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Abstract Food processes, bio-processes and bio-systems are coupled systems that
may involve heat, mass and momentum transfer together with kinetic processes.
This work illustrates, with a number of examples, how model-based techniques—
i.e. simulation, optimization and control—offer the possibility to improve our
knowledge about the system at hand and facilitate process design and optimisation
even in real time. The contribution is mainly based on the authors experience and
illustrates concepts with several examples such as biofilm formation, gluconic acid
production, deep-fat frying of potato chips and the thermal processing of packaged
foods.
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1 Introduction

Food processes are devoted to transform raw ingredients into food or to transform
food products into other forms. Bio-processes are those which make use of living
organisms to make useful products. Production may be carried out by using yeasts
or bacteria or by using enzymes from organisms. Bio-systems are defined as living
organisms or systems of living organisms that can interact with others.
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The drivers of innovation in the food processing sector can be divided into
six major axes, corresponding to general consumer expectations: safety, pleasure,
health, physical, convenience and ethics. These consumer demands pose serious
challenges to the industry that must comply with a continuously changing market in
due time to maintain competitiveness. In the context of biotechnology, the challenge
is to define robust bio-processes to produce large quantities of high quality bio-based
products in a sustainable and economical way.

Computer-aided simulation and model-based optimization offer a powerful,
rational and systematic way to achieve those goals, enabling the possibility to (i) test
“what-if” scenarios in a quick and inexpensive way; (ii) improve the understanding
of the process or the system at hand; (iii) compute optimal designs or operation
conditions given certain objectives and constraints and (iv) control the process
operation so as to respond to possible uncertainties and disturbances.

Mathematical models can be roughly classified into three types: white-box
models, based on the conservation principles; black-box models, based on data
(for example, surface responses or artificial neural networks) and gray-box models
which combine first principles with empirical descriptions. In addition models can
be classified attending to their mathematical characteristics in linear or non-linear;
static or dynamic; lumped or distributed; continuous or discrete; deterministic or
stochastic; structured or unstructured.

In recent decades there has been a growing interest in the development of
rigorous, mostly hybrid models, to describe food and bio-processes as well as
biological systems. Each type of process or system has its own peculiarities.
In this work we have selected a set of examples representative of bio-systems
(biofilm formation), bio-processes (gluconic-acid production) and processes of the
food industry (deep-fat frying of potato chips and thermal processing of packaged
foods). The physical, chemical and biological underlying mechanisms are different.
However the corresponding mathematical formulations share several properties:
they are dynamic, non-linear, continuous, deterministic and unstructured models,
and typically distributed.

Despite all efforts on developing rigorous models and the necessary numerical
simulation techniques, model validation is still a challenge and it is considered
as critical to develop confidence on models use in the food and biotechnological
industries. In this scenario it is necessary to develop protocols and to standardise
data acquisition so as to obtain transport properties for different food materials,
new products and packages, as well as kinetic constants related to microbial and
biochemical processes.

In this respect we will describe in some detail how models can be reconciled
with experimental data by means of parameter estimation, identifiability analyses
and optimal experimental design.

The parameter estimation problem is devoted to find the model parameter values
that minimise the distance between model predictions and the experimental data.
The identifiability analysis is aimed at evaluating the quality of the model fit and
the confidence on the parameter values whereas the optimal experimental design
problem is devoted to improve model predictive capabilities.
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Once a suitable model with an accurate value for model parameters becomes
available, it is possible to formulate optimisation problems to find those operating
conditions that achieve a given objective (maximise product quality, minimise
energy consumption, etc.) subject to constraints (maximum and minimum pro-
cessing temperatures, food safety, etc.). We will describe how those problems are
mathematically formulated and numerically solved, with special emphasis in the
control vector parametrisation approach and the use of reduced order modelling
techniques so as to improve computational efficiency.

From the numerical point of view, we will realise that many of the problems of
interest: parameter estimation, optimal experimental design, operation design and
real time optimisation are formulated as constrained non-linear programming prob-
lems including dynamic constraints (the model). Therefore we will describe the type
of numerical methods we may use for solving the models, including discretisation
based techniques and model reduction techniques, and the most suitable non-linear
programming methods with special emphasis in global optimisers.

2 Modelling

Mathematical modelling is the art of quantitatively describing from observations
certain aspects of the structure and function of a particular process. Model building
is an iterative process which starts from the definition of the purpose of the model,
that is, the questions to be addressed with the model. In the next step, using
the a priori available knowledge and preliminary experimental data, a modelling
framework is chosen and a first mathematical model structure is proposed. This first
model usually contains unknown non-measurable parameters that may be estimated
by means of experimental data fitting. In this regard, we need to know whether it
is possible to uniquely determine their values (identifiability analysis) and if so, to
estimate them with maximum precision and accuracy (parameter estimation step).
This leads to a first working model that must be (in)validated with new experiments,
revealing in most cases a number of deficiencies. In this case, a new model structure
and/or a new (optimal) experimental design must be planned, and the process is
repeated iteratively until the validation step is considered satisfactory.

Most of the models related to food and bio-processes and bio-systems are
non-linear dynamic models, typically stated as (ordinary and partial) differential
equations (ODEs and PDEs), as follows:

�.x; x� ; x�� ; xt; vt; v; u; � ; t/ D 0 (1)

x.�; t0/ D �0.x.�; t0/; u.t0/; � ; t0/I v.t0/ D ˚0.�; t0/I (2)

B.x; x� ; v; u; �; �; t/ D 0 (3)

where � 2 ˝ � R
3 are the spatial variables, x.�; t/ 2 Z � R

� are the distributed
state variables (temperature, water content, microorganisms concentration, etc.),
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x� D @x=@�, x�� D @2x=@�2, xt D @x=@t, v � R
� are the lumped variables,

vt D dv=dt, u 2 U � R
� are the control variables (processing temperature, feeding

substrate, valves openings, etc.) and � 2 � � R
�, time independent parameters

(thermo-physical properties, kinetic related constants, etc.). Equations (2) and (3)
represent the initial and boundary conditions, respectively.

2.1 Parameter Estimation

Given a general set of differential equations explaining the dynamics of a system,
Eqs. (1), (2), and (3), the values assigned to the parameters � will give rise to differ-
ent system behaviours. The problem of parameter estimation may be formulated as
follows: Find model unknown parameters (e.g. thermo-physical properties, kinetic
coefficients, initial conditions, etc.) so as to minimise a measure of the distance
among the model predictions and the available experimental data as obtained under
a particular experimental scheme (illustrated in Fig. 1) [36].

Let us suppose the most general experimental scheme where several experiments
E D 1; : : : ; nE and types of outputs k D 1; : : : ; nE

y are used for the estimation
(for instance, two experiments with different inputs where some concentration and
temperature are measured). Due to the discrete nature of these outputs they are
located at a given number (nE;k

t ) of certain sampling times ts and a number (nE;k;s
S ) of

sensor positions �p for each experiment. Their associated model predictions must be
obtained by means of the implementation of the above experiments and evaluating
the results at the same sampling times and sensor positions. Considering the general

sensor positions

sampling times

input

Observables

Time Time

Fig. 1 Illustrative representation of the experimental scheme
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non-linear model described in (1), (2), and (3), these predictions are calculated from:

vE.�p; ts; �/ D fEy
�
xl.ts/; xd.ts; �p/; �

�
(4)

where in fEy 2 R
ny the implicit influence of the inputs is not made explicit to simplify

notation.
For the sake of clarity the measurements and model predictions will be encoded

in the following vectors:

Ym D Œ ym1; : : : ; ym`; : : : ; ymn`
�T 2 R

n` (5)

and

Y.�/ D Œ y1.�/; : : : ; y`.�/; : : : ; yn`
.�/�T 2 R

n` ; (6)

where ` represents a certain data defined by the sub-indexes p; s; k;E and n` is the
total number of such data.

At the time of defining a measure of the distance between the experimental and
predicted data, several possibilities exist. Here the maximum likelihood approach is
considered. The idea is to find the vector of parameters that gives the highest like-
lihood to the measured data. Under the assumptions of independent measurements
with Gaussian noise, the distance to be minimised becomes:

Jml D
nX̀

`

�
�1

2

� "

log.2	/ C log.�2
` / C .ym` � y`.�//2

�2
`

#

(7)

where

nX̀

`D1

.�/ D
nEX

ED1

0

B
@

nEyX

kD1

0

B
@

nE;k
tX

sD1

0

B
@

nE;k;s
SX

pD1

.�/

1

C
A

1

C
A

1

C
A :

The parameter estimation problem is thus formulated as a nonlinear optimization
problem subject to the system dynamics (Eqs. (1), (2), and (3)) and possibly bounds
on the parameter values. Therefore, its numerical solution involves an outer iterative
procedure to generate values for the unknown parameters and initial conditions,
the nonlinear programming method (NLP), and an iterative procedure to solve the
differential equations, the boundary value problem (BVP) solver, as shown in Fig. 2.
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Fig. 2 Numerical solution of: (a) parameter estimation and (b) optimal experimental design

2.2 Identifiability Analysis

Identifiability has to do with the possibility of finding a unique solution for the
model parameters. At this point, it is important to note that in fact, in the presence
of experimental error, there are several equivalent solutions defining the parameter
uncertainty region. The shape and the size of such region will determine whether
practical identifiably is or not guaranteed. Assuming that the uncertainty region
corresponds to a hyper-ellipsoid (typical case), highly elongated hyperellipsoids
tend to be associated with poor or lack of identifiability of some parameters.

In order to asses the uncertainty regions, several possibilities exist. Monte-Carlo
based approaches allow to compute robust uncertainty regions [9]. However, the
associated computational cost makes it difficult to use these methods for large scale
models. Alternatively, the confidence interval of ��

i may be obtained through the
covariance matrix

˙ t
˛=2

p
Cii (8)

where t
˛=2 is given by Students t-distribution, 
 D Nd � � degrees of freedom and
.1 � ˛/100 % is the confidence interval selected, typically 95 %.

For non-linear models, there is no exact way to obtain the covariance matrix C.
Therefore, the use of approximations has been suggested. Possibly the most widely
used is based on the Crammèr-Rao inequality which establishes, under certain
assumptions on the number of data and non-linear character of the model, that the
covariance matrix may be approximated by the inverse of the Fisher information
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matrix (FIM) which is formulated as follows [24, 36]:

F D E
vmj��

( �
@Jml.�/

@�

� �
@Jml.�/

@�

�T
)

(9)

where E regards the expected value.

2.3 Optimal Experimental Design

In order to improve the quality of parameter estimates it is possible to use the
model to define new experiments. The idea is to formulate an optimisation problem
where the objective is to find the experimental scheme (number of experiments,
input conditions, number and location of sampling times and sensors, duration
of the experiments) which result in maximum information content as measured
by, for example, the FIM, subject to the system dynamics Eqs. (1), (2), and (3)
plus experimental constraints. The problem can be solved by a combination of the
control vector parametrisation (CVP) method and a suitable optimiser enabling the
simultaneous design of several dynamic experiments with optimal sampling times
[8] and optimal sensor locations [20].

The optimal experimental design problem is thus formulated as a nonlinear opti-
misation whose numerical solution involves an outer iterative procedure to generate
values for the experimental conditions, the nonlinear programming method, and the
boundary value problem solver to handle model simulation and the computation of
the parametric sensitivities needed to evaluate the FIM, as shown in Fig. 2.

It should be remarked that the recently developed software tool AMIGO
(Advanced Model Identification using Global optimisation)[4] covers model sim-
ulation, parameter estimation, identifiability analysis and optimal experimental
design. Thus facilitating the implementation of the model identification loop for
general non-linear dynamic models.

3 Optimization of the Operation

3.1 Problem Formulation

The optimization of the operation is formulated as a general dynamic optimization
(DO) problem as follows: Find the controls u.t/ that minimise (or maximise) the
objective functional

J D �
�
x.�; tf /; v.tf /; �; tf

� C
Z tf

t0

L .x.�; t/; v.t/; u.t/; � ; �; t/ dt; (10)
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where the scalar functions � (Mayer term) and L (Lagrangian term) are continuously
differentiable with respect to all of their arguments, and the final time tf can be either
fixed or free, subject to the following constraints:

• The system dynamics Eqs. (1), (2), and (3).
• Algebraic constraints on the state and control variables which force the fulfilment

of particular operational or biological conditions (for example, microbiological
lethality, maximum and minimum processing temperatures, etc.) at particular
time points or throughout the process:

req
k .x.�; tk/; v.tk/; u.tk/; �; tk/ D 0I rin

k .x.�; tk/; v.tk/; u.tk/; �; tk/ � 0I
(11)

ceq.x.�; t/; v.t/; u.t/; � ; t/ D 0I cin.x.�; t/; v.t/; u.t/; � ; t/ � 0:

(12)

• Bounds on the control variables:

uL � u.t/ � uU : (13)

3.2 Control Vector Parametrisation

There are several alternatives for the solution of dynamic optimization problems
from which the direct methods are the most widely used. These methods transform
the original problem into a non-linear programming problem by means of the
complete parametrisation [12], the multiple shooting [13] or the control vector
parametrisation (CVP) [35]. Basically, all of them are based on the use of some
type of discretisation and approximation of either the control variables or both the
control and state variables. The three alternatives basically differ in: the resulting
number of decision variables, the presence or absence of parametrisation related
constraints and the necessity of using an initial value problem solver.

While the complete parametrisation or the multiple shooting approaches may
become prohibitively expensive in computational terms, the CVP approach allows
handling large-scale DO problems, such as those related to PDE systems, without
solving very large NLPs and without dealing with extra junction constraints.

The CVP method proceeds dividing the duration of the process into a number
� of control intervals and the control function is approximated using a low order
polynomial form over each interval. Each control variable approximation may be
expressed using Lagrange polynomials as follows:

uj.t/ D
MjX

iD1

uij˚
.Mj/

i ./; (14)
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where, j D 1; : : : ; �, t 2 Œt0; tf �, and  is normalized time given by,

 D t � t0
tf � t0

(15)

and the Lagrange polynomials of order M, ˚
.Mj/

i are defined in the standard form:

• If M D 1,

˚
.M/
i ./ � 1: (16)

• If M � 2,

˚
.M/
i ./ �

MY

i0D1;i¤1

 � i0

i � i0
: (17)

The parameters of these polynomials, uij, will be used as decision variables in
the optimization process together with time independent parameters. Again the
numerical solution of the associated NLP requires an inner iteration to solve the
system dynamics, similarly to what is shown in Fig. 2.

4 Numerical Methods

4.1 Model Simulation

As explained before, most of the food, bio-processes and bio-systems models
exhibit a nonlinear dynamic behavior which makes the analytical solution of models
representing such systems rather complicated, if not impossible, for most of the
realistic situations. In addition to non-linearity, these processes may present a
spatially distributed nature. As a consequence they must be described using PDEs
which, in turns, makes the analytical approach even more difficult. Numerical
techniques must be, therefore, employed to solve the model equations.

Most of numerical methods employed for solving PDEs, in particular those
employed in this work, belong to the family of methods of weighted residuals in
which the solution of the distributed variables in the system (1), (2), and (3) is
approximated by a truncated Fourier series of the form1 [23]:

x.�; t/ �
NX

iD1

mi.t/ �i.�/: (18)

1For the sake of clarity and without loss of generality, the vector field x.�; t/ in Eqs. (1), (2), and
(3) will be considered as a scalar x.�; t/.
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Depending on the selection of the basis functions �i.�/ different methodologies
arise. Here two groups will be considered: those using locally defined basis
functions as it is the case in classical techniques like the numerical method of lines
(NMOL) or the finite element method (FEM) and those using globally defined basis
functions.

4.1.1 Methods Using Local Basis Functions

The underlying idea is to discretise the domain of interest into a (usually large)
number N of smaller sub-domains. In these sub-domains local basis functions, for
instance low order polynomials, are defined and the original PDE is approximated
by N ordinary differential equations (ODEs). The shape of the elements and the type
of local functions allow distinguishing among different alternatives.

Probably the most widely used approaches for this transformation are the NMOL
and the FEM. The reader interested on an extensive description of these techniques
is referred to the literature [23, 29, 34].

However it must be highlighted that in many food, bio-processes and biological
models, especially those in 2D and 3D, the number of discretisation points (N)
to obtain a good solution might be too large for their application in parameter
estimation, experimental design or process optimization.

Methods using global basis functions, which will reduce the computational
effort, constitute an efficient alternative [6].

4.1.2 Methods Using Global Basis Functions

The use of eigenfunctions obtained from the Laplacian operator, Chevyshev or
Legendre polynomials, etc. have been considered over the last decades—see [22]
as a means to obtain reduced order descriptions of PDE systems. Probably the
most efficient order reduction technique is the one based on the proper orthogonal
decomposition (POD) approach [31]. In this approach each element �i.�/ of the
set of basis functions in (18) is computed off-line as the solution of the following
integral eigenvalue problem [31]:

Z

V

R.�; �0/ �i.�
0/ d�0 D �i �i.�/; (19)

where �i corresponds with the eigenvalue associated with each global eigenfunction
�i. The kernel R.�; � 0/ in Eq. (19) corresponds with the two point spatial correlation
function, defined as follows:

R.�; �0/ D 1

`

X̀

jD1

x.�; tj/x.� 0; tj/; (20)
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with x.�; tj/ denoting the value of the field at each instant tj (snapshot) and the
summation extends over a sufficiently rich collection of uncorrelated snapshots at
j D 1; : : : ; ` [31]. The basis functions obtained by means of the POD technique
are also known as empirical basis functions or POD basis. The basis functions are
orthogonal and can be normalised so that:

Z

V

�i �j d� D
(

1; if i D j;

0; if i ¤ j:

The dissipative nature of food and bio-processes makes that the eigenvalues
obtained from Eq. (19) can be ordered so that �i � �j for i < j, furthermore �n ! 1
as n ! 1. This property allows to define a finite (usually low) dimensional subset
�A D Œ�1; �2; : : : ; �N � which captures the relevant features of the system [1, 5, 6].

In order to compute the time dependent coefficients in Eq. (18), the original PDE
system (1), (2), and (3) is projected onto each element of the POD basis set. Such
projection is carried out by multiplying the original PDE by each �i and integrating
the result over the spatial domain. As a result the following set of ODEs is obtained:

mA t D F.mA; x; v; u; �; t/: (21)

At this point the basis functions �A and time dependent coefficients

mA D Œm1; m2; : : : ; mN �

are known, therefore the original field x can be recovered by applying Eq. (18), this
is x D �AmA. The number of elements N in the basis subset �A can be increased to
approximate the original state x with an arbitrary degree of accuracy.

4.2 Non-linear Programming Methods

Most of the problems of interest are formulated as non-linear optimisation problems
which can be handled by adequate non-linear programming methods. Nonlinear
programming methods may be largely classified in two main groups: local and
global. Local methods are designed to generate a sequence of solutions, using some
type of pattern search or gradient and Hessian information, that will converge to a
local optimum, usually the closest to the provided initial guess. However the NLPs
with non-linear dynamic constraints (such as in parameter estimation or the ones
resulting from the application of the CVP approach) are frequently multimodal (i.e.
presenting multiple local optima). Therefore, local methods may converge to local
solutions, especially if they are started far away from the global optimum. In order
to surmount these difficulties, global methods must be used.
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Global methods have emerged as the alternative to search the global optimum
[27]. The successful methodologies combine effective mechanisms of exploration
of the search space and exploitation of the previous knowledge obtained by the
search. Depending on how the search is performed and the information is exploited
the alternatives may be classified in three major groups: deterministic, stochastic
and hybrid.

Global deterministic methods [18, 28] in general take advantage of the problem’s
structure and guarantee global convergence for some particular problems that
verify specific smoothness and differentiability conditions. Although they are very
promising and powerful, there are still limitations to their application, particularly
for non-linear dynamic systems, since the computational cost increases rapidly with
the size of the considered dynamic system and the number of decision variables.

Global stochastic methods do not require any assumptions about the problem’s
structure. They make use of pseudo-random sequences to determine search direc-
tions toward the global optimum. This leads to an increasing probability of finding
the global optimum during the run time of the algorithm, although convergence
may not be guaranteed. The main advantage of these methods is that, in practise,
they rapidly arrive to the proximity of the solution.

The most successful approaches lie in one (or more) of the following groups: pure
random search and adaptive sequential methods, clustering methods or metaheuris-
tics. Metaheuristics are a special class of stochastic methods which have proved
to be very efficient in recent years. They include both population (e.g., genetic
algorithms) or trajectory-based (e.g., simulated annealing) methods. They can be
defined as guided heuristics and many of them try to imitate the behaviour of natural
or social processes that seek for any kind of optimality [33].

Despite the fact that many stochastic methods can locate the vicinity of global
solutions very rapidly, the computational cost associated to the refinement of the
solution is usually very large. In order to surmount this difficulty, hybrid methods
and metaheuristics have been recently presented for the solution of dynamic
optimisation problems [7, 16] or parameter estimation problems [30]. They speed
up these methodologies while retaining their robustness and, provided a gradient
based local method is used, they guarantee convergence to a gradient zero solution.

The recently developed Scatter Search based methods [15, 17] have proved to
be successful in the solution of parameter estimation and dynamic optimisation
problems allowing to overcome typical difficulties of nonlinear dynamic systems
optimisation such as noise, flat areas, non-smoothness, and/or discontinuities.



Modeling and Optimization in Food Processes, Bio-processes and Bio-systems 199

5 Illustrative Examples

5.1 Modelling and Simulation: Growth of Bacterial Biofilms

Bacteria, both in natural and pathogenic ecosystems, are found mainly within
surface associated cell assemblages, the so called biofilms. It is now recognised
that biofilms constitute a source for food related infections. Since they can render
their inhabitants more resistant to disinfectants, biofilms have become problematic
in a wide range of food industries, including brewing, seafood processing, dairy
processing, poultry processing and meat processing [32].

Since resistance is associated to biofilm structure there is a growing interest in
the characterisation of pathogenic biofilm structures. In this respect much research
has been performed to gain deeper understanding of biofilms formation, adherence
and growth. Basically two approaches have been considered: the use of imaging
techniques and modelling.

While image quantitative analysis allows direct quantification from images
obtained by microscopic techniques [11, 25, 39], mathematical models have been
developed to provide mechanistic insight into structure evolution. Proposed models
can be divided in three general classes according to the way the biomass is rep-
resented: discrete, continuous and hybrid discrete-continuous models (see Wanner
et al. [37] for an extensive review).

Here we will consider the continuous model proposed by Eberl et al. [14]. The
model represents bacteria and nutrients with two density fields denoted by m.t; �/

and c.t; �/, respectively. Their spatial distributions are represented by the following
set of coupled diffusion-reaction mass balance equations:

@C

@t
D d1r2C � F.C; M/; (22)

@M

@t
D r � .d2.M/rM/ C G.C; M/; (23)

with

F.C; M/ D K1

MC

K2 C C
; G.C; M/ D K3

CM

K2 C C
�K4M; d2.M/ D mb�a

max

� �

1 � M

	a
Mb;

where

k1 D mmax

�
�m

YXS
C ms

�
; k2 D Ks; k3 D YXS=mmax; k4 D msmmax;

K1 D mmax
k1

c0

; K2 D k2

c0

; K3 D k3k1; K4 D k3k4;
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Table 1 Biofilm growth model parameters

Parameter Description Value

d1 Nutrient diffusion coefficient . m2=s/ 1:6 � 10�9

�m Maximum bacterial growth rate .1=s/ 1:5 � 10�5

YXS Substrate growth yield factor (adim.) 0:045

Ks Monod saturation constant . kg=m3/ 3:5 � 10�5

ms Maintenance coefficient .1= s/ 3 � 10�5

mmax Maximum biomass . kg=m3/ 60

c0 Initial nutrients concentration . kg=m3/ 4 � 10�3

M0 Initial biomass concentration (adim.) 0:9

�; a; b Parameters to control biomass diffusion (adim.) 5 � 10�5; 4; 4

and M and C dimensionless variables (M WD m=mmax; C WD c=c0). Model
parameters are summarised in Table 1.

In the equation describing biomass Eq. (23), the first term in the right-hand side
accounts for the diffusion of the biomass and the second term for the production
of biomass. Expansion of bacteria depends on the local density of bacteria and
takes place only if the biomass density approaches a prescribed maximum value
established by mmax. Elberl et al. proposed a density-dependent expression for the
diffusion factor d2 that satisfies this condition. The physical interpretation is that the
biomass diffusivity vanishes as m becomes small but increases as m grows due to
biochemical reaction.

In our work we developed a numerical approach based on the combination of
finite differences schemes in space—with centred differences for the nutrients and
a backwards-forward space for the biomass- and the Crank-Nicolson approach in
time [10]. The resulting set of non-linear equations is solved using a Newton-
Raphson algorithm. Here we illustrate results achieved for one-dimensional growth
with merging colonies under symmetric initial and boundary conditions. For this
purpose, two equally sized colonies are located in the interval Œ0; L�:

C.0; x/ D 1; 8x 2 Œ0; 1�; (24)

M.0; x/ D
(

M0; for x 2 Œx1; x2� [ Œx3; x4�;

0; elsewhere;
(25)

with L D 10�4, x1 D L � x4, x2 D L � x3, x3 D L=2 C 3 	 1:6 	 10�6 and
x4 D L=2 C 4 	 1:6 	 10�6. And symmetric boundary conditions are imposed:

C.t; 0/ D 1; C.t; L/ D 1 8t 2 Œ0; 1� (26)

Mx.t; 0/ D 0; Mx.t; L/ D 0 8t 2 Œ0; 1�: (27)
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Fig. 3 Numerical solution of the biofilm growth example

As it can be seen in the Fig. 3, both colonies spread in both directions till collision
is produced. It should be noted that a modification on model parameters, for exam-
ple, an increased nutrient availability or decreased maximum biomass concentration,
would accelerate the spatial spreading of biomass and, in consequence, colonies
would merge earlier and form a more compact spatial structure. On the contrary, a
decrease in nutrient availability or a larger maximum biomass concentration, would
slow down the spatial spreading of biomass and colonies would merge later or even
would not merge. This reveals the capacity of the model to describe the clusters and
tunnels typically observed in the laboratory.

5.2 Reduced Order Models: Food Pasteurisation in Tunnels

Food thermal processing persists as one of the most widely used methods for food
preservation. The product is treated at a given temperature for a given period of time
to minimise public health hazards due to the presence of pathogenic microorganisms
and to extend product shelf-life. Different time-temperature combinations could be
used to achieve safety. However, the related time-temperature histories would affect
the quality of the product in different ways.

Therefore, the design of thermal processes requires a deep understanding of
the heating process of the given product, the impact on the target microorganism
and quality factors. The thermal treatment will depend on the thermo-physical
characteristics, shape and size of the food product and container; the type and
thermal resistance of the microorganisms of interest and the kinetics of quality
degradation.

In this section we consider the pasteurisation in tunnels of highly viscous liquid
foods such as tomato or carrot puree in cylindrical food jars. The containers are



202 E. Balsa-Canto et al.

loaded at one end of the pasteuriser and passed under sprinkles of water as they
move along the conveyor belt. Temperature of the water changes in the different
zones so as to achieve pasteurisation. The heat transfer occurs between the hot water
film and the package surface and from the package to the food product.

The evolution of temperature and velocity within the food product during the
pasteurisation is described by means of conservation laws. The package is assumed
to be homogeneously heated therefore axial symmetry allows to consider a 2D
geometry. The process can be mathematically described as follows [26]:

5.2.1 Continuity Equation

@u

@z
C v

r
C @v

@r
D 0; (28)

being r and z being the spatial coordinates (radius and height of the package) while
v and u are the velocity field components, i.e., w D Œu; v�T .

5.2.2 Momentum Conservation

�prod

�
@v

@t
C u

@v

@z
C v

@v

@r

�
D �@p

@r
C �prod

�
@

@r

�
1

r

@rv

@r

�
C @2v

@z2

�
; (29)

�prod

�
@u

@t
C u

@u

@z
C v

@u

@r

�
D �@p

@z
C �prod

�
1

r

@

@r

�
r
@u

@r

�
C @2u

@z2

�
C O� g;

(30)

where p is the pressure, �prod corresponds with the food stuff density, g is the gravity
constant, T represents the temperature distribution inside the food, �prod stands for
the viscosity expressed as a function of the temperature [26]:

�prod D a�T2 � b�T C c�; (31)

and the density O� is usually expressed in terms of the fluid temperature as follows:

O� D �ref
�
1 � ˇ

�
T � Tref

��
; (32)

being ˇ the thermal dilatation coefficient and �ref and Tref given reference values.



Modeling and Optimization in Food Processes, Bio-processes and Bio-systems 203

5.2.3 Energy Conservation

@T

@t
C v

@T

@r
C u

@T

@z
D ˛prod

�
1

r

@

@r

�
r
@T

@r

�
C @2T

@z2

�
: (33)

The system in Eqs. (28), (29), (30), (31), (32), and (33) is subject to the following
initial and boundary conditions:

• Initially the food stuff is at rest (v D 0) and at uniform temperature T.r; z; t D
0/ D T0.

• The velocity field components (u, v) are zero in the package walls, i.e.:

ujzD0 D ujzDZ D ujrDR D 0; (34)

vjzD0 D vjzDZ D vjrDR D 0: (35)

• Symmetry conditions are imposed in the symmetry axis (r D 0):

@T

@r

ˇ
ˇ
ˇ̌
rD0

D @u

@r

ˇ
ˇ
ˇ̌
rD0

D @v

@r

ˇ
ˇ
ˇ̌
rD0

D 0: (36)

• The package bottom is touching the transportation belt assumed to be an
insulating material:

@T

@z

ˇ
ˇ
ˇ̌
zD0

D 0: (37)

• At the right and upper sides, the package is in direct contact with the falling film
of heating fluid:

kprod
@T

@r

ˇ
ˇ
ˇ̌
rDR

D hjar

�
Tff � TjrDR

	
; (38)

kprod
@T

@z

ˇ
ˇ
ˇ
ˇ
zDZ

D hjar

�
Tff � TjzDZ

	
; (39)

with Tff being the temperature of the falling film, hjar the jar heat transfer
coefficient and kprod the product thermal conductivity.
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Here we compare the solution of the models Eqs. (28), (29), (30), (31), (32),
(33), (34), (35), (36), (37), (38), and (39) using the finite element method (FEM)
and the reduced order model (ROM) based on the proper orthogonal decomposition
approach. The main steps to derive the ROM are the following:

1. Obtain a set of snapshots that characterises the spatio-temporal distribution of
the variable of interest (temperature, velocity, etc.). In our case all the snapshots
are obtained from a FEM based simulation of system (Eqs. (28), (29), (30),
(31), (32), (33), (34), (35), (36), (37), (38), and (39)) under different possible
experimental conditions (Tff , T0). Since product and package properties are
unknown, several values of the parameters within physical meaningful bounds
have to be considered to obtain the snapshots. The finite element method, with a
mesh of 725 discretisation points, was used to solve the system of Eqs. (28), (29),
(30), (31), (32), (33), (34), (35), (36), (37), (38), and (39) and generate snapshots
(see Fig. 4). Each simulation implies solving 2900 ODEs which takes around 25 s
in a standard PC.

2. Computation of the POD basis. The snapshots of the previous point are used to
compute the so-called POD basis as described above [19].

3. Projection of the model equations (28), (29), (30), (31), (32), (33), (34), (35),
(36), (37), (38), and (39) over the selected POD basis. Projection is carried out
by multiplying the original PDE system by the POD basis and integrating the
result over the spatial domain. Note that the FEM structure may be exploited to

Axi-symmetry
r   

z
Falling film

mli
f

gn
ill

aF

Thermal isolation

Fig. 4 Illustrative example of the package, operating conditions and FEM mesh
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numerically perform the projection [19]:

Z

V
�T;i

@T

@t
d� D

Z

V
�T;i .˛ �T � w rT/ d�; (40)

�

Z

V
�w;i

@w

@t
d� D

Z

V
�w;i .��w � �wrw � rP C �g .1 � ˇ.T � T0// z/ d�;

(41)

with i D 1; : : : ; Nx and z being a unitary vector with the direction of the spatial
coordinate z. Equation (41) with w D Œu; v�T is equivalent to the result of the
projections of Eqs. (29) and (30).

Taking into account:

T.�; t/ �
NTX

iD1

mTi.t/ �Ti .�/; (42)

w.�; t/ �
NwX

iD1

mwi.t/ �wi.�/; (43)

and after some algebraic manipulations, Eqs. (40) and (41) can be rewritten as:

dmT

dt
D �

˛prodAT C BT C ˛prodDT
�

mT ; (44)

�
dmw

dt
D .�Aw C �Bw C �Dw/ mw � �gˇCT;wmT C �g.1 C ˇT0/; (45)

where each component of matrices Ax, Bx, CT;w and Dx are of the form:

Ax.iI j/ D
Z

V
r�x;i r�x;j d�; Bx.iI j/ D

Z

V
�x;i.wr�x;j/ d�;

CT;w.iI j/ D
Z

V
�w;i �T;j d�; Dx.iI j/ D

Z

@V
�x;i r�x;j d�;

with @V denoting the boundary of V . The vector of time dependent functions mx is
of the form mx D Œmx;1; mx;2; : : : ; mx;N �T .

The larger the number of basis functions used, the better the accuracy of the
reduced model. However at the expense of higher computational cost. In order
to arrive to a compromise between accuracy and efficiency, several validation
experiments were performed for various experimental conditions and parameter
values. Table 2 shows the differences emerging from the addition of basis functions.
Results are compared in terms of the mean error as compared to the worst validation
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Table 2 FEM vs ROM in the simulation of thermal pasteurisation in tunnels

Number Mean error Mean error Simulation
Method of ODEs T (%) kwk (%) time (s)

FEM 2900 0 0 25

ROM 10 1.08 4.3 3.1

20 0.7 2.7 3.5

40 0.47 1.82 4.2

100 0.47 1.58 6.5
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Fig. 5 Evolution of the state variables, temperature and fluid velocity, using the POD approach
(marks) and the FEM (continuous lines) at different locations within the spatial domain

example: E D 100
xROM � xFEM

xFEM
where x represents each of the state variables T,

w D Œu; v�T .
The best compromise quality and computational cost is offered by the ROM with

40 ODEs. It should be noted that the mean error is bellow the 2 % as compared to
the FEM based simulation. The dynamic evolution of the temperature and velocity
fields at five spatial locations distributed along the diagonal of the spatial domain
(p1 D .0; 0/, p2 D .0:011; 0:022/, p3 D .0:019; 0:045/, p4 D .0:029; 0:067/,
p5 D .0:04; 0:09/) is presented in Fig. 5 for one validation example. Continuous
lines correspond to the FEM simulation while marks represent the solution of the
ROM with 40 ODEs. As shown in the figure the ROM is able to reproduce the
system behavior.
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5.3 Model Identification: Production of Gluconic Acid
in a Fed-Batch Reactor

Industrial fermentation is based on the conversion of glucose to other substances
by the action of microorganisms under highly oxygenated and aerobic growth
conditions. This kind of processes are widely employed to obtain for instance bread,
wine and cheese in the food industry and biomass, metabolites (ethanol, citric
acid, gluconic acid, vitamins, antibiotic) or recombinant products (insulin) in the
biotechnology industry or, even, bio-fuels to replace conventional petrol.

Most of the fermentation processes to obtain Gluconic Acid (GA) are carried
out by Aspergillus niger. The objective here is that of building a model with
good predictive capabilities to describe the dynamics of glucose (G), oxygen (O2),
gluconic acid (GA) and biomass (B) during the growth phase of Aspergillus niger.
We consider a fed-batch fermenter with two valves to regulate the incoming flux
of glucose and water mixture (u1) and the oxygen transfer rate described by the
Henry’s law (u2). The controls may take values between: 0, when closed and 1,
when opened. Mathematically the process may be described as follows [21]:

dX

dt
D �max

G

KG C G

O2

KO2 C O2

; (46)

dGA

dt
D YGA�max

G

KG C G

O2

KO2 C O2

; (47)

dG

dt
D YG�max

G

KG C G

O2

KO2 C O2

C u1Fin

V
.Gin � G/; (48)

dO2

dt
D YO2�max

G

KG C G

O2

KO2 C O2

C u2KLa.O�
2 � O2/; (49)

dV

dt
D u1Fin; (50)

where Fin and KLa represent the maximum incoming flux and oxygen transfer
rate, respectively; O�

2 is the saturation of dissolved oxygen; Gin corresponds to the
concentration of glucose in the inlet.

Next in model building loop is to compute model unknowns, in this case
� D Œ�max; YG; YO2 ; YGA; KLa� by measuring y D ŒB; GA; G; O2�. To estimate
their values we will first consider a qualitative experimental design. Basically two
completely different experiments are designed: (i) where the incoming flux valve
is almost closed u1 D 0:01 and the oxygen transfer is completely open u2 D 1

and (ii) where the incoming flux valve is completely open u1 D 1 and the oxygen
transfer is almost closed u2 D 0:01. Pseudo-experimental data are obtained by direct
numerical simulation of the model assuming the following nominal values for the
parameters: KLa D 600 h�1, O�

2 D 0:0084 g l�1, Gin D 250 g l�1, Fin D 0:5 min�1,
�max D 0:2242 h�1, KG D 9:9222 g l�1, KO2 D 0:0137 g l�1, YGA D 44:8887,
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Fig. 6 Best fit obtained for the qualitative experimental design

YO2 D �2:5598, YG D �51:0365. Gaussian experimental error is added to the
model predictions and 40 equidistant sampling times are used per experiment.

The parameter estimation problem was solved using eSS as incorporated in
AMIGO obtaining the following optimal solution:

�� D Œ0:2241; �51:049; �2:1341; 44:923; 500:2�:

The corresponding optimal fit is shown in Fig. 6.
It should be noted that even though the values obtained for �max, YGA and YG

are within the 1 % of the known global solution, this is not the case for YO2 and
KLa where the differences are around the 17 %. In addition the Monte Carlo based
identifiability analysis reveals uncertainties over the 20 %.

In view of the results a parallel-sequential optimal experimental design was
pursued in order to improve parameter estimates. The two qualitative designs
are incorporated in the FIM and two new experiments are designed allowing for
constant control profiles that are optimised together with the final time and the
initial conditions of glucose and biomass. The OED problem was solved to minimise
the ratio between the maximum and the minimum eigenvalue of the FIM and the
Monte Carlo based practical identifiability analysis was performed for the resultant
experimental scheme so as to compare the expected uncertainty in the parameter
estimates.

The parameter estimation problem was then solved by using the four
experiments in the optimal experimental scheme. Figures 7 show the two
optimally designed experiments together with the optimal fits obtained by
the use of SSm that correspond to the following parameter set: �� D
Œ0:2241; 44:908; �51:04; �2:5606; 600:04� which is within the 0:04 % of the
optimal value, i.e. with OED it is possible to converge to the real parameter values.
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5.4 Identification and Dynamic Optimisation: Frying of Potato
Chips

In deep-fat frying foodstuff is immersed into oil at high (constant) temperature. This
induces water evaporation and the formation of a thin crust. As the temperature
increases and moisture is lost, the typical deep-frying sensory characteristics
(colour, flavour, texture) are developed. However, the use of high temperatures
results in the production of acrylamide, a carcinogen compound. Thus model-based
optimisation may assist in the design of those operating conditions that provide the
best compromise between quality and safety.

A multiphase porous media based model was formulated to describe heat, mass
and momentum transfer and acrylamide kinetics within a potato chip as described
in Warning et al. [38]. The model consists of a set of coupled nonlinear PDEs
describing the evolution of the saturation of water, oil and vapor (Sw,So, Sg), product
temperature (T), moisture content (M), pressure (P), water vapour mass fraction
(!v) and acrylamide content (cAA). The potato chip is assumed to be cylindrical and
heated from outside therefore axi-symmetry can be assumed. The selected geometry
is shown in Fig. 8.

The model was solved in COMSOL©. The Convection and Diffusion module
was used to solve for water, oil and acrylamide mass conservation while Maxwell-
Stefan Diffusion and Convection was used to gas mass fraction and Darcy’s Law
and Convection and Conduction were used to solve for pressure and temperature
respectively. The selected mesh consists of 20 	 10 rectangular elements. The
simulation of 1:5 min frying takes around 40 s in a standard PC 3.25 GB RAM and
2.83 GHz.
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Fig. 9 Best fit: experimental data (dots) vs model predictions (lines) of acrylamide (cAA), oil and
moisture content (M=M.0/) at different process temperatures

Unknown parameters, the heat transfer coefficient (h) and the surface oil
saturation So;surf , were identified from experimental data using AMIGO, details can
be found in Arias-Méndez et al. [3].

The final model exhibits good predictive capabilities (see Fig. 9) enabling the
possibility to analyse alternative operating conditions. The objective was to compute
the oil temperature profile (Toilmin � Toil � Toilmax ) that guaranties the desired quality
attributes (colour and crispness) while minimising final acrylamide content subject
to the process dynamics. The problem was solved by means of a combination of the
CVP approach and eSS [17].

In a first approximation to the problem the typical industrial process at constant
oil temperature was designed. As expected, the lower the oil temperature the lower
the acrylamide content and the longer the process. Results reveal that a reduction in
the oil temperature from 180 ıC to 150 ıC translates into a reduction of around the
4 % in acrylamide content and an increase of the 25 % in the process duration. Since
the process duration is critical for the production rate, and no recommendations or
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constraints are yet available on the maximum admissible acrylamide content, a good
compromise would be to use intermediate temperature values 165–170 ıC during
80–85 s.

The general dynamic optimisation problem was then solved for different max-
imum process durations (80, 85, 90 and 95 s) and different numbers of maximum
heating zones. Results show that using two heating zones significantly reduces the
final acrylamide content with respect to typical constant operating profiles. The
optimal profile corresponds to the use of a higher temperature at the beginning of
the process, this helping to satisfy the constraint on the moisture content, followed
by a lower temperature to minimise the final acrylamide content (Fig. 10).

5.5 Real Time Optimisation: Thermal Sterilisation of Packaged
Foods

In this example we consider the thermal sterilisation of packaged solid foods in
steam retorts. The product is introduced in a steam retort where it is subjected
to a given heating-cooling cycle so as to get a pre-specified degree of microbial
inactivation indicated by the microbiological lethality. However, some organoleptic
properties or nutrients can be negatively affected by the heat action. The objective is,
therefore, to optimise operation conditions to maximise quality while guaranteeing
safety. In this example, we go a step further, and propose a real time optimisation
(RTO) architecture to handle the optimisation during processing and in the presence
of uncertainty or sudden disturbances. The performance of the proposed RTO
architecture was experimentally validated for tuna paté at the pilot plant in the IIM-
CSIC.
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The dynamic representation of the plant couples the description of the temper-
ature inside the retort, temperature distribution inside the food product and the
corresponding distribution of nutrients and microorganisms:

5.5.1 Retort Dynamics

dz
dt

D f.zI �/ C g.z; uI �/; (51)

here f and g are nonlinear vector fields of appropriate dimensions; z denotes the
temperature and pressure in the retort ŒTR; PR�; u stands for the control variables:
valve positions for input and output streams. Finally, � denotes the vector of
unknown parameters. For a detailed description the reader is referred to [2].

5.5.2 Temperature Distribution Inside the Food Product

@Tprod

@t
D ˛r2Tprod; n.krTprod/ D h.TR � Tprod/; (52)

where Tprod is the temperature of the food stuff and h, k, ˛ stand for the heat
transfer coefficient of the package and the food thermal conductivity and diffusivity,
respectively.

5.5.3 Quality and Safety Models

dCi.t/

dt
D �

�
ln 10

Di;ref

�
Ci.t/ exp

�
Tprod.�; t/ � T�;ref

zi;ref

�
; (53)

where subindex Ci refers to the concentration of either microorganisms or nutrients.
The unknown parameters of the model, the functional dependencies of fluxes

on valves openings and the valves related constants were identified by means
of parameter estimation, identifiability analysis and multi-experimental optimal
design, using AMIGO toolbox.

For the case of the evolution of temperature inside the retort, the resulting model
presents excellent predictive capabilities taking into account that a maximum error
of around 3 % is observed in fast transitions.

The product was packed in glass containers with metal top. The corresponding
geometry and the FEM mesh used for simulation purposes are depicted in Fig. 11.
Selected mesh consists of 184 nodes which translates into 553 ODEs. Three
model parameters were estimated from the temperature measurements, namely,
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Fig. 11 Geometry of the food package

the product thermal conductivity, and the glass/steam and the metal/steam heat
transfer coefficients. After the model identification, the differences between model
predictions and experimental data are lower than 1 %.

Once a satisfactory model became available, a POD-based ROM model was
developed to be used within the RTO scheme, it should be noted that each simulation
of the ROM takes less than 1 s. In addition, the optimal operating conditions were
computed off-line using the CVP and scatter search methods.

Real time implementation of the optimal control needs to consider the effect of
unmeasured disturbances not being part of the prediction model. To that purpose,
feedback was implemented by regularly measuring the current retort variables and
observing the relevant variables of the packaged product to compute efficient on-
line optimisation. Optimal operation conditions are then re-computed any time
a difference between predicted value and off-line optimal solution is detected.
A combination of a local optimiser and SSm was designed so as to guarantee
feasibility and optimality of the solution even in the presence of significant
perturbations or plant/model mismatch (see details in [2]).

Figures 12 and 13 illustrate the performance of the RTO architecture in an
experimental case were large perturbations occur. The implementation of the
optimal off-line heating profile leads to a product that does not fulfill the lethality
requirement (Fc D 8 min). The RTO architecture proposed in the work was able
to drive the system to feasibility and optimality by means of re-computing optimal
profiles on-line and slightly extending the duration of the heating phase.
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Fig. 12 Comparison of
off-line and on-line optimal
profiles under large
perturbations in the retort at
the pilot plant (IIM-CSIC)
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6 Conclusions

Computer-aided simulation and model-based optimisation offer a powerful, rational
and systematic way to improve food, bio-process and biological systems under-
standing or performance. In recent decades there has been a growing interest in the
development of rigorous models, based on first principles, that enable not only to
perform experiments in silico, but to design and to optimise operation policies.

However several problems have to be faced mostly related to (i) insufficient a
priori knowledge to deduce the right model structure or model parameter values;
(ii) the complexity of the processes that combine physical, chemical and biological
phenomena on a wide range of time and space scales; (iii) the complexity of the
associated models that calls for sophisticated numerical simulation techniques and
(iv) the complexity of the associated optimisation problems due mainly to multi-
modality.

In this work we have used a number of examples taken from the food and
biotechnology industry to illustrate how those problems emerge and to present
some alternatives to tackle them. Special emphasis was paid to describe the model
identification loop, which involves parameter estimation, identifiability analyses and
model based experimental design as well as the dynamic optimisation problem.
Most of the problems can be formulated as non-linear optimisation problems whose
solution requires adequate model simulation techniques, including accurate and
efficient reduced order modelling approaches and the use of global optimisation
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methods. To finish with, all elements were combined to design and implement a
real-time optimisation architecture, which is able to assure high operational stability,
process reproducibility and optimal operation.
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