time t and Δxn(t) = xn+1(t) − xn(t)
the distance spacing, xn+1(t) being the position of the first predecessor n + 1.
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The uniform solutions are stable in this model if the optimal speed function is
increasing which is a natural assumption. The minimalist OV model is too simple
to reasonably describe wave phenomena. More realistic dynamics are obtained
if an inertia is introduced through reaction (or relaxation) time parameters such
as in the ordinary second order OV model [3]

{
dxn(t) = vn(t) dt,
dvn(t) = 1

b

[
V (Δxn(t)) − vn(t)

]
dt,

(2)

with vn(t) the agent speed and b > 0 the relaxation time parameter. The OV
function calibrates the fundamental diagram while stop-and-go waves can be
obtained if the reaction times are sufficiently high for that the stability condition
fails.

In the literature, stochastic OV models are classically related to discrete
models of interacting particle systems [18,19]. Here, we propose to use stochastic
OV models by adding a stochastic noise to the continuous minimalist model
(1). The noise is centered and stationary, with finite variance. It models other
random factors affecting the speed besides the spacing. We denote W (t) the
Wiener process such that W (t, s) − W (t) is normally distributed with mean
zero, variance s, and independent to W (t) for all t and s. In order to introduce
a non-vanishing noise autocorrelation, we use the model

{
dxn(t) = V (Δxn(t)) dt + εn(t) dt,
dεn(t) = − 1

b εn(t) dt + adWn(t), (3)

with a the amplitude of the noise and b > 0 the relaxation time parameter. The
noise εn(t) is the solution of a Langevin equation. It is a standard stochastic process
called the Ornstein-Uhlenbeck process, for which the autocorrelation tends to zero
exponentially. The noise randomly oscillates around zero making positive and neg-
ative corrections to the optimal speed at random instants with independent incre-
ments. This behavior is consistent with action-point traffic models and observa-
tions that drivers react at discrete random times [32,35,36,38]. The model (3) is
close to the deterministic second order OV model (2). Yet with the stochastic app-
roach, the inertia only affects the noise. The uniform solutions are linearly stable
in the model (3) in the deterministic case where a = 0 as soon as V (·) is strictly
increasing. However, the trajectories obtained from the model with the additive
noise describe nonuniform solutions with stop-and-go waves (see Fig. 1, the sim-
ulation details are given in Sect. 4). Yet, oppositely to the unstable deterministic
approaches, there are no generic problems of collision and backward motion (see
for instance [8,37]).

3 Calibration of the Parameters

The data we use to calibrate and evaluate1 the models are pedestrian trajectories
in a ring over laboratory conditions [1]. The experiments in a ring with length of
1 There is no split of the data; both calibration and evaluation steps are done with

the global data sample.
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27 m and width of 0.7 m. Several experiments were carried out with different level
of densities (the pedestrians numbers go from 14 to 70 with 11 tested density
levels) and uniform initial distribution. The trajectories are measured on two
segments with length of 4 m using the software PeTrack [5] with a time resolution
of 0.04 s (frame-rate 25 fps). The variables used for the model calibration are the
distance spacing and speed

Δx(t) = x1(t) − x(t) and vδt(t) = 1
δt

(
x(t + δt/2) − x(t − δt/2)

)
. (4)

with x1 the position of the predecessor. The spacings are measured instanta-
neously while the speeds have to be averaged over time intervals of length δt =
0.8 s to avoid effects of the pedestrian step frequency that is close to 0.7 s [24].

The OV function models a phenomenological relation between the speed and
the spacing. Two main states are classically distinguished: (1) the free state,
when the spacing is large and the speed is equal to the maximal desired speed
and (2) the congested (or interactive) state, when the spacing is small and the
speed depends on the spacing. Both road traffic and pedestrian observations
show clear correlations between speed and spacing in congested regimes. This
suggests that the spacing is proportional to the speed to keep a constant safety
time gap to react to unexpected behaviors of the predecessor [2,4]. Therefore,
we assume that the OV function is piecewise linear

Vp(Δx) = min
{
v0,max{0, (Δx − �)/T}}, p = (v0, T, �), (5)

with v0 the desired (or maximal) speed, T the time gap and � the longitudinal
length of the pedestrian. We propose to estimate these parameters microscop-
ically by using K = 5251 pseudo-independent measures from the sample of
trajectories (by waiting 5 s between each observation). We denote the observa-
tions by (Δxk, vk), k = 1, . . . , K, where the speed vk is averaged over δt = 0.8 s.
For a given pedestrian k, the residuals Rk(p) of the model are

Rk(p) = Vp(Δxk) − vk. (6)

As in [16], the parameters are estimated by minimizing the empirical variance
of the residuals

p̃ = arg minp

∑
k R2

k(p). (7)

This estimation by least squares maximizes the likelihood under the assump-
tion that the residuals are independent and normal, and has in general good
properties if the noise repartition is compact. The observations, the estimations
of the parameters and the histogram of the residuals are given in Fig. 2. The
R2 = 0.78 of the estimation (the proportion of the variance explained by the
model) reveals a good fit of the model. Moreover the distribution of the resid-
uals is relatively compact. Note that the fit can be slightly improved by using
sigmoid OV functions with 4 parameters (R2 = 0.80).

The empirical estimation of the variance of the residuals maximizing the
likelihood is σ̃2

R = 1
K

∑
k R2

k(p̃). The stationary variance and δt-autocorrelation
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Fig. 1. Trajectories on a segment of length 2 m. From top to bottom: 25 (free state),
45 (slightly congested state) and 62 pedestrians (congested state) on the ring of length
27 m. From left to right: Real data and the calibrated stochastic model (3).
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the calculus of the speed. Global sample of observations.

of the Ornstein-Uhlenbeck process are var(ε) = a2b/2 and c̃δt = e−δt/b. These
relations allow to obtain the estimators for b and a

b̃ = −δt/ log(c̃δt) and ã = σ̃R

√
2/b̃. (8)

The estimations for all the data are ã ≈ 0.09 ms−3/2 and b̃ ≈ 4.38 s. Note that the
value of the relaxation time b is close to 5 s that is approximately 10 times larger
than the value τ ≈ 0.5 s generally used with force-based pedestrian models based
on a relaxation process (see for instance [13]). Estimations by class of spacing
show clear relations between the noise parameters and this variable. The results
are shown in Fig. 3. We can see for b̃ particular uni-modal shapes in the congested
phase where Δx ≤ � + v0T ≈ 1.3 m. For the free phase where Δx ≥ � + v0, the
values are relatively constant. The shape of the parameter ã is more irregular.
It will be assumed constant on Δx ≤ 0.95 and Δx ≥ 0.95 m in the simulations.
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Fig. 3. Statistical estimation of the noise parameters by class of spacing. The dotted
lines are the linear approximations used in the simulations.
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4 Simulation Results

In the analysis of complex systems, the top-down method consists in calibrating
the parameters of a microscopic model in order to reproduce observed macro-
scopic behaviors. It requires knowledge about the relation between the parameter
values and the macroscopic properties of the model, or to implement a sensitiv-
ity analysis. The top-down approach has been mainly used in particle physics
where the microscopic particle behaviors are unknown (only macroscopic quan-
tities such as the temperature are measured). In this study, the microscopic
performances (i.e. the trajectories) are observed and directly used to calibrate
the parameters. The macroscopic behaviors are observed by simulation and used
to validate the calibrated models. This bottom-up method allows to control both
local and global dynamics.

We evaluate the model (3) by comparing simulation results to the real data.
A similar setup as in the real experiments is reproduced for the simulations
(from 14 to 70 pedestrians in a ring of length 27 m). The models are simulated
by using explicit Euler-Maruyama schemes [14]. The discretisation of the relaxed
noise model (3) is

{
xn(t + dt) = xn(t) + dt Vp̃(Δxn(t)) + dt εn(t),
εn(t + dt) = (1 − dt/b̃) εn(t) +

√
dt ã ξn(t),

(9)

with (ξn(t), n, t) independent normal random variables. The time step dt is set
to 1e-3 s.

The stochastic model is firstly evaluated by looking at the mean, standard
deviation and correlation of the speed and spacing for the global sample of obser-
vations (see Table 1). The trajectories for 25, 45 and 62 pedestrians are presented
in Fig. 1. Some stop-and-go waves propagate when the density increases as in real
data (see Fig. 1, middle and bottom panels). Yet we do not observe the collision
and backward motion problems frequently related with the unstable determin-
istic approaches [8,37]. The autocorrelations of the speed and spacing also give
good fits to the data (see Fig. 4). The speed distributions by class of spacing
are plotted in Fig. 5. We clearly observe bimodal distributions for intermediate

Table 1. Mean, standard deviation (in m and m/s) and correlation for the spacing Δx
and speed vδt of a pedestrian and his/her predecessor (Δx1 and v1

δt) for global sample
of observations. δt = 0.8 s.

Δx vδt Δx1 v1
δt

Data Mod. (3) Data Mod. (3) Data Mod. (3) Data Mod. (3)

Mean 0.68 0.67 0.32 0.32 0.68 0.67 0.32 0.31

Std-dev 0.33 0.34 0.30 0.30 0.33 0.35 0.30 0.30

Corr. Δx 1 1 0.87 0.87 0.79 0.76 0.87 0.87

vδt 0.87 0.87 1 1 0.85 0.84 0.97 0.97
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Fig. 4. Autocorrelation function for the spacing (top panels) and the speed (bottom
panels) for N = 25 (free state, left panels), N = 45 (slightly congested state, middle
panels) and N = 62 (congested state, right panels).
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spacings within the data and model (3) (see Fig. 5, middle panel). This result is
consistent with stable propagation of the stop-and-go waves.

5 Conclusion

A first order pedestrian model based on Optimal Velocity functions and addi-
tive stochastic noise is proposed and calibrated using real pedestrian data on
a ring. The model gives realistic descriptions of pedestrian trajectories in one
dimension. Mean values and correlations of the speed and spacing are relatively
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well fitted through piecewise linear OV function with three parameters. Stop-
and-go phenomena at congested density levels, bimodal speed distributions, and
nonzero speed and spacing autocorrelations are obtained thanks to the relaxed
noise at the second order.

As the classical deterministic OV models, inertia mechanisms are used to
generate collective waves. Yet the inertia here is stochastic, without deterministic
instability of the uniform solution. Also, and oppositely to classical deterministic
models, there is no requirement of using nonlinear dynamics to obtain (nonlinear)
traffic waves within the stochastic OV approach. Moreover, we do not observe
the generic problems of collision and motion backward that are unfortunately
frequently obtained with the unstable deterministic approaches. The statistical
estimation of the relaxation time is close to 5 s for the noisy model, while it is
generally around 0.5 s for the deterministic Ansatz. The relaxation mechanism of
the stochastic approach is clearly not that of the classical models. This makes the
stochastic OV model a new way to describe accurately stop-and-go phenomena.
For pedestrian dynamics in two dimensions, it has to be completed by a direction
model.
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Abstract. The discrete-continuous model is a novel contribution to
mathematical modeling of pedestrian dynamics. This model is of indi-
vidual type; people (particles) move in a continuous space, – in this sense
the model is continuous. But the number of directions for the particles
to move is limited, – in this sense the model is discrete. The model is
realized in the computer evacuation module SigmaEva. This article is
focused on a presenting of the model and computational aspects and the
model is discussed in respect with discrete and continuous models.

Keywords: Pedestrian dynamics model · Discrete-continuous
approach · Evacuation modeling · Fundamental diagram

1 Introduction

This study is aimed at the novel approach of mathematical simulation of pedes-
trian movement – a discrete-continuous pedestrian dynamics model. The model
is of the individual type meaning that trajectories of every person are simulated.

An idea of the discrete-continuous approach is to omit solution of the differ-
ential equations system (as it is done in social-force models [2,3] and to extract
speed for every person from empirical data taking into account the local densi-
ties [8]. We use an analytical expression of speed versus density by Kholshevnikov
and Samoshin [5], one can use another speed-density dependencies. A probabil-
ity approach is used to find direction for each pedestrian in the next step (as
in stochastic cellular automata models, i.e. [1,12,15]). A procedure to calculate
probabilities to move in each direction is adopted from the previously presented
stochastic cellular automata floor field model [7]. Directed movement is given
by using the static floor field (as in cellular automata approach) that shows a
distance from every point of the space to the nearest exit. So person at each
time step is allowed to move in a continuous space, – in this sense the model
is continuous, but the number of directions for the particles to move is lim-
ited and predetermined by a user, – in this sense the model is discrete. Such
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approach seems to be fruitful and useful from mathematical and computational
view points and practical applications.

The model is realized in the computer evacuation module SigmaEva. In the
article a mathematics of the model and the most important computational issues
are presented. The model is discussed in respect with social-force (continuous)
models and floor field stochastic cellular automata (discrete) models.

The article is organized as follows. In the next section, the mathematical
statement of the pedestrian movement modeling problem is presented. It is fol-
lowed by the decision section (a movement equation, a direction choice, a speed
formula are presented), discussion section.

2 Statement of the Problem

A continuous modeling space including an infrastructure (obstacles) Ω ∈ R2 are
known. People (particles) may move to a free space only1.

Every particle is considered as a hard flat round disk with diameter di,
initial positions of particles are given by coordinates of disks centers xi(0) =
(x1

i (0), x2
i (0)), i = 1, N , N is number of particles (it is supposed that these are

coordinates of mass center projections).
Every particle is assigned with the free movement speed2 v0

i , square of projec-
tion si. It is supposed that while moving people do not exceed a maximal speed
(a free movement speed) vi(t) ≤ v0

i , and each person controls speed taking into
account the local density vi(t) = f(ρ).

Each time step t every particle may move in one of predetermined directions
ei(t) = {eα(t), α = 1, q}, the model parameter q is the number of directions (for
example, a set of directions uniformly distributed around a circle is considered
here). Particles that cross target line leave the modeling space.

To orient in the space particles use the static floor field S. Let the nearest
exit is assumed as a target point of each pedestrian.

The goal is to model an individual people movement to the target point
taking into account interactions with the environment (other particles, obstacles,
modelling border (walls)).

3 Mathematical Model

3.1 Preliminary Step – Static Field S

To model directed movement a “map” which stores the information on the short-
est distance to the target point is used. The unit of this distance is meter, [m].
Such map is saved in so called static floor field that was originally introduced
for discrete cellular automata model [1,12,15]. It does not change with time and
is independent of the presence of the particles.
1 There is unified coordinate system, and all data are given in this system.
2 We assume that the free movement speed is random normal distributed magnitude

with some mathematical expectation and dispersion [5,6].
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We use field S which increases radially from the exit and it is zero in the
exit(s) line(s) [7] that differs from original approach. To calculate field S model-
ing space Ω is covered by a discrete orthogonal grid with cell some cm in size (the
size of the cell may vary from 10 to 80 cm in depends on sizes of the modelling
area), and Dijkstras algorithm with 16-nodes pattern is used, for instance. Dis-
tance to the exit from arbitrary point in Ω is given by bidirectional interpolation
among nearest nodes.

3.2 Movement Equation

A person movement equation is derived from a finite-difference presentation
of the velocity v(t)e(t) ≈ x(t)−x(t−Δt)

Δt . This expression allows to present new
position of the particle. For each instant t, the coordinates of i-th particle is
given by the formula:

xi(t) = xi(t − Δt) + vi(t)ei(t)Δt, i = 1, N (1)

where xi(t − Δt) denotes the particle’s position at time t − Δt; vi(t) is speed
measures in m/s; ei(t) is the unit direction vector. Time shift Δt = 0.25, [s], is
assumed to be fixed.

Unknown values in (1) for each time step for each particle are speed vi(t)
and direction ei(t). As it was said above we omit to describe forces that act on
person, solve system of differential equations and, as a result, get velocity vector
vi(t). We propose to get speed from experimental data (fundamental diagram).
In this case in contrast with force-based models we have an opportunity to divide
task of finding the velocity vector to two parts. At first, one need to choose the
direction for particle to move. Then speed, taking into account the local density
in the direction, is calculated using some speed-density dependance (Fig. 1).

Fig. 1. Movement scheme, the previous and the next position of the particle.

3.3 Choosing of the Direction to Move

In this discrete-continuous model we took inspiration from our previously pre-
sented stochastic CA FF model [7]. We consider desired direction as a random
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discrete variable with a probability distribution. All predetermined directions are
possible values which are assigned with some probabilities. The desired direction
is chosen according to this probability distribution. Probabilities vary dynami-
cally and issued from the following facts. Pedestrians keep themselves at a certain
distance from other people and obstacles. The tighter the people flow and the
more in a hurry a pedestrian, the smaller this distance. During movement, people
follow at least two strategies: the shortest path and the shortest time.

Thus personal probabilities to move in each direction each time step have
contributions: (a) the main driven force (given by destination point), (b) interac-
tion with other pedestrians, (c) interaction with an infrastructure (non movable
obstacles). The highest probability is given to direction that has most preferable
conditions for movement considering other particles and obstacles and strategy
of the people movement (the shortest path and/or the shortest time)3.

The following procedure is applied for every particle to calculate transition
probability for each of predetermined directions and then to choose a direction.

Let particle i has current coordinate x(t−Δt). The probability to move from
this position to direction eα(t) =

(
cos 2π

q α, sin 2π
q α

)
, α = 1, q is the following:

pi
α(t) =

p̃i
α(t)

Norm
=

exp
[
ki

S�Sα − ki
P ρ(r∗

α) − ki
W (1 − r∗

α

r )1(�Sα)
]
W (r∗

α − di

2 )
Norm

;

(2)

Norm =
q∑

α=1
p̃i

α(t). Visibility radius r (r ≥ max{di

2 }), [m], is model parame-

ter representing the maximum distance at which people and obstacles influence
on the probability value in the given direction. Obstacles can reduce visibility
radius r to r∗

α (see Fig. 2). People density 0 ≤ ρ(r∗
α) ≤ 1 is estimated in the vis-

ibility area, see paragraph below. Function 1(·) is Heaviside unit step function.
There are model parameters: ki

S > 0 is field S-sensitive parameter; ki
W > 0 is

wall-sensitive parameter; ki
P > 0 is density-sensitive parameter. Information on

parameters is below.
ΔSα = S(t − Δt) − Sα, where S(t − Δt) is static floor field in the point

xi(t − Δt), Sα is static floor field in the point x = xi(t − Δt) + 0, 1eα(t)
i . The

movement to the target point is controlled by ΔSα
4.

3 In contrast with original floor field models [1,12,15] to take in to account other
people we use current local density in the direction instead of dynamical field D
which store “historical” data of the flow intensivity.

4 The reason why we use field S radially increasing from exit and gradient ΔSα instead
of original issues is the following. Originally pure values of field S (which radi-
ally decreases from exit) are used in the probability formula in floor field models,
e.g. [1,4,10–12,15]. We propose to use only a value of gradient ΔSα. From a math-
ematical view point, it yields the same result [7], but computationally this trick has
a great advantage. The values of field S may be too high (it depends on the mod-
elling space Ω size); in this case, exp (kSSα) can appear uncomputable. This is a
significant limitation of the models. At the same time, 0 ≤ |ΔSα| < 1, and a value
of exp (kSSα) is computable.
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Fig. 2. Visibility area of particle i in direction α. Given visibility radius r is reduced
to the r∗

α due to the presence of the obstacle.

Function W
(
r∗
α − di

2

)
=

{
1, r∗

α − di

2 > w;
0, r∗

α − di

2 ≤ w
controls approaching to obsta-

cles5. Model parameter 0 ≤ w ≤ 1, [m], is coefficient of inadherence to obstacles.
If Norm = 0 than particle does not leave present position6.
If Norm �= 0 than desired direction ei(t) is considered as discrete random

value with distribution that is given by transition probabilities calculated. Exact
direction ei(t) = eα̂

i (t) =
(
cos 2π

q α̂, sin 2π
q α̂

)
is determined according to stan-

dard procedure for discrete random quantities.

3.4 Speed Calculation

Person’s speed is density dependent [5,6,13,14]. We assume that only conditions
in front of the person influence on speed. It is motivated by a front line effect
which is well pronounced while flow moves in open boundary conditions. Front
line people move with free movement velocity while middle part is waiting a free
space that is necessary to make a step. It leads to a spreading of the flow. If not
to take into account such effect simulation will be slower then real process. Thus
only density ρi(α̂) in direction chosen ei(t) = eα̂

i (t) is required to determine
speed. According [5,6] current speed is

vi(t) = vα̂
i (t) =

{
v0

i (1 − al ln
ρi(α̂)

ρ0 , ρi(α̂) > ρ0;
v0

i , ρi(α̂) ≤ ρ0.
(3)

where ρ0 is limit people density until which people may move with free move-
ment speed (it means that the local density does not influence on people’s speed);
5 Note, function W (·) “works” with nonmovable obstacles only.
6 Actually this situation is impossible. Only function W (·) may give (mathematic)

zero to probability. If Norm = 0, a particle is surrounded by obstacles.
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parameter al shows people adaptation to current density while moving on dif-
ferent way types (ρ0 = 0.06, a1 = 0.295 is for horizontal way; ρ0 = 0.1, a2 = 0.4,
for down stairs; ρ0 = 0.08, a3 = 0.305, for upstairs). The free movement speed
v0

i is random normal distributed magnitude with, for instance, mathematical
expectation 1.66 m/s and standard deviation 0.083 m/s.

3.5 The Local Density Estimate

One more important question is how to estimate density in the visibility area. It
follows from (2) that every direction should be assigned with the local density
each time step for every particle. The density in the choosing direction ρi(α̂) is
necessary to calculate the speed vα̂

i (t) according to (3).
We use analytical estimate that shows an occupation rate of the visibility

area (see Fig. 2), and thus the density estimate is dimensionless and varies in the
interval [0, 1). Analytical estimate supposes to calculate total square S2 of other
particles that intersect the visibility area with square S1 = di · r∗

α. There were
developed an algorithm to identify positions of each disc intersecting visibility
area, and the geometric formulas to calculate the intersection area. Density is
ρ(r∗

α) = S2
S1

,∈ [0, 1), [m2/m2]. Some words about the quality of this density
estimate are given in the following subsection. Next idea is to use a weighted
density function to take into account distance between considered particle and
particles in the visibility area.

Fig. 3. Average calculated shift (“sh (3) mean”), average true shift (“sh true mean”),
corresponding standard deviations (“sh (3) st.dev”, “sh true st.dev”)

The rectangular shape of the visibility area (i.e., instead of conus) is moti-
vated by the fact that a particle may move just along the direction vector, and
only particles that are in the visibility area influence on the possibility of the
movement.

3.6 New Position, Collisions

For every particle i, i = 1, N to define new position one substitute in (1) the
direction eα̂

i (t) and the speed vα̂
i (t). If the particle moves from the position
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xi(t−Δt) to a new position xi(t) = xi(t−Δt)+vα̂
i (t)eα̂

i (t)Δt without collisions
(intersections) with other particles a new coordinate for the particle is fixed7.

To imagine what a difference is between average calculated shift shift =∑N
i=1 vα̂

i (t)Δt and average true shift for different densities see Fig. 3 (curves
“sh (3) mean” and “sh true mean” correspondingly). Standard deviations are
given by curves “sh (3) st.dev.” and “sh true st.dev.” in Fig. 3. Data were
obtained during a simulation experiment in a corridor 2 × 50m2 under peri-
odic boundary conditions [8].

When new positions of all particles are calculated then a correction of possible
positions is applied. It takes place if there are particles l and m intending to “the
same” position: |xl(t) − xm(t)| ≤ dl

2 + dm

2 − Δd. In this case conflict resolution
procedure is applied8.

4 Discussion

The model was implemented in the SigmaEva computer simulation module. This
section deals with computational aspects of the model and program realization.

4.1 Model Parameters ki
S, k

i
P , ki

W

Probability formula (2) contains non-dimensional model parameters: ki
S , ki

P , ki
W .

Parameter ki
S > 0 is field S-sensitive parameter which can be interpreted as

knowledge of the shortest way to the exit (or a wish to move to the exit). The
equality ki

S = 0 means that the pedestrian ignores the information from field S
and move randomly. The higher ki

S , the better directed the movement.
Parameter ki

W ≥ 0 is wall-sensitive parameter which determines the effect
of walls and obstacles. We assume that people avoid obstacles only moving
towards the destination point. When people make detours (in this case ΔSα̂ < 0)
approaching the obstacles is not excluded.

Parameter ki
P > 0 is the density-sensitive parameter and determines the

effect of the people density. The higher parameter ki
P , the more pronounced the

shortest time strategy for the particle.
Note that probabilities are density adaptive; the low people density low-

ers the effect of density-sensitive term, and role of the shortest path strategy
increases automatically. But this automatic property is not enough. Ideally a
time-spatial adaptation for parameters ki

P and ki
W is required. All parameters

may be assigned individually or unified for all involved particles.
For wide range of evacuation tasks that intend directed movement under

normal conditions the set numerous simulation experiment showed that ki
S = 40,

ki
P = 6, ki

W = 2 are appropriate.
7 Note (!) that positions of other particles are taken in to account for time t − Δt. As

in cellular automata models parallel update is used here.
8 Only here we operate with coordinates obtained for time t. As in floor field cellular

automata models movement of all involved particles is denied with probability μ.
One of candidates moves to the desired cell with probability 1−μ. A person allowed
to move is chosen randomly.
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4.2 Model Parameters q

The number of predetermined directions q > 0 is model parameter. High value
of q seems to be natural. Probability-based approaches give directed movement
when one direction has got considerably higher probability then the others. In
discrete cellular automata models with four cell neighborhood it is pronounced
very sharp. So the higher q, the less pronounced this fact. In this case some
number of directions have got more or less the same conditions in front of them.
It leads to more or less the same probabilities for such directions. For instance,
the vectors of probabilities (2) for some particle for t and t + Δt are9

α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t 0 0 0 0 0.001 0.002 0.005 0.028 0.128 0.175 0.34 0.196 0.124 0 0 0

t + Δt 0 0 0 0 0 0 0 0.025 0.114 0.184 0.30 0.114 0.101 0.108 0.04 0.015

It results in very well pronounced swaying movement because step by step
there is now one direction with probability considerably exceeding other direc-
tions. To exclude it we use a computational trick that artificially scale probabil-
ities relatively each other:

p̂i
α(t) =

(p̃i
α(t))6

q∑
α=1

(p̃i
α(t))6

. (4)

The corresponding scaled vectors of probabilities (4) for the same particle
for t and t + Δt are

α 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

t 0 0 0 0 0 0 0 0 0.003 0.018 0.942 0.035 0.002 0 0 0

t + Δt 0 0 0 0 0 0 0 0 0.003 0.050 0.941 0.003 0.001 0.002 0 0

One can see that one direction with expressed probability value for both steps.
This computational trick smoothes movement of the particle. Our experience
after numerous simulation experiments is that q = 16 gives satisfying dynamics.

4.3 Discrete-Continuous Approach with Respect to Discrete
and Continuous Approaches

Usually real-life phenomena are continuous. At the same time computer cal-
culations are discrete by nature; and discrete models are more convenient for
computer simulation and save computational time.
9 Zero probabilities means very low values which are about 10−4 − 10−16 here.
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The last one encouraged developing of discrete approach to model pedestrian
dynamics. Discrete models are discrete by space and time. Such models operate
with spaces sampled into cells of some size (often 40 cm × 40 cm in size), which
are either empty or occupied by the only person (exclusive principle). Usually
each particle can move to one of its four (the von Neumann neighborhood) or
eight (Moore neighborhood) adjacent cells or stay in the present cell at each
discrete time step t → t + 1; i.e., vmax = 1[step]. There are models that allow
vmax > 1[step]. Discrete models describe people dynamics (including interaction
with environment) in a rule-based way. Stochasticity of the people movement is
captured by calculating probabilities to move in every direction. It gives relative
mathematical simplicity to models, and it is the pros. And the cons are problems
concerning adjusting real building sizes to discrete model space. Sometimes in a
focus of (fire) engineering investigation is a changing of a door size on 5–15 cm.
Discrete models can not pick up such point. But it is very important for the
main application of pedestrian evacuation models that are fire safety problems.

Continuous models imply that people move in the continuous space. Gener-
ally there are no restrictions on movement except the nearest people and obsta-
cles. From practical applications continuity of the space is the pros; and cons of
traditional continuous approach are problems with movement equation. In New-
tonian mechanics to define trajectory of an object (person) one need to know
current position and velocity vector (or its time derivative that is acceleration).
Acceleration vector is given usually by forces that act on object (the second
Newton’s law) ma = F . The main goal (and problem) in such models is to give
analytical expressions to describe forces F and solve a system of N differen-
tial equations. The forces F are not physic here. Forces of an interaction with
other people, obstacles and main driving force are matter of consideration in
this approach. A numerical solution of such system is time consuming in itself,
moreover stability of the numerical methods and a solution needs the relaxation
time (time step) to be very small Δt ≈ 0.01 s.

The discrete-continuous model omits the solution of the differential equa-
tions system and “extracts” velocity scalar for each particle from empirical data
taking into account the local densities. We use speed-density dependence from
(3); one can use the other fundamental diagram. Set of possible directions is
predetermined. Desired direction for every particle each time step is consid-
ered as a random variable with some probability distribution. This distribution
is time-spatially dependent and gives the highest probability to the direction
that has the most preferable conditions for movement considering other particles
and obstacles and strategy of the people movement (the shortest path and/or
the shortest time). The directed movement is given by using the static floor
field that shows a distance from each point of the modelling space to the exit.
So person at each time step is allowed to move in a continuous space (in this
sense model is continuous), but number of directions where particles may move
is limited and predetermined by a user (in this sense model is discrete). Time
step Δt = 0.25 s, that is approximate duration of one human step.
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Such combination of discrete and continuous approaches seems to be fruit-
ful and useful from both mathematical statement and practical applications. Of
course model is “computationally heavier” in comparing with pure discrete mod-
els but this is a price for flexibility and applicability. Comparing with force-based
models this model is “faster” considerably: Δt = 0.25 s versus Δt ≈ 0.01 s.

Correctness of the model was checked by agreement of a simulated velocity-
density dependence (fundamental diagram) with the empirical data [8,9].
Validation with fundamental diagrams in periodic and open boundary condi-
tions shows good dynamical properties: maintaining velocity according to local
“directed” density, an initial density and the free movement speed maintain
approximately till 0, 5[pers/m], flow diffusion realizes if it is possible, model full
flow rises with increasing bottleneck width. A comparison with experimental data
says that model results are within an existing conception of the speed-density
dependence of people flow. We continue to develop and investigate the model,
improve and fast computational scheme by using high performance computing.
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Abstract. The Social Distances (SD) model for massive evacuation is
based on a Cellular Automata and agent-based representation of pedes-
trians. When parallel processors are used, this approach creates a high
performance simulation. In this paper, we present a new algorithm for
Social Distance that is highly optimized for GPU computations. The orig-
inal algorithms were redesigned in order to efficiently exploit the power
of graphics processors. The performance of the SD model executed on a
GPU is several times greater than the performance of the same algorithm
executed on a normal CPU. It is now possible to simulate at least 106

pedestrians in real time.

Keywords: Pedestrian dynamics · GPGPU · Cellular Automata

1 Introduction

In microscopic crowd dynamics models, we take into consideration the behavior
and dynamics of a particular entity (an agent). One can distinguish two basic
groups of models. On the one hand is the force-based Social Force Model [9],
which is the most popular microscopic (continuous) model. On the other hand
there are the Cellular Automata–based models, which use the idea of static and
dynamic floors fields [3,4,7,8,10,19,20].

Among the discrete models of crowd dynamics, the application of potential
fields [4,8,10,11,20] is especially appreciated. This group of models uses a set
of fields which modifies the transition function of an applied cellular automa-
ton. Usually a static potential field with defined POIs of pedestrians (Points
of Interest defined as short term and long term aims/attractors of particular
pedestrians) is used together with a dynamic potential field generated by mov-
ing pedestrians (as analogy to chemo-taxis). Recently, other types of floor fields
were proposed, for instance proxemic floor field [7].

In this paper we pay special attention to a GPU implementation of CA-based
crowd simulations. The usefulness of GPUs for Cellular Automata modeling has
c© Springer International Publishing Switzerland 2016
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been demonstrated in many papers. Rybacki et al. [15] use GPUs for imple-
menting a few well-known CA rules (e.g. Game of Life, Parity). The article con-
cludes that the usefulness of GPU-based Cellular Automata algorithms strongly
depends on the models that are to be simulated. Bilotta et al. [1] has ported the
MAGFLOW model [16] (lava flow simulation) to the CUDA environment. The
algorithms were carefully optimized for GPU architecture, and they benefited
from the usage of shared memory. Also, Topa [18] investigated the possibilities of
constructing an efficient GPU-aware algorithms for a CA-based model for water
flow. Blecic et al. [2] used Nvidia Kepler architecture to implement a model of
urban dynamics. The authors also implemented an additional version that uses
shared memory, but it gives only a small increase in performance due to the
hardware managed cache. D’Ambrosio [5] applied configurations with multiple
GPUs to provide a fast analysis of scenarios of potential wildfires. This team also
applied GPU computations for risk assessment of areas threatened by volcano
eruption [6].

Models of crowd dynamics based on the Cellular Automata paradigm also
perform with high efficiency when implemented for a GPU. Miao et al. [12]
demonstrated how a GPU can be used for modeling pedestrian evacuations. The
application of a GPU for modeling crowd dynamics using two classical models,
Social Force and Social Distances, was studied by W ↪as et al. [13,14]. They pro-
posed a naive implementation in which the computational domain was simply
distributed among the GPU threads. The algorithms were not optimized for the
specific GPU architecture but also made it possible to speed up calculation up to
2–4 times.

In this paper, we present a new implementation of the Social Distances model
for mass evacuation (described in detail in [21]), optimized for GPU computation.
The general architecture is still based on our previous implementations [13,14],
however the algorithms were completely redesigned to achieve a high level of
parallelism. In the next section, the foundations of both methods are briefly
presented. Next, we show how the algorithms were redesign and re-implemented
for GPU architecture. Sample simulation results and performance evaluation are
presented and discussed at the end.

2 Implementation of Social Distances for CPU

We have decided to implement a new CPU-based version of the Social Distances
model for mass evacuation. It will be used to evaluate the performance of a new
GPU-based version. In this section, we briefly present the assumptions we made
in rewriting the algorithms.

Efficient implementations of these models exist, and they were studied and
optimized many times so far. In the current version we have decided to pay spe-
cial attention to instruction flows. Three parts of the model algorithm generate
a large number of divergent execution paths:

1. Finding visible areas.
2. Calculating the pedestrians’ compressibility factor.



552 A. K�lusek et al.

3. Calculating the cost function.

In general, the branch instructions were replaced with multidimensional arrays
of pre-calculated data.

2.1 Visibility Areas

Before each pedestrian is moved to a new location, its potential directions of
movement are considered. The modeled area is represented by a two-dimensional
grid. Each cell corresponds to a square 25 × 25 cm. In a single cell there can be
only one entity, either an obstacle, a POI or a person. In the algorithm, the area
is represented by a 2-dimensional table of characters, with values corresponding
to entities. If cell is occupied by a person, a value in the table indicates its
orientation (see Fig. 1).

0 - 
1-8: 

1

2

3

4
5

6

7

8

9: 
10: 

Fig. 1. A single cell can be empty (0) or occupied by a person (1–8), obstacle (9) or
POI (10).

The algorithm uses another table with the same dimensions as the main
table that stores information about the POIs. In this case, each cell contains
information about the minimum number of steps to be carried from the site to
the nearest target. This table is updated only when POIs change their location.
What is more, there is the possibility to locate a different number of POIs and
indicate specific target to specific group of people.

In order to determine the visible fields around the pedestrian, the program
uses a two-dimensional (9 × 5 elements) array of structures (table moves):

s t r u c t Move{
i n t dx ;
i n t dy ;
i n t p o s i t i o n ;

} ;

Fields dx and dy contain vectors of translation between the central cell and
its neighbors within radius 1. Field position contains information about which
cell in its vicinity will be occupied after the movement. In table moves, the row
with index 0 is unused in order to avoid additional operations on indexes.

For the situation shown in Fig. 2, a person in time step t1 sees fields that are
marked with a dot. In the main table, the cell that corresponds to this person
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has value 1 (compare Fig. 1). It is used as an index for the table moves. Each
row from table moves contains fields that are visible for this person (fields with
dots). In this case, the corresponding row contains the following values:

moves [ 1 ] [ ] = { {−1, 0 , 3} , {−1, 1 , 0} , {0 , 1 , 1} ,
{ 1 , 1 , 2} , { 1 , 0 , 5} }

Fig. 2. The example of the transition a person from one place to another.

For each potential destination cell, we calculate a cost function. The direc-
tion with the lowest value from the cost function is chosen. A new location is
calculated in the following way:

new . x = old . x + moves [ 1 ] [ s e l e c t e d d i r e c t i o n ] . dx ;
new . y = old . y + moves [ 1 ] [ s e l e c t e d d i r e c t i o n ] . dy ;

The value of the position field is used as an index for another table int
directions[9] = {8, 1, 2, 7, 1, 3, 6, 5, 4};, which indicates a pedes-
trian’s orientation after the movement:

occupancy [ new . x ] [ new . y ]
= d i r e c t i o n s [ moves [ 1 ] [ s e l e c t e d d i r e c t i o n ] . p o s i t i o n ] ;

2.2 Compressibility Factor

The compressibility factor is used to determine whether the new position is com-
fortable enough. Figure 3 illustrates how the mutual orientation of two neighbor-
ing persons influences this value.

Once again, the computationally-intensive code that discovers pedestrians’
mutual configuration is replaced by tables with pre-calculated data. The algo-
rithm uses a 4-dimensional table:

f l o a t f o r c e s [ 2 ] [ 2 ] [ 9 ] [ 1 1 ] ;

The two first dimensions are indexed with a vector indicating the mutual location
of two neighboring pedestrians. In order to simplify the table, only absolute
values of vector coordinates are used. The third dimension is indexed according
to the orientation of the pedestrian, for which we calculate the movement. The
last dimension is indexed by a value taken from the occupancy table (0 - free,
1–8 pedestrian with a given orientation, 9 - obstacle and 10 - POI).
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Fig. 3. Reciprocal orientations of two pedestrians represented by grey ellipses and the
calculated ratios of cross-sections marked in black (compressibility parameter) and
ellipse size for cell size dg = 0.25 m.

In Fig. 2 where two people are standing side by side, the compressibility factor
is calculated as follows:

1. The absolute value of the translation vector of people is taken. The result is
a vector [1,1].

2. The orientation of the currently considered pedestrian is 1.
3. The orientation of its neighbor is 8.
4. The compressibility factor can be read from forces[1][1][1][8] and is

equal to 0.0. This is the third configuration from Fig. 3.

When the compressibility factor for potential location is lower than the threshold
parameter set for the given simulation, the pedestrian moves to a new location.

2.3 Cost Function

Another area of optimization is the code that calculates the cost function (see
Eq. 1). Its aim is bringing about movement towards POIs (Points Of Interests) by
avoiding obstacles and walls and establishing patterns of following other pedes-
trians using the idea of a dynamic floor field. The value of the function (Eq. 1)
depends on the actual state of the world. We take into account values of: static
floor field Sij , dynamic floor field Dij , density in the vicinity of the cell fij ,
distance between cell fij and the POI, avoiding walls parameter W and inertia
parameter I.

cost(fij) = Sij + (dens(fij) + αdist(s, fij)) ∗ W ∗ I
dens(fij) = eδDij

(1)

If the value of the destination cell corresponds to a free area or a POI,
its value is dens(fij) = e0. In the other cases, the value is eδ (delta can be
set as a parameter form the simulation). Table float ePowTheta[11] contains
pre-calculated values of this expressions. It is indexed by a value stored in a
destination cell.
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3 Migrating Social Distances Model from CPU to GPU

In order to efficiently exploit the architecture and resources of a GPU, some
implementational assumptions were made. We can group them into these two
sections:

1. Specific memory allocation and usage,
2. Thread scheduling.

3.1 Specific Memory Allocation and Usage

In order to speedup memory transfers from the host to the GPU, we use the
cudaMallocHost function to allocate required memory. It also guarantees that
allocated memory is not pageable. Data is copied from the host to the GPU
only once at the beginning of computation, and later the program uses only
GPU memory. To avoid copying the data between the CPU and GPU during
the simulation, we use graphics interoperability to improve their storing. The
array with people is located in the VBO(Vertex Buffer Object) on the GPU,
which is mapped to CUDA pointers during the finding of new locations and is
rendered in the next step without any copying.

The lookup tables that are widely used in this algorithm are stored in the
constant memory. This memory is cached, and access to it significantly reduces
the required bandwidth.

Texture memory is used to store the world map. Consecutive warps main-
tain pedestrians which are located near to each other. Reading by texture fetch
function we have opportunity to achieve better bandwidth.

3.2 Thread Scheduling

In a single step of the simulation, a pedestrian is able to move only to the
neighboring cell. Due to this fact, we can construct an algorithm that does
not use any synchronization between threads. To do that, the occupancy table is
logically partitioned into 9-element containers (see Fig. 4). Cells in each container
are indexed with values of 0–8. For all people we compute the information about
their type of place in the current time step. In the next step, we divide the whole
process of moving people into 9 sub-steps.

f o r ( subStep=0; subStep < 9 ; subStep++){
r u n t h r e a d s f o r p e r s o n s i n c e l l s o f t y p e ( subStep ) ;

}
During the computation, a single thread calculates a new position for one

pedestrian. Pedestrians are processed in an order defined by the index inside
the container. First, all pedestrians that occupy cells with index 0 within all
containers are processed. Next, all pedestrian that occupy cells with index 1
within all containers and so on. Pedestrians who have already been moved in
a previous sub-step will not be moved. This is done to avoid moving the same
person more than once in one simulation step.
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4 Results

The algorithm described in the previous sections was implemented in C++ with
the CUDA programming environment. A version for computation only only a
CPU was also implemented.

Figure 5 shows a snapshot from a simulation intended to resemble pilgrims
evacuating after The Holy Mass celebrated by Pope John Paul II in 2002 in
B�lonia Park in Cracow. This event brought together approximately 2.5 million
pilgrims, spread over an area of 48 hectares. In fact, Cracow’s B�lonia Park is
often used to host large gatherings.

The input for the application was a map of B�lonia Park converted into a
bitmap (obstacles are marked with black). During simulation, green dots repre-
sent pedestrian and red areas are their goals. One pixel of the bitmap represents
a square the size of 25 × 25 cm.

In order to examine the performance of the implementations, a series of tests
was carried out. The Intel i7 architecture processor was examined, as well as
four Nvidia GPUs, each with a different Compute Capability: GeForce GT240M
(Tesla architecture with CC 1.2, 48 cores), Quadro FX 4800 (Tesla architecture
with CC 1.3, 192 cores), GeForce GTX 480 (Fermi architecture with CC 2.0,
480 cores) GeForce GT 755M (Kepler architecture with CC 2.1, 384 cores).

The results show (see Figs. 6 and 7) that Intel i7 is able to outperform only a
very old GPU, the GT240M, which was made for laptops. The best results were
achieved by a GeForce GTX480, which is a regular graphics card. Our most
advanced GPU, the GeForce GT755M, is also a laptop version, which means
that it has reduced capabilities compared to the desktop version.

The performance tests checked the time execution configuration with various
initial number of pedestrians. Moreover, we checked how initial pedestrian distri-
bution influenced the results. In the tests with a high initial density (see Fig. 6),
the population of pedestrians was tightly distributed in neighboring cells. In con-
figuration with low density (see Fig. 7), pedestrian are distributed every fourth
cell. The main goal of such scenarios is to compare a case where most pedestrians
are blocked and more conditions have to be check, with case where pedestrians
have free space in their vicinity. It is worth to notice that the initial pedestri-

Fig. 4. Occupancy is partitioned into 9-element logical containers. Cells in each con-
tainer are indexed with values of 0–8.
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Fig. 5. Screenshot of the results from the simulation of crowd evacuation from B�lonia
Park in Cracow. See text for details.

Fig. 6. Performance of Social Distances model with optimized algorithms executed on
various GPUs. Configuration with high initial density of pedestrians.

Fig. 7. Performance of Social Distances model with optimized algorithms executed on
various GPUs. Configuration with low initial density of pedestrians
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ans’ density slightly influences the results. Performance for configurations with
higher initial density is only slightly better than in a configuration with low
density. This means that configurations with low density were unable to exploit
all computational resources.

5 Conclusions

The results presented in this paper illustrate that the optimal usage of GPU
architecture requires algorithms that are designed for massive parallel processing.
We believe that algorithms constructed with the very specific architecture of
GPUs in mind have bigger influence on final results than sophisticated memory
management. The most modern GPUs have a cache that is able to efficiently
speedup transactions to/from global memory [17].

It should be stressed that the current use of CPUs in movement and behav-
ioral algorithms of pedestrians is still the standard approach in professional
crowd simulators. The use of CPUs is still more convenient than GPUs, due
to the possibility of handling complex instructions and simultaneously creating
multi-variant patterns of pedestrians’ behaviors. However, we believe that the
improvements proposed in this paper, namely the representation of space in the
form of arrays, the partitioning of occupancy into 9-element logical containers,
the special coding of objects, the removal of if-statements through the use of
multidimensional arrays, the use of VBO and the removal of unnecessary data
copying constitute a good foundation for building an automatized methodology
for creating multi-variant simulations of crowd behavior using GPUs. From our
point of view, due to its efficiency, the use of the GPU is well worth further
study.
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Abstract. This paper presents a Fuzzy Cellular Automata (FCA)
model with the aim to cope with the computational complexity and
data uncertainties that characterize the simulation of wildfire spreading
on real landscapes. Moreover, parallel implementations of the proposed
FCA model, on both GPU and FPGA, are discussed and investigated.
According to the results, the parallel models exhibit significant speedups
over the corresponding sequential algorithm. As a possible application,
the proposed model could be embedded on a portable electronic system
for real-time prediction of fire spread scenarios.
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1 Introduction

Wildfires are a frequent source of environmental disasters, which affect the flora,
the fauna and endanger human lives. Prediction of wildfires spread is crucial to
the society, so research has been focused on mathematical and practical models
of this phenomenon in order to support the prevention of human losses, environ-
mental hazards and economic disasters. Starting from the surface fire equations
introduced by Rothermel [1], several models have been proposed to tackle the
difficulties of wildfire spreading [2,3]. However, to achieve realistic simulations,
many phenomena and environmental parameters (e.g. wind speed, terrain slope,
fuel bed, humidity) have to be concerned in these models.

Consequently, they are often computationally complex, which results in
decreasing performance of the corresponding software implementations. Accord-
ing to the literature, such a complexity can be tackled by the Cellular Automata
(CA) approach, which are considered a fine alternative to Differential Equations
for many physical systems and processes, especially regarding environmental
modeling [2–5]. Furthermore, the inherent parallelism of CA results in improved
c© Springer International Publishing Switzerland 2016
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performance, either when implemented on Graphics Processing Units (GPUs)
[5] or in hardware, like the Field Programmable Gate Array (FPGA) [6].

Nevertheless, in many cases, depending on the specific environmental parame-
ters, the problem cannot be defined exactly because of its complicated dynamics
and the vagueness of environmental conditions. To overcome these difficulties, an
enhanced CA approach, combining CA with fuzzy logic [7], could be of certain
interest. However, the application of fuzziness in CA rules and states cannot be
considered an efficient one, unless the CA parallelism is exploited to reduce the
computational needs of such a hybrid model.

The purpose of this paper is to propose an efficient, robust and dynamic Fuzzy
Cellular Automata (FCA) model able to simulate wildfire spreading, whose
results would be smoother and closer to the real wildfires spreading behavior.
The proposed FCA model will be able to advance its performance and accuracy
by applying corresponding fuzzy rules depending on the environmental parame-
ters taken into consideration for the area under study. Moreover, the model’s
performance would allow real-time prediction by parallelization on GPU and
FPGA, thus, fire departments could exploit its features and utilize the simula-
tion results during wildfire’s evolution. The computational investigation shows
that the resulting simulation times in both parallel implementations, i.e. GPUs
and FPGA, allow for the FCA model to be considered as a promising real time
decision system able to manage efficiently fast optimization of risk-mitigation
interventions and fire-fighting activities.

2 Fuzzy Cellular Automaton Model Description

CA are models of physical systems, where space and time are discrete and inter-
actions are local [8]. A CA is characterized by five properties [9]: (i) the number
of spatial dimensions (in our case two); (ii) the width of each side of the lat-
tice; (iii) the width of the neighborhood of each cell, including the cells itself;
(iv) the states of the CA cells; (v) the CA transition function F , which com-
putes the state of each cell at the time step (t + 1) as a function of the state
of its neighboring cells at the time t. CA have sufficient expressive dynamics to
represent phenomena of arbitrary complexity [10] and, at the same time, they
can be simulated exactly by digital computers, because of their intrinsic discrete-
ness, i.e. the topology of the simulated system is reproduced in the simulating
device. Furthermore, they can easily handle complicated boundary and initial
conditions, inhomogeneities and anisotropies [11,12].

The FCA model adopted in this study aims to cope with the computational
complexity and data uncertainties that characterize the simulation of wildfire
spreading. As outlined below, the proposed model can be parameterized in order
to simulate the phenomenon more accurately, without important reduction in
performance. The model parameters that influence the simulated fire behavior
are associated with many environmental characteristics, such as topography of
the area (slope and orientation toward the sun), wind (speed and direction),
weather conditions (humidity, temperature and precipitation), fuel and oxygen
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density. In real-life situations, input data on the above characteristics is often
imprecise and vague, which causes unreliability in the results of fire spread sim-
ulations. However, the fuzziness of the proposed FCA model allows the usage of
unclear, misleading or erroneously-defined data inputs.

More specifically, the proposed model is based on a 2D FCA with Moore
neighborhood, which has been selected to provide a fair variety of spreading
directions. The states of each CA cell are associated with a linguistic variable of
fire intensity, whose possible values should be selected appropriately, so that the
model would match with the real forest fire spreading phenomenon. Herewith,
the following five states are proposed:

St
i,j = {No Fire,Low Fire,Medium Fire,High Fire,Burnt}

Moreover, there is an extra state in which the cell is non-flammable, so that the
cells that are initialized in this state do not take place in the computations. In
addition, as shown in Fig. 1, we use triangular-shaped membership functions to
state the evolution of CA, which represent a fair compromise between accuracy
and simplicity.

The CA transition function (TF) computes the next state of each cell, con-
sidering as inputs the states of the eight Moore neighbors N, NW, W, SW, S,
SE, E and NE and the current state of the cell. First, the TF uses the following
linguistic rules for each neighboring cell:

1. If neighbor is Low Fire then cell state is Low Fire
2. If neighbor is Medium Fire then cell state is Medium Fire
3. If neighbor is High Fire then cell state is High Fire
4. If neighbor is Burnt then cell state is Burnt

Note that the weights for diagonal neighbors are smaller that those for side
neighbors because of the difference in distance. Subsequently, the TF modifies its
internal state as follows:

Fig. 1. Membership function representing the CA cell states.
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1. If cell state is No Fire then cell state is No Fire
2. If cell state is Low Fire then cell state is Medium Fire
3. If cell state is Medium Fire then cell state is High Fire
4. If cell state is High Fire then cell state is Burnt
5. If cell state is Burnt then cell state is Burnt

It is worth noting that also the latter rules are affected by weights, which
can be calibrated to account for the specific aspects of the real problem. As
it has been mentioned, the model can be enriched with more fuzzy rules to
represent more abrupt changes of the fire spreading in real-life situation. As a
simple example, and for readability reasons, we only refer to the enhancement
of the model with North wind and terrain acclivity from East to West (check
also Table 1). In particular, to apply the North wind effects, the following rules
have been added to the TF:

For the South, the South-West and the South-East neighbors:

1. If neighbor is Low Fire then cell state is No Fire
2. If neighbor is Medium Fire then cell state is No Fire
3. If neighbor is High Fire then cell state is No Fire

For the North, the North-West and the North-East neighbors:

1. If neighbor is Low Fire then cell state is Medium Fire
2. If neighbor is Medium Fire then cell state is High Fire
3. If neighbor is High Fire then cell state is Burnt

Also, to apply the terrain acclivity effects to the model the following rules
have been added to the TF:

For the West, the South-West and the North-West neighbors:

1. If neighbor is Low Fire then cell state is No Fire
2. If neighbor is Medium Fire then cell state is No Fire
3. If neighbor is High Fire then cell state is No Fire

For the East, the North-East and the South-East neighbors:

1. If neighbor is Low Fire then cell state is Medium Fire
2. If neighbor is Medium Fire then cell state is High Fire
3. If neighbor is High Fire then cell state is Burnt

The weights of the above rules can be chosen according to the wind intensity
and the terrain slope (e.g., as a result of a calibration process). As last step
of the TF, the defuzzification phase gives the next state value of each CA cell
according to the Fuzzy Mean method:

ψ =
N∑
i=1

wiMici

/ N∑
i=1

wiMi , (1)

where ψ is the next state value of the cell, wi is the weight of the ith rule, Mi

is the value of the membership function, ci is the centroid of the output states
membership function for the ith rule and N equals to the number of rules.
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Table 1. Weights increments corresponding to the presented example with North wind
and East-West terrain acclivity, where w is the weight in absence of wind and slope
(i.e. w = 2 or w = 1 for adjacent and diagonal neighbors respectively).

E–NE–SE Rules W–NW–SW Rules

Next State Next State

No Fire Low High Burnt No Fire Low High Burnt

No Fire

Low 0.35×w 0.07×w

0.35 × w 0.07×w

High 0.35 × w 0.07×w

Burnt

2.1 GPU Implementation

The FCA model can be easily implemented both in hardware and GPU to cope
with the high computational requirements of real time applications. The GPU
implementation was written using the C-language Compute Unified Device Archi-
tecture (CUDA). In CUDA, the GPU activation is obtained by writing device
functions called kernels. When a kernel is issued by the CPU, a number of threads
execute its code in parallel on different data. In the developed GPU-FCA, each
thread executes the TF described above for a different cell of the CA.

Before the beginning of each simulation, the current CA is initialized through
a CPU-to-GPU copy operation (i.e., from host to device global memory). Also,
at the end of each CA step a device-to-device memory copy operation is used to
re-initialize the current CA values with the next values (both stored in the GPU
global memory as arrays). When, the CA state is required by the CPU (e.g.,
for graphical output purposes), a GPU-to-CPU copy is carried out. Instead of
using the GPU shared memory to cache the CA states, in this study the parallel
TF exploited the CUDA option for in-creasing the L1 cache size, which is a
reasonable option for recent GPUs.

A frequent issue raised by the GPGPU parallelization of CA models is that
only a small fraction of the cells perform actual computation at each step. Hence,
launching one thread for each of the automaton cells would result in a certain
amount of dissipation of the GPU computational power. For this reason, in
the developed GPU-FCA the grid of threads is dynamically computed during
the simulation in order to keep low the number of computationally irrelevant
threads. More in details, at each CA step the procedure involves the computation
of the smallest common rectangular bounding box (CRBB) that includes any
cells on the current fire fronts plus their neighboring cells. Then, all the kernels
required by the CA step are mapped on such CRBB. Note that using recent
GPU devices, the CRBB computation in the GPU can be efficiently carried out
at each step using the atomicMin and atomicMax CUDA primitives in the same
kernel implementing the transition function [5]. Clearly, the efficiency of the
CRBB approach depends on the actual size of the burned area with respect to
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the whole automaton. However, more efficient implementations (e.g. based on a
dynamic list of the burning cells [5]) will be investigated in the future.

Given that most wildfires have small sizes, the ideal situations for exploiting
the GPU with the FCA model are those requiring the simulation of a number
of fires (e.g. from hundreds to many thousands) on the same landscape. This is
for example required in the case of parameter calibration processes [13,15,16]
simulations with data assimilation [14] or computation of risk maps [5]. The
developed GPU-FCA can be easily extended to cope with the relevant problem
of simulating in parallel a large number of fires as done in [5].

2.2 Hardware Implementation

Modern computers offer sufficient processing power to handle most of the analy-
sis that several complex environmental phenomena require. Though, the appli-
cation of a general-purpose computer in some cases may not be desirable, or it is
even impossible, due to high power consumption and significant size. Portable,
embedded general-purpose processors may however be unable to handle more
complex computational tasks. Another method to achieve the speed-up exe-
cution of the proposed FCA model in such embedded systems, is to use the
potential of available FPGA-devices. They enable parallel processing of data
using custom digital structures. Besides, CA circuit design reduces to the design
of a single, relatively simple cell and the layout is uniform. The whole mask
for a large CA array (the cells with their internal connections as well as the
interconnection between cells) can be generated by a repetitive procedure so no
silicon area is wasted on long interconnection lines and because of the locality of
processing, the length of critical paths is minimal and independent of the num-
ber of cells [6]. The hardware implementation of our FCA was written in Very
High Speed Integrated Circuits Description Language (VHDL), which exploits
the advantages of the hardware offering small execution time compared with
the corresponding software implementation. Moreover, it takes advantage of CA
inherent parallelism resulting in a minimum algorithmic complexity equal to
O(n2), which hardly depends on the size of the FCA grid. On the other hand,
the CA grids maximum size depends strongly on the hardware resources that a
targeted FPGA can provide. Every CA cell of the grid is assumed as an inde-
pendent component, so that the computation of the next state of the model is
fully parallel and can be made in constant time. Therefore, the execution time
is expressed as time steps × cycles per cell × clock period.

In the proposed FCA-FPGA, to tackle with the lack of floating point opera-
tions, the following adjustments have been applied:

1. The range of the membership functions and its values have been set to 0–127,
i.e. seeking for a 7-bit unsigned number expression.

2. The triangular membership functions have integer slope, so that the mem-
bership function values could be calculated by bit shifting instead of floating
point multiplication. In the same way, the weights have been selected such
that there would be needed only bit shifting for the calculation.
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Fig. 2. The equivalent membership functions considered for hardware implementation
of FCA model.

3. Finally, the division required for the defuzzification has been implemented by
subtracting the denominator from the numerator and incrementing a counter
until the result is negative. The quotient is the final value of the counter.

The architecture of the hardware implementation consists of a 2D grid with con-
nected cell components taking into account the Moore neighborhood. In order
to reduce significantly the hardware resources needed for membership function’s
calculation, the following process is proposed. First of all, the triangular mem-
bership functions symmetry has been utilized in order to compute the value
only from the left side of the triangle, which has positive slope, so the usage of
negative numbers for calculation has been avoided. Additionally, the maximum
number of overlapping membership functions is two, so that in each iteration
only two of them can be active. These active membership functions values are
complementary to the maximum value. Taking advantage of this, only one value
is needed to be calculated and then its complementary value is obtained by
subtraction from the maximum value, as it is shown in Fig. 2.

Finally, the procedure of the next state computation is based on a FSMD
(Finite State Machine Datapath), which is analytically presented in Fig. 3. The
FSMD has been used to achieve re-usage of hardware, hence the computation
of each neighbors’ rules are made in the same datapath but with different input
values. In every time step of the simulation, the next state calculation in each
cell has been implemented by computing the rules for its own value and then
the rules for neighbors’ values. Nevertheless, this process takes place in a more
serial fashion and is followed by the calculation of the Fuzzy Mean of Eq. (1).

3 Results

A preliminary assessment of the aforementioned FCA implementations was car-
ried out by simulating 150 CA steps on a 500× 500 grid of cells. Two test cases
have been devised: the first on a flat terrain without wind and the second under
the wind and slope conditions described in Sect. 2. In addition, to increase the
computational complexity, each test case had two ignition points and the land-
scape included two non-flammable patches. The weights of the FCA rules, which
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Fig. 3. Simulation results for (a) homogeneous propagation (b) propagation with north
wind and terrain acclivity from East to West. The white spots are the ignition points.

Fig. 4. The achieved speedups and elapsed times with GPU-FCA on different GPU
devices.

can not be listed here for space reasons, have been chosen according to reason-
able wind intensity and the slope of the terrain. The corresponding simulation
results are presented in Fig. 3.

The software tests were performed on an Intel R© CoreTM i7-4510U CPU @
2.00 GHz, with 8 GB RAM, running Windows 7 64-bit. Besides the parallelized
FCAs, also a sequential implementation was developed, using Ms Visual Studio
2013, and compiled with speed optimization turned on (i.e., /O2). For such
sequential runs, the simulation times were 1.78 s in no wind/slope propagation
and 3.15 s for fire propagation with wind and slope, respectively.

To carry out a preliminary assessment of the advantages provided by the
GPU parallelization, the GPU-FCA model was executed on different GPUs:
a consumer-level nVidia Geforce GT 430 (96 cores, 268.8 GFLOPs), a nVidia
Geforce GTX 680 (1536 cores, 3090.4 GFLOPS), and a powerful Tesla K 40
accelerator (2880 cores, 4290 GFLOPs). On each GPU device, the computing
time of the two experiments, with and without wind and slope, was measured.
This makes sense because the number of cells included into the MRBB dur-
ing the simulations was significantly different in the two test cases (i.e. 89232 vs.
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Fig. 5. The hardware implementation of the FSMD corresponding to the FCA model.

151904 cells at the end of the 150 steps). The results in terms of elapsed times as
well as the corresponding parallel speedups (i.e., sequential time/parallel time)
are shown in Fig. 4. As can be seen, the runs on the most powerful GPU were
accelerated 81 and 113 times, for the no-wind and with-wind test cases, respec-
tively. The fact that, for both the GTX 680 and Tesla K40, the greater speedup
was achieved in the most computing-demanding test case indicates that the sim-
pler simulation was not able to exploit all the available computing power of
such GPUs. Overall, the efficiency of the parallel GPU-FCA can be considered
satisfactory both for calibration purposes and real-time applications.

The hardware implementation (see Fig. 5) was set up in Xilinx Kintex Ultra-
Scale resulting in 27,000 clock cycles for 150 time steps. This, for the specific
target FPGA device, results in 0.135 ms or 200 MHz, thus the speedup is consid-
ered really great. Moreover, the specified period or in correspondence the time
needed for the FCA to end its iterations remains steady no matter the incre-
ment of the specified CA grid as far as this can be implemented in the specific
device. It is clear the resulting FPGA can be considered as a basic component
of a portable electronic system able to provide real time information concerning
the forest fire propagation on the part under test of the examined area. In doing
so, GPS (Global Position System) tracking and GIS (Geographical Information
System) provide the resulted FPGA processor with real data about possible
roads and routes and feedbacks for the area under study. This could also be con-
sidered as part of a complete portable electronic system, possibly equipped also
with Wi-Fi transceiver transmitter for communication reasons as well as with
proper sensors, i.e. temperature, humidity and wind speed/direction sensors.

4 Conclusions

In this paper a FCA model, implemented in GPUs and FPGA, was proposed
to simulate wildfire spreading. The simulation results indicate the efficiency of
the proposed approach and the resulting speedup compared to the sequential
execution of the code. As a future work, many more simulations in different
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environmental conditions will be carried out and test cases on real landscapes
will be studied. Moreover, a methodology for advancing the fuzzy CA rules will
be introduced.
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Abstract. eVolutus is a new software platform designed for modeling
evolutionary and population dynamics of living organisms. Single-celled
eukaryotes, foraminifera, are selected as model organisms that have occu-
pied the marine realm for at least 500 Ma and left an extraordinary fossil
record preserved in microscopic shells. This makes them ideal objects
for testing general evolutionary hypotheses based on studying multi-
scale genotypic, phenotypic, ecologic and macroevolutionary patterns.
Our platform provides a highly configurable environment for conducting
evolutionary experiments at various spatiotemporal scales.

Keywords: Artificial life · Multi-agent systems · Foraminifera

1 Introduction

Recent advances in the area of evolutionary computation and genetic algorithms
(GAs) are mostly motivated by performance of these algorithms in the context
of optimization. However, to simulate evolutionary processes within a realistic
paleobiologic and paleoecologic “deep time” context, an in-silico artificial life
approach [12,13] is employed here to reconstruct ecological and evolutionary
patterns of foraminifera by implementation of realistic principles known from
living organisms.

We simulate foraminifers with their iterative ontogenetic and morphogenetic
growth stages, adequately controlled by their semi-genetic codes and contin-
uously interacting with their microhabitat. Mutations of traits can be either
introduced with controlled randomness, or user-defined, allowing the operator
to define and simulate various scenarios. The crucial concept of fitness function
is given in an indirect way as a complex function calculated based on current
(local) environmental conditions and the instantaneous state of the individual.
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-32152-3 53



A New Platform for Evolutionary Experiments 571

We use foraminifera, single-celled eukaryotes that occupy marine benthic and
pelagic zones throughout the world. Foraminifera have an extraordinary fossil
record since Cambrian (500 million years ago). This makes them an ideal model
often used for testing general evolutionary hypotheses [22,24,25].

We have previously introduced a new generation of morphogenetic models
that can successfully predict basic architecture patterns of foraminiferal shells
following the moving reference system [17,21,26]. The original model has now
been extended by new components, i.e., size of the first chamber and thickness
of the shell wall. They are introduced in order to produce more realistic shell
morphology, as well as to achieve proper behavior in the microhabitat.

As a platform for modeling microhabitats and evolutionary processes that
affect generation of foraminifers we use Framsticks [14] and AgE EMAS (Evolu-
tionary Multi-Agent System) [4] environments. Both platforms have the ability
to simulate biological evolution and offer complementary features.

eVolutus provides an environment that can be used by experimenters not
skilled in computer programming, and tutorials for defining and tuning experi-
ments by using simple script languages.

1.1 Foraminifera

Foraminifera are single-celled eukaryotes that mainly occupy benthic and pelagic
habitats. Benthic foraminifera live either on the sea floor around the water/sed-
iment interface, or within the top 10 cm of soft, usually fluidal, sediment. Plank-
tonic foraminifera live in the open ocean, floating in the photic and subphotic
zone of the water column [3].

Most foraminifers produce multichambered shells covering their soft cyto-
plasmic bodies. Foraminifera grow by successive construction of new chambers.
We observe an enormous variety of shell shapes and chambers, however for many
species spheroidal chambers may be a close approximation.

Communication between the cell and the external environment is provided
through an aperture, a hole located in each chamber, connecting it to the suc-
cessive one. Foraminifera extend ‘granuloreticulopodia’ i.e., granular network
pseudopodia through these apertures in order to monitor the microhabitat,
gather food, attach, and move, as well as to transmit signals within the cell [3,23].

Foraminifera mostly feed on single-celled algae and their detrital remains,
which makes them strongly dependent on their availability in time and space. The
most common temporal variability is reflected in seasonality of temperature and
nutrient availability. These factors have a direct impact on distribution, life his-
tory strategies, reproduction, and population dynamics of foraminifera [10,23].

Foraminiferal life spans range from a few weeks in some planktonic
foraminifera up to a few years in larger benthic foraminifera [8,10]. A typical life
cycle of benthic foraminifera is characterized by an alternation of two methods
of reproduction: sexual (in haploid generation) and asexual (in diploid genera-
tion) [8]. A haploid generation is equipped with one set of chromosomes, while
diploid generation has two sets of chromosomes. This complex life cycles helps
foraminifera in adjusting to variable (e.g. seasonal) conditions and allows them
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to create diverse and flexible life history strategies [23]. Planktonic foraminifera
have only diploid generations and use a sexual method of reproduction.

1.2 AgE: A Lightweight Agent-Based Computing Framework

The AgE platform has been successfully implemented in different versions (Java,
Python, .NET, Erlang) and utilized to implement systems with different applica-
tions, e.g. computing [4], decision support [20], simulation [7] or data integration
[5]. We focus on a specific architecture dedicated to easily implement distributed
version of AgE (actual implementation was carried out using Java technology
and Hazelcast framework).

Lightweight agents execute pseudo-concurrently, by repeatedly executing cer-
tain step callback function. From their point of view, lightweight agents effec-
tively execute in parallel. The platform emulates this parallelism by introducing
several constraints on message propagation and change visibility.

1.3 Framsticks: Artificial Life Simulator

The Framsticks simulator [19], since its initial releases in 1996, has been used as
a computing engine in a number of diverse applications [14]. They were mostly
concerned with modeling complex adaptive systems, multiple autonomous agents
and the process of evolution. This includes comparison of genetic encodings [18],
estimating symmetry of evolved and designed agents [11], employing similarity
measure to organize evolved constructs [15,16], optimization of fuzzy controllers
that can be understood by a human [9], experiments with synthetic neuroetholo-
gy, modeling foraminiferal genetics, morphology, and evolution [17], and simu-
lating plastic neural nets and their evolution. This environment was also used to
study various biological phenomena [14]: communication, emergence, flocking,
evolution of restraint, predator–prey coevolution, semiosis, speciation, and user-
driven (interactive, aesthetic) evolution.

Framsticks is implemented in C++, and it has its own virtual machine and
a high-level scripting language (FramScript) that allows users to develop their
own experiments, visualizations, GUI, neurons, and macros. The simulator runs
on all major desktop and mobile platforms. It supports multi-threading and
has a network server so that computations can be distributed. The C++ SDK
and network clients are open source. These features make Framsticks a suitable
platform to implement eVolutus.

2 eVolutus Architecture

A general architecture of the eVolutus platform is presented in Fig. 1. Habitats
can be modeled using either the Framsticks platform or the AgE platform. In
both cases, these tools have to be equipped with components that describe shell
development (morphology), processes of food acquisition, energy management
and reproduction (physiology).
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Our goal is a platform that provides the experimenter a high level of config-
urability. Framsticks, since it has been developed, has ability to define experi-
ments and set up simulations with its own scripting language called FramScript.
AgE is more generic framework and such the feature is implemented in eVolutus
“from scratch”.

With a “virtual fossilization” module, the simulation results are sampled in
controllable spatiotemporal resolution and stored for post-processing and analy-
sis, mimicking the accumulation of shells of dead foraminifera in sedimentary
rocks. In real geological investigations such fossils are extracted and only their
morphology and chemistry can be analyzed. Virtual fossilization provides all
the information including genetic information and environmental conditions. It
allows tracking genotype changes over consecutive generations and the deter-
mination of influences of environmental conditions. This module also allows for
controlling spatial and temporal range of collected results.

Fig. 1. The general architecture of the eVolutus simulation environment.

Both types of foraminiferal habitats can be represented using these frame-
works. Model of planktonic habitat should cover the volume of an open ocean to
depth of typical range of occurrence of foraminifera. For modeling the benthic
habitat, only a very thin top layer of sediments should be modeled.

Agents in the model of planktonic habitat cannot move actively. They are
moved using the random walk algorithm. The experimenter is able to define
vectors of forces which represent simplified ocean currents. On the other hand,
benthic foraminifera have the ability to move actively. They slowly travel through
their habitat gathering nutrients.

The Genotype and the Model of Foraminifera Ontogenesis and Repro-
duction. The crucial part of our modeling platform is the model of foraminifera
ontogenesis [17,21,26]. This relatively simple algorithm generates morphology of
foraminiferal shell by using geometrical operations parameterized by up to 6 val-
ues. The model of foraminifera ontogenesis has been extended to new components
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and parameters, i.e., W as the thickness of chamber wall and R1 – the radius of
the first chamber. When virtual foraminifera are modeled in their virtual habi-
tat, additional parameters–genes that controls their physiology and behaviors
are necessary.

The crucial physiological component of the model of foraminifera evolution is
reproduction. At this moment, three reproduction methods are recognized and
implemented: sexual and two types of asexual modes [6]. Planktonic foraminifera
use only the sexual method, while benthic foraminifera use all methods. Regard-
less of the type of reproduction, the ancestor agents are removed from the sim-
ulation and, if necessary, their genotypes and other parameters are saved for
further analysis.

Another component of foraminifera physiology is food intake and energy
management. Foraminifers gather food located in proximity neighborhood, store
it as energy, and constantly use to grow and sustain all other life processes.

Support for Configurable Experiments. A high level of configurability and
customization is provided by allowing users to define the behavior of the environ-
ment and agents. In eVolutus based on Framsticks, configurability is inherited
in a natural way from the Framsticks simulator itself. A dedicated scripting lan-
guage called FramScript [14] allows for high flexibility in defining experiments
and setting up simulations. This scripting language is tailored for artificial life
experiments and as such, it has less features than full-fledged languages like Java
or Python.

In AgE-based eVolutus configuration tools are designed and implemented
from scratch. We introduced the concept of “kernels”, i.e., a relatively short
functions that are created directly by the experimenter1. They have a strictly
defined list of formal parameters and the returned value. They may just return
information about environment parameters but they can contain instructions
that calculate desired value. Currently the kernels are coded using JavaScript
language and in this form they are directly invoked from the Java code via Java
Scripting API [1].

3 Demonstration of Platform Capabilities and Sample
Results

Planktonic Foraminifera: Population Dynamics and Evolving Genes.
eVolutus which uses AgE as an environment for modeling evolution of agents
is implemented in Java language. Currently our implementation performs only
sequential processing, however parallel implementation can be easily introduced.
Module of virtual fossilization uses MongoDB as a database engine. The reason
why we choose this DBMS (Data Base Management System) is fact the col-
lected data have a relatively simple schema of relations between collected records.

1 The name “kernel” used in CUDA or OpenCL GPU programming means a short
function executed by many GPU processing units in parallel.
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Tools that will be used to view and analyze the stored data are designed and
implemented at this moment.

The habitat is represented as the set of cells that can be organized as a
grid in the basic version. The state of each cell is described by several parame-
ters that reflect environmental condition, i.e., nutrients availability, insolation,
temperature, salinity, ocean currents etc.

In order to save computational resources each cell can be occupied by many
agents and we do not track their individual locations. Agents located in the same
cell use the same resources and experience the same environmental conditions.
We also assume that during sexual reproduction, only agents in the same block
can exchange their genotypes.

Figure 2 presents a dynamics of planktonic foraminifera population. Parame-
ters for this simulation were adjusted to achieve the dynamics of the population
that follows Lotka-Volterra model [2]. The simulation covered 1200 days of real
time. The habitat space has dimensions of 1000 m× 1000 m× 100 m. Food is
delivered at a constant rate to each cell. Agents consume food and use it to
maintain vital functions. They energy needs are proportional to the volume of
shell. Agents developed shell and reproduce when they reach maturation age.
Reproduction is sexual – agents produce gametes which are randomly paired.

Fig. 2. Dynamics of foraminiferal population resemble classical predator-prey models
such as the Lotka-Volterra model.

The simulation started with the randomly distributed population of the size
of 5000 individuals. A small number of consumers (predators) allowed for rapid
increase of amount of food. This led to the equally rapid growth of population—
more than 200 000 individuals appeared in the habitat. They rapidly consumed
the available food what in consequence reduced population. In further steps of
simulation we observe characteristic pattern of shifted in time oscillation of food
(prey) and population of foraminifers (predaters).

Dynamics of Haploid andDiploid Generations in Benthic Foraminifera.
The goal of this study was to test the implementation (software) by investigating
the population dynamics of the benthic foraminifera taking into account haploid
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and diploid generations. Foraminifers were placed on a virtual sea floor. Nutri-
ents were appearing in random locations with a constant rate. Each foraminifer
was moving toward the nearest nutrient item. Foraminifers were able to reproduce
when they had accumulated a sufficient amount of energy. In the reproduction
process, haploid and diploid generations were alternating.

Foraminifers were able to gather food located within their reticulopodia
range. They were also able to sense nutrients located outside of the reticulopo-
dia range, but within the defined chemotactic sensing range. In the following
experiments there were two species of Foraminifera, differing in morphology and
in behavioral strategy. In case of a shortage of nutrients, uniserial specimens
switched to dormancy (hibernation) in order to save energy, while coiled speci-
mens were exploring the environment, i.e., moving and searching for food.

These experiments have been implemented in Framsticks [19]. The imple-
mentation differs from the AgE implementation – here space is continuous, and
it is not divided into “cells” in a grid. Both ploidy stages of foraminifera and
nutrients are simulated as agents that are located in 3D. Time is measured in
simulation steps. In each step, each agent can make a small movement. The
lifespan of each agent is determined by its energy level.

In terms of technical implementation, the information about nutrient loca-
tions is transferred by a signal, which is a versatile way to send any kind of
information in Framsticks [14,19]. In this experiment, each nutrient used a sig-
nal to broadcast a reference to nutrient’s “MechPart” object containing nutrient
coordinates:

var nut r i en t=Populat ions [ 1 ] . add (ExpParams . foodgen ) ;
nu t r i en t . s i g n a l s . add ("food" ) ; //add signal and name it "food"

nut r i en t . s i g n a l s [ 0 ] . va lue = nut r i en t . getMechPart ( 0 ) ;

In all the experiments the environmental conditions were the same except
for the feeding rate, the reticulopodia range and the sensing range (but the
ranges were identical for both species). The experiments demonstrated that the
competition for food tends to eliminate less adapted species. This is shown in
Fig. 3 which presents the virtual sea floor with both species present, and then

Fig. 3. A part of the sea floor surface with two populations of foraminifera species for
feeding rate = 0.1 and different reticulopodia and sensing ranges. (a) In the begin-
ning of the experiment (ranges = 3,6), (b) after the extinction of the uniserial species
(ranges = 3,6), and (c) after the extinction of coiled species (ranges = 5,8).
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Table 1. The number of simulation runs in which a given species (coiled:uniserial)
survived for each combination of parameter values.

Reticulopodia and sensing ranges [mm]

3,6 5,8

Feeding rate 0.05 5:0 3:2

0.1 2:3 0:5

after the extinction of one of the species. For each combination of parameter
values, the simulation was run 5 times. Table 1 presents the survival ratio for
both species.

Figure 4a presents the population dynamics of the experiment in which the
hibernating species (uniserial) went extinct (feeding rate = 0.1, ranges = 3.6).
The coiled population revealed cyclic abundance patterns that follow nutrient
fluxes. The diploid individuals dominated coiled Foraminifera population due
to a larger number of smaller offspring that move and actively seek for food.
These results do not follow real-world observations of benthic foraminifers where
haploids outbalance diploids. Diploids in the real world seem to have a much
lower survival rate at a juvenile stage and they tend to grow to larger sizes that
also explains their lower abundance [3,10]. Furthermore, benthic foraminifers
often show more complex reproduction strategies that favor multiple cycles of
asexual cloning [8,10] that, in consequence, affect the proportion of different
generations. Implementing these new reproduction mechanisms and calibrating
survival rates will increase the compatibility of this model with nature.

Fig. 4. The size of the uniserial haploids, uniserial diploids, coiled haploids, coiled
diploids and nutrient populations in two experiments differing in the reticulopodia and
sensing ranges. The feeding rate was 0.1.
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Figure 4b presents the population dynamics of the experiment in which ran-
domly moving species (coiled) went extinct (feeding rate = 0.1, ranges = 5,8).
The diploid individuals were dominating again. For this set of parameter values,
a better strategy was not to lose energy on movement.

4 Conclusions and Further Work

The eVolutus software platform presented here is under active development,
and the initial tests of the habitat model proved that the proposed approach
is efficient. We are able to easily configure the environment so it can produce
results that follow well-known non-linear dynamics of ecological models [2].

Our further work will focus on testing and validating algorithms for repro-
duction and gene exchange. In the following steps, physiological properties like
growth and motility will be implemented to tie individual behavior more to
environmental parameters like food quality and quantity distributed in time
and space. Another area of extensive works concerns large-scale simulations.
Our goal is to extend simulations to the population size of 109–1012 individuals
through geological time intervals from 103 to 108 years.

The AgE and Framsticks frameworks have shown complementary features.
Both platforms support distributed computing and large scale experiments, how-
ever, for our purposes, additional mechanisms have to be implemented. This
includes the need to map a regular grid of the habitat space into the available
set of computational nodes, and providing methods of communication between
nodes that process neighboring blocks.

Applicability of the eVolutus platform takes into account a broad range of
population dynamic and evolutionary experiments that might be furtherassoci-
ated with other modelling methods (e.g. ecosystem models). The model cannot
cover the overall complexity of physiological and ecological networks, neverthe-
less, it shows potential for further development. This approach, when tested on
foraminifera, may also be extended for other organisms.

Acknowledgments. The research presented in the paper received partial support
from Polish National Science Center (DEC-2013/09/B/ST10/01734).
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Abstract. Numerical Weather Prediction (NWP) and climate simula-
tions have been intimately connected with progress in supercomputing
since the first numerical forecast was made about 65 years ago. The biggest
challenge to state-of-the-art computational NWP arises today from its
own software productivity shortfall. The application software at the heart
of most NWP services is ill-equipped to efficiently adapt to the rapidly
evolving heterogeneous hardware provided by the supercomputing indus-
try. If this challenge is not addressed it will have dramatic negative conse-
quences for weather and climate prediction and associated services. This
article introduces Atlas, a flexible data structure framework developed at
the European Centre for Medium-Range Weather Forecasts (ECMWF)
to facilitate a variety of numerical discretisation schemes on heteroge-
neous architectures, as a necessary step towards affordable exascale high-
performance simulations ofweather and climate.Anewlydevelopedhybrid
MPI-OpenMP finite volume module built upon Atlas serves as a first
demonstration of the parallel performance that can be achieved using
Atlas’ initial capabilities.

Keywords: Numerical weather prediction · Climate simulation · High
performance computing · Exascale

1 Introduction

Numerical Weather Prediction (NWP) and climate simulations have been inti-
mately connected with progress in supercomputing since the first numerical fore-
cast was made about 65 years ago. In the early days, computing power was gained
through taking advantage of vector instructions on a large single-processor com-
puter. With little modification to existing code bases, shared memory paralleliza-
tion was introduced when more and more processors were added to one computer.
When multi-node architectures became the norm, however, the required effort to
c© Springer International Publishing Switzerland 2016
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port existing code to make use of distributed memory was significant, and often
meant a rewrite or redesign of large parts of the code. Over a decade later, many
NWP codes have grown in size to millions of lines making use of hybrid paral-
lelization with distributed and shared memory on CPU architectures. As the tra-
ditional approaches to boosting CPU performance ran out of room [1], more nodes
are being added to computing clusters, putting more and more strain on distrib-
uted memory parallelism, as well as ever increasing the energy bill. Hardware
vendors are introducing alternatives to computing on traditional CPU architec-
tures in order to keep increasing FLOP rates at reduced energy costs; for example
offloading computations to GPU’s or Intel MIC’s. These alternatives are of less
general purpose, and significant effort is required to adapt the existing code base
to optimally use the hardware. The application software at the heart of most NWP
services is ill-equipped to efficiently adapt to these rapidly evolving heterogeneous
hardware. It is furthermore not yet clear which hardware, or combination of hard-
ware will offer the best performance at minimal cost.

To address the challenge of extreme-scale, energy-efficient high-performance
computing, the European Centre for Medium-Range Weather Forecasts
(ECMWF) is leading the ESCAPE project, a European funded project involv-
ing regional NWP centres, Universities, HPC centres and hardware vendors,
including an enterprise to explore the use of optical accelerators. The aim is
to combine interdisciplinary expertise for defining and co-designing the neces-
sary steps towards affordable, exascale high-performance simulations of weather
and climate. Key project elements are to develop and isolate basic algorith-
mic ideas by breaking down NWP legacy codes into Weather & Climate
Dwarfs in analogy to the Berkeley Dwarfs [2], and to classify these canonical
building blocks with energy-aware performance metrics. The Berkeley Dwarfs
identify archetypical computational and communication patterns, defining the
priority areas for community research in numerical methods to enhance parallel
computing and communication. The Berkeley dwarfs relevant to NWP contain
algorithms responsible for: spectral methods, sparse linear algebra, dense lin-
ear algebra, unstructured meshes, structured grids, dynamic programming, and
graphical models. Weather & Climate Dwarfs share these motifs but go fur-
ther, by providing practical solutions to support co-design development and on
which sustainable NWP services can be built. The distinct motivation to define
Weather & Climate Dwarfs is to focus on maximizing computing performance
with minimal energy consumption, i.e. the cost to solution, enveloped by the
very strict requirement that NWP models need to run at speeds 200–300 times
faster than real time. The ideas developed to facilitate extreme-scaling for the
Weather & Climate Dwarfs, could then be implemented back in NWP models.

The Integrated Forecasting System (IFS) is one of such NWP models devel-
oped at the ECMWF. It relies on spectral transforms and corresponding compu-
tations in spectral space to evaluate horizontal derivatives. Spectral transforms
on the sphere involve discrete spherical-harmonics transformations between
physical (grid-point) space and spectral (spherical-harmonics) space. Extreme
scaling performance of spectral transforms is crucial for its applicability in IFS
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on future hardware. Spectral transforms are identified as one of the Weather
& Climate Dwarfs. Spectral transforms require data-rich global communication,
and it is ultimately the communication overhead and not the computational bur-
den that will limit the applicability of the spectral transform method at extreme
scale. This is illustrated in Fig. 1 for 5 km and 2.5 km IFS simulations, where
the communication cost amounts to 75 % of the transform cost on TITAN, the
number 2 HPC system in the top 500 super computing list as in May 2015. To
put these resolutions in perspective with the ECMWF operational requirements
of solving 240 forecast days per day (or 10 days in 1 h), the 2.5 km resolution
simulation is estimated to require 270,000 cores of a Cray XC-30 HPC, whereas
the 5 km resolution simulation requires 25,000 cores to achieve this goal.

The cost of computing derivatives with the spectral transform method
with the current state-of-the-art spectral transforms is still relatively high and
hence the use of derivatives has been minimized carefully [3]. As part of the
ESCAPE project, the spectral transform algorithms will be heavily scrutinized
and improved upon by e.g. overlapping communications with computations.
Hardware vendors will work together with scientists, and explore the use of
bespoke accelerators based on optical computations.

Fig. 1. Spectral transform cost distribution on TITAN for IFS 5 km and 2.5 km models.
The total spectral transform cost on TITAN was in the range 29 to 51 % of the total
wall time.

Notwithstanding the outcome of further applicability of the spectral trans-
form method, alternative grid-point discretisation methods are desired to
compute derivatives locally with compact grid-point stencils. Computations
using compact grid-point stencils require only local — nearest neighbor —
communication, which inherently scales much better and may better represent
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the locality of a physical process. Such discretisation methods are typically based
on meshes composed of elements such as triangles, quadrilaterals, or lines. Exam-
ples include the finite volume method (FV), the finite element method (FE), or
higher-order (>2) methods such as the Discontinuous Galerkin method (DG)
and the Spectral Difference method (SD).

Atlas, a flexible parallel data structure framework that can handle a num-
ber of different structured grids and unstructured meshes, is being developed at
the ECMWF, both to support research on alternative grid-point discretisation
methods, as well as serving as the basis for leveraging the anticipated integra-
tion efforts resulting from the ESCAPE project. This Atlas framework will be
introduced in detail in Sect. 2.

2 Atlas – A Flexible, Scalable, and Sustainable Model
Infrastructure

2.1 Motivation

In order for NWP applications to optimally exploit future computer hardware
emerging over the next 20–30 years, a flexible and dynamic data structure frame-
work, named Atlas is being developed to serve as a foundation for a wide variety
of applications, ranging from the use within European NWP models and for
the development of alternative dynamical core modules [4], to development of
applications responsible for pre- and post-processing of exponentially growing
output data. It is imperative for Atlas to remain flexible and maintainable since
the development of NWP models typically takes a decade, and NWP models
typically last much longer than that.

The Atlas framework provides parallel distributed, flexible, object-oriented
data structures for both structured grids and unstructured meshes on the sphere.
It separates concerns of mathematical model formulation and numerical solutions
from the cumbersome management of unstructured meshes, distributed mem-
ory parallelism and input/output of data. It is recognized that handling flexi-
ble object-oriented structures and carefully controlled memory-management, as
would be required with the expected deepening of memory hierarchies in future
hardware, is not easily achieved with the Fortran language, which is currently
widely used in most NWP models. Hence, the language of choice for Atlas is C++,
a highly performant language providing excellent object-orientation support,
and building upon C’s memory management proficiency. A Fortran2003 inter-
face exports all of Atlas’ functionality to Fortran applications, hence seamlessly
introducing modular object-oriented concepts to legacy NWP models. Moreover,
many other C++ based applications can directly benefit from Atlas.

2.2 Design

The application (e.g. the NWP model) starts by instructing Atlas to construct
a Grid object, which provides a description of all longitude-latitude nodes in
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the model domain. The Grid object may not require significant memory in case
it describes a structured grid in which simple formulas provide the longitude
and latitude of every node on the sphere. In contrast, a Mesh object makes no
assumption on any structure of the grid, and actually stores the horizontal coor-
dinates of every node. Optionally, elements such as triangles, quadrilaterals and
lines can be created by providing element-to-node connectivity tables. As the
coordinates and the connectivity tables can have a significant memory footprint
for large meshes, the Mesh is a distributed object, meaning that the mesh is
subdivided in partitions which reside in memory on different parallel processes.
With the Grid and the provision of a distribution scheme, Atlas generates a
distributed Mesh. Specialized FunctionSpace objects can be created on demand,
using the Mesh. A FunctionSpace describes in which manner Fields, objects
that hold the memory of a full scalar, vector or tensor field, are discretized
on the mesh. A straightforward FunctionSpace is the one where fields are dis-
cretized in the nodes of the grid. Other FunctionSpace objects could describe
fields discretized in cell-centres of triangles and quadrilaterals, or in edge-centres
of these elements. Yet another type of FunctionSpace can describe spectral fields
in terms of spherical harmonics. Fields are stored contiguously in memory as a
one-dimensional array and can be mapped to an arbitrary indexing mechanism
to cater for the specific memory layout of NWP models, or a different mem-
ory layout that proves beneficial on emerging computer hardware. Fields are
addressed by user-defined names and can be associated to Metadata objects,
which store simple information like the units of the field or a time stamp. It is
this flexibility and object-oriented design that leads to more maintainable and
sustainable future-proof code. Figure 2 illustrates the object-oriented design and
the relevant classes.

2.3 Massively Parallel Distribution

The MPI parallelisation relies on the distribution of the computational mesh with
its unstructured horizontal index. The Atlas framework is responsible for gen-
erating a distributed mesh, and provides communication patterns using MPI to
exchange information between the different partitions of the mesh. To minimise
the cost of sending and receiving data, the distribution of the mesh is based on an
equal regions domain decomposition algorithm optimal for a quasi-uniform node
distribution on surface of the sphere [5,6]. The equal regions domain decompo-
sition divides the sphere into bands oriented in zonal direction, and subdivides
each band in a number of regions so that globally each region has the same
number of nodes. Notably, the bands covering the poles are not subdivided,
forming two polar caps. Figure 3 shows the partitioning of a spherical mesh with
∼6.6 million nodes, quasi-uniformly distributed with grid spacing ∼9 km, in 1600
partitions, the anticipated number of MPI tasks for this model resolution. The
vertical direction is structured and not parallelized.

Because global communication across the entire supercomputing cluster are
foreseen to become prohibitively expensive (see Fig. 1), numerical algorithms
may be required to limit communication to – even physically located – nearest
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Fig. 2. Atlas data structure design.

Fig. 3. Equal regions domain decomposition (1600 partitions) for a fine mesh with
∼6.6 million nodes (∼9 km grid spacing).

neighbors. Such communication typically happens through thin halos (of 1 ele-
ment wide) surrounding every mesh partition, hence creating an overlap with
neighboring partitions. Atlas provides routines that expand the mesh partitions
with these halos and provides communication patterns to update field values in
the halos with field values from neighboring partitions. Figure 4 shows the equal
regions domain decomposition into 32 partitions for a coarse mesh with ∼3500
nodes, quasi uniformly distributed with grid spacing ∼400 km, projected on a
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longitude-latitude domain. Figure 4 also illustrates the creation of internal and
periodic halos. With periodic halos the periodicity in a longitude-latitude domain
is treated exactly like any other internal boundary between different partitions.
Notably, the partitions involving the poles are periodic with themselves.

0 90 180 270 360
-90

-45

0

45

90

Periodic
halo

Periodic
halo Internal

     halo

Fig. 4. Equal regions domain decomposition (32 partitions) for a coarse mesh with
∼3500 nodes (∼400 km grid spacing), projected on a longitude-latitude domain. Each
partition is surrounded by a thin halo. Periodicity is provided through periodic halos.

3 Application in a Hybrid Finite Volume Module

As mentioned in Sect. 1, the NWP and climate models using the spectral trans-
form method require global communication of large amounts of data. Realising
the performance limitations of spectral transform methods at scale, a three-
dimensional hybrid finite difference - finite volume module is developed [4], which
only relies on nearest neighbor communication patterns as illustrated in Fig. 4.
In the horizontal direction an unstructured median-dual edge-based finite vol-
ume method is used [7], while the vertical direction is discretized with a struc-
tured finite-difference method preferred with the vertically shallow nature of the
atmosphere compared to the radius of the earth. Although capable to use arbi-
trary unstructured meshes in horizontal direction, bespoke meshes (such as in
Fig. 4) based on reduced Gaussian grids [8,9] are generated, i.e. the location of
its nodes coincides with those of the reduced Gaussian grid, which still facilitates
the use of the spectral transform method. The generated mesh defines control
volumes for a finite volume method while sharing the same data points as used in
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the spectral transform method. This approach allows a hybrid and evolutionary
avenue to reach extreme scale, in which the finite volume module can initially
be coupled to add extra functionality to the spectral transform model IFS, and
could replace the spectral method when it appears to be advantageous in terms
of performance, energy-efficiency, and forecast skill.

3.1 Memory Layout for Hybrid Parallelization

Additional performance can be gained using shared-memory parallelization tech-
niques such as OpenMP, on multi-core architectures in which cores are distrib-
uted over nodes sharing the same memory. With recent hardware developments
such as the Intel MIC’s, the number of cores in one processor socket is increas-
ing. The use of shared memory parallelisation when possible is often preferred
to reduce the load with the MPI communications. The memory layout of fields
plays an important role in optimal performance, especially with shared memory
parallelization techniques.

In memory, a field is stored as a one-dimensional array that can be reinter-
preted as a multi-dimensional array. The memory layout of a full 3D field can
hence be reinterpreted with the horizontal unstructured index as the slowest
moving index, followed by the structured vertical index, and the fastest index
being the number of variables a field contains (e.g. scalar = 1, vector = 3, ten-
sor = 9). For a scalar field, the “variable” index can be ignored. The memory
layout for a three-dimensional scalar field is sketched in Fig. 5.

The advantage of this memory layout is twofold. First, it makes the verti-
cal columns contiguous in memory, so that a halo-exchange involves contiguous
chunks of memory and makes the packing and unpacking of send/receive buffers
more efficient. Second, it favours the outer loop to be over the columns and
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Fig. 5. Memory layout of a scalar field in 3D domain: solid lines show the underlying
unstructured mesh; dashed lines mark the structured vertical columns with N denoting
the number of vertical levels; and dots, numbered with memory offsets from the first
index of the 1D array, represent the field values.
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the inner loop to be over the levels within each column, with corresponding
indices jnode and jlev, Fig. 5. Due to the unstructured nature of the horizontal
jnode index, indirect addressing is required to access neighboring column data.
The horizontal index for the outer loop then reduces the cost of this lookup by
reusing the node specific computations for the entire column in the inner loop,
giving the compiler the opportunity to optimise the inner loop in the vertical
direction further with vector instructions, provided that computations for each
vertical level are independent of each other. By using shared-memory paralleliza-
tion with OpenMP over the outer horizontal index, further need for distributing
the mesh is avoided.

3.2 Three-Dimensional Compressible Non-hydrostatic Dynamics

To illustrate the current status of the hybrid finite volume module, a baroclinic
instability test case [10] is simulated to day 8 with results shown in Fig. 6. The
simulation is three-dimensional and uses compressible non-hydrostatic dynamics.
For a full description of the methodology, the reader is referred to [4].

a) Horizontal slice b) Vertical slice

Fig. 6. Simulation result using hybrid finite volume module for baroclinic instability
test case [10] after 8 days. (a) Horizontal slice at surface showing meridional velocity
(m/s). (b) Vertical slice at latitude ∼53◦ N (X-axis in degrees, Y-axis in km) with
shading showing vertical velocity (m/s) and solid contour lines showing isentropes (5 K
interval).

The hybrid finite volume module is expected to perform well at extreme-
scale due to local nearest neighbor communication patterns. Preliminary strong
scaling results are reported in Fig. 7. These preliminary strong scaling results
show acceptable promise with a parallel efficiency of 82 % at 40,000 CPU cores
on ECMWF’s Cray XC-30 HPC. It is expected that further improvement is
possible by overlapping communication and computation, and by more carefully
grouping communication buffers together.
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a) Speedup b) Efficiency

Fig. 7. Preliminary strong scaling results for the hybrid finite-volume module on
ECMWF’s Cray XC-30 HPC. The results are created using a setup for solving hydro-
static equations, on a mesh with ∼5.5 million nodes and 137 vertical levels.

4 Remarks

With a variety of emerging computer architectures to tackle the challenge of
extreme scale computing, a drastic change in the NWP and climate software
stack is needed. A new model and datastructure framework called Atlas is devel-
oped for the NWP and climate community, forming the foundation for new
research to alternative dynamical cores on one hand, and for an evolutionary
modernisation of legacy NWP and climate codes on the other hand. During
the ESCAPE project, this framework will be further developed and serve as
a common infrastructure for leveraging the anticipated integration effort of the
developments by the various partners involved. At the ECMWF, Atlas is already
being succesfully used in a hybrid finite volume module. This finite volume mod-
ule already shows promising scaling results, relying on Atlas for distributed mem-
ory parallelization and data management.
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Abstract. The recent advent of novel multi- and many-core archi-
tectures forces application programmers to deal with hardware-specific
implementation details and to be familiar with software optimization
techniques to benefit from new high-performance computing machines.
An extra care must be taken for communication-intensive algorithms,
which may be a bottleneck for forthcoming era of exascale computing.
This paper aims to present a high level stencil framework implemented
for the EULAG model that efficiently utilizes heterogeneous clusters.
Only an efficient usage of both CPUs and GPUs with the flexible data
decomposition method can lead to the maximum performance that scales
communication-intensive elliptic solver with preconditioner.

Keywords: Stencils · CPU-GPU · SMP · NUMA · Elliptic solver

1 Introduction

The recent advent of novel multi- and many-core architectures, such as GPU
and hybrid models, offer notable advantages over traditional supercomputers [1].
However, application programmers have to deal with hardware-specific imple-
mentation details and must be familiar with software optimization techniques
to benefit from new high-performance computing machines. It is therefore of
great importance to develop expertise in methods and algorithms for porting
and adapting the existing and prospective modeling software to these new, yet
already established machines.

Elliptic solvers of an elastic models are usually based on standard itera-
tive algorithms for solving linear systems, e.g. CG, GMRES or GCR. Numerous
reports on porting them to modern architectures are available [2]. However, in
an anelastic solver for geophysical flows fast-acting physical processes may enter
the elliptic problem implicitly. For simulating physical experiments with a high
degree of anisotropy, additional preconditioning is necessary to improve matrix
conditioning. Such preconditioner for anisotropic geometries often relies on the
direct inversion using the Thomas algorithm. A comprehensive study on imple-
mentations of tridiagonal solvers on GPU found that it is possible to implement
solvers which perform exceptionally well in the range of grid nodes [3].
c© Springer International Publishing Switzerland 2016
R. Wyrzykowski et al. (Eds.): PPAM 2015, Part II, LNCS 9574, pp. 594–606, 2016.
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EULAG [4], an elastic model for simulating low Mach number flows under
gravity, developed in the National Center of Atmospheric Research, is widely
used in an international community and has a rich portfolio of applications. It
features non-oscillatory forward-in-time (NFT) numerics, which are original and
unique. It also employs preconditioned, nonsymmetric, generalized conjugate-
residual type “Krylov” scheme [5] to solve an elliptic boundary value problem -
reported to be among the most effective methods for solving difficult elliptic
problems.

Our research is to provide novel methods to adapt scientific code to novel
hardware architectures, taking EULAG as an example. As a result, a stencil
framework is proposed that flexibly distributes data between CPUs and GPUs.
In this paper we focus on efficient communication methods with efficient load
balancing to scale the elliptic solver along with the preconditioner.

2 Related Works

A number of previous works have been focused on accelerating stencil computa-
tions on GPUs [6–11]. The works presented in [6,7] used auto-tuning techniques
to efficiently parallelize stencils on multi-core CPU and on many-core GPU.
Other approaches employ multiple GPUs in solving stencil computations. They
treat each GPU as an accelerator associated with separate MPI process where
CPU acts as a management entity that does only the communication. Authors
in [12] employed compiler based approach for automatic parallelisation of a code
written in a domain specific language into CUDA. The work in [8] distributes
stencil computations across multiple GPUs with explicit attention to the PCI
express configuration.

Our work is more related to approaches that utilise multiple CPUs and GPUs
simultaneously. Previous systems distributed stencil computations with simple
decomposition methods with uniform partition where each processor and accel-
erator receives subdomains of the same size. For example, work in [9] utilises
a high-level problem description to parallelise the code on the CPU and GPU
clusters by combining OpenMP and CUDA. On the other hand, authors in [13]
provide a framework that allows programmers to partition the data contiguously
between CPU and GPU within single node. Unlike our work, their approach does
not allow to carefully load balance the domain decomposition between hetero-
geneous architectures.

3 Description of the GCR Solver

The body of the elliptic solver code consists of five major routines (Fig. 1). The
main routine advances the solution iteratively by calling other major computa-
tional routines. The routines prforc and divrhs initialize the solver. The former
routine evaluates the first guess of the updated velocity, by combining the explicit
part of the solution and the estimation of the generalized pressure gradient, while
imposing an appropriate boundary condition. The latter routine evaluates the
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density weighted divergence of the velocity, and thus the initial residual error of
the elliptic problem for pressure is computed. Among the most computationally
intensive routine of the GCR solver is laplc that iteratively evaluates the gener-
alized Laplacian operator (a combination of divergence and gradient) acting on
residual errors. Another important part of the solver is the precon routine that
accelerates the convergence of the variational scheme. By performing the direct
matrix inversion in the vertical dimension of the grid, it is especially useful for
large-scale simulations on thin spherical shells with grids characterized by a large
anisotropy. The routine precon employs the sequential Thomas algorithm to solve
tridiagonal systems of equations with the right hand side consisting of the hor-
izontal divergence of the generalized horizontal gradient. This gradient is evalu-
ated by nablaCnablaxy, which also belongs to the most computationally intensive
routines of the GCR solver. With regard to the data access pattern, the computa-
tional loops within the elliptic solver can be simply divided into three categories:
(i) reductions, (ii) implicit methods of the Thomas algorithm, and (iii) explicit
methods of the stencils. In our work we focus on the explicit methods.

prforc();divrhs();precon();reduction();laplc()

for it=1..solver_iterations {

reduction()

if(exit) quit_for_loops;

precon();laplc()

Fig. 1. The body of the elliptic solver code

4 High-Level Stencil Framework

This section describes the design goals of the proposed framework. The major
objectives during development are described as follows.

The GCR solver code was ported from the FORTRAN 77 language. The
framework is based on a domain-specific language (DSL) that expresses the sten-
cil computations with similar to the Fortran semantics to ease the transition for
the end users. The usage of the standard C++ language allows to avoid the non-
standard language expression, non-standard programming models and requires
no external libraries. The flexible architecture of the framework is suited for
the computations on different configurations of the clusters that contain diverse
number of CPUs and GPUs within the computational node. The framework
is able to efficiently spread computations on the CPU-only clusters including
the SMP machines, on the GPU-only clusters with fat nodes containing one
GPU per single CPU core as well as on the hybrid clusters with powerful CPUs
and GPUs. It provides the seamless subdomain decomposition to the blocks to
efficiently utilize processors’ memory hierarchy. Additionally, it allows the end
user to manually tune the blocking size for the future processor architectures.
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The framework contains the communication library with the unified interface
that allows for the efficient intra-node and inter-node communication. Depending
on the decomposition of a computational domain between processors, on a posi-
tion of the actual processor and on the periodicity of the boundaries the library
transparently chooses the most efficient communication method. The automatic
parallelization for multi-CPU, multi-GPU and hybrid resources allows the users
to write stencil functions that are translated to selected architectures. The usage
of the C++ templates and provision of as much as possible of static information
for the compiler improves the optimization during compilation. With the new
generations of compilers the code will scale for the future architectures.

4.1 Programming Model

This section describes the implementation of the framework. Firstly, the struc-
ture of the framework is outlined with the initialization of the necessary
resources. Than, the methodology of the writing and running user stencils with
an example is given. Lastly, the domain decomposition method with the com-
munication model is illustrated.

Framework Structure. The idea behind the parallelization of the computation
between the processors is based on the data decomposition where each process
updates the fixed part of the global domain called a subdomain. Since, the sten-
cil computations require the neighbor points to update a point, the boundaries
of the subdomains have to be communicated between processors. The communi-
cated boundaries are saved in a designated buffer called a halo region. In order to
efficiently utilize the data locality the OpenMP and MPI models are employed
for the intra-node and inter-node communication. Each CPU and GPU have
assigned separate MPI processes that are pinned to the selected cores. The GPU
parallelization is done using CUDA whereas the CPU parallelization employs
the OpenMP model.

Initialization. During the initialization of the framework user has to create the
computational subdomain for each MPI process by using the Geometry and
Communicator classes.

Geometry *geom = Geometry::init<DomainSize<NP,MP,LP>,

HaloSize<HLEFT,HRIGHT,HBOT,HTOP,HGND,HSKY>, ProcessorGridSize<NPX,NPY,NPZ>>();

Communicator *comm = Communicator::init(geom);

The Geometry class initializes the 3D domain decomposition by
using the DomainSize, HaloSize and ProcessorGridSize classes. The
ProcessorsGridSize class specifies the number of the subdomains in each
dimension. The decomposed subdomains may have different sizes with a restric-
tion that each pair of the neighboring processors sharing boundary in the single
dimension have the same boundary size in that dimension. The three values
NP, MP and LP in DomainSize describe the size of the subdomain whereas the
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HaloSize class characterizes the size of the halo region on each side. Further-
more, the Geometry class creates n− 1 OpenMP threads for CPU with n cores
where the MPI processor of GPU is pinned to the n−th core only if GPU is used.
The Communicator class creates the specific communicator depending on the
processor’s architecture. To hide the communication time with the computation
on GPU the communicator utilizes the CUDA streams to concurrently exchange
the boundary data during the computation of the subdomain. The communicator
based on the position of the processor within the global domain handles commu-
nication in a specific way. The processors inside the domain always communicate
the data while the processors on the boundaries communicate the data for the
periodic boundaries only and do not communicate them for the non-periodic
boundaries. Additionally, for the decomposed domain with the single proces-
sor in a given dimension the data is exchanged using only the processor’s local
memory.

Stencils. The task of computing the stencils can be essentially divided into two
parts. First, the stencil with an access pattern updating the domain point has to
be defined. Second, the range within the computational domain on which stencil
will be executed has to be provided. To enable this in the framework, the user
defines the stencil functions and executes them through a kernel.

Writing Stencils. In the framework the stencils are defined as the C++ functors
called the stencil functions. The 3D Laplacian function is defined as follows:

struct LaplcStencil {

DEFINE_DO(const T *__restrict__ in_p,T *__restrict__ out_p,const T &cCoeff){

IN3D(out_p, 0, 0, 0) = cCoeff * (

IN3D(in_p, -1, 0, 0, CACHED) + IN3D(in_p, 1, 0, 0, CACHED) +

IN3D(in_p, 0,-1, 0, CACHED) + IN3D(in_p, 0, 1, 0, CACHED) +

IN3D(in_p, 0, 0,-1, CACHED) + IN3D(in_p, 0, 0, 1, CACHED)); }};

The DEFINE DO macro allows to quickly define the functor. The stencil access
pattern on the 3D domain is described by using the IN3D macro. There also
exists IN1D and IN2D macros that allows to operate on the 1D and 2D domains.
The functor through template parameters passes information about the domain
dimensions and index parameters i, j, k to the macros. The first parameter of
the IN3D macro takes a pointer to an array, the parameters from the second to
the fourth take the positions of the domain point related to currently updated
point. For example, IN3D(p, -1, 2, 0) returns indices of (i− 1, j + 2, k). The
last parameter of the IN3D macro is optional and gives a hint to the framework
that the following point should be cached in the shared memory of GPU to
improve efficiency. The decision which points which array should be cached is
based on how many points of a given array is accessed. Typically, the array with
the largest number of accessed points should it’s values have cached to reduce
the number of main memory accesses. However, if only single point is accessed
per array the CACHED macro should not be used as it would degrade performance.
Due to the small size of the shared memory the points of the single array can be



Scaling the GCR Solver Using a High-Level Stencil Framework 599

cached at time. The function parameters of stencil functions must begin with the
pointer to the array that is cached. In case of 3D Laplacian example the pointer
to the in p is first. The details of the algorithm that does stencil computations
can be found in our previous work [14].

Running Stencils. In order to apply the stencil function the framework provides
the kernel conf function that is used to invoke the 3D Laplacian on the 3D
computation domain as follows:

kernel_conf<type_t, DomainSize<NP,MP,LP>,

StencilSize<SLEFT,SRIGHT,SBOT,STOP,SGND,SSKY>,

HaloSize<HLEFT,HRIGHT,HBOT,HTOP,HGND,HSKY>,

ComputeRegion<0+SLFET,NP-1-SRIGHT,0+SBOT,MP-1-STOP,0+SGND,LP-1-SSKY>,

LaplcStencil, updateInner, Cache<TRUE,CSIZE>>(in_p, out_p, cCoeff);

The kernel conf function is initialized with the type of the floating-point
calculations type t such as float or double. Similarly to the Geometry class the
user provides DomainSize and HaloSize. The StencilSize describes the num-
ber of accessed neighboring points on each side of the stencil function. In our
example the 3D Laplacian provides StencilSize<1,1,1,1,1,1>. To restrict
the computation region of the stencil function the ComputeRegion class with
the range parameters is used. The stencil function will be applied from the
SLEFT index to the index NP-1-SRIGHT where NP is size of the subdomain in
the i direction. The updateInner/updateLeft/... enum allows to parallelism
the update of the boundary points with the inner points of the subdomain by
the utilization of the GPU streams. In our 3D Laplacian stencil example the
inner points use updateInner whereas the boundaries updates are modeled with
updateLeft/updateRight... so that the separate kernel calls are utilized for
each side. The Cache class drives the usage of the cache. The TRUE and FALSE
macros switch on and off the caching of the neighboring points of the stencil func-
tion, respectively. The cache size is automatically determined by the framework.
However, if needed the optional parameter CSIZE allows to manually control the
cache size in bytes. The order of the parameters of kernel conf must be the
same as in the stencil function. The kernel conf function executes the stencil
functions using OpenMP for CPU while for GPU the CUDA kernel functions
are called.

Domain Decomposition. There are number of the different decomposition
strategy options available. Typically systems use MPI-all parallelization scheme
with an uniform partition where each individual core maps to the MPI process
with no utilization of the shared memory on a compute node. This scheme is
very simple to implement and straightforward to run as it requires no knowledge
about the NUMA topology of the physical node. On the other hand, the number
of MPI messages required to exchange is a multiple of the number of cores thus
the communication overhead is substantial. Another choice is a strategy which
assigns single MPI process to the whole node. It decomposes the obtained sub-
block for a specified number of processors and accelerators and minimizes the
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number of MPI processes thus the communication overhead, see the method-
ology described in [15]. The drawback of this method that the inner part of
the sub-block is only decomposed in one dimension hence it is not flexible in
balancing the load between the accelerators and processors. Additional strategy
performs an uniform decomposition where pair of CPU and GPU are mapped to
single MPI process. In this case the boundaries of the subdomain are updated
and communicated by CPU whereas the inner points are handled by GPU. In
this scenario CPU serves as a management entity and does not execute any
computations thus it inefficiently uses CPUs. Our framework utilizes single MPI
process per each processor with a flexible and efficient decomposition strategy to
make best use of the hybrid architectures. The scheme can partition the domain
in all three dimensions to non-uniform sub-blocks for the arbitrary number of the
processors and accelerators. This scheme enables to compute on different cluster
configurations that contain diverse number of CPUs and GPUs within the com-
putational node. The framework is able to efficiently decompose the domain on
the CPU-only clusters including the SMP machines, on the GPU-only clusters
with fat nodes containing one GPU per single CPU core as well as on the hybrid
clusters with powerful CPUs and GPUs. The partition mechanism is employed
once before the compilation of the code for the target architecture thus the
obtained decomposition is static during computations. This static decomposi-
tion allows the compiler to optimize the code for the stencil loops by utilization
various techniques such as loop unrolling and vectorization. Once the subdomain
for each processor is obtained, it is further decomposed to the optimal size for
the cache blocking thus receiving the optimal size for the processor. The details
of the subdomain decomposition is described in our previous work [14].

Communication and Computation Overlap. The framework utilizes the
MPI communication to exchange messages between processors. The halo data
transfer between the accelerators is conducted through CPU. CPU acts as a
bridge that receives the data from the GPU then packs it to the MPI message
and send to the host CPU of the target accelerator. The host CPU unpacks data
and transfer it through PCI express to the target GPU. Please notice that the
framework currently does not support GPUDirect RDMA to directly exchange
data between GPUs located on different nodes without using CPUs as we did
not have access to the cluster that supports it. The framework provides the
aforementioned Communicator class to transfer data between processors and
accelerators. The example usage of the class is showed below:

Communicator *comm = Communicator::init(geom);

comm->update(p_in,sizeLeft,shiftLeft,sizeRight,shiftRight,updateLeft);

// or

comm->update_beg(p_in,sizeLeft,shiftLeft,sizeRight,shiftRight,updateLeft);

// kernel execution

comm->update_end(p_in,sizeLeft,shiftLeft,sizeRight,shiftRight,updateLeft);

The class provides two methods of sending MPI messages: synchronous and
asynchronous. The update method is used to apply synchronous communication
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whereas for the asynchronous communication type the pair of methods
update beg and update end are exploited. The kernel execution is surrounded
by asynchronous MPI calls to overlap communication with the computation.
The Communication class is able to flexible exchange boundaries on each side of
the domain. The update method requires six parameters where p in is pointer
to the 3D array containing data. The following pair of parameters defines the
size and the shift of the boundary data received from the left processor whereas
the next pair determines the size and the shift of the boundary data send to the
right processor. The last parameter of the update method specifies the side of
the update in this case the left update. For example, the domain is decomposed
to the two processors in the i direction. There are defined two stencil functions
on the domain. The computation range of the first stencil called the boundary
stencil is constrained to left boundary of the domain while the second stencil call
the inner stencil updates the inner points of the domain. The boundary stencil
models the boundary condition and requires single point from the left shifted by
one position, it is the i-2 index. The inner stencil demands single point from
the left with the i-1 index. To fulfill the stencils requirements for the left and
right processors the update method is called as follows:
// left processor call

comm->update(p_in,1,-1,1,0,updateLeft);

// right processor call

comm->update(p_in,1,0,1,-1,updateLeft);

To efficiently scale the code on large number of processors and accelerators
the framework utilizes the overlapping of the communication with the compu-
tation. The idea of the overlapping is based on the separation of the compu-
tation of the boundary regions and the inner region. The separate kernel calls
are employed for each side and an inside of the subdomain. The communica-
tion of the boundaries with the computation of the inside of the subdomain is
overlapped and what is more the boundary kernels are computed in parallel to
more efficiently utilize the accelerator resources. Figure 2 shows the flow of the
overlapping method based on GPU of the 3D Laplacian stencil. To concurrently
update the boundaries with the inside of the subdomain the seven streams are
utilised. In case of more sophisticated stencils up to 27 streams are used. The
kernel with the zero-copy memory is used to copy boundary data from GPU
to the host CPU. The kernel with the zero-copy memory allows us on the fly
change the 3D layout of the boundary data to linear ordered without using an
intermediate buffer. The linear ordered data is directly passed to the MPI send
function. The order of copying the boundaries is as follows first, the left and
right boundaries are copied, next the bottom and top boundaries, and finally
the ground and sky boundaries. The order is specified by the time needed to
send the data through PCI express. The kernel updating inner of the subdo-
main is executed concurrently with the copy kernels. After the first boundary
is copied to CPU it is send through MPI to the proper processor, depicted as
Communication on the Figure. As soon as the halo region is received it is send
back to GPU. Finally, the stencil updating the boundary is executed. This over-
lapping methodology allows us to concurrently execute five events: copy from
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and to GPU, compute the inner subdomain, MPI communication and compute
the boundaries. Depending on the decomposition of the computational domain
between processors, on the position of the actual processor and on the peri-
odicity of the boundaries the library transparently chooses the most efficient
communication method. The processors inside the domain always communicate
the data while the processors on the boundaries communicate the data for the
periodic boundaries only and do not communicate them for the non-periodic
boundaries. Additionally, for the decomposition with the single processor in a
given dimension the data is exchanged using only the processor’s local memory.

Fig. 2. Flow of the overlapping method based on GPU.

MPI Scheduler for NUMA. With the novel multi- and many-core archi-
tectures it is of great importance to place properly all process and threads on
the underlying hardware. In [16] we proposed a method for mapping application
topology to cluster. We used the MPI ping-pong benchmark to measure the sus-
tained latency and bandwidth between all nodes to calculate the cost matrix.
Next, the minimum path is calculated and eventually, the application topol-
ogy is mapped to the hardware, using the Hilbert curve to calculate the spatial
locality. We have extended this functionality especially to NUMA architectures,
taking into account proper placement of OpenMP threads across system. The
developer can rely on Intel or GNU facilities for proper thread placement, KMP
and GOMP environments variables respectively. It allows users to give a hint
to system on which cores OpenMP threads should be placed, as well as not to
move threads between cores during the run. To pin MPI processes accordingly,
one have to rely on Intel or OpenMPI facilities, which are not always avail-
able. To automate processes and threads placement on underlying hardware, we
use the HWLOC, a portable hardware locality software package that provides a
portable abstraction of the hierarchical topology of modern architectures. Using
aforementioned HWLOC, we calculate distances between each pair of NUMA-
nodes (which may by whole node in traditional cluster, socket or a processor in
more SMP-like environment). Next, we find the minimum path as previously,
and using the Hilbert curve we place each MPI process and its OpenMP threads
on cores, where for most cases one MPI process per NUMA node is the most
efficient allocation.
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5 Experimental Evaluation

In this section, the strong and weak scaling results are presented using the GCR
solver on the Piz-Daint cluster and on the Chimera SMP machine. The Piz-
Daint cluster contains 5272 nodes equipped with an Intel Xeon E5-2670 CPU
with 32 GB of RAM and Nvidia Tesla K20X GPU. The Chimera SMP machine
has 2048 CPU cores with Intel Xeon E7-8837 CPUs clocked at 2.66 GHz with
16 TB of RAM.

The implementation of the GCR solver is validated using a standard bench-
mark test case for incompressible flow solvers. We simulate decaying turbulence
of a homogeneous incompressible fluid. Here, only the simplified setup proposed
by Taylor and Green is considered. The details of the problem can be found in
our previous work [14].

5.1 Weak Scaling

The GCR solver is tested using five different versions of the code. The For-
tran CPU MPI-all version is the original code developed in FORTRAN 77. The
rest variants including C++ CPU MPI+OpenMP, C++ OpenMP, C++ GPU
MPI+CUDA and C++ CPU-GPU MPI+OpenMP+CUDA are implemented
with our framework. In order to evaluate the performance of all codes the num-
ber of floating-point operations are counted by calculating their occurrence in
the source code. The MPI ranks in the MPI-all code are pinned to individual
cores whereas for the MPI+OpenMP version single MPI rank is used for each
CPU. The work is distributed across cores by using the OpenMP threads. In
case of the GPU code single MPI rank is used. For the heterogeneous CPU-
GPU case two MPI ranks are pinned to single CPU. First MPI rank executes
seven OpenMP threads where second MPI rank is pinned to last CPU core and
handles the execution of GPU. For ccNUMA architecture, OpenMP threads are
distributed across the all allocated cores. For the MPI+OpenMP version, MPI
ranks are placed on separate sockets (aka. NUMA nodes), with the corresponding
set of OpenMP threads. Figure 3 shows the weak scaling results. The all codes
almost reach the perfect linear scaling up to 512 nodes. Using 8 CPUs on the
4883 domain size the C++ MPI+OpenMP version is 1.4× faster than the For-
tran MPI-all code. Moving the code to GPUs for the same domain leads to 6×
speedup comparing to the original Fortran code. The heterogeneous CPU-GPU
code further improves speedup to 7× by distributing subdomains to CPUs.

5.2 Strong Scaling

Figures 3 and 4 show the strong scaling results for a fixed grid size 2443 with
the varying number of processors and accelerators for two-dimensional domain
decomposition along the y and z directions. The results are presented for the
best domain decompositions for all code variants. The CPU codes scale up to
more than 100 nodes, however the run with GPU saturates at 128 GPUs count.
In order to efficiently use the GPU resources it requires a minimal number of
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Fig. 3. Left: weak scaling for the 2443 domain size per CPU/GPU. Right: strong scaling
for the total 2443 domain size. Used machines: PD - Piz-Daint supercomputer, CH -
Chimera SMP.

Fig. 4. Left: weak scaling for the 2443 domain size per CPU/GPU. Right: strong scaling
for the total 2443 domain size. Used machines: PD - Piz-Daint supercomputer, CH -
Chimera SMP.

domain points to saturate the memory bandwidth. The similar saturation can
be observed with the CPU-GPU code.

6 Conclusions

In this work, the stencil framework is presented that utilizes a domain specific
language to simplify the development of a stencil computations on heterogeneous
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architectures. The framework is written with C++ templates that provide
portable code with no need for the additional dependencies. The C++ tem-
plates with the static domain decomposition allows the compiler to efficiently
optimize the prepared code. The flexible domain decomposition scheme with the
subdomain partition to fit the memory hierarchy of the target architecture sup-
ports load balancing the work between an arbitrary number of CPUs and GPUs.
The resulting code with the communication overlap method achieves high scal-
ability and a 7× speedup against the Fortran MPI-all code. The framework can
be used with a good outcome on both the SMP machines and the heterogeneous
CPU-GPU clusters.

The results from the evaluation tests showed that the heterogeneous clus-
ter configurations promise relatively large energy savings. For future work, we
want to develop the scheduling methods to dynamically allocate stencil tasks to
various unit blocks to optimize the energy efficiency.
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Abstract. Effective preconditioning lies at the heart of multiscale flow
simulation, including a broad range of geoscientific applications that rely
on semi-implicit integrations of the governing PDEs. For such problems,
conditioning of the resulting sparse linear operator directly responds to
the squared ratio of largest and smallest spatial scales represented in the
model. For thin-spherical-shell geometry of the Earth atmosphere the
condition number is enormous, upon which implicit preconditioning is
imperative to eliminate the stiffness resulting from relatively fine ver-
tical resolution. Furthermore, the anisotropy due to the meridians con-
vergence in standard latitude-longitude discretizations becomes equally
detrimental as the horizontal resolution increases to capture nonhydro-
static dynamics. Herein, we discuss a class of effective preconditioners
based on the parallel ADI approach. The approach has been implemented
in the established high-performance all-scale model EULAG with flexible
computational domain distribution, including a 3D processor array. The
efficacy of the approach is demonstrated in the context of an archetypal
simulation of global weather.

Keywords: Deflation preconditioners · ADI · EULAG

1 Introduction

Modern numerical solvers, integrating complex and multiscale problems at the
frontiers of geo- and astro-physics, constitute indispensable virtual laboratory for
investigating inherently irreplicable phenomena, where traditional experimental
approach becomes either impractical, infeasible or even entirely inapplicable.
Many of these solvers target a particular range of scales and are essential for
c© Springer International Publishing Switzerland 2016
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industrial or specialized scientific applications, such as Earth System Models for
climate research, numerical forecasts suites from global- to meso-scale weather,
down to small-scale CFD type models for cloud turbulence and wind engineer-
ing. In turn, multiscale solvers capable of integrating PDEs at scales from micro
to stellar advance fundamental research in geo and astrophysics, contributing
to understanding fundamental physical laws governing nonlinear phenomena.
With the continuous advancement in supercomputing and the Big Data, spatial
and temporal resolution increases and specialized applications are capable of
capturing increasingly broader range of scales. This motivates further develop-
ment and application of robust and accurate numerical techniques, capable of
exploring finer scales admitted by improved resolution.

A notable example of such multiscale, multiphysics solver is an established
model EULAG [12,19],1 recently extended to include a consistent soundproof-
compressible formulation of PDEs governing atmospheric dynamics [20]. Highly
efficient parallel formulation of EULAG with a 3D MPI domain distribution has
been reported in [10].

Explicit integration of the fully compressible atmospheric equations is imprac-
tical due to the inherent stability limits related to rapid propagation of acoustic
modes. Various numerical techniques, often relying on the operator splitting, are
used to mitigate this problem. Effectively, they employ specialized implicit integra-
tion schemes applied to selected terms in the flow PDEs. Adopted mathematical
simplifications may require solution filtering, possibly leading to numerical arte-
facts [9]. In turn, fully implicit techniques like Newton-Krylov solvers may be pro-
hibitively expensive. Among the variety of existing methods, the recently reported
consistent formulation of the EULAG numerics appear especially prospective as it
allows for efficient multiscale integrations using robust forward-in-time integrators
and preconditioned nonsymmetric Krylov-subspace solvers.

In realistic multiscale applications, the elliptic Poisson and Helmholtz bound-
ary value problems (corresponding to soundproof and compressible formulation
of the governing PDEs) are nonsymmetric, semi-definite, poorly conditioned and
complicated. This may result from the anisotropy of grid resolution, planetary
rotation, ambient large scale gradients and stratification, the use of curvilinear
coordinates, or the imposition of partial-slip conditions along irregular lower
boundaries. Despite enormous advancements in numerical methods for sparse
linear systems, the effective solution of large linear problems depends (at least
for the class of problems discussed) not necessarily on the choice of the best
available iterative method, but rather on the artful preconditioning.

In global models, anisotropy of the Earth’s atmosphere results in the condi-
tion number κ ∼ O(1010), or larger. Because the asymptotic convergence rate of
conjugate gradient type methods is proportional to

√
κ, the use of directly invert-

ible preconditioner that removes the stiffness associated with a relatively fine
vertical resolution is imperative [17]. To date, the Generalized Conjugate Resid-
ual (GCR) Krylov solver of EULAG was supported by a deflation technique, in

1 For comprehensive list of EULAG publications see model webpage at http://www2.
mmm.ucar.edu/eulag/.

http://www2.mmm.ucar.edu/eulag/
http://www2.mmm.ucar.edu/eulag/
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which splitting the preconditioner into implicit and explicit counterparts in the
vertical and horizontal, respectively, lead to subsequent direct inversion in the
vertical of the explicit horizontal part [22]. Variants with spectral decomposition
in the horizontal were also considered [18,23].

ADI methods per se date back to the nineteen fifties [2], and their use as
preconditioners for Krylov solvers in atmospheric models was advocated nearly
two decades ago [15,22]. However, with the transition to massively parallel com-
puting, parallel implementation of tridiagonal algorithms underlying the ADI
approach has been dismissed (e.g., in favour of the deflation technique as spec-
ified above), especially that vertical direction in atmospheric codes remained
standardly serial — for the sake of radiation and precipitation processes, inher-
ently sequential in nature and difficult to parallelize. Notwithstanding, more
recently it become clear that at the exascale computing mere parallelization
in the horizontal may be insufficient. The recent development of the 3D paral-
lelization in EULAG brought parallel tridiagonal algorithms and paved the way
for high-performance ADI preconditioners. Further acceleration of variational
Krylov solvers is important, in order to minimize their global reductions antic-
ipated at the exascale computing. In this context ADI preconditioners appear
promising and worthy exploring. This seems to be reflected in their ceaseless
popularity in the current literature.

2 Model Framework

2.1 Analytic Formulation

The consistent formulation of EULAG’s governing equations casts (and solves)
the governing PDEs in generalized time-dependent curvilinear coordinates
(t,x) ≡ (

t, F (t,x)
)
, where the coordinates (t,x) of the physical space are orthog-

onal and stationary, but not necessarily Cartesian. In particular, global simu-
lations employ the standard anholonomic latitude-longitude (lat-lon) spherical
framework (Sect. 7.2 in [3]) for the physical space [12,19], in which components
of the physical velocity vector are aligned at every point of the spherical shell
with axes of a local Cartesian frame tangent to the lower surface of the shell;
cf. Fig. 7.7 in [3]. For simplicity of the presentation, here we dismiss the time-
dependency of the model coordinates; so, (t,x) ≡ (

t, F (x)
)

in the formulae that
follow. The governing equations for the physical velocity u = (u, v, w) and the
potential temperature θ can compactly be written as

du
dt

= −Θ G̃∇ϕ − gΥB
θ′

θb
− f × (u − ΥCue) + M′(u,u) + Dv, (1)

dθ′

dt
= −u∗ · ∇θe + Dθ, (2)

d�

dt
= − �

G ∇ · Gu∗. (3)
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Here, the generalized density and pressure variables � and ϕ are defined, respec-
tively, for the [anelastic, compressible] PDEs as

� := [ρb(z), ρ(x, t)] , ϕ := [cpθbπ
′, cpθ0π

′], (4)

where ρ and π denote the fluid density and the Exner pressure. The dimensionless
coefficients are defined as

Θ :=
[
1,

θ(x, t)
θ0

]
, ΥB :=

[
1,

θb(z)
θe(x)

]
, ΥC :=

[
1,

θ(x, t))
θe(x)

]
. (5)

On the LHS of (1) and (2), the total derivative d/dt = ∂/∂t + u∗ · ∇, where
u∗ = dx/dt is the contravariant velocity in the computational space. The nabla
operator ∇ ≡ ∂/∂x represents the vector of partial derivatives corresponding to
elementary finite differences in the model code. In the momentum Eq. (1), G̃ sym-
bolizes a renormalized Jacobian matrix of the metric coefficients ∝ (∂x/∂x). The
terms M(. , .) in (1) denote metric forces (viz. the generic Christoffel terms in the
physical space), whereas f is the Coriolis acceleration, and D symbolizes the dis-
sipation/diffusion operator. Subscript e refers to an ambient state, a particular
solution to (1)–(3), while subscript b marks the anelastic base state [6]. The con-
travariant and physical velocities are related via

u∗ = G̃Tu, (6)

and G2
is the determinant of the metric tensor that defines the fundamental

metric in the computational space.

2.2 Highlights of Numerical Approximations

Here we provide an outline of the nonoscillatory forward-in-time (NFT) numer-
ical approximation strategy of EULAG. For comprehensive discussion and
algorithmical details the interested reader is referred to [20] and references
therein. The numerics of EULAG are unique, in that they rely on the
Lagrangian/Eulerian congruence of governing equations integrated with the
trapezoidal rule along flow trajectory in the 4D time-space continuum. In tech-
nical terms, however, the hydrodynamical solver of EULAG is reminiscent of the
projection approach [1], where evaluation of an explicit part of the velocity uexp

is followed by the implicit completion of the solution, tantamount to the formu-
lation and solution to the discrete boundary value problem (BVP) for pressure.2

In particular, Eqs. (1)–(3) are cast in the conservation-law form of generalized
transport equation for specific variable ψ (e.g. velocity component or potential
temperature):

∂G�ψ

∂t
+ ∇ · (G�u∗ψ) = G�R, (7)

2 This second step can be iterated when nonlinear terms resulting from, e.g., metric
forces are present; cf. [19] for illustrative examples.
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are integrated in time and space using MPDATA approach,3 that provides a
robust integrator for the entire system of the governing PDEs, including consis-
tent formulation of a discrete BVP. The latter constraints the complete solution
such as to assure that the updated solution satisfies the discrete mass continuity
Eq. (3). In particular for the anelastic system, (3) takes an incompressible-like
form

1
ρ∗ ∇ · ρ∗u∗ = 0, (8)

where ρ∗ = Gρb. therefore implying the Poisson BVP for ϕ

− Δt

ρ∗
∂

∂xj

[
ρ∗E

(
Ṽj − C̃jk ∂ϕ

∂xk

)]
= 0. (9)

The problem in (9) can be though of as L(ϕ) − R = 0, wherein E and C̃jk

denote 10 fields of known coefficients that generally vary in time and space; EṼj

is the jth component of the explicit part of contravariant velocity solution; and
repeating k indices imply the summation over the components of ∇ϕ; see [11]
for the exposition. The multiplicative factor −Δt/ρ∗ assures the formal negative
semi-definiteness of L and expresses the residual error r = L(ϕ) − R �= 0 as the
divergence of a local Courant number on the grid. Notably, for the compressible
solver, the resulting Helmholtz BVP is composed of three Poisson-like operators
and the term proportional to ϕ [20]. In either case, the resulting BVP is solved
(subject to appropriate boundary conditions) using the GCR approach [4,21] —
a robust preconditioned nonsymmetric Krylov-subspace solver akin to GMRES
[14]. Given the updated pressure, and hence the updated contravariant velocity,
the updated physical velocity components are constructed from (6).

A key element of our GCR machinery is the (left) operator preconditioning
providing an estimate of the solution error q = ϕ − ϕexact as

q = P−1(r), (10)

where the preconditioner P ≈ L but is easier to invert than the L. In EULAG, P
closely matches L by only neglecting the cross derivative terms with coefficients
C̃jk

∣∣
k �=j

. In the remainder of the paper we elaborate on technical aspects of (10).

3 Implicit Inversion Preconditioning

3.1 Principles

Standard EULAG preconditioning relies on the direct inversion of the vertical
component of the implicit operator, while evaluating horizontal part of the oper-
ator explicitly using a stationary Richardson iteration

qμ+1 − qμ

Δτ
= P zqμ+1 + Phqμ − rν , (11)

3 MPDATA (for multidimensional positive definite advection transport algorithm) is
a class of nonoscillatory forward-in-time flow solvers, widely documented in the lit-
erature; for a recent overview see [20] and references therein.
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where P z and Ph symbolize vertical and horizontal parts of P = P z +Ph; Δτ is
a fixed pseudo-time step (selected such as to assure convergence of the iterative
process; μ numbers preconditioner’s iterations (usually a few to several), and
rν is the residual error of the Krylov solver’s νth iteration. Gathering all qμ+1

terms on the LHS, leads to the tridiagonal problem

(Δτ−1I − P z)qμ+1 = Δτ−1qμ + Phqμ − rν := r̃, (12)

readily invertible with the Thomas algorithm concisely symbolized as

qμ+1 = (Δτ−1I − P z)−1r̃ (13)

The developed ADI preconditioners enable extending the standard precon-
ditioner (11) to admit implicitness in Ph and, thus, accelerate the convergence
by increasing Δτ . In particular, a two-dimensional ADI design leaves only sin-
gle explicit direction. When operating on the global lat-lon grid, the natural
choice is to treat the longitudinal direction implicitly, as the meridians converg-
ing towards poles can introduce considerable anisotropy in the coefficients of the
horizontal operator Ph. While numerous formulations of a 2D ADI are possible,
a particularly simple algorithm was provided by Peaceman and Rachford [8],

qμ+ 1
2 − qμ

Δτ2
= P xqμ+ 1

2 + P zqμ + P yqμ − rν ,

qμ+1 − qμ+ 1
2

Δτ2
= P xqμ+ 1

2 + P zqμ+1 + P yqμ − rν , (14)

where P x and P y symbolize, respectively, the longitude and latitude counter-
parts of Ph = P x + P y. To extend (14) to all three directions, we adopt the
unconditionally stable 3D ADI Douglas [2] algorithm

qµ+1
3 −qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P yqμ +P zqμ −rν ,

qµ+2
3 −qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P y (qµ+2

3 +qµ)
2 +P zqμ −rν ,

qµ+1−qµ

Δτ3
= P x (qµ+1

3 +qµ)
2 +P y (qµ+2

3 +qµ)
2 +P z (qµ+1+qµ)

2 −rν .

(15)

Grouping all implicit terms of (14) and (15) on the LHS, as in (12), shows
that all three preconditioners share a common template algorithm

qμ∗ = (Δτ̃−1
i I − P I)−1r̃∗ (16)

for the tridiagonal solver in I = x, y, z directions at some intermediate step μ∗. r̃∗

denotes the corresponding explicit elements of (14) and (15).4 This substantiates
the earlier assertion that the parallel implementation of the tri-diagonal inversion
in one direction paves the way for the family of ADI preconditioners.

4 Note that τ̃i = τi for (11)–(14) but τ̃i = τi/2 in the (15).
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3.2 Parallel Implementation

At the highest level, the implementation of algorithms (11)–(15) in EULAG
follows the mathematical notation. Notably, as the first guess qμ=0 = 0, the init-
laisation of the algorithms needs bespoke script to avoid unnecessary memory
references. In particular, since ∀I P Iqμ=0 = 0 in the first preconditioner itera-
tion, it is only necessary to evaluate half of the explicit members of (11)–(15).
Furthermore, the algorithms (11)–(15) can be judiciously mixed, whereupon we
evaluate all members of the preconditioner family as they all can be useful in
different classes of applications.

The BVP problems in EULAG rarely can be solved in single GCR itera-
tion. For compressible equations the problem matrix is constant within given
timestep. For anelastic equations in stationary coordinates it remains constant
throughout the entire integration time. Inspection of the standard tridiagonal
algorithm suggests that it is possible to precompute a good part of its forward
step. Consequently, all variants of preconditioners in EULAG begin with a suit-
able initialization executed either once per simulation or time step, depending
on the application at hand. This requires relatively large additional storage that
is, however, rarely an issue, on the modern CPU clusters.5

The parallel tridiagonal inversion, if implemented in the form of naive parallel
recurrence, suffers from the adverse load balance characteristics, i.e. only one core
in the column may be active at the time. However, it is fairly easy to mitigate
this problem if using two cores in vertical. With the given horizontal subdomain,
at half of the gridpoints the forward tridiagonal sweep starts from one boundary
while the remaining columns are evaluated from the forward sweep starting from
the opposite boundary. Importantly, this technique does not noticeably alter the
physical results. If the use of larger number of cores in the direction of tridiagonal
inversion is needed and the cost of computations per core is significant, it is
possible to use Pipelined Thomas Algorithm aiming at quickest possible fill of
pipeline of computing cores in given direction. This is done by splitting the
processor subdomain into chunks and communicating the results to the next
core as soon as recurrence (acting in direction normal to the chunk surface) is
executed; see Sect. 2 in [10] and references therein. While this strategy seems to
be efficient for low speed computing cores, such as employed by IBM Bluegene/L
architecture, we found the strategy in the spirit of recursive doubling [24] to be
more effective on modern CPU clusters. The Thomas algorithm as employed for
the A-grid discretization of EULAG for nonperiodic boundary conditions has
the general form

ek = Ak/ (Bk − Ckek−2) (17)
fk = Dk(ek)fk−2 + Qk(ek, rhsADI) (18)
pk = ekpk+2 + fk (19)

5 For the majority of geophysical applications, the main performance bottleneck is the
memory bandwidth and access time, and not the main memory size. The latter is
usually much larger than needed, as large number of timesteps and good scalability
lead to routine use of hundreds of computing cores and tens of supercomputer nodes.
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where k is indexes either x,y or z direction, A,B,C are known 3D matrices, D
is a function of ek and Q is a function of instantaneous right hand side rhsADI

at a given step of an algorithm at hand from the suite (11)–(15). Because ek

can be precomputed, this allows to express last element of the recurrence by the
first or the second element of the recurrence, for the last k index allowed being
odd and even, respectively. For example, for the recurrence split in four-element
segments

ak = bkak−2 + ck = bkbk−2ak−4 + bkck−2 + ck. (20)

The auxiliary product bkbk−2 and the remaining bkck−2 + ck term can be pre-
computed at additional cost, but in fully parallel way. This reduces the cost of
purely sequential part of the algorithm (per “chunk surface” gridpoint in com-
putational subdomain) to single multiply/add operation along with the three
memory loads and single store and we will later refer to it as LFF (Last From
First) operation. For the whole computational domain the parallel tridiagonal
algorithm employs two possible forms, on the sequence of nproc computational
cores denoted as subscripts in a given direction

LFF1 → SEND1 to 2 → LFF2 → ... → SENDnproc−1 to nproc → LFFnproc

or a variant employing one-dimensional MPI Gather/Scatter operations

MPIgatherinput for LFF → ∀1,nprocLFF → MPIscatterLFF results.

Ultimately, the choice of optimal parallel inversion strategy depends on the prob-
lem and the computing architecture at hand.

4 Computational Efficiency and Performance

The suite of the preconditioners has been benchmarked for the baroclinic insta-
bility experiment (BAROC) [5], an archetype of the global weather. Details
of BAROC implementation in EULAG are presented in [13] together with the
grid convergence study and the comparison against the hydrostatic solutions
in [5]. Further studies of BAROC included simulations with anelastic, pseudo-
incompressible and fully compressible equations [20] using several explicit and
implicit formulations of either flux-form Eulerian of semi-Lagrangian EULAG
integrators.

The model setup assumes the analytically prescribed ambient state consisting
of two mid-latitude zonal jets symmetric about the equator that are in unstable
thermal wind equilibrium with the corresponding meridional distribution of the
potential temperature. Initial velocity field is locally perturbed at the northern
hemisphere, leading to the development of the instability manifested with the
fastest growing eastward propagating Rossby mode of wavenumber 6. For illus-
tration, the top panels of Fig. 1 show surface θ′ solutions using anelastic and
compressible PDEs. Evident frontogenesis is similar to the observed weather
systems at the planetary scales.6

6 For a discussion of the differences in various soundproof and compressible solutions
see [20] and references therein.
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Fig. 1. Anelastic (left) and compressible (right) solutions for the baroclinic instability
benchmark at day 8. Top panels display the isolines of surface potential temperature
perturbation, overlaid with the flow vectors, on a regular longitude-latitude grid. Con-
tour intervals are 4 K, dashed/solid lines correspond to negative/positive contour val-
ues, and zero contour lines are not shown. Zonally averaged profiles to the right of the
contour plots depict mean kinetic energy over the full 10-day integration. Middle panels
refer to the model run employing standard preconditioner (11) with 3 preconditioner
iterations per each GCR iteration. The contour plots show the vertically averaged 10-
day-mean residual errors, with their zonally averaged profiles appearing on the right.
The bottom panels convey corresponding measures for the runs employing ADI precon-
ditioner (14) with one preconditioner iteration per each GCR iteration. Contour values
in the middle and bottom panels refer to the fraction of maximum allowed residual
error rmax = 10−7; cf. [9] and the accompanying discussion.

The reported calculations employ a coarse lon-lat “research” grid 128 × 64
(corresponding to 2.8o horizontal resolution) and 23 Km deep atmosphere
resolved with 48 equally spaced vertical levels. The implicit solver employs
physically-based stopping criteria [16] and iterates until the L∞ norm of the
residual error is no larger than 10−7; i.e., orders of magnitude smaller than max-
imal Courant number � 1. All calculations use 2880 timesteps with δt = 300 s.
The resulting residual errors displayed in Fig. 1, for the runs using three iter-
ations of the standard preconditioner (11) and the runs using one iteration of
the two directional ADI preconditioner (14), document substantial improvement
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in the solution accuracy for the latter. In particular, mean residual error in the
runs with the standard preconditioner evinces a signature of nonlinear processes
occurring in the northern hemisphere, which is dramatically reduced in the runs
with one ADI x-z pass per each GCR iteration. Similarly, effects due to meridian
convergence and the refined Δx are practically removed, except in the immedi-
ate proximity of the poles. Interestingly, tests conducted with the fully implicit
ADI preconditioner (15) essentially show no further improvement compared to
ADI x-z [7].

Table 1. Performance of the standard (11) and ADI (14) preconditioners for the anelas-
tic and compressible BAROC experiment, presented in the middle and bottom panels
of Fig. 1, respectively. First column identifies the governing PDEs and the precondi-
tioner used. Subsequent columns list: time-to-solution (TTS); time spent in elliptic
solver (TES); time spent in the preconditioner (TPR), all in seconds; and the total
number of the linear operator evaluations (NLE).

PDE; preconditioner TTS TES TPR NLE

Anelastic; standard 102 80 35 175386

Anelastic; ADI x-z 48 34 13 105245

Compressible; standard 61 36 20 52593

Compressible; ADI x-z 52 30 12 58225

Table 1 summarizes computational performance of the runs illustrated in
Fig. 1. All experiments were performed on the Cray XC30 “Piz Daint” at CSCS,
using Cray Fortran compiler with strong optimization options, “-O aggress,
cache3, scalar3, fp3, ipa5, vector3, thread0”. Standard preconditioner runs were
distributed in a 16×8×1 processor array, whereas ADI x-z runs used a 2×16×4
array. The latter distribution was motivated by the fact that the tridiagonal
solver is more expensive for periodic x direction than in the non-periodic z
direction. The total cost of model integration is reflected in the second column,
showing that the ADI x-z runs are altogether 50 % cheaper in the anelastic sim-
ulations, and 15 % cheaper in the compressible simulations. This discrepancy
in the performance improvement results from the much lower overall number
of the linear operator evaluations in the compressible case, regardless of the
preconditioner used. Although the GCR performs 10% more iterations in the
compressible run with the ADI x-z than with the standard preconditioner, the
overall performance is improved due to the lower cost of evaluating the precon-
ditioner itself.

5 Remarks

It is often emphasized that regular lat-lon grids are disadvantageous for global
modeling, because the meridians convergence near the poles necessitates small
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timesteps to assure computational stability and impairs conditioning of the lin-
ear operator in semi-implicit flow solvers (thus resulting in a poor performance
of iterative elliptic solvers). The first aspect can be circumvented by resort-
ing to semi-implicit semi-Lagrangian integrators. Here we addressed the second
aspect and showed that it can be mitigated with ADI preconditioners employing
implicit inversions in x and z directions. In particular, for highly anisotropic
grids, this permits much larger preconditioner’s pseudo-timestep τ (e.g., 40 and
10 larger with ADI x-z in the discussed anelastic and compressible runs, respec-
tively), leading to significantly faster convergence of the elliptic solver and con-
sequently to reduction of the time-to-solution. Benefits of ADI preconditioning
are expected to be even more pronounced when MPI parallelization scheme of
EULAG will be supplemented by the shared memory decomposition.
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