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Abstract. Current development trends of fast processors calls for an
increasing number of cores, each core featuring wide vector processing
units. Applications must then exploit both directions of parallelism to
run efficiently. In this work we focus on the efficient use of vector instruc-
tions. These process several data-elements in parallel, and memory data
layout plays an important role to make this efficient. An optimal memory-
layout depends in principle on the access patterns of the algorithm but
also on the architectural features of the processor. However, different
parts of the application may have different requirements, and then the
choice of the most efficient data-structure for vectorization has to be
carefully assessed. We address these problems for a Lattice Boltzmann
(LB) code, widely used in computational fluid-dynamics. We consider a
state-of-the-art two-dimensional LB model, that accurately reproduces
the thermo-hydrodynamics of a 2D-fluid. We write our codes in C and
expose vector parallelism using directive-based programming approach.
We consider different data layouts and analyze the corresponding perfor-
mance. Our results show that, if an appropriate data layout is selected,
it is possible to write a code for this class of applications that is automat-
ically vectorized and performance portable on several architectures. We
end up with a single code that runs efficiently onto traditional multi-core
processors as well as on recent many-core systems such as the Xeon-Phi.

Keywords: Directive based compilation · Memory data layout ·
Vectorization · Accelerator processors

1 Introduction

Lattice Boltzmann (LB) methods are widely used in computational fluid dynam-
ics. This class of applications – discrete in time and momenta and living on a
discrete and regular grid of points, see later for details – offers a large amount
of easily identified parallelism, making LB an ideal target for modern HPC sys-
tems [1–4]. However, exploiting available parallelism is becoming more and more
difficult on recent processor architectures, exhibiting a large number of cores,
each core being in turn able to execute SIMD instructions; both levels of paral-
lelism have to be used.
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Fig. 1. Left: velocity vectors for the LB populations in the D2Q37 model. Right: popu-
lations are identified by an arbitrary label, identifying the lattice hop that they perform
in the propagate phase.

For regular LB applications, it is easy to apply core parallelism assigning
tiles of the physical lattice to different cores. However, exploiting vectorization
requires additional care, and in particular two aspects are relevant: how to intro-
duce and expose vector instructions in the code, and memory data-layout to
enable efficient vector processing. Vector instructions can be explicitly intro-
duced defining vector variables and processing them with specific functions –
called intrinsics – which are mapped by the compiler onto the corresponding
assembly instruction. However, even if potentially efficient, this approach pre-
vents compiler to make all possible optimizations, and codes are not portable.
Moreover, unskilled use can make the code less efficient than plain C code. In
this work, we use the directive based approach provided by OpenMP 4.0 and
supported by the Intel compiler, which allows to annotate standard C-codes
with pragma directives to specify regions of the code to vectorize; this approach
leaves to the compiler all optimization steps specific for the target architecture,
and makes the code portable. Finding the best data structure layout to enable
vector processing is relevant to ensure that data operated upon by SIMD opera-
tions are allocated on contiguous memory addresses so read (and write back) of
data is fast enough not to starve the processing engine. This involves to find the
best compromise between conflicting requirements between different parts of the
code. Currently this is difficult to achieve automatically by programming tools,
even if some experimental stencil compilers, such as PLUTO [5] ad POCHOIR [6]
are promising solutions.

In this work, we use the directive approach for programming, and experiment
with several memory data layouts. We assess the corresponding performance
results, and we end up with just one implementation of our LB application
that can be automatically and efficiently vectorized onto traditional multi-core
processors and many-core processors such as the Xeon-Phi accelerator. Analyses
of optimal data layouts for LB have been made in [7–9]. However, [7] focuses
only on the propagate step, one of the two key kernels in LB codes, while [8]
does not take into account vectorization; in [9] vectorization is considered using
intrinsics functions only. None of these papers consider accelerators. We extend
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these results in several ways: first, we take into account both propagate and
collision steps used in LB simulations. Then we use a high level approach based
on compiler directives, and we take into account also accelerators.

This paper is structured as follows: Sect. 2 gives an overview of LB methods,
while Sect. 3 describes in details our implementations. Finally, Sect. 4 analyzes
our performance results and compare them with those of earlier codes for the
same LB application we have written in CUDA for GPU, and using intrinsics
for traditional multi-core CPUs and the Xeon-Phi processor.

2 Lattice Boltzmann Methods

In this section, we sketchily introduce the computational method that we adopt,
based on an advanced Lattice Boltzmann (LB) scheme. LB methods (see, e.g. [10]
for an introduction) are discrete in position and momentum spaces; they are
based on the synthetic dynamics of populations sitting at the sites of a discrete
lattice. At each time step, populations hop from lattice-site to lattice-site and
then they collide, mixing and changing their values accordingly.

Over the years, several LB models have been developed, describing flows in
2 or 3 dimensions, and using sets of populations of different size (a model in x
dimensions based on y populations is labeled as DxQy). Populations (fl(x, t)),
each having a given lattice velocity cl, are defined at the sites of a discrete and
regular grid; they evolve in (discrete) time according to the Bhatnagar-Gross-
Krook (BGK) equation:

fl(x, t + Δt) = fl(x − clΔt, t) − Δt

τ

(
fl(x − clΔt, t) − f

(eq)
l

)
(1)

The macroscopic physics variables, density ρ, velocity u and temperature T are
defined in terms of the fl(x, t) and cls:

ρ =
∑
l

fl, ρu =
∑
l

clfl, DρT =
∑
l

|cl − u| 2fl; (2)

the equilibrium distributions (f (eq)
l ) are themselves functions of these macro-

scopic quantities [10]. With an appropriate choice of the set of lattice veloci-
ties cl and of the equilibrium distributions f

(eq)
l , one shows that, performing

an expansion in Δt and renormalizing the values of the physical velocity and
temperature fields, the evolution of the macroscopic variables obeys the thermo-
hydrodynamical equations of motion and the continuity equation:

∂tρ + ρ∂iui = 0 (3)
ρDtui = −∂ip − ρgδi,2 + ν∂jjui, ρcvDtT + p∂iui = k∂iiT ; (4)

where Dt = ∂t + uj∂j is the material derivative and we neglect viscous heating;
cv is the specific heat at constant volume for an ideal gas, p = ρT , and ν and
k are the transport coefficients; g is the acceleration of gravity, acting in the
vertical direction. Summation of repeated indexes is implied.
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In our case we study a 2-dimensional system (D = 2 in the following), and the
set of populations has 37 elements (hence the D2Q37 acronym) corresponding
to (pseudo-)particles moving up to three lattice points away, as shown in Fig. 1.
This LB model, that automatically enforces the equation of state of a perfect
gas (p = ρT ), was recently developed in [11,12];. Our optimization efforts have
made it possible to perform large scale simulations of convective turbulence in
several physics regimes (see e.g., [13,14]);

An LB code starts with an initial assignment of the populations, correspond-
ing to a given initial condition at t = 0 on some spatial domain, and iterates
Eq. 1 for each population and lattice site and for as many time steps as needed;
boundary conditions are enforced at the edges of the domain after each time
step by appropriately modifying population values at and close to the boundary.

From the computational point of view, the LB approach offers a huge degree
of easily identified available parallelism. Inspecting Eq. (1) one easily identifies
the overall structure of the computation that evolves the system by one time step
Δt: for each point x in the discrete grid the code: (i) gathers from neighboring
sites the values of the fields fl corresponding to populations drifting towards
x with velocity cl (propagate step) and then, (ii) performs all mathematical
operations associated to the r.h.s. of Eq. (1) (collide step). One quickly sees
that there is no correlation between different lattice points, so both steps can
be performed in parallel on all grid points according to any convenient schedule,
with the only constraint that step 1 precedes step 2. All other steps of a complete
simulations have a negligible computational cost.

As already remarked, our D2Q37 model correctly and consistently describes
the thermo-hydrodynamical equations of motion and the equation of state of a
perfect gas; this translates into a more complex implementation than earlier 2D
LB models as well as in demanding hardware requirements for memory band-
width and floating-point throughput. Indeed, propagate implies accessing 37
neighbor cells to gather all populations, while collide executes ≈7000 double-
precision floating point operations per lattice point.

3 Implementation and Optimization of LB Kernels

As already remarked, data organization plays a key role; popular layouts for LB
methods are arrays of structures (AoS) or structure of arrays (SoA). In the AoS
layout, population data for each lattice site are stored one after the other at
successive memory locations, while in SoA, for each population of index i, all
sites are stored one after the other. AoS enjoys locality for all data of each site;
on the other hand, same-index populations of different sites are stored at non-
unit strided addresses. We store the lattice in column-major order (Y direction)
and instantiate two copies, that are alternatively read and written. Although
this solution allocates more memory than having a single copy, it is required to
process all lattice sites in parallel.
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typedef struct {
double ∗p [ NPOP ] ;

} pop_soa_t ;

// sn ippet o f propagate code to move populat ion index 0
for ( xx = XMIN ; xx < stopx ; XMAX++ ) {

#pragma vector nontemporal
for ( yy = YMIN ; yy < YMAX ; yy++ ) {

idx = IDX ( xx , yy ) ;
( nxt−>p [ 0 ] ) [ idx ] = ( prv−>p [ 0 ] ) [ idx+OXM3YP1 ] ;

}
}

Fig. 2. Snippet of sample code for propagate, moving f0 according to Fig. 1, right.
OXM3YP1 is the memory address offset associated to the population hop. The lattice is
stored using the SoA layout.

3.1 Optimization of propagate

The propagate kernel moves populations for each lattice site according to the
pattern of Fig. 1 (left) involving accesses at lattice-cells at distance up to 3 in
the physical grid. Earlier works – e.g. [7] – has considered two implementation
schemes: push and pull. The push scheme moves all populations of one site to
appropriate neighbor sites, while pull gathers to one site populations belonging
to neighbor sites. However, push performs aligned-reads and misaligned-writes,
while pull does the opposite, and this results more efficient on modern architec-
tures since aligned writes can bypass the cache hierarchy.

Vectorization of this kernel using SIMD instructions apply each move shown
in Fig. 1 to several lattice sites in parallel depending on the size of vectors sup-
ported by the target processor, e.g. 4 and 8 for those we have considered. This
simple vectorization is not possible if one uses an AoS layout, as populations of
different sites are stored at non-contiguous memory addresses, requiring multi-
ple memory accesses. In contrast, an SoA layout has unit stride for populations
of fixed index i belonging to different sites, so data can be fetched in parallel
from memory using vector instructions. This is the main reason for selecting SoA
rather than AoS memory arrangement.

Figure 2 shows the C-code moving population of index 0 which – see Fig. 1
(right) – comes from sites three steps left and one up in the physical lattice.
All other populations are moved in the same way. The code sweeps all lattice
with two loops in X and Y ; the inner loop is on Y , as elements are stored in
column-major order. The #pragma vector directive notifies the compiler that
the next loop can be vectorized; this is an Intel-specific directive, correspond-
ing to #pragma omp simd in the OpenMP standard. This directive vectorize the
inner loop in chunks of 4 or 8 words for the Haswell CPU and the Xeon-Phi
accelerator respectively. We add the nontemporal attribute specifying that data
is not used again by this kernel, so non-temporal stores can be used. The latter
bypass the cache hierarchy, and reduce memory traffic by 1/3, with a corre-
sponding save in time. Unfortunately OpenMP currently does not support this
directive.
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typedef struct { double c [ VL ] ; } vdata_t ; // c l u s t e r

typedef struct { vdata_t p [ NPOP ] ; } caosoa_t ; // CAoSoA type d e f i n i t i o n

// sn ippet o f propagate code to move populat ion index 0
for ( xx = startx ; xx < stopx ; xx++ ) {

for ( yy = 0 ; yy < SIZEYOVL ; yy++, idx++ ) {
idx = IDX ( xx , yy ) ;
#pragma vector aligned nontemporal
for ( tt = 0 ; tt < VL ; tt++) {

nxt [ idx ] . p [ 0 ] . c [ tt ] = prv [ idx+OPOVL0 ] . p [ 0 ] . c [ tt ] ;
}

}
}

// sn ippet o f part o f c o l l i d e code to compute dens i ty rho
vdata_t rho ;
for ( ii =0; ii < NPOP ; ii++)

#pragma vector aligned
for ( tt=0; tt < VL ; tt++)

rho . c [ tt ] = rho . c [ tt ] + prv [ idx ] . p [ ii ] . c [ tt ] ;

Fig. 3. Top: data arrangement for the CAoSoA layout; for illustration purposes, we
take VL = 2. Bottom: snippet of sample codes for propagate and collide using this
layout.

3.2 Optimization of collide

The collide kernel updates populations at each lattice site at the next time
step, performing all mathematical operations associated to Eq. 1 (this is called
collision in LB jargon). Input data are the populations gathered by the previous
propagate phase. For each lattice site, this floating point intensive kernel uses
only data belonging to the site on which it operates – previously gathered by
propagate – so the available parallelism equals the size of the full lattice.

The SoA layout allows in principle to vectorize the code: to do so, the machine
code should load in sequence blocks of words for all populations, each block as
long as the vector size, and then perform all operations in SIMD mode using
these blocks as operands. In practice, this implies reading relatively short data
chunks from scattered memory locations, that the memory controller is not able
to do efficiently. We therefore anticipate a limited performance as the compute-
unit in the processor becomes data starved.

We then define a new data layout, offering to compilers a different handle to
vectorization. We divide each population array in VL parts along Y (VL is the
vector size), pack the populations at each site of each part into an array of VL
elements (we call this block a cluster) and store clusters for all 37 populations one
after the other, see Fig. 3. We call this layout a Clustered Array of Structure of
Array (CAoSoA). This layout obviously allows vectorization of inner structures
(clusters) of size VL, and at the same time improve loacality of population
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Fig. 4. Benchmark results for propagate and collide on a lattice of 2160 × 8192
points, using different data layouts. Top: Xeon E5-2630-v3 CPU; bottom: Xeon-Phi
7120P accelerator.

keeping at contiguous and aligned addresses all data items needed to handle
each lattice point in the kernel. Figure 3 shows the definition of the vdata t data
type, corresponding to a cluster, and a snippet of representative small sections of
the code. Cluster variables are processed iterating on all elements of the cluster
through a loop over VL; pragma vector aligned instructs the compiler to fully
vectorize the loop since all iterations are independent and memory accesses are
aligned. This layout is probably less efficient for propagate: in the next section
we discuss the corresponding tradeoffs.

Table 1. Performance comparison of propagate and collide kernels using the CaAoSoA
scheme with intrinsic functions and pragma directives. The rightmost column lists
performance figures for an NVIDIA K40 GPU. Data refer to a lattice of 2160 × 8192
points.

E5-2630 v3 CAoSoA Intel Xeon 7120 CAoSoA NVIDIA K40 SoA

Intrinsics Directives Intrinsics Directives CUDA

Propagate (GB/s) 36 37 86 103 187

Collide (MLUPS) 14 24 55 54 108

Collide (GFs) 94 154 365 351 703

Global (MLUPS) 12 17 40 41 81
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4 Results and Conclusions

We have tested our code on an 8-core Xeon E5-2630-v3 CPU, based on the
Haswell micro-architecture running at 2.4 GHz, and on a 61-core Xeon-Phi 7120P
accelerator based on the Many Integrated Core architecture.

Figure 4 shows performance results for all data layouts that we have con-
sidered. For the propagate kernel we measure the effective bandwidth, while for
collide we use Millions Lattice Updates per Second (MLUPS) figures, a standard
performance metric for this application.

We first consider CPU results. Both kernels have been run using 1 thread
per core since use hyperthreading does not improve performances. For propagate,
the bandwidth increases with the number of threads used, as using only one
thread does not saturate the bandwidth made available by all memory channels.
The AoS scheme has poor performance since it prevents vectorization and use
of non-temporal stores, while the SoA scheme reaches the best results with 4
and 8 threads and non-temporal stores enabled; in this case the bandwidth is
≈43 GB/s, that is ≈70 % of theoretical peak (59 GB/s) and ≈86 % of bandwidth
measured with STREAM benchmark [15] (≈50 GB/s). As expected, the CAoSoA
layout reduces performance by ≈15 % (≈37 GB/s). The performance of collide
grows with the number of threads. The best performance value we measure is
24 MLUPS using 8 cores and the CAoSoA layout; this is 1.2X faster than SoA
and 1.6X faster than AoS.

On the Xeon-Phi the situation is somewhat different. In this case we have
used hyperthreading since this is required to hide the huge latency in accessing
external memory. For propagate, performance depends weakly on the number
of threads per core, reflecting a complex interaction between the complexity of
the memory system and the role of multi-threading to mitigate latency effects.
Using the SoA[nt] layout the peak value of bandwidth is 136 GB/s. Using the
CAoSoA[nt] layout, the bandwidth decreases to 103 GB/s, after prefetching hints
have been added to the code. These figures are 30% or less of the theoretical
peak (≈350 GB/s), but an encouraging ≈62 % of the STREAM benchmark [15],
a widely acknowledged reference test for the Xeon-Phi, that measures an effective
bandwidth of ≈165 GB/s. In much the same way as for the CPU case, collide
scales in performance with the number of threads up to 240 threads for all storage
layouts. The best value is obtained using the CAoSoA layout, approximately
1.3X faster than SoA, and 1.8X faster than the AoS.

Table 1 summarizes our results, comparing performances for different data
layouts on different processors; it considers implementations using intrinsics
instructions [16–18] and directive-based ones (this work). We also show global
MLUPS figures, a reasonably accurate performance metric of a complete code
assuming that propagate and collide kernels are executed and applied to the
lattice one after the other; moreover we also quote previous results for GPUs
using the SoA layout [19–21].

In summary, we verify that propagate and collide have conflicting require-
ments for data layout. The hybrid CAoSoA scheme combines the benefits of
SoA since clusters can be easily vectorized, with those of AoS where population
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locality boosts the performance of the collide kernel. All in all, considering the
overall performance the CAoSoA layout is the preferred one for both strands of
processor architectures. It is interesting to note that our directive-based code is
as fast or even faster than those using intrinsic functions, as in the former case
the compiler is able to apply a larger set of optimization strategies.

Coming now to a comparison of performance across different processors, we
see that for this class of codes – typical of a large class of HPC applications –
Xeon-Phi accelerators offer roughly 2X better performance than state-of-the-art
CPUs, while a NVIDIA K40 GPU is approximately 4X better. We also remark
that GPUs have a more efficient memory interface, so outstanding performance
is obtained without a careful adjustment of the SoA data layout.

In conclusion, an important result of this work is that it is possible to write
directive-based programs that are: (i) as efficient or even more efficient than
handcrafted codes and, (ii) reasonably performance-portable across different
present available (and hopefully future) architectures. This requires to invest a
significant amount of effort in the definition of an appropriate data layout, choos-
ing a non-trivial optimal (or almost optimal) layout among conflicting require-
ments. This step is clearly out of the scope of current programming environment;
considering a longer time horizon, we see here a potential large space for data
definitions that do not prescribe a fixed memory layout, leaving the compiler
free to make appropriate choices during the compilation process.
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