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Abstract Graphics Processing Units (GPUs) have proven to be a powerful accel-
erator for intensive numerical computations. The massive parallelism of these
platforms makes it possible to achieve dramatic runtime reductions over a stan-
dard CPU in many numerical applications at a very affordable price. Moreover,
several programming environments, such as NVIDIA’s Compute Unified Device
Architecture (CUDA) have shown a high effectiveness in the mapping of numerical
algorithms to GPUs. These notes provide an introduction to the development of
CUDA programs for numerical simulation using CUDA C/C++, the most popular
GPU programming toolkit. An overview of CUDA programming will be illustrated
through the CUDA implementation of simple numerical examples for PDEs. These
CUDA implementations will be studied and run on modern GPU-based platforms.

Keywords Graphics processing units • CUDA • Numerical solution of PDEs •
CUDA C programming

1 Introduction to GPU Computing

A graphics processing unit (GPU) is a programmable single-chip processor which
is used primarily for things such as: rendering of 3D graphics scenes, 3D object
processing and 3D motion. All these tasks are computing-intensive and highly
parallel. A GPU performs arithmetic operations in parallel on multiple data to
render images. Generally, GPUs are embedded in stand-alone cards which include
their own memory. In order to use them, these cards must be connected to the
motherboard of a CPU-based computer system, by using the suitable high speed
connection (Peripheral Component Interconnect Express bus, PCI-Express [11])
(Fig. 1).
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Fig. 1 GPU cards

Modern GPUs are highly programmable and can be used for non-graphics
applications. They offer hundreds or thousands of processing units optimized for
massively performing floating-point operations in parallel. In fact, they can be a
cost-effective way to obtain a substantially higher performance in computationally
intensive tasks [5, 25, 26, 28].

In many compute-intensive applications, there is a large performance gap
between GPUs and multicore CPUs [28]. Nowadays the peak performance of a
modern and powerful GPU is approximately seven times the peak performance of
a corresponding CPU in single precision and close to five times in double precision
[5, 21]. This is mainly due to two reasons:

• While CPUs are designed to minimize the execution latency of a single task
(latency-oriented platforms), the design goal of GPUs is to maximize the total
execution throughput of a large number of parallel tasks (they are massively
parallel throughput-oriented computing platforms).

• The graphics chip memories are usually much faster than the corresponding CPU
chip memories.

Moreover, since massively parallel GPUs are easily accessible in comparison
with huge cluster-based parallel machines, GPU-based platforms have made it
possible to increase the use and spread of the high performance computing in
scientific and engineering environments.

GPU computing consists of using GPUs together with CPUs to accelerate
the solution of compute-intensive science, engineering and enterprise problems.
Since the numerical simulation based on Partial Differential Equations (PDEs)
exhibits a lot of exploitable parallelism, there has been an increasing interest in
the acceleration of these simulations by using GPU-based computer systems.

Initially, graphics-specific programming languages and interfaces [8, 9, 14,
16, 26, 27] were used to program GPUs. However, the use of these languages
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complicates the programming of GPUs in scientific applications, and the code
obtained is difficult to understand and maintain. Later, NVIDIA developed the
CUDA programming toolkit [21] which includes an extension of the C language
which facilitates the programming of GPUs for general purpose applications [10]
by preventing the programmer to deal with the graphics details of the GPU.
Additionally, several languages and interfaces such as OpenCL [7, 12], OpenACC
[24] or Thrust [4], have been developed and spread to make the GPU computing
easier.

There is a widespread use of CUDA-based platforms to accelerate numerical
solvers for PDEs [1–3, 6]. For this reason, these notes intend for making it easier
the exploitation of CUDA-enabled platforms to accelerate PDE-based numerical
simulations, by providing the suitable CUDA C programming foundations.

2 CUDA Introduction

The CUDA (Compute Unified Device Architecture) framework [21] is a hardware
and software platform that makes it possible to exploit efficiently the potential
of NVIDIA GPUs to accelerate the solution of many costly computational prob-
lems. This framework includes a unified architectural view of the GPU and a
multithreaded programming model which uses an extension to the C programming
language (called CUDA C) to implement general-purpose applications on NVIDIA
GPUs. Other languages are also supported [21] for CUDA programming (C++,
Fortran, Java, etc.).

According to the CUDA framework, a GPU is viewed as a computing device
which works as a coprocessor for the main CPU (host). Both the CPU and the GPU
maintain their own Dynamic Random Access Memory (DRAM) (see Fig. 2) and it
is possible to copy data from CPU memory to GPU memory and vice versa.

Fig. 2 GPU system (device) as a coprocessor of the CPU system (host)
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3 Brief Introduction to the CUDA Hardware Model

In the CUDA framework, we consider that a CUDA enabled GPU is formed by N
multiprocessors (N depends on the particular GPU), each one having M processors
or cores (see Fig. 4) where the value of M also depends on the specific GPU
architecture (it can be 8, 32, 192, . . . ). At any clock cycle, each core of the
multiprocessor executes the same instruction, but operates on different data. The
multiprocessors of the GPU are specialized in the parallel execution of multiple
CUDA threads. A CUDA thread represents a sequential computational task which
executes an instance of a function. Each CUDA thread is executed logically in
parallel with respect to other CUDA threads (associated to the same function but
operating on different data) on the cores of a GPU multiprocessor (see Fig. 3).

3.1 CUDA Memory Model

A CUDA thread that runs on a multiprocessor of the GPU has access to the following
memory spaces (see Fig. 4):

• On-chip memories:

– Registers: Each thread has its own readable and writeable registers. Each GPU
model has a particular number of registers per multiprocessor, which are split
and assigned to the threads that run concurrently on that multiprocessor.

– Shared memory: Each multiprocessor includes a small memory (between 16
and 48 KB) called shared memory. This memory is readable and writeable

Fig. 3 Execution of multiple CUDA Threads (associated with the same function)
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Fig. 4 CUDA hardware model

only from the CUDA threads running on the particular multiprocessor of the
GPU and is much faster than global memory.

• Off-chip memories (in DRAM memory): These spaces are not resident in the
GPU chip and they are shared by all CUDA threads which are being executed on
the GPU (on several multiprocessors).

– Global memory: This memory is readable and writeable from CPU and GPU.
It is slow in comparison with the shared memory due to its high latency (500
times slower approximately).

– Constant memory: It is readable from GPU and writeable from CPU. It is
cached, making it faster than global memory if the data is in cache.

– Texture memory: It is readable from GPU and writeable from CPU. Under
several circumstances, the use of the texture memory can provide performance
benefits because it is cached (there is a small texture cache memory for
each multiprocessor) and optimized for 2D spatial locality. Texture cache size
varies between 6 and 8 KB per multiprocessor.
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4 CUDA Programming Model

4.1 CUDA Kernels and Threads

In order to specify the function to be executed by each thread on the GPU, CUDA
C allows the programmer to define special C functions, called CUDA kernels.
A CUDA kernel function is called from the CPU and is executed N times on the
GPU by an array of N CUDA threads (see Fig. 5).

CUDA Threads are extremely light because they exhibit a very fast creation and
context switching. As a consequence, it is recommendable to use fine-grain parallel
decompositions (running very many thousands of CUDA threads) to obtain high
efficiency.

Every thread executes the same code (the kernel function) but the specific action
(and the data subdomain which is processed) to be performed depends on the
thread identifier. The thread identifier can be obtained from the built-in variable
threadIdx and is used to compute memory addresses and take control decisions
(see Fig. 5).

Listing 1 shows a naive CUDA program which includes the declaration of a
straightforward kernel and the corresponding kernel launch statement. The kernel
(VecAdd) is used to add two vectors (with N floating point elements), A and B,
obtaining the result in a vector C. As can be seen, a kernel function is declared
using the modifier __global__ and it must return void type. We can see that
each thread of the kernel computes one element of the output vector C. In order to
launch a kernel, the programmer must specify several parameters which determine,
in particular, the number of CUDA threads which are to be created to execute it. In
this example, the kernel invocation code indicates that an array of N threads (one for
each element of the vectors) is launched on the GPU. The number and organization
of the threads used to execute a kernel is given by several parameters between <<<
and >>> as we will see later.

Fig. 5 Thread array for a naive CUDA kernel
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� �

...
__global__ void VecAdd(float* A, float* B, float* C)
{ int i = threadIdx.x;

C[i] = A[i] + B[i]; }
...
int main()
{

...
// Kernel call with N Threads
VecAdd <<<1, N>>> (A, B, C);

}
� �

Listing 1 Outline of a naive one-block CUDA program to add two vectors

4.2 CUDA Thread Organization: Grids and Blocks

The set of CUDA threads which are created in a kernel launch is organized forming
a grid of thread blocks that run logically in parallel [21].

4.2.1 CUDA Thread Blocks

Each thread is identified with a (1D, 2D or 3D) thread Index (stored in the predefined
variable threadIdx) in a thread block. A CUDA block is the unit used to map
threads to multiprocessors. Each thread block runs on a single multiprocessor of the
GPU.

Each multiprocessor can process a maximum number of blocks at a particular
moment in time, and each block can include a maximum number of threads. It
depends on the so-called Compute Capability of the GPU. The predefined variable
blockDim, with type dim3, stores the block dimensions for a kernel (see Fig. 6).
The dim3 type is a struct with 3 unsigned integer fields (x, y and z).

The threads of a block can communicate among themselves using the shared
memory of the multiprocessors assigned to that block.

As can be seen in the naive code of Listing 1, that kernel is designed to launch
only one thread block. Consequently the size of the vectors (N) can not be greater
than the maximum number of threads per block (which depends on the particular
GPU architecture).

4.2.2 Grid of Blocks

As we have seen, several CUDA threads which will be executed on the same
multiprocessor, are organized forming a (1D, 2D or 3D) matrix of threads called
block. In a similar way, all the blocks which are created in a kernel launch are
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Fig. 6 Structure of 1D and 2D blocks of CUDA threads

organized as a (1D, 2D or 3D) matrix called grid (see Fig. 7). In general, the grid is
a 3D array of blocks but the programmer can choose to use fewer dimensions

The number of threads per block and the number of blocks per grid used to launch
a kernel are specified with the following syntax:

<<< blocks_per_grid, threads_per_block >>>

The first parameter gives the number of thread blocks in the grid. The second
gives the number of threads in each thread block. In the program of Listing 1, we
run one grid with only one block of N threads. This program would only exploit
one multiprocessor of the GPU. A more practical CUDA program to add vectors is
given in Listing 2, where a one-dimensional grid with d N

256
e one-dimensional blocks

with 256 threads is used (see Fig. 8).
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Fig. 7 Grid of thread blocks

� �

#define BSIZE 256
__global__ void VecAdd(float* A, float* B, float* C, int N)

{ int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<N) C[i] = A[i] + B[i];

}
...
int main()
{
...
// Kernel call with N Threads using 256 threads 1D-blocks
VecAdd <<<ceil((float)N/BSIZE), BSIZE>>> (A,B,C,N);
...
}

� �

Listing 2 A more general CUDA program to add vectors

Fig. 8 Mapping of a vector to one-dimensional blocks
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In order to identify several parameters of a particular thread (to distinguish it
among the others), programmers can use the following predefined variables within
the kernel function:

• uint3 blockIdx: identifies the coordinates of a particular block in the
grid. The uint3 type has the same structure as dim3 (blockIdx.x,
blockIdx.y, blockIdx.z).

• dim3 blockDim: identifies the dimensions of the block.
• dim3 gridDim: maintains the grid dimensions.

Using these spatial indices (including threadIdx), the programmer can
specify what particular data subdomain will be operated by each CUDA thread.
In Listing 2, these indices are used to identify what elements of the input and output
vectors are processed by a particular thread. Since not all threads will compute
elements of the output vector, a conditional if statement is needed to test if the
global index values of a thread are within the valid range (if i � N nothing is
computed).

The grid and block dimensions for a kernel must be chosen by the programmer
depending on the nature of the data in order to maximize efficiency. For example,
to add two 2D matrices of float elements, it can be convenient to use a 2D grid
which consists of 2D blocks of threads, where each thread computes one element of
the output matrix. Figure 9 shows this type of 2D mapping to compute the addition
of 45�45 matrices. In this figure, it is assumed that we are using 16�16 2D-blocks
(blockDim.x D blockDim.y D 16, blockDim.z D 1). As can be seen, we
need a 3�3 grid of blocks (gridDim.x D gridDim.y D 3, gridDim.z D 1).
Note that we have three extra threads in the x and y directions.

Listing 3 shows an outline of a CUDA program to add N � N matrices. In
the MatAdd kernel, we initially compute the position of the current thread in
the horizontal and vertical directions, using the built-in variables blockIdx and
threadIdx (see Fig. 9). These position values (i and j) are used to derive the
global 1D index for the input and output matrices. This 1D index is used to compute
the corresponding element of matrix C if the previously computed position values
(i and j) of the thread are within the valid range.

4.3 Transparent Scalability

A CUDA thread block can be executed independently with respect the rest of
CUDA blocks of a kernel. Therefore the execution of several blocks can follow any
relative execution order. Taking into account that the thread blocks are automatically
mapped onto multiprocessors by the CUDA runtime system, this flexibility in the
execution order enables the automatic adaptation of a kernel execution to the number
of multiprocessors of the available GPU (see Fig. 10). This is called transparent
scalability, because the blocks are mapped to the specific number of multiprocessors
of a particular GPU in an efficient way without any intervention from the user.
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Fig. 9 Mapping of a 2D grid of 16 � 16 blocks to a 45 � 45 matrix

4.4 CUDA Program Structure

A CUDA C program must include the code for the CPU which includes the calls
to several CUDA kernels and the specification of these kernel functions using the
suitable C extensions (see Fig. 11). A kernel can only start on a GPU when the
previous CUDA function call has returned.

The qualifiers for functions which run on GPU are the following:

• The qualifier __global__ introduces a function (a kernel) which runs on GPU
(device) but is called from the host:
� �

__global__ void Kernel_name (...) {.....}
� �
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� �

...
__global__ void MatAdd (float *A, float *B, float * C, int N)

{
// Compute row index in A, B, and C
int j = blockIdx.x * blockDim.x + threadIdx.x;
// Compute column index in A, B, and C
int i = blockIdx.y * blockDim.y + threadIdx.y;
// Compute global 1D index in A, B, and C
int index=i*N+j;
// Thread computes C element if within valid range
if (i < N && j < N)

C[index] = A[index] + B[index];
}

int main()
{ .......
// Kernel Launch code
dim3 threadsPerBlock (16, 16);
dim3 numBlocks( ceil ((float)(N)/threadsPerBlock.x),

ceil ((float)(N)/threadsPerBlock.y) );
MatAdd <<<numBlocks, threadsPerBlock>>> (A, B, C, N);
}

� �

Listing 3 CUDA program to add matrices

Fig. 10 Transparent scalability for CUDA programs

• The qualifier __device__ introduces a function which runs on GPU and is
called from the GPU (device):
� �

__device__ int Function_name (...) {.....}
� �

These device functions are invoked in the kernel function.
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Fig. 11 Structure of a CUDA program

4.5 Memory Organization and Variable Declarations

As we introduced in Sect. 3.1, CUDA supports several types of memory. Each
memory type has usage constraints and can be used by programmers declaring
suitably the variables in the CUDA program. The adequate use of the available
memory types is very important to obtain a good performance in a kernel execution.
Each type of memory has different characteristics that we can denote by:

• Functionality: it is the intended use of the memory space.
• Size: it is measured in number of Kbytes.
• Average access speed: it indicates the global efficiency in accessing data which

are allocated in the particular memory space.
• Variable declaration: it specifies how we must declare the variables which are

resident in that memory space.
• Scope: it identifies the group of threads which can access a variable which is

resident in that memory space.
• Lifetime: it denotes the phase of the program execution where the variable

(resident in that memory space) is available for use.

Now we present the properties of the multiple memory spaces where CUDA
threads can access data during the execution of a CUDA program (see Fig. 12):

• Registers: This memory space is used to hold variables which are frequently
accessed by each thread in a kernel function. Each CUDA thread has its own
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Fig. 12 Memory organization in a CUDA program

private registers. The speed access to registers is extremely high. While the
capacity of the register storage is not exceeded, all scalar variables (not arrays)
declared (without qualifiers) in kernel and device functions are placed into
registers. The scope of these variables is the single owner thread (when the thread
finishes its execution, these variables are also terminated). The number of 32-bit
registers per thread and multiprocessors for several modern GPU architectures is
shown in Table 1.

• Local memory: Array variables declared (without qualifiers) in a kernel and
several scalar variables (also declared without qualifiers) which exceed the
limited capacity of the register storage are not stored in registers. These variables
have the same scope and lifetime as register variables but they are not stored into
the registers (they are usually stored in DRAM device memory). Therefore, the
speed access to local memory could be very low and this can generate long access
delays.

• Shared memory: Shared memory is part of the memory space which resides
on the processor chip. This implies that the access speed is also very high (in
comparison with the access to variables resident in global memory) but lower
than accessing directly to registers. The variables resident in shared memory
(shared memory variables) are accessible, to read and write, for all the threads
within the same block (the threads of the block share that space memory) and
only last for the thread block activity period. They provide an excellent means
by which threads within a block can communicate and collaborate efficiently on
computations.
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Table 1 CUDA Compute Capability of Fermi, Kepler and Maxwell GPUs

Fermi Fermi Kepler Kepler Maxwell
GF100 GF104 GK104 GK110 GM107

Compute capability 2.0 2.1 3.0 3.5 5.0

Threads/warp 32 32 32 32 32

Max warps/multiprocessor 48 48 64 64 64

Max threads/multiprocessor 1536 1536 2048 2048 2048

Max blocks/multiprocessor 8 8 16 16 16

32-bit registers/multiprocessor 32,768 32,768 65,536 65,536 65,536

Max numb. registers/thread 63 63 63 255 255

Max numb. threads/block 1024 1024 1024 1024 1024

Shared memory config. 16K 16K 16K 16K 16K

48K 48K 48K 48K 48K

32K 32K 32K

In order to declare a shared memory variable in a kernel or device function,
we use the qualifier __shared__. Hence, for example, the following code can
be used to declare a shared memory vector of 32 float values in a kernel code:
� �

__shared__ float vector[32];
� �

• Global memory: Variables in global memory can be written and read by the
host by calling API functions as we will see in Sect. 5.4. These variables are
located off the processor chip, into the so-called device DRAM memory (as the
local memory variables). Since the DRAM technology is used to implement this
memory, the speed access is much lower than in on-chip memories (registers and
shared memory).

The lifetime of a variable resident in global memory is the duration of
the entire CUDA application (it is shared and available for all kernels in the
application).

The __device__ qualifier is used to declare device variables which are
resident in global memory. These variables are accessible from all threads
through the entire CUDA application.
� �

__device__ float Global_A[32];
� �

Global memory variables can be used to implement the thread block collabo-
ration in a kernel call, but the main goal of these variables is providing a way to
communicate data between different CUDA grids associated to different kernel
calls (see Fig. 12).
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We can define pointers to global memory data in CUDA. Thus, the program-
mer can declare a pointer variable in a host function (for example, in the main
function) and then to use the function cudaMalloc to allocate global device
memory for that pointer. For example, to declare and allocate a pointer to a vector
of 1024 integers in global memory, we can write:
� �

int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );
� �

This pointer can be passed to a kernel function as a parameter. For example,
the parameters A, B and C of the kernels shown in Listings 1, 2 and 3 are samples
of this class of pointers. Listing 4 shows the declaration, allocation, usage in a
kernel and freeing of several pointers to global memory data.

� �

__global__ void VecAdd(float* A, float* B, float* C,int N){ ...
}

...
int main()
{ int N = ...; int size = N * sizeof(float);
float* h_A = (float*) malloc(size); float* h_B = (float*)

malloc(size);
float* h_C = (float*) malloc(size);
Initialize(h_A, h_B, N);
float* d_A; float* d_B;float* d_C; cudaMalloc((void**)&d_C,

size);
cudaMalloc((void**)&d_A, size); cudaMalloc((void**)&d_B, size);

// Step 1
cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_B, h_B, size, cudaMemcpyHostToDevice);

// Step 2
VecAdd <<<(ceil((float) N/BLOCKSIZE), BLOCKSIZE>>> (d_A, d_B,

d_C, N);

// Step 3
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);cudaFree(d_B); cudaFree(d_C);}
� �

Listing 4 CUDA program with host-device data transfers
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Fig. 13 Memory hierarchy
in modern CUDA-enabled
GPUs

• Constant memory: The constant variables are global variable declarations which
should be outside any function in the source file. The __constant__ qualifier
is used to declare device variables in constant memory. The following code
declares a constant vector of 64 float values:
� �

__constant__ float A[64];
� �

These variables are accessible from all threads in a CUDA application but only
to be read. They last for the entire CUDA application. These variables are also
stored in the device DRAM memory but they are cached (using a small cache
memory) and this makes it possible to obtain high speed access if the patterns to
read the data are suitable.

These variables are used to provide input values (they will not change during
the execution) to a kernel function.

It is important to note that in modern CUDA-enabled GPUs, there exists an on-
chip space memory that can be partially dedicated to cache memory for each kernel
call (see Fig. 13). This cache memory might reduce the global memory access cost
and avoids the explicit control of the programmer [17]. Moreover, the programmer
can specify the amount of memory which is allocated to L1 cache and shared
memory.

4.6 CUDA Thread Scheduling

Each active block resulting from a kernel launch is divided into warps to be executed
on the assigned multiprocessor. A warp is a group of 32 threads (see Table 1)
with consecutive indices (the thread ordering depends on ThreadIdx) that run
physically in parallel on a multiprocessor. All threads in a warp execute the same
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Fig. 14 Execution of a thread block by generating several warps

instruction of the kernel simultaneously, following the Single Instruction Multiple
Data (SIMD) execution model (Fig. 14).

When a block is assigned to a multiprocessor of the GPU, the block is split into
warps and periodically a scheduler of the multiprocessor switches from one warp to
another (without penalties). This allows to hide the high latency when accessing the
GPU device memory, since some threads can continue their execution while other
threads are waiting. Therefore, the definition of a high number of threads when
launching a kernel improves the efficiency in the kernel execution because makes it
possible to hide the latency.

The decomposition of a thread block into warps is based on thread indices (the
threadIdx field values). When only threadIdx.x is used (1D blocks), the
threads of a warp and its ordering are imposed by the values of threadIdx.x.
So, for example, for the CUDA program of Listing 2 (the block size is 256
threads), the arrangement of the threads would be (Ti denotes the thread with
threadIdx.x D i):

First warp: T0; : : : : : : ::; T31:

Second warp: T32; : : : : : : :; T63:

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : :

Last warp (8th): T224; : : : : : : ; T255:

When the block size is not a multiple of 32, the last warp will be completed with
additional threads. For that reason it is usual to define a block size that is a multiple
of 32.
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For a 2D or 3D block, the dimensions are mapped to a linear 1D arrangement
in order to decompose the block into warps. This linear order is obtained by
advancing forward firstly the x-dimension, secondly the y-dimension and finally the
z-dimension. For instance, in Listing 3, where 2D 16�16 blocks are used, we would
have the following arrangement (Ti;j denotes the thread with threadIdx.x D i
and threadIdx.y D j):

First warp: T0;0; T1;0; : : : : : : :; T15;0; T0;1; T1;1; : : : : : : :; T15;1:

Second warp: T0;2; T1;2; : : : : : : :; T15;2; T0;3; T1;3; : : : : : : :; T15;3:

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Last warp (8th): T0;14; T1;14; : : : : : : :; T15;14; T0;15; T1;15; : : : : : : :; T15;15:

We can check that the mapping of threads to elements of the input and output
matrices in Listing 3 implies that the threads of a warp access to matrix elements
with are located contiguously in the global memory. This way of mapping threads
to data is very important to obtain a good performance because makes it possible to
take advantage of the on-chip cache for the global memory space which is available
in modern GPUs.

4.7 Block Thread Synchronization

Although there are no synchronization constraints between the CUDA blocks of a
kernel, CUDA provides a mechanism to coordinate the execution of the threads in
the same block, provoking a barrier-type synchronization. The following function
� �

void __syncthreads();
� �

can be used to synchronize all the threads in the same block of a kernel launch.
It establishes a synchronization barrier for all the threads in a block. When this
function is called in a particular point of a kernel function, all threads in each
generated block will wait until the rest of threads also reaches the same execution
point in the kernel.

It is used to prevent the threads from accessing variables before these have been
written by other threads, as will be seen later. This function should only be called in
a conditional code when the condition has the same evaluation for all threads in the
block.
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5 CUDA C/C++ Programming Interface

CUDA C/C++ is a minimal extension of C to define kernels as C++ functions. In
order to program with a high abstraction level in CUDA C, one must use the CUDA
runtime API [19], which provides functions to perform the following tasks:

• To query the properties of multiple devices.
• To allocate and free device memory.
• To transfer data between host memory and device memory.

The CUDA Runtime API requires the usage of the compiler driver nvcc.
It is also possible to develop CUDA programs using the CUDA driver API [18]

but it is harder to program with this interface.

5.1 Querying GPU Properties

The CUDA Runtime API provides functions to find out the available resources and
capabilities of the underlying GPU hardware. The CUDA runtime system numbers
all the available GPUs in the system from 0 to num_GPUs� 1.

The cudaGetDeviceCount function makes it possible to know the number
of available CUDA GPUs in a particular computer system. Thus, for instance, to
obtain the number of GPUs into an integer variable, we write:
� �

int num_GPUs;
cudaGetDeviceCount ( &num_GPUs );
� �

In order to know the characteristics of a particular GPU, CUDA Runtime API
provides the built-in type cudaDeviceProp which is a C structure with fields
representing different properties of a CUDA GPU. Using this type, the function
cudaGetDeviceProperties can be used to query the characteristics of a GPU
in the system. For example, this code piece:
� �

cudaDeviceProp GPU_prop; int dev_id=...;
cudaGetDeviceProperties ( &GPU_prop, dev_id);
� �

returns the properties of the GPU which has the number dev_id in the GPU_prop
variable. Some of the properties we can query in GPU_prop are:

• GPU_prop.totalGlobalMem: Global memory available on device in bytes.
• GPU_prop.sharedMemPerMultiprocessor: Shared memory available

per multiprocessor in bytes.
• GPU_prop.maxThreadsPerBlock: maximal number of threads allowed in

a block (512, 1024,. . . ).
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• GPU_prop.multiProcessorCount: number of multiprocessors.
• GPU_prop.maxThreadsDim[dim_id]: maximal number of threads

allowed along dimension dim_id of a block.
• dev_prop.maxGridSize [dim_id]: maximal number of blocks allowed

along dimension dim_id of a grid.
• dev_prop.warpSize: Number of threads in a warp (unit of thread schedul-

ing in multiprocessors).

The CUDA Compute Capability (CCC) indicates the architecture and features of
the particular GPU. It is defined by a major revision number and a minor revision
number X.X. Devices with the same major revision number denote the same core
architecture. Table 1 shows some features of modern GPU architectures (Fermi,
Kepler and first generation of Maxwell architecture) with different CCC.

5.2 Reporting Errors

All CUDA API calls return an error code (with built-in type cudaError_t). This
error can be caused by:

• Error in the API call itself. For example:
� �

cudaError_t err; err=cudaGetDevice(&devID);
if (err!=cudaSuccess) {cout<<"ERROR!!"<<endl;}

� �

• Error in an earlier asynchronous operation (for example in a kernel call):
� �

kernel<<<blocksPerGrid,threadsPerBlock >>>(a,b,c);
err = cudaGetLastError();
if (err != cudaSuccess) {...}

� �

We can get a string which describes the particular error by using the following
code piece:
� �

char *cudaGetErrorString(cudaError_t)
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
� �
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5.3 Compiling CUDA Code

The CUDA compilation includes two stages [22]:

• Independent on GPU (Virtual): It generates a code written in a lower level
intermediate language called PTX code (Parallel Thread eXecution) [23].

• Physical: It generates object code for a particular GPU.

The CUDA Toolkit includes a compilation tool called nvcc, which is the
compiler driver. It performs the calls to the required compilers and tools: cudac, g++,
etc. This tool decouples CPU and GPU code. The CPU C code must be compiled
by another tool. PTX object code must be adapted to a particular GPU architecture
and CUDA Capability.

In order to execute code on devices of an specific CUDA Compute Capability, it
is necessary to load code that is compatible with this CCC. Which PTX and binary
code gets embedded in a CUDA C application is controlled by the -arch and
-code compiler options or, more concisely, by using the -gencode compiler option.

• -arch=<compute_xy>: it generates PTX code for capability x.y.
• -code=<sm\_xy>: it generate binary code for capability x.y, by default same

as -arch.

Example
� �

nvcc filename.cu -gencode arch=compute_35,
code=sm_35 -o filename

� �

This command generates binary and PTX code compatible with CCC 3.5.
Host code is generated to automatically select at runtime the most appropriate

code.
In order to ensure 64-bit or 32-bit compatibility, we can use the following

switches:

• m64: compile device code in 64-bit mode.
• m32: compile device code in 32-bit mode.

5.4 Device Memory Management

CPU and GPU have separated memory spaces. To enable the data management and
the communication, there are runtime functions to (Fig. 15):

• Allocate and free DRAM device global memory.
• Set a value in several positions of device global memory.
• Transfer data between global (device) memory and host memory.
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Fig. 15 Host-device memory transfer

We can use the function cudaMalloc to allocate memory device with the
following syntax:
� �

cudaMalloc(void ** pointer, size_t numbytes)
� �

The size_t type is an unsigned integer type used to represent the sizes of data
objects as a number of bytes.

We use cudaFree to free memory device:
� �

cudaFree(void* pointer)
� �

The function cudaMemsetmakes it possible to set a particular value in linear
device memory:
� �

cudaMemset(void * pointer, int value, size_t nbytes)
� �

Example Reset all elements of a vector with 1024 integers
� �

int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );
cudaMemset( a_d, 0, nbytes);

...

...
cudaFree(a_d); // Free a_d when it is not needed
� �
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The function CudaMemcpy is used to transfer data between global memory and
host memory:
� �

CudaMemcpy (void *dest, void *source, size_t nbytes,
enum cudaMemcpyKind direction);

� �

This function copies nbytes bytes from the memory area pointed to by source
to the memory area pointed to by dest, where the location (host or device) for
dest and source is given by direction:

• cudaMemcpyHostToDevice: From host to device.
• cudaMemcpyDeviceToHost: From device to host.
• cudaMemcpyDeviceToDevice: Between two global memory positions in

device.

The invocation of this function blocks the CPU thread and only returns when
the data copy has been completed. The data transfer does not begin if any previous
CUDA call have not returned.

The program in Listing 4 shows the CUDA calls which are necessary in order
to execute the vector addition kernel. After initializing vectors A and B (stored
in a memory area pointed to by h_A and h_B), the area for the input and output
vectors in device memory is allocated using cudaMalloc (pointers d_A, d_B and
d_C). Then input vectors are transferred to the memory area pointed to by d_A and
d_B before the kernel launch. After the kernel execution, the resultant value of C,
obtained in device global memory (pointed to by d_C), must be copied to the host
memory. Finally, the device memory area pointed to by d_A, d_B and d_C is freed.
Figure 16 illustrates the main steps of this program.

Fig. 16 Description of data transfers and kernel launch in a CUDA program
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5.5 CUDA Samples

To assist in the development of CUDA software, the CUDA Samples [20] provide
several examples with source code which can be useful to build a wide range of
interesting applications.

6 Solving the 1D Linear Advection Equation in CUDA

6.1 1D Linear Advection

The 1D advection equation [15] is the simplest hyperbolic equation and can be
written as:

@�

@t
C u

@�

@x
D 0; (1)

where � D �.x; t/ is a real function with x 2 Œa; b� and t > 0. The scalar u 2 R

represents the speed at which information propagates along the x-direction and is
assumed to be constant. The initial state for this equation is specified as

�.x; 0/ D �0.x/;

and we assume periodic boundary conditions.
We can verify that the exact solution for this equation is given by

�.x; t/ D �0.x � ut/:

6.2 The Lax-Friedrichs Method

We discretize the spatial and time domain using uniform grids which consist of:

• n C 1 spatial grid points:

xi; i D 0; : : : ; n; where xi D a C i�x; with �x D b � a

n
:

• M time steps:

t1; t2; : : : ; tM with a constant �t; .tkC1 D tk C �t/:
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Now, we can define the Lax-Friedrichs finite difference scheme to approximate
the solution of equation (1) as follows (see [15]):

�kC1
i D 1

2

�
�k

i�1 C �k
iC1 � C.�k

i�1 � �k
iC1/

�
; (2)

C D u �t

�x
; i D 0; : : : ; n; k D 1; : : : ; M:

In the previous scheme �.xi; tk/ denotes �k
i .

The boundary conditions are imposed by defining:

�k�1 D �k
n; �k

nC1 D �k
0:

This method is linearly stable and convergent under the usual CFL condition
provided jCj � 1 (see [15]).

6.3 A Sequential C Program to Implement the Method

Listing 5 shows a sequential C program to approximate the 1D linear advection
equation using the Lax-Friedrichs scheme on a uniform grid. As we can see, at each
time step, each data element of the output vector phi_new is computed from two
neighbouring input elements of vector phi. Figure 17 shows graphically the data
dependencies between the input and output vectors at each time step. Vector phi
includes elements at the edges to store the ghost values needed to perform the stencil
computation.

After each state vector update the pointers, phi and phi_new, must be swapped
(using the swap_pointers function), because the state vector computed in a time
step will be the previous state vector in the next time step.

6.4 A CUDA Linear Advection Solver

Since the calculation of all output elements of phi_new for a time step can be done
in parallel (see Listing 5), we can assign a different thread to the computation of each
element of phi_new at each time step. We will need to use at least n C 1 threads
and the body of each thread is given by a kernel function with four arguments:

• A pointer to array, d_phi, denoting the initial state vector (�k in Eq. (2)).
• A pointer to array, d_phi_new, denoting the new state vector �kC1.
• An integer cu representing the value of the Courant number (cu D u �t

�x ).
• The integer value n, which denotes the value of n in Eq. (2).

The definition of this kernel function is given in Listing 6.
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� �

...
void swap_pointers(float * *a, float * *b)
{float * tmp=*a;*a=*b;*b=tmp;}

...
int main(int argc, char* argv[]){

// Define Delta x, Delta t and velocity (u)
int n= ... ;float dx = ...;float dt=..; float u=...
// Compute the Courant number
float cu = u*dt/dx;
//Declare the initial and final state vectors
float * phi =new float[n+3]; float * phi_new=new float[n+3];
..
Initialize(phi); // Set phi values at t=0
// Time steps
for(int k=1; k <= M; k++)
{// Impose Homogeneous Neumann Boundary Conditions
phi[index(-1)] =phi[index(n)];
phi[index(n+1)]=phi[index(0)];

//Lax-Friedrichs Update
for(int i=0;i<=n;i++)

phi_new[index(i)]=0.5*((phi[index(i+1)]+phi[index(i-1)])
-cu*(phi[index(i+1)]-phi[index(i-1)]));

swap_pointers (&phi,&phi_new);
}

...}
� �

Listing 5 Sequential C program which implements the Lax-Friedrichs scheme

Fig. 17 Two-point stencil of
the Lax-Friedrichs method

As can be seen in Listing 6, we follow a similar approach as the vector addition
kernel (see Listing 2). All threads read two elements of the same input vector except
for two threads which read an additional element to impose the boundary conditions.
The work of threads which are not assigned to elements of d_phi_new is avoided
(threads verifying that i � nC2). The same threads which have computed the values
close to the edges of d_phi_new (positions 1 and n+1) impose the boundary
conditions by assigning values on the edges of d_phi_new.
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� �

__global__ void FD_kernel1(float * d_phi,
float * d_phi_new,

float cu, int n)

{int i=threadIdx.x+blockDim.x*blockIdx.x+1;

// Lax-Friedichs Stencil
if (i<n+2)
d_phi_new[i]=0.5*((d_phi[i+1]+d_phi[i-1])

-cu*(d_phi[i+1]-d_phi[i-1]));

// Impose Boundary Conditions
if (i==1) d_phi_new[0]=d_phi_new[n+1];
if (i==n+1) d_phi_new[n+2]=d_phi_new[1];}

� �

Listing 6 CUDA kernel to apply the Lax-Friedrichs method stencil

Listing 7 shows a CUDA C program to implement the Lax-Friedrichs scheme
using the previously introduced kernel (FD_kernel1). Before launching
the kernel, the memory of the input and output state vectors (d_phi and
d_phi_new) must be allocated on the device using calls to cudaMalloc().
Using cudaMemcpy(), the initial values of the state vector (computed by calling
a initialization function) are copied to the device memory. Then, at each time step,
we launch the FD_kernel from the host code by using blocks of 256 threads.
After each kernel launch the memory device pointers, d_phi and d_phi_new,
must be swapped. Finally, when the time integration loop has finished, the final
state vector is copied from device memory to the host memory.

6.5 A Tiled CUDA Advection Solver

In the kernel of Listing 6, the ratio of floating-point calculations regarding with the
global memory accesses is low. This prevents us from achieving high performance.
One approach that could improve the performance consists of managing the shared
memory which is much faster than global memory. This involves to replace global
memory accesses with shared memory accesses (into each block). This approach
frequently involves a reorganization of the code to enable the reuse of data which
are placed in shared memory.

The typical approach to use shared memory in order to reduce the traffic to global
memory consists of two steps:

1. The input data elements are organized in small pieces, called tiles.
2. Threads of a thread block collaborate to load a tile into shared memory before

the threads use these elements.
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� �

#define BLOCKSIZE 256

... //FD_kernel function definition

int main(int argc, char* argv[]){
int size=(n+3)*sizeof(float);
float * d_phi=NULL; float * d_phi_new=NULL;
cudaMalloc((void **) &d_phi, size);
cudaMalloc((void **) &d_phi_new, size);

Initialize(phi); // Set phi values at t=0

cudaMemcpy(d_phi,phi,size,cudaMemcpyHostToDevice);
// Time Steps
for(int k=1; k <= M ;k++)
{

int blocksPerGrid =(int) ceil((float)(n+1)/BLOCKSIZE);

// ********* CUDA Kernel Launch

************************************
FD_kernel1<<<blocksPerGrid, BLOCKSIZE >>> (d_phi, d_phi_new,

cu, n);

swap_pointers (&d_phi,&d_phi_new);
}

cudaMemcpy(phi_GPU, d_phi, size, cudaMemcpyDeviceToHost);
...

}
� �

Listing 7 CUDA program to implement the Lax-Friedrichs method

3. Once the threads of the same block have loaded its corresponding tile, they re-use
the elements by accessing the shared memory.

In these so-called tiled algorithms [13], the size of the tiles must be chosen to fit
into the shared memory (which is quite small).

In order to apply this approach to the Lax-Friedrichs kernel of Listing 6, we can
load all input elements of d_phi, which are needed to compute all output elements
of d_phi_new for a thread block, into the shared memory. The number of elements
to be loaded must be equal to BLOCKSIZE C 2 because we need two additional
elements at the edges to compute BLOCKSIZE elements of d_phi_new. Listing 8
shows the tiled kernel which implements this computation.
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� �

__global__ void FD_kernel2 (float * d_phi, float * d_phi_new,
float cu, const int n)

{
int li=threadIdx.x+1; //local index in shared memory vector
int gi= blockDim.x*blockIdx.x+threadIdx.x+1; // global

memory index
int lstart=0; // start index in the block (left value)
int lend=BLOCKSIZE+1; // end index in the block (right value

)

__shared__ float s_phi[BLOCKSIZE + 2]; //shared mem. vector

float result;

// Load internal points of the tile in shared memory
if (gi<n+2) s_phi[li] = d_phi[gi];

// Load the halo points of the tile in shared memory
if (threadIdx.x == 0) // First Thread (in the current block)

s_phi[lstart]=d_phi[gi-1];

if (threadIdx.x == BLOCKSIZE-1) // Last Thread
if (gi>=n+1) // Last Block

s_phi[(n+2)%BLOCKSIZE]=d_phi[n+2];
else

s_phi[lend]=d_phi[gi+1];

__syncthreads();

if (gi<n+2)
{
// Lax-Friedrichs Update
result=0.5*((s_phi[li+1]+s_phi[li-1])

-cu*(s_phi[li+1]-s_phi[li-1]));
d_phi_new[gi]=result;

}

// Impose Boundary Conditions
if (gi==1) d_phi_new[0]=d_phi_new[n+1];
if (gi==n+1) d_phi_new[n+2]=d_phi_new[1];

}
� �

Listing 8 Lax-Friedrichs CUDA kernel using shared memory
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Fig. 18 Loading the tile in shared memory: (a) Loading internal points; (b) Loading the halo
points

Initially, a shared memory array with BLOCKSIZE C 2 elements, s_phi, is
declared to hold all elements to be loaded in order to compute the corresponding
BLOCKSIZE elements of d_phi_new. Then the tile is loaded in shared memory
in two phases (see Fig. 18):

(a) All threads in the block load in parallel the internal elements of the input tile
(without taking into account the elements on the edges).

(b) The first and last threads in the block load the elements at the edges of the tile
(the halo elements).

After loading the tile in shared memory, it is necessary to make sure that all
threads in a block have finalized the load before using the tile to compute the output
data elements. This is done by invoking the function __syncthreads() .

When the tile is completely loaded for the particular thread block, we can
compute the output BLOCKSIZE elements of d_phi_new reading only elements
of s_phi.

Finally, the boundary conditions are imposed in a similar way as in Listing 6.
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