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Abstract. Block smoothers that relax small blocks of unknowns pro-
vide a way to increase the amount of arithmetic operations needed per
smoothing iteration. If the block sizes are small, the variables associ-
ated to these blocks fit in fast local memories, thus allowing for a better
exploitation of modern computer architectures. At the same time block
smoothers are efficient smoothers that allow for more aggressive coars-
ening resulting in less coarse grids.

We implemented block smoothers in combination with aggressive
coarsening in OpenCL, targeting GPUs. Two different data layouts
were compared for the smoother. The results show that while the more
advanced data layout does not yield a better performance, the introduc-
tion of block smoothers in multigrid methods can indeed reduce the time
to solution on a GPU.
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1 Introduction

In many simulations in computational science and engineering linear systems

Ax = b, A ∈ R
n×n, x, b ∈ R

n,

have to be solved, often these linear systems arise from the discretization of par-
tial differential equations (PDEs). Frequently the overall run time of the sim-
ulation is governed by the time spent in the solver, therefore there is a huge
demand for optimal scalable solvers. If the number of unknowns is large the
direct solution of the system is usually not feasible, so iterative methods are
used. In many cases, especially when the underlying PDE is elliptic, multigrid
methods are known to be optimal iterative solvers, i.e., the convergence rate
does not depend on the system dimension. Further, multigrid methods can be
parallelized efficiently and scale to huge numbers of processors. The computa-
tional complexity that determines the cost of one multigrid cycle is governed by
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the number of unknowns per row in the system matrix. In the case of the usually
used low-order discretization of a PDE independently of wether a finite differ-
ence, finite volume or finite element scheme is used, this number is usually small.
As a consequence the number of arithmetic operations that has to be carried out
per unknown and thus per memory transfer is low. This limits the achievable
performance of multigrid methods in terms of FLOPS compared to the theo-
retically achievable performance on modern computer architectures. While this
limit exists for a long time, in recent years it has become more prominent as
the performance of processors increases much faster than the performance of
memory does.

On parallel computers the scalability of multigrid methods is limited only
through the necessary global information exchange that is inherently necessary
to solve the problems at hand due to their global nature. This requirement
introduces a logarithmic dependency of the runtime on the number of processors,
the degrade in scalability mostly is due to the relatively low amount of work that
has to be conducted on the lower levels compared to the communication. One way
to hide this effect for larger processor numbers is the use of aggressive coarsening
that results in a lower number of levels in the multigrid hierarchy. For multigrid
methods employing aggressive coarsening to be as effective as standard multigrid
methods more powerful smoothers are needed. This can either be accomplished
by carrying out more smoothing steps or by using completely different smoothers,
e.g., polynomial smoothers.

In order to overcome both limitations we propose to use block smoothers that
result in a higher arithmetic cost than usually employed point smoothers but at
the same time reduce high frequency components of the error more effectively. In
contrast to line and plane smoothers that are often used in multigrid methods,
e.g., when anisotropies are present in the underlying PDE, by block smoothers
we generally entitle methods that do not relax the residual at one point at a time
but at a set of points concurrently. In the cases considered here these sets will
be local subdomains. If the variables are stored in memory appropriately this
results in a high locality of the data that is used during a relaxation and thus less
memory transfers are needed. Even if the arithmetic cost per unknown is higher
than in point smoothers, the combination of a better smoothing factor together
with the better use of modern architectures results in an overall reduced time
to solution.

In this paper we present an implementation of block smoothers on GPUs
using OpenCL to showcase that our proposal is feasible. In fact combining aggres-
sive coarsening with block smoothers on a GPU results in a multigrid method
that has a lower convergence rate but a reduced time to solution although more
iterations of the multigrid method are necessary.

The rest of the paper is structured as follows: In the next section we will pro-
vide a brief introduction into multigrid methods. In Sect. 3 the block smoothers
used here are presented and afterwards in the following section the implemen-
tation on the GPU is described. Numerical results are shown in Sect. 5 and the
paper closes with a conclusion and outlook.
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Algorithm 1. Multigrid cycle xni
= MGi(xni

, bni
)

xni ← Sν1
i (xni , bni)

rni ← bni − Aixni

rni+1 ← Rirni

eni+1 ← 0
if i + 1 = lmax then

enlmax
← A−1

lmax
rnlmax

else
for j = 1, . . . , γ do

eni+1 ← MGi+1(eni+1 , rni+1)
end for

end if
eni ← Pieni+1

xni ← xni + eni

xni ← S̃ν2
i (xni , bni)

2 Multigrid Methods

Multigrid methods go back to [1,6,7], their use in applications has been promoted
in [3,11,12]. In the following we describe geometric multigrid methods that are
based on the following observation: When an iterative method like Gauß-Seidel
or damped Jacobi is applied to a linear system that arises from the discretization
of a simple elliptic PDE like the Poisson equation and when plotting the error
on the discretization grid before and after a few steps of the iterative method
it is much smoother after the application. As a consequence it will be well-
represented on a coarser grid where the problem is less expensive to solve. This
idea is applied recursively resulting in the so–called V-cycle, if multigrid is called
multiple times recursively, the result are other cycling schemes. In Algorithm 1
the basic multigrid algorithm is provided. In addition to the different grids that
are needed to represent the approximation to the solution on the various levels,
smoothers and grid transfer operators have to be defined. As smoothers usually
point smoothers like the aforementioned Gauß-Seidel method or damped Jacobi
are used. Other options include polynomial smoothers, incomplete factorizations
or block smoothers like the ones defined in Sect. 3. Based on the observation of
the behavior of the error as grid transfer operators methods like linear or higher
order interpolation are used to transfer the error from the coarse to the fine level,
in the opposite direction the simplest option is injection of the fine level solution,
i.e., the current value at a grid point is just copied to the coarse level. Another
option that is often used is full-weighting that is the transpose of the linear
interpolation, possibly multiplied with a scalar factor. Extensions to multigrid
methods that do not require an a priori defined grid hierarchy are known as
algebraic multigrid (AMG). An introduction to geometric multigrid methods
can be found in [4], more details and an introduction to AMG are found in [16].

The efficient implementation of parallel multigrid has been discussed in dif-
ferent papers, an overview over parallelization of multigrid is provided in [5], here
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also the aggressive coarsening that is used here is presented. Multigrid methods
for GPUs have been presented before, e.g., in [8–10].

A geometric multigrid method starts from a given partial differential equation

Lu = f, in Ω

u = g, in ∂Ω.

Other boundary conditions than Dirichlet boundary conditions are possible. The
equation is discretized using different discretization parameters h resulting in
linear systems of the form

Lhuh = fh,

where the boundary conditions are eliminated to be contained in Lh or they
are handled explicitly. Grid transfer operators are defined to transfer quantities
between the different levels of discretization in a geometrically motivated manner
and simple iterative schemes like Gauß-Seidel are added as described before in
Algorithm 1 to obtain a multigrid method.

Here, we limit ourselves to cuboidal domains discretized using regular grids.
In the simplest case of the unit cube discretized with n grid points in each
direction we end up with a linear system with n3 unkowns. The coarser levels are
obtained by subsequently taking every gth grid point, only. Usually, a coarsening
ratio of g = 2 is chosen and the grid sizes are chosen such that we end up with
1 unkown, only. In the case of Dirichlet boundary conditions this results in
n = 2k − 1 grid points while for periodic boundary conditions we obtain n = 2k

grid points. As interpolation linear interpolation is used, i.e., the value at a fine
grid point is taken as the weighted average between neighboring points. The
interpolation is taken as full-weighting with the same weights, i.e., the transpose
of the restriction operator.

3 Block Smoothers

Point smoothers have a relatively small number of arithmetic operations per
memory transfer, resulting in a poor use of modern processor architectures. At
the same time, when aggressive coarsening is employed the smoothing factor
drops substantially.

In [2] the usage of block smoothers in multigrid methods has been proposed and
preliminary results of analyzing block smoothers using local Fourier analysis were
given. These block smoothers are using a domain decomposition approach, i.e., the
unknowns are partitioned into smaller sets forming a connected subdomain Ωi of
the whole domain under consideration. An introduction to domain decomposition
can be found in [14]. The union of the subdomains is the whole domain, i.e.,

⋃

i

Ωi = Ω,

the subdomains do not have to be disjoint. One step of the block smoother
consists of a loop over the subdomains. Within the loop the residual is calculated,
the linear system is being restricted to the variables corresponding to the current
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subdomain, the restricted system is solved for the restricted residual as right
hand side and finally the current guess is updated by adding the result of this
small system. This results in a relaxation of a whole subdomain instead of an
individual variable. This method is known as block Gauß-Seidel or multiplicative
Schwarz. If the residual is not updated within the loop over the domains but
rather just once before, the method is a block Jacobi-method or additive Schwarz
method. It is known from the underlying theory that multiplicative methods
work better than additive, just like in the scalar case [14]. The subdomains can
be chosen on each level individually. As this is used as a smoothing procedure
it is further not necessary to solve each of the restricted systems exactly, but
rather using an iterative method. When small block sizes are chosen even a
plain Gauß-Seidel method is well-suited for this task, as its convergence factor
depends on the ratio of the grid spacing and the domain size that will be quite
large in this case. As in the point relaxation case a lexicographic ordering of the
blocks results in a method that is inherently sequential. This is not the case for
block Jacobi-type methods, but the smoothing factor of block Jacobi is worse
than that of block Gauß–Seidel. By using a multicoloring of the blocks also the
Gauß–Seidel variant of the smoother is parallelizable.

As the solution of the restricted linear systems is much more expensive than
the relaxation of an individual variable, the overall method is more expensive. On
the other hand, the resulting methods are much more efficient as smoothers than
point-relaxation methods. If the subdomains are relatively small, the overhead
introduced by the method is relatively small, as well. Further, if a memory layout
is chosen that keeps all needed variables in the cache, the solution of the linear
system and thus the relaxation of one block can be calculated very fast as modern
processors can be used more efficiently. This is true for direct solvers that are
used to solve the restricted linear system as well as for iterative solvers, as both
will benefit from the advantageous memory layout.

As we are dealing with cuboidal domains, we consider cuboidal subdomains,
as well. To allow for parallel processing in the smoother a multi-coloring scheme
of the blocks is employed.

4 Implementation

A multigrid method for cuboidal domains with equispaced regular grids was
implemented in OpenCL to measure the performance gain of the proposed
method on GPUs. Parameters like the work-group size were set to be chosen
automatically by OpenCL. The multigrid method uses aggressive coarsening to
reduce the number of levels that is present, in the following the coarsening fac-
tor will be denoted by g. The block smoother uses small cubic blocks with side
length equal to the coarsening ratio.

The multigrid method itself uses a simple data layout with lexicographic
ordering of the unknowns, the numbering of the grid points includes the bound-
ary values, c.f., Fig. 1, which depicts the two-dimensional analogue of the dis-
tribution scheme used. This numbering is neglecting the blocking and it is used
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Fig. 1. Numbering of the grid points for the multigrid method
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Fig. 2. Numbering of the grid points for the block smoother

for all operations, i.e., calculating the residual, restriction of the residual, and
prolongation of the error and correcting the current approximation afterwards.

In order for the block smoother to benefit from the spatial locality of the
unknowns of a block the data can be rearranged in memory such that data
belonging to one block is stored consecutively in memory. Further, for data access
to be as fast as possible on a GPU coalesced access has to be used. Therefore
the unknowns of 16 blocks of the same color are interleaved to provide coalesced
data access for one half warp. A 2D example for a half warp size of 5 is depicted
in Fig. 2. Similar approaches have been used, e.g., in [13].

As the smoother does not need boundary values, the boundaries are not
included in this data layout. To accommodate for missing values in subdomains
at the boundary padding is used.

The usage of two data layouts results in memory copies before and after a
relaxation. Overall we obtain Algorithm2 for a V-cycle.

We compared this algorithm to an alternative using the previously defined
simplified layout, only. To obtain the highest possible performance instead of a
red and a black block-sweep two full block Jacobi-sweeps are performed, where
the blocks are inverted as in the previous algorithm by a few iterations of Gauß–
Seidel. The resulting V-cycle is given by Algorithm3.
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Algorithm 2. V-cycle with block smoother and two data layouts
for � = 1, . . . , �max − 1 do

for k = 1, . . . , ν1 do
r� = f� − L�u�

Copy residual from standard layout to layout for block smoother
Solve L�e� = r� on red blocks using σ iterations of Gauß-Seidel
Copy residual from layout for block smoother to standard layout
u� = u� + e�

r� = f� − L�u�

Copy residual from standard layout to layout for block smoother
Solve L�e� = r� on black blocks using σ iterations of Gauß-Seidel
Copy residual from layout for block smoother to standard layout
u� = u� + e�

end for
f�+1 = R�(f� − L�u�)

end for
u�max = L−1

�max
f�max

for � = �max − 1, . . . , 1 do
e� = P�u�+1

u� = u� + e�

for k = 1, . . . , ν2 do
Copy residual from standard layout to layout for block smoother
Solve L�e� = r� on red blocks using σ iterations of Gauß-Seidel
Copy residual from layout for block smoother to standard layout
u� = u� + e�

r� = f� − L�u�

Copy residual from standard layout to layout for block smoother
Solve L�e� = r� on black blocks using σ iterations of Gauß-Seidel
Copy residual from layout for block smoother to standard layout
u� = u� + e�

end for
end for

To stop the iteration the 2-norm of the residual is checked after each V-cycle.
The calculation of this 2-norm is carried out by squaring all entries and then
using a fan-in scheme using two arrays that are used alternately to sum up two
variables in one array and storing them in the other until the sum of all squared
entries is located in the first entry of one array. This allows to use the GPU for
this task, as well.

5 Numerical Results

As test problem we consider the PDE

Δu(x) = f(x), forx ∈ Ω = (0, 1)3,
u(x) = 0, forx ∈ ∂Ω.
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Algorithm 3. V-cycle with block smoother one data layout
for � = 1, . . . , �max − 1 do

for k = 1, . . . , 2ν1 do
r� = f� − L�u�

Solve L�e� = r� on all blocks using σ iterations of Gauß-Seidel
u� = u� + e�

end for
f�+1 = R�(f� − L�u�)

end for
u�max = L−1

�max
f�max

for � = �max − 1, . . . , 1 do
e� = P�u�+1

u� = u� + e�

for k = 1, . . . , 2ν2 do
Solve L�e� = r� on all blocks using σ iterations of Gauß-Seidel
u� = u� + e�

end for
end for

The right hand side f was chosen as 3π2 sin(πx1) sin(πx2) sin(πx3) such that the
analytical solution of the problem is given by

u(x) = sin(πx1) sin(πx2) sin(πx3).

The problem was discretized using 7-point finite differences.
The implementation was tested in single precision on a NVIDIA Tesla M2050

GPU in the JuDGE cluster at the Jülich Supercomputing Centre. Single pre-
cision is sufficient for smaller problems, only, but it can be used as an efficient
preconditioner even in the double precision case [15]. The M2050 GPU provides
a theoretical peak performance of 1.03 TFLOPS in single precision. In any case,
the block size and the coarsening ration were chosen to be the same, resulting
in less coarse grids when larger block sizes were chosen.

First, we compare the time for one V-cycle and the performance achieved for
Algorithms 2 and 3. The results can be found in Table 1. As expected the neces-
sary copying of the data corrupts the performance a lot, even though Algorithm3
does twice the amount of operations, the time needed for a V-cycle is smaller.

As expected from a theoretical point of view both algorithms do behave
similarly regarding the convergence rate. A plot of the convergence history of
both methods can be found in Fig. 3.

As the performance of Algorithm 3 using one data layout, only, was superior,
we measured the time to solution with this algorithm, only. We measured the
time needed to reduce the error to the discretization error and calculated the
obtained performance. In each case in the block Jacobi method the systems
belonging to one block were solved approximately with 10 iterations of Gauß–
Seidel. The result can be found in Table 2.

Obviously, a block smoother results in a much better performance in terms of
GFLOPS when a large block size is chosen. On the other hand, as the coarsening
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Table 1. Performance of Algorithms 2 and 3 for 25 + 1, 26 + 1, and 27 + 1 grid points
in each direction.

n 25 + 1 = 33 26 + 1 = 65 27 + 1 = 129

Time Performance Time Performance Time Performance

1 data layout 0.169 s 4.41 GFLOPS 0.302 s 19.76 GFLOPS 1.211 s 39.43 GFLOPS

2 data layouts 0.218 s 1.90 GFLOPS 0.405 s 8.09 GFLOPS 1.263 s 20.72 GFLOPS

1 1.5 2 2.5 3 3.5 4

10−2

10−1

100

V-cycle

||r
|| h

Algorithm 2

Algorithm 3

Fig. 3. Convergence history using 63 + 1 grid points in each direction.

Table 2. Time to solution and achieved performance of Algorithm 3 for different grid
sizes and coarsening ratios.

n Block size Time/iter #iterations Performance

25 − 1 2 × 2 0.156 s 3 4.76 GFLOPS

26 − 1 2 × 2 0.322 s 3 18.50 GFLOPS

27 − 1 2 × 2 1.129 s 3 42.25 GFLOPS

35 − 1 3 × 3 4.222 s 3 70.28 GFLOPS

43 − 1 4 × 4 0.211 s 4 25.11 GFLOPS

44 − 1 4 × 4 4.765 s 4 71.22 GFLOPS

63 − 1 6 × 6 2.673 s 5 75.43 GFLOPS

ratio is increased as well, the performance in terms of necessary iterations is
worsening. Overall, the time to solution is reduced nevertheless, c.f., the time
needed for the solution of a system with 633 unknowns: When a block size of
2 is used, 3 iterations are needed and each iteration takes 0.322 s, but when a
block size of 4 is used, we need one iteration more but each iteration now only
takes 0.211 s. The time to solution is 0.966 s in the first case and 0.844 s in the
second, so the second approach only takes 87 % of the time of the first.
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6 Conclusion and Outlook

Block smoothers provide a way to increase the amount of local arithmetic oper-
ations in a way beneficial for multigrid methods. The smoothers allow for a
more aggressive coarsening resulting in less coarse grids while at the same time
exploiting modern computer architectures. The inclusion of a special data lay-
out for the smoothers, only, does not result in a higher performance, but even a
simplistic straightforward approach yields a reduction in time to solution.

We are currently working on analyzing block smoothers theoretically and in
incorporating the ideas exploited here in a parallel multigrid method targeting
massively parallel computers.

Acknowledgments. We acknowledge the Jülich Supercomputing Centre for provid-
ing access to the JuDGE cluster.
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