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Preface

This contributed book contains lecture notes of the XVIth ‘Jacques-Louis Lions’
Spanish-French School on Numerical Simulation in Physics and Engineering, which
took place in Pamplona (Navarra, Spain) in September 2014 hosted by the Public
University of Navarre.

This series of Schools has been organized every 2 years since 1984 at different
locations in Spain and is intended for professionals, researchers and students
interested in numerical methods. The 15 previous editions were held in Santiago de
Compostela (1984), Benalmádena (1986), Madrid (1988), Santiago de Compostela
(1990), Benicàssim (1992), Sevilla (1994), Oviedo (1996), Córdoba (1998), Laredo
(2000), Jaca (2002), Cádiz (2004), Castro Urdiales (2006), Valladolid (2008), A
Coruña (2010) and Torremolinos (2012). The next edition will take place in Gijón
in June 2016.

Since its foundation in 1991, the Sociedad Española de Matemática Aplicada
(SEMA) has been actively involved in the organization of these Schools which,
together with the Congreso de Ecuaciones Diferenciales y Aplicaciones/Congreso
de Matemática Aplicada, represent the two series of scientific meetings sponsored
by the Society. In 2004, the Spanish-French School honoured the French mathe-
matician Jacques-Louis Lions by giving his name to the School. Since 2008, the
Société de Mathématiques Appliquées et Industrielles (SMAI) has co-organized the
School. The main goals of the Schools are the following:

• To initiate people interested in Applied Mathematics into research topics,
in particular the mathematical modeling and numerical simulation arising in
research areas being developed in France and Spain.

• To become a meeting point for young/senior researchers, professors, industrial
technicians and graduate students from both countries.

• To showcase current applications of numerical simulation in industry, with an
emphasis on French and Spanish companies.

The Schools are aimed at graduate students in Engineering or Science who are
seeking an introduction to numerical simulation, either as a research topic or in
the field of industrial applications. They are also oriented to technicians working

v



vi Preface

in industry who are interested in the use of numerical techniques for particular
applications or want to know about research taking place in both French and
Spanish universities and scientific institutions. Finally, these Schools may also be
of interest for academics in general, since they permit the exchange of knowledge
and experience concerning research topics being developed in different laboratories.

Each edition is organized around several main courses delivered by renowned
French and Spanish scientists. On this last occasion there were four 6-h courses,
for which the lecturers were Isabelle Faille, Francisco-Javier Sayas, Benjamin
Stamm and Rafael Vázquez, together with three 1-h talks by Antonio Baeza, Eva
Balsa-Canto and Florence Hubert and a 4-h workshop led by José Miguel Mantas.
Furthermore, the participants in the School had the opportunity to present their
research work in a poster session.

The Editors warmly thank all the speakers and participants for their contributions
to the success of the School. In particular, we would like to acknowledge the efforts
of all the lecturers and speakers who have contributed to this volume. In addition,
we are indebted to the anonymous referees for their thorough reviews of the papers,
which have contributed in improving the quality of this book.

We are also grateful to the Organizing and Scientific Committees for their efforts
in the preparation of the School. We extend our thanks and gratitude to all sponsors
and supporting institutions for their valuable contributions: SEMA, SMAI, the
French Embassy in Spain, the Public University of Navarre and its Department of
Mathematical Engineering and Computer Science.

Pamplona, Spain Inmaculada Higueras
December 2015 Teo Roldán

Juan José Torrens
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Advances in Numerical Analysis



An Introduction to the Numerical Analysis
of Isogeometric Methods

Lourenço Beirão da Veiga, Annalisa Buffa, Giancarlo Sangalli,
and Rafael Vázquez

Abstract This paper gives an introduction to isogeometric methods from a math-
ematical point of view, with special focus on some theoretical results that are
part of the mathematical foundation of the method. The aim of this work is to
serve as a complement to other existing references in the field, that are more
engineering oriented, and to provide a reference that can be used for didactic
purposes. We analyse variational techniques for the numerical resolutions of
PDEs using isogeometric methods, that is, based on splines or NURBS, and we
provide optimal approximation and error estimates for scalar elliptic problems. The
theoretical results are demonstrated by some numerical examples. We also present
the definition of structure-preserving discretizations with splines, a generalization
of edge and face finite elements, also with approximation estimates and some
numerical tests for time harmonic Maxwell equations in a cavity.

Keywords Isogeometric methods • NURBS • Finite elements • De Rham
complex
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4 L. Beirão da Veiga et al.

1 Introduction

Isogeometric analysis refers to a collection of methods (called from now isogeo-
metric methods), introduced by T.J.R. Hughes and coauthors in the seminal paper
[28], that use splines, or some of their generalizations such as NURBS (non-uniform
rational B-splines) and T-splines, as functions to build approximation spaces which
are then used to numerically solve partial differential equations (PDEs).

The use of splines for the solution of variational problems started more than
20 years ago (see for instance [45] and references therein) but they have recently
gained popularity in the computational mechanics community after the publication
of [28], where the objective was to use splines (or NURBS) to improve the
interoperability between computer aided design (CAD) software and PDE solvers.
It is already clear that full interoperability is a challenging target, mainly because
standard CAD software does not provide geometry representations that can be
automatically used for numerical simulation. However, isogeometric methods have
attracted the interest of the scientific community, as it is clearly documented by the
number of publications on the subject appeared in the fields of geometric modelling,
mechanical engineering and numerical analysis of PDEs.

One of the most interesting features of isogeometric methods is the high continu-
ity of splines and NURBS with respect to standard finite elements. Isogeometric
methods have been tested and applied on a variety of problems of engineering
interest, and there is indeed a large engineering literature showing the beneficial
effects of higher regularity in several practical problems, see for instance the
references given in [21] and in the introduction of [8]. Moreover, the high continuity
of splines and NURBS, and their use as building blocks for the construction of
discrete spaces, pave the way to new numerical schemes for the discretization of
high-order PDEs that would be extremely hard to achieve within a standard finite
element framework.

The aim of this work is to provide an introduction to isogeometric methods from a
mathematical viewpoint, with special focus on the numerical analysis of the method.
This should serve as a complement to other existing references about isogeometric
methods which are more engineering oriented, in particular [28] and the book [21]
written by the same authors. The present work is largely inspired by our recent
overview on isogeometric methods [8], but with respect to that paper we have tried
to lighten the presentation by removing the most technical sections and proofs, and
also to add some details for didactic purposes.

The contents of the paper are organized as follows. In Sect. 2 we present an
introduction to splines and NURBS, and introduce some concepts and properties
from classical splines theory that are needed for the rest of the paper. In Sect. 3,
we introduce the main ideas behind isogeometric methods, together with the
isoparametric-isogeometric concept, and apply the method for the solution of a
simple scalar elliptic problem. In Sect. 4 we analyse the approximation properties
of isogeometric spaces defined from splines or NURBS. The analysis is based on
appropriate quasi-interpolant operators that generalize those from classical spline
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theory. Finally, in Sect. 5 we introduce a De Rham complex of spline spaces, that
can be seen as a generalization of edge and face finite elements in the context of
isogeometric methods. We study the approximation properties of these spaces and
perform some numerical tests.

2 Splines and NURBS: Basics

In this section we give a brief overview on B-splines and NURBS, to introduce the
main definitions and results that will be used throughout the paper. The section
is divided in three parts. In the first one we present some basic definitions and
properties about univariate B-splines, and their use for the definition of spline
curves. In the second part we give the generalization to the multivariate case, which
is of interest for geometric modelling of surfaces and volumes. In the last part of
the section we present the construction and the approximation properties of a quasi-
interpolant for splines.

Reference books where the contents of this section can be found together with
many more results are [46] and [12], whereas the basic ingredients for the practical
use of splines in the context of isogeometric methods are summarized in [21]. In
view of our focus, some of the properties that have made B-splines and NURBS the
most successful technology for geometric modelling and computer aided design are
left aside from this introduction, or simply mentioned without further discussion.
For readers interested in getting a better understanding of this field, we recommend
the books [18, 41] and [43].

2.1 Univariate B-Splines: Splines and NURBS Curves

We start presenting the definition and properties of B-splines and NURBS in the
univariate case.

2.1.1 Definition and Properties of Univariate B-Splines

Let an ordered sequence of knots be given by the knot vector

� D f�1 � �2 � : : : � �nCpC1g;

where repeated knots are allowed. Without loss of generality, we assume in the
following that �1 D 0 and �nCpC1 D 1.

We say that the knot vector� is a p-open knot vector if the first and last knot are
repeated pC 1 times, that is, �1 D : : : D �pC1 and �nC1 D : : : D �nCpC1.
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From the knot vector � , B-spline functions of degree p are defined following
the well-known Cox-DeBoor recursive formula: we start with piecewise constants
(p D 0):

OBi;0.�/ D
�
1 if �i � � < �iC1;
0 otherwise;

(1)

and for p � 1 the B-spline functions are defined by the recursion

OBi;p.�/ D � � �i

�iCp � �i

OBi;p�1.�/C �iCpC1 � �
�iCpC1 � �iC1

OBiC1;p�1.�/; (2)

where it is here formally assumed that 0/0 = 0. This gives a set of n B-splines, that
have the following properties

• Non-negativity: OBi;p.�/ � 0.

• Partition of unity:
nX

iD1
OBi;p.�/ D 1.

• Local support:

OBi;p.�/ D 0; for � 62 Œ�i; �iCpC1�;
OBi;p.�/ D 0; for � 2 .�r; �rC1/ and i 62 fr; r � 1; : : : ; r � pg:

Note that the definition of each B-spline OBi;p depends only on pC 2 knots, which
are collected in the local knot vector

�i;p WD f�i; : : : ; �iCpC1g:

An example of B-splines is given in Fig. 1. We denote the univariate spline space
spanned by the B-splines by

Sp.�/ D spanf OBi;p; i D 1; : : : ; ng: (3)

We introduce now the vector Z D f�1; : : : ; �Ng of knots without repetitions, also
called breakpoints, and denote by mj the multiplicity of the breakpoint �j, such that

� D f�1; : : : ; �1„ ƒ‚ …
m1 times

; �2; : : : ; �2„ ƒ‚ …
m2 times

; : : : ; �N ; : : : ; �N„ ƒ‚ …
mN times

g; (4)

with
PN

iD1 mi D nC pC 1. We assume 1 � mj � pC 1 for all internal knots.
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0,0,0,0 1/6 2/6,2/6,2/6 3/6 4/6 5/6 1,1,1,1
0
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1

Fig. 1 Cubic B-splines and the corresponding knot vector with repetitions

Let kj D p�mj, and define the regularity vector k D fk1; : : : ; kNg. We define the
space of piecewise polynomials of degree p with kj D p�mj continuous derivatives
at the breakpoints �j,

Pp;Z;k D fu W uj.�i;�iC1/ 2 Pp; D j�u.�i/ D D j
Cu.�i/; j D 0; : : : ; ki; i D 1 : : : ;N � 1g;

where Pp are the polynomials of degree p, and D j
˙ denote the j-order left and right

derivative (or left and right limit for j D 0). Note that the maximum value of mj D
pC 1 stands for a discontinuity at �j.

We have the following results:

• Characterization of B-splines: the B-spline functions OBi;p form a basis of the
space of piecewise polynomials Pp;Z;k. As a trivial consequence, we have
Sp.�/ D Pp;Z;k.

• Local linear independence: in a knot interval .�r; �rC1/ the pC 1 B-spline basis
functions f OBr�p;p; : : : ; OBr;pg are linearly independent.

Assuming the maximum multiplicity of the internal knots is less than or equal
to the degree p, i.e., the B-spline functions are at least continuous, the derivative of
each B-spline OBi;p is given by the following expression:

• Derivative of a B-spline:

d OBi;p

d�
.�/ D p

�iCp � �i

OBi;p�1.�/� p

�iCpC1 � �iC1
OBiC1;p�1.�/: (5)

where we have assumed that OB1;p�1.�/ D OBnC1;p�1.�/ D 0. In fact, the derivative
belongs to the spline space Sp�1.� 0/, where � 0 D f�2; : : : ; �nCpg is a (p � 1)-open

knot vector. Moreover, it is easy to see that
d

d�
W Sp.�/ ! Sp�1.� 0/ is a surjective
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application. For later use, we define the so called Curry-Schoenberg spline basis
(see e.g., [12, Chap. IX]), as follows

ODi;p�1.�/ D p

�iCpC1 � �iC1
OBiC1;p�1.�/; for i D 1; : : : ; n � 1:

The indices for the new basis have been shifted in order to start numbering from 1.
Then formula (5) becomes

d OBi;p

d�
.�/ D ODi�1;p�1.�/� ODi;p�1.�/; (6)

where, again, we adopt the convention OD0;p�1 D ODn;p�1 D 0.
Finally, we note that the points in Z form a partition of the unit interval I D

.0; 1/, i.e., a mesh, and the local mesh size of the element Ii D .�i; �iC1/ is called
hi D �iC1 � �i, for i D 1; : : : ;N � 1. Moreover, given an interval Ij D .�j; �jC1/
of the partition, which can also be written as .�r; �rC1/ for a certain (unique) r, we
associate the support extension QIj defined as

QIj WD .�r�p; �rCpC1/; (7)

that is the interior of the union of the supports of basis functions whose support
intersects Ij.

Remark 2.1 In the particular case of a p-open knot vector without internal knots,
that is, � D f0; : : : ; 0; 1; : : : ; 1g, B-splines reduce to Bernstein polynomials, a
particular basis of the space of polynomials of degree p. Bernstein polynomials in
the unit interval are given by the equation

biC1;p.�/ WD
 

p

i

!
� i.1 � �/p�i; i D 0; : : : p:

2.1.2 Splines and NURBS Curves

A spline curve in R
d, d D 2; 3 is a linear combination of B-splines and control

points as follows:

C.�/ D
nX

iD1
ci OBi;p.�/ ci 2 R

d; (8)

where fcigniD1 are called control points. Given a spline curve C.�/, we call control
polygon the piecewise linear curve obtained by joining the control points fcigniD1
(see Fig. 2). The control polygon has several nice properties and some of them are
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Fig. 2 Spline curve (solid
line), control polygon
(dashed line) and control
points (red dots)

Fig. 3 Local convex hull
property for a cubic spline
curve

at the very core of their use in geometric modelling. We list here the most important
ones, and refer to [18] for details.

• Affine invariance: an affine transformation of the spline curve is obtained by
applying it to the control points.

• Variation diminishing property: a straight line cannot intersect the curve more
times than it intersects the control polygon.

• Local convex hull: given � 2 .�i; �iC1/, only the values ci�p; : : : ; ci act on C.�/,
which belongs to their convex hull (see Fig. 3).

Despite the many advantages of splines, there exist several curves important for
design that cannot be represented with piecewise polynomials, and in particular
all conic curves except the parabola. It is known that the conic sections can be
parametrized by rational polynomials in the form

x.�/ D X.�/

W.�/
; y.�/ D Y.�/

W.�/
:

For instance, the circumference of radius 1 can be parametrized with X.�/ D 1��2,
Y.�/ D 2�, W.�/ D 1 C �2. This has motivated the introduction of Non-Uniform
Rational B-Splines, better known as NURBS,1 which are now the most widespread
technology for geometric modelling, thanks to their versatility to represent both
free-form and sculptured surfaces and conic sections. A discussion about the need
for rational curves and surfaces can be found in [41, Sect. 1.4].

1Non-Uniform refers to the distance between the knots.
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In order to define NURBS, we set the weight W.�/ D Pn
`D1 w` OB`;p.�/ where

the positive coefficients w` > 0 for ` D 1; : : : ; n are usually called weights. After
setting the weight, we define the NURBS basis functions

ONi;p.�/ D wi OBi;p.�/Pn
`D1 w` OB`;p.�/

D wi OBi;p.�/

W.�/
; i D 1; : : : ; n; (9)

which are clearly rational B-splines. Since the basis functions depend on the choice
of the weight W, we denote the NURBS space they span by

Np.�;W/ D spanf ONi;p; i D 1; : : : ; ng: (10)

Similarly to splines, a NURBS curve is defined by associating one control point
to each basis function, in the form:

C.�/ D
nX

iD1
ci ONi;p.�/ ci 2 R

d: (11)

Actually, the NURBS curve is a projection into R
d of a non-rational B-spline curve

in the space R
dC1, which is defined by

Cw.�/ D
nX

iD1
cw

i
OBi;p.�/;

where cw
i D Œwici;wi� 2 R

dC1 (see Fig. 4). For more details about NURBS we refer
to [41].

2.1.3 Knot Insertion and Degree Elevation

In the context of geometric modelling, refinement refers to the possibility of
adding new control points into a spline or NURBS curve without changing its

−3 −2 −1 0 1 2 3

−2
0

2

0

1

2

3

       Cw(ζ)
spline curve

C(ζ) 
NURBS curve

−3 −2 −1 0 1 2 3

−2
0

2

0

1

2

3

w
i

cw
i

c
i

Fig. 4 Representation of the circumference as the projection of a non-rational spline curve
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parametrization C.�/. In order to do so, a refined space must be defined which
contains the space of the parametrization. Given the spline space Sp0 .�

0/, we say
that Sp.�/ is a refinement of Sp0.�

0/ if

Sp0.�
0/ � Sp.�/: (12)

In the case of NURBS, since the parametrization must not change during refine-
ment, also the weight W.�/ must remain the same. Thus, given a NURBS space
Np0 .�

0;W/ we say that Np.�;W/ is a refinement if

Np0 .�
0;W/ � Np.�;W/:

In fact, since W does not change, the previous condition reduces to (12) on the
corresponding spline spaces.

For splines and NURBS curves, refinement is performed by knot insertion and
degree elevation algorithms, which allow to recompute the control points and the
weights of the parametrization in the refined space. It can be proved that applying
these two algorithms the control polygon converges to the curve, see for instance
[18, Chap. 16] for details. By combining knot insertion and degree elevation, three
kinds of refinement are possible in isogeometric methods, as explained in [28]:

1. h-refinement which corresponds to mesh refinement and is obtained by knot
insertion. Let N� WD � [ fN�g be the knot vector after inserting the knot N� into
� , and assume that �j � N� � �jC1. Denoting the knots in N� by N�`, and the
corresponding B-spline functions by NBi;p, the original B-spline functions can be
expressed in terms of the refined ones by

OBi;p.�/ D ˛i NBi;p.�/C .1 � ˛iC1/ NBiC1;p.�/ (13)

with the coefficients

˛i D

8̂
ˆ̂<
ˆ̂̂:

1; i D 1; : : : ; j � p;
N� � N�i

N�iCpC1 � N�i

; i D j� pC 1; : : : ; j;
0; i D jC 1; : : : ; nC 1:

(14)

When N� is equal to �j or �jC1 or to both, the knot insertion corresponds to
reduction of the inter-element regularity at N� . Substituting the expression for the
refined basis functions (13) in the parametrization (8) gives the expression for
the control points after knot insertion. An example of knot insertion, with the
insertion of several knots, is shown in Fig. 5.

2. p-refinement which corresponds to degree raising with fixed interelement reg-
ularity. Successive application of p-refinement generates a sequence of nested
spaces. An example of degree elevation is given in Fig. 6.
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0,0,0,0 1/12 1/6 3/12 2/6,2/6,2/6 5/12 3/6 7/12 4/6 9/12 5/6 11/12 1,1,1,1
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1(a)

(b)

Fig. 5 Knot insertion algorithm applied to the curve in Fig. 2, with basis functions as in Fig. 1.
(a) Quartic basis functions and knot vector after applying h-refinement. (b) Control polygon
computed with the knot insertion algorithm

3. k-refinement which corresponds to apply degree elevation to the curve in the
space Np0 .�

0;W/, and then knot insertion. By doing so, regularity is maintained
at the knots of �0, but it is increased along with the degree in all the other knots.
Therefore, successive application of k-refinement generates a sequence of spaces
that are not nested. The name k-refinement has been coined in [28].

2.2 Multivariate Splines and NURBS: Tensorization

Multivariate B-splines are defined by simple tensor product, starting from univariate
B-splines on each spatial direction. By applying standard tensorization arguments,
most of the properties of the univariate case can be extended to the multivariate case.
Since the argument is quite standard, we proceed without many details and refer the
reader to [46] and [12], or to the book [21] for further details.
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Fig. 6 Degree elevation algorithm applied to the curve in Fig. 2 with basis functions as in Fig. 1.
(a) Basis functions and knot vector after applying p-refinement. (b) Control polygon computed
with the degree elevation algorithm

2.2.1 Multivariate Splines and NURBS Basis Functions

Let d be the space dimensions (in practical cases, d D 2; 3). Assume n` 2 N,
the degree p` 2 N and the p`-open knot vector �` D f�`;1; : : : ; �`;n`Cp`C1g are
given, for ` D 1; : : : ; d. We set the polynomial degree vector p D . p1; : : : ; pd/ and
� D �1 � : : : � �d. The corresponding knot values without repetitions are given
for each direction ` by Z` D f�`;1; : : : ; �`;N`g.

The knots Z` form a Cartesian grid in the parametric domain Ő D .0; 1/d, giving
the parametric Bézier mesh, which is denoted by cM:

cM D fQj D I1;j1 � : : : � Id;jd such that I`;j` D .�`;j` ; �`;j`C1/ for 1 � j` � N` � 1g:
(15)

For a generic Bézier element Qj 2 cM, we also define its support extension QQj DQI1;j1 � : : : � QId;jd , with QI`;j` the univariate support extension given by (7).
B-spline spaces are defined by tensor product. We first introduce the set of

multi-indices I D fi D .i1; : : : ; id/ W 1 � i` � n`g, and for each multi-index
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i D .i1; : : : ; id/, we define the local knot vector � i;p D �i1;p1 � : : : � �id ;pd . Then
we introduce the set of multivariate B-splines

n OBi;p.�/ D OBi1;p1 .�1/ : : : OBid ;pd .�d/; 8i 2 I
o
: (16)

The spline space in the parametric domain Ő is then

Sp.� / D spanf OBi;p.�/; i 2 Ig;

which is the space of piecewise polynomials of degree p with the regularity across
Bézier elements given by the knots multiplicity.

Multivariate NURBS are defined as rational tensor product B-splines. Given a set
of weights fwi; i 2 Ig, and the weight function W.�/ D P

j2I wj OBj;p.�/, we define
the NURBS basis functions

ON i;p.�/ D wi OBi;p.�/P
j2I wj OBj;p.�/

D wi OBi;p.�/

W.�/
:

The NURBS space in the parametric domain Ő is then

Np.� ;W/ D spanf ONi;p.�/; i 2 Ig:

As in the case of NURBS curves, the choice of the weight depends on the geometry
to parametrize, and should remain fixed after refinement.

Remark 2.2 Note that Sp.� / D ˝d
`D1Sp`.�`/. The same is not true for NURBS,

since the weight W is not defined from the tensor product of univariate weights.

2.2.2 Multivariate Splines and NURBS Geometries

As we did for curves, we can now define parametrizations of multivariate geometries
in R

m, m D 2; 3, using splines or NURBS. A spline parametrization is any linear
combination of B-splines basis functions via control points ci 2 R

m

F.�/ D
X
i2I

ci OBi;p.�/; with � 2 Ő ; (17)

and a NURBS parametrization is just a linear combination of NURBS instead of
B-splines. Depending on the values of d and m, the map (17) can define a planar
surface in R

2 (d D 2;m D 2), a manifold in R
3 (d D 2;m D 3), or a volume in R

3

(d D 3;m D 3).
The refinement algorithms of knot insertion and degree elevation, to recompute

the control points in finer spaces, can be generalized to multivariate splines and
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Fig. 7 The control mesh for
the green pipe is represented

NURBS [41]. As in the univariate case, given a spline space Sp0 .�
0/ we say

that Sp.� / is a refinement if Sp0 .�
0/ � Sp.� /. For NURBS spaces, the weight

function W must remain fixed after refinement, and the refinement algorithms also
recompute the set of weights. Thus, given a NURBS space Np0 .�

0;W/ we say that
Np.� ;W/ is a refinement if Np0 .�

0;W/ � Np.� ;W/. The three possibilities of
refinement introduced in Sect. 2.1.3, that is h-, p- and k-refinement, also apply to
multivariate splines and NURBS spaces.

The definition of the control polygon is generalized for multivariate splines and
NURBS to a control mesh, which is given by the control points ci. An example of a
NURBS volume with its control mesh is given in Fig. 7. Notice that, since B-splines
and NURBS functions are not interpolatory, the control mesh is not a mesh on the
domain.

Finally, as in the univariate case, it can be proved that when applying knot
insertion and degree elevation, the control mesh converges to the parametrized
geometry.

2.3 Projections and Quasi-interpolation Operators

In this section we introduce quasi-interpolation and projection operators onto the
spaces of splines, as described in [46]. These operators will be used later for the
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numerical analysis of isogeometric methods. We start introducing the projectors
in the univariate case, and then generalize them to the multivariate case by tensor
product.

2.3.1 Univariate Quasi-interpolants

We first introduce interpolation and projection operators onto the space of univariate
splines Sp.�/. There are several ways to define projections for splines, but here we
only describe the one that will be used in the sequel of the paper.

In the present contribution we will often make use of the following local quasi-
uniformity condition on the knot vector, that is a classical assumption in the
mathematical isogeometric literature.

Assumption 2.3 The partition defined by the knots �1; �2; : : : ; �N is locally quasi-
uniform, that is, there exists a constant � � 1 such that the mesh sizes hi D �iC1��i

satisfy the relation ��1 � hi=hiC1 � � , for i D 1; : : : ;N � 2.

Since splines are not in general interpolatory, a common way to define projec-
tions is by giving a dual basis, i.e.,

˘p;� W L2.Œ0; 1�/! Sp.�/; ˘p;� .u/ D
nX

jD1
�j;p.u/ OBj;p; (18)

where �j;p are a set of dual functionals verifying

�j;p. OBk;p/ D ıjk; (19)

ıjk being the standard Kronecker symbol. It is trivial to prove that, thanks to this
property, the quasi-interpolant˘p;� preserves splines, that is

˘p;� .u/ D u; 8u 2 Sp.�/: (20)

In the spline theory, projections defined by dual basis are commonly called quasi-
interpolant operators. There are several possible choices for the dual basis f�j;pgnjD1,
and we refer the reader to [33] for a very general construction and theory about
quasi-interpolant operators. However, the most common choice in the theoretical
study of isogeometric methods, and the one that we will adopt from now on, is
the one detailed in [46, Sect. 4.6]. In this paper we do not give any details about
the construction of this dual basis, which the interested reader can find in the
aforementioned book. Instead, we focus on its mathematical properties. It is proved
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that these functionals are dual to B-splines in the sense of (19), and also stable (see
[46, Thm. 4.41]), that is

j�j;p.u/j � C.�jCpC1 � �j/
�1=2kukL2.�j;�jCpC1/

; (21)

where the constant C depends on the degree p.
The reason for this choice of the dual functionals is mainly historical (it is the

same dual basis used in [6], the first paper on the numerical analysis of isogeometric
methods), but also because it satisfies the following important stability property.

Proposition 2.4 For any non empty knot span Ii D .�i; �iC1/ it holds

k˘p;� .u/kL2.Ii/ � CkukL2.QIi/
; (22)

where the constant C depends only upon the degree p, and QIi is the support extension
defined in (7). Moreover, if Assumption 2.3 holds, we also have

j˘p;� .u/jH1.Ii/ � CjujH1.QIi/
; (23)

with the constant C depending only on p and � , and where H1 denotes the Sobolev
space of order one, endowed with the standard norm and seminorm.

Proof We first show (22). There exists a unique index j such that Ii D .�i; �iC1/ D
.�j; �jC1/, and using the properties of B-splines at the beginning of Sect. 2.1.1, and
in particular their local support, it immediately follows that

˚
` 2 f1; 2; : : : ; ng W supp. OB`;p/\ Ii 6D ;

� D f j� p; j� pC 1; : : : ; jg: (24)

Let hi denote the length of Ii and Qhi indicate the length of QIi. First by definition (18),
then recalling that the B-spline basis is positive and a partition of unity, we get

k˘p;� .u/kL2.Ii/ D
���

jX
`Dj�p

�`;p.u/ OB`;p
���

L2.Ii/
� max

j�p�`�j
j�`;p.u/j

���
jX

`Dj�p

OB`;p
���

L2.Ii/

D h1=2i max
j�p�`� j

j�`;p.u/j:

We now apply bound (21) and obtain

k˘p;� .u/kL2.Ii/ � Ch1=2i max
j�p�`� j

.�`CpC1 � �`/�1=2kukL2.�`;�`CpC1/

� Ch1=2i max
j�p�`� j

.�`CpC1 � �`/�1=2kukL2.QIi/
;

that yields (22) since clearly hi � .�`CpC1 � �`/ for all ` in f j� p; : : : ; jg.
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We now show (23). For any real constant c, since the operator ˘p;� preserves
constant functions and using a standard inverse estimate for polynomials on Ii, we
get

j˘p;� .u/jH1.Ii/ D j˘p;� .u/�cjH1.Ii/ D j˘p;� .u�c/jH1.Ii/ � Ch�1
i k˘p;� .u�c/kL2.Ii/:

We now apply (22) and a standard approximation estimate for constant functions,
yielding

j˘p;� .u/jH1.Ii/ � Ch�1
i ku � ckL2.QIi/

� Ch�1
i
QhijujH1.QIi/

:

Using Assumption 2.3, it is immediate to check that Qhi � Chi with C D C. p; �/ so
that (23) follows. ut
Remark 2.5 The operator ˘p;� can be modified in order to match boundary
conditions, and stability results similar to the ones in the previous proposition also
hold. We refer to [8] for details.

2.3.2 Multivariate Quasi-interpolants

The univariate interpolation and quasi-interpolation operators introduced in
Sect. 2.3 can be also extended to the multi-dimensional case by a tensor product
construction. Let, for i D 1; : : : ; d, the symbol˘pi;�i denote the univariate operators
onto the space Spi.�i/. We define

˘p;� .u/ D .˘p1;�1 ˝ : : :˝˘pd ;�d /.u/: (25)

For a rigorous explanation on the tensorization of the projectors, we refer the reader
to [8] and [12, Chap. XVII].

The definition above is given for any smooth u and then extended by continuity
to the correct functional space. For the quasi-interpolant of [46] the L2 regularity
requirement stays unchanged and the operator ˘p;� is well defined for all u 2
L2.Œ0; 1�d/.

Finally, it is important to note that, since the univariate quasi-interpolants are
defined from a dual basis as in (18), then the multivariate quasi-interpolant is also
defined from a dual basis. Indeed, we have

˘p;� .u/ D
X
i2I

�i;p.u/ OBi;p;

where each dual functional is defined from the univariate dual bases by the
expression

�i;p D �i1;p1 ˝ : : :˝ �id ;pd : (26)
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Tensor product of dual functionals are defined exactly as the tensor product of the
projectors, and all details can be found in [12, Chap. XVII].

3 Discrete Spaces for Isogeometric Methods: Application
to Elliptic Problems

In this section we present the basic concepts of isogeometric methods, as they were
introduced in [28]. We will assume that our computational geometry is given as
a NURBS geometry, and the finite-dimensional space for the discretization will be
defined directly on the NURBS geometry and on its mesh, possibly refined applying
the algorithms of knot insertion and degree elevation.

We start this section by introducing the discrete spaces and basis functions
in a domain defined as a NURBS geometry. These spaces are then used for the
discretization of a simple elliptic scalar problem. We explain how to perform the
numerical analysis of the discrete problem, and also give details on the implementa-
tion. We end the section by describing how the method can be generalized to more
complicated geometries, that are defined with several NURBS patches.

3.1 Isogeometric Spaces in a Single Patch Domain

We start defining the spaces in the case that the physical domain is given as the
image of the unit square, or the unit cube, by a single NURBS parametrization.

3.1.1 The Parametrization and the Mesh

In isogeometric methods, the computational domain ˝ , which we will also call
physical domain, is often supposed to be given through a NURBS transformation
of the parametric domain Ő , defined by a set of control points as in (17). More
precisely, for a given degree vector p0, the knot vectors � 0 and a weight function
W 2 Sp0 .�

0/, we assume that there exists a map F 2 .Np0 .�
0;W//d such that

˝ D F. Ő /, as in Fig. 8.
We have seen in Sect. 2.2.2 that the parametrization F is related to the control

mesh, given by the control points. Apart from defining the geometry, the control
grid also plays a role in the definition of the space in multi-patch domains, as we
will see below. However, the control grid is not a real mesh in˝ , because in general
the control points do not lie in the geometry.

In order to define a mesh in ˝ , we consider the image through F of the partition
given by the knot vectors, as shown in Fig. 8. This mesh, which is commonly
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Fig. 8 Mesh bM in the
parametric domain, and its
image M in the physical
domain

referred to as the Bézier mesh, plays a similar role to the mesh in finite elements,
and is the mesh used for the numerical computations, as we will see in Sect. 3.2.2.

Let us now define this mesh in a precise way. Assume that Np.� ;W/ is a
refinement of Np.�

0;W/, in the sense explained in Sect. 2.2. We have introduced

in (15) the parametric Bézier mesh cM as the Cartesian grid associated to the knot
vectors � . We define now the physical Bézier mesh, or simply Bézier mesh, as the
image of the (open) elements in cM through F:

M WD fK � ˝ W K D F.Q/;Q 2cMg; (27)

see Fig. 8. The elements of M are called Bézier elements. The meshes for the
coarsest knot vector � 0 will be denoted by cM0 and M0.

For any element K D F.Q/ 2M, we define its support extension as QK D F. QQ/,
with QQ the support extension of Q, defined in Sect. 2.2.1. Moreover, we denote the
element size of any element Q 2cM by hQ D diam.Q/, and the global mesh size is
h D maxfhQ W Q 2 cMg. Analogously, we define the element sizes hK D diam.K/
and h QK D diam. QK/. Assumption 3.1 below will ensure that hQ ' hK .

In the following, we will make use of a regularity assumption on F.

Assumption 3.1 (Regularity of F) The parametrization F W Ő ! ˝ is a bi-
Lipschitz homeomorphism. Moreover, Fj NQ is in C1. NQ/ for all Q 2 cM0, where NQ
denotes the closure of Q, and F�1

j NK is in C1. NK/ for all K 2M0.

The assumption prevents the existence of singularities and self-intersections
in the parametrization F. In the two-dimensional case, for instance, the most
common singularities occur when a rectangular element in cM is mapped through
F to a curvilinear triangular element (see Fig. 9), which is not allowed under
Assumption 3.1. We remark that the study of isogeometric methods in the case of a
parametrization with singularities has been already started in [49] and [50].

3.1.2 Isogeometric Discrete Spaces and Basis Functions

The discrete approximation spaces for isogeometric methods, as they were intro-
duced in [28], are constructed by applying the isoparametric paradigm. That is,



An Introduction to the Numerical Analysis of Isogeometric Methods 21

Fig. 9 Two possible singular parametrizations of the circle. (a) One singularity at the origin. (b)
Four singularities on the boundary

they are constructed using the same NURBS space that defines the geometry, and
mapped to the physical domain through the NURBS parametrization F.

In detail, let OVh D Np.� ;W/ be a refinement of Np0 .�
0;W/, we define the

isogeometric discrete space:

Vh D fOuh ı F�1 W Ouh 2 OVhg; (28)

where h parametrizes the family of spaces and stands, as usual, for the mesh size. It
is also important to provide a basis for the discrete space Vh. Under Assumption 3.1,
it is clear that

Vh D spanfNi;p.x/ WD ON i;p ı F�1.x/; i 2 Ig; (29)

and the functions Ni;p form a basis of the space Vh. We show in Fig. 10 an example
of two basis functions defined in the parametric domain, and how they are mapped
to the physical domain.

In some problems it will be necessary to make use of spaces with boundary
conditions. Let �D � @˝ be a non-empty part of the boundary. We denote by

Vh;�D D fuh 2 Vh W uhj�D D 0g; (30)

the space with homogeneous Dirichlet boundary conditions on �D. For simplicity,
in the following we will always consider the following assumption.

Assumption 3.2 The boundary region �D � @˝ is the union of full faces of the
boundary. More precisely, �D D F. O� D/, with O� D a collection of full faces of the
parametric domain Ő .
Remark 3.3 Notice that the space Vh is defined from the NURBS space Np.� ;W/.
Abandoning the isoparametric paradigm, we can analogously construct the approxi-
mation space as the image through the NURBS parametrization F of the spline space
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Fig. 10 Basis functions in the parametric and the physical domain, with the same geometry as in
Fig. 8. (a) Two basis functions in the parametric domain. (b) The basis functions mapped to the
physical domain

OVh D Sp.� /, which is a refinement of Sp0 .�
0/. In this case the basis functions are

Bi;p WD OBi;p ı F�1.This non-isoparametric approach will be used in Sect. 5.

3.2 Application to Scalar Elliptic Problems

After having introduced the discrete spaces to be used, we now apply isogeometric
methods for the solution of a scalar elliptic problem by Galerkin’s method, and
present some numerical tests to see the performance of the method. We will discuss
about the well posedness of the discrete problem to be solved with isogeometric
spaces, and the convergence of the computed numerical solution to the exact one.
The theory is the general one of Galerkin’s method, and it is indeed very similar
to that of the finite element method, therefore we will not give all the details in the
proofs. However, the approximation results require the definition of projectors for
the isogeometric spaces, that will be presented in Sect. 4.
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3.2.1 Definition and Analysis of the Problem

As the first example we apply the isogeometric method to the discretization of the
scalar elliptic problem (advection-reaction-diffusion equation):

� div.A.x/ grad u/C b.x/ � grad uC c.x/u D f in ˝;
u D 0 on �D;
@u

@n
D gN on �N ;

with f 2 L2.˝/ and gN 2 L2.�N/. For the coefficients, we assume that b 2
W1;1.˝/, c 2 L1.˝/ and A.x/ D .aij.x//1�i;j�d is a symmetric tensor with
aij 2 L1.˝/, which satisfies the ellipticity condition

dX
i;jD1

aij.x/	i	j � ˛j�j2 8� 2 R
d:

We introduce the following bilinear form defined on H1.˝/

a.v;w/ D
Z
˝

A.x/ gradv � grad w dxC
Z
˝

b.x/ � gradv w dxC
Z
˝

c.x/vw dx;

which is continuous and coercive, provided c.x/ � 1
2

div b.x/ � 0 a.e. in ˝ .
Introducing the space V0;�D D fv 2 H1.˝/ W vj�D D 0g, the variational formulation
of the problem reads: Find u 2 V0;�D such that

a.u; v/ D
Z
˝

f v dxC
Z
�N

gN v d�; 8v 2 V0;�D : (31)

Existence and uniqueness of the solution follows from the continuity and coercivity
of a.�; �/, using Lax-Milgram lemma. The coercivity of a.�; �/ also implies the
stability of the problem: there exists a constant C > 0 such that

kukH1.˝/ � C
�kfkL2.˝/ C kgNkL2.�N /

�
: (32)

We assume now that the domain ˝ is given by a NURBS parametrization F,
and that �D � @˝ is the image through F of a collection of faces of Ő , as in
Assumption 3.2. Then, we define the finite-dimensional space Vh;�D as in (30), and
the discrete version of problem (31) is: Find uh 2 Vh;�D such that

a.uh; vh/ D
Z
˝

f vh dxC
Z
�N

gN vh d�; 8vh 2 Vh;�D : (33)
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As in the continuous case, existence and uniqueness of the solution follows from
Lax-Milgram lemma, and the stability result (32) is also valid for uh. Finally, we
have the following error estimate.

Theorem 3.4 Let u the solution to (31) belong to HsC1.˝/, with s > 0. Then there
exists a constant C independent of the mesh size h such that the solution to (33)
satisfies

ku � uhkH1.˝/ � ChqkukHqC1.˝/;

with q D minfp; sg.
Proof The complete proof requires the use of quasi-interpolants and the approxi-
mation results that will be introduced in Sect. 4. We start by applying Céa’s lemma:

ku � uhkH1.˝/ � C inf
vh2Vh;�D

ku � vhkH1.˝/:

We now use the quasi-interpolant from Sect. 4.3.1, in particular ˘Vh;�D
from

Remark 4.17. This has the same approximation properties as˘Vh , for which is valid
the estimate in Corollary 4.16 with r D 1. Therefore, we have

inf
vh2Vh;�D

ku � vhkH1.˝/ � Cku �˘Vh;�D
ukH1.˝/ � ChqkukHqC1.˝/;

which completes the proof. ut

3.2.2 Some Notes About the Implementation

We now present a brief explanation on how to solve the discrete problem (33) with
the isogeometric method. Being a Galerkin’s method, the implementation is very
similar to that of finite elements. For more detailed explanations we refer the reader
to [21, Chap. 3] and [25].

First of all we define our trial function uh as a linear combination of the basis
functions in (29), that is

uh D
X
j2I

˛jNj;p:

We substitute this expression into (33), and test again the basis functions of Vh to
obtain

X
j2I

a.Nj;p;Ni;p/ ˛j D
Z
˝

fNi;p dxC
Z
�N

gNNi;p d�; 8i 2 I:
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Thus, the problem becomes to find the coefficients ˛j such that the previous
equation holds. As in finite elements, we can rewrite the previous problem as a
linear system, with the entries of the matrix and the right-hand side given by

Kij D a.Nj;p;Ni;p/; bi D
Z
˝

fNi;p dxC
Z
�N

gNNi;p d�:

Notice that it is necessary to give a numbering for the multi-indices i 2 I. Since the
spaces are tensor product, the simplest and most usual numbering is generated by
lexicographical ordering.

Now the main difficulty is the computation of the integrals to obtain the entries
of the matrix and the right-hand side. As in finite elements, these integrals can be
expressed as the sum of the integrals on the elements of the mesh, that in our case
is the Bézier mesh, and by a simple change of variable we can write them in the
parametric domain. For instance, the first term of the bilinear form a.Nj;p;Ni;p/ is
written as follows:
Z
˝

A.x/ grad Ni;p.x/ � grad Nj;p.x/ dx D
X
K2M

Z
K

A.x/ grad Ni;p.x/ � grad Nj;p.x/ dx

D
X
Q2bM

Z
Q

A.F.Ox//DF�>
bgrad ONi;p.Ox/ � DF�>

bgrad ON i;p.Ox/ jDF.Ox/j dOx:

These integrals can be computed numerically by applying standard Gaussian
quadrature rules. Notice that DF.Ox/ is not constant on each element, hence it must
be computed for each quadrature point.

For the implementation of boundary conditions, homogeneous Dirichlet condi-
tions are imposed setting to zero the degrees of freedom associated to boundary
control points. To impose non-homogeneous Dirichlet conditions, a lifting Quh 2
H1.˝/, such that Quhj�D D gD must be constructed. Since B-splines and NURBS
are not interpolatory at the knots, the lifting can be computed using some surface
fitting technique, such as the least squares approximation or a quasi-interpolant, see
for instance [21, Chap. 3], [26] and [51]. Neumann boundary conditions, instead,
do not require any special treatment, and it is enough to compute the integralsR
�N

gNNi;p d� , using numerical quadrature analogously to the volumetric integrals.
Finally, it is worth to mention that there exist several open-source codes

available where isogeometric methods have been implemented. GeoPDEs [25] is
an Octave/Matlab code that can serve for a first approach to understand the basics
of isogeometric methods, and the one we have used for the numerical experiments
in this paper. Another Matlab code, focused on solid mechanics, is MIGFEM [37].
For those readers aiming at high performance computing and large applications,
we recommend the general purpose C++ library igatools [39], or the PETSc based
library PetIGA [22].
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Remark 3.5 For the evaluation of the basis functions and the parametrization F,
one can use standard algorithms for splines and NURBS, see for instance [41]. An
alternative is to use the so-called Bézier extraction operators, and to write the B-
splines as linear combination of Bernstein polynomials on each knot span [13]. The
advantage of this approach is that, since Bernstein polynomials are the same on
every knot span (up to scaling), it is possible to do most of the computations in a
reference element, and thus it becomes easier to re-utilize an existing finite element
code. We refer to [13] for details.

3.2.3 Numerical Tests

Test 1

The first numerical test consists on a simple geometry: a quarter of a ring with inner
and outer radius equal to 1 and 2, respectively, and described through a quadratic
NURBS parametrization, as the one in Fig. 8. We solve the advection-reaction-
diffusion problem with A.x/ the identity matrix, b.x/ D .�x2; x1/, and c.x/ D 1.
The right-hand side f is imposed to obtain the exact solution u D ex1 sin.x2/,
which is infinitely smooth, and non-homogenous Dirichlet boundary conditions are
imposed on the boundary.

We solve the problem in a set of successively refined meshes, the coarsest three
meshes are plotted in Fig. 11, for degree p varying from 2 to 4, and in NURBS
spaces of maximum (Cp�1) and minimum (C0) continuity. In Fig. 12 we present the
error in H1-norm with respect to the mesh size h, and with respect to the number of
degrees of freedom Ndof. The results in terms of the mesh size confirm the estimate
of Theorem 3.4, and show that in the same mesh lower continuity gives better
accuracy, since the Cp�1 space is contained in the C0 one. In terms of the degrees
of freedom, the result always converges like O.N�p=2

dof /, and in this case the Cp�1
spaces give better results.

It has been observed by several authors (see [21] and references therein) that high
continuity splines improve the accuracy per degree of freedom with respect to finite
elements. However, as has been observed in [19] the computational cost per degree

Fig. 11 The first three meshes on which we solve Test 1
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Fig. 12 Absolute error in H1-norm in the quarter of a ring. (a) Error in terms of the mesh size. (b)
Error in terms of the degrees of freedom

of freedom is also higher for high continuity splines/NURBS. The development
of efficient techniques for the implementation of isogeometric methods with high
continuity functions is an important topic of research.

Test 2

For the second numerical test we choose the same problem with discontinuous
coefficients given in [35] and [40], and derived from the results in [30]. The domain
is the square ˝ D .�1; 1/2, with the coefficient A D kiI in the ith quadrant, with
I the identity tensor, and now with b D 0 and c D 0. An exact weak solution for
f D 0, and for non-homogeneous Dirichlet boundary conditions, is given in polar
coordinates by u D r
�.�/, with

�.�/ D

8̂̂
<
ˆ̂:

cos..�=2 � /
/ cos..� � �=2C �/
/ if 0 � � � �=2;
cos.�
/ cos..� � � C /
/ if �=2 � � � �;
cos.
/ cos..� � � � �/
/ if � � � � 3�=2;
cos..�=2 � �/
/ cos..� � 3�=2� /
/ if 3�=2 � � � 2�:

The scalars 
 , � and  , and the coefficients ki must be chosen in such a way that the
function � satisfies the condition along the interfaces

ki�1�0.��
i / D ki�

0.�C
i /; i D 1; : : : ; 4;

with �i D .i � 1/�=2, and assuming for convenience k0 D k4. In the most common
examples, the materials are configured in a checkerboard pattern, like in Fig. 13a. In
this case, one can choose 
 2 .0; 1� and then set � D �=4,  D .1C 1



/ �
2
��, and the

interface conditions are satisfied with k1 D k3 D � tan.
/ and k2 D k4 D tan.
�/.
This produces a singular solution u 62 H1C
 .˝/ and u 2 H1C
�".˝/ for any " > 0.
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Fig. 13 Checkerboard domain: distribution of the coefficients and error in H1 norm. (a) Coeffi-
cients in the checkerboard pattern. (b) Absolute error in H1-norm

We have solved the problem in the checkerboard domain for the ratio k1=k2 D 10,
which corresponds to 
 � 0:39. The square is first divided into four elements,
setting C0 continuity along the interfaces, and then refined using cubic splines and
C2 continuity along the new mesh lines. The results in Fig. 13b show that, in a
uniform mesh, the absolute error in H1-norm converges like O.N�
=2

dof /, with Ndof

the number of degrees of freedom. Using a tensor product radical graded mesh like
in [9] (see also [5, Sect. 3.4]), with the univariate knots on each patch defined as �j D�

j�1
N�1

�˛
and ˛ D 7, we can recover the optimal convergence O.N�p=2

dof /. However,

for stronger singularities and high degree p, the optimal convergence may not be
recovered unless higher precision is employed in the numerical computation, as
already noticed for the finite element case in [5, Sect. 3.4] and references therein.

Remark 3.6 In all the previous tests we have considered a diffusion-dominated
or pure diffusion problem. Design and numerical benchmarking of isogeometric
methods for advection dominated or reaction dominated problems can be found in
[14, 24, 28] and [48].

3.3 Isogeometric Spaces in a Multi-patch Domain

In the previous sections the domain ˝ was defined as the image through F of
the unit square or the unit cube. In order to enhance flexibility and allow for
more complex geometries, we generalize the definition of tensor-product spline
and NURBS parametrized domains to domains that are union of several images
of squares or cubes, and that we call multi-patch domains.
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Let ˝ be an open, bounded and connected set, which is defined as the union of
Mp subdomains, in the form

˝ D
Mp[
jD1
˝. j/; (34)

where the subdomains˝. j/ D F. j/. Ő / are referred to as patches, and are assumed to
be disjoint. Each patch has its own parametrization F. j/, defined using the NURBS
space Np. j/ .� . j/;W. j//, which differs from patch to patch. The whole ˝ is then
referred to as a multi-patch domain. In the following, the superindex . j/will identify
the mathematical entities that are different on each patch ˝. j/, such as the basis
functions and the control points.

Let us assume for simplicity that the degree vector p. j/ D p is the same for all
the patches, and all the components of p are equal to p. Noting that the knot vectors
may be different from patch to patch, we define in ˝. j/ the discrete space

V. j/
h D spanfN. j/

i;p .x/ WD ON. j/
i;p ı F. j/�1 .x/; i 2 I. j/g; j D 1; : : : ;Mp:

For the definition of the discrete space in the whole domain˝ , we take the functions
that restricted to each patch belong to V. j/

h , and possibly impose the continuity of
the functions at the interfaces between patches, that is

Vh D fu 2 C0.˝/ W uj˝. j/ 2 V. j/
h for j D 1; : : : ;Mpg: (35)

In order to construct a basis for the discrete space Vh, we introduce a suitable
conformity assumption, which follows the one given in [32].

Assumption 3.7 Let �ij D @˝.i/ \ @˝. j/ be the interface between the patches˝.i/

and ˝. j/, with i ¤ j. We say that the two patches are fully matching if the two
following conditions hold.

(i) �ij is either a vertex, or the image of a full edge, or the image of a full face for
both parametric domains.

(ii) For each N.i/
k;p 2 V.i/

h such that supp.N.i/
k;p/ \ �ij ¤ ;, there exists a function

N. j/
l;p 2 V. j/

h such that N.i/
k;pj�ij D N. j/

l;p j�ij (and vice versa).

Assumption 3.7 means that the physical Bézier meshes M.i/ and M. j/ coincide
on the interface �ij, and the coincident knot vectors are affinely related, including
knot repetitions. Thus the partition

M D [Mp

jD1M. j/ (36)

is a conforming, globally unstructured, locally (to each patch) structured mesh of
the computational domain˝ .
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Fig. 14 Generation of a multi-patch domain with conforming meshes. The square control points
are associated to basis functions that match on the interface. (a) Control mesh of the three separate
patches. (b) Control mesh of the multi-patch domain

Moreover, the control points and weights associated to the matching basis
functions N.i/

k;p and N. j/
l;p must also coincide, i.e., c.i/k D c. j/

l and w.i/k D w. j/
l , and

as a consequence the control meshes must also match conformally (see Fig. 14).
Having conformity of the control meshes, the continuity condition is imple-

mented very easily by generating a global numbering, in a process that resembles
the generation of the connectivity array in finite element meshes. For each non-
empty interface �ij, we collect the pairs of coincident basis functions N.i/

k;p and N. j/
l;p ,

and identify them as one single function, constraining their associated degrees of
freedom to coincide. Note that for corners and edges (in the three-dimensional case),
the new function may be generated from the contribution of functions coming from
more than two patches.

Once the global numbering of the degrees of freedom has been generated, the
implementation of isogeometric methods in multi-patch domains, in the case of
conforming meshes, is almost identical to the one in a single-patch geometry. The
numerical analysis, however, requires the definition of a different quasi-interpolant.
We refer to [8, Sect. 4.4] and [17] for details.

Remark 3.8 In this paper we only address the multi-patch case with conforming
meshes. The study of multi-patch domains with non-conforming meshes was started
in [20] and [32], allowing the case where one of the meshes on the interface is a
refinement of the other one, and imposing some constraints to ensure C0 continuity
between patches. The general case of non-conforming meshes has been recently
considered in [2, 44] and [38], imposing the continuity between patches in a weak
form.

Remark 3.9 We are also restricting ourselves to the case of C0 continuity between
patches. The construction of a basis and the properties of the spaces when
considering higher continuity among patches are not well understood, and are
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related to the questions of extraordinary points. Indeed, this is one of the most active
research areas in isogeometric methods and in computer aided design. We refer the
reader to [47, Chap. 6] and the references therein for further information.

Remark 3.10 It should be noted that classical hexahedral finite elements can be seen
as a special case of multi-patch spline spaces. Indeed, we recover finite elements
by having each patch composed only by one element, which are sometimes called
Bézier patches. In this case, the basis selected by our choice are mapped Bernstein
polynomials, while control points and the corresponding control mesh provide a
localization of degrees of freedom similar to the one associated with Lagrangian
bases.

4 Approximation Properties of Isogeometric Spaces

For the numerical analysis of isogeometric methods, a fundamental issue is the study
of the approximation properties of the mapped NURBS space Vh defined in (28), and
on which we seek the solution of our PDE. Although a large range of results already
exist for splines, which are the starting point for the construction of isogeometric
methods, the presence of the map F (representing the geometry) and the weight W
(NURBS are rational) adds a further degree of complexity.

As it is usual when deriving approximation estimates, we will make use of
standard Sobolev spaces on a domain D, that can be either the parametric domain
˝ , the physical domain Ő , or any of their relevant subsets such as Q, QQ, K or QK.
We denote by Hs.D/, s 2 N the space of square integrable functions u 2 L2.D/ such
that its derivatives up to order s are square integrable. As is well known (see e.g.,
[1]), the definition of Sobolev spaces extends to real regularity exponent s, but we
will use this extension very rarely.

However, conventional Sobolev spaces are not suitable for studying the approx-
imation estimates of the space Vh. Indeed, since the mapping F is not arbitrarily
regular across mesh lines, even if a scalar function u in physical space satisfies
u 2 Hs.˝/, its pull-back to the parametric domain Ou D u ı F is not guaranteed to
be in Hs. Ő /. As a consequence, the natural functional space in parameter space, in
order to study the approximation properties of mapped NURBS, is not the standard
Sobolev space Hs. Ő / but rather a “bent” version that allows for less regularity
across mesh lines, and that we will define below.

The approximation estimates of this section are given with respect to the mesh
size h, that is, we only consider h-refinement. Although the mathematical study
of h-refinement was initiated in [6], we follow here the analysis in [9], that is
more general and allows for a weaker assumption on the quasi-uniformity of the
mesh. The procedure is similar to that already seen in Sect. 2.3: first we derive the
approximation estimates in the univariate case in terms of the bent Sobolev spaces,
and then we generalize them to the multivariate case in the parametric domain by
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tensor product. Finally we obtain the approximation result in the physical domain
by applying the parametrization F.

In the following, C will denote a constant, possibly different at each occurrence,
which is independent of the knot vector’s characteristic size h, but may depend on
the polynomial degree p.

4.1 Univariate Approximation Estimates in Parametric
Domain

As already noted, we start by approximation estimates for univariate B-spline
spaces.

4.1.1 Bent Sobolev Spaces

Let d D 1, � be a knot vector, and p be the polynomial degree. Recalling from
Sect. 2.1.1 that I D .0; 1/, and that Ii D .�i; �iC1/ are the intervals of the partition
given by the knot vector, we define for any q 2 N the piecewise polynomial space

Pq.�/ D fv 2 L2.I/ such that vjIi is a q-degree polynomial, 8i D 1; : : : ;N � 1g:

We recall that, given s 2 N and any sub-interval E � I, we indicate by Hs.E/ the
usual Sobolev space endowed with norm k � kHs.E/ and semi-norm j � jHs.E/. We are
now ready to introduce the bent Sobolev spaces, starting by the one-dimensional
case. We define the bent Sobolev space (see [6]) on I as

H s.I/ D
(

u 2 L2.I/ such that ujIi 2 Hs.Ii/ 8 i D 1; : : : ;N � 1; and

Dk�u.�i/ D DkCu.�i/; 8k D 0; : : : ;minfs� 1; kig;8i D 2; : : : ;N � 1;

)

(37)

where Dk
˙ denote the k-order left and right derivative (or left and right limit for

k D 0), and ki is the number of continuous derivatives at the breakpoint �i, as defined
in Sect. 2.1. Note that, although we leave this implicit in the notation, the space
H s.I/ depends on the knot vector � . We endow the above space with the broken
norm and semi-norms

kuk2Hs.I/ D
sX

jD0
juj2H j.I/ ; juj2H j.I/ D

N�1X
iD1
juj2Hj.Ii/

8j D 0; 1; : : : ; s;

where j � jH0.Ii/ D k � kL2.Ii/. Moreover, we indicate with H s.E/, for any sub-interval
E � I, the restriction of H s.I/ to E, with the obvious norm and semi-norms as
above.
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Given an integer s such that 0 � s � p, we define the space

QSs;p.�/ D Ps.�/ \ Sp.�/; (38)

which is the space of piecewise polynomials of degree s and the same regularity as
the spline space Sp.�/. Clearly, Sp.�/ D QSp;p.�/, and for any s < p, the space
QSs;p.�/ is still a spline space but associated to a knot vector different from � . For
all s � s0 � p we also have the inclusion

QSs;p.�/ 	 QSs0;p.�/: (39)

4.1.2 Approximation Estimates in h

In the present section we prove one-dimensional approximation estimates for B-
splines, that are more general than the classical ones in [46]. This more general
estimates are needed in order to derive the approximation estimates for mapped
NURBS spaces that follow. The following results were already proved in [9].

We need the following preliminary results in order to prove the approximation
estimates for functions in bent Sobolev spaces (37), stated in Proposition 4.3.

Lemma 4.1 Let s 2 N, s � pC 1. There exists a projector � W H s.I/! QSs�1;p.�/
such that for all u 2 H s.I/,

u � � .u/ 2 Hs.I/: (40)

Proof The proof can be found in [9, Lemma 3.1]. ut
We recall that the length of the element Ii D .�i; �iC1/ is denoted by hi, and the

global mesh size is represented by h D maxfhi; 1 � i � N � 1g. In the following
we will also denote by Qhi the length of the support extensions QIi, defined in (7), for
i D 1; : : : ;N � 1.

Let ˘p;� be the quasi-interpolant on the space Sp.�/ introduced in Sect. 2.3. We
have the following approximation estimate.

Proposition 4.2 There exists a positive constant C, only dependent on p, such that
for all s 2 N, s � pC 1, and all u 2 Hs.I/

ku �˘p;� .u/kL2.Ii/ � C.Qhi/
sjujHs.QIi/

8i D 1; : : : ;N � 1: (41)

Furthermore let the knot vector � satisfy Assumption 2.3. Then, there exists a
constant C depending only on p and � such that for all r; s 2 N, 0 < r � s � pC 1,
and all u 2 Hs.I/

ju�˘p;� .u/jHr.Ii/ � C.Qhi/
s�rjujHs.QIi/

8i D 1; : : : ;N � 1: (42)
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Proof Let any non empty knot span Ii D .�i; �iC1/ and let q be any polynomial of
degree at most p living on Œ0; 1�. Noting that, since q 2 Sp.�/, it holds˘p;� .q/ D q
and using Proposition 2.4 it follows

ku �˘p;� .u/kL2.Ii/ � ku � qkL2.Ii/ C k˘p;� .q � u/kL2.Ii/ � Cku � qkL2.QIi/
:

The term above is bounded by standard polynomial approximation estimates in one
dimension, leading immediately to (41). We note that, since the restriction of Sp.�/

to any element Ii is a polynomial of fixed degree p, we can apply inverse estimates.
Therefore, regarding (42), we have

ju �˘p;� .u/jHr.Ii/ � ju � qjHr.Ii/ C j˘p;� .q � u/jHr.Ii/

� ju � qjHr.Ii/ C Ch�r
i k˘p;� .q � u/kL2.Ii/

� ju � qjHr.Ii/ C Ch�r
i ku � qkL2.QIi/

:

Due to Assumption 2.3, it is easy to check that it holds hi � Qhi � C0hi for some fixed
positive constant C0. Therefore, applying again standard polynomial approximation
estimates, we get

ju�˘p;� .u/jHr.Ii/ � C
�

hs�r
i C .Qhi/

sh�r
i

�
jujHs.QIi/

� C.Qhi/
s�rjujHs.QIi/

;

which completes the proof. ut
Lemma 4.1 and the Proposition above yield the following improved approxima-

tion result.

Proposition 4.3 There exists a positive constant C D C. p/ such that for all s 2 N,
s � pC 1, and all u 2 H s.I/

ku �˘p;� .u/kL2.Ii/ � C.Qhi/
sjujHs.QIi/

8i D 1; : : : ;N � 1: (43)

Moreover, under Assumption 2.3, there exists a constant C D C. p; �/ such that for
all r; s 2 N, 0 < r � s � pC 1, and all u 2 H s.I/

ju �˘p;� .u/jHr.Ii/ � C.Qhi/
s�rjujHs.QIi/

8i D 1; : : : ;N � 1: (44)

Proof Let i be in f1; : : : ;N � 1g. We apply Lemma 4.1 and, since � .u/ 2
QSs�1;p.�/ � Sp.�/, we have

u �˘p;� .u/ D .u � � .u//�˘p;� .u � � .u//: (45)
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Again noting that � .u/ 2 QSs�1;p.�/, it follows that j� .u/jHs.Ij/ D 0 for all 1 � j �
N � 1. Moreover, since .u � � .u// 2 Hs.I/ due to (40), we can use Proposition 4.2
and get

ju�˘p;� .u/jHr.Ii/ D ju� � .u/�˘p;� .u � � .u//jHr.Ii/ � C.Qhi/
s�rju � � .u/jHs.QIi/

D C.Qhi/
s�r
X
Ij�QIi

ju � � .u/jHs.Ij/ D C.Qhi/
s�r
X
Ij�QIi

jujHs.Ij/

D C.Qhi/
s�rjujHs.QIi/

:

This gives (43)–(44), for r D 0 and r > 0 respectively. ut
Remark 4.4 Due to Assumption 2.3, we can replace Qhi by hi in (42) and in (44).

Remark 4.5 Setting 0 � r D s � pC 1, (43)–(44) guarantees also the stability of
˘p;� in Sobolev semi-norms:

j˘p;� .u/jHr.Ii/ � CjujHr.QIi/
8i D 1; : : : ;N � 1; 8u 2 H r.QIi/:

Remark 4.6 When p � 1, it is also possible to deal with spaces with boundary
conditions, using a modified version of the operator � . The approximation result is
analogous to the one in Proposition 4.3, and the proof follows the same arguments.
We refer to [9] for details.

4.2 Multivariate Approximation Estimates in Parametric
Domain

We now address the multi-dimensional tensor-product case for B-splines in the para-
metric domain. The multivariate analysis takes the steps from the one-dimensional
estimates of the previous section, extended to the multi-dimensional case by a tensor
product argument.

4.2.1 Tensor Product Bent Sobolev Spaces

In more dimensions, the tensor product bent Sobolev spaces are defined as follows.
Let s D .s1; s2; : : : ; sd/ in N

d. By a tensor product construction starting from (37),
we define the tensor product bent Sobolev spaces in the parametric domain Ő WD
.0; 1/d

H s. Ő / WD H s1.0; 1/˝H s2.0; 1/˝ : : :˝H sd.0; 1/
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iteratively as follows. For all j D 2; : : : ; d

H .s1;::;sj/..0; 1/j/ WD H .s1;::;sj�1/..0; 1/ j�1/˝H sj.0; 1/


 H .s1;::;sj�1/..0; 1/ j�1IH sj.0; 1//:

We endow the above spaces with the norm and seminorms

kuk2Hs. Ő / D
s1X

r1D0
: : :

sdX
rdD0
juj2H.r1;:::;rd /. Ő /; juj2H.r1;:::;rd/. Ő / D

X
Q2bM
juj2H.r1;:::;rd /.Q/

;

(46)

where for the elements Q 2cM we have used the local semi-norm

jujH.r1;:::;rd /.Q/ D
���� @

r1 : : : @rd u

@�
r1
1 : : : @�

rd
d

����
L2.Q/

:

The above definition clearly extends immediately to the case of any hyper-rectangle
E � Ő that is a union of elements in cM.

4.2.2 Approximation Estimates in h

We restrict, for simplicity of exposition, the detailed analysis to the bi-dimensional
case and present the general dimensional case without proof at the end of the section.
As in the one-dimensional case, we introduce the following local quasi-uniformity
assumption.

Assumption 4.7 Assumption 2.3 holds for each univariate partition Zj D
f�j;1; : : : ; �j;Njg.

Let ˘pi;�i W L2.I/ ! Spi.�i/, for i D 1; 2, indicate the univariate quasi-
interpolant associated to the knot vector �i and polynomial degree pi introduced
in Sect. 2.3. Let moreover ˘p;� D ˘p1;�1 ˝ ˘p2;�2 from L2. Ő / to Sp.� / denote
the tensor product quasi-interpolant built using the ˘pi;�i above according to the
construction in (25) for d D 2.

In the sequel, given any sufficiently regular function u W Ő ! R, we will indicate
the partial derivative operators with the symbol

ODru D @r1@r2u

@�
r1
1 @�

r2
2

r D .r1; r2/ 2 N
2: (47)
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Let E � Ő be any union of elements Q 2 cM of the spline mesh. Then, in the
following we will adopt the notation

kuk2
L2h.E/
WD

X
Q2bM
Q�E

kuk2L2.Q/;

which will be useful for distributions u which are not in L2 of the whole E.
Finally, the element size of a generic element Qi D I1;i1 � : : : � Id;id 2 cM (see

Sect. 2.2.1) will be denoted by hQi D diam.Qi/. Moreover, we will indicate the
length of the edges of Qi by h1;i1 ; h2;i2 ; : : : ; hd;id , and the length of the edges of its
extended patch QQi by Qh1;i1 ; Qh2;i2 ; : : : ; Qhd;id .

We are now able to show the following result.

Proposition 4.8 Let Assumption 4.7 hold. Let the integers 0 � r1 � s1 � p1 C 1
and 0 � r2 � s2 � p2 C 1. Then, there exists a constant C depending only on p; �
such that for all elements Qi 2cM, it holds

k OD.r1;r2/.u �˘p;� u/kL2.Qi/ � C
�
.Qh1;i1 /s1�r1k OD.s1;r2/ukL2h. QQi/

C.Qh2;i2 /s2�r2k OD.r1;s2/ukL2h. QQi/

�

for all u in H .s1;r2/. Ő /\H .r1;s2/. Ő /. When .r1; r2/ D .0; 0/, Assumption 4.7 is not
needed and C depends only on p.

Proof Let u be as above and Qi D I1;i1 � I2;i2 be any element of the mesh. From the
definition of ˘p;� as in (25), and the triangle inequality it immediately follows that

k OD.r1;r2/.u �˘p;� u/kL2.Qi/ � T1 C T2; (48)

with the terms

T1 D k OD.r1;r2/.u�˘p1;�1u/kL2.Qi/ ; T2 D k OD.r1;r2/.˘p1;�1u �˘p;� u/kL2.Qi/:

It is easy to check that the derivative with respect to �2 and the operator ˘p1;�1

commute. Then we have OD.r1;r2/˘p1;�1 D OD.r1;0/˘p1;�1
OD.0;r2/. Indicating with w D

OD.0;r2/u, then using Proposition 4.3, we get

.T1/
2 D k OD.r1;0/.w�˘p1;�1w/k2L2.Qi/

D
Z

I2;i2

Z
I1;i1

� OD.r1;0/.w�˘p1;�1w/
�2

d�1d�2

D
Z

I2;i2

jw �˘p1;�1wj2Hr1 .I1;i1 /
d�2 � C.Qh1;i1 /2.s1�r1/

Z
I2;i2

jwj2Hs1 .QI1;i1 /d�2

� C.Qh1;i1 /2.s1�r1/k OD.s1;r2/uk2
L2h. QQi/

:

(49)
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Let now v D OD.r1;0/u. Using again the property OD.r1;r2/˘p1;�1 D OD.r1;0/˘p1;�1
OD.0;r2/,

the similar property OD.r1;r2/˘p2;�2 D OD.0;r2/˘p2;�2
OD.r1;0/ and recalling Remark 4.5,

yields

.T2/
2 D k OD.r1;0/˘p1;�1

OD.0;r2/.u �˘p2;�2u/k2L2.Qi/

D
Z

I2;i2

j˘p1;�1
OD.0;r2/.u �˘p2;�2u/j2Hr1 .I1;i1 /

d�2

� C
Z

I2;i2

j OD.0;r2/.u �˘p2;�2u/j2Hr1 .QI1;i1 /d�2

D Ck OD.r1;r2/.u �˘p2;�2u/k2L2h.QI1;i1�I2;i2 /

D Ck OD.0;r2/.v �˘p2;�2v/k2L2h.QI1;i1�I2;i2 /
:

(50)

The last term in (50) is bounded with the same steps used in (49), simply exchanging
the role of �1 and �2. One gets

.T2/
2 � C.Qh2;i2 /2.s2�r2/k OD.r1;s2/uk2

L2h. QQi/
: (51)

The result follows combining (48) with (49) and (51). ut
The three, or more, dimensional case follows obviously with the same arguments

used above. We have the following result in general dimension d, where now˘p;� is
the quasi-interpolant built following the tensor product construction (25) and using
the one-dimensional operators˘pi;�i , i D 1; 2; : : : ; d.

Proposition 4.9 Let Assumption 4.7 hold. Let the integers 0 � r` � s` � p`C1 for
all ` D 1; : : : ; d. Then, there exists a constant C depending only on p; � such that
for all elements Qi 2cM, it holds

k OD.r1;:::;rd/.u �˘p;� u/kL2.Qi/ � C
� X
`D1;:::;d

.Qh`;i` /s`�r`k OD.r1;:::;r`�1;s`;r`C1;:::;rd/ukL2h. QQi/

�

for all u in H .s1;r2;:::;rd/. Ő / \ H .r1;s2;r3;:::;rd/. Ő / \ : : : \ H .r1;:::;rd�1;sd/. Ő /. When
r` D 0 for all ` D 1; : : : ; d, Assumption 4.7 is not needed and C depends only on p.

Remark 4.10 Due to Remark 4.6, it is immediate to extend the results of this section
to spaces with boundary conditions on the whole @ Ő or on some faces of Ő .

4.3 NURBS Approximation Estimates in the Physical Domain

We here finally present error estimates for the mapped NURBS spaces introduced
in (28), by taking the steps from the B-spline approximation results in the parametric
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domain of the previous section. We start by defining the projector for the discrete
space Vh of mapped NURBS, and then we derive the approximation estimates with
respect to the mesh size h. In the whole present section we are requiring that the
mapping F satisfies Assumption 3.1.

4.3.1 Definition of the Projector in the Physical Domain

Before defining the projector we recall the definition of the discrete space Vh in (28):
assuming that the parametrization F is constructed from the NURBS space OVh D
Np.� ;W/, we define

Vh D fu ı F�1 W u 2 OVhg:

That is, the space Vh is defined mapping through F the NURBS space Np.� ;W/,
which is constructed from Sp.� / using the weight W, as we have seen in Sect. 2.

From the definition of the space, the most natural definition of the projector is
the one introduced in [6]. Let ˘p;� be the spline projector (25), defined in the
parametric domain by tensor product of the univariate projectors. In the physical
domain we define the projector˘Vh W L2.˝/! Vh as

˘Vhu WD ˘p;� .W.u ı F//
W

ı F�1: (52)

The following result proves that ˘Vh is actually a projector on Vh.

Proposition 4.11 It holds that ˘Vhvh D vh for all vh 2 Vh. That is, ˘Vh is a
projector.

Proof Let vh 2 Vh, which can be written as vh D Ovh ı F�1 for a unique Ovh 2 OVh D
Np.� ;W/. Moreover, Ovh D Ouh

W
for a unique Ouh 2 Sp.� /. Using definition (52) and

these two previous expressions, and recalling that˘p;� is a projector onto the space
Sp.� /, the result is proved. ut

4.3.2 Approximation Estimates in h

Before proving the approximation estimates for the projector, we need to introduce
some notation and intermediate results. As before, for simplicity of exposition
we will show the details and proofs for the bivariate case and present the multi-
dimensional case briefly at the end of the section (the proofs for d > 2 being a
simple extension of the d D 2 argument).

In the physical domain˝ D F. Ő /, besides from the Cartesian coordinates x1 and
x2, we also introduce the coordinate system naturally induced by the geometrical
map F, referred as F-coordinate system, that associates to a point x 2 ˝ the
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Fig. 15 Definition of the F-coordinate system in the physical domain

Cartesian coordinates in Ő of its counter-image F�1.x/. At each x 2 K 2 M0

(more generally, at each x where F is differentiable) the tangent base vectors g1 and
g2 of the F-coordinate system can be defined as

gi D gi.x/ D @F
@�i
.F�1.x//; i D 1; 2I (53)

these are the image of the canonical base vectors Oei in Ő , and represent the axis
directions of the F-coordinate system (see Fig. 15).

Analogously to the derivatives in the parametric domain (47), the derivatives of
u W ˝ ! R in Cartesian coordinates are denoted by

Dru D @r1@r2u

@xr1
1 @xr2

2

r D .r1; r2/ 2 N
2:

We also consider the derivatives of u W ˝ ! R with respect to the F-coordinates.
These are just the directional derivatives: for the first order we have

@u

@gi
.x/ D ru.x/ � gi.x/ D lim

t!0

u.xC tgi.x//� u.x/
t

; (54)

which is well defined for any x in the (open) elements of the coarse triangulation
M0, as already noted. Higher order derivatives are defined in the similar way

@ri u

@gri
i

D @

@gi

 
@ri�1u
@gri�1

i

!
D
	
@

@gi

	
: : :

	
@

@gi

	
@u

@gi






I

more generally, we adopt the notation

Dr
Fu D @r1

@gr1
1

@r2u

@gr2
2

r D .r1; r2/ 2 N
2: (55)
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Derivatives with respect to the F-coordinates are directly related to derivatives in
the parametric domain, as stated in the following proposition.

Proposition 4.12 Let u W ˝ ! R. For all K 2M, r 2 N
2, we have

Dr
Fu D

�bDr .u ı F/
�
ı F�1: (56)

Proof The proof can be obtained by a simple application of the chain rule, plus an
induction argument. We refer to [9, Prop. 5.1] for the details. ut

Let E be a union of elements K 2M, we introduce the norms and seminorms

kuk2H.s1;s2/
F .E/

D
s1X

r1D0

s2X
r2D0
juj2H.r1;r2/

F .E/
; juj2H.s1;s2/

F .E/
D
X
K2M
K�E

juj2
H
.s1;s2/
F .K/

; (57)

where

juj
H
.s1;s2/
F .K/

D
���D.s1;s2/

F u
���

L2.K/
:

We also introduce the following space

H.s1;s2/
F .˝/ D Closure of C1.˝/ with respect to the norm k � kH.s1;s2/

F .˝/
; (58)

endowed with the norm k�k
H
.s1;s2/
F .˝/

D k�kH.s1;s2/
F .˝/

. Note that the space H.s1;s2/
F .˝/

is a kind of tensor-product Sobolev space with respect to the physical coordinates.
For instance, it holds

Hs1Cs2 .˝/ 	 H.s1;s2/
F .˝/ 	 Hmin .s1;s2/.˝/;

where as usual Ht.˝/ represents, for t 2 N, the standard Sobolev space of order t
on ˝ .

We then have the following proposition, which is a consequence of Assump-
tion 3.1 and the inter-element continuity of the parametrization F. The simple proof
can be found in [9].

Proposition 4.13 Let u W ˝ ! R and s 2 N
2. If u 2 H.s1;s2/

F .˝/ then its pull-back
Ou D u ı F is in the bent Sobolev space H .s1;s2/. Ő /. Moreover there exists a positive
constant C D C.F/ such that for all K D F.Q/ 2M, s 2 N

2, it holds

C�1kuk
H
.s1;s2/
F .K/

� kOukH.s1;s2/.Q/ � Ckuk
H
.s1;s2/
F .K/

: (59)

The following theorem from [9] states the main estimate for the approximation
error of˘Vh u and, making use of derivatives in the F-coordinate system, it is suitable
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for anisotropic meshes. We recall that, for a generic element Ki D F.Qi/ 2 M,
the notation QKi D F. QQi/ indicates its support extension. Moreover, Qh1;i1 and Qh2;i2
indicate the edge lengths of QQi, as in Proposition 4.8.

Theorem 4.14 Let Assumption 4.7 hold. Let the integers ri; si be such that 0 � ri �
si � pi C 1, i D 1; 2. Then, there exists a constant C depending only on p; �;F;W
such that for all elements Ki D F.Qi/ 2M, it holds

ju�˘VhujH.r1;r2/
F .Ki/

� C
�
.Qh1;i1 /s1�r1kukH.s1;r2/

F . QKi/
C .Qh2;i2 /s2�r2kukH.r1;s2/

F . QKi/

�
(60)

for all u in H.s1;r2/
F .˝/ \ H.r1;s2/

F .˝/. When .r1; r2/ D .0; 0/, Assumption 4.7 is not
needed.

Proof The argument is similar to that in [6]. We first use (56) and perform a change
of variable
���D.r1;r2/

F .u �˘Vh u/
���

L2.Ki/
� C

���bD.r1;r2/ .u ı F � .˘Vhu/ ı F/
���

L2.Qi/

D C

����bD.r1;r2/

	
W .u ı F/�˘p;� .W.u ı F//

W


����
L2.Qi/

(61)

where Ki D F.Qi/, and the constant C takes into account the factor det.rF/ in
the change of variable. We now note that, due to the regularity of u and using
Proposition 4.13, it follows W .u ı F/ 2 H .s1;r2/. Ő / \ H .r1;s2/. Ő /. Then we use
the Leibniz formula

���bD.r1;r2/

	
	

W


���2
L2.Qi/

� C
X

qiD0;:::;ri

���bD.q1;q2/	
���2

L2.Qi/
;

where C depends on the derivatives (inside the elements) of W�1, and then we use
Proposition 4.8, yielding

����bD.r1;r2/

	
W .u ı F/ �˘p;� .W .u ı F//

W


����
2

L2.Qi/

� C
X

qiD0;:::;ri

���bD.q1;q2/
�
W .u ı F/�˘p;� .W .u ı F//

����2
L2.Qi/

� C.Qh1;i1 /2.s1�r1/
X

q2D0;:::;r2

���bD.s1;q2/ .W .u ı F//
���2

L2h. QQi/

C C.Qh2;i2 /2.s2�r2/
X

q1D0;:::;r1

���bD.q1;s2/ .W .u ı F//
���2

L2h. QQi/
:

(62)
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The last step is to use the Leibniz formula again (now with C depending on the
derivatives of W), identity (56) and the change of variable again. We obtain

X
q2D0;:::;r2

���bD.s1;q2/ .W .u ı F//
���2

L2h. QQi/
� C

X
q1D0;:::;s1

X
q2D0;:::;r2

���bD.q1;q2/ .u ı F/
���2

L2h. QQi/

� C
X

q1D0;:::;s1

X
q2D0;:::;r2

���D.q1;q2/
F u

���2
L2h. QKi/

;

(63)

and

X
q1D0;:::;r1

���bD.q1;s2/ .W .u ı F//
���2

L2h. QQi/
� C

X
q1D0;:::;r1

X
q2D0;:::;s2

���bD.q1;q2/ .u ı F/
���2

L2h. QQi/

� C
X

q1D0;:::;r1

X
q2D0;:::;s2

���D.q1;q2/
F u

���2
L2h. QKi/

:

(64)

Collecting (61), (62), (63), and (64) finally gives (60). ut
Under Assumption 4.7, it clearly holds Qh`;i` ' h`;i` , ` D 1; 2. Therefore, the

parametric mesh sizes Qh`;i` appearing in (60) can be also substituted by h`;i` , ` D
1; 2. Note that, since the mapping F is fixed at the coarse level of discretization
(and thus it is element-wise uniformly regular), and thanks to Assumption 3.1, the
lengths h`;i` are equivalent to the lengths of the corresponding edges of the physical
element Ki D F.Qi/, as shown in Fig. 16.

We have the following corollary of Theorem 4.14, which bounds the local
approximation error in standard Hr Sobolev norms. We show this result directly
in the general case of dimension d.

Corollary 4.15 Let Assumption 4.7 hold. Let the integers r; s` be such that 0 �
r � s` � p` C 1, ` D 1; : : : ; d. Then, there exists a constant C depending only on
p; �;F;W such that for all elements Ki D F.Qi/ 2M, it holds

ku �˘Vh ukHr.Ki/ � C
� dX
`D1
.Qh`;i` /s`�r

X
jD0;:::;s`�r

kD je`
F ukHr. QKi/

�
; (65)

Fig. 16 Q is mapped by the geometrical map F to K
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where e` are the vectors of the canonical basis of Rd, and the result holds for all
u 2 Hr.˝/ such that D.s`�r/e`

F u are in Hr.˝/ for ` D 1; 2; : : : ; d.

Proof It is enough to remark that

ku �˘VhukHr.Ki/ � C
X

rW 0�r1C:::Crd�r

ku �˘Vh ukHr
F.Ki/

and the proof follows by applying Theorem 4.14. ut
Finally, it is easy to see that, for r and s as in the corollary below, we have

X
jD0;:::;s�r

kD je`
F ukHr. QKi/

� kukHs. QKi/
;

thus the following is true:

Corollary 4.16 Let Assumption 4.7 hold. Let the integers r; s be such that 0 �
r � s � min . p1; : : : ; pd/ C 1. Then, there exists a constant C depending only on
p; �;F;W such that

ku �˘Vh ukHr.Ki/ � C.h QKi
/s�rkukHs. QKi/

8Ki 2M;

ku �˘Vh ukHr.˝/ � Chs�rkukHs.˝/;
(66)

for all u in Hs.˝/.

Note that the result here above is very similar to that in [6, Thm. 3.1], but without
the uniformity assumption on the mesh.

Remark 4.17 As already commented in the previous sections, the cases with
boundary conditions are handled similarly and thus are not detailed here. We can
therefore set homogeneous boundary conditions on �D � @˝ that is the image
through F of a collection of faces of Ő , as in Assumption 3.2, and define a projector
˘Vh;�D

into the space with boundary conditions (30), with the same approximation
properties of˘Vh .

Remark 4.18 It is worth to note that deriving approximation estimates which
explicitly take into account the degree p and the continuity k is one of the most
challenging open problems concerning the numerical analysis of isogeometric
methods. Preliminary results in the case of low continuity, roughly k � p=2, have
been given in [7].
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5 Construction and Analysis of Isogeometric Spaces
for Vector Fields

This section is devoted to the definition and the analysis of isogeometric methods for
the approximation of vector fields, for which we will mainly follow the two papers
[15] and [16]. We focus our attention on the construction of the so-called spline
complex, i.e., spline approximation spaces for the De Rham diagram. In the finite
element setting, the construction of discrete De Rham complexes has been object of
intense study, and its various mathematical aspects have been object of three review
papers: for computational electromagnetics [27], for discrete exterior calculus [3]
and for eigenvalue problems [10].

Throughout this section, we will work in three space dimensions, however the
constructions and results apply to any space dimensions with obvious changes. The
reason for this choice is to avoid the use of the language of differential forms and to
improve clarity. Moreover, we will often use a “verbose” notation. For example, the
space Sp.� / will also be denoted Sp1;p2;p3 .�1;�2;�3/. The reason for this choice
will be clear when we introduce the vector spline spaces.

In Sect. 5.1 we briefly recall the De Rham diagram for three-dimensional
domains, and define the continuous spaces in the parametric domain Ő D .0; 1/3,
and in the physical domain ˝ D F.˝/. In Sect. 5.2 we construct the De Rham
complex with discrete spline spaces, called here the spline complex, which is
obtained by taking a combination of spline spaces of suitable mixed degree. The
construction is first done in the parametric domain, and then mapped to the physical
domain using suitable mappings defined from F. Then, in Sect. 5.3 we define a
set of projectors in such a way that the continuous and the discrete spaces form
a commutative De Rham diagram. Using these projectors we prove approximation
estimates in Sect. 5.4. Finally, the spaces of the spline complex are applied to the
discretization of time harmonic Maxwell equations in Sect. 5.5, and some numerical
tests are presented.

5.1 The De Rham Complex

In this section, we briefly introduce the concept of the De Rham complex and
introduce our notation for the related spaces. We adopt the language of functional
analysis and proxy fields and not the one of differential forms, and we mainly
concentrate on the definition of pull-backs that will be needed in the next sections.

We first recall that in R
3, for a vector u the curl and the divergence are given by

curl u D
	
@u3
@x2
� @u2
@x3

;
@u1
@x3
� @u3
@x1

;
@u2
@x1
� @u1
@x2



;

div u D @u1
@x1
C @u2
@x2
C @u3
@x3

:
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For a general domain D, L2.D/ is the space of real valued, square integrable
functions, and

H.curlID/ WD fu 2 L2.D/3 W curl u 2 L2.D/3g;
H.divID/ WD fu 2 L2.D/3 W div u 2 L2.D/g:

As in the previous sections, we will assume that our physical domain is given by a
NURBS parametrization. Let Ő D .0; 1/3 and˝ be a single-patch physical domain,
i.e., there exists a map F W Ő ! R

3 satisfying Assumption 3.1 such that ˝ D
F. Ő /. Due to Assumption 3.1, the domain ˝ is simply connected with connected
boundary. We define the spaces

OX0 WD H1. Ő / ; OX1 WD H.curlI Ő / ; OX2 WD H.divI Ő / ; OX3 WD L2. Ő / ;
X0 WD H1.˝/ ; X1 WD H.curlI˝/ ; X2 WD H.divI˝/ ; X3 WD L2.˝/ :

Notice that OXj and Xj are spaces of scalar fields for j D 0; 3, while they are spaces
of vector fields for the indices j D 1; 2. The spaces with homogeneous boundary
conditions will be indicated with the subindex 0. The boundary conditions for
H0.curlI˝/ and H0.divI˝/ refer to the tangential and the normal components
of the vectors, respectively.

Thanks to Assumption 3.1, both F and its inverse are smooth. We can then define
the pull-backs that relate the spaces in the parametric and in the physical domain as
(see [27, Sect. 2.2]):

�0.	/ WD 	 ı F; 	 2 X0;
�1.u/ WD .DF/>.u ı F/; u 2 X1;
�2.v/ WD det.DF/.DF/�1.v ı F/; v 2 X2;
�3. / WD det.DF/. ı F/;  2 X3;

(67)

where DF is the Jacobian matrix of the mapping F. Note that these are the same
pull-backs used in the definition of finite elements, with the only difference that in
finite elements the parametrization F maps the reference element to the element in
the mesh of the physical domain.

Due to the curl and divergence conserving properties of �1 and �2, respectively,
the following commutative De Rham diagram is automatically satisfied (see [27,
Sect. 2.2]):

(68)
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Moreover, since ˝ is simply connected with connected boundary, the sequence
is exact. This means that the kernel of each operator is exactly the image of the
preceding one, and the last operator has full range, that is

ker.grad/ D R; ker.curl/ D Im.grad/; ker.div/ D Im.curl/; X3 D Im.div/:

5.2 Definition of the Spaces of the Spline Complex

We now define a sequence of spline spaces, that will form a De Rham spline
complex. We start by introducing the spaces in the parametric domain, and then
map them to the physical domain.

5.2.1 The Spline Complex on the Parametric Domain

First of all, we recall that in the one-dimensional case, the derivative is a surjective
operator from Sp.�/ to Sp�1.� 0/, where the spaces of the derivatives is defined
using the knot vector � 0 D f�2; : : : ; �nCpg. Moreover, the derivative of a B-spline
function in the one-dimensional case is given in (6).

Using the expression for the derivative in three dimensions, it is clear that, for
instance,

@

@�1
W Sp1;p2;p3 .�1;�2;�3/! Sp1�1;p2;p3 .� 0

1; �2;�3/;

where the knot vector � 0
1 is defined from �1 as in the one-dimensional case above.

Following the same rationale, we define the spaces on the parametric domain Ő :
OX0h WD Sp1;p2;p3 .�1;�2;�3/;

OX1h WD Sp1�1;p2;p3 .� 0
1; �2;�3/ � Sp1;p2�1;p3 .�1;� 0

2;�3/ � Sp1;p2;p3�1.�1;�2; � 0
3/;

OX2h WD Sp1;p2�1;p3�1.�1;� 0
2; �

0
3/ � Sp1�1;p2;p3�1.� 0

1;�2; �
0
3/ � Sp1�1;p2�1;p3 .� 0

1;�
0
2; �3/;

OX3h WD Sp1�1;p2�1;p3�1.� 0
1;�

0
2;�

0
3/:

(69)

In order for OX1h, OX2h and OX3h to be meaningful, we require 0 � m`;i � p`, for
i D 2; : : : ;N` � 1 and ` D 1; 2; 3. This means that the functions in OX0h are at
least continuous. Then, thanks to (5) it is easily seen that bgrad. OX0h/ � OX1h, and
analogously, from the definition of the curl and the divergence operators we get
bcurl. OX1h/ � OX2h, and cdiv. OX2h/ � OX3h. Moreover, it is proved in [15] that the kernel of
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each operator is exactly the image of the preceding one. In other words, these spaces
form an exact sequence:

(70)

that is, a discrete version of the first line of (68).

5.2.2 The Spline Complex in the Physical Domain

As in Sect. 3, we suppose ˝ is obtained from Ő through a NURBS (or spline)
single patch mapping F 2 .Np0 .�

0;W//3, verifying Assumption 3.1. To construct

the spaces (69) in the parametric domain, first we choose the space OX0h D
Sp1;p2;p3 .�1;�2;�3/ D Sp.� /, in such a way that Sp0 .�

0/ � Sp.� /. That is,
we first consider the spline space used to define the NURBS geometry, in practice
neglecting the weight, and the space OX0h is a refinement of this spline space. Once
the first space of the spline complex is chosen, the other spaces in the parametric
domain are defined from (69).

The discrete spaces X0h; : : : ;X
3
h in the physical domain ˝ can be defined from

the spaces (69) on the parametric domain Ő by push-forward, that is, the inverse of
the transformations defined in (67), that commute with the differential operators (as
given by the diagram (68)):

(71)

that is, the discrete spaces in the physical domain are defined as

X0h WD f	h W �0.	h/ 2 OX0hg;
X1h WD fuh W �1.uh/ 2 OX1hg;
X2h WD fvh W �2.vh/ 2 OX2hg;

X3h WD f h W �3. h/ 2 OX3hg:

(72)

We remark that the space X1h , which is a discretization of H.curlI˝/ , is defined
through the curl conserving transformation �1, and that the space X2h , which
is a discretization of H.divI˝/ , is defined through the divergence conforming
transformation �2. These are equivalent to the curl and divergence preserving
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transformations that are used to define edge and face elements, respectively (see
[34, Sect. 3.9]).

Thanks to the properties of the operators (67) the spaces X0h; : : : ;X
3
h inherit the

same fundamental properties of OX0h; : : : ; OX3h, that we have discussed in the previous
section, and in particular they form an exact De Rham complex.

5.2.3 Choice of Bases and Topological Structure

Let us first remind the formula of the derivative of a B-spline function, already given
in (6):

d OBi;p

d�
.�/ D ODi�1;p�1.�/� ODi;p�1.�/;

where ODi;p�1 D p

�iCpC1 � �iC1
OBiC1;p�1. As in [42] and [16], we make use of the

univariate functions ODi;p�1 to choose different bases for the spaces in the spline
complex. It is immediate to see that

OXi
h D span. OBi/; for i D 0; : : : ; 3;

where the bases OBi are defined as follows:

OB0 D
n OBi1;p1 .�1/ OBi2;p2 .�2/ OBi3;p3 .�3/; 1 � i` � n`; ` D 1; 2; 3

o
; (73)

OB1 D .I [ II [ III/ with

I D
n ODi1;p1�1.�1/ OBi2;p2 .�2/ OBi3;p3 .�3/Oe1; 1 � i1 � n1 � 1; 1 � i` � n`; ` D 2; 3

o
;

II D
n OBi1;p1 .�1/ ODi2;p2�1.�2/ OBi3;p3 .�3/Oe2; 1 � i2 � n2 � 1; 1 � i` � n`; ` D 1; 3

o
;

III D
n OBi1;p1 .�1/

OBi2;p2 .�2/
ODi3;p3�1.�3/Oe3; 1 � i3 � n3 � 1; 1 � i` � n`; ` D 1; 2

o
;

(74)

OB2 D .I [ II [ III/ with

I D
n OBi1;p1 .�1/

ODi2;p2�1.�2/ ODi3;p3�1.�3/Oe1; 1 � i1 � n1; 1 � i` � n` � 1; ` D 2; 3
o
;

II D
n ODi1;p1�1.�1/ OBi2;p2 .�2/

ODi3;p3�1.�3/Oe2; 1 � i2 � n2; 1 � i` � n` � 1; ` D 1; 3
o
;

III D
n ODi1;p1�1.�1/ ODi2;p2�1.�2/ OBi3;p3 .�3/Oe3; 1 � i3 � n3; 1 � i` � n` � 1; ` D 1; 2

o
;

(75)
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OB3 D
n ODi1;p1�1.�1/ ODi2;p2�1.�2/ ODi3;p3�1.�3/; 1 � i` � n` � 1; ` D 1; 2; 3

o
;

(76)

where fOe`g`D1;2;3 denote the canonical basis of R
3. We remark that all basis

functions defined in (73), (74), (75), and (76) are non-negative, and vectorial basis
functions have the same orientation as the vectors of the canonical basis.

Analogously to (72), the basis functions in the physical domain are defined by
applying the pull-backs (67), namely

Bi D f�i.	/; 	 2 OBig; for i D 0; : : : ; 3:

When constructing discrete spaces using the isoparametric approach, as in
Sect. 3, we can associate one basis function to each control point in the control
mesh (possibly refined). For the basis functions of the spline complex the situation
is very similar, and we can associate our basis functions to the geometrical entities
of the control mesh. In particular, the basis functions in B0; B1; B2 and B3 are
associated to the vertices, the edges, the faces and the volumes of the control mesh,
respectively. In Fig. 17, the degrees of freedom location for X0h and for X1h are shown.

The main reason for the use of the modified basis functions ODi;p�1 is given in the
following proposition from [16]:

Proposition 5.1 With the choices (73), (74), (75), and (76), the matrices repre-
senting differential operators grad, curl, and div are the incidence matrices of the
control mesh. Thus, the spline complex .X0h;X

1
h ;X

2
h ;X

3
h/ is isomorphic to the co-

chain complex associated with the control mesh.

Fig. 17 Left: Representation of the degrees-of-freedom location (blue dots) for the space X0h .
Right: Representation of the degrees-of-freedom location (red arrows) for the space X1h
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The previous proposition states that the spline complex has exactly the same
structure of the well known Whitney forms when defined on the control mesh, see,
e.g. Section 3 in [27].

Remark 5.2 In the paper [16], the authors have introduced the concept of control
field, which are Whitney forms defined on the control mesh. In view of the properties
listed above, of Proposition 5.1, and the properties of the pull-back operators, the
Whitney vector fields can be interpreted as control fields, i.e., exactly in the spirit of
control points, fields which “carry” the degrees of freedom for the spline complex. It
should be noted that, on the same setting of degrees of freedom, the spline complex
enjoys approximation properties of order hp, where p D minfp1; p2; p3g, whereas
the underlying Whitney forms provide only the low order approximation rates.

5.3 Commutative Projections

It is now necessary to define suitable projectors into the discrete spaces of the spline
complex in order to prove the approximation estimates in the corresponding norms
of the space. In the context of discrete differential forms, what we need to prove the
approximation estimates is a set of projectors˘ i that render the following diagram
commutative:

(77)

To define these kind of projectors for our spline spaces, we will proceed as
in previous sections. We will start by defining suitable projectors in the one-
dimensional case. These will be then generalized to the tensor product case, defining
the set of projector in the parametric domain, and at the last step they will be mapped
to the physical domain using the appropriate pull-backs.

5.3.1 Commutative Projectors in the One-Dimensional Case

Our starting point is the projector for the univariate case, ˘p;� , defined in (18). We
want to define a new projector˘ c

p�1;� 0 such that the following diagram commutes

(78)
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Therefore we define

˘ c
p�1;� 0 g .�/ WD d

d�
˘p;�

Z �

0

g.s/ ds; (79)

for all functions g such that f .�/ D R �
0

g.s/ ds is in L2.0; 1/, which is the domain of
definition of˘p;� . The index c stands for commutative and it is indeed trivial to see
that the projectors commute with the derivative, i.e.,

˘ c
p�1;� 0

d

d�
f D d

d�
˘p;� f ; for f 2 L2.0; 1/: (80)

Moreover, and as a consequence of the spline preserving property (20), it is also
immediate to prove that ˘ c

p�1;� 0 preserves B-splines, that is

˘ c
p�1;� 0 g D g 8g 2 Sp�1.� 0/; (81)

and from the two previous results we get that the diagram (78) commutes.
Furthermore, it is also possible to prove that, analogously to ˘p;� , the new

projector can be defined from a dual basis, and that it is stable, as stated in the
following proposition.

Proposition 5.3 Let g 2 L2.0; 1/, and let the projector ˘p;� be defined as in (18),
that is, ˘p;� f .�/ DPn

iD1 �i;p. f / OBi;p.�/ for any f 2 L2.0; 1/. Then it holds:

˘ c
p�1;� 0 g.�/ D

n�1X
jD1

�c
j;p�1.g/ ODj;p�1.�/;

with

�c
j;p�1.g/ D �jC1;p

 Z �

�j

g.s/ds

!
� �j;p

 Z �

�j

g.s/ds

!
: (82)

Moreover, if Assumption 2.3 is satisfied, then for all Ii D .�i; �iC1/, it holds:

k˘ c
p�1;� 0 gkL2.Ii/ � CkgkL2.QIi/

; (83)

where QIi is the support extension of Ii defined in (7).
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Proof Let f .�/ WD R �
0

g.s/ds. By definition of˘ c
p�1;� 0 and˘p;� , and then using the

expression for the derivative (6), we have

˘c
p�1;� 0 g.�/ D d

d�
˘p;� f .�/ D d

d�

nX
iD1

�i;p. f / OBi;p.�/ D
nX

iD1
�i;p. f /. ODi�1;p.�/ � ODi;p.�//;

and recalling the convention OD0;p.�/ D ODn;p.�/ D 0, we obtain

˘ c
p�1;� 0 g.�/ D

n�1X
jD1

�
�jC1;p. f / � �j;p. f /

� ODj;p�1.�/:

Due to the linearity of the functionals �j;p, we have, for any given �� 2 R

�j;p. f / D �j;p

 Z ��

0

g.s/ds

!
C �j;p

 Z �

��

g.s/ds

!
;

and noting that the term
R �j

0 g.s/ds is a constant, thanks to the partition of unity of
the B-spline functions OBi;p it holds

�jC1;p

 Z �j

0

g.s/ds

!
D �j;p

 Z �j

0

g.s/ds

!
:

Combining the last three equations, we obtain (82).
To prove (83), we use again the definition of ˘ c

p�1;� 0 , and then the stability of
the projector˘p;� from (23), to get

k˘ c
p�1;� 0 gkL2.Ii/ D j˘p;� f jH1.Ii/ � Cj f jH1.QIi/

D CkgkL2.QIi/
;

and the result is proved. ut
Remark 5.4 Notice that the definition of the dual functional �c

j;p�1 depends on the

local knot vectors�j;p and�jC1;p, and therefore it goes beyond the support of ODj;p�1.
Moreover, in the estimate (83), the support extension QIi is defined for degree p, not
p � 1. This means that the projector ˘ c

p�1;� 0 loses some locality with respect to
˘p�1;� 0 , which would be the quasi-interpolant defined in [46, Sect. 4.6]. This is the
“price to pay” in order to obtain the commutative diagram.

5.3.2 Commutative Projectors in the Parametric Domain

We now define appropriate projectors into the discrete spaces in the parametric
domain, by tensor product of the univariate projectors of the previous section.
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To alleviate notation, from this point we will not detail the knot vector in the
interpolant, that is, we will denote ˘p 
 ˘p;� and ˘ c

p�1 
 ˘ c
p�1;� 0 . The choice

of the interpolants follows from the definition of the spaces OX0h, . . . , OX3h in (69), and
precisely we set:

Ŏ 0 WD ˘p1 ˝˘p2 ˝˘p3 ; (84)

Ŏ 1 WD .˘ c
p1�1 ˝˘p2 ˝˘p3 / � .˘p1 ˝˘ c

p2�1 ˝˘p3 /

�.˘p1 ˝˘p2 ˝˘ c
p3�1/; (85)

Ŏ 2 WD .˘p1 ˝˘ c
p2�1 ˝˘ c

p3�1/ � .˘ c
p1�1 ˝˘p2 ˝˘ c

p3�1/

�.˘ c
p1�1 ˝˘ c

p2�1 ˝˘p3 /; (86)

Ŏ 3 WD ˘ c
p1�1 ˝˘ c

p2�1 ˝˘ c
p3�1: (87)

The next lemma shows that the interpolants are projectors onto the corresponding
spline spaces.

Lemma 5.5 The interpolants (84), (85), (86), and (87) satisfy the spline preserving
property, that is

Ŏ 0 O	h D O	h; 8 O	h 2 OX0h;
Ŏ 1 Ouh D Ouh; 8Ouh 2 OX1h;
Ŏ 2 Ovh D Ovh; 8Ovh 2 OX2h;
Ŏ 3 O h D O h; 8 O h 2 OX3h:

Proof The result is an immediate consequence of the splines preserving property of
the interpolants˘p` and ˘ c

p`�1, ` D 1; 2; 3, given in (20) and in (81), respectively.
ut

Moreover, the projectors are also stable in the L2.˝/ norm.

Lemma 5.6 Under Assumption 4.7, the following inequalities hold for any Q 2cM:

k Ŏ 0 O	kL2.Q/ � Ck O	kL2. QQ/ 8 O	 2 L2. Ő /;
k Ŏ 1 OukL2.Q/3 � CkOukL2. QQ/ 8Ou 2 L2. Ő /3;
k Ŏ 2 OvkL2.Q/3 � CkOvkL2. QQ/ 8Ov 2 L2. Ő /3;
k Ŏ 3 O kL2.Q/ � Ck O kL2. QQ/ 8 O 2 L2. Ő /:
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Proof The result follows immediately from (22) and (83), which state that the
involved one-dimensional operators˘p` and ˘ c

p`�1, ` D 1; 2; 3 are L2 stable. ut
The commutativity of the interpolants with the differential operators is stated in

the following lemma.

Lemma 5.7 It holds

bgrad. Ŏ 0 O	/ D Ŏ 1.bgrad O	/ 8 O	 2 OX0; (88)

bcurl. Ŏ 1 Ou/ D Ŏ 2.bcurlOu/ 8Ou 2 OX1; (89)

cdiv. Ŏ 2 Ov/ D Ŏ 3.cdivOv/ 8Ov 2 OX2: (90)

Proof The proof is based on the commutativity property (80) and the tensor product
structure of the spaces and interpolants. Consider first (88): let Of be a smooth scalar
field with compact support in Ő . With some abuse of notation, the first component
of bgrad. Ŏ 0Of / is given by

@Ox. Ŏ 0Of / D @Ox..˘p1 ˝˘p2 ˝˘p3 /
Of / D @Ox.˘p1 .˘p2 .˘p3

Of ///
D ˘ c

p1�1@Ox.˘p2 .˘p3
Of // D .˘ c

p1�1 ˝˘p2 ˝˘p3 / @Ox Of ;

which is the first component of Ŏ 1.bgradOf /. A similar reasoning, using the commu-
tativity of the univariate interpolants, yields

@Oy. Ŏ 0Of / D .˘p1 ˝˘ c
p2�1 ˝˘p3 / @OyOf ;

@Oz. Ŏ 0Of / D .˘p1 ˝˘p2 ˝˘ c
p3�1/ @Oz Of ;

which proves that bgrad. Ŏ 0Of / D Ŏ 1.bgradOf /. By a density argument (88) follows,
thanks to Lemma 5.6. The proof of (89)–(90) is similar, from the definition of the
interpolants and the expression of the curl and divergence operators. ut

5.3.3 Commutative Projectors in the Physical Domain

Finally, we define the projectors into the spaces Xj
h of the complex in the physical

domain. These operators are defined from the ones in the parametric domain (84),
(85), (86), and (87), by applying the corresponding pull-backs from (67). Hence, the
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projectors in the physical domain are uniquely determined by the equations

�0.˘0	/ D Ŏ 0.�0.	//;
�1.˘1u/ D Ŏ 1.�1.u//;
�3.˘2v/ D Ŏ 2.�2.v//;
�2.˘3 / D Ŏ 3.�3. //:

(91)

As an immediate consequence of the previous definitions we have that the operators
˘ i are projectors, that is, they preserve the functions of the spaces Xi

h. Moreover,
from these definitions together with the commutative properties of Lemma 5.7, it is
immediate to prove the following result.

Proposition 5.8 The following diagram commutes.

(92)

5.4 Approximation Estimates

This section is devoted to the study of the approximation estimates of the complex
.X0h; : : : ;X

3
h/. The content of this section is mainly based on the papers [15] and [8].

First we need to define the bent Sobolev spaces for our spline spaces. Then we will
give the approximation results for the spline complex in the parametric domain, and
in the physical domain. We will only present the main results, and refer to [8] for
the proofs.

For the sake of simplicity, in the following we will assume that p1 D p2 D
p3 D p.

5.4.1 Bent Sobolev Spaces

We start from the definition of the bent Sobolev spaces that we need. Since
the interelement regularity changes from space to space (and from component to
component), we need here to make the notation more explicit, starting from the
one-dimensional definition: we denote by H s

k.I/ the space defined in (37), where
k D .k2; : : : ; kN�1/ and ki is the number of continuous derivatives at the point �i 2 Z.
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In three dimensions, given s D .s1; s2; s3/ 2 N
3 and the three vectors k1;k2;k3

constructed from � , we set:

H0;s D H s
k1;k2;k3 ;

H1;s D H s
k1�1;k2;k3 �H s

k1;k2�1;k3 �H s
k1;k2;k3�1;

H2;s D H s
k1;k2�1;k3�1 �H s

k1�1;k2;k3�1 �H s
k�1;k2�1;k3 ;

H3;s D H s
k�1;k2�1;k3�1:

(93)

This choice is made in order to ensure that OXj
h � H j;s, for all s 2 N

3, j D
1; 2; 3, i.e., the interelement regularity of H j;s is not higher than the one of OXj

h.
The corresponding norms and semi-norms are defined as in (46), component by
component for the spaces H1;s and H2;s. Moreover, for the scalar jsj D s1C s2C s3
we define the norm

j	j2H0;jsj D sup
rWjrj�jsj

j	j2H0;r ;

and similar semi-norms can be defined for j � jH j;jsj for j D 1; 2; 3, component by
component for vectorial spaces.

The necessity of these bent Sobolev spaces becomes clear with the following
lemma, which generalizes the result from Proposition 4.13.

Proposition 5.9 Let s D .s1; s2; s3/ 2 N
3 such that jsj D s, and let 	; 2 Hs.˝/,

and u; v 2 Hs.˝/3. Then

�0.	/ 2 H0;s;

�1.u/ 2 H1;s;

�2.v/ 2 H2;s;

�3. / 2 H3;s:

(94)

Moreover, there exists a constant C such that for all elements K D F.Q/ 2M, with
Q 2cM, it holds:

C�1 k	kHs.K/ �
���0.	/��

Hs.Q/
� C k	kHs.K/ ;

C�1 kukHs.K/3 �
���1.u/��

Hs.Q/3
� C kukHs.K/3 ;

C�1 kvkHs.K/3 �
���2.v/��

Hs.Q/3
� C kvkHs.K/3 ;

C�1 k kHs.K/ �
���3. /��

Hs.Q/
� C k kHs.K/ :
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Proof We focus on the proof for �1 and u 2 Hs.˝/3, since all the other cases are
similar. We start proving (94). Let Ou D �1.u/ D .DF/>.u ı F/. Since F is regular
inside each element, we just need to check that the inter-element regularity is the
one we expect. It is easy to see that, for instance,

@F
@�1
2 H s0

k1�1;k2;k3 ; 8s0 2 N
3;

and a similar result for the other partial derivatives implies that �1.f/ 2 H1;s. We
refer to [15] for details.

The inequalities follow from the definition of the pull-backs �j, by a simple
application of the chain rule. ut

5.4.2 Approximation Estimates in the Parametric Domain

Once we have defined the right bent Sobolev spaces, we present the approximation
estimates for functions belonging to these spaces when approximated with the
interpolants of the previous section. The result is given in the following proposition,
that we present without detailing the proof.

Proposition 5.10 Let s 2 N
3 with jsj D s1 C s2C s3. Let Assumption 4.7 hold, and

let moreover Q be an element of cM, with QQ its extension. Then it holds,

��� O	 � Ŏ 0 O	
���

L2.Q/
� Chjsj

QQ
j O	jH0;jsj.QQ/; 0 � jsj � p C 1; for O	 2 H0;t for all t with

jtj � jsj;���Ou � Ŏ 1 Ou
���

L2.Q/3
� Chjsj

QQ
jOujH1;jsj.QQ/3 ; 0 � jsj � p; for Ou 2 H1;t for all t with jtj � jsj;

���Ov � Ŏ 2 Ov
���

L2.Q/3
� Chjsj

QQ
jOvjH2;jsj.QQ/3 ; 0 � jsj � p; for Ov 2 H2;t for all t with jtj � jsj;

��� O � Ŏ 3 O 
���

L2.Q/
� Chjsj

QQ

ˇ̌̌
O 
ˇ̌̌
H3;jsj.QQ/

; 0 � jsj � p; for O 2 H3;t for all t with jtj � jsj:

Proof The result can be found in [8, Prop. 5.6], where a more general estimate is
proposed. ut

5.4.3 Approximation Estimates in the Physical Domain

Finally, we are ready to write the approximation estimates for the projectors defined
in the physical domain, that is, for the projectors˘ j, j D 0; 1; 2; 3 defined in (91).

Theorem 5.11 Let Assumptions 3.1 and 4.7 hold. Then, there exists a constant C
depending only on the degree p, the parametrization F, and the constant � from
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Assumption 4.7, such that for all elements K D F.Q/ 2M, with QK D F. QQ/, it holds

k	 �˘0	kL2.K/ � Chs
QKk	kHs. QK/; 0 � s � pC 1; 	 2 Hs.˝/;

ku �˘1ukL2.K/3 � Chs
QKkukHs. QK/3 ; 0 � s � p; u 2 Hs.˝/3;

kv �˘2vkL2.K/3 � Chs
QKkvkHs. QK/3 ; 0 � s � p; v 2 Hs.˝/3;

k �˘3 kL2.K/ � Chs
QKk kHs. QK/; 0 � s � p;  2 Hs.˝/:

(95)

Proof We prove the result for ˘1, but the reasoning is analogous for all the other
cases. Let Q 2cM and K D F.Q/ 2M, and let u 2 Hs.˝/3. From Proposition 5.9
and using the definition of the projector ˘1 in (91), we know that for Ou D �1u we
have

ku �˘1ukL2.K/3 � CkOu � Ŏ 1 OukL2.Q/3 :

Moreover, since u 2 Hs.˝/3 from Proposition 5.9 we also have Ou 2 H1;t for any
t 2 N

3 such that jtj � s. Thus we can apply the estimate of Proposition 5.10 with
any s such that jsj D s, and then Proposition 5.9 again, to obtain

kOu � Ŏ 1 OukL2.Q/3 � Chs
QKkukHs. QK/3 ;

which ends the proof. ut
We finish this section with the estimates in the graph norm of the spaces Xj of

the De Rham complex (68). First we need to define the spaces

Hs.curlI˝/ WD fu 2 Hs.˝/3 W curl u 2 Hs.˝/3g;
Hs.divI˝/ WD fv 2 Hs.˝/3 W div v 2 Hs.˝/g;

equipped with the norms

kuk2Hs.curlI˝/ WD kuk2Hs.˝/3
C k curl uk2Hs.˝/3

;

kvk2Hs.divI˝/ WD kvk2Hs.˝/3
C k div vk2Hs.˝/:

Now we can prove the following results.

Corollary 5.12 Let Assumptions 3.1 and 4.7 hold. Then, there exists a constant C
depending only on p, F, and � such that for 0 � s � p it holds

k	 �˘0	kH1.˝/ � Chsk	kHsC1.˝/; 	 2 HsC1.˝/;

ku �˘1ukH.curlI˝/ � ChskukHs.curlI˝/; u 2 Hs.curlI˝/;
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kv �˘2vkH.divI˝/ � ChskvkHs.divI˝/; v 2 Hs.divI˝/;
k �˘3 kL2.˝/ � Chsk kHs.˝/;  2 Hs.˝/:

Proof As before, we only prove the result for ˘1, since all the other cases are
analogous. The result is a simple consequence of the commutative diagram (92) and
the estimates from Theorem 5.11. Indeed, for any element K 2M we get

ku �˘1ukH.curlIK/ D
�
ku �˘1uk2L2.K/3 C k curl u � curl .˘1u/k2L2.K/3

�1=2

D
�
ku �˘1uk2L2.K/3 C k curl u �˘2.curl u/k2L2.K/3

�1=2

� C
�

h2s
QK kuk2Hs. QK/3 C h2s

QK k curl uk2
Hs. QK/3

�1=2 D Chs
QKkukHs.curlI QK/:

The result follows from a summation on the elements, noting that every element of
the mesh belongs to a bounded number of extended supports QK. ut
Remark 5.13 For simplicity we have limited ourselves to the case of a single patch
domain and without boundary conditions. The estimates in a more general case can
be found in [8].

5.5 Application to Time Harmonic Maxwell Equations

In this section we use the spline spaces for vector fields for the discretization of
Maxwell equations. For the sake of simplicity, the theoretical discussion is restricted
to the single patch isogeometric method, but the numerical tests are performed in a
more general setting.

5.5.1 Eigenvalue Problem: Cavity Resonator

Given a bounded and simply connected domain ˝ � R
3 with connected boundary

@˝ , we look for a scalar wavenumber � and a non-zero electric field E such that

curl.��1
r curl E/� �2�rE D 0 in ˝;

E � n D 0 on @˝;

where �r and �r are the relative magnetic permeability and the relative electric
permittivity, respectively. We assume that they are real valued, strictly positive, and
piecewise constant functions.
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The variational formulation of the problem reads: Find E 2 H0.curlI˝/ and
� 2 R such that

Z
˝

��1
r curl E � curl v dx D �2

Z
˝

�rE � v dx; 8v 2 H0.curlI˝/: (96)

The solutions of the eigenvalue problem are closely related to the Helmholtz
decomposition:

H0.curlI˝/ D Z0.�r;˝/˚ grad.H1
0.˝//; (97)

with

Z0.�r;˝/ WD
�

u 2 H0.curlI˝/ W
Z
˝

�ru � grad	 dx D 0 8	 2 H1
0.˝/

�
:

We have the following result [34, Thm. 4.18].

Theorem 5.14 The solutions of the eigenvalue problem (96) have the following
properties:

• The eigenvalue � D 0 is associated to an infinite family of eigenfunctions E D
grad	 for any 	 2 H1

0.˝/.
• There is an infinite set of eigenvalues 0 < �1 � �2 � � � � , with limj!1 �j D 1,

and corresponding eigenfunctions 0 ¤ Ej 2 Z0.�r;˝/.

Since the publication of [11], it is known that the approximation of problem (96)
with nodal finite elements produces spurious eigenmodes, due to inexact approxima-
tions of the infinite family of zero eigenvalues. By contrast, Nédélec edge elements
of the first class [36], which are H.curlI˝/-conforming, give good approximations
of the same problem. The proof relies on the existence of a De Rham diagram
with commutative projectors. With similar arguments, in [15] it is proved that a
discretization of the eigenvalue problem based on the spaces of the spline complex
introduced in Sect. 5.2 is also spurious-free. We summarize here the main results.

Assuming that the domain ˝ is defined by a single patch NURBS parametriza-
tion, we consider the discrete space X10;h D X1h \ H0.curlI˝/, with X1h defined as
in (72). Then, the variational formulation of the discrete problem is: Find Eh 2 X10;h
and �h 2 R such that

Z
˝

��1
r curl Eh � curl vh dx D �2h

Z
˝

�rEh � vh dx; 8vh 2 X10;h: (98)

Thanks to the commutative diagram (92) (in fact its analogue with boundary
conditions), we have for the space X10;h a discrete version of the Helmholtz
decomposition (97):

X10;h D Z0;h.�r;˝/˚ grad.X00;h/;
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with

Z0;h.�r;˝/ WD
�

uh 2 X10;h W
Z
˝

�ruh � grad	h dx D 0 8	h 2 X00;h

�
;

and X00;h D X0h \ H1
0.˝/, the discrete scalar space with boundary conditions.

Moreover, and analogously to the continuous case, the eigenvalue �h D 0 is
associated to the finite dimensional space grad.X00;h/. The rest of the eigenvalues
are strictly positive, and their associated eigenfunctions belong to Z0;h.�r;˝/.

The spectral correctness and the convergence of the solutions of the discrete
eigenvalue problem (98) to those of (96) follow from the theory of finite element
exterior calculus [4]. We refer to Section 6 in [15] for a detailed proof of the spectral
correctness of the method.

5.5.2 Numerical Test

We solve the eigenvalue problem in Fichera’s corner, with the domain defined as
˝ D .�1; 1/3 n Œ0; 1�3 and �r D �r D 1. Using linear splines, we define the domain
as a multi-patch geometry given by seven patches. On each patch we set a tensor
product mesh with 12 elements in each direction, refined towards the corner and the
reentrant edges with a radical refinement, as in [9], in order to catch the corner and
edge singularities (see Fig. 18). We notice that, since the mesh is tensor product, the
refinement propagates also away from the singularities. We solve the problem with
splines of degree 3, 4 and 5.

Up to our knowledge, reliable benchmark results are not available yet. We
compare in Table 1 our results for isogeometric methods with the most accurate ones

Fig. 18 Mesh for Fichera’s
corner
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Table 1 Eigenvalues in Fichera’s corner

Eig. Duruflé, p D 5 IGA, p D 3 IGA, p D 4 IGA, p D 5

1st 3.21987401386 3.21987496658 3.21988066916 3.21988316848

2nd 5.88041891178 5.88041920051 5.88041871891 5.88041854438

3rd 5.88041891780 5.88041920051 5.88041871897 5.88041854605

4th 10.6854921311 10.6854887693 10.6854782775 10.6854756735

5th 10.6937829409 10.6937804726 10.6937680695 10.6937640480

6th 10.6937829737 10.6937804726 10.6937680701 10.6937640484

7th 12.3165204656 12.3165080267 12.3164992881 12.3164998491

8th 12.3165204669 12.3165080267 12.3164992882 12.3164998498

d.o.f. 177,720 62,412 76,365 92,256

provided by M. Duruflé in the webpage [23], which correspond to a finite element
discretization of degree 5. We can observe that the results we obtain with degree 3
are very similar to those obtained with FEM, with around one third of the degrees
of freedom. The results obtained with degrees 4 and 5 are even more accurate.

5.5.3 Maxwell Source Problem

We now consider the Maxwell source problem. We look for a time-harmonic
complex-valued electric field E corresponding to a given solenoidal current density
J 2 L2.˝/3, subject to perfect conductor boundary conditions on �D � @˝ , and an
impedance boundary condition on ˙ � @˝ . The equations of the problem are

curl.��1
r curl E/ � �2�rE D i��1=20 J in ˝;

��1
r .curl E/ � n � i��ET D g on ˙;

E � n D 0 on �D;

where �, �r and �r are as in Sect. 5.5.1, �0 is the magnetic permeability of free
space, ET D .n�E/�n, and the impedance � is a positive function. Following [34,
Chap. 4], we define the space

X D ˚u 2 H.curlI˝/ W u � n D 0 on �D and uT D .n � u/ � n 2 L2.˙/3 on˙
�
;

equipped with the norm

kuk2X D kuk2H.curlI˝/ C kuTk2L2.˙/3:
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Using this space, the variational formulation reads: Find E 2 X such that

Z
˝

��1
r curl E � curl Nv dx �

Z
˝

�2�rE � Nv dx�
Z
˙

i��ET � NvT d�

D
Z
˝

i��1=20 J � Nv dxC
Z
˙

g � Nv d�; 8v 2 X: (99)

The well-posedness of the problem follows using the Helmholtz decomposition
and Fredholm alternative, see for instance Theorem 4.17 and Corollary 4.19 in [34],
and Theorem 5.2. in [27]:

Theorem 5.15 Assume either that � ¤ 0 is such that �2 is not an eigenvalue
of (96), or that ˙ ¤ ;. Then there exists one unique solution E to (99) such that

kEkX � C.kJkL2.˝/3 C kgkL2.˙/3/;

with C independent on the data J and g.

In order to discretize the problem with mixed boundary conditions, we first
assume that both ˙ and �D are the image through F of full faces of Ő , as in
Assumption 3.2. Then we introduce the discrete space

X1h;�D
D fu 2 X1h W u � n D 0 on �Dg;

with X1h the space defined in (72), and the variational formulation of the discrete
problem reads: Find Eh 2 X1h;�D

such that

Z
˝

��1
r curl Eh � curl Nvh dx�

Z
˝

�2�rEh � Nvh dx�
Z
˙

i��.Eh/T � .Nvh/T d�

D
Z
˝

i��1=20 J � Nvh dxC
Z
˙

g � Nvh d�; 8vh 2 X1h;�D
: (100)

Using the commutative diagram and the approximation results of Sect. 5, the
well-posedness of the discrete problem and error estimates are given in the following
theorem. The proof can be found in [15] and follows the same arguments used for
the convergence of finite elements in [27, Sect. 5].

Theorem 5.16 Assume either that � ¤ 0 is such that �2 is not an eigenvalue of
(96), or that˙ ¤ ;, then there exists Nh > 0 such that for all h � Nh problem (100) is
well-posed and produces quasi-optimal approximation to (100), that is

kE � EhkX � C inf
wh2X1h;�D

kE � whkX: (101)
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Moreover, if E and curl E are in .Hs.˝//3 for some s � p, then

kE � EhkX � Chs.kEkHs.˝/3 C k curl EkHs.˝/3/: (102)

5.5.4 Numerical Tests

Test 1

The first numerical test consists on the propagation of a plane wave in free space,
that is, �r D �r D 1. Written in polar coordinates, the domain is given by ˝ D
fx D .�; �/ W � < 10g. We assume that J D 0, and on �D D @˝ we impose a
Dirichlet boundary condition of the form E� n D Ei � n, where Ei is a plane wave
given by Ei D p exp.i�x � d/, with � D p10 and the polarization p D .0; 1; 0/ and
direction of propagation d D .1; 0; 0/.

We test a NURBS multi-patch parametrization of ˝ , represented in Fig. 20a.
The problem is discretized using the space X1h;�D

in a sequence of successively
refined meshes. In Fig. 19 we plot the error in H.curl/-norm for the discretization
with degree p D 3, and compare the cases of maximum continuity (C2 tangential
continuity) and minimum continuity (C0 tangential continuity) within each patch.
As in Sect. 3.2.1, the results show a better convergence in terms of the degrees
of freedom with higher continuity. Moreover, high continuity splines are faster in
reaching the asymptotic regime. This is indeed consistent with the known good
behaviour of smooth splines in the approximation of the full spectrum of discrete
differential operators (see, e.g., [29]).

Fig. 19 Comparison of the
error in H.curl/-norm for the
approximation of the plane
wave
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Fig. 20 Geometry and
computed solution of the
scattering problem. (a)
Geometry of the scattering
problem using five patches.
(b) Real part of the
y-component of Eh

Test 2

For the second numerical test we consider the same domain ˝ , and assume that
the square region .�1; 1/2 is occupied by a dielectric material with �r D 10 and
�r D 1. As before, we assume that J D 0, and now we impose an absorbing
boundary condition on ˙ D @˝ , which can be written as the impedance condition
with � D 1 and g D .curl Ei/�n� i�Ei

T , with the incidence field Ei the same plane
wave as in the previous test.

The problem is discretized using the space X1h defined with degree p D 3 and
maximum continuity within each patch, in a mesh formed by 1600 elements on each
patch. In Fig. 20b we show the real part of the second component of the computed
electric field. We note that only tangential continuity is imposed across the patches,
and in particular between the dielectric region and the free space. This allows a
more accurate computation at interface regions, since the exact solution is only
tangentially continuous due to the jump of the coefficient �r.

6 Conclusions

In this paper we have presented an introduction to isogeometric methods from a
mathematical viewpoint, with the focus on the numerical analysis of the method.
One of our goals when writing this paper was to provide a didactic reference
for those who want to study isogeometric methods for the first time. As a
consequence, the paper only contains results that are now well-established, and
somehow “classical”. Since isogeometric analysis is a relatively new research field,
many active and interesting research topics have been left aside of this manuscript.
Some of them are: the development of locally refined spaces (using hierarchical
splines, T-splines or LR-splines) and adaptive methods; spline spaces defined on
triangulations (Powell-Sabin splines); high continuity and approximation properties
in geometries with extraordinary points; preconditioners and domain decomposition
methods for isogeometric methods; isogeometric boundary element methods.

As it was mentioned in the introduction, the goal of full interoperability between
CAD software and an isogeometric PDE solver has not been attained yet, and it
is probably one of the most challenging problems in isogeometric methods. Some
of the obstacles to reach this goal are related to boolean operations and trimming,
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that are widely used in CAD modellers, but without any doubt the main difficulty is
that volumetric objects are described in CAD only through a representation of their
boundary, while the isogeometric methods require a volumetric parametrization that
is not readily available. This is limiting the use of the method to academic problems
and applications where the modelled object has a relatively “simple” geometry,
which can be represented as the image of several cubes. We remark that the demand
for volumetric CAD models is not exclusive to isogeometric methods, and is also
shared by the emerging technologies of 3D printing and additive manufacturing,
which makes it a strategic research topic.

Despite not being ready for their application at industrial level, isogeometric
methods are having a great impact in computational engineering, and are being
successfully applied in many different research fields, in particular in computational
mechanics, computational fluids and contact problems. Actually, one of the most
successful applications of isogeometric methods is the discretization of shell models
that require C1 continuity of the trial functions [31], which is not easily attained with
classical finite elements, but can be obtained almost for free with splines or NURBS.
Since for shell models the variational problem is formulated in the middle surface
of the modelled object, the problem of generating a volumetric parametrization is
circumvented, and in this case isogeometric methods can work directly on a CAD
description of the object.

Rather than giving here a list of references of the topics mentioned above, that is
likely to remain incomplete and early outdated, we encourage the interested readers
to search for the most recent developments of isogeometric methods in their area of
interest.
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Convolution Quadrature for Wave Simulations

Matthew Hassell and Francisco-Javier Sayas

Abstract These notes develop the algorithmic aspects of convolution equations
and their discretization by Convolution Quadrature, with an emphasis on the
convolution equations that occur in the boundary integral equation formulation
of wave scattering problems. The authors explore the development of CQ from a
number of different perspectives. Clear algorithms for implementation of CQ are
presented. A final example brings together the entire course to demonstrate the
full discretization of a time domain boundary integral equation using Convolution
Quadrature in time and a simple to program Nyström flavored method in space.

Keywords Convolution Quadrature • Acoustic waves • Time domain boundary
integral equations • Overresolving in the Laplace domain for Convolution Quadra-
ture methods

1 Introduction

The following document contains the notes prepared for a course to be delivered
by the second author at the XVI Jacques-Louis Lions Spanish-French School on
Numerical Simulation in Physics and Engineering, in Pamplona (Spain), September
2014. We will not spend much time with the introduction. Let it be said that this is a
course on how to approximate causal convolutions and convolution equations, that
is, expressions

Z t

0

f .t � �/g.�/d� D h.t/;

where either g or h is unknown. This seems like a very small problem to be working
on when it is presented in this flippant form. The truth is hidden in what the
convolution integral means. We will be dealing with operator valued distributions
f in convolution with a function valued distribution g. A large set of problems
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related to the scattering of linear waves (acoustic, elastic, electromagnetic) can
be written in this form after being moved to the boundary of the scatterer. We
will focus on acoustic waves (we will actually restrict all our attention to a single
model problem) and on a particular class of discretization methods, the so-called
Convolution Quadrature method, introduced by Christian Lubich in the late 1980s.
These notes will emphasize the introduction of concepts and algorithms in a rigorous
language, while avoiding proofs. As a matter of fact, we will not state a single
theorem explicitly. (This is not due to us not liking theorems, but with the goal
of keeping a more narrative tone.) However, clear results will be stated as part of
the text. The mathematics of the field of time domain boundary integral equations
(which include many important and highly non-trivial examples of convolution
equations) involve many interesting and deep analytic concepts, as the reader will be
able to ascertain from these notes. The deeper mathematical structure of this field is
explored in the lecture notes [29], in a step-by-step traditional mathematical fashion,
with not much time for computation. From that point of view, these notes represent
the algorithmic counterpart to [29]. Convolution Quadrature is not the only method
to approximate convolution equations that appear in wave propagation phenomena.
Galerkin and collocation methods compete with CQ in interest, applicability, and
good properties. We will not discuss or compare methods, especially because much
is still to be explored both in theory and practice. We will not comment on existing
literature on CQ for scattering problems on elastic and electromagnetic waves either.
Before we start, let us take some time for acknowledgements. Our research is
partially funded by the National Science Foundation (grant DMS 1216356). We now
become I. I (FJS) want to thank the organizers of the EHF2014 for the invitation
to participate in the school. It is actually my second time in this series (the first
one was in Laredo, so many years ago). Since then, the school has made its name
even longer by honoring the extraordinary Jacques-Louis Lions, who happens to
be my academic great-grandfather. Much of what I know on time domain integral
equations and CQ has been a consequence of readings and discussions with Lehel
Banjai and Christian Lubich. Both of them are an inspiration for practitioners of
serious numerical analysis. Matthew Hassell and I have been working on these
notes for several months, trying to give a wide perspective of the mathematical and
computational aspects of the problem. We hope the readers will enjoy them as much
as we did writing them.

2 Causal Convolutions and Laplace Transforms

In this section we introduce what will be the scope of this course: convolution
of causal functions and distributions. Causal convolution operators will often be
recognized through their Laplace transforms (which will be called their transfer
functions). As a first step towards a precise determination of the kind of functions
we will be dealing with, let us define the term causal. A function f W R! X (where
X is any vector space) is said to be an X-valued causal function when f .t/ D 0 for all
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t < 0. The reader might already wonder what the point is to have functions defined
in R when all we want from them is their restriction to Œ0;1/. However, this will
be a fundamental distinction in our way of presenting wave propagation operators,
where the vanishing past of the function will be often used, and where a non-zero
value at time t D 0 will be considered a jump discontinuity. The attentive reader
will have already seen that the independent variable t will often be called time.

We are going to spend this entire section giving a very general justification to
causal convolutions and their Laplace transforms:

. f � g/.t/ D
Z t

0

f .t � �/g.�/d�;

F.s/ D
Z 1

0

e�stf .t/dt:

2.1 Causal Functions and Convolutions

The causal convolution of two causal functions f W R ! R and g W R ! R is
defined as

. f � g/.t/ WD
Z t

0

f .t � �/g.�/d�: (1)

This definition makes sense, for instance, if both functions are continuous. It also
makes sense if one of the functions is continuous and the other one is integrable.
(It can be extended to many other cases, but we will wait for this.) Note that this
definition coincides with the more traditional form of the convolution of functions

. f � g/.t/ D
Z 1

�1
f .t � �/g.�/d�;

when f and g are causal. The first extension we will need to consider is when
f W R ! R

n�m and g W R ! R
m. In this case, (1) defines a causal function

f � g W R! R
n. In this more general definition (where the convolution integrals are

easily defined component by component), it is clear that we cannot even discuss
commutativity of the convolution operator (1). The second big generalization
involves two Hilbert spaces X and Y and the space B.X;Y/ WD fA W X ! Y W
A linear and boundedg:We can then start with a causal continuous function f W R!
B.X;Y/ and a causal function g W R ! X and obtain through convolution (1) a
causal function f � g W R ! Y. Because all functions involved have been assumed
to be continuous, the integration in (1) can be easily understood to be defined in
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the sense of a Riemann integral for each value of t. Finally, a causal convolution
equation is an equation of the form

. f � g/.t/ D h.t/ 8t; (2)

where h W R ! Y is causal, f W R ! B.X;Y/ is causal, and we look for a causal
X-valued function g.

2.1.1 Some Preliminary Examples

The simplest possible example of convolution is the causal antiderivative

Z t

0

g.�/d�;

corresponding to the convolution with the Heaviside function:

H.t/ WD
�
1; t � 0;
0; t < 0:

A slightly more general operator is given by the expression

Z t

0

e�.t��/g.�/d�: (3)

Note that if we define

y.t/ D
Z t

0

e�.t��/g.�/d�; (4)

then y is the only causal solution to the equation Py � � y D g; or, in the more
traditional language of ordinary differential equations, y satisfies

Py � � y D g; in Œ0;1/; y.0/ D 0; (5)

and has been extended by zero to the negative real axis. The formula (4) is
the variation of parameters formula (or Duhamel principle) for the initial value
problem (5). Equation (5) shows our first use of the dot as the symbol for time-
differentiation. Similarly

y.t/ D ��1
Z t

0

sin.�.t � �//g.�/d�
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is the operator that yields the unique causal solution to Ry C �2y D g: The latter
example can be easily extended to cover some sort of discrete wave equations. We
start with a discrete version of the second derivative in one (implicitly given) space
dimension:

R
N�N 3 �N WD 1

.N C 1/2

2
666664

�2 1

1 �2 1
: : :

: : :
: : :

1 �2 1

1 �2

3
777775
:

Since �N is symmetric and it is not terribly complicated to see that it is negative
definite, we can find a unitary matrix DN such that

�N D DN

2
6664
��21
��22

: : :

��2N

3
7775D>

N ; �j > 0 8j:

We can then define

.��N/
1=2 D DN

2
6664
�1
�2
: : :

�N

3
7775D>

N ;

and

sin.t.��N/
1=2/ D DN

2
6664

sin.�1t/
sin.�2t/

: : :

sin.�Nt/

3
7775D>

N ;

and finally the vector-valued operator

y.t/ WD .��N/
�1=2

Z t

0

sin..t � �/.��N/
1=2/g.�/d�;

which yields the solution of

Ry ��Ny D g in Œ0;1/; y.0/ D Py.0/ D 0;
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extended by zero to negative t. This is a discrete version (after using low order finite
differences) of the solution operator to the one-dimensional wave equation

@2t y � @2xy D g in Œ0;1/ � Œ0; 1�;
y.�; 0/ D @ty.�; 0/ 
 0 in Œ0; 1�;

y.0; �/ D y.1; �/ D 0 in Œ0;1/:

2.1.2 A Convolution Equation

One example of causal convolution equation is the Abel integral equation

Z t

0

g.�/p
t � � d� D h.t/ t � 0: (6)

The weakly singular operator in the left-hand-side of (6) is actually related to the
anti-differentiation operator. If we define

y.t/ D
Z t

0

	Z r

0

g.�/p
r � �pt � r

d�



dr;

then it is easy to see (it requires some patience and the use of the Euler Beta function)
that

y.t/ D �
Z t

0

g.�/d�;

that is, the Abel integral operator can be consider as a square root of the antideriva-
tive and, therefore,

1p
�

Z t

0

Pg.�/p
t � � d� (7)

is a square root of the differentiation operator. This is one of the Caputo fractional
derivatives. Note that at this time we cannot yet understand the operator in (7) as a
convolution operator.

2.1.3 A Much More Complicated Example

Just to give a better flavor of operators to come, let us show one related to
propagation of linear waves in the plane. Let X D Y D L2.� /, where � is a simple
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closed curve in the plane. Consider now the operator

.V.t/�/.x/ WD 1

2�

Z
�

H.t � jx � yj/p
t2 � jx � yj2 �.y/d� .y/;

where H is the Heaviside function. For given t, this is a well defined operator X !
Y. We can then define the convolution of V with a function g W R! L2.� / (which
can better be understood as a function g.y; t/ with y 2 � such that g.�; t/ 
 0 for
t < 0), leading to the expression

1

2�

Z
�

 Z t�jx�yj

0

g.y; �/p
.t � �/2 � jx� yj2 d�

!
d� .y/:

2.2 Causal Distributions

It is customary to keep on extending the definitions of the previous subsection to
‘functions’ f that include Dirac deltas or their derivatives. These extensions can be
carried out with better or worse justified limiting processes. Instead of doing that,
we will go the whole nine yards and deal with some very elementary concepts of
function- and operator-valued distributions.

On notation We will always keep in mind some Hilbert spaces X;Y;Z; : : : and the
spaces of bounded linear operators between pairs of themB.X;Y/; ::. When we want
to refer at the same time to the Hilbert spaces or to the spaces of operators, we will
just refer to a general Banach space X.

2.2.1 The Test Space

We consider the space of smooth compactly supported functions

D.R/ WD f 2 C1.R/ W  
 0 outside Œ�M;M� for some Mg:

We will not need a precise definition of support, but here it is just in case

supp D closure of ft W  .t/ ¤ 0g:

A sequence f ng � D.R/ is said to converge to  2 D.R/ when the support of all
the elements of the sequence and of the limiting function is contained in a bounded
interval Œ�M;M�, and for all m � 0,  .m/n !  .m/ uniformly in R.
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2.2.2 Causal Vector-Valued Distributions

A distribution with values in a Banach space X is a functional f W D.R/ ! X that
is sequentially continuous, that is, such that it transforms convergent sequences to
convergent sequences. An X-valued distribution f such that

h f ;  i D 0 whenever supp  � .�1; 0/

is called a causal distribution. Note how we have used the angled bracket for the
action of the distribution f on the test function  . The simplest example of causal
distributions are causal functions. If f W R ! X is a continuous function, then we
can define

h f ;  i WD
Z 1

0

f .t/ .t/dt;

with the integral defined in the sense of a Riemann integral, or, even simpler, as a
limit

Z 1

0

f .t/ .t/dt D lim
N!1

1

N

1X
nD0

f .n=N/ .n=N/:

Then f defines a causal distribution. If x 2 X, we can define

hx˝ ı0;  i WD  .0/ x;

which is a causal X-valued distribution. More generally, if t0 � 0, then

hx˝ ıt0 ;  i WD  .t0/x

is a causal distribution. If we take t0 < 0, we still have a distribution, but it is not
causal anymore.

2.2.3 Steady State Operators

Once we have a causal distribution f with values in the space X, any bounded linear
operator A W X ! Y allows us to define the distribution

hAf ;  i WD Ah f ;  i;

with values in Y. When we make a linear operator A W X ! Y act on X-valued causal
distributions, we will say that we have used a steady state operator. In particular, if
X � Y with bounded inclusion, then every X-valued distribution can be understood
as a Y-valued distribution.
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2.2.4 Differentiation

It is very simple to see why if  n converges to  in D.R/, then P n converges to P 
in D.R/. Therefore, if f is a causal X-valued distribution, then

hPf ;  i WD �h f ; P i

is a causal X-valued distribution too. For instance, consider x 2 X and let H be the
Heaviside function. The derivative of

hx˝ H;  i D
	Z 1

0

 .t/dt



x

is

�hx˝ H; P i D  .0/ x D hx˝ ı0;  i:

The derivative of x˝ ı0 is hx˝ Pı0;  i D � P .0/x:

2.3 Laplace Transforms

2.3.1 Why?

Let us first go back to Sect. 2.1. Let us admit that all the following formal
manipulations actually make sense:

Z 1

0

e�st. f � g/.t/dt D
Z 1

0

e�st

	Z t

0

f .t � �/g.�/d�



dt

D
Z 1

0

	Z 1

�

e�stf .t � �/g.�/dt



d�

D
Z 1

0

e�s�

	Z 1

�

e�s.t��/f .t � �/dt



g.�/d�

D
	Z 1

0

e�stf .t/dt


	Z 1

0

e�stg.t/dt



:

This computation shows how the Laplace transform

h 7!
Z 1

0

e�sth.t/dt

maps convolutions to ‘products’. Let us try to first give a precise meaning to the
Laplace transform.
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2.3.2 The Schwartz Class

The expression

S.R/ WD f 2 C1.R/ W pm
d

dtm 2 L1.R/ 8m � 0g; pm.t/ WD 1C t2m;

gives an abbreviated definition of the set of all smooth functions whose derivatives
of all orders can be bounded by non-vanishing rational functions of all possible
decays at infinity. This set obviously containsD.R/. Convergence in S.R/ is defined
as follows: the sequence f ng � S.R/ converges to  2 S.R/, when for all m � 0,
pm 

.m/
n ! pm  

.m/ uniformly in R. Using some simple cut-off arguments, it is
possible to show that every element of S.R/ is the limit of a sequence of elements
of D.R/, that is, D.R/ is dense in the Schwartz class.

2.3.3 A Careful Construction of the Laplace Transform

We start with a smooth version of the Heaviside function H. Consider a function
h W R! R with the following properties:

h 2 C1.R/; 0 � h � 1; h 
 1 in Œ� 1
2
;1/; h 
 0 in .�1;�1�:

(8)

This function can be easily constructed using the antiderivative of a positive smooth
compactly supported function, conveniently displaced and scaled. Let now

s 2 CC WD fs 2 C W Re s > 0g:

Then, the function

 s.t/ WD h.t/e�s t (9)

is an element of the Schwartz class. Therefore, there exists a sequence f n;sg �
D.R/ converging to  s in S.R/. We will say that the causal X-valued distribution
f has a Laplace transform when limn!1h f ;  n;si exists (in X) for all s 2 CC. We
then define the function F W CC ! X given by the limit

F.s/ WD lim
n!1h f ;  n;si: (10)

It is common to use all the following expressions:

F.s/ D Lf f g.s/ D h f ;  si D h f ; e�s�i:

In the last one we act on the understanding that because f is causal, the function
h is actually invisible. Actually, if we fix s but define any other h with the same
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properties, the difference between the corresponding s is an element of D.R/ with
support in Œ�1;� 1

2
� and thus completely invisible for every causal distribution. In

other words, the definition (10) is independent of the particular choice of h, as long
as this smooth Heaviside function satisfies (8) or a similar expression with Œ�1;� 1

2
�

substituted by any closed interval contained in the negative real axis.

2.3.4 Some Examples

The Laplace transform of x˝ ıt0 is

hx˝ ıt0 ; e
�s�i D hıt0 ; e

�s�i x D e�st0x:

The Laplace transform of x˝ H is

hx˝ H; e�s�i D
	Z 1

0

e�stdt



x D 1

s
x:

If the Laplace transform of an X-valued distribution f exists and A W X ! Y is a
steady-state operator (bounded linear), then the Laplace transform of Af is

LfAf g.s/ D hAf ; e�s�i D Ah f ; e�s�i D AF.s/:

2.3.5 Laplace Transform and Differentiation

A simple computation shows that P s D �s s C 's, where 's 2 D.R/ is supported
in .�1; 0/. Therefore, if f has a Laplace transform, then Pf has a Laplace transform
and

Lf Pf g D hPf ;  si D �h f ;�s s C 'si D h f ; s si D sF.s/;

since h f ; 'si D 0, due to the causality of f . This is the differentiation theorem.

2.3.6 A Remark

Readers used to classical Laplace transforms might be missing the value of f at
t D 0 subtracted from the right-hand-side. It is missing in our formulation, because
the derivative Pf includes also a Dirac delta at t D 0 caused by a non-zero f .0/.
More precisely: assume that f is a fastly decaying smooth function f W Œ0;1/! X,
extended by zero to the negative real axis. Let f 0 W Œ0;1/ ! X be its classical
derivative, which we also assume to be fastly decaying. Then

Pf D f .0/˝ ı0 C f 0;
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that is, the distributional derivative contains a functional part f 0 and a Dirac delta
term related to the initial value of f . Then

Lf f 0g.s/ D Lf Pf g.s/ �Lf f .0/˝ ı0g D sF.s/ � f .0/;

which is the formula we typically learn in an introduction to ODE class. The lesson
to learn here is to be exactly aware of what we understand by the derivative. In our
case, the derivative will always be defined for a causal function, and will include
anything happening at t D 0.

2.3.7 Warning

The reader might think that we are developing quite a general theory. This is
however not the case. The Laplace transform can sometimes be defined in a half
plane of the complex plane C, larger or smaller than CC. It is sometimes possible
to extend it to the entire complex plane or to a larger region of the complex plane.
The kind of operators that we want to focus on (arising from hyperbolic evolutionary
equations) does not require to go any further than what we have done here. Parabolic
equations produce transforms that are defined in the complementary set of a sector in
the negative complex half plane. The theory of Laplace transforms is often defined
for non-causal distributions, leading to double-sided Laplace transforms, which end
up being analytic extensions of Fourier transforms. As already mentioned, we will
try to keep the theory quite close to our interests.

2.3.8 Analiticity

One of the nicest surprises of advanced analysis is the fact that many results in the
theory of analytic functions of a complex variable can be extended almost word by
word to analytic functions of a complex variable with values in a Banach space X.
In particular, it is quite easy to prove that if f is causal and Laplace transformable,
with values in X, then the function CC 3 s 7�! F.s/ 2 X is differentiable in s and
therefore it is an analytic X-valued function.

2.3.9 Real or Complex Spaces?

There is some fine detail missing in our treatment of the definition of the Laplace
transform. We have implicitly assumed that D.R/ and S.R/ are spaces of real-
valued functions. In this case,  s D h exp.�s�/ is complex-valued, and we should
be careful in defining

F.s/ D h f ;  si WD h f ;Re si C ih f ; Im si:
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For the kind of applications we have in mind X is a real Banach space and F.s/ takes
values in the complexification X C iX. (There is no problem when X is a complex
space though.) A reader who is not comfortable with the idea of complexification
should think of

L2.˝/ WD
�

f W ˝ ! R W
Z
˝
j f j2 <1

�
becoming

�
f W ˝ ! C W

Z
˝
j f j2 <1

�
:

Here is an important consequence that we will exploit in Sect. 4: if X is a real
space, then its complexification is a complex vector space that admits a conjugation
operator; in this case

F.s/ D F.s/: (11)

2.4 Transfer Functions and Convolution Operators

2.4.1 A Very Weak Definition of Convolution

Let f be a B.X;Y/-valued causal Laplace transformable distribution and let g be an
X-valued causal Laplace transformable distribution. The convolution f �g is defined
to be the Y-valued causal distribution whose Laplace transform satisfies

Lff � gg.s/ D F.s/G.s/: (12)

The right-hand-side of (12) is the action of the operator F.s/ 2 B.X;Y/ on G.s/ 2 X.
The justification of how this formula makes sense follows from a theorem for the
inversion of the Laplace transform given at the end of this section. For the moment
being, we will accept this as a definition. A similar argument can be invoked to
substitute the X-valued distribution g by a B.Z;X/-valued distribution. In this case,
the convolution defines a new distribution which is again operator-valued, this time
in B.Z;Y/.

2.4.2 Examples

The first new case of a convolution operator is differentiation:

Pı0 � f D Pf  ! sF.s/ D Lf Pf g:

This is also valid when f takes values on X, by convoluting with

d
dt .IX ˝ ı0/ D IX ˝ Pı0;
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where IX is the identity operator in X. This is one of the few cases where we can talk
about commutativity: if f takes values in B.X;Y/, we can write

.IY ˝ Pı0/ � f D Pf D f � .IX ˝ Pı0/;

which is the time domain form of .sIY/F.s/ D sF.s/ D F.s/.sIX/: Delays are also
causal convolution operators

.I ˝ ıt0 / � f D f .� � t0/  ! e�st0F.s/:

In this case either f is X-valued and I is the identity in X, or f is B.X;Y/-valued and
I is the identity in Y. We can then combine derivatives and delays in the form of an
equation: given a causal function g, we look for a causal function y satisfying

Py D g � g.� � t1/; where t1 > 0:

This is then equivalent to

Y.s/ D 1 � e�st1

s
G.s/:

The inversion theory will allow us to see how the solution operator g 7! y is also a
convolution operator.

2.4.3 Terminology

If f is a B.X;Y/-valued causal Laplace transformable distribution, its Laplace
transform F W CC ! B.X;Y/ is often referred to as its transfer function. In more
analytic contexts, the transfer function is also called the symbol of the operator.

2.4.4 Inversion Theory

There is an unfortunate fact in the theory of Laplace transforms, stemming from
the fact that few classical smoothness properties of a distribution (the distribution
equals a function which is continuous or smoother) can be directly seen in their
Laplace transforms. However, by restricting the set of distributions and their Laplace
transforms, we can find two sets that correspond one to one. At the distributional
sense, the set is:

All causal continuous functions f W R ! X with polynomial growth as t ! 1
and their distributional derivatives.

Polynomial growth of f means that kf .t/k can be bounded by a polynomial
in the variable t. The set of all Laplace transforms of these distribution can be
characterized as follows:
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All analytic functions F W CC ! X such that

kF.s/k � C.Re s/jsj� 8s 2 CC; (13)

where � 2 R and C W .0;1/! .0;1/ is a non-increasing function such that

mC./ � C0; 8 2 .0; 1�: (14)

2.4.5 Convolution Justified

If f is a B.X;Y/-valued distribution whose Laplace transform satisfies proper-
ties (13)–(14), and g is an X-valued distribution whose Laplace transform satisfies
the same type of bound (with different� and C), from where it is clear that F.s/G.s/
is also the Laplace transform of a causal distribution, which is what we call f � g.

2.4.6 A Final Complicated Example

For this example we need the Sobolev space H1
0.˝/, which can be defined as the

closure of the set of C1.˝/ functions that vanish in a neighborhood of @˝ , with
respect to the Sobolev norm

kuk21;˝ WD kruk2˝ C kuk2˝ D
Z
˝

jruj2 C
Z
˝

juj2:

We now start with g 2 L2.˝/ and look for

u 2 H1
0.˝/ s.t. .ru;rv/˝Cs2.u; v/˝ D .g; v/˝ 8v 2 H1

0.˝/: (15)

With some help of the Lax-Milgram lemma, it is not complicated to see that the
solution operator L2.˝/ 3 g 7! u 2 H1

0.˝/ is well defined and satisfies

kuk1;˝ � C.Re s/kgk˝; C./ WD 1

 minf1; g :

It is also easy to see how the solution operator is an analytic function of the
parameter s 2 CC. Therefore, there exists a B.L2.˝/;H1

0.˝//-valued causal
distribution f whose Laplace transform is the operator F.s/ that solves problem (15).
We keep the same letter g for a causal function g W R ! L2.˝/ with polynomial
growth. Then F.s/G.s/ is analytic in CC, with values in H1

0.˝/. It is also the Laplace
transform of a causal H1

0.˝/-valued distribution u D f � g. This is the very weak
form of the problem looking for a causal H1

0.˝/-valued distribution u such that

.ru;rv/˝ C .Ru; v/˝ D .g; v/˝ 8v 2 H1
0.˝/:
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If u were a smooth function of time (it might not be depending on how smooth g is),
then we could characterize u W Œ0;1/! H1

0.˝/ in a stronger form

.ru.t/;rv/˝ C .Ru.t/; v/˝ D .g.t/; v/˝ 8v 2 H1
0.˝/; t � 0;

with vanishing initial conditions u.0/ D 0 and Pu.0/ D 0: Readers acquainted with
basic Sobolev space theory (the one used for the most elementary elliptic equations)
will recognize a weak form of the wave equation @ttu D �uC g with homogeneous
Dirichlet boundary conditions and homogeneous initial condition. The moral of the
story is that the solution operator for this problem is a causal convolutional operator.

2.5 Credits

Laplace transforms of (scalar) distributions are an important part of the original
theory designed by Laurent Schwartz. A readable, while quite general, introduction
is given in [32, Chapter 6]. Note that the general case allows for the Laplace
transform to be defined in any right semiplane of C (we only pay attention
here to the one with positive real part). The problem of defining convolutions
of distributions is also a classic in modern analysis [32, Chapter 3], especially
because many different pairs of distributions can be convoluted, but not every pair.
However, the causal case is much simpler, since any pair of causal distributions
can be put in convolution. There are no easy references to learn vector-valued
distributions. A very comprehensive treatment is given in [33], and a much more
concise introduction can be found in [13]. For an introduction tailored to our needs,
the reader is referred to [29]. The inversion theorem for the Laplace transform is
part of the general theory, but the class of Laplace transforms that we present here,
as well as their time-domain representatives, is inherited from [29], as a further
refinement of a class introduced in [22]. This class of symbols is the one that appears
systematically in the treatment of exterior problems for the wave equation [22].

3 Multistep Convolution Quadrature

The goal of this section is the presentation and justification of some discrete
quadrature approximations of convolutions and convolution equations

y.t/ D
Z t

0

f .�/g.t � �/d�;
Z t

0

f .�/g.t � �/d� D h.t/:

The discretization will be developed on a uniform grid of time-step � > 0

tn WD n� n � 0:
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Data will always be dealt with in the time domain. This will lead to discrete
convolutions

y.tn/ � yn WD
nX

mD0
!F

m.�/g.tn�m/ n � 0;

and discrete convolution equations

nX
mD0

!F
m.�/gn�m D h.tn/ n � 0:

3.1 A Backward Differentiation Approach

3.1.1 A Very Simple Model Problem

Given a causal function g W R! R and c > 0, we look for causal y such that

Py � cy D g: (16)

The causality of y means exactly that y.t/ D 0 for t < 0. If we want to impose an
initial condition y.0/ D y0, the way to go is to incorporate it to the right-hand-side

Ry � cy D gC y0ı0:

We will not deal with this case, since we will insist on the right-hand-side of (16).
The reader might think it is quite a stupid notion to deal only with homogeneous
initial conditions. (It is also true that (16) is a linear equation for with the exact
solution can be given a closed formula.) The emphasis of this exposition is in
picking up a very simple example to try to understand what we will do for more
complicated problems where time-stepping strategies are far from obvious.

3.1.2 Backward Euler Differentiation

The starting point for applying the Backward Euler (BE) method to (16) is the
simple discrete differentiation formula:

Py.tn/ � 1
�
.y.tn/� y.tn�1//: (17)

We can then define the BE approximation to (16) by

1
�
.yn � yn�1/ � cyn D g.tn/: (18)
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We want the sequence fyng to be causal, which means that yn D 0 for n < 0 (but
not for n D 0). Since the discrete differentiation formula (17) only uses one point
in the past, we will only need to set y�1 D 0. In this case we will have that g.0/ D
g.t0/ D 0 implies y0 D 0. If g.0/ ¤ 0, then the derivative of the solution of (16)
needs to jump at t D 0 and therefore (17) is not a very good approximation of a
quantity that just does not exist at the point t0. Once again, this is not our concern,
because the kind of problems we will be dealing with start smoothly from zero. We
can write (18) in a more explicit form

yn D 1

1 � �c
yn�1 C �

1 � �c
g.tn/;

and work backwards by induction until we reach n D 0 to get

yn D �
nX

mD0

1

.1 � �c/mC1 g.tn�m/: (19)

The proper BE method would stop the sum at m D 1 and never use the value g.0/,
i.e., (19) is the proper BE method only when g.0/ D 0.

3.1.3 Remark

The expression (19) is somewhat worrying for 1 � �c might be zero. In principle
one could always think of taking � small enough to ensure that (19) makes sense.
(Actually it only fails if �c D 1.) But you might keep on wondering, were we not
using an implicit method? How come this might not work? The reason is actually
that when we think of implicit methods and stability issues, we automatically
assume c < 0 (we look for stable approximations of stable problems!), so there
is nothing to worry about. We need this form for some future computations.

3.1.4 A More Convolutional Point of View

Let us remind you that the causal solution of (16) is given by the convolution
expression

y.t/ D
Z t

0

ec�g.t � �/d�:

We focus on the point tn and write

y.tn/ D
nX

mD0

Z tm

tm�1

ec�g.tn � �/d�: (20)
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(The reader should not be too concerned with us including the interval .t�1; t0/,
where everything should be zero. This is part of the method and we have already
warned that when g.0/ ¤ 0 the method should be modified.) The BE method makes
the slightly strange approximation

Z tm

tm�1

ec�g.tn � �/d� � �

.1 � �c/mC1 g.tn � tm/;

which we will not try to justify.

3.1.5 Challenges We Will Not Accept

We can also think of our very primitive wave equation Ry C c2y D g; when we
approximate

Ry.tn/ D 1

�2
.y.tn/� 2y.tn�1/C y.tn�2//;

which is the first order approximation of the second derivative corresponding to (17).
The associated discrete method is

1

�2
.yn � 2yn�1 C yn�2/C c2yn D g.tn/;

starting with causal conditions y�2 D y�1 D 0. While it is possible to find a formula

yn D �2
nX

mD0
˛m.c�/g.tn�m/; (21)

we will not waste our time trying to figure out these coefficients. What is important
is the fact that (21) approximates

y.tn/ D c�1
Z tn

0

sin.c�/g.tn � �/d�:

If we go back to (16) but now approximate the derivative using a double backward
differentiation formula

Py.tn/ � 1
�
. 3
2
y.tn/ � 2y.tn�1/C 1

2
y.tn�2//;

we end up with the BDF2 method

1
�
. 3
2
yn � 2yn�1 C 1

2
yn�2/C cyn D g.tn/:
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This recurrence can also be solved to obtain a formula resembling (19). These
formulas become really cumbersome to obtain (especially when it is unclear why
we need them), so instead of hitting our heads against the wall repeatedly, we are
going to move on to understand the language of finite difference equations.

3.2 The Language of � Transforms

3.2.1 In Two Words

The � transform is to initial value problems for difference equations (recurrences)
what the Laplace transform is to initial value problems for ODEs. However, it is
mainly a formal transform, involving series whose convergence will not concern us
at all.

3.2.2 The � Transform

Our input is a sequence fyng, which we can consider to start at n D 0 or to be causal
(yn D 0 for n � �1). We then associate the formal series

Y.�/ WD
1X

nD0
yn�

n:

This series is to be understood in a purely algebraic way, as a sort of polynomial
with infinitely many coefficients. A simple operation to be performed with causal
sequences is the displacement to the right

.y0; y1; y2; : : :/ 7�! .0; y0; y1; : : :/

which we can understand with the full causal sequence as fyng 7! fyn�1g. This
operation is very easy to describe with � series:

Y.�/ 7�! �Y.�/ D
1X

nD1
yn�1�n:

The second important operation that � transforms describe in a simple way is
discrete convolution. The convolution

nX
mD0

ambn�m
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corresponds to the product of the � transforms

A.�/B.�/ D
1X

nD0

 
nX

mD0
ambn�m

!
�n:

In these expressions we might be thinking of scalar quantities (sequences taking
values in R or C) or more complicated situations, where, for instance, fyng is a
sequence in a vector space X and the sequences fang and fbng take values on spaces
of operators where the multiplications ambn�m are meaningful.

3.2.3 BE Again

The discrete recurrence

1
�
.yn � yn�1/ � cyn D gn; gn WD g.tn/;

is transformed into
	
1 � �
�
� c



Y.�/ D G.�/

and thus yields

Y.�/ D 1
1��
�
� c

G.�/: (22)

Working through the algebra, we can easily write

1
1��
�
� c
D �

.1 � �c/ � � D
�

1 � �c

	
1 � �

1 � �c


�1
D

1X
nD0

�

.1 � �c/nC1 �
n;

(23)

which means that (22) and (23) are just encoding (19).

3.2.4 BDF2

The � transform of the BDF2 equations

1
�
. 3
2
yn � 2yn�1 C 1

2
yn�2/C cyn D gn; gn WD g.tn/
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is
	
1

�

	
3

2
� 2� C 1

2
�2


� c



Y.�/ D G.�/;

or in explicit form

Y.�/ D 1
1
�

�
3
2
� 2� C 1

2
�2
� � c

G.�/: (24)

3.2.5 Implicit Differentiation by the Trapezoidal Rule

The equation Py � cy D g can also be approximated using the trapezoidal rule

1

�
.yn � yn�1/� c

2
.yn C yn�1/ D 1

2
.gn C gn�1/: (25)

In this case we are not starting from a backward discretization of the derivative,
but have found the method working directly on the differential equation. With �
transforms, (25) is written as

	
1 � �
�
� c

1C �
2



Y.�/ D 1C �

2
G.�/;

which can be given explicitly as

Y.�/ D 1

1
�
2
1��
1C� � c

G.�/ (26)

3.2.6 Summary

It is instructive to pay attention to the expressions of the recurrences (22), (24),
and (26). All of them share the form

Y.�/ D 1
1
�
ı.�/� c

G.�/;

with

ı.�/ WD

8̂<
:̂
1 � �; (BE);
3
2
� 2� C 1

2
�2; (BDF2);

2
1��
1C� ; (TR):
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We already understood ı.�/ as a backward differentiation formula for BE and BDF2.
We could also think of higher order BDF methods

ı.�/ WD
pX
`D1

1

`
.1 � �/`:

While these methods are useful in the parabolic world, we will not be able to
use them in wave propagation problems, so we will quietly put them aside. The
trapezoidal approximation deserves some special attention. The function

ı.�/ D 2 1 � �
1C � D 2.1� �/

1X
nD0
.��/n D 2C 4

1X
nD1
.�1/n�n

does not represent a simple difference formula for approximation of the derivative of
a function. Instead, it can be seen as a long memory approximation of the derivative
of a causal function

Py.tn/ � 1

�

�
2y.tn/� 4y.tn�1/C 4y.tn�2/� 4y.tn�3/C : : :

�

(the sum is finite because y is causal), or as an implicit method to approximate the
derivative. If we know y, then h D Py is approximated by solving recurrently

1

2
.hn C hn�1/ D 1

�
.yn � yn�1/; yn D y.tn/:

This formula might look surprising to the reader. Just think that differentiating the
function is a sort of opposite process to solving a differential equation, so now the
data are being differentiated and appear in the right-hand-side.

3.3 Moving from s to �

3.3.1 Back to the Laplace Transform

The causal solution to Py � cy D g is given through its Laplace transform by

Y.s/ D 1

s � c
G.s/:

The discrete versions we have obtained in the previous subsection fit in the general
frame

Y.�/ D 1
1
�
ı.�/� c

G.�/;
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or also in implicit form

1

�
ı.�/Y.�/� cY.�/ D G.�/; (27)

where we see the approximation of the differentiation operator by a discrete
derivative operator, given in � transformed style by 1

�
ı.�/. Our transfer function

was .s � c/�1. The discrete transfer function is

	
1

�
ı.�/� c


�1
:

We do not need the expansion of this function into coefficients, because the method
itself is built from a recurrence we can just apply. However, just for the sake of the
argument, let us formally expand:

	
1

�
ı.�/� c


�1
D

1X
nD0

!c
n.�/�

n:

Then, the recurrence hidden in (27) can be given an explicit form

yn D
nX

mD0
!c

n.�/g.tn�m/:

3.3.2 A First Generalization

Let us think again of our primitive wave equation Ry C c2y D g: In the Laplace
domain this is

Y.s/ D 1

s2 C c2
G.s/;

which corresponds to

y.t/ D c�1
Z t

0

sin.c�/g.t � �/d�:

If we use one of our time-stepping methods, we are essentially applying the
recurrence

	
1

�
ı.�/


2
Y.�/C c2Y.�/ D G.�/;
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or in explicit form

Y.�/ D 1�
1
�
ı.�/

�2 C c2
G.�/:

If we are able to expand

1�
1
�
ı.�/

�2 C c2
D

1X
nD0

!c2
n .�/�

n;

then the recurrence becomes a discrete convolution

yn D
nX

mD0
!c2

n .�/g.tn�m/:

Even if we are just rewriting very simple solvers for linear differential equations,
we can see how the final discrete convolution formula uses the Laplace transform of
the solution operator (in this case .s2 C c2/�1), while data are sampled in the time
domain.

3.3.3 Convolutions Become Discrete

We next move to a general convolution

y D f � g: (28)

Here f and g are known. We need g to be a causal function R ! X. On the other
hand f can be any causal Laplace transformable distribution with values in B.X;Y/.
We actually do not need to know f , but are happy enough with its Laplace transform
F.s/. The Laplace transform of (28) is

Y.s/ D F.s/G.s/:

The discrete equations are then

Y.�/ D F. 1
�
ı.�//G.�/; G.�/ WD

1X
nD0

g.tn/�
n: (29)

If we are able to expand

F. 1
�
ı.�// D

1X
nD0

!F
n .�/�

n; (30)
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then (29) becomes a discrete convolution

yn D
nX

mD0
!F

m.�/g.tn�m/; n � 0 (31)

which uses time-domain readings of the data function g combined with a discrete
transfer function that arises from the original transfer function and the approxima-
tion of the differentiation operator. The discrete convolution (31), with coefficients
computed following (30), is the Convolution Quadrature method to approximate
the convolution (28) at discrete time steps. Recall that our hypotheses for F included
F to be analytic in CC. If ı.0/ 2 CC, then the function � 7! F. 1

�
ı.�// is analytic in

a neighborhood of � D 0 and the expansion (30) is just a Taylor expansion.

3.3.4 Convolution Equations

A convolution equation can be seen (in the Laplace domain) as

F.s/G.s/ D H.s/ or G.s/ D F.s/�1H.s/: (32)

The version in the right-hand-side is an explicit convolution, with the caveat that
F.s/�1 might not be known. The Convolution Quadrature method is then given by
the recurrence that is equivalent to the � transform equation:

F. 1
�
ı.�//G.�/ D H.�/; H.�/ WD

1X
nD0

h.tn/�
n:

In discrete times, this is equivalent to

nX
mD0

!F
m.�/gn�m D h.tn/; n � 0; (33)

or, in a slightly more explicit form, to

!F
0 .�/gn D h.tn/�

nX
mD1

!F
m.�/gn�m D h.tn/�

n�1X
mD0

!F
n�m.�/gm:

The coefficients f!F
n .�/g � B.X;Y/ are computed using (30). The method is well

defined when !F
0 .�/ is invertible.
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3.3.5 Just in Case

The way we have written the convolution equation (32) raises an interesting issue.
Assume that we happen to know both F.s/ and F.s/�1, and that we can expand

F. 1
�
ı.�// D

1X
nD0

!F
n .�/�

n; F. 1
�
ı.�//�1 D

1X
nD0

!F�1

n .�/�n: (34)

We wonder whether (33) (the discretization of the convolution equation) is the same
method as

gn D
nX

mD0
!F�1

m .�/h.tn�m/:

The answer is yes. The key to understanding why lies in the fact that both
expansions (34) are Taylor expansions. In fact, there is an underlying assumption in
the background: we assume that F is a transfer function in the conditions of Sect. 2.4,
and so is F�1. This means that for all s 2 CC, we need F.s/ to be invertible and we
want the function CC 3 s 7! F.s/�1 2 B.Y;X/ to be analytic (we get this for free)
and to admit a bound like (13). In particular, these hypotheses imply (see Sect. 2.4)
that the convolution equation f � g D h is solved with another convolution equation
g D f �1 � g, where Lf f �1g.s/ D F.s/�1. In this case

F. 1
�
ı.�//F. 1

�
ı.�//�1 D I

for � small enough, which implies that

!F
0 .�/

�1 D !F�1

0 .�/;

nX
mD0

!F
m.�/!

F�1

n�m.�/ D 0 n � 1:

This proves that

F. 1
�
ı.�//G.�/ D H.�/ and G.�/ D F. 1

�
ı.�//�1H.�/

deliver the same sequence fgng.

3.3.6 Why Implicit

It is tempting to think whether an explicit approximation of the derivative would
work. While in principle there might not be any problem for it (you just need to
compute what ı.�/ is, plug it in (30), and expand), it is not very clear what we would
gain from it. As already emphasized, we are not dealing with linear differential
equations. We are merely using them to motivate the methods. The actual transfer
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functions are analytic functions of the variable s and using one ı.�/ or another might
not make much of a difference at the point of implementing the method. It has to
be said, nevertheless, that for applications in wave propagation, using the discrete
differentiation operators associated to explicit approximations of the derivative does
not work. We can also just wash our hands and claim that we are dealing with causal
problems (causal convolutions), and we want to keep everything causal. Explicit
(forward) differentiation breaks causality by looking into the future.

3.4 A Bold Approach in the Laplace Domain

3.4.1 A New and Fast Introduction of BE-CQ

Let us just focus on causal convolutions

y D f � g i.e. Y.s/ D F.s/G.s/:

A particular case is F.s/ D s, corresponding to differentiation y D Pg. We fix the
time step � but do not pay special attention to the discrete times. The Euler discrete
backward derivative approximation to y D Pg is

y � 1
�
.g � g.� � �// DW y�:

The Laplace domain form of this equation is

Y�.s/ D 1
�
.1 � e�s�/G.s/:

This can be written as

Y�.s/ D s�G.s/; (35)

where

s� D 1
�
.1 � e�s�/ D 1

�
ı.e�s�/; ı.�/ D 1 � �:

3.4.2 BDF2 and TR

We can try the same ideas with our other two particular methods introduced in
Sects. 3.2 and 3.3. The BDF2 approximation of the derivative applied to y D Pg
is

y � y� WD 1
�
. 3
2
g � 2g.� � �/C 1

2
g.� � 2�//;
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which can be written as

Y�.s/ D 1
�
. 3
2
� 2e�s� C 1

2
e�2s�/„ ƒ‚ …

s�

G.s/:

In the trapezoidal rule y� is approximated implicitly

1
2
.y� C y�.� � �// D 1

�
.g � g.� � �//

and we similarly obtain (35) with

s� WD 2

�

1 � e�s�

1C e�s�
D 1

�
ı.e�s�/:

3.4.3 Convolution Quadrature Again

We then extend the idea of approximating

Y.s/ D sG.s/ by Y�.s/ D s�G.s/;

for more general transfer functions, approximating then

Y.s/ D F.s/G.s/ by Y�.s/ D F.s�/G.s/:

We next have to figure out what this method is. Recall that we are using

F.s�/; with s� D 1
�
ı.e�s�/:

We start by Taylor expanding

F. 1
�
ı.�// D

1X
nD0

!F
n .�/�

n;

and then substituting

F.s�/ D
1X

nD0
!F

n .�/e
�n�s D

1X
nD0

!F
n .�/e

�tns: (36)

We finally recognize that F.s�/ is the Laplace transform of the distribution

1X
nD0

!F
n .�/˝ ıtn
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and therefore Y�.s/ D F.s�/G.s/ is the Laplace transform of

y� D
1X

mD0
.!F

m.�/˝ ıtm/ � g D
1X

mD0
!F

m.�/g.� � tm/: (37)

In this form g is allowed to be discontinuous in time and y� is obtained as a function
of continuous time. The sum in (37) is finite for any given value of the time variable.
For instance

y�.t/ D
nX

mD0
!F

m.�/g.t � tm/; tn � t < tnC1:

In particular, with t D tn we obtain the discrete Convolution Quadrature method of
Sect. 3.3

yn WD y�.tn/ D
nX

mD0
!F

m.�/g.tn�m/:

This means that the discrete sequence fyng obtained in Sect. 3.3 is actually composed
of time samples of a continuous-in-time function y� . Of course, if we want to
evaluate y� at a point that is not on the time grid, we have to use g at different
points, instead of only at the points tm. The case of convolution equations follows
similar lines: when we approximate F.s/G.s/ D H.s/ by F.s�/G�.s/ D H.s/, we
are equivalently writing the equation

1X
mD0

!F
m.�/g�.� � tm/ D h: (38)

Ideally we could solve (38) progressively in intervals:

!F
0 .�/g.t/ D h.t/�

nX
mD1

!F
m.�/g.t � tm/; t 2 Œtn�1; tn/; n � 0:

This would give g� one interval after another. What we will focus on is the values
gn WD g�.tn/, which satisfy

!F
0 .�/gn D h.tn/�

nX
mD1

!F
m.�/g.tn�m/; n � 0;

sending us back to the CQ method of Sect. 3.3.
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3.4.4 Lubich’s Notation

We have favored some sort of convolutional notation in these notes. In his exposi-
tions of the method, Christian Lubich has adopted a clever operational notation that
is often useful. The idea is simple. Differentiation y D @g D Pg corresponds to the
operator ‘multiply by s’. We then admit the notation

y D F.@/g D f � g; F D Lff g;

that makes the transfer function apparent even in the time domain. In CQ, there is a
discrete differentiation operator

@�g � Pg; Lf@�gg.s/ D s�G.s/; s� D 1
�
ı.e�s�/;

and the CQ method is denoted

F.@�/g D
1X

mD0
!F

m.�/g�.� � tm/ D f� � g; f� WD
1X

mD0
!F

m.�/˝ ıtm ;

which makes Lff�g.s/ D F.s�/.

3.5 Another Point of View

3.5.1 Aims and Tools

In this section we are going to give Lubich’s original introduction to the BE-CQ
method. We will restrict to some particular transfer functions F W CC ! B.X;Y/
satisfying

kF.s/k � C.Re s/jsj� 8s 2 CC; � < �1:

This condition is enough to show that the Laplace inversion formula

f .t/ D 1

2�i

Z Ci1

�i1
estF.s/ds D 1

2�

Z 1

�1
e.Ci!/ tF. C i!/d! (39)

defines a causal continuous function whose Laplace transform is F, independently
of the value of  taken for the inversion path. The hypotheses also ensure that if
a >  , then

1

nŠ
F.n/.a/ D � 1

2�i

Z Ci1

�i1
1

.s � a/nC1F.s/ds: (40)
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Equation (40) is a somewhat uncommon expression deriving from the Cauchy
integral formulas. It can be proved using the Cauchy formulas: integrating along
a rectangular contour with the left edge in the line  C iR, the right edge in RC iR
and the upper and bottom edges in R˙ iR, and then sending R!1.

3.5.2 A Mixed Formulation of Causal Convolution

All the following steps can be justified, just stay with the flow:

. f � g/.t/ D
Z t

0

f .�/g.t � �/d� D
Z t

0

	
1

2�i

Z Ci1

�i1
es�F.s/ds



g.t � �/d�

D 1

2�i

Z Ci1

�i1
F.s/

	Z t

0

es�g.t � �/d�



„ ƒ‚ …
y.t/Dy.tIs/

ds:

We have now reached a point where g appears in a scalar convolution equation,
corresponding to the solution of Py D syCg;with the implicit assumption of causality
that can also be phrased as y.0/ D 0.

3.5.3 Introducing the ODE Solver

We restrict our attention to t D tn and approximate

Z tn

0

es�g.tn � �/d� �
nX

mD0

�

.1 � �s/mC1 g.tn�m/;

that is, we approximate y.tn/ using the BE method. This leads to

. f � g/.tn/ �
nX

mD0

	
1

2�i

Z Ci1

�i1
�

.1 � �s/mC1 F.s/ds



„ ƒ‚ …

!F
m.�/

g.tn�m/:

The final step consists of the figuring out what the coefficients !F
n .�/ are. From (40)

and some elementary arguments, we obtain

!F
n .�/ D

.�1/n
�n

	
� 1

2�i

Z Ci1

�i1
1

.s� 1=�/nC1F.s/ds



D .�1/n

�n

1

nŠ
F.n/.1=�/

D 1

nŠ

dn

d�n

	
F
�1 � �

�

�
 ˇ̌ˇ̌
ˇ
�D0
:
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Therefore

F

	
1 � �
�



D

1X
nD0

!F
n .�/�

n;

and we have found the BE-CQ method in a slightly different way.

3.6 A Discrete Operational Calculus

3.6.1 Rephrasing

What we have done so far can be understood in many different ways, but it
can be synthesized with several simple statements. Given a causal B.X;Y/-valued
distribution with Laplace transform F W CC ! B.X;Y/, we

approximate f �
1X

nD0
!F

n .�/˝ ıtn ; where F. 1
�
ı.�// D

1X
nD0

!F
n .�/�

n: (41)

The function ı.�/ can be understood as a generator for an approximation of the
differentiation operator, so that

1
�
ı.�/ D 1

�

1X
nD0

ın�
n (42)

is the symbolic form of the operator

@�g WD 1
�

1X
nD0

ıng.� � n�/:

Equations (41) and (42) can also be written in the Laplace domain, via the definition
of

s� WD 1
�
ı.e�s�/ D 1

�

1X
nD0

ıne�s tn � s;

to give approximations

F.s�/ D
1X

nD0
!F

n .�/e
�s tn � F.s/: (43)
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As already mentioned, there are different ways of notating the convolution operator
defined by (41). One way is to name

f� WD
1X

nD0
!F

n .�/˝ ıtn

and then note that f� � g � f � g. The other way is to name the operator directly
F.@�/g. There is a caveat to this condensed introduction. Even if the CQ expressions
F.@�/g D f� � g exist in continuous time, they are only computed in discrete times,
so knowledge of the output of these operators is purely given at discrete time steps.

3.6.2 Associativity

Let now F1 W CC ! B.X;Y/ and F2 W CC ! B.Z;X/. It is clear from the Laplace
transform of the convolution quadrature operators that

F1.s�/
�
F2.s�/G.s/

� D �F1.s�/F2.s�/�G.s/;
which is another way of writing

F1.@�/
�
F2.@�/g

� D �F1.@�/F2.@�/�g; (44)

or equivalently f1;��. f2;��g/ D . f1;��f2;�/�g: The latter expression emphasizes the
convolutional form of all operators, from where associativity is clear. The interest
of (44) might not be apparent at first sight. In practice, we are going to apply the
left-hand-side of (44), that is, first one discrete convolution process, and then the
second one. However, this is equivalent to applying a simple CQ process, which we
will never compute (it would mean composing sequences of operators), but we can
use for analysis.

3.6.3 Forward Convolutions and Equations

The associativity idea can be further exploited to see why analyzing CQ for
convolution equations is equivalent to analyzing CQ for the inverse operator, even
if this is only known at the theoretical level. If F W CC ! B.X;Y/ and F�1 W CC !
B.Y;X/ are operators such that

F.s/F�1.s/ D IY ; F�1.s/F.s/ D IX; 8s 2 CC;

(or, in other words, F�1.s/ D .F.s//�1), then

F.s�/F�1.s�/ D IY ; F�1.s�/F.s�/ D IX;
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which means that the discrete operators associated to F.s�/ and F�1.s�/ are inverse
of each other. Therefore, the analysis of the equation f� � g D h (here g is unknown)
is equivalent to the analysis of the inverse operator g D f �1

� � h.

3.7 Discrete Transfer Functions

3.7.1 Motivation

Just for the sake of it, let us explore the problem of inverting discrete convolution
equations. Let ffng � B.X;Y/ and fhng � Y be given sequences. We look for a
sequence fgng � X satisfying

nX
mD0

fmgn�m D hn: (45)

It is clear that if f0 is invertible, then the sequence fgng can be computed with the
semi-implicit recurrence

gn D f �1
0 .hn �

nX
mD1

fmgn�m/: (46)

With � transforms the convolution equation (45) can be written as

F.�/G.�/ D H.�/: (47)

3.7.2 The Discrete Transfer Function

At least formally we can try to invert F.�/ and send it to the right-hand-side:

G.�/ D R.�/H.�/; (48)

hoping to find a sequence frng that rewrites (46) in the explicit form

gn D
nX

mD0
rmhn�m:

The simplest way to find frng is to use a discrete unit impulse in the right-hand-
side of (45). This unit impulse at discrete time zero is the sequence fı0;ng (written
in terms of Kronecker deltas) and its � transform is D0.�/ 
 1. Clearly this is a
way of formally obtaining R.�/ by plugging H.�/ 
 1 as data in (48) or as right-
hand-side of (47). Before we do it, let us just try to be more precise: in this case the
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impulse is fı0;nIg where I is the identity operator in the space Y and frng will be a
sequence in B.Y;X/. The sequence frng (or R.�/ D F.�/�1) can be found with a
simple recurrence

r0 D f �1
0 ; rn D �f �1

0

� nX
mD1

fmrn�m
�
; n � 1:

This is the discrete transfer function for the solution operator associated to the
convolution equation (45).

3.7.3 Throwing Analyticity into the Mix

Let us go further. In principle

F.�/ D
1X

nD0
fn�

n (49)

is just a formal series. If k fnk � Rn for all n, then the power series (49) converges
in the space B.X;Y/ for j�j < R�1. It thus defines an analytic function from the
disk centered at the origin with radius 1=R to B.X;Y/. Let us write (49) in a slightly
different way:

F.�/ D f0
� 1X

nD0
f �1
0 fn�

n
�
;

so that we can focus on operators f f �1
0 fng � B.X;X/. We then worry about

invertibility of the operator

IX C Q.�/; Q.�/ WD
1X

nD1
f �1
0 fn�

n: (50)

A back of the envelope calculation yields

���
1X

nD1
f �1
0 fn�

n
��� � kf0k�1 1

1 � j�jR ; j�j < 1=R:

If we are lucky enough to have kf �1
0 k < 1, then, values of � satisfying

j�j < 1 � kf �1
0 k

R
;
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provide kQ.�/k < 1 and therefore IX C Q.�/ is invertible. In this case, the analytic
function F.�/ is invertible in a disk around � D 0 and

F.�/�1 D
1X

nD0
rn�

n

is also a convergent power series corresponding to the discrete transfer function.
Note that F.�/�1 means exactly what it is written: it is the inverse operator for F.�/
for a given value of �.

3.8 Credits

The Convolution Quadrature method and its associated discretized operational
calculus were created by Christian Lubich in the late 1980s [23], as a surprising
computational extension of some classical ideas by Liouville. Lubich’s introduction
is the one shown in Sect. 3.5. A key paper in what respects to CQ applied to the
wave equation is [25], which is the first reference to the use of CQ for a wave
propagation problem. Any introduction to the numerical analysis of discretization
methods for Ordinary Differential Equations contains basic material on multistep
methods, and more specifically on the BDF formulas. Even if we have not seen it
yet, A-stability will play an important role in how multistep methods become CQ
solvers for hyperbolic problems. To learn about A-stability, see [17]. The language
of �-series is common to the analysis of ODEs, even if sometimes is just implicitly
used. A highly readable presentation is given in Henrici’s classic introduction to
applied complex analysis [19]. The point of view of substituting a continuous
symbol F.s/ by a discrete symbol F.s�/ is more or less implicit to [25]. It was made
more apparent in Antonio Laliena’s thesis [20] and it is the center of the theory for
multistep CQ in [29].

4 Implementation

In this section we are going to show how to compute discrete convolutions and
convolution equations with CQ.
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4.1 The Discrete Fourier Transform

4.1.1 DFT and IDFT

Given a vector x WD .x0; : : : ; xM/ 2 C
MC1, we consider the vector Ox 2 C

MC1 given
by

Ox` WD
MX

nD0
xn�

�`n
MC1; ` D 0; : : : ;M; where �MC1 WD e

2�i
MC1 : (51)

The expression (51) is the well known definition of the Discrete Fourier Transform
(DFT). The Fast Fourier Transform (FFT) is a very optimized algorithm to compute
exactly (51) when M C 1 D 2p for an integer p. The Inverse Discrete Fourier
Transform (IDFT) is given by

xn WD 1

M C 1
MX
`D0
Ox`�`nMC1; n D 0; : : : ;M: (52)

The DFT and the IDFT are inverse operators. Moreover, the IDFT can be computed
exactly as the DFT: first conjugate the vector Ox, then apply the DFT, finally conjugate
the result again and divide by M C 1. This implies that any fast algorithm for the
DFT can also be applied to the IDFT.

4.1.2 The DFT and Periodic Discrete Convolutions

Let x; y 2 C
MC1. We define their periodic discrete convolution x�per y 2 C

MC1 with
the formula

.x �per y/n WD
nX

mD0
xmyn�m C

MX
mDnC1

xmyMC1Cn�m; n D 0; : : : ;M: (53)

The formula in the definition (53) is not very inspiring. It is much easier to think
that x; y 2 `0.Z/ are sequences indexed by n 2 Z that are .M C 1/-periodic. Then

.x �per y/n D
MX

mD0
xmyn�m n 2 Z (54)

is also an .MC1/-periodic sequence coinciding with (53) in its main entries, indexed
from n D 0 to n D M. The DFT diagonalizes periodic convolutions in the following
sense:

3.x �per y/` D Ox`Oy`: (55)
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Therefore, a fast way of computing periodic convolutions is to take the DFT of the
two vectors, multiply them component by component, and then take the IDFT of the
result.

4.1.3 Discrete Convolutions Made Periodic

Let now x; y be causal sequences. We are interested in computing the first N
components of their discrete convolution

.x � y/n D
nX

mD0
xmyn�m; n D 0; : : : ;N: (56)

This formula obviously involves only the vectors .x0; : : : ; xN/; .y0; : : : ; yN/ 2 C
NC1.

Let then

xext WD .x0; : : : ; xN ; 0; : : : ; 0„ ƒ‚ …
NC1

/; yext WD .y0; : : : ; yN ; 0; : : : ; 0„ ƒ‚ …
NC1

/ 2 C
2NC2 (57)

be the result of cutting the vectors to the components that are needed for (56) and
then extending them with zeros, thus doubling the number of components of the
vectors. A simple argument shows that

.x � y/n D .xext �per yext/n; n D 0; : : : ;N: (58)

Formulas (57) and (58) give an algorithm to compute the beginning of a discrete
convolution of sequences (56).

Algorithm 1 (discrete convolutions by the DFT)
We aim to compute

.x � y/n D
nX

mD0

xmyn�m; n D 0; : : : ;N:

(a) Keep N C 1 components of the sequences x and y and extend them with N C 1 zeros at the
end (57).

(b) Take the DFT of the extended vectors.
(c) Multiply the resulting vectors component by component.
(d) Take the IDFT of the result of (c).
(e) Keep only the first N C 1 components of the result of (d).
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4.1.4 Symmetry Arguments

It will be common in our computations that roughly half of the coefficients of a
vector will be conjugated from the other half. Before we meet this, let us introduce
some notation. Assume that X is a Banach space where we can conjugate. Let x D
.x0; : : : ; xN/ 2 X

NC1 be a vector of elements of X. If

xNC1�` D x` ` D 1; : : : ;N;
we will say that the vector x is Hermitian (note that this is not a standard definition).
This is equivalent to the following construction: extend first x to a sequence xn with
n 2 Z which is .N C 1/-periodic; then x is Hermitian whenever x` D x` for all
` � 1. In later examples we will also have that x0 D x0, which would yield a better
definition of Hermiticity. A clear example of a Hermitian vector is the DFT of a
vector such that xn D xn for all n. In forthcoming algorithms to compute components
x` for ` D 0; : : : ;N, we will say that the algorithm can be symmetrized when we
know in advance that x is Hermitian. Then we will:

• Compute x` for ` D 0; : : : ; bNC1
2
c.

• Copy the missing components xNC1�` D x` for ` D 1; : : : bN
2
c:

4.2 Computation of CQ Weights

4.2.1 Our Next Goal

We now prepare the way to compute some of the weights of the CQ process:

!F
n .�/ WD

1

nŠ

dn

d�n

	
F

	
1

�
ı.�/



 ˇ̌
ˇ
�D0; n D 0; : : : ;N: (59)

One of the coefficients is straightforward:

!F
0 .�/ D F. 1

�
ı.0//: (60)

For the other ones, we are going to use Cauchy’s Formula for the computation of
derivatives of an analytic function, using a contour CR WD f� 2 C W j�j D Rg for
some R < 1 that we will later determine. Since the resulting integral can be written
as the integral of a periodic function, the best way to approximate it will be with the
trapezoidal rule. We will use as many points in the trapezoidal rule as coefficients
we want to compute in (59). The process is synthesized in the following formulas:

!F
n .�/ D

1

2�i

I
CR

��n�1F. 1
�
ı.�//d� (Cauchy formula)

D R�n
Z 1

0

e�2� in�F. 1
�
ı.Re2� i� //d� (parametrization � D Re2� i� )
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� R�n

N C 1
NX
`D0

��n`
NC1F. 1� ı.R�

`
NC1// (trapezoidal rule: �`NC1 D e

2�i`
NC1 )

D R�n

N C 1
NX
`D0

�n`
NC1F. 1� ı.R�

�`
NC1//: (reindexing)

This formula gives us an algorithm to compute (59).
The formula

!F
n .�/ �

R�n

N C 1
NX
`D0

�n`
NC1 OF`; where OF` WD F. 1

�
ı.R��`

NC1//;

will be chosen as an approximation of the CQ coefficients. The chosen value of the
radius of the integration path is

R D � 1
2.NC1/ ; (61)

where � is proportional to the machine epsilon. If F.s/ D F.s/ (see the end of
Sect. 2.3) and ı.�/ D ı.�/, then the vector of evaluations OF` is Hermitian and its
computation can be reduced by symmetry.

Algorithm 2 (computation of CQ coefficients)
In some of the algorithms to follow we will write (Par+sym) when the computation in that step
can be reduced by symmetry and parallelized.

(a) (Par+sym) Evaluate

OF` WD F. 1
�
ı.R��`

NC1//; ` D 0; : : : ;N:

(b) Apply the IDFT

Fn WD 1

N C 1

NX
`D0

OF`�n`
NC1; n D 0; : : : ;N:

When F is matrix valued, this has to be done component by component.
(c) Scale the result

!F
n .�/ D R�nFn; n D 0; : : : ;N:

At this step it is also possible to substitute the approximation of !F
0 .�/ by its exact value

!F
0 .�/ D F. 1

�
ı.0//.
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4.2.2 Forward Convolutions and Convolution Equations

To compute now

nX
mD0

!F
m.�/gn�m n D 0; : : : ;N; (62)

we can either apply a naive implementation formula (62) or use the zero padding
strategy of Algorithm 1. Note that one of the first things we will do in Algorithm 1
will be to take the DFT of the sequence of coefficients !F

n .�/. In Sect. 4.3, we will
explore a more direct way of doing this. A similar problem arises in the solution of
convolution equations

!F
0 .�/gn D hn �

nX
mD1

!F
m.�/gn�m: (63)

The right-hand-side of (63) contains a discrete convolution that can be evaluated
using Algorithm 1 by artificially including a term !F

0 .�/ D 0. Solving the CQ
equations by the forward substitution scheme (63) is a particular case of what people
in the know call marching-on-in-time (MoT) schemes.

4.3 All-Steps-At-Once CQ Computation

4.3.1 Development of the Algorithm

Our next goal is the computation of

nX
mD0

!F
n�m.�/gm; n D 0; : : : ;N;

assuming that we have approximated the CQ coefficients by

!F
n .�/ �

R�n

N C 1
NX
`D0
OF`�`nNC1; OF` WD F. 1

�
ı.R��`

NC1//:

We are actually going to compute something slightly different. Because of Cauchy’s
Theorem

!F
n .�/ D

I
CR

��nC1F.�/d� D 0; 8n � �1;
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we are going to define (using the same idea as in Sect. 4.2)

Q!F
n .�/ WD

R�n

N C 1
NX
`D0
OF`�`nNC1 n 2 Z;

knowing that the approximated coefficients for n � �1 converge to zero. Then

un WD
nX

mD0
!F

n�m.�/gm (exact convolution)

D
NX

mD0
!F

n�m.�/gm (!F
n .�/ D 0 for n � �1)

�
NX

mD0

 
Rm�n

N C 1
NX
`D0
OF`�`.n�m/

NC1

!
gm (!F

n .�/ � Q!F
n .�/)

D R�n

 
1

N C 1
NX
`D0
OF`
 

NX
mD0

Rmgm�
�m`
NC1

!
�`nNC1

!
:

These formulas give Algorithm 3.

4.3.2 Modification for Convolution Equations

When the goal is to solve a convolution equation f � g D h; we can use exactly the
same ideas applied to the operator F�1. To compute

gn D
nX

mD0
!F�1

m .�/h.tn�m/; n D 0; : : : ;N;

we approximate the coefficients

!F�1

n .�/ � R�n

N C 1
NX
`D0
OF�1
` �

`n
NC1; OF�1

` D F. 1
�
ı.R��`

NC1//�1:

The final expression is

gn � R�n

 
1

N C 1
NX
`D0
OF�1
`

 
NX

mD0
Rmhm�

�m`
NC1

!
�`nNC1

!
;
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Algorithm 3 (all-steps-at-once forward convolution)
We sample the input at given discrete times

gn WD g.tn/; n D 0; : : : ;N

and aim to compute an approximation of

un D
nX

mD0

!F
n�m.�/gm; n D 0; : : : ;N:

(a) Scale the data

hm WD Rmgm; m D 0; : : : ;N:

(b) Compute the DFT of the previous sequence

Oh` WD
NX

mD0

hm�
�m`
NC1; ` D 0; : : : ;N:

(c) (Par+sym) Apply the transfer functions in the transformed domain

Ov` WD OF` Oh`; OF` WD F. 1
�
ı.R��`

NC1//:

(d) Compute the IDFT of the result of (c)

vn WD 1

N C 1

NX
`D0

Ov`�`nNC1; n D 0; : : : ;N:

(e) Scale the result back

un D R�nvn:

from where it is clear that the inverses OF�1
` do not need to be computed. Instead,

some linear systems will be solved. The process is given in Algorithm 4.

4.4 Computing Pieces of a Discrete Convolution

4.4.1 Pieces of a Discrete Convolution

Our next goal is the computation of quantities

gn WD
QX

mD0
Q!F

n�m.�/um; n D QC 1; : : : ;M; (64)
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Algorithm 4 (all-steps-at-once convolution equation)
We sample the input at given discrete times

hn WD h.tn/; n D 0; : : : ;N

and aim to compute an approximation of the solution of

nX
mD0

!F
n�m.�/gm D hn; n D 0; : : : ;N:

(a) Scale the data

vm WD Rmhm; m D 0; : : : ;N:

(b) Compute the DFT of the previous sequence Ov`, ` D 0; : : : ;N.
(c) (Par+sym) Solve equations in the transformed domain

OF` Ow` WD Ov`; OF` WD F. 1
�
ı.R��`

NC1//:

(d) Compute the IDFT of the result of (c) w`, ` D 0; : : : ;N.
(e) Scale the result back

gn D R�nwn; n D 0; : : : ;N:

where

Q!F
n .�/ D

R�n

N C 1
NX
`D0
OF`�n`

NC1; OF` WD F. 1
�
ı.R��`

NC1//; (65)

for a given N � M, which can be chosen as N D 2M for example. Note that (64)
uses u0; : : : ; uQ and Q!F

n .�/ for n D 1; : : : ;M. We then proceed as follows:

Qgk WD gkCQC1 .k D 0; : : : ;M �Q � 1/

D
QX

mD0

 
Rm�k�Q�1

N C 1
NX
`D0
OF`�`.kCQC1�m/

NC1

!
um

D R�k�Q�1
 

1

N C 1
NX
`D0

�
`.QC1/
NC1 OF`

 
QX

mD0
��`m

NC1Rmum

!
�`kNC1

!

D R�k�Q�1
 

1

N C 1
NX
`D0

 
�
`.QC1/
NC1 OF`

 
NX

mD0
��`m

NC1wm

!!
�`kNC1

!
;
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Fig. 1 The leftmost figure shows a typical convolution piece as computed by Algorithm 5. Three
elements of the sequence of data are input and nine are output. The figure on the right is a simple
variation. By a shifting of indices in the input data a different block of the Toeplitz matrix can be
accessed. Note that each of the elements is a matrix (or an operator if we have not discretized the
original operator)

where

wm WD
�

Rmum; 0 � m � Q;
0; QC 1 � m � N:

(66)

This computation is depicted in Fig. 1.

Algorithm 5 (computation of a piece of a convolution)
Our goal is to compute (64). The value N in (65) is given as a parameter. The data um, m D 0; : : : ;Q
has already been sampled.

(a) Scale the data and add zeros following (66).
(b) Compute the DFT of the vector in (a) Ow`, ` D 0; : : : ;N.
(c) (Par+sym) Apply the operators

Oh` WD �
`.QC1/

NC1
OF` Ow`; ` D 0; : : : ;N:

(d) Compute the IDFT of the sequence in (c) hk, k D 0; : : : ;N.
(e) Scale and chop the resulting sequence

Qgk WD R�k�Q�1hk; k D 0; : : : ;M � Q � 1:

(f) Change indices

gn WD Qgn�Q�1; n D Q C 1; : : : ;M:
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If we skip step (f), what we have computed is

Qgk WD
QX

mD0
Q!F

kCQC1�m.�/um; k D 0; : : : ;M �Q � 1;

which can be understood as the formal product with a piece of a Toeplitz matrix

2
6664
Qg0
Qg1
:::

QgM�Q�1

3
7775 D

2
6666664

Q!F
QC1.�/ Q!F

Q.�/ : : : Q!F
1 .�/

Q!F
QC2.�/ Q!F

QC1.�/ : : : Q!F
2 .�/

Q!F
QC3.�/ Q!F

QC2.�/ : : : Q!F
3 .�/

:::
:::

: : :
:::

Q!F
M.�/ Q!F

M�1.�/ : : : Q!F
M�Q.�/

3
7777775

2
6664

u0
u1
:::

uQ

3
7775 :

4.5 Recursive Strategies

4.5.1 Small Systems

We are going to next include a new parameter n corresponding to sizes of lower
triangular systems (convolution equations) that we want to solve directly:

nX
mD0

!n�mgm D un; n D 0; : : : ; n: (67)

From now on, we are going to ignore where the coefficients !n are coming from.
They are operators, !0 being invertible, or simply square matrices. We can write in
matrix form with help of the matrix

˝n WD

2
6664
!0
!1 !0
:::

: : :
: : :

!n�1 : : : !1 !0

3
7775 :

4.5.2 Look-Ahead Method

With this strategy, we solve groups of n equations and then subtract the contribution
of the newly computed unknowns from the right-hand-side of the system. The
method can then be understood as block recursive forward substitution.
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Algorithm 6 (look-ahead solution of CQ equations)
The goal is the solution of

nX
mD0

!n�mgm D un; n D 0; : : : ;N:

We give a parameter n for the size of the small systems and break the list of indices in the form

0; : : : ; n � 1„ ƒ‚ …
b.1/

; n; : : : ; 2n � 1„ ƒ‚ …
b.2/

; : : : ; .k � 1/n; : : : ; kn � 1„ ƒ‚ …
b.k/

; kn; : : : ;N„ ƒ‚ …
remainder

;

so that

b.i/ D f.i � 1/n; : : : ; in � 1g i D 1; : : : ; k; where k D bN=nc;
is a generic block. The algorithm loops in i D 1; : : : ; k in the following form:

(a) Make a copy of a block of data v D ub.i/ Solve

˝nh D v;

and copy the result qb.i/ D h.
(b) Compute the following piece of convolution

rn D
n�1X
mD0

!n�mhm; n D n; : : : ;N � .i � 1/n:

(c) Correct the right-hand-side

un D un � rn�.i�1/n n D in; : : : ;N:

Finally, after the loop is finished, we have to solve for the tail (because of N C 1 not being a
multiple of n):

nX
mD0

!n�mgknCm D uknCm; m D 0; : : : ;N � kn:

4.5.3 Recursive Methods

Another option to deal with the CQ equations is the development of a recursive
algorithm, based on the break down of a triangular system into two pieces of the
same size and the square block that interconnects them. We will not develop this
algorithm any further. A pictorial representation, side by side with the look-ahead
algorithm, is given in Fig. 2.
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Fig. 2 This cartoon shows the basic ideas of a look-ahead and a recursive strategy side-by-side.
The black blocks of equations are inverted directly by forward substitution. In the look-ahead
strategy, once a group of unknowns has been computed, its influence on the right-hand-side is
immediately taken into account. The recursive idea breaks down the triangular system into smaller
triangular systems joined with square blocks

4.6 Credits

An excellent introduction to the algorithms for CQ is given in [6]. The idea of
using the trapezoidal rule on a Cauchy integral representation in order to compute
the CQ coefficients appears already in the original papers by Lubich [23, 25].
The simultaneous computation of all time steps is introduced in a paper by Lehel
Banjai and Stefan Sauter [5] for the specific problem of the wave equation (see
Sect. 5), based on algorithms developed in [18]. The choice of R in the integration
contour (61) is justified in [24]. A very thorough study of the dependence of the
radius R and of the number of points N in the trapezoidal rule used to approximate
the CQ weights is developed in [10].

5 Integral Equations for Waves

In this section we are going to explain how the ideas on Laplace transforms,
convolution operators and equations, and CQ discretizations can be used for a
problem of scattering of acoustic waves by an obstacle. This section is considerably
heavier with respects to Sobolev spaces. The reader should have at least some
working knowledge of the Sobolev space H1.O/ for an open set O and of the spaces
H˙1=2.@O/ for an open set O which lies on one side of its Lipschitz boundary.

The space

H1
�.O/ WD fu 2 H1.O/ W �u 2 L2.O/g;
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endowed with its natural norm, will play a key role in this section. Note that from
this space we can define three bounded operators:


 W H1
�.@O/! H1=2.@O/; @� W H1

�.@O/! H�1=2.@O/; � W H1
�.@O/! L2.@O/;

the first two of which correspond to the trace and the normal derivative.

5.1 A Scattering Problem

5.1.1 Incident Waves

Let ˝� � R
3 be a connected domain, lying on one side of its connected Lipschitz

boundary � . Let ˝C WD R
3 n˝�. At time t D 0 an incident wave approaches the

obstacle � . The incident wave can be described as a solution of the wave equation
in free space. For instance, a plane wave

uinc.z; t/ WD  .c.t � tlag/� z � d/; jdj D 1; c > 0; (68)

solves

c�2 Ruinc D �uinc in R
3 � .�1;1/: (69)

Equation (69) is satisfied in a classical way when the signal is smooth enough, for
instance, when  2 C2.R/. When  is just continuous, and even when it is only
locally integrable, (69) can be understood in a weak sense of distributions in four
variables (an approach we have decided not to take), or even more surprisingly in a
sense of distributions of the time variable, with values in some functions spaces. We
will discuss this later. We need to make some assumptions on the plane wave (68)
in order for the scattering process to be physically meaningful. For instance, we can
assume that  is causal, ˝� � B.0IR/ WD fz 2 R

3 W jzj < Rg and tlag > R=c. This
ensures that at time t D 0, the wave, which is moving in the direction d, has not
reached the area of the space where the obstacle˝� is placed. A spherical incident
wave

uinc.z; t/ WD  .ct � jz � zscj/
4�jz � zscj ; (70)

can also be defined for any causal  and source point zsc 62 ˝�. Instead of (69),
this uinc is a causal solution of an equation

c�2 Ruinc D �uinc C f ; (71)
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where f is formally a distribution that is supported in the source point. Let us warn
the reader that, even if it is possible to give a completely rigorous presentation of the
meaning of the equation satisfied by the incident wave, we will only need its values
on � and we can make much simpler while rigorous arguments for those values.

5.1.2 Transient Scattering by a Sound-Soft Obstacle

Let us then assume that we have an incident wave satisfying (71) for all times and
for a given f . We do not need to know f . Knowing that f exists is enough. The total
wave is a function utot satisfying

c�2 Rutot D �utot C f in ˝C � .�1;1/; (72a)

with a boundary condition

utot D 0 on � � .�1;1/; (72b)

and the assumption

utot � uinc is causal. (72c)

Instead of working with the total wave field, we will think in terms of the scattered
wave field

u D utot � uinc;

which satisfies a homogeneous wave equation

c�2 Ru D �u in ˝C � .�1;1/; (73a)

a non-homogeneous boundary condition

uC uinc D 0 on � � .�1;1/; (73b)

and the assumption

u is causal. (73c)

It is interesting to note that our assumptions for the incident wave (causality of the
signal in (70), and more complicated geometric assumptions on (68)) were destined
to ensure that the restriction of uinc to � is a causal function. Therefore, instead
of (73), we can think of looking for a causal distribution with values in

H1
�.˝C/ WD fv 2 H1.˝C/ W �v 2 L2.˝C/g:



122 M. Hassell and F.-J. Sayas

satisfying

c�2 Ru D �u in H1
�.˝C/; 
u D ˇ in H1=2.� /: (74)

Let us first clarify the meaning of equations (74). The steady state operator
� W H1

�.˝C/ ! L2.˝C/ can be applied to any H1
�.˝C/-valued distribution u,

producing an L2.˝C/-valued distribution�u. Similarly, since u is H1
�.˝C/-valued,

so is Ru, and therefore, we can understand Ru as an L2.˝C/-valued distribution,
by using the steady-state embedding operator H1

�.˝C/ ! L2.˝C/. The second
part of (74) arises from taking the trace operator 
 W H1

�.˝C/ ! H1=2.� / and
comparing the H1=2.� /-valued distribution 
u with a given causal H1=2.� /-valued
distribution ˇ. At this time, it is clear what we need from the incident wave: as long
as the boundary values of uinc define a causal distribution with values in H1=2.� /,
we can give meaning to equations (74).

5.2 The Acoustic Single Layer Potential

5.2.1 A What-It-Does Definition

We are first going to formally introduce the d-dimensional acoustic single layer
potential and two related boundary integral operators not through mathematical
expressions, but through their properties. To do this we need two jump operators

ŒŒ
u�� WD 
�u � 
Cu; ŒŒ@�u�� WD @�
� u � @C

� u:

Both of them are well defined in H1
�.R

d n � /. Let now � be a causal H�1=2.� /-
valued distribution, which will be referred to as a density. We then consider the
following wave propagation problem in free space

Ru D �u in L2.Rd n � /; (75a)

ŒŒ
u�� D 0 in H1=2.� /; (75b)

ŒŒ@�u�� D � in H�1=2.� /: (75c)

The mathematically savvy reader will undoubtedly find silly that we have written
L2.Rd n � / instead of L2.Rd/ in (75a). We do it just to emphasize that we are
applying the Laplacian as an operator� W H1

�.R
d n� /! L2.Rdn� /. Note also that

in (75a) we consider the wave equation on both sides of the boundary of the scatterer,
at speed c D 1. For the moment being, we are going to admit that problem (75) is
solvable, and we then (formally) denote

u DW S��; 
u DW V�� D 
˙.S��/; 1
2
.@�
� uC@C

� u/ DW J ��: (76)
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The convolution symbol in the definitions (76) will be justified below. By definition

@C
� u D �ŒŒ@�u��C 1

2
.@�
� uC @C

� u/ D � 1
2
�CJ � �: (77)

5.2.2 The Laplace Transform Way

The simplest way to justify problem (75), and the three definitions (76) that follow
from it, is to take the Laplace transform. Let then E D Lf�g and consider the
problem of finding U.s/ 2 H1

�.R
d n � / satisfying

s2U.s/ D �U.s/ in R
d n � , (i.e., as functions of L2.Rd n � // (78a)

ŒŒ
U.s/�� D 0; (as functions in H1=2.� /) (78b)

ŒŒ@�U.s/�� D E.s/: (as functions in H�1=2.� /) (78c)

Equations (78) are uniquely solvable for values s 2 CC. Actually the theory of
time-harmonic acoustic layer potentials gives an explicit solution to (78). We first
introduce the fundamental solution of the Laplace resolvent operator� � s2,

˚.sI r/ WD
8<
:

i
4
H.1/
0 .�isjrj/; when d D 2;

e�sjrj

4�jrj ; when d D 3:

With it, and for a given density � 2 H�1=2.� /, we define the potential

S.s/� WD
Z
�

˚.sI j � �yj/�.y/d� .y/ W Rd n � ! C (79a)

and two integral operators

V.s/� WD
Z
�

˚.sI j � �yj/�.y/d� .y/ W � ! C; (79b)

J.s/� WD� �
Z
�

r˚.sI j � �yj/�.y/d� .y/ W � ! C: (79c)

Given the overall lack of regularity, the definitions (79) have to be taken with a grain
of salt. For instance, for a given z 2 R

d n � , the definition (79a) of .S.s/�/.z/ can
always be understood as a duality product of � 2 H�1=2.� / with ˚.sI jz � �j/ 2
H1=2.� /, which admits an integral expression like (79a) when � 2 L2.� /. The
definitions (79b) and (79c) are completely reasonable for smooth enough � and � .
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Otherwise they need to be extended using density arguments. What really matters
now is that

U.s/ D S.s/E.s/; 
U.s/ D V.s/E.s/; 1
2
.@�
� U.s/C @C

� U.s// D J.s/E.s/
(80)

is the solution to (78). For future reference (and mimicking (77)) we are going to
care about the operator

E.s/ 7�! � 1
2
E.s/C J.s/E.s/: (81)

5.2.3 Some Sobolev Space Notation

Given an open set O, we will write

kuk2O WD
Z
O
juj2; kuk21;O WD kuk2O C kruk2O:

The norm in the trace space H1=2.� / will be denoted k � k1=2;� , and its dual norm is

k�k�1=2;� WD sup
0¤	2H1=2.� /

jh�; 	i� j
k	k1=2;� ;

where h�; 	i� is the duality bracket.

5.2.4 From Laplace to Time

It does not take very long (the Lax-Milgram theorem with some carefully crafted
bounds taking care of the parameter s) to see that for every s 2 CC, the solution
of (78) exists, and we can bound

kU.s/k1;Rdn� � C
jsj
2
kE.s/k�1=2;� ; (82a)

k@�̇ U.s/k�1=2;� � C
jsj3=2
3=2

kE.s/k�1=2;� ; (82b)

where

 WD Re s;  WD minf; 1g:
From (80) and (82) we can derive the following bounds (depending on s)

kS.s/kH�1=2.� /!H1.Rd/ � C
jsj
2

; (83a)
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kV.s/kH�1=2.� /!H1=2.� / � C
jsj
2

; (83b)

kJ.s/kH�1=2.� /!H�1=2.� / � C
jsj3=2
3=2

: (83c)

Using the results of Sect. 2.4 (see specifically conditions (13) and (14)) we can show
that there exist causal operator valued distributions S, V, and J , whose Laplace
transforms are S, V, and J respectively. This long process through the Laplace
domain gives a precise meaning to the time-domain convolution operators (76)
and (77).

5.2.5 Time Domain Expressions

Explicit expressions for the operators S � �, V � �, and J � � are available in two
and three dimensions. Note that with the CQ approach, there is no need for them,
since only their Laplace transform is ever used. For instance in three dimensions

.S � �/.t/ WD
Z
�

�.yI t � j � �yj/
4�j � �yj d� .y/ W R3 n � ! R; (84)

is the retarded (or Huygens) potential. It is interesting to remark that while we know
an integral expression for S � �, it is not that easy to understand what S is. Just for
the sake of illustration, let us give an idea how S looks. Consider the operator

.H.t/�/.z/ WD
Z
�\B.z;t/

�.y/
4�jz � yjd� .y/;

where B.z; t/ WD fy 2 R
3 W jy � zj < tg: Using arguments in Fourier analysis it

is possible to show that H is a continuous causal function of t with values in the
space of bounded linear operators from H�1=2.� / to H1.R3/. Its distributional time
derivative is S.

5.3 A Boundary Integral Equation for Scattering

5.3.1 The Potential Ansatz

We want to find causal distributional solutions to

c�2 Ru D �u in L2.˝C/ (85a)


u D ˇ in H1=2.� /: (85b)
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In order to write an integral representation we need to modify the speed of the wave
operators of Sect. 5.2. We thus define

Sc WD L�1fS.s=c/g;
Vc WD L�1fV.s=c/g D 
Sc;

Jc WD L�1fJ.s=c/g D 1
2

�
@C
� Sc C @�

� Sc
�
:

We represent the solution of (85) by means of a single layer potential

u D Sc � � (86a)

for a causal density � (an H�1=2.� /-valued distribution) to be determined. We then
impose the boundary condition to obtain an integral equation for the density

Vc � � D ˇ: (86b)

The exterior normal derivative can then be computed as a postprocessing of �:

� D � 1
2
�CJc � � D @C

� u D .@C
� Sc/ � �: (86c)

5.3.2 The Transfer Functions

From the point of view of data, equations (86) involve three transfer functions

V.s=c/�1; (convolution equation) (87a)

S.s=c/V.s=c/�1; (conv eqn followed by a forward conv) (87b)

.� 1
2
IC J.s=c//V.s=c/�1: (same) (87c)

We will come back to how these transfer functions behave as functions of s 2 CC.
For the moment, let us just understand what they do in the Laplace domain. If we
focus on the problem

�
s
c

�2
U D �U; 
U D B;

and think of the integral representation U D S.s=c/E, the associated operators are:

V.s=c/�1; (solution of integral equation)

S.s=c/V.s=c/�1; (solution of exterior Dirichlet problem)

.� 1
2
IC J.s=c//V.s=c/�1: (Dirichlet to Neumann operator)
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5.3.3 Galerkin Semidiscretization in Space

Let us now fix a finite dimensional subspace Xh � H�1=2.� /: For instance, if � is
a polygon, we can admit any triangulation of � and the space of piecewise constant
functions with respect to this triangulation. The semidiscrete version of (86) is the
search for a causal Xh-valued distribution �h satisfying

h�h;Vc � �h � ˇi� D 0 8�h 2 Xh; (88a)

postprocessed to obtain a potential

uh WD Sc � �h (88b)

and the associated Neumann data

�h WD � 1
2
�h CJc � �h: (88c)

It is inherent to the fact that we are discretizing using a boundary integral
representation to see that uh is exactly a causal solution of the wave equation
c�2 Ruh D �uh. What has changed is the level of satisfaction of the boundary
condition.

5.3.4 The Semidiscrete System in the Time Domain

It might help the reader understand the difficulties of dealing with equations like (88)
to see what happens in the simplest case. Assume that � has been partitioned into J
non-overlapping elements f�1; : : : ; �Jg and that we take

Xh D f�h W � ! R W �hj�j 2 P0 8jg D spanf��1; : : : ; ��J g;

where P0 is the set of constant functions and we have used the symbol ��j for the
characteristic function of the element �j. Let us assume that �h is actually a function
R! Xh. We can then write

�h D
JX

jD1
�j.t/��j .y/

for unknown causal scalar functions �j. The equations (88a) are equivalent to

JX
jD1

Z
�i

Z
�j

�j.t � c�1jx � yj/
4�jx� yj d� .y/d� .x/ D

Z
�i

ˇ.t; x/d� .x/ i D 1; : : : ; J:
(89)
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This system is quite difficult to deal with in the time domain. The unknowns
are subject to a continuum of delays which are then integrated against a weakly
singular kernel. However, the Laplace transform of (89) reveals much more about
the problem. If Ej D Lf�jg and B D Lfˇg, equations (89) are transformed into

JX
jD1

 Z
�i

Z
�j

e� s
c jx�yj

4�jx � yjd� .y/d� .x/
!

Ej.s/ D
Z
�i

B.s; x/d� .x/: (90)

It is interesting to note how the unknowns have left the integrals after the
Laplace transform has been taken. The system (90) corresponds to the Xh Galerkin
discretization of

Z
�

e� s
c j��yj

4�j � �yjE.s; y/d� .y/ D B.s; �/ in � ;

which is an integral form of the equation V.s=c/E.s/ D B.s/:

5.4 Full Discretization

5.4.1 First Space, Then Time

In Sect. 5.3 we have written a semidiscrete form of an integral formulation for the
exterior scattering problem (by a sound-soft obstacle). These are the equations (88)
in the Laplace domain: we look for Eh W CC ! Xh satisfying

h�h;V.s=c/Eh.s/� B.s/i� D 0 8�h 2 Xh; 8s 2 CC: (91a)

The solution of this equation is then postprocessed to compute a potential

Uh.s/ D S.s=c/Eh.s/ (91b)

and the exterior normal derivative

�h.s/ D � 1
2
Eh.s/C J.s=c/Eh.s/: (91c)

It is very easy to describe a fully discrete method for (91) (that is, (88)) using this
form. Note that there are three convolutions involved: one of them is a convolution
equation and two other are needed for postprocessing of the solution. We just need
to substitute the continuous differentiation parameter s by s� D 1

�
ı.e�s�/ within all

the operators above: we now look for Eh
� W CC ! Xh satisfying

h�h;V.s�=c/Eh
�.s/ � B.s/i� D 0 8�h 2 Xh; 8s 2 CC; (92a)
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and postprocess twice

Uh
�.s/ D S.s�=c/Eh

�.s/; (92b)

�h
�.s/ D � 12Eh

�.s/C J.s�=c/Eh
�.s/: (92c)

5.4.2 A Look at the Associated Integral Operators

We are now going to pay attention to the integral equation in (92). Let us forget for
a while about the space discretization (we will see later on how this is a legitimate
move). We have an integral operator

� 7! V.s=c/� D
Z
�

e� s
c j��yj

4�j � �yj�.y/d� .y/:

When we substitute

s 7! 1
�
.1 � e�s�/;

that is, when we deal with the backward Euler CQ method, we need to expand

V. 1c� .1 � �// D
1X

nD0
!V

n .c�/�
n;

with operators given by the expressions

!V
n .c�/� D

Z
�

e� 1
c� j��yj

4�j � �yj
1

nŠ

	 j � �yj
c�


n

�.y/d� .y/: (93)

Note that the only operator of the sequence (93) which has a weakly singular kernel
is the one we need to invert in each time-step, that is, the one for n D 0. This
is the single layer operator for the very diffusive elliptic operator �� C .c�/�2;
which seems to take the role of a transport operator. If instead of the backward Euler
discretization we apply BDF2, the operators have a somewhat more complicated
expression

!V
n .c�/� D

Z
�

e� 3
2c� j��yj

4�j � �yj
1

nŠ

	 j � �yj
2c�


n=2

Hn

 r
2j � �yj

c�

!
�.y/d� .y/; (94)

where Hn is the n-th Hermite polynomial. Let us now go back to the fully discrete
equation (92a). We will only pay attention to samples of this equation at the time
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steps. We then produce vectors �n 2 R
J satisfying equations

V0�n D ˇn �
nX

mD1
Vm�n�m n D 0; 1; : : : ; (95)

where Vn are the matrices with elements

Z
�i

Z
�j

e� ı.0/
c� jx�yj

4�jx � yjPn

	 jx� yj
c�



d� .y/d� .x/

for adequate Pn (see (93) and (94)), and where ˇn is the vector with entries

Z
�i

ˇ.tn; x/d� .x/:

It is a good moment to reiterate how CQ uses the Laplace transform of the operator
but how data are sampled in time and the discrete solution is obtained by time-
stepping.

5.4.3 First Time, Then Space

Let us go back again to the continuous convolutional system (86) before Galerkin
semidiscretization. Since the only term that has undergone spatial discretization is
the equation Vc � � D ˇ, let us have a look at what happens if we first discretize
in time using CQ and then in space using a Galerkin scheme. When we substitute
V.s=c/E.s/ D B.s/ by V.s�=c/E�.s/ D B.s/ we are just moving from Vc � � D ˇ

to the sequence of problems

!V
0 .c�/�n D ˇ.tn/�

nX
mD1

!V
m .c�/�n�m: (96)

If we discretize all the equations (96) with the same Xh-based Galerkin scheme, we
obtain the sequence of linear system described in (95). Exactly the same. This means
that for this family of problems, Convolution Quadrature and Galerkin discretization
in space commute.

5.4.4 A Note on the All-Steps-At-Once Method

It is interesting to note that if we use Algorithm 4 to solve the convolution equa-
tions (95) we are solving a collection of time-harmonic damped wave equations. In
fact, if we want to compute N steps of the process, we end up solving equations of
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the form

V
�
1

c� ı.R�
�`
NC1/

� Ow` D Ov`; ` D 0; : : : ;N:

These are the single layer operator equations associated to the operators

� � !2` ; with !` D 1
c� ı.R�

�`
NC1//:

5.5 Well Posedness After Discretization

5.5.1 Why Bother?

Following the previous pages, the reader can be led to believe that the application
of CQ before or after space discretization is just a given. It is not however clear
at all why we can even apply CQ after a Galerkin semidiscretization process and
whether the semidiscrete operator inherits the properties of the continuous operator.
In order to clarify concepts, let us compare the operators with what we get after
semidiscretization in space. The first piece of good news is a coercivity estimate

Re
�
ei Argsh�;V.s/�i�

� � C


jsj2 k�k
2�1=2;� 8� 2 H�1=2.� / 8s 2 CC;

(97)

where as in Sect. 5.2,  WD Re s,  WD minf1; g. The estimate (97) is also often
written as

Reh�; sV.s/�i� � C


jsj k�k
2�1=2;� 8� 2 H�1=2.� / 8s 2 CC;

which shows how the operator that is actually coercive is sV.s/, that is, application
of V.s/ followed (or preceded) by ‘differentiation.’ Coercivity estimates are inher-
ited by Galerkin discretizations. This means that if we compare A.s/ WD V.s=c/�1
with the operator Ah.s/ W H1=2.� /! Xh that corresponds to solving

�h D Ah.s/ˇ 2 Xh h�h;V.s/�h � ˇi� D 0 8�h 2 Xh;

we have

kA.s/kH1=2.� /!H�1=2.� /CkAh.s/kH1=2.� /!H�1=2.� / � C
jsj2


8s 2 CC: (98)

(The constant C is different in (97) and (98), but we will adopt the bad habits of
numerical analysts of calling all constants C.) The quality of the behavior with
respect to s and its real part in the right-hand-side of (98) is highly relevant for
the analysis of CQ as we will discuss in Sect. 8.
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5.5.2 The Postprocessed Solutions

It would look like we were done if we had not postprocessed the solution in two
different ways using the operators

S.s/Ah.s/ .� 1
2
IC J.s//Ah.s/:

In principle we can just go ahead and combine the estimate (98) (due to coercivity
of sV.s/) with the estimates in (83). This yields the bounds

kS.s/Ah.s/kH1=2.� /!H1.˝C/
� C

jsj3
22

8s 2 CC;

k.� 1
2
IC J.s//Ah.s/kH1=2.� /!H�1=2.� / � C

jsj7=2
25=2

8s 2 CC:

These estimates are quite pessimistic though. With a different approach it can
actually be proved that

kS.s/Ah.s/kH1=2.� /!H1.˝C/
� C
jsj3=2
3=2

8s 2 CC; (99a)

k.� 1
2
IC J.s//Ah.s/kH1=2.� /!H�1=2.� / � C

jsj2


8s 2 CC: (99b)

In view of (98) and (83), the bound (99a) is slightly shocking and should make
the reader consider carefully the role of s in the operators. In principle s is
differentiation. Therefore the bound for S.s/ seems to say that application of the
single layer potential comes with loss of time regularity in one unit, while the
solution of the integral equation V.s/� D ˇ (or of its Galerkin discretization) comes
with a loss of two indices of smoothness in time. Their composition, however, loses
only 3=2 smoothness indices. (Take this idea of loss of regularity with multiples of
s with a grain of salt. Moving from bounds in the Laplace domain to time domain
mapping properties is not optimal and yields some additional losses of smoothness
in time.)

5.6 Credits

The presentation and analysis of the acoustic layer potentials in the time domain
using their Laplace transforms can be traced back to the seminal work of Alain



Convolution Quadrature for Wave Simulations 133

Bamberger and Tuong Ha-Duong [1, 2]. They were the first to prove the coercivity
estimate (97), which is the origin for the modern theory of acoustic layer potentials
in the time domain. Here we have adopted the more systematic approach of [22, 30].
The explicit distributional form of the three dimensional Huygens potentials, briefly
mentioned at the end of Sect. 5.2, first appears in [21]. The first use of CQ for a
boundary integral equation, related to the heat equation, was given by Christian
Lubich and Reinhold Schneider in [27]. Two years later, Lubich himself made
the first incursion of CQ applied to the boundary integral equations for the wave
equation. The use of CQ for several kinds of elastic wave propagation phenomena
using integral equations was quite extended in the engineering literature (see
the monograph [31] by Martin Schanz, one of the pioneers in the field) by the
time the mathematical community went back to the topic. The effect of Galerkin
semidiscretization in space was studied in [25], but the postprocessing part (once
the boundary integral equation is solved, input the result in a potential) was only
studied in [22]. Other approaches for the study of layer potentials in the time
domain are given in [9, 14], using very different techniques that avoid the Laplace
transform. The expansions for the operators related to CQ for the single layer
operator equation were given in [16]. For more precise information on the Sobolev
space theory of boundary integral equations for steady state problems (which is
required to understand the Laplace domain estimates of this chapter), the reader is
recommended to explore William McLean’s monograph [28].

6 Multistage Convolution Quadrature

In this section we are going to introduce a new family of discretization methods
for causal convolutions and convolution equations. The main difference with the
multistep method will be in the fact that we will work simultaneously with several
points in time (stages). The way we will develop the method, the Runge-Kutta (RK)
steps will barely make an appearance.

The general look of an RK-based discrete convolution for y D f � g is

yn D
nX

mD0
WF

m.�/gn�m

where gn WD .g.tnC�c1/; : : : ; g.tnC�cp//
> and WF

m.�/ is a p�p matrix of operators,
with values in the same space as F.
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6.1 Some Runge-Kutta Methods

6.1.1 Vectorized Notation

We will accept the following (shorthand) vectorized form for evaluation of a
function:

c D

2
64

c1
:::

cp

3
75 7�! g.tC �c/ D

2
64

g.tC �c1/
:::

g.tC �cp/

3
75 2 R

p:

Similarly, if f D f .t; y/, then

c; y 2 R
p 7�! f .tC �c; y/ D

2
64

f .tC �c1; y1/
:::

f .tC �cp; yp/

3
75 2 R

p:

6.1.2 Implicit RK Methods

An implicit RK scheme is often presented through its Butcher tableau

c A

b>
b; c 2 R

p; A 2 R
p�p;

with the conditions

A1 D c; b>1 D 1; 1 D .1; : : : ; 1/>: (100)

The second condition in (100) is necessary for convergence. The first condition
in (100) is related to the possibility of understanding time as an independent
variable. All RK methods satisfy these conditions. Unfortunately the letter s will be
reserved for the variable in the Laplace transform, so we will use p for the number
of stages. The application of a step of an RK method for

Py D f .t; y/ (101)

is based on the solution of a system of non-linear equations to compute the internal
stages

yn D yn1C �Af .tn C �c; yn/ (102)
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followed by the computation of the next step

ynC1 D yn C �b>f .tn C �c; yn/: (103)

The internal stages and the steps approximate

yn � y.tn C �c/ yn � y.tn/:

Starting RK methods requires the knowledge of y0. Unlike multistep methods,
bringing vanishing information from the past will not change the initial step, which
for us will always be y0 D 0.

6.1.3 Some Multistage Differentiation Formulas

We next apply the above RK method to the search of causal solutions to the
antiderivative problem

Py D g  ! sY.s/ D G.s/:

The stages and steps for the method (102)–(103) translate into

yn D yn1C �Agn; ynC1 D yn C �b>gn; gn WD g.tn C �c/: (104)

It is clear from (104) that causality of g and the imposition of a causal discrete
solution (yn D 0 and yn D 0 for n < 0) imposes y0 D 0. It is also clear that for
this particular equation (a quadrature), the internal stages do not play any role. We
will still pay attention to them, since they are the quantities of our interest. We next
write (104) using the � transform. To do it, we introduce

Y.�/ WD
1X

nD0
yn�

n; Y.�/ WD
1X

nD0
yn�

n; G.�/ WD
1X

nD0
gn�

n;

and rewrite (104) as

Y.�/ D Y.�/1C �AG.�/; ��1Y.�/ D Y.�/C �b>G.�/:

Therefore

Y.�/ D � �

1 � � b>G.�/;

and from this

Y.�/ D �
	

�

1 � � 1b> C A



G.�/: (105)
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Equation (105) is the discrete version of antidifferentiation Y.s/ D s�1G.s/,
performed at the level of the stages. Therefore the p � p matrix

�.�/ WD
	

�

1 � � 1b> C A

�1

will play the part of ı.�/ for the multistage case:

sY.s/ is discretized as 1
�
�.�/Y.�/:

In other words, 1
�
�.�/ is the discrete transfer function for multistage differentiation.

Note that the possibility of defining a discrete multistage differentiation operator by
inverting the RK recurrence requires (105) to be an invertible recurrence, which
only happens when A is invertible.

6.1.4 A Subclass of RK Methods

We consider the subclass of stiffly accurate RK methods where the last row of A is
b>, that is,

e>
p A D b>; e>

p D .0; : : : ; 0; 1/;

and therefore cm D 1 (multiply both sides by c). Therefore, multiplying (102) by e>
p

and using (103) it follows that

e>
p yn D yne>

p 1C �e>
p Af .tn C �c; yn/ D yn C �b>f .tn C �c; yn/ D ynC1; (106)

which means that the last component of yn is ynC1 and we do not need to worry about
the steps any more. For this subclass of methods we can recompute the discrete
differentiation operator. Using (106), we can write

yn D yn1C �Agn D 1e>
p yn�1 C �Agn;

or, in the � domain,

.I � �1e>
p /Y.�/ D �AG.�/:

In this case, differentiation is given by

1
�
�.�/; where �.�/ WD A�1.I � �1e>

p /:

Note that this is just an alternative formula for the matrix �.�/ defined in the more
general case.
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6.1.5 Two Examples

The order three Radau IIa method and the order four Lobatto IIIc are respectively
given by the tables

1=3 5=12 �1=12
1 3=4 1=4

3=4 1=4

0 1=6 �1=3 1=6

1=2 1=6 5=12 �1=12
1 1=6 2=3 1=6

1=6 2=3 1=6

6.2 Elementary Dunford Calculus

6.2.1 Our Next Goal

Now that we have a new approximation of the derivative (of s), we might want to
define a new approximation of F.s/. If F is scalar valued and entire (analytic in C),
it is not entirely difficult to define F.B/ for any p�p matrix B using the power series
expansion for F. When F is analytic only in part of C this is still doable, but not for
every matrix: essentially we need all the eigenvalues of B to be in the domain of
analyticity of F. The process is however somewhat more complicated when we deal
with operator-valued F.

6.2.2 Scalar Functions of Matrices

(While this theory can be made much more general, we will keep it close to our
assumptions on transfer functions.) Let F W CC ! C be analytic and let � 2 CC.
Then

F.�/ D 1

2�i

I
C
.z � �/�1F.z/dz;

where C is a simple positively oriented closed path around �. It does not take much
imagination to figure out a definition for F.�/ where � D diag.�1; : : : ; �p/ is a
diagonal matrix:

F.�/ WD 1

2�i

I
C
.zI ��/�1F.z/dz

D diag

	
1

2�i

I
C
.z � �1/�1F.z/dz; : : : ;

1

2�i

I
C
.z � �p/

�1F.z/dz



:

The integral is done component by component, and the path C has to enclose the
values f�1; : : : ; �pg, that is, the spectrum of �. If B D P�P�1, where � is diagonal,
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then a simple computations yields

PF.�/P�1 D 1

2�i

I
C
.zI � B/�1F.z/dz;

so it is just logical that we adopt the latter expression

F.B/ WD 1

2�i

I
C
.zI � B/�1F.z/dz; (107)

as a definition, even for non-diagonalizable matrices. As in previous cases, C is a
simple closed path in CC surrounding the spectrum of B.

6.2.3 Kronecker Products

Let B 2 C
p�q and F 2 B.X;Y/. We then define

B˝ F WD

2
64

b11F : : : b1qF
:::

: : :
:::

bp1F : : : bpqF

3
75 2 B.X;Y/p�q 
 B.Xq;Yp/:

This formula gives us the proper definition of an operator-valued function F W CC !
B.X;Y/ acting on a matrix:

F.B/ WD 1

2�i

I
C
.zI � B/�1 ˝ F.z/dz: (108)

Once again C is a closed path surrounding the spectrum of B. The resulting p � p
integrals take place in the Banach space B.X;Y/, where F takes values. Equivalently,
we can think of the integral as being computed in the Banach space B.X;Y/p�p 

B.Xp;Yp/.

6.2.4 Key Properties

The fact that the Dunford calculus is given that name (calculus, not Dunford) is due
to the fact that it interacts nicely with the algebra of operators. For instance, for
every B

1

2�i

I
C
.zI�B/�1˝IXdz D

	
1

2�i

I
C
.zI � B/�1dz



˝IX D I˝IX D IXp ; (109)
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as long as C surrounds the spectrum of B. Also, if F W CC ! B.X;Y/ and G W
CC ! B.Z;X/, then

.FG/.B/ D F.B/G.B/ (110)

for every matrix with spectrum contained in CC. In particular, if F.s/ is invertible
for all s 2 CC and .B/ � CC, then by (109) and (110), it is clear that F.B/ is
invertible and

F.B/�1 D F�1.B/: (111)

6.2.5 Some Properties of Kronecker Products

We are next going to explore how to compute (108) in the diagonalizable case by
using only evaluations of F on the spectrum of B. We need some preliminary work.
It is a simple exercise to prove that if B 2 C

p�q and C 2 C
q�r , then

.BC/˝ F D .B˝ IY/.C˝ F/: (112)

The product in the right-hand-side of (112) is the product of a matrix of operators
in B.Y;Y/ with a matrix of operators in B.X;Y/. It can also be understood as a
composition of an operator in B.Yq;Yp/ with an operator in B.Xr;Yq/. Let now �

be a p � p diagonal matrix. Then

.�C/˝ F D .�˝ IY/.C˝ F/ D

2
64
�1row.C; 1/˝ F

:::

�prow.C; p/˝ F

3
75 ; (113)

where if C 2 C
p;q, row.C; i/ is the 1 � q matrix containing the i-th row of C and

therefore row.C; i/ ˝ F 2 B.Xq;Y/ 
 B.X;Y/1�q. Using (112) and (113) we can
compute

.B�C/˝ F D .B˝ IY /..�C/˝ F/

D col.B; 1/˝ ��1row.C; 1/˝ F
�C : : :C col.B; p/˝ ��prow.C; p/˝ F

�
;

or in short

.B�C/˝ F D
pX

iD1
col.B; i/˝ ��irow.C; i/˝ F

�
: (114)

The outermost Kronecker product in (114) corresponds to a column matrix r � 1
with an operator in B.Xq;Y/, outputting an operator in B.Xq;Yr/.
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6.2.6 Operator-Valued Functions of a Diagonalizable Matrix

Assume that B D P�P�1 with � D diag.�1; : : : ; �p/, with �i 2 CC for all i, and
that F W CC ! B.X;Y/ is analytic. Then, (114) says that for z 62 .B/ D f�ig

.zI � B/�1 ˝ F.z/ D
pX

iD1
col.P; i/˝ �.z � �i/

�1row.P�1; i/˝ F.z/
�

D
pX

iD1
col.P; i/˝ �row.P�1; i/˝ ..z � �i/

�1F.z//
�
:

Integrating on a path that surrounds the spectrum of B gives the following
computable version of (108):

F.B/ D
pX

iD1
col.P; i/˝ �row.P�1; i/˝ F.�i/

�
:

6.3 RKCQ

6.3.1 From Discrete Differentiation to Discrete Calculus

In Sect. 6.1 we have defined a discrete differentiation symbol

1
�
�.�/; �.�/ WD

	
�

1 � � 1b> C A

�1

:

In Sect. 6.2 we have shown how to define an operator-valued function of a matrix
variable using Dunford calculus. In particular, whenever this makes sense, we define

F. 1
�
�.�// D 1

2�i

I
C
.zI � 1

�
�.�//�1 ˝ F.z/dz;

where C is a path around the spectrum of 1
�
�.�/, which is assumed to be included

in CC for j�j < 1 (more about this at the end of this section). Then we use a Taylor
expansion to obtain the coefficients:

F. 1
�
�.�// D

1X
nD0

WF
n .�/�

n: (115)
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6.3.2 Multistage Discrete Convolutions

To discretize y D f � g, we apply (115) to obtain

y.tn C �c/ � yn D
nX

mD0
WF

n .�/gn�m; gn WD g.tn C �c/:

This same expression can be written with help of the � transform

Y.�/ D F. 1
�
�.�//G.�/:

In the case of convolution equations f � g D h, we apply the same idea to obtain a
lower triangular system of operator equations

nX
mD0

WF
m.�/gn�m D hn WD h.tn C �c/; n � 0;

or, in more explicit form

WF
0 .�/gn D hn �

nX
mD1

WF
m.�/gn�m: (116)

Equation (116) shows how we are inverting an operator equation associated to
B.XpIYp/. Note that

WF
0 .�/ D F. 1

�
�.0// D F. 1

�
A�1/

is invertible as shown in (111).

6.3.3 A Note on the Spectrum of A

A requirement for the correct definition of the RKCQ process is the possibility of
producing the CQ coefficients WF

n .�/. We recall that one of our prerequisites to
define a multistage discrete derivative 1

�
�.�/ was the existence of A�1. We will

further assume the following property

.A/ � CC: (117)

Readers acquainted with the theory of A-stable RK methods will recognize that
the invertibility of I � zA for Re z � 0 is one of the hypotheses of A-stable
methods. Actually this hypothesis and invertibility of A are equivalent to (117).
Since�.�/�1 D �

1�� 1bCA is a small perturbation of A for small �, hypothesis (117)
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implies that for small �

. 1
�
�.�// � CC

and therefore the CQ coefficients are well defined.

6.4 Stages, Steps, and More

6.4.1 Stages or Steps

As defined in Sect. 6.3 the RKCQ process works purely at the stage level. It samples
data in the stages and then produces vectors of approximations in the internal stages.
This is especially important when thinking of solving convolution equations, where
we need to have as many data as unknowns.

6.4.2 The Associated Convolution in Continuous Time

Let us start by reviewing a simple fact of multistep CQ. Given the operator valued
distribution f and its Laplace transform F, we had

F. 1
�
ı.�// D

1X
nD0

!F
n .�/�

n; F.s�/ D
1X

nD0
!F

n e�stn s� WD 1
�
ı.e�s�/;

and, in the time domain

f� WD
1X

nD0
!F

n ˝ ıtn Lff�g.s/ D F.s�/:

This means that even if we only computed convolution at discrete times, there is a
continuous convolutional operator in the background. The case of RKCQ is more
complicated. We first try to replicate the previous formulas by defining

S� D S�.s/ WD 1
�
�.e�s�/; F.S�/ D

1X
nD0

WF
n .�/e

�stn ;

the latter B.XpIYp/-valued function of s being the Laplace transform of the causal
distribution F� WD WF

n .�/ ˝ ıtn : This operator-valued distribution cannot be put
in convolution with an X-valued distribution g. Instead, the distribution g is first
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modified to the Xp-valued distribution

2
64

g.� C c1�/
:::

g.� C cp�/

3
75 DW g.� C �c/:

Note that this can be understood as a convolution process, but it is not causal,
because it pushes back the origin to be at the level of the different stages. Then
the RKCQ process can be understood as the evaluation at the time steps tn of the
continuous convolution

F� � g.� C �c/ D
1X

nD0
WF

n .�/g.� � tn C c�/:

6.4.3 Computation of Steps in the Simplest Case

While the emphasis in the multistage CQ process is on the stages, we might want
to compute only values at the time steps tn. In the case when e>

p A D b>, we can
compute

.e>
p ˝ I/yn DW ynC1 � y.tnC1/:

This means that we have never computed an approximation y0 (it is zero), unlike in
the multistep case, where y0 was computed from g.0/.

6.4.4 The General Case

In order to give a definition of a multistage CQ method where the input are the
vectors gn and the output are quantities ynC1 � . f � g/.tnC1/, we need to go back to
some computations in Sect. 6.1. In particular we have shown that for the differential
equation y0 D g (that is, for the operator F.s/ D s�1), we could compute the steps
as a postprocessing of the stages

Y.�/ D �

1 � � b>�.�/Y.�/; Y.�/ D ��.�/�1G.�/:

We can use this formula to extend the computation of steps for a general convolution
y D f � g, by writing

Y.�/ D �

1 � �
�
b>�.�/˝ I/F. 1

�
�.�//G.�/: (118)
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This would suggest that we need to figure out a way of computing the discrete
process described by (118). There is however a simpler formula to compute the
steps from the previous step and the most recently computed stages. We start by
computing

.1 � �/b>A�1�.�/�1 D .1 � �/b>�IC �

1 � �A�11bT
�

D .1 � �/b> C �.b>A�11/b> D .1 � ��/b>;

where

� WD 1 � b>A�11: (119)

(More about this quantity later.) Therefore

�

1 � � b>�.�/ D �

1 � �� b>A�1;

which means that the discrete convolution

Y.�/ D �

1 � � .b
>�.�/˝ I/Y.�/

is equivalent to

.��1 � �/Y.�/ D .d> ˝ I/Y.�/; d> WD b>A�1; (120)

which allows us to write

ynC1 D �yn C .d> ˝ I/yn D �yn C d1yn;1 C : : :C dpyn;p: (121)

The simple case is easily recovered from this formula by noticing that b>A�1 D e>
p

and � D 0.

6.5 Implementation of RKCQ

6.5.1 General Idea

Much of what we are going to sketch in this section follows closely what was
explained in Sect. 4 for the multistage CQ scheme. We will not repeat many of the
arguments there, and will just show some important steps. The key formula to keep



Convolution Quadrature for Wave Simulations 145

in mind is the practical computation

F.B/ D
pX

iD1
col.P; i/˝ �row.P�1; i/˝ F.�i/

�
; B D Pdiag.�1; : : : ; �p/P�1;

(122)

that was derived in Sect. 6.2.

6.5.2 Computation of RKCQ Coefficients

Using an integration contour CR WD f� 2 C W j�j D Rg, with R D �1=.2NC2/ and a
trapezoidal rule of N C 1 points, we can compute

WF
n .�/ D

1

nŠ

dn

d�n
F

	
1

�
�.�/


 ˇ̌
ˇ
�D0 D

1

2�i

I
CR

��n�1F. 1
�
�.�//d�

� R�n

N C 1
NX
`D0

�n`
NC1F. 1��.�

�`
NC1//; n D 0; : : : ;N:

As usual �NC1 D e
2�i

NC1 . The corresponding algorithm is to be compared with
Algorithm 2.

Algorithm 7 (computation of RKCQ coefficients)
Note that in the particular case of stiffly accurate methods, we can write

�.�/ D A�1 � �C; C WD A�11e>
p :

(a) For ` D 0; : : : ;N, find the spectral decomposition

P`�`P�1
` D 1

�
�.R��`

NC1/

and use (122) (looping over stages) to compute

OF` WD F. 1
�
�.R��`

NC1//:

Note that OF` 2 B.Xp; Yp/.
(b) Apply the IDFT and scale

WF
n .�/ WD R�n

 
1

N C 1

NX
`D0

OF`�n`
NC1

!
:

This method works under the assumption that �.�/ is diagonalizable on the path CR.
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6.5.3 All-Steps-At-Once Forward Convolution

Let us first sample the data

gn WD g.tn C �c/; n D 0; : : : ;N:

We want to compute

un D
nX

mD0
WF

n�m.�/gm D
NX

mD0
WF

n�m.�/gm; n D 0; : : : ;N;

(note that WF
n .�/ D 0 for negative n), using approximations

WF
n .�/ �

R�n

N C 1
NX
`D0
OF`�n`

NC1; OF` WD F. 1
�
�.R��`

NC1//:

Proceeding as in Sect. 4.3, we approximate

un � R�n

 
1

N C 1
NX
`D0
OF`
 

NX
mD0

Rmgm�
�m`
NC1

!
�`NC1

!
:

6.5.4 The Finite Dimensional Case

Let us briefly detail what is to be done when g W R ! R
d2 and f W R ! R

d1�d2 . In
this case, it is advantageous to deal with samples at stage points as vectors gn 2 R

p d2

organized in p blocks of d2 components. The key step is the multiplication

OF` Oh`; OF` D F. 1
�
�.R��`

NC1//;

for a given vector h 2 C
p d2 . It is not difficult to see that when 1

�
�.R��`

NC1/ D
P`�`P�1

` , then

OF` Oh` D .P` ˝ Id1 /diag.F.�1/; : : : ;F.�p//.P�1
` ˝ Id2 /

Oh`: (123)

If g takes values in X and F in B.XIY/, then we have to deal with samples gn 2 Xp,
with some modified vectors Oh` 2 Xp (see Algorithm 8) and that (123) still applies if
we substitute Id1 and Id2 by IY and IX respectively.

If this is the last step of a sequence of convolutions, that is, if we are not
going to apply any other convolution operator to this result, we can keep the last
component of un as approximation in the point tnC1. Note that because the RKCQ
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Algorithm 8 (all-steps-at-once convolution)
We begin by sampling data at the discrete times

gn WD g.tn C �c/ 2 Xp; n D 0; : : : ;N:

(a) Scale data:

hm WD Rmgm; m D 0; : : : ;N:

(b) Compute the DFT:

Oh` WD
NX

mD0

hm�
�m`
NC1; ` D 0; : : : ;N:

These are formal DFTs, componentwise in Xp . When X D R
d , these can be broken to p d

separate scalar DFTs.
(c) For every ` D 0; : : : ;N, find the spectral decomposition 1

�
�.R��`

NC1/ D P`�`P�1
` and

compute

Ov` WD OF` Oh` D .P` ˝ IY /diag.F.�1/; : : : ; F.�p//.P�1
` ˝ IX/Oh`:

Note that the product by the block-diagonal matrix in the center can be done componentwise
in X.

(d) Compute the IDFT:

vn WD 1

N C 1

NX
`D0

Ov`�`nNC1; n D 0; : : : ;N:

(See the comments on step (b).)
(e) Scale back

un WD R�1vn 2 Yp; n D 0; : : : ;N:

method counts intervals (groups of stages) and not steps, we are not computing an
approximation at t0, and the final time-step takes us to tNC1 and not to tN .

6.5.5 Convolution Equations

We will not repeat the argument for convolution equations. Algorithm 8 can be
easily modified to handle this new situation. The only step to be changed is (c),
where we need a multiplication

OF�1
` Ovm D OF` Oh` D .P` ˝ IY/diag.F.�1/�1; : : : ;F.�p/

�1/.P�1
` ˝ IX/ Ov`;
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that is, we need to solve p equations associated to the operators F.�j/. For a
comparison, see how Algorithm 3 is modified to Algorithm 4.

Algorithm 9 (computation of a piece of a convolution)
The algorithm to compute

gn WD
QX

mD0

WF
n .�/um; n D Q C 1; : : : ;M;

renumbered in the form

Qgk WD
QX

mD0

WF
kCQC1�m.�/um; k D 0; : : : ;M � Q � 1;

starting from vectors um 2 Xp and outputting values in Yp, and using approximations

WF
n .�/ � R�n

N C 1

NX
`D0

OF`�n`
NC1;

OF` WD F. 1
�
�.R��`

NC1// (124)

(for positive and negative n) is derived in an entirely similar way to what we did in Sect. 4.4. The
parameter N 	 M is a design parameter that influences the size of the computation, but also the
precision to which the approximations (124) are carried out.

(a) Scale and augment data

wm WD
�

Rmum; 0 � m � Q;
0; Q C 1 � m � N:

(b) Compute the DFT Ow` (` D 0; : : : ;N) of the vectors in (a). See Algorithm 8(b) for a comment
on this step.

(c) For every ` D 0; : : : ;N, find the spectral decomposition 1
�
�.R��`

NC1/ D P`�`P�1
` and

compute

Oh` WD �
`.QC1/

NC1
OF` Ow` D �

`.QC1/

NC1 .P` ˝ IY /diag.F.�1/; : : : ; F.�p//.P�1
` ˝ IX/ Ow`:

(d) Compute the IDFT of the sequence in (c), h` (` D 0; : : : ;N).
(e) Scale and chop the resulting sequence

Qgk WD R�k�Q�1h`; k D 0; : : : ;M � Q � 1:

6.6 Credits

For a deeper introduction to the Dunford calculus, the reader is referred to [12].
Runge-Kutta convolution quadrature first appeared in a paper by Christian Lubich
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and Alexander Ostermann [26]. Some further theoretical developments can be
found in [11]. The interest in RKCQ in the area of time-domain boundary integral
equations is more recent [3, 8]. The algorithms shown in Sect. 6.5 can be found
in [6]. The analysis of RKCQ applied to problems whose transfer function has the
structure (13)–(14) was developed in [4] and [7].

7 A Toy Application

In this section we will show a simple fully discrete (and very easy to code) example
for the scattering of an acoustic wave by a smooth obstacle in the plane. All the
operators will be given directly through their Laplace domain representations. The
numerical method that we will present here can be understood as a fully discrete
version of a Galerkin method. While the theory for the Galerkin method follows
from existing arguments in the literature, the full discretization of the equations is
not entirely justified.

7.1 Scattering by a Smooth Closed Obstacle

7.1.1 The Geometry

Consider a simple smooth closed curve in the plane parametrized by a 1-periodic
function x W R! � � R

2 satisfying:

x.r/ D x.rC 1/ 8r; x.r/ ¤ x.�/ if r � � 62 Z; jx0.r/j ¤ 0 8r:

We assume that the parametrization gives a positive orientation to the curve, so that
n.r/ WD .x0

2.r/;�x0
1.r// is a normal outward pointing vector at x.r/.

7.1.2 One Potential and Two Operators

Given a 1-periodic density � W R ! C, directly defined in parametric space, the
associated single layer potential at speed one (given in the Laplace domain) is

.S.s/�/.z/ WD i

4

Z 1

0

H.1/
0 .isjz � x.�/j/�.�/d�: (125)

Two operators can be used to represent the boundary values of the single layer
potential, the single layer operator

.V.s/�/.r/ WD i

4

Z 1

0

H.1/
0 .isjx.r/� x.�/j/�.�/d�; (126)
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and the transposed double-layer operator

.J.s/�/.r/ WD s

4

Z 1

0

H.1/
1 .isjx.r/� x.�/j/ .x.r/� x.�// � n.r/

jx.r/� x.�/j �.�/d�: (127)

The functions H.1/
0 and H.1/

1 in (125), (126) and (127) are the Hankel functions of
the first kind and respective orders zero and one. The exterior boundary values for
U D S.s/� are given by the expressions:

.UCıx/.r/ D .V.s/�/.r/; .rUCıx/.r/�n.r/ D � 1
2
�.r/C.J.s/�/.r/: (128)

Note how instead of using a unit normal vector, we are employing the non-
normalized vector field n in (127) and (128). This simplifies some expressions like
the exterior normal derivative in (128).

7.1.3 The Transient Problem

We are then going to bring an incident plane wave to the game (see Sect. 5.1)

uinc.z; t/ D  .c.t � tlag/� z � d/; jdj D 1:

This incident wave is read on points of the boundary to create

ˇ.t/.r/ D ˇ.r; t/ WD  .c.t � tlag/� x.r/ � d/; (129)

which is periodic in r and assumed causal in t. The scattering problem then looks
for � W R2 ! R, 1-periodic in its first variable and causal in the second such that

.Vc � �/.t/C ˇ.t/ D 0 8t; where LfVcg D V.�=c/:

(Note how it has been convenient to think of functions as being only functions of the
time variable with output in a certain non-specified space of 1-periodic functions.)
The density is then input in a potential expression

U.t/ D .Sc � �/.t/; where LfScg D S.�=c/;

and is used to generate the exterior normal derivative

�.t/ D � 1
2
�.t/C .Jc � �/.t/; where LfJcg D J.�=c/:
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7.2 Fully Discrete Equations

7.2.1 The Source Geometry

Let us choose a positive integer N and consider h WD 1=N as the discrete mesh-size.
The geometry is sampled in the following simple way:

mj WD x. j h/; nj WD hn.j h/; j 2 ZN ; (130)

where ZN is the set of integers counted modulo N. (It is clear that (130) defines only
N different points, since both x and n are 1-periodic functions.) A discrete density
is now a vector � 2 C

N , or, more properly (and pedantically) speaking, a function
� W ZN ! C. The associated single layer potential is then given by a sum of sources

.S.s/�/.z/ WD i

4

NX
jD1

H.1/
0 .isjz �mjj/�j: (131)

7.2.2 The Observation Geometries

Because of the logarithmic singularity of the Hankel function H.1/
0 at the origin, we

are not allowed to use a simple evaluation of (126) at the same points were we have
concentrated the density. To overcome this difficulty, and for reasons that will be
discussed at the end of this section, we are going to choose two observation grids:

mi̇ WD x..i˙ 1
6
/h/; ni̇ WD hn..i˙ 1

6
/h/; i 2 ZN : (132)

For averaging any pair of discrete functions defined on the observation grids we will
use the following notation:

X
˙

ai̇ WD 1
2
.aC

i C a�
i /:

The discrete version of (126) is given by

.V.s/�/i WD
X

j

X
˙

i

4
H.1/
0 .isjmi̇ �mjj/�j; (133)

while for (127) we use a first identical format

.Jı.s/�/i WD
X

j

X
˙

s

4
H.1/
1 .isjmi̇ �mjj/ .mi̇ �mj/ � ni̇

jmi̇ �mjj
�j; (134)
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that we next correct in the following form

J.s/ D Q Jı.s/; where Qij WD

8̂
<̂
ˆ̂:

11
12

i D j;
1
24

i D j˙ 1 .mod N/;

0 otherwise:

(135)

There is a final tricky point that comes from observation of the second equation
in (128). Since the density has been concentrated on the points mj, how can we
observe it in the points mi̇ ? There is no simple reason for the following answer
(see the final of this section for precise references on this), but this is it. A matrix

Mij WD

8̂
<̂
ˆ̂:

7
9

i D j;
1
9

i D j˙ 1 .mod N/;

0 otherwise;

(136)

will play the role of the identity operator. Corresponding to these transfer functions,
there are three time domain distributions

LfScg D S.�=c/; LfVcg D V.�=c/; LfJcg D J.�=c/:

7.2.3 The Semidiscrete Time Domain Problem

The incident wave (129) is observed in the observation points to create a discrete
causal function ˇ W R! R

N

ˇi.t/ D
X
˙
 .c.t � tlag/ �mi̇ � d/; (137a)

a causal discrete density � W R ! R
N is then computed by solving the convolution

equations

.Vc � �/.t/C ˇ.t/ D 0 8t; (137b)

and then a potential is generated

U.t/ D .Sc � �/.t/ 8t; (137c)

and as well as an approximation of the normal derivative, � W R! R
N ,

M�.t/ D � 1
2
M�.t/C .Jc � �/.t/: (137d)
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Fig. 3 Six snapshots of a manatee-shaped sound-soft scatterer being hit by a plane wave, clearly
visible in the first picture. The integral equations are solved using the method of Sect. 7 on the
boundary of the scatterer. After that the potential is computed on points in the given frame. An
order three Radau IIA CQ method was used in the time domain

It is interesting to notice than even after discretization the function U is still a causal
solution of the wave equation in R

2 n� . The final fully discrete method comes from
applying CQ to each of the three convolutions in (137). In the case of multistep
CQ, the function ˇ is sampled at equidistant times (the steps), and then three CQ
processes (one convolution equation and two forward convolutions) are launched.
In the case of RKCQ, the sampling is done at the stage points, the convolution
equation is solved at the stage level, and finally two forward convolutions yield
approximations at the step points. A simulation produced by these computations is
seen in Fig. 3.

7.3 Credits

This section is based on the fully discrete Calderón Calculus developed in [15].
The somewhat puzzling choices of parameters (the relative distances ˙1=6 to the
observation grids, the matrices M and Q) can be justified using careful Fourier
analysis. Some intuitive explanation can be gathered from [15].
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8 The Theory of Convolution Quadrature

In this section we collect some convergence results for multistep and multistage CQ
applied to convolutions whose symbol is defined in CC. The multistage results are
taken from [25] with a slight refinement (on the behavior of constants with respect
to time) to be found in [30]. The trapezoidal rule is not covered by that analysis but
can be found in [3]. The convergence of multistage CQ for problems relevant to the
wave equation was developed in [4] and [7].

8.1 Multistep CQ

In this section we give a fast review of some results on convergence for multistep
CQ for general operator valued convolutions. For ease of reference, let us recall
some notation:

CC WD fs 2 C W Re s > 0g;  WD Re s;  WD minf1; g:

8.1.1 Hypotheses on ı.�/ for Multistep Methods

The function ı W U ! C is analytic in U where f� 2 C W j�j � 1g � U: We
also require that ı W B.0; 1/! CC; that is, Re ı.�/ > 0 for all � such that j�j < 1.
Finally, we require that there exists q � 1, C0 > 0, and �0 > 0 such that

ˇ̌
1
�
ı.e��/� 1ˇ̌ � C0�

q 8� � �0:

These hypotheses are satisfied by the BE method ı.�/ D 1 � � with q D 1 and by
the BDF2 method ı.�/ D 3

2
� 2�C 1

2
�2 with q D 2. Note that the trapezoidal rule is

not covered by this analysis, and TR has to be analyzed using some different tricks.
Some work in the complex plane implies that the map CC 3 s 7! s� WD 1

�
ı.e�s�/

satisfies

js� j � C1jsj; js� � sj � C2�
qjsjqC1; Re s� � C3 8s 2 CC: (138)

8.1.2 Hypotheses on the Transfer Function

Let now

F W CC ! B.XIY/ (139a)
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be analytic and satisfy

kF.s/kX!Y � CF./jsj� 8s 2 CC; with � � 0; (139b)

where CF W .0;1/! .0;1/ is non-increasing and

CF./ � C0
m

8 2 .0; 1�; with m � 0: (139c)

Recall that Sect. 2.4 identified F with the Laplace transform of an operator-
valued causal distribution which could be written as a distributional derivative
of a continuous causal operator-valued function with polynomial growth. Thanks
to (138), we can also identify the map CC 3 s 7! F.s�/ with the Laplace transform
of a causal distribution with values in B.XIY/.

8.1.3 A Convergence Result

Let ı and F satisfy the above hypotheses. Let g W R ! X be causal and Ck with
k > �C qC 2: Then

k. f � g/.t/� .f� � g/.t/kY � C�qh.t/
Z t

0

kg.k/.�/kXd�; (140)

where

h.t/ D
�

tk�.�CqC1/; t � 1;
tk��Cm; t � 1:

In (140), f D L�1fFg and f� D L�1fF�g, with F�.s/ WD F.s�/.

8.2 Multistage CQ

8.2.1 Order of Convergence for an RK Method

Consider an RK method applied to the IVP

Py D f .t; y/; 0 � t � T; y.0/ D y0:

The internal stages

yn D yn1C �Af .tn C �c; yn/
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and the steps

ynC1 D yn C �b>f .tn C �c; yn/

create approximations

yn � y.tn C �c/ yn � y.tn/:

We say that the stage order of the RK method is q when for a smooth enough
solution y

jy1 � y.�c/j � ChqC1:

We say that the classical order of the RK method is r when for a smooth enough
solution y

jy1 � y.t1/j � ChrC1:

Note that the two methods given at the end of Sect. 6.1 have respective classical
orders 3 and 4, while both share stage order equal to 2.

8.2.2 Hypotheses on the RK Method

Consider an RK method and its stability function

R.z/ D 1C zb>.I � zA/�11:

We will assume that:

(a) The matrix A is invertible. (This is needed right at the beginning of Sect. 6.1, in
order to give a definition to the discrete multistage differentiation operator.)

(b) (A-stability) For all z such that Re z � 0, the matrix I � zA is invertible and

jR.z/j � 1:

As mentioned in Sect. 6.3, hypotheses (a) and (b) imply that .A/ � CC.
(c) R.1/ D 0, that is b>A�11 D 1: (Note that the quantity � D 1 � b>A�11 D

R.1/ had appeared in (119) at the time when we wanted to compute steps for
RKCQ.)

(d)

jR.i!/j < 1 8! 2 R n f0g:
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8.2.3 A Word on the RKCQ Output

While in principle the RKCQ produces a sequence of vectors Yp 3 yn � y.tnC �c/,
with y D f � g, and a sequence of ‘scalars’ Y 3 yn � y.tn/, like in the multistage
case, there is a formula that extends these values to continuous times. We saw in
Sect. 6.4 that RKCQ could be understood as outputting

y�.t/ D
1X

mD0
WF

m.�/g.t � tm C �c/; (141)

so that y�.tn/ D yn: The time steps can be produced using a simple postprocessing
of the stages

ynC1 D .b>A�1 ˝ I/yn

(recall (120) and (121) and notice that we are assuming that � D 0). At the
continuous level, this corresponds to the values at time tnC1 of

y� D .b>A�1 ˝ I/y�.� � �/: (142)

8.2.4 Hypotheses on the Transfer Function

The hypotheses on F are slightly different than those given for multistep CQ. We
assume that

F W CC ! B.XIY/ (143a)

is analytic and satisfies

kF.s/kX!Y � CF./
jsj�
�

8s 2 CC; with � � 0, � � 0; (143b)

where CF W .0;1/! .0;1/ is non-increasing and

CF./ � C0
m

8 2 .0; 1�; with m � 0: (143c)

Note that we have factored out � from CF so that a bound with a power of  in the
denominator is also valid as  !1.
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8.2.5 A Convergence Result

Let F satisfy hypotheses (139) and the RK method satisfy the previous hypotheses
with stage order q and classical order r � q. Assume that g W R ! X is causal
and Ck with k > �C r C 2: If y D f � g and y� is the RKCQ approximation of y
using (141) and (142), then

ky.t/ � y�.t/kY � C�minfr;qC1��C�gh.t/
Z t

0

kg.k/.�/kXd�:

Here h is an increasing function of time, whose behavior is not entirely well
understood, although it is unlikely that they behave worse than polynomially in
time. For the particular case of operators satisfying

kF.s/k � Ce�c  jsj� 8s 2 CC; � � 0; c > 0;

the full classical convergence order of the method is attained for smooth enough
functions, since we can choose any arbitrarily large � in the hypotheses for F.
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Mathematical Methods in Image Processing
and Computer Vision

Antonio Baeza

Abstract Image processing and computer vision are growing research fields
that take advantage of the increasing power or modern computers linked with
sophisticated techniques coming from many fields of expertise and in particular
from mathematics. We present an introduction to some problems in computer vision
and image processing and to some mathematical techniques and concepts that are
nowadays routinely used to approach them.

Keywords Computer vision • Image processing • Variational methods

1 Introduction

There is an old debate about how to name the application of different algorithms
to images with various goals: image analysis, image processing, computer vision,
machine vision and artificial vision are some of them. Albeit there is no agreement
about it, in these notes we will assume the division into two categories: on the one
hand, image processing, understood as a form of signal processing where the input
is an image or a video and the output can be either a modified image or video or a
set of low level image characteristics; on the other hand, computer vision is also a
form of signal processing with the same input (images or videos) but with an output
composed by high level information obtained from the images. The division based
on low level image parameters and high level information is sometimes also blurry.
Image processing includes areas like image deconvolution and denoising, interpo-
lation or histogram equalization, whilst computer vision comprises techniques like
object segmentation and categorization or motion analysis. Roughly speaking, in
image processing we consider actions on the image that do not try to understand
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what is happening in the image, while in computer vision one of the goals is
precisely to analyze and understand the image contents.

The applications of image processing and computer vision are enormous, and
even the non-expert can cite a few. Instagram with its image filters is a clear example
of image processing; Facebook uses algorithms for face detection to identify persons
in images that its users can label; any camera device – even smartphones – includes
a set of image enhancement tools, and any owner of a DSLR camera knows
about Photoshop or GIMP. We can then conclude that it is worth working on
image processing and computer vision because of the big number of applications
inherent to them. But for many people the main reason to work with images is
the amount of potential applications that they have, i.e. the set of non-existing
or underdeveloped applications that can be imagined. For example, most of the
image forensic techniques that appear in TV shows like CSI are unrealistic with
the technologies available nowadays, but it is accepted by the community that some
of them will become possible sooner or later.

The goal of these notes is to describe some problems that appear in image
processing and computer vision applications, as illustrative of the kind of problems
that scientists are facing and the mathematical tools that can be used to solve them
as a motivation for the reader interested in these research fields. A review of the
main mathematical methods that are nowadays used in the field is completely out
of the scope of these notes, and therefore we will focus on a class of methods,
namely variational methods, that translate the problem into the minimization of a
functional. Variational methods are popular and representative of the application
of mathematics to engineering. In particular, methods based on total variation
regularization will be at the center of these notes because of their successful
application to many different problems.

2 Image Capture: Demosaicking

In order to be able to manipulate images with mathematical tools and algorithms we
start by formalizing the image acquisition process into abstract concepts. An image
is a function I W ˝ � R

2 ! R
k, where ˝ is typically a square and k D 1 for

grayscale images or k D 3 for color images. Assume by the moment that the image
is a color image in RGB format, so that given a pixel x 2 R

2, the value I.x/ 2 R
3

represents the intensities of the red, green and blue channels of the image. Let us
take a look to the image acquisition process by means of a digital camera. The
camera has a capturing device, called a sensor, composed by an array of elements
that are able to measure the amount of light that arrives to them with an (ideally)
linear response. Most cameras incorporate a CCD (charge-coupled device) sensor
as a device for image capturing.

Current consumer technology allows for sensor elements that measure the light
intensity, essentially by counting the amount of photons that arrive to the sensor,
but that are not able to differentiate between color channels. In order to be able to
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Fig. 1 Diagram of a Bayer
filter

obtain color images the most common approach consists on overlaying the sensor
with a color filter array (CFA), so that only light corresponding to a given color
channel arrives to the pixel. The most common filters are known as Bayer filters
and are organized in a way similar to the one depicted in Fig. 1. Note that the filter
pattern is 50% green, 25% red and 25% blue, due to the fact that the human eye
is more sensitive to green light that to red or blue light. The resulting raw image
is therefore composed by an array of pixels measuring the amount or green, blue
or red light received by that pixel. To obtain a normal color image in which each
pixel is composed by three values (indicating the amount of green, blue and red
light received by that pixel) an interpolatory procedure called demosaicking has to
be applied. Not any interpolation can be used for demosaicking, as demonstrates the
fact that a lot of different methods have been developed for this purpose [9, 11, 18]
and many of them are protected by patents [5, 13, 17].

3 Image Restoration and Variational Methods

Let us analyze in this section the way how light arrives to the camera sensor. When
taking a picture with a camera we do not just put the sensor in front of a light
source, but the light crosses a lens or a combination of lenses that allows to control
the way how it arrives to the sensor. In a simple but effective way, the overall process
performed by the light reflected in an object when traveling from the source to the
sensor (including the lens effects but also the action of the atmosphere on the light)
can be modeled by means of a convolution operator, so that what is captured by the
sensor is a convolved version of the real object. Thus it seems natural to try to restore
the image through deconvolution. We will consider this problem as a model problem
for introducing variational methods in image processing and computer vision.

The deconvolution problem consists on finding the unknown, “real” image I from
the observed image f and possibly some knowledge about the convolution kernel K
that models the degradation of the image from the source to the sensor. In practice
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the problem amounts to estimate a convolution kernel K so that it holds

f D K � I:

Convolution is present in all images (due for example to image diffraction caused
by finite aperture) but it is especially important in some areas where it cannot be
avoided and produces significant image blurring. The areas where deblurring is
important range from satellite and astronomical images, where the light that arrives
to the sensor necessarily traverses the atmosphere, which is a source of image blur,
to microscopical images, in which sometimes the nature of the microscope also
introduces blur (for example, caused by out of focus light in confocal microscopy).
The problem of image deconvolution depends on how much of the structure of K is
known beforehand (blind deconvolution if K is unknown, myopic deconvolution if
K is partially known). The amount of incoming light measured by the image sensors
is perturbed by parasitic heat photons and electrostatic fluctuations at the time of
their loads and discharges. This is a random phenomenon called noise. The simplest
model of noise is to assume that the noise n is additive and has known or estimable
mean and standard deviation. The problem than includes both convolution and noise
is named image restoration and can be stated as: find I such that

f D K � I C n: (1)

The image restoration problem (1) is ill-posed due to the ill-conditioning of the
convolution kernel K. Many techniques for image restoration exist in the literature
(see [12]) and of course variational methods with regularization are among them.
The idea of regularized variational methods is to minimize a functional that includes
a term that enforces the difference between f and K � I to be small (data fidelity
term) plus a regularization term that selects the solution that is “more regular”
in some sense. We discuss some generalities about these methods with particular
emphasis in total variation regularization in the next section. For further details
about regularization of ill-posed problems in Hilbert spaces we refer to [25].

3.1 Regularized Variational Methods for Image Restoration

The simplest option for a regularization term is probably given by

Z
˝

jrIj2 dx; (2)

where j : j represents the `2 norm. The expression (2) is the semi-norm of the
Sobolev space H2.˝/, the space of square integrable functions whose first order
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weak derivatives are square integrable.1 Functionals based on (2) fulfill general
requirements of regularity, but in practice the solutions obtained from them suffer
from excessive edge smearing (see below). As an alternative, total variation is
defined for a differentiable function as

TV.u/ D
Z
˝

jrIj dx (3)

and was introduced in [24] as an improvement over the Sobolev semi-norm for the
case of image denoising, which is a particular case of image restoration with K being
the identity: find I such that

f D I C n:

Regularization based on total variation can produce solutions that preserve the
image edges to some extent. The total variation of a jump discontinuity does not
decrease if it is smoothed, in contrast with the Sobolev semi-norm, hence total
variation can be considered, to some extent, as an edge-preserving regularizer. It
can be easily explained why this happens by taking the following example: take
" > 0 and consider the function defined by

I.x/ D

8̂̂
<
ˆ̂:
0; if x < �";
1; if x > ";
xC"
2"
; if � " � x � ";

(4)

whose graph is plotted in Fig. 2. It can be checked that the Sobolev semi-norm of
I.x/ is given by 1

2"
, while its total variation is equal to 1 regardless the value of ".

Fig. 2 Graph of the function
I.x/ in (4)

1All derivatives have to be understood in a weak sense throughout the text.
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If one minimizes a functional that includes the Sobolev semi-norm it becomes clear
that functions with smaller gradients (higher ") will be preferred over functions with
deeper gradients as the functional takes smaller values. If instead of the Sobolev
semi-norm the functional includes the total variation then there is no preference for
one solution or the other. This feature is the main reason why total variation is widely
used in image processing nowadays. The main drawback of using the total variation
instead of the Sobolev semi-norm as a regularizer is the fact that it becomes difficult
to devise numerical methods based on the Euler-Lagrange equations, as we analyze
below.

In the case of the denoising problem the variational formulation proposed in [24]
is

inf
I

�Z
˝

jrIj dxC �

2

Z
˝

jI � f j2 dx

�
(5)

where � is a parameter that represents a trade-off between regularization and
data fidelity. The natural extension of (5) to the image restoration problem is the
following: minimize with respect to I the functional

Z
˝

jrIj dxC �

2

Z
˝

jK � I � f j2 dx: (6)

In wider generality, if I is any feature of the image and f is a prior or observation,
then (5) can be seen as a functional that requires the solution I to be smooth and
close to the prior f at the same time.

The basic strategy to find the infima of (6) consists on finding the solutions of its
Euler-Lagrange equation. Let us assume the case K D I for simplicity. The Euler-
Lagrange equation of the functional in (5) can be written as:

� r �
	 rI

jrIj


C �.I � f / D 0: (7)

Note that the equation is not well defined when rI D 0. This is the main
drawback when using total variation as a regularizer with respect to the Sobolev
semi-norm, which has a well-defined Euler-Lagrange equation. In fact the Euler-
Lagrange equation for the functional

Z
˝

jrIj2 dxC �

2

Z
˝

jI � f j2 dx;

is given by r2IC �.I � f / D 0, with r2 indicating the Laplacian. To overcome the
singularity that appears in (7) a simple solution is to add a small perturbation to the
definition of the total variation and take

TV˛.I/ D
Z
˝

q
jrIj2 C ˛ dx
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for small ˛ > 0 and solve

inf
I

�
TV˛.I/C �

2

Z
˝

jI � f j2 dx:

�
(8)

whose solution converges to the minimizers of (6) as ˛ ! 0. Albeit the termq
jrIj2 C ˛ replaces jrIj in (7) the resulting Euler-Lagrange equation

�r �

0
B@ rIq
jrIj2 C ˛

1
CAC �.I � f / D 0

is still hard to solve because of its high non-linearity. Successful methods to
minimize the total variation rely on the dual formulation of the functional. In [3]
the authors introduce an algorithm that uses duality for solving the extension of (8)
to the image restoration problem. Chambolle [1] proposed a simpler algorithm, also
based on duality, for the case of denoising.

The duality argument starts by writing the total variation in variational form as

Z
˝

jrIj dx D sup

�Z
˝

I div p dx W p 2 C1
0.˝;R

2/; jp.x/j � 18x 2 ˝
�
; (9)

where div stands for the divergence operator and C1
0 is the space of continuously

differentiable functions with compact support in ˝ . Formula (9) is a more general
definition of total variation which is equivalent to (3) for smooth I. Problem (5) then
reads

inf
I

sup
p

Z
˝

I div p dxC �

2

Z
˝

.I � f /2 dx; (10)

which is a primal–dual problem. Switching the infimum and supremum:

sup
p

inf
I

Z
˝

I div p dxC �

2

Z
˝

.I � f /2 dx: (11)

For fixed p the optimization of (11) with respect to I is known as primal problem. Its
optimum I� can be found explicitly by deriving (11) with respect to I and equaling
to 0 point per point:

div pC �.I� � f / D 0;

which leads to

I� D f � 1
�

div p:
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Now the optimal I� can be plugged into (11) to get

sup
p

Z
˝

	
f div p � 1

2�
.div p/2



: (12)

Multiplying by 2� and adding the term �2f 2 we get that the optimizers of (12) are
the same of equation

sup
p

Z
.�f � div p/2 ; (13)

which is the dual problem. Chambolle’s method relies on an iterative algorithm for
solving (13). Another option is to alternate the optimization of the primal and dual
problems assuming fixed the other variable, as proposed in [28]. Following this latter
approach, recall that (10) can be written as

inf
I

sup
p

�
�
Z
˝

rI � p dxC �

2

Z
˝

.I � f /2 dx

�
;

so that the functional is linear on p. Therefore a simple gradient descent/ascent
iteration for p is not possible and a proximal point type term [23] is added. The
algorithm starts with initial guesses I0 and p0 for I and p, and iterates the following
steps until convergence.

• Primal Step:

IkC1 D arg min
I

�Z
I div pk C �

2

Z
.I � f /2 C 1

2�I

Z
.I � Ik/2

�
: (14)

• Dual Step:

pkC1 D arg max
p

�Z
IkC1 div p � 1

2�p

Z
. p � pk/2

�
: (15)

The parameters �I and �p are the proximal point step sizes. The solutions of (14)
and (15) can be computed explicitly and are given by

IkC1 D �I

1C ��I

	
�f C Ik

�I
� div pk




pkC1 D P. pk � �prIkC1/;

where P is the projection on the set fp W jpj � 1g by

P. p/ D p

maxf1; jpjg :
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Equations (5) and (6) represent particular cases of a more general variational model
that can be stated as: find a function u which is smooth in some sense and is close
to some prior given by a function of the observation f . The problem is then the
minimization of functionals composed by a regularization term R.u/ and a data
attachment term F.u; f /. The general variational problem is then stated as2

min
u

R.u/C F.u; f /: (16)

A global analysis of problem (16) is out of the scope of these notes. Instead, we
will present some model problems from computer vision that represent limited but
representative test cases and we will analyze some of them in detail. Some other
approaches (not necessarily based on variational models) will be presented as well,
so as to give a wider view of mathematical methods applied to computer vision
problems.

4 Some Model Problems in Computer Vision

Let us assume that after some pre-processing we have our restored color images
ready to be processed. There are many actions that we might want to perform on
images or sets of images. The distinction between single and multiple images is
meaningful, since having more than one image usually implies that the knowledge
acquired from one image is applied to, or combined with, another image. Typical
multi-image setups are: (1) video streams captured with a video camera; and
(2) video streams (or snapshots) captured synchronously with many cameras.
In what follows we introduce some classical problems in computer vision that
represent challenges for the scientific community and are fields of active research.
In particular, both monocular and multi-image problems will be presented in the
next sections.

4.1 Image Segmentation

Image segmentation aims to split an image into several meaningful parts called
segments. Mathematically the problem can be stated as follows: given an image
I W ˝ ! R

k (k D 1 or 3) find a partition

˝ D ˝1 [˝2 [ � � � [˝n [ �;

2Note that the unknown is now named u and hence I might denote the input image from now on.
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Fig. 3 An example of interactive segmentation. (a) Input image with scribbles. (b) Segmentation
result

where each ˝i represents a segment and � is the boundary set composed by the
union of the boundaries of the segments

� D @˝1 [ � � � [ @˝n:

Any partition of the image is a solution of the general segmentation problem and
therefore some a priori knowledge about which characteristics define a segment is
necessary in order to decide which pixels correspond to each segment. Professional
segmentation tools often interact with a human user so as to learn which charac-
teristics define a segment. Typical interactive tools use scribbles to mark whether
a region belongs or not to a segment. An example obtained through the interactive
segmentation tool3 described in [20] can be seen in Fig. 3.

For some purposes automatic segmentation, based exclusively on image charac-
teristics like color or sharp edges can be useful as well. One might think that for
cases where different objects have different colors it would be easy to segment them
just by thresholding in color space. It is really easy for the human eye to do such a
task, but it is not the case for a computer, as the reader can verify by experimenting
with the select by color tools of any image manipulation program. More constraints

3http://structuralsegm.sourceforge.net/

http://structuralsegm.sourceforge.net/
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have to be added to the model in order to be able to properly segment an image.
Typical constraints are based on the following assumptions, among others:

• I varies smoothly in each ˝i (pixels with similar colors belong to the same
segment).

• I has deep variations across � (pixels with dissimilar colors belong to different
segments).

• The boundary � is smooth (objects have smooth boundaries).
• The image does not contain very small segments.

The key reference for variational modeling of segmentation is the classical paper
of Mumford and Shah [19], where the authors propose to minimize the following
functional

Z
˝n�
jruj2 dxC �

Z
˝

.u � I/2 C �H1.� / (17)

with respect to u and � , where H1 denotes the Hausdorff measure of � and �;�
are positive parameters. Written in this way, a minimizer umin of (17) is a function
that tends to be piecewise smooth. It can be seen as a simplified version of the image
with reduced texture. Quantization of the minimizer and an analysis of the boundary
� are routinely performed after minimization so as to produce an output composed
by pixel values that can be considered as labels that indicate the segment each pixel
belongs to.

Let us analyze the three terms that appear in (17). The first term is a regularization
term. Note that the integral is not acting on the image boundaries and hence it does
not smooth out image edges. The regularization is complemented by the third term
which precisely acts on the image edges, penalizing the total edge length. This
prevents the image to be split into many small regions. Additionally, it implicitly
imposes smoothness of the boundaries, since objects with irregular boundaries
have bigger perimeter. The second term is the data fidelity term, which forces the
segmentation to be close to the original image, stating that the segmentation will
be based on color or intensity coherence. Note that all three terms are necessary in
order to obtain non-trivial solutions. In fact:

• u D I; � D ; is a solution (with zero energy) if the first term is dropped. This
solution corresponds to segmentation in just one region which is the entire image.

• u D constant, � D ; is a solution (with zero energy) if the second term is
dropped. It also corresponds to segmentation in a single region.

• A solution with zero energy can be obtained by taking each pixel as a different
segment if the third term is dropped.

It is difficult to operate with the Mumford-Shah functional because of the
individual treatment of the edge set � . Many techniques have been derived from
the original Mumford-Shah work to tackle different problems. As an example, an
algorithm for solving a modified version for binary segmentation (segmentation in
just two segments, say objects and background) was described by Chan and Vese
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for scalar images [2]. The problem is posed under the additional assumption that u
is constant on each segment. An extension for color images was presented in [4].

4.2 Depth Computation from Multiple Images

In this subsection we introduce the problem of depth computation from multiple
images as a model for many techniques commonly used in computer vision, in
particular for the so-called labeling problems. In these problems a numeric label
is assigned to each pixel in a way such that the label configuration minimizes an
energy. Labeling problems can be binary, meaning that just two possible labels
can be assigned or multi-label if more than two labels exist. The classification is
meaningful as binary problems are much easier to solve than multi-label ones in
general (the interested reader can refer to [16] and references therein). Recall that
the segmentation problem introduced in Sect. 4.1 is actually an example of labeling
problem.

The problem of depth computation aims to answer the following question: given
two or more cameras that record a scene from different viewpoints, what are the
distances (also called depths) from the objects in the scene to the cameras? It is
impossible to infer such a distance from a single image without any other prior (for
example, the true size of the objects). That is the reason why most animals have two
eyes. The parallax produced by the eye distance and a complex process performed
in the brain allows us to deduce relative distances of the objects that we observe.
The goal of depth computation is to reproduce such a process on a computer, using
the cameras as eyes. The setup that tries to exactly reproduce the natural vision is
the so-called disparity problem or stereo correspondence problem. In this scenario
two cameras are placed along the same horizontal axis so that they play the role of
the two eyes. Then, from the horizontal displacement of the objects from one image
to the other the algorithms try to infer the distance from the object to the system.
This simplest setup is of utmost importance as it is used for many applications like
the creation of 3D movies.

In general, problems where a scene is recorded with multiple cameras from
different viewpoints are known under the generic name of multi-view processing
and compose a major field of study in computer vision. Basic references for multi-
view processing are the handbooks by Hartley and Zisserman [14] and by Faugeras
and Luong [8].

The problem of depth computation can be stated as follows: Consider n images
I1; : : : ; In, obtained with n cameras C1; : : : ;Cn located in different positions, but
recording (at least partially) the same scene. Compute the depth of each pixel .x; y/
in each image Ii, i.e., the distance di.x; y/ of the object that is seen at pixel .x; y/ in
camera Ci, to the camera.
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The depths compose a depthmap for each camera, which has the same dimen-
sions as the camera image. The depth of a pixel with respect to a camera is therefore
a real number. In order to be able to handle the problem with a computer the
continuous range of possible depths is discretized into a finite number of target
depths, resulting in a multi-label problem.

To be able to solve the depth estimation problem the cameras need to be
calibrated. To calibrate a camera means to know its position and orientation with
respect to a reference frame as well as its internal geometry defined through a set
of parameters. Camera calibration is a field of study in itself and its description is
out of the scope of these notes. We refer the interested reader to [14]. In summary,
having the cameras calibrated means that it is possible to know which camera pixel
is recording a given 3D point, and conversely, from the 2D coordinates of an image
pixel and its depth, we can obtain the 3D coordinates of the point in 3D that projects
on the given pixel and is located at distance d from the camera. In its simpler form
calibration of a camera Ci is given by a matrix Pi in a way such that it holds
Pi.z/ D .x; y/, where z is a 3D point and .x; y/ is the pixel where this 3D point
projects on camera Ci. An illustration of these relations between the 3D world and
the 2D camera pixels is shown in Fig. 4. In the figure, cameras are represented by a
line indicating the camera plane (which is actually a plane in 3D) and a point for the
camera center so that a 3D point z is imaged at the pixel where the line joining the
point z and the camera center intersects its image plane.

Note that every 3D point located in the line joining the pixel .x; y/ and the camera
center projects on .x; y/, thus P can only be invertible if we fix a distance d to the
camera. In this case P�1

i .x; y; d/ denotes the 3D point that verifies Pi.z/ D .x; y/ and
is located at distance d from camera Ci. The knowledge of the projection matrices Pi

Fig. 4 Relation between the
3D world and the 2D camera
pixels
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Fig. 5 Relation between the
3D world and the 2D camera
pixels

and Pj corresponding to a pair of cameras Ci and Cj induces a family of applications
parametrized by the depth d by

Hij.x; y; d/ D Pj.P
�1
i .x; y; d//:

These applications are called homographies and relate pixels in both images
assuming that the object imaged in both pixels is at distance d from camera Ci.
This concept is illustrated in Fig. 5.

Methods for depth estimation are often based on correlations between the
observations made by many cameras. For a fixed camera Ci a suitable range of
possible depths is discretized into M target depths dmin D d1 < � � � < dM D dmax

and for each pixel a test is performed to decide which one among all possible depths
best fits to the observations, based on a certain matching score. The observations
are of course the images, so color or intensity comparisons between images are
used as a decision mechanism. If one adopts a winner-takes-all approach, where the
depth with best score is kept as correct, the procedure is called plane sweeping [6].
Different choices for the assignment of a score to a target depth result in different
algorithms. Let us assume the simplest case where two cameras are available and
the images are recorded in grayscale. Assume that C1 is the reference camera
(the one for which we compute depths) and C2 the auxiliary camera (the one
used for comparison). Then, a basic plane-sweeping algorithm based on intensity
consistency amounts to find, for each pixel .x; y/ 2 I1 and some functional J W R!
R

C the solution of

min
d

J.I1.x; y/ � I2.H12.x; y; d///:
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The simplest choice is probably to take J as the absolute value, which corresponds
to evaluate the intensity difference between corresponding pixels, but this method
is far too sensitive to small errors due to calibration and neither is robust to changes
in contrast between the images. A better choice is to take J D SAD.x; y; d/ (Sum of
Absolute Differences) on a patch:

SAD.x; y; d/ WD
sX

i;jD�s

jI1.xC i; yC j/ � I2.H12.x; y; d/C .i; j//j :

It is already a simple formula, with an evaluation cost depending on the half-
patch size s, and partially robust to calibration errors but not to contrast changes.
A still better method is based on the normalized cross-correlation on a patch
J D NCC.x; y; d/ defined by

NCC.x; y; d/ WD
Ps

i;jD�s I1.xC i; yC j/ � I2.H12.x; y; d/C .i; j//qPs
i;jD�s I1.xC i; yC j/ �Ps

i;jD�s I2.H12.x; y; d/C .i; j//
:

(18)

The normalization represented by the term at the denominator induces robustness
with respect to contrast changes while maintaining low sensitivity to calibration
errors. The evaluation of (18) has a higher complexity but plane-sweeping algo-
rithms based on brute-force minimization can be nowadays run in real-time thanks
to the use of GPU computing techniques [10].

4.2.1 Variational Formulation

An improvement over the plane-sweeping method consists on adding smoothness
to the functional. Piecewise smooth depthmaps correspond to the situation where
nearby pixels are located at similar depth as they correspond to the same object,
allowing abrupt depth changes only across image edges. This is a reasonable
assumption in general and, as discussed above, total variation can be used as a
regularizer as it possesses the aforementioned properties. Hence, the multi-label
depth computation problem can be stated as the minimization of a functional J.u/
defined by

J.u/ WD
Z
˝

jru.x; y/j dx dyC
Z
˝

�.x; y; u.x; y// dx dy (19)

where u.x; y/ is the depth of pixel .x; y/ with respect to the reference camera and
�.x; y; u.x; y// is the cost of assigning depth u.x; y/ to pixel .x; y/. Any of the
matching costs discussed above for the plane-sweeping algorithm can be used to
define �, possibly multiplied by a constant to tune the relative influence of the
regularization and the data term. In the above definition we deliberately changed
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the variable name from d to u to assess the fact that the same functional, for suitable
�, can be used in other multi-label problems.

Minimization of (19) is difficult to perform because it is not convex in general.
A method for the convexification of functionals of the form (19) was introduced in
[22], where the authors consider an interval U D Œumin; umax� defining the range of
admissible depths and define the function:

	.x; y; s/ D H.u.x; y/� s/;

where H is the Heaviside function defined by H.t/ D 1 if t > 0 and H.t/ D 0

otherwise. The function 	 can be interpreted as the characteristic function of the
subgraph of u. A first observation is that 	 is a decreasing function of s and that
	.x; y; umin/ D 1; 	.x; y; umax/ D 0. The following layer-cake type formula
allows to recover u from 	:

u.x; y/ D umin C
Z
U
	.x; y; s/ds: (20)

The goal is to rewrite the functional J.u/ in (19) in terms of 	. Let Hn�1 denote
the (n � 1)-dimensional Hausdorff measure and let ı be the Dirac delta function.
Either from the co-area formula

Z
˝

jruj D
Z C1

�1
Hn�1.u�1.t//dt;

or using

rx	 D ı.u.x; y/� s/ru;

we can write the total variation of u in terms of 	 as

Z
˝

jru.x; y/j dx dy D
Z
˝

�Z
U
ı.u.x; y/� s/ jru.x; y/j ds

�
dx dy

D
Z
˝

�Z
U
jrx	.x; y; s/j ds

�
dx dy:

On the other hand, from the definition of 	 it follows that

j@s	.x; y; s/j D ı.u.x; y/� s/;
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which allows to write the data term as
Z
˝

�.x; y; u.x; y// dx dy D
Z
˝

�Z
U
�.x; y; s/ı.u.x; y/� s/ ds

�
dx dy

D
Z
˝

�Z
U
�.x; y; s/ j@s	.x; y; s/j ds

�
dx dy:

Summarizing, the functional

J.u/ WD
Z
˝

jru.x; y/j dx dyC
Z
˝

�.x; y; u.x; y// dx dy

can be written in terms of 	 as

Z
˙

fjrx	.x; y; s/j C �.x; y; s/ j@s	.x; y; s/jg d˙;

where we have denoted˙ D ˝ �U. The functional

E.	/ WD
Z
˙

fjrx	.x; y; s/j C �.x; y; s/ j@s	.x; y; s/jg d˙

is convex in 	. The natural function space where to carry the minimization of E.	/
is the set D0 of binary functions that are strictly decreasing on their third variable:

D0 D f	 W ˙ ! f0; 1g j 	.x; y; umin/ D 1; 	.x; y; umax/ D 0g :

Since D0 is a non-convex set, the minimization problem

min
	2D0

E.	/

is still not convex. To circumvent this difficulty 	 is relaxed to allow continuous
values between 0 and 1 and the minimization of E.	/ is performed on the set

D D f	 W ˙ ! Œ0; 1� j 	.x; y; umin/ D 1; 	.x; y; umax/ D 0; @s	 < 0g :

The problem

min
D

�Z
˙

fjrx	.x; y; s/j C �.x; y; s/ j@s	.x; y; s/jg d˙

�
(21)

is now a convex problem. It was shown in [22] that if 	 is the minimizer of E.	/ on
D and � denotes the characteristic function, then the binary function 	� D �f	>�g
is a minimizer of E.	/ on D0 for almost any � 2 Œ0; 1�.
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A minimizer for J.u/ is finally obtained through the formula (20) as

u�.x; y/ D umin C
Z
U
	�.x; y; s/ds:

As a summary, the minimization of the non-convex functional (19) has been
translated into a convex problem given by (21) at the price of increasing the
dimensionality of the problem.

The minimization of (21) can be performed by means of a primal-dual strategy
analogous to the one described in Sect. 3.1. In this case we have that

jrx	j C � j@s	j D max

�
	 � div p W

q
p21 C p22 < 1; jp3j < �

�
:

Therefore, the primal–dual form of the problem is

min
	2D

max
p2C

Z
	 div p;

with

C D
�

p W R2 � Œa; b�
ˇ̌̌
ˇ
q

p21 C p22 < 1; jp3j < �
�
:

Adding a proximal point term the following primal–dual iteration is obtained.
Starting from initial guesses 	0 and p0 the algorithm iterates the following steps
until convergence:

• Primal Step:

	kC1 D arg min
	2D

�Z
	 div pk C 1

2�	

Z
.	 � 	k/2

�
: (22)

• Dual Step:

pkC1 D arg max
p2C

�Z
	kC1 div pC 1

2�p

Z
. p � pk/2

�
: (23)

The solution of (22) is given by

	kC1 D PD
�
	k � �	 div p

�
;
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where PD is the projection to the feasible set D and can be computed by

PD.	/.x; s/ D

8̂
<̂
ˆ̂:
0; if s D smax;

1; if s D smin;

maxf0;minf	.x; s/; 1gg; otherwise:

On the other hand, the solution of (23) is given by

pkC1 D PC. pk � �pr	kC1/;

where PC is the projection of p on to the set C and can be computed by

PC. p/1.x/ D p1.x/

maxf1;pp1.x/2 C p2.x/2g
;

PC. p/2.x/ D p2.x/

maxf1;pp1.x/2 C p2.x/2g
;

PC. p/3.x/ D �.x/ p3.x/

maxf�.x/; jp3.x/jg :

4.3 3D Reconstruction from Depths

In this subsection we briefly describe the application of the primal-dual algorithm
described at the end of Sect. 3.1 to the problem of 3D reconstruction of scenes.
We assume a multi-camera system and that depthmaps are available for at least
N � 2 cameras in the system. In such a situation one can try to recover the 3D
scene that has been observed by the cameras. An initial attempt to figure out the real
3D scene is to generate a point cloud composed by the 3D points that result from
putting at their respective depths the pixels of the cameras for which depthmaps
are available. If we repeat the process for many cameras, we will incrementally
complete the scene as each camera observes a different part of it. Unfortunately, the
depthmaps contain mismatches due to many factors (mainly calibration errors and
wrong depths) and therefore such a deterministic approach would result in a noisy
representation of the scene. The usual approach for 3D reconstruction from multiple
cameras is to compute the set of 3D surfaces (representing the boundaries of the true
scene objects) that most likely will produce the observed depthmaps. This approach
is known as 3D reconstruction by depth merging.

Mathematically, if we denote by Pi the operator that projects a 3D point on the
2D image Ii of camera Ci, (i.e. Pi.z/ D x if the 3D point z corresponds to pixel x
in Ii) and di.x/ is the depth computed for pixel x with respect to Ci, then the problem
can be stated as: find a bi-dimensional surface S � R

3 such that if z 2 S then the
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observed depths di.Pi.z// are as coherent as possible with ri.z/ WD dist.z;Ci/, for
all i.

In this context, the particular definition of coherence gives rise to many different
approaches for depth merging. We describe here a model based on taking as
coherence criterion a weighted sum for all cameras of squared errors computed
with respect to an initial reconstruction and adds a smoothness constraint via the
total variation. The goal is to decide if a given 3D point is outside, inside or at the
boundary of an object in the scene. To this aim objects in 3D space are represented
through an occupancy function, which acts as an indicator of whether a point is
inside or outside the objects in the scene. An occupancy function u W ˝ � R

3 !
f�1; 1g for a known scene can be defined by

u.z/ D
(
�1; if z is inside an object;

1; if z is outside all objects:

If the scene is unknown one can try to recover it by means of the minimization
of a functional like

J.u/ D
Z
˝

jru.z/j dzC 1

2�

NX
iD1

Z
˝

wi.z/ .u.z/ � fi.z//
2 dz; (24)

where u W ˝ � R
3 ! Œ�1; 1� is a relaxed occupancy function that can take values

on the interval Œ�1; 1�, fi W ˝ ! Œ�1; 1� is a truncated distance function built from
the depthmaps corresponding to the i-th camera as described below, wi W ˝ !
Œ0; 1� is a weighting function that ponders the contribution of each camera to the
reconstruction and � > 0.

The algorithms act on a discrete discretization of a certain 3D volume into the
3D equivalent of pixels, called voxels (contraction of volume pixels). The functions
fi can be defined in the following way: if z is a voxel center and x D Pi.z/ take

fi.z/ D

8̂
<̂
ˆ̂:
1; if ri.z/ < di.x/ � ı

2
;

�1; if ri.z/ > di.x/C ı
2
;

2
ı
.di.x/ � ri.z//; if di.x/� ı

2
� ri.z/ � di.x/C ı

2
;

for a fixed ı > 0. The function fi takes the value 1 for voxels visible from camera
i, the value �1 for voxels occluded by the object surface and an intermediate value
for voxels near the surface. On the other hand the weight wi is defined as

wi.z/ D
(
0; if ri.z/ > di.x/C �;
1; otherwise;
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for � > ı. These weights measure the confidence on the values assigned by fi
so that it takes the maximum confidence for voxels that are either visible or at a
distance from the surface smaller than �. This construction is similar to the one in
[7]. The function u represents the 3D volumes in the scene by selecting the relaxed
occupancy function which is more coherent with the observations fi in the sense of
(24). The zero level set of u, given by fz 2 ˝ W u.z/ D 0g is obviously the sought
surface.

Each term of the form
Z
˝

wi.z/ .u.z/� fi.z//
2 dz

measures the weighted squared mean error committed by taking a surface u with
respect to the observations fi for the i-th camera. On the other hand, the total
variation regularizes this estimation so that the final result is composed by relatively
smooth surfaces. Also, note that the functional is convex, and that its Euler-Lagrange
equation coincides with the one of the functional

J.u/ D
Z
˝

jru.z/j dzC 1

2�

Z
˝

w.z/ .u.z/ � f .z//2 dz; (25)

where w.x/ and f .x/ are defined by

w.z/ D
NX

iD1
wi.z/; f .z/ D 1

w.z/

NX
iD1

wi.z/fi.z/:

Therefore, both functionals have the same minima. Functional (25) can be min-
imized by means of a primal-dual procedure analogous to the one described in
Sect. 3.1.

4.4 Optical Flow Estimation

In this section we conclude by briefly introducing the problem of optical flow
estimation, an example of a non-convex problem in which the target function is
vector-valued, in contrast with the previous problems, in which the unknown was
always a scalar function.

Optical flow is the apparent motion of a scene (as observed by a camera) caused
by the relative motion of the observer (the camera) and the scene. Ideally, it is the 2D
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projection of the true 3D motion of the scene onto the image plane.4 The case where
the displacement in the image is one-dimensional is known as disparity estimation.

Natural applications of optical flow estimation are the tracking of objects
(persons in an airport, cars in a highway, the ball in a tennis game, etc.). The input
of the problem is given by a set of images I.x; t/ and the output is a vector field
d.x; t/ D .u.x; t/; v.x; t// 2 R

2 that represents the apparent motion of a pixel x in
the frame t with respect to frame tC 1.

The most known variational model for optical flow estimation was introduced by
Horn and Schunk in the seminal work [15], and is based on the minimization of the
functional:

Z
˝

jrd.x; t/j2 dxC �
Z
˝

.I.xC d; tC 1/� I.x; t//2dx; .� > 0/ (26)

where the computation has to be done for each fixed t. The unknown is now the
displacement d, but the functional is still in the general variational form (16). Many
methods are based on the minimization of (26) or variations of it (see e.g. [27]).
A more general formulation using total variation and a (possibly) non-convex data
term would lead to the vector analogous of (19). The problem can be written as the
minimization, for each t of

J.u; v/ D
Z
˝

fjru.x/j C jrv.x/jg dxC 1

�

Z
˝

�.x; d.x// dx;

with �.x; d.x// being a suitable data attachment term, typically depending on

jI.x; t/ � I.xC d.x/; tC 1/j :

An analysis of such a model can be found in [21]. The approach consists on
introducing two functions 	.x; s/ D H.u.x/� s/ and  .x; t/ D H.v.x/ � t/, where
H denotes again the Heaviside function and s; t 2 R. Proceeding analogously to the
scalar case, the functional can be written in terms of 	 and  in a way such that
the resulting functional is polyconvex. Polyconvex functionals are quasiconvex and
quasiconvexity is assumed to be the right extension of the notion of convexity for
vector valued functions. Under certain assumptions, it guarantees the existence of
minimizers and the well-posedness (in a certain sense) of the energies.
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4The determination of the true 3D motion of objects is known as scene flow and will not be
analyzed in these notes. The interested reader can refer to [26] and references therein.
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Modeling and Optimization Techniques
with Applications in Food Processes,
Bio-processes and Bio-systems

Eva Balsa-Canto, Antonio A. Alonso, Ana Arias-Méndez, Miriam R. García,
A. López-Núñez, Maruxa Mosquera-Fernández, C. Vázquez, and Carlos Vilas

Abstract Food processes, bio-processes and bio-systems are coupled systems that
may involve heat, mass and momentum transfer together with kinetic processes.
This work illustrates, with a number of examples, how model-based techniques—
i.e. simulation, optimization and control—offer the possibility to improve our
knowledge about the system at hand and facilitate process design and optimisation
even in real time. The contribution is mainly based on the authors experience and
illustrates concepts with several examples such as biofilm formation, gluconic acid
production, deep-fat frying of potato chips and the thermal processing of packaged
foods.

Keywords Model identification • Reduced order modelling • Real-time opti-
mization • Food processing • Bio-processes • Bio-systems

1 Introduction

Food processes are devoted to transform raw ingredients into food or to transform
food products into other forms. Bio-processes are those which make use of living
organisms to make useful products. Production may be carried out by using yeasts
or bacteria or by using enzymes from organisms. Bio-systems are defined as living
organisms or systems of living organisms that can interact with others.
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The drivers of innovation in the food processing sector can be divided into
six major axes, corresponding to general consumer expectations: safety, pleasure,
health, physical, convenience and ethics. These consumer demands pose serious
challenges to the industry that must comply with a continuously changing market in
due time to maintain competitiveness. In the context of biotechnology, the challenge
is to define robust bio-processes to produce large quantities of high quality bio-based
products in a sustainable and economical way.

Computer-aided simulation and model-based optimization offer a powerful,
rational and systematic way to achieve those goals, enabling the possibility to (i) test
“what-if” scenarios in a quick and inexpensive way; (ii) improve the understanding
of the process or the system at hand; (iii) compute optimal designs or operation
conditions given certain objectives and constraints and (iv) control the process
operation so as to respond to possible uncertainties and disturbances.

Mathematical models can be roughly classified into three types: white-box
models, based on the conservation principles; black-box models, based on data
(for example, surface responses or artificial neural networks) and gray-box models
which combine first principles with empirical descriptions. In addition models can
be classified attending to their mathematical characteristics in linear or non-linear;
static or dynamic; lumped or distributed; continuous or discrete; deterministic or
stochastic; structured or unstructured.

In recent decades there has been a growing interest in the development of
rigorous, mostly hybrid models, to describe food and bio-processes as well as
biological systems. Each type of process or system has its own peculiarities.
In this work we have selected a set of examples representative of bio-systems
(biofilm formation), bio-processes (gluconic-acid production) and processes of the
food industry (deep-fat frying of potato chips and thermal processing of packaged
foods). The physical, chemical and biological underlying mechanisms are different.
However the corresponding mathematical formulations share several properties:
they are dynamic, non-linear, continuous, deterministic and unstructured models,
and typically distributed.

Despite all efforts on developing rigorous models and the necessary numerical
simulation techniques, model validation is still a challenge and it is considered
as critical to develop confidence on models use in the food and biotechnological
industries. In this scenario it is necessary to develop protocols and to standardise
data acquisition so as to obtain transport properties for different food materials,
new products and packages, as well as kinetic constants related to microbial and
biochemical processes.

In this respect we will describe in some detail how models can be reconciled
with experimental data by means of parameter estimation, identifiability analyses
and optimal experimental design.

The parameter estimation problem is devoted to find the model parameter values
that minimise the distance between model predictions and the experimental data.
The identifiability analysis is aimed at evaluating the quality of the model fit and
the confidence on the parameter values whereas the optimal experimental design
problem is devoted to improve model predictive capabilities.
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Once a suitable model with an accurate value for model parameters becomes
available, it is possible to formulate optimisation problems to find those operating
conditions that achieve a given objective (maximise product quality, minimise
energy consumption, etc.) subject to constraints (maximum and minimum pro-
cessing temperatures, food safety, etc.). We will describe how those problems are
mathematically formulated and numerically solved, with special emphasis in the
control vector parametrisation approach and the use of reduced order modelling
techniques so as to improve computational efficiency.

From the numerical point of view, we will realise that many of the problems of
interest: parameter estimation, optimal experimental design, operation design and
real time optimisation are formulated as constrained non-linear programming prob-
lems including dynamic constraints (the model). Therefore we will describe the type
of numerical methods we may use for solving the models, including discretisation
based techniques and model reduction techniques, and the most suitable non-linear
programming methods with special emphasis in global optimisers.

2 Modelling

Mathematical modelling is the art of quantitatively describing from observations
certain aspects of the structure and function of a particular process. Model building
is an iterative process which starts from the definition of the purpose of the model,
that is, the questions to be addressed with the model. In the next step, using
the a priori available knowledge and preliminary experimental data, a modelling
framework is chosen and a first mathematical model structure is proposed. This first
model usually contains unknown non-measurable parameters that may be estimated
by means of experimental data fitting. In this regard, we need to know whether it
is possible to uniquely determine their values (identifiability analysis) and if so, to
estimate them with maximum precision and accuracy (parameter estimation step).
This leads to a first working model that must be (in)validated with new experiments,
revealing in most cases a number of deficiencies. In this case, a new model structure
and/or a new (optimal) experimental design must be planned, and the process is
repeated iteratively until the validation step is considered satisfactory.

Most of the models related to food and bio-processes and bio-systems are
non-linear dynamic models, typically stated as (ordinary and partial) differential
equations (ODEs and PDEs), as follows:

�.x; x	 ; x		 ; xt; vt; v;u;
 ; t/ D 0 (1)

x.	; t0/ D �0.x.	; t0/;u.t0/;
 ; t0/I v.t0/ D ˚0.
; t0/I (2)

B.x; x	 ; v;u;
; 	; t/ D 0 (3)

where 	 2 ˝ � R
3 are the spatial variables, x.	; t/ 2 Z � R

� are the distributed
state variables (temperature, water content, microorganisms concentration, etc.),
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x	 D @x=@	, x		 D @2x=@	2, xt D @x=@t, v � R
� are the lumped variables,

vt D dv=dt, u 2 U � R
 are the control variables (processing temperature, feeding

substrate, valves openings, etc.) and 
 2 � � R
�, time independent parameters

(thermo-physical properties, kinetic related constants, etc.). Equations (2) and (3)
represent the initial and boundary conditions, respectively.

2.1 Parameter Estimation

Given a general set of differential equations explaining the dynamics of a system,
Eqs. (1), (2), and (3), the values assigned to the parameters 
 will give rise to differ-
ent system behaviours. The problem of parameter estimation may be formulated as
follows: Find model unknown parameters (e.g. thermo-physical properties, kinetic
coefficients, initial conditions, etc.) so as to minimise a measure of the distance
among the model predictions and the available experimental data as obtained under
a particular experimental scheme (illustrated in Fig. 1) [36].

Let us suppose the most general experimental scheme where several experiments
E D 1; : : : ; nE and types of outputs k D 1; : : : ; nE

y are used for the estimation
(for instance, two experiments with different inputs where some concentration and
temperature are measured). Due to the discrete nature of these outputs they are
located at a given number (nE;k

t ) of certain sampling times ts and a number (nE;k;s
S ) of

sensor positions 	p for each experiment. Their associated model predictions must be
obtained by means of the implementation of the above experiments and evaluating
the results at the same sampling times and sensor positions. Considering the general

sensor positions

sampling times

input

Observables

Time Time

Fig. 1 Illustrative representation of the experimental scheme
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non-linear model described in (1), (2), and (3), these predictions are calculated from:

vE.	p; ts;
/ D fEy
�
xl.ts/; xd.ts; 	p/;


�
(4)

where in fEy 2 R
ny the implicit influence of the inputs is not made explicit to simplify

notation.
For the sake of clarity the measurements and model predictions will be encoded

in the following vectors:

Ym D Œ ym1; : : : ; ym`; : : : ; ymn`
�T 2 R

n` (5)

and

Y.
/ D Œ y1.
/; : : : ; y`.
/; : : : ; yn`
.
/�T 2 R

n` ; (6)

where ` represents a certain data defined by the sub-indexes p; s; k;E and n` is the
total number of such data.

At the time of defining a measure of the distance between the experimental and
predicted data, several possibilities exist. Here the maximum likelihood approach is
considered. The idea is to find the vector of parameters that gives the highest like-
lihood to the measured data. Under the assumptions of independent measurements
with Gaussian noise, the distance to be minimised becomes:

Jml D
nX̀
`

	
�1
2


"
log.2�/C log.2` /C

.ym` � y`.
//
2

2`

#
(7)

where

nX̀
`D1

.�/ D
nEX
ED1

0
B@

nEyX
kD1

0
B@

nE;ktX
sD1

0
B@

nE;k;sSX
pD1

.�/

1
CA
1
CA
1
CA :

The parameter estimation problem is thus formulated as a nonlinear optimization
problem subject to the system dynamics (Eqs. (1), (2), and (3)) and possibly bounds
on the parameter values. Therefore, its numerical solution involves an outer iterative
procedure to generate values for the unknown parameters and initial conditions,
the nonlinear programming method (NLP), and an iterative procedure to solve the
differential equations, the boundary value problem (BVP) solver, as shown in Fig. 2.
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*
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[ui=1,...n,tf,ts,y0]k

[ui=1,...n,tf,ts,y0]k
ε

ε(a) (b)

Fig. 2 Numerical solution of: (a) parameter estimation and (b) optimal experimental design

2.2 Identifiability Analysis

Identifiability has to do with the possibility of finding a unique solution for the
model parameters. At this point, it is important to note that in fact, in the presence
of experimental error, there are several equivalent solutions defining the parameter
uncertainty region. The shape and the size of such region will determine whether
practical identifiably is or not guaranteed. Assuming that the uncertainty region
corresponds to a hyper-ellipsoid (typical case), highly elongated hyperellipsoids
tend to be associated with poor or lack of identifiability of some parameters.

In order to asses the uncertainty regions, several possibilities exist. Monte-Carlo
based approaches allow to compute robust uncertainty regions [9]. However, the
associated computational cost makes it difficult to use these methods for large scale
models. Alternatively, the confidence interval of 
�

i may be obtained through the
covariance matrix

˙ t
˛=2
p

Cii (8)

where t
˛=2 is given by Students t-distribution, 
 D Nd � � degrees of freedom and
.1 � ˛/100% is the confidence interval selected, typically 95%.

For non-linear models, there is no exact way to obtain the covariance matrix C.
Therefore, the use of approximations has been suggested. Possibly the most widely
used is based on the Crammèr-Rao inequality which establishes, under certain
assumptions on the number of data and non-linear character of the model, that the
covariance matrix may be approximated by the inverse of the Fisher information
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matrix (FIM) which is formulated as follows [24, 36]:

F D E
vmj
�

( �
@Jml.
/

@


 �
@Jml.
/

@


T
)

(9)

where E regards the expected value.

2.3 Optimal Experimental Design

In order to improve the quality of parameter estimates it is possible to use the
model to define new experiments. The idea is to formulate an optimisation problem
where the objective is to find the experimental scheme (number of experiments,
input conditions, number and location of sampling times and sensors, duration
of the experiments) which result in maximum information content as measured
by, for example, the FIM, subject to the system dynamics Eqs. (1), (2), and (3)
plus experimental constraints. The problem can be solved by a combination of the
control vector parametrisation (CVP) method and a suitable optimiser enabling the
simultaneous design of several dynamic experiments with optimal sampling times
[8] and optimal sensor locations [20].

The optimal experimental design problem is thus formulated as a nonlinear opti-
misation whose numerical solution involves an outer iterative procedure to generate
values for the experimental conditions, the nonlinear programming method, and the
boundary value problem solver to handle model simulation and the computation of
the parametric sensitivities needed to evaluate the FIM, as shown in Fig. 2.

It should be remarked that the recently developed software tool AMIGO
(Advanced Model Identification using Global optimisation)[4] covers model sim-
ulation, parameter estimation, identifiability analysis and optimal experimental
design. Thus facilitating the implementation of the model identification loop for
general non-linear dynamic models.

3 Optimization of the Operation

3.1 Problem Formulation

The optimization of the operation is formulated as a general dynamic optimization
(DO) problem as follows: Find the controls u.t/ that minimise (or maximise) the
objective functional

J D 	 �x.	; tf /; v.tf /;
; tf �C
Z tf

t0

L .x.	; t/; v.t/;u.t/;
 ; 	; t/ dt; (10)
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where the scalar functions 	 (Mayer term) and L (Lagrangian term) are continuously
differentiable with respect to all of their arguments, and the final time tf can be either
fixed or free, subject to the following constraints:

• The system dynamics Eqs. (1), (2), and (3).
• Algebraic constraints on the state and control variables which force the fulfilment

of particular operational or biological conditions (for example, microbiological
lethality, maximum and minimum processing temperatures, etc.) at particular
time points or throughout the process:

req
k .x.	; tk/; v.tk/;u.tk/;
; tk/ D 0I rin

k .x.	; tk/; v.tk/;u.tk/;
; tk/ � 0I
(11)

ceq.x.	; t/; v.t/;u.t/;
 ; t/ D 0I cin.x.	; t/; v.t/;u.t/;
 ; t/ � 0:
(12)

• Bounds on the control variables:

uL � u.t/ � uU : (13)

3.2 Control Vector Parametrisation

There are several alternatives for the solution of dynamic optimization problems
from which the direct methods are the most widely used. These methods transform
the original problem into a non-linear programming problem by means of the
complete parametrisation [12], the multiple shooting [13] or the control vector
parametrisation (CVP) [35]. Basically, all of them are based on the use of some
type of discretisation and approximation of either the control variables or both the
control and state variables. The three alternatives basically differ in: the resulting
number of decision variables, the presence or absence of parametrisation related
constraints and the necessity of using an initial value problem solver.

While the complete parametrisation or the multiple shooting approaches may
become prohibitively expensive in computational terms, the CVP approach allows
handling large-scale DO problems, such as those related to PDE systems, without
solving very large NLPs and without dealing with extra junction constraints.

The CVP method proceeds dividing the duration of the process into a number
� of control intervals and the control function is approximated using a low order
polynomial form over each interval. Each control variable approximation may be
expressed using Lagrange polynomials as follows:

uj.t/ D
MjX

iD1
uij˚

.Mj/

i .�/; (14)
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where, j D 1; : : : ; �, t 2 Œt0; tf �, and � is normalized time given by,

� D t � t0
tf � t0

(15)

and the Lagrange polynomials of order M, ˚
.Mj/

i are defined in the standard form:

• If M D 1,

˚
.M/
i .�/ 
 1: (16)

• If M � 2,

˚
.M/
i .�/ 


MY
i0D1;i¤1

� � �i0

�i � �i0
: (17)

The parameters of these polynomials, uij, will be used as decision variables in
the optimization process together with time independent parameters. Again the
numerical solution of the associated NLP requires an inner iteration to solve the
system dynamics, similarly to what is shown in Fig. 2.

4 Numerical Methods

4.1 Model Simulation

As explained before, most of the food, bio-processes and bio-systems models
exhibit a nonlinear dynamic behavior which makes the analytical solution of models
representing such systems rather complicated, if not impossible, for most of the
realistic situations. In addition to non-linearity, these processes may present a
spatially distributed nature. As a consequence they must be described using PDEs
which, in turns, makes the analytical approach even more difficult. Numerical
techniques must be, therefore, employed to solve the model equations.

Most of numerical methods employed for solving PDEs, in particular those
employed in this work, belong to the family of methods of weighted residuals in
which the solution of the distributed variables in the system (1), (2), and (3) is
approximated by a truncated Fourier series of the form1 [23]:

x.	; t/ �
NX

iD1
mi.t/ 	i.	/: (18)

1For the sake of clarity and without loss of generality, the vector field x.	; t/ in Eqs. (1), (2), and
(3) will be considered as a scalar x.	; t/.
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Depending on the selection of the basis functions 	i.	/ different methodologies
arise. Here two groups will be considered: those using locally defined basis
functions as it is the case in classical techniques like the numerical method of lines
(NMOL) or the finite element method (FEM) and those using globally defined basis
functions.

4.1.1 Methods Using Local Basis Functions

The underlying idea is to discretise the domain of interest into a (usually large)
number N of smaller sub-domains. In these sub-domains local basis functions, for
instance low order polynomials, are defined and the original PDE is approximated
by N ordinary differential equations (ODEs). The shape of the elements and the type
of local functions allow distinguishing among different alternatives.

Probably the most widely used approaches for this transformation are the NMOL
and the FEM. The reader interested on an extensive description of these techniques
is referred to the literature [23, 29, 34].

However it must be highlighted that in many food, bio-processes and biological
models, especially those in 2D and 3D, the number of discretisation points (N)
to obtain a good solution might be too large for their application in parameter
estimation, experimental design or process optimization.

Methods using global basis functions, which will reduce the computational
effort, constitute an efficient alternative [6].

4.1.2 Methods Using Global Basis Functions

The use of eigenfunctions obtained from the Laplacian operator, Chevyshev or
Legendre polynomials, etc. have been considered over the last decades—see [22]
as a means to obtain reduced order descriptions of PDE systems. Probably the
most efficient order reduction technique is the one based on the proper orthogonal
decomposition (POD) approach [31]. In this approach each element 	i.�/ of the
set of basis functions in (18) is computed off-line as the solution of the following
integral eigenvalue problem [31]:

Z
V

R.	; 	0/ 	i.	
0/ d	0 D �i 	i.	/; (19)

where �i corresponds with the eigenvalue associated with each global eigenfunction
	i. The kernel R.	; 	 0/ in Eq. (19) corresponds with the two point spatial correlation
function, defined as follows:

R.	; 	0/ D 1

`

X̀
jD1

x.	; tj/x.	
0; tj/; (20)
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with x.	; tj/ denoting the value of the field at each instant tj (snapshot) and the
summation extends over a sufficiently rich collection of uncorrelated snapshots at
j D 1; : : : ; ` [31]. The basis functions obtained by means of the POD technique
are also known as empirical basis functions or POD basis. The basis functions are
orthogonal and can be normalised so that:

Z
V

	i 	j d	 D
(
1; if i D j;

0; if i ¤ j:

The dissipative nature of food and bio-processes makes that the eigenvalues
obtained from Eq. (19) can be ordered so that �i � �j for i < j, furthermore�n !1
as n!1. This property allows to define a finite (usually low) dimensional subset
	A D Œ	1; 	2; : : : ; 	N � which captures the relevant features of the system [1, 5, 6].

In order to compute the time dependent coefficients in Eq. (18), the original PDE
system (1), (2), and (3) is projected onto each element of the POD basis set. Such
projection is carried out by multiplying the original PDE by each 	i and integrating
the result over the spatial domain. As a result the following set of ODEs is obtained:

mA t D F.mA; x; v;u;
; t/: (21)

At this point the basis functions 	A and time dependent coefficients

mA D Œm1;m2; : : : ;mN �

are known, therefore the original field x can be recovered by applying Eq. (18), this
is x D 	AmA. The number of elements N in the basis subset 	A can be increased to
approximate the original state x with an arbitrary degree of accuracy.

4.2 Non-linear Programming Methods

Most of the problems of interest are formulated as non-linear optimisation problems
which can be handled by adequate non-linear programming methods. Nonlinear
programming methods may be largely classified in two main groups: local and
global. Local methods are designed to generate a sequence of solutions, using some
type of pattern search or gradient and Hessian information, that will converge to a
local optimum, usually the closest to the provided initial guess. However the NLPs
with non-linear dynamic constraints (such as in parameter estimation or the ones
resulting from the application of the CVP approach) are frequently multimodal (i.e.
presenting multiple local optima). Therefore, local methods may converge to local
solutions, especially if they are started far away from the global optimum. In order
to surmount these difficulties, global methods must be used.
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Global methods have emerged as the alternative to search the global optimum
[27]. The successful methodologies combine effective mechanisms of exploration
of the search space and exploitation of the previous knowledge obtained by the
search. Depending on how the search is performed and the information is exploited
the alternatives may be classified in three major groups: deterministic, stochastic
and hybrid.

Global deterministic methods [18, 28] in general take advantage of the problem’s
structure and guarantee global convergence for some particular problems that
verify specific smoothness and differentiability conditions. Although they are very
promising and powerful, there are still limitations to their application, particularly
for non-linear dynamic systems, since the computational cost increases rapidly with
the size of the considered dynamic system and the number of decision variables.

Global stochastic methods do not require any assumptions about the problem’s
structure. They make use of pseudo-random sequences to determine search direc-
tions toward the global optimum. This leads to an increasing probability of finding
the global optimum during the run time of the algorithm, although convergence
may not be guaranteed. The main advantage of these methods is that, in practise,
they rapidly arrive to the proximity of the solution.

The most successful approaches lie in one (or more) of the following groups: pure
random search and adaptive sequential methods, clustering methods or metaheuris-
tics. Metaheuristics are a special class of stochastic methods which have proved
to be very efficient in recent years. They include both population (e.g., genetic
algorithms) or trajectory-based (e.g., simulated annealing) methods. They can be
defined as guided heuristics and many of them try to imitate the behaviour of natural
or social processes that seek for any kind of optimality [33].

Despite the fact that many stochastic methods can locate the vicinity of global
solutions very rapidly, the computational cost associated to the refinement of the
solution is usually very large. In order to surmount this difficulty, hybrid methods
and metaheuristics have been recently presented for the solution of dynamic
optimisation problems [7, 16] or parameter estimation problems [30]. They speed
up these methodologies while retaining their robustness and, provided a gradient
based local method is used, they guarantee convergence to a gradient zero solution.

The recently developed Scatter Search based methods [15, 17] have proved to
be successful in the solution of parameter estimation and dynamic optimisation
problems allowing to overcome typical difficulties of nonlinear dynamic systems
optimisation such as noise, flat areas, non-smoothness, and/or discontinuities.
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5 Illustrative Examples

5.1 Modelling and Simulation: Growth of Bacterial Biofilms

Bacteria, both in natural and pathogenic ecosystems, are found mainly within
surface associated cell assemblages, the so called biofilms. It is now recognised
that biofilms constitute a source for food related infections. Since they can render
their inhabitants more resistant to disinfectants, biofilms have become problematic
in a wide range of food industries, including brewing, seafood processing, dairy
processing, poultry processing and meat processing [32].

Since resistance is associated to biofilm structure there is a growing interest in
the characterisation of pathogenic biofilm structures. In this respect much research
has been performed to gain deeper understanding of biofilms formation, adherence
and growth. Basically two approaches have been considered: the use of imaging
techniques and modelling.

While image quantitative analysis allows direct quantification from images
obtained by microscopic techniques [11, 25, 39], mathematical models have been
developed to provide mechanistic insight into structure evolution. Proposed models
can be divided in three general classes according to the way the biomass is rep-
resented: discrete, continuous and hybrid discrete-continuous models (see Wanner
et al. [37] for an extensive review).

Here we will consider the continuous model proposed by Eberl et al. [14]. The
model represents bacteria and nutrients with two density fields denoted by m.t; 	/
and c.t; 	/, respectively. Their spatial distributions are represented by the following
set of coupled diffusion-reaction mass balance equations:

@C

@t
D d1r2C � F.C;M/; (22)

@M

@t
D r � .d2.M/rM/C G.C;M/; (23)

with

F.C;M/ D K1
MC

K2 C C
; G.C;M/ D K3

CM

K2 C C
�K4M; d2.M/ D mb�a

max

� �

1 �M

�a
Mb;

where

k1 D mmax

	
�m

YXS
Cms



; k2 D Ks; k3 D YXS=mmax; k4 D msmmax;

K1 D mmax
k1
c0
; K2 D k2

c0
; K3 D k3k1; K4 D k3k4;
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Table 1 Biofilm growth model parameters

Parameter Description Value

d1 Nutrient diffusion coefficient .m2=s/ 1:6� 10�9

�m Maximum bacterial growth rate .1=s/ 1:5� 10�5

YXS Substrate growth yield factor (adim.) 0:045

Ks Monod saturation constant . kg=m3/ 3:5� 10�5

ms Maintenance coefficient .1= s/ 3� 10�5

mmax Maximum biomass . kg=m3/ 60

c0 Initial nutrients concentration . kg=m3/ 4� 10�3

M0 Initial biomass concentration (adim.) 0:9

�; a; b Parameters to control biomass diffusion (adim.) 5� 10�5; 4; 4

and M and C dimensionless variables (M WD m=mmax; C WD c=c0). Model
parameters are summarised in Table 1.

In the equation describing biomass Eq. (23), the first term in the right-hand side
accounts for the diffusion of the biomass and the second term for the production
of biomass. Expansion of bacteria depends on the local density of bacteria and
takes place only if the biomass density approaches a prescribed maximum value
established by mmax. Elberl et al. proposed a density-dependent expression for the
diffusion factor d2 that satisfies this condition. The physical interpretation is that the
biomass diffusivity vanishes as m becomes small but increases as m grows due to
biochemical reaction.

In our work we developed a numerical approach based on the combination of
finite differences schemes in space—with centred differences for the nutrients and
a backwards-forward space for the biomass- and the Crank-Nicolson approach in
time [10]. The resulting set of non-linear equations is solved using a Newton-
Raphson algorithm. Here we illustrate results achieved for one-dimensional growth
with merging colonies under symmetric initial and boundary conditions. For this
purpose, two equally sized colonies are located in the interval Œ0;L�:

C.0; x/ D 1; 8x 2 Œ0; 1�; (24)

M.0; x/ D
(

M0; for x 2 Œx1; x2� [ Œx3; x4�;
0; elsewhere;

(25)

with L D 10�4, x1 D L � x4, x2 D L � x3, x3 D L=2 C 3 � 1:6 � 10�6 and
x4 D L=2C 4 � 1:6 � 10�6. And symmetric boundary conditions are imposed:

C.t; 0/ D 1; C.t;L/ D 1 8t 2 Œ0; 1� (26)

Mx.t; 0/ D 0; Mx.t;L/ D 0 8t 2 Œ0; 1�: (27)
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Fig. 3 Numerical solution of the biofilm growth example

As it can be seen in the Fig. 3, both colonies spread in both directions till collision
is produced. It should be noted that a modification on model parameters, for exam-
ple, an increased nutrient availability or decreased maximum biomass concentration,
would accelerate the spatial spreading of biomass and, in consequence, colonies
would merge earlier and form a more compact spatial structure. On the contrary, a
decrease in nutrient availability or a larger maximum biomass concentration, would
slow down the spatial spreading of biomass and colonies would merge later or even
would not merge. This reveals the capacity of the model to describe the clusters and
tunnels typically observed in the laboratory.

5.2 Reduced Order Models: Food Pasteurisation in Tunnels

Food thermal processing persists as one of the most widely used methods for food
preservation. The product is treated at a given temperature for a given period of time
to minimise public health hazards due to the presence of pathogenic microorganisms
and to extend product shelf-life. Different time-temperature combinations could be
used to achieve safety. However, the related time-temperature histories would affect
the quality of the product in different ways.

Therefore, the design of thermal processes requires a deep understanding of
the heating process of the given product, the impact on the target microorganism
and quality factors. The thermal treatment will depend on the thermo-physical
characteristics, shape and size of the food product and container; the type and
thermal resistance of the microorganisms of interest and the kinetics of quality
degradation.

In this section we consider the pasteurisation in tunnels of highly viscous liquid
foods such as tomato or carrot puree in cylindrical food jars. The containers are
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loaded at one end of the pasteuriser and passed under sprinkles of water as they
move along the conveyor belt. Temperature of the water changes in the different
zones so as to achieve pasteurisation. The heat transfer occurs between the hot water
film and the package surface and from the package to the food product.

The evolution of temperature and velocity within the food product during the
pasteurisation is described by means of conservation laws. The package is assumed
to be homogeneously heated therefore axial symmetry allows to consider a 2D
geometry. The process can be mathematically described as follows [26]:

5.2.1 Continuity Equation

@u

@z
C v

r
C @v

@r
D 0; (28)

being r and z being the spatial coordinates (radius and height of the package) while
v and u are the velocity field components, i.e., w D Œu; v�T .

5.2.2 Momentum Conservation

�prod

	
@v

@t
C u

@v

@z
C v @v

@r



D �@p

@r
C �prod

	
@

@r

	
1

r

@rv

@r



C @2v

@z2



; (29)

�prod

	
@u

@t
C u

@u

@z
C v @u

@r



D �@p

@z
C �prod

	
1

r

@

@r

	
r
@u

@r



C @2u

@z2



C O� g;

(30)

where p is the pressure, �prod corresponds with the food stuff density, g is the gravity
constant, T represents the temperature distribution inside the food, �prod stands for
the viscosity expressed as a function of the temperature [26]:

�prod D a�T2 � b�T C c�; (31)

and the density O� is usually expressed in terms of the fluid temperature as follows:

O� D �ref
�
1 � ˇ �T � Tref

��
; (32)

being ˇ the thermal dilatation coefficient and �ref and Tref given reference values.
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5.2.3 Energy Conservation

@T

@t
C v @T

@r
C u

@T

@z
D ˛prod

	
1

r

@

@r

	
r
@T

@r



C @2T

@z2



: (33)

The system in Eqs. (28), (29), (30), (31), (32), and (33) is subject to the following
initial and boundary conditions:

• Initially the food stuff is at rest (v D 0) and at uniform temperature T.r; z; t D
0/ D T0.

• The velocity field components (u, v) are zero in the package walls, i.e.:

ujzD0 D ujzDZ D ujrDR D 0; (34)

vjzD0 D vjzDZ D vjrDR D 0: (35)

• Symmetry conditions are imposed in the symmetry axis (r D 0):

@T

@r

ˇ̌
ˇ̌
rD0
D @u

@r

ˇ̌
ˇ̌
rD0
D @v

@r

ˇ̌
ˇ̌
rD0
D 0: (36)

• The package bottom is touching the transportation belt assumed to be an
insulating material:

@T

@z

ˇ̌
ˇ̌
zD0
D 0: (37)

• At the right and upper sides, the package is in direct contact with the falling film
of heating fluid:

kprod
@T

@r

ˇ̌
ˇ̌
rDR

D hjar

�
Tff � TjrDR

�
; (38)

kprod
@T

@z

ˇ̌
ˇ̌
zDZ

D hjar

�
Tff � TjzDZ

�
; (39)

with Tff being the temperature of the falling film, hjar the jar heat transfer
coefficient and kprod the product thermal conductivity.
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Here we compare the solution of the models Eqs. (28), (29), (30), (31), (32),
(33), (34), (35), (36), (37), (38), and (39) using the finite element method (FEM)
and the reduced order model (ROM) based on the proper orthogonal decomposition
approach. The main steps to derive the ROM are the following:

1. Obtain a set of snapshots that characterises the spatio-temporal distribution of
the variable of interest (temperature, velocity, etc.). In our case all the snapshots
are obtained from a FEM based simulation of system (Eqs. (28), (29), (30),
(31), (32), (33), (34), (35), (36), (37), (38), and (39)) under different possible
experimental conditions (Tff , T0). Since product and package properties are
unknown, several values of the parameters within physical meaningful bounds
have to be considered to obtain the snapshots. The finite element method, with a
mesh of 725 discretisation points, was used to solve the system of Eqs. (28), (29),
(30), (31), (32), (33), (34), (35), (36), (37), (38), and (39) and generate snapshots
(see Fig. 4). Each simulation implies solving 2900 ODEs which takes around 25 s
in a standard PC.

2. Computation of the POD basis. The snapshots of the previous point are used to
compute the so-called POD basis as described above [19].

3. Projection of the model equations (28), (29), (30), (31), (32), (33), (34), (35),
(36), (37), (38), and (39) over the selected POD basis. Projection is carried out
by multiplying the original PDE system by the POD basis and integrating the
result over the spatial domain. Note that the FEM structure may be exploited to

Axi-symmetry
r   

z
Falling film

mli
f

gn
ill

aF

Thermal isolation

Fig. 4 Illustrative example of the package, operating conditions and FEM mesh
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numerically perform the projection [19]:

Z
V
	T;i

@T

@t
d� D

Z
V
	T;i .˛ �T � wrT/ d�; (40)

�

Z
V
	w;i

@w

@t
d� D

Z
V
	w;i .��w � �wrw � rPC �g .1 � ˇ.T � T0// z/ d�;

(41)

with i D 1; : : : ;Nx and z being a unitary vector with the direction of the spatial
coordinate z. Equation (41) with w D Œu; v�T is equivalent to the result of the
projections of Eqs. (29) and (30).

Taking into account:

T.�; t/ �
NTX
iD1

mTi.t/ 	Ti .�/; (42)

w.�; t/ �
NwX
iD1

mwi.t/ 	wi.�/; (43)

and after some algebraic manipulations, Eqs. (40) and (41) can be rewritten as:

dmT

dt
D �˛prodAT C BT C ˛prodDT

�
mT ; (44)

�
dmw

dt
D .�Aw C �Bw C �Dw/mw � �gˇCT;wmT C �g.1C ˇT0/; (45)

where each component of matrices Ax, Bx, CT;w and Dx are of the form:

Ax.iI j/ D
Z

V
r	x;i r	x;j d�; Bx.iI j/ D

Z
V
	x;i.wr	x;j/ d�;

CT;w.iI j/ D
Z

V
	w;i 	T;j d�; Dx.iI j/ D

Z
@V
	x;i r	x;j d�;

with @V denoting the boundary of V . The vector of time dependent functions mx is
of the form mx D Œmx;1;mx;2; : : : ;mx;N �

T .
The larger the number of basis functions used, the better the accuracy of the

reduced model. However at the expense of higher computational cost. In order
to arrive to a compromise between accuracy and efficiency, several validation
experiments were performed for various experimental conditions and parameter
values. Table 2 shows the differences emerging from the addition of basis functions.
Results are compared in terms of the mean error as compared to the worst validation
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Table 2 FEM vs ROM in the simulation of thermal pasteurisation in tunnels

Number Mean error Mean error Simulation
Method of ODEs T (%) kwk (%) time (s)

FEM 2900 0 0 25

ROM 10 1.08 4.3 3.1

20 0.7 2.7 3.5

40 0.47 1.82 4.2

100 0.47 1.58 6.5
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Fig. 5 Evolution of the state variables, temperature and fluid velocity, using the POD approach
(marks) and the FEM (continuous lines) at different locations within the spatial domain

example: E D 100
xROM � xFEM

xFEM
where x represents each of the state variables T,

w D Œu; v�T .
The best compromise quality and computational cost is offered by the ROM with

40 ODEs. It should be noted that the mean error is bellow the 2% as compared to
the FEM based simulation. The dynamic evolution of the temperature and velocity
fields at five spatial locations distributed along the diagonal of the spatial domain
(p1 D .0; 0/, p2 D .0:011; 0:022/, p3 D .0:019; 0:045/, p4 D .0:029; 0:067/,
p5 D .0:04; 0:09/) is presented in Fig. 5 for one validation example. Continuous
lines correspond to the FEM simulation while marks represent the solution of the
ROM with 40 ODEs. As shown in the figure the ROM is able to reproduce the
system behavior.
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5.3 Model Identification: Production of Gluconic Acid
in a Fed-Batch Reactor

Industrial fermentation is based on the conversion of glucose to other substances
by the action of microorganisms under highly oxygenated and aerobic growth
conditions. This kind of processes are widely employed to obtain for instance bread,
wine and cheese in the food industry and biomass, metabolites (ethanol, citric
acid, gluconic acid, vitamins, antibiotic) or recombinant products (insulin) in the
biotechnology industry or, even, bio-fuels to replace conventional petrol.

Most of the fermentation processes to obtain Gluconic Acid (GA) are carried
out by Aspergillus niger. The objective here is that of building a model with
good predictive capabilities to describe the dynamics of glucose (G), oxygen (O2),
gluconic acid (GA) and biomass (B) during the growth phase of Aspergillus niger.
We consider a fed-batch fermenter with two valves to regulate the incoming flux
of glucose and water mixture (u1) and the oxygen transfer rate described by the
Henry’s law (u2). The controls may take values between: 0, when closed and 1,
when opened. Mathematically the process may be described as follows [21]:

dX

dt
D �max

G

KG C G

O2

KO2 C O2

; (46)

dGA

dt
D YGA�max

G

KG C G

O2

KO2 C O2

; (47)

dG

dt
D YG�max

G

KG C G

O2

KO2 C O2

C u1Fin

V
.Gin � G/; (48)

dO2

dt
D YO2�max

G

KG C G

O2

KO2 C O2

C u2KLa.O
�
2 �O2/; (49)

dV

dt
D u1Fin; (50)

where Fin and KLa represent the maximum incoming flux and oxygen transfer
rate, respectively; O�

2 is the saturation of dissolved oxygen; Gin corresponds to the
concentration of glucose in the inlet.

Next in model building loop is to compute model unknowns, in this case

 D Œ�max;YG;YO2 ;YGA;KLa� by measuring y D ŒB;GA;G;O2�. To estimate
their values we will first consider a qualitative experimental design. Basically two
completely different experiments are designed: (i) where the incoming flux valve
is almost closed u1 D 0:01 and the oxygen transfer is completely open u2 D 1

and (ii) where the incoming flux valve is completely open u1 D 1 and the oxygen
transfer is almost closed u2 D 0:01. Pseudo-experimental data are obtained by direct
numerical simulation of the model assuming the following nominal values for the
parameters: KLa D 600 h�1, O�

2 D 0:0084 g l�1, Gin D 250 g l�1, Fin D 0:5min�1,
�max D 0:2242 h�1, KG D 9:9222 g l�1, KO2 D 0:0137 g l�1, YGA D 44:8887,
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Fig. 6 Best fit obtained for the qualitative experimental design

YO2 D �2:5598, YG D �51:0365. Gaussian experimental error is added to the
model predictions and 40 equidistant sampling times are used per experiment.

The parameter estimation problem was solved using eSS as incorporated in
AMIGO obtaining the following optimal solution:


� D Œ0:2241;�51:049;�2:1341; 44:923; 500:2�:

The corresponding optimal fit is shown in Fig. 6.
It should be noted that even though the values obtained for �max, YGA and YG

are within the 1% of the known global solution, this is not the case for YO2 and
KLa where the differences are around the 17%. In addition the Monte Carlo based
identifiability analysis reveals uncertainties over the 20%.

In view of the results a parallel-sequential optimal experimental design was
pursued in order to improve parameter estimates. The two qualitative designs
are incorporated in the FIM and two new experiments are designed allowing for
constant control profiles that are optimised together with the final time and the
initial conditions of glucose and biomass. The OED problem was solved to minimise
the ratio between the maximum and the minimum eigenvalue of the FIM and the
Monte Carlo based practical identifiability analysis was performed for the resultant
experimental scheme so as to compare the expected uncertainty in the parameter
estimates.

The parameter estimation problem was then solved by using the four
experiments in the optimal experimental scheme. Figures 7 show the two
optimally designed experiments together with the optimal fits obtained by
the use of SSm that correspond to the following parameter set: 
� D
Œ0:2241; 44:908;�51:04;�2:5606; 600:04� which is within the 0:04% of the
optimal value, i.e. with OED it is possible to converge to the real parameter values.
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5.4 Identification and Dynamic Optimisation: Frying of Potato
Chips

In deep-fat frying foodstuff is immersed into oil at high (constant) temperature. This
induces water evaporation and the formation of a thin crust. As the temperature
increases and moisture is lost, the typical deep-frying sensory characteristics
(colour, flavour, texture) are developed. However, the use of high temperatures
results in the production of acrylamide, a carcinogen compound. Thus model-based
optimisation may assist in the design of those operating conditions that provide the
best compromise between quality and safety.

A multiphase porous media based model was formulated to describe heat, mass
and momentum transfer and acrylamide kinetics within a potato chip as described
in Warning et al. [38]. The model consists of a set of coupled nonlinear PDEs
describing the evolution of the saturation of water, oil and vapor (Sw,So, Sg), product
temperature (T), moisture content (M), pressure (P), water vapour mass fraction
(!v) and acrylamide content (cAA). The potato chip is assumed to be cylindrical and
heated from outside therefore axi-symmetry can be assumed. The selected geometry
is shown in Fig. 8.

The model was solved in COMSOL©. The Convection and Diffusion module
was used to solve for water, oil and acrylamide mass conservation while Maxwell-
Stefan Diffusion and Convection was used to gas mass fraction and Darcy’s Law
and Convection and Conduction were used to solve for pressure and temperature
respectively. The selected mesh consists of 20 � 10 rectangular elements. The
simulation of 1:5min frying takes around 40 s in a standard PC 3.25 GB RAM and
2.83 GHz.
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Fig. 9 Best fit: experimental data (dots) vs model predictions (lines) of acrylamide (cAA), oil and
moisture content (M=M.0/) at different process temperatures

Unknown parameters, the heat transfer coefficient (h) and the surface oil
saturation So;surf , were identified from experimental data using AMIGO, details can
be found in Arias-Méndez et al. [3].

The final model exhibits good predictive capabilities (see Fig. 9) enabling the
possibility to analyse alternative operating conditions. The objective was to compute
the oil temperature profile (Toilmin � Toil � Toilmax ) that guaranties the desired quality
attributes (colour and crispness) while minimising final acrylamide content subject
to the process dynamics. The problem was solved by means of a combination of the
CVP approach and eSS [17].

In a first approximation to the problem the typical industrial process at constant
oil temperature was designed. As expected, the lower the oil temperature the lower
the acrylamide content and the longer the process. Results reveal that a reduction in
the oil temperature from 180 ıC to 150 ıC translates into a reduction of around the
4% in acrylamide content and an increase of the 25% in the process duration. Since
the process duration is critical for the production rate, and no recommendations or
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Fig. 10 Optimal operation
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constraints are yet available on the maximum admissible acrylamide content, a good
compromise would be to use intermediate temperature values 165–170 ıC during
80–85 s.

The general dynamic optimisation problem was then solved for different max-
imum process durations (80, 85, 90 and 95 s) and different numbers of maximum
heating zones. Results show that using two heating zones significantly reduces the
final acrylamide content with respect to typical constant operating profiles. The
optimal profile corresponds to the use of a higher temperature at the beginning of
the process, this helping to satisfy the constraint on the moisture content, followed
by a lower temperature to minimise the final acrylamide content (Fig. 10).

5.5 Real Time Optimisation: Thermal Sterilisation of Packaged
Foods

In this example we consider the thermal sterilisation of packaged solid foods in
steam retorts. The product is introduced in a steam retort where it is subjected
to a given heating-cooling cycle so as to get a pre-specified degree of microbial
inactivation indicated by the microbiological lethality. However, some organoleptic
properties or nutrients can be negatively affected by the heat action. The objective is,
therefore, to optimise operation conditions to maximise quality while guaranteeing
safety. In this example, we go a step further, and propose a real time optimisation
(RTO) architecture to handle the optimisation during processing and in the presence
of uncertainty or sudden disturbances. The performance of the proposed RTO
architecture was experimentally validated for tuna paté at the pilot plant in the IIM-
CSIC.



212 E. Balsa-Canto et al.

The dynamic representation of the plant couples the description of the temper-
ature inside the retort, temperature distribution inside the food product and the
corresponding distribution of nutrients and microorganisms:

5.5.1 Retort Dynamics

dz
dt
D f.zI
/C g.z;uI
/; (51)

here f and g are nonlinear vector fields of appropriate dimensions; z denotes the
temperature and pressure in the retort ŒTR;PR�; u stands for the control variables:
valve positions for input and output streams. Finally, 
 denotes the vector of
unknown parameters. For a detailed description the reader is referred to [2].

5.5.2 Temperature Distribution Inside the Food Product

@Tprod

@t
D ˛r2Tprod; n.krTprod/ D h.TR � Tprod/; (52)

where Tprod is the temperature of the food stuff and h, k, ˛ stand for the heat
transfer coefficient of the package and the food thermal conductivity and diffusivity,
respectively.

5.5.3 Quality and Safety Models

dCi.t/

dt
D �

	
ln 10

Di;ref



Ci.t/ exp

	
Tprod.	; t/ � T	;ref

zi;ref



; (53)

where subindex Ci refers to the concentration of either microorganisms or nutrients.
The unknown parameters of the model, the functional dependencies of fluxes

on valves openings and the valves related constants were identified by means
of parameter estimation, identifiability analysis and multi-experimental optimal
design, using AMIGO toolbox.

For the case of the evolution of temperature inside the retort, the resulting model
presents excellent predictive capabilities taking into account that a maximum error
of around 3% is observed in fast transitions.

The product was packed in glass containers with metal top. The corresponding
geometry and the FEM mesh used for simulation purposes are depicted in Fig. 11.
Selected mesh consists of 184 nodes which translates into 553 ODEs. Three
model parameters were estimated from the temperature measurements, namely,
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Fig. 11 Geometry of the food package

the product thermal conductivity, and the glass/steam and the metal/steam heat
transfer coefficients. After the model identification, the differences between model
predictions and experimental data are lower than 1%.

Once a satisfactory model became available, a POD-based ROM model was
developed to be used within the RTO scheme, it should be noted that each simulation
of the ROM takes less than 1 s. In addition, the optimal operating conditions were
computed off-line using the CVP and scatter search methods.

Real time implementation of the optimal control needs to consider the effect of
unmeasured disturbances not being part of the prediction model. To that purpose,
feedback was implemented by regularly measuring the current retort variables and
observing the relevant variables of the packaged product to compute efficient on-
line optimisation. Optimal operation conditions are then re-computed any time
a difference between predicted value and off-line optimal solution is detected.
A combination of a local optimiser and SSm was designed so as to guarantee
feasibility and optimality of the solution even in the presence of significant
perturbations or plant/model mismatch (see details in [2]).

Figures 12 and 13 illustrate the performance of the RTO architecture in an
experimental case were large perturbations occur. The implementation of the
optimal off-line heating profile leads to a product that does not fulfill the lethality
requirement (Fc D 8min). The RTO architecture proposed in the work was able
to drive the system to feasibility and optimality by means of re-computing optimal
profiles on-line and slightly extending the duration of the heating phase.
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Fig. 12 Comparison of
off-line and on-line optimal
profiles under large
perturbations in the retort at
the pilot plant (IIM-CSIC)
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6 Conclusions

Computer-aided simulation and model-based optimisation offer a powerful, rational
and systematic way to improve food, bio-process and biological systems under-
standing or performance. In recent decades there has been a growing interest in the
development of rigorous models, based on first principles, that enable not only to
perform experiments in silico, but to design and to optimise operation policies.

However several problems have to be faced mostly related to (i) insufficient a
priori knowledge to deduce the right model structure or model parameter values;
(ii) the complexity of the processes that combine physical, chemical and biological
phenomena on a wide range of time and space scales; (iii) the complexity of the
associated models that calls for sophisticated numerical simulation techniques and
(iv) the complexity of the associated optimisation problems due mainly to multi-
modality.

In this work we have used a number of examples taken from the food and
biotechnology industry to illustrate how those problems emerge and to present
some alternatives to tackle them. Special emphasis was paid to describe the model
identification loop, which involves parameter estimation, identifiability analyses and
model based experimental design as well as the dynamic optimisation problem.
Most of the problems can be formulated as non-linear optimisation problems whose
solution requires adequate model simulation techniques, including accurate and
efficient reduced order modelling approaches and the use of global optimisation
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methods. To finish with, all elements were combined to design and implement a
real-time optimisation architecture, which is able to assure high operational stability,
process reproducibility and optimal operation.
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An Introduction to GPU Computing
for Numerical Simulation

José Miguel Mantas, Marc De la Asunción, and Manuel J. Castro

Abstract Graphics Processing Units (GPUs) have proven to be a powerful accel-
erator for intensive numerical computations. The massive parallelism of these
platforms makes it possible to achieve dramatic runtime reductions over a stan-
dard CPU in many numerical applications at a very affordable price. Moreover,
several programming environments, such as NVIDIA’s Compute Unified Device
Architecture (CUDA) have shown a high effectiveness in the mapping of numerical
algorithms to GPUs. These notes provide an introduction to the development of
CUDA programs for numerical simulation using CUDA C/C++, the most popular
GPU programming toolkit. An overview of CUDA programming will be illustrated
through the CUDA implementation of simple numerical examples for PDEs. These
CUDA implementations will be studied and run on modern GPU-based platforms.

Keywords Graphics processing units • CUDA • Numerical solution of PDEs •
CUDA C programming

1 Introduction to GPU Computing

A graphics processing unit (GPU) is a programmable single-chip processor which
is used primarily for things such as: rendering of 3D graphics scenes, 3D object
processing and 3D motion. All these tasks are computing-intensive and highly
parallel. A GPU performs arithmetic operations in parallel on multiple data to
render images. Generally, GPUs are embedded in stand-alone cards which include
their own memory. In order to use them, these cards must be connected to the
motherboard of a CPU-based computer system, by using the suitable high speed
connection (Peripheral Component Interconnect Express bus, PCI-Express [11])
(Fig. 1).
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Fig. 1 GPU cards

Modern GPUs are highly programmable and can be used for non-graphics
applications. They offer hundreds or thousands of processing units optimized for
massively performing floating-point operations in parallel. In fact, they can be a
cost-effective way to obtain a substantially higher performance in computationally
intensive tasks [5, 25, 26, 28].

In many compute-intensive applications, there is a large performance gap
between GPUs and multicore CPUs [28]. Nowadays the peak performance of a
modern and powerful GPU is approximately seven times the peak performance of
a corresponding CPU in single precision and close to five times in double precision
[5, 21]. This is mainly due to two reasons:

• While CPUs are designed to minimize the execution latency of a single task
(latency-oriented platforms), the design goal of GPUs is to maximize the total
execution throughput of a large number of parallel tasks (they are massively
parallel throughput-oriented computing platforms).

• The graphics chip memories are usually much faster than the corresponding CPU
chip memories.

Moreover, since massively parallel GPUs are easily accessible in comparison
with huge cluster-based parallel machines, GPU-based platforms have made it
possible to increase the use and spread of the high performance computing in
scientific and engineering environments.

GPU computing consists of using GPUs together with CPUs to accelerate
the solution of compute-intensive science, engineering and enterprise problems.
Since the numerical simulation based on Partial Differential Equations (PDEs)
exhibits a lot of exploitable parallelism, there has been an increasing interest in
the acceleration of these simulations by using GPU-based computer systems.

Initially, graphics-specific programming languages and interfaces [8, 9, 14,
16, 26, 27] were used to program GPUs. However, the use of these languages
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complicates the programming of GPUs in scientific applications, and the code
obtained is difficult to understand and maintain. Later, NVIDIA developed the
CUDA programming toolkit [21] which includes an extension of the C language
which facilitates the programming of GPUs for general purpose applications [10]
by preventing the programmer to deal with the graphics details of the GPU.
Additionally, several languages and interfaces such as OpenCL [7, 12], OpenACC
[24] or Thrust [4], have been developed and spread to make the GPU computing
easier.

There is a widespread use of CUDA-based platforms to accelerate numerical
solvers for PDEs [1–3, 6]. For this reason, these notes intend for making it easier
the exploitation of CUDA-enabled platforms to accelerate PDE-based numerical
simulations, by providing the suitable CUDA C programming foundations.

2 CUDA Introduction

The CUDA (Compute Unified Device Architecture) framework [21] is a hardware
and software platform that makes it possible to exploit efficiently the potential
of NVIDIA GPUs to accelerate the solution of many costly computational prob-
lems. This framework includes a unified architectural view of the GPU and a
multithreaded programming model which uses an extension to the C programming
language (called CUDA C) to implement general-purpose applications on NVIDIA
GPUs. Other languages are also supported [21] for CUDA programming (C++,
Fortran, Java, etc.).

According to the CUDA framework, a GPU is viewed as a computing device
which works as a coprocessor for the main CPU (host). Both the CPU and the GPU
maintain their own Dynamic Random Access Memory (DRAM) (see Fig. 2) and it
is possible to copy data from CPU memory to GPU memory and vice versa.

Fig. 2 GPU system (device) as a coprocessor of the CPU system (host)
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3 Brief Introduction to the CUDA Hardware Model

In the CUDA framework, we consider that a CUDA enabled GPU is formed by N
multiprocessors (N depends on the particular GPU), each one having M processors
or cores (see Fig. 4) where the value of M also depends on the specific GPU
architecture (it can be 8, 32, 192, . . . ). At any clock cycle, each core of the
multiprocessor executes the same instruction, but operates on different data. The
multiprocessors of the GPU are specialized in the parallel execution of multiple
CUDA threads. A CUDA thread represents a sequential computational task which
executes an instance of a function. Each CUDA thread is executed logically in
parallel with respect to other CUDA threads (associated to the same function but
operating on different data) on the cores of a GPU multiprocessor (see Fig. 3).

3.1 CUDA Memory Model

A CUDA thread that runs on a multiprocessor of the GPU has access to the following
memory spaces (see Fig. 4):

• On-chip memories:

– Registers: Each thread has its own readable and writeable registers. Each GPU
model has a particular number of registers per multiprocessor, which are split
and assigned to the threads that run concurrently on that multiprocessor.

– Shared memory: Each multiprocessor includes a small memory (between 16
and 48 KB) called shared memory. This memory is readable and writeable

Fig. 3 Execution of multiple CUDA Threads (associated with the same function)
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Fig. 4 CUDA hardware model

only from the CUDA threads running on the particular multiprocessor of the
GPU and is much faster than global memory.

• Off-chip memories (in DRAM memory): These spaces are not resident in the
GPU chip and they are shared by all CUDA threads which are being executed on
the GPU (on several multiprocessors).

– Global memory: This memory is readable and writeable from CPU and GPU.
It is slow in comparison with the shared memory due to its high latency (500
times slower approximately).

– Constant memory: It is readable from GPU and writeable from CPU. It is
cached, making it faster than global memory if the data is in cache.

– Texture memory: It is readable from GPU and writeable from CPU. Under
several circumstances, the use of the texture memory can provide performance
benefits because it is cached (there is a small texture cache memory for
each multiprocessor) and optimized for 2D spatial locality. Texture cache size
varies between 6 and 8 KB per multiprocessor.
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4 CUDA Programming Model

4.1 CUDA Kernels and Threads

In order to specify the function to be executed by each thread on the GPU, CUDA
C allows the programmer to define special C functions, called CUDA kernels.
A CUDA kernel function is called from the CPU and is executed N times on the
GPU by an array of N CUDA threads (see Fig. 5).

CUDA Threads are extremely light because they exhibit a very fast creation and
context switching. As a consequence, it is recommendable to use fine-grain parallel
decompositions (running very many thousands of CUDA threads) to obtain high
efficiency.

Every thread executes the same code (the kernel function) but the specific action
(and the data subdomain which is processed) to be performed depends on the
thread identifier. The thread identifier can be obtained from the built-in variable
threadIdx and is used to compute memory addresses and take control decisions
(see Fig. 5).

Listing 1 shows a naive CUDA program which includes the declaration of a
straightforward kernel and the corresponding kernel launch statement. The kernel
(VecAdd) is used to add two vectors (with N floating point elements), A and B,
obtaining the result in a vector C. As can be seen, a kernel function is declared
using the modifier __global__ and it must return void type. We can see that
each thread of the kernel computes one element of the output vector C. In order to
launch a kernel, the programmer must specify several parameters which determine,
in particular, the number of CUDA threads which are to be created to execute it. In
this example, the kernel invocation code indicates that an array of N threads (one for
each element of the vectors) is launched on the GPU. The number and organization
of the threads used to execute a kernel is given by several parameters between <<<
and >>> as we will see later.

Fig. 5 Thread array for a naive CUDA kernel
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� �

...
__global__ void VecAdd(float* A, float* B, float* C)
{ int i = threadIdx.x;

C[i] = A[i] + B[i]; }
...
int main()
{

...
// Kernel call with N Threads
VecAdd <<<1, N>>> (A, B, C);

}
� �

Listing 1 Outline of a naive one-block CUDA program to add two vectors

4.2 CUDA Thread Organization: Grids and Blocks

The set of CUDA threads which are created in a kernel launch is organized forming
a grid of thread blocks that run logically in parallel [21].

4.2.1 CUDA Thread Blocks

Each thread is identified with a (1D, 2D or 3D) thread Index (stored in the predefined
variable threadIdx) in a thread block. A CUDA block is the unit used to map
threads to multiprocessors. Each thread block runs on a single multiprocessor of the
GPU.

Each multiprocessor can process a maximum number of blocks at a particular
moment in time, and each block can include a maximum number of threads. It
depends on the so-called Compute Capability of the GPU. The predefined variable
blockDim, with type dim3, stores the block dimensions for a kernel (see Fig. 6).
The dim3 type is a struct with 3 unsigned integer fields (x, y and z).

The threads of a block can communicate among themselves using the shared
memory of the multiprocessors assigned to that block.

As can be seen in the naive code of Listing 1, that kernel is designed to launch
only one thread block. Consequently the size of the vectors (N) can not be greater
than the maximum number of threads per block (which depends on the particular
GPU architecture).

4.2.2 Grid of Blocks

As we have seen, several CUDA threads which will be executed on the same
multiprocessor, are organized forming a (1D, 2D or 3D) matrix of threads called
block. In a similar way, all the blocks which are created in a kernel launch are
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Fig. 6 Structure of 1D and 2D blocks of CUDA threads

organized as a (1D, 2D or 3D) matrix called grid (see Fig. 7). In general, the grid is
a 3D array of blocks but the programmer can choose to use fewer dimensions

The number of threads per block and the number of blocks per grid used to launch
a kernel are specified with the following syntax:

<<< blocks_per_grid, threads_per_block >>>

The first parameter gives the number of thread blocks in the grid. The second
gives the number of threads in each thread block. In the program of Listing 1, we
run one grid with only one block of N threads. This program would only exploit
one multiprocessor of the GPU. A more practical CUDA program to add vectors is
given in Listing 2, where a one-dimensional grid with d N

256
e one-dimensional blocks

with 256 threads is used (see Fig. 8).
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Fig. 7 Grid of thread blocks

� �

#define BSIZE 256
__global__ void VecAdd(float* A, float* B, float* C, int N)

{ int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i<N) C[i] = A[i] + B[i];

}
...
int main()
{
...
// Kernel call with N Threads using 256 threads 1D-blocks
VecAdd <<<ceil((float)N/BSIZE), BSIZE>>> (A,B,C,N);
...
}

� �

Listing 2 A more general CUDA program to add vectors

Fig. 8 Mapping of a vector to one-dimensional blocks
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In order to identify several parameters of a particular thread (to distinguish it
among the others), programmers can use the following predefined variables within
the kernel function:

• uint3 blockIdx: identifies the coordinates of a particular block in the
grid. The uint3 type has the same structure as dim3 (blockIdx.x,
blockIdx.y, blockIdx.z).

• dim3 blockDim: identifies the dimensions of the block.
• dim3 gridDim: maintains the grid dimensions.

Using these spatial indices (including threadIdx), the programmer can
specify what particular data subdomain will be operated by each CUDA thread.
In Listing 2, these indices are used to identify what elements of the input and output
vectors are processed by a particular thread. Since not all threads will compute
elements of the output vector, a conditional if statement is needed to test if the
global index values of a thread are within the valid range (if i � N nothing is
computed).

The grid and block dimensions for a kernel must be chosen by the programmer
depending on the nature of the data in order to maximize efficiency. For example,
to add two 2D matrices of float elements, it can be convenient to use a 2D grid
which consists of 2D blocks of threads, where each thread computes one element of
the output matrix. Figure 9 shows this type of 2D mapping to compute the addition
of 45�45matrices. In this figure, it is assumed that we are using 16�16 2D-blocks
(blockDim.x D blockDim.y D 16, blockDim.z D 1). As can be seen, we
need a 3�3 grid of blocks (gridDim.x D gridDim.y D 3, gridDim.z D 1).
Note that we have three extra threads in the x and y directions.

Listing 3 shows an outline of a CUDA program to add N � N matrices. In
the MatAdd kernel, we initially compute the position of the current thread in
the horizontal and vertical directions, using the built-in variables blockIdx and
threadIdx (see Fig. 9). These position values (i and j) are used to derive the
global 1D index for the input and output matrices. This 1D index is used to compute
the corresponding element of matrix C if the previously computed position values
(i and j) of the thread are within the valid range.

4.3 Transparent Scalability

A CUDA thread block can be executed independently with respect the rest of
CUDA blocks of a kernel. Therefore the execution of several blocks can follow any
relative execution order. Taking into account that the thread blocks are automatically
mapped onto multiprocessors by the CUDA runtime system, this flexibility in the
execution order enables the automatic adaptation of a kernel execution to the number
of multiprocessors of the available GPU (see Fig. 10). This is called transparent
scalability, because the blocks are mapped to the specific number of multiprocessors
of a particular GPU in an efficient way without any intervention from the user.
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Fig. 9 Mapping of a 2D grid of 16� 16 blocks to a 45� 45 matrix

4.4 CUDA Program Structure

A CUDA C program must include the code for the CPU which includes the calls
to several CUDA kernels and the specification of these kernel functions using the
suitable C extensions (see Fig. 11). A kernel can only start on a GPU when the
previous CUDA function call has returned.

The qualifiers for functions which run on GPU are the following:

• The qualifier __global__ introduces a function (a kernel) which runs on GPU
(device) but is called from the host:
� �

__global__ void Kernel_name (...) {.....}
� �
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� �

...
__global__ void MatAdd (float *A, float *B, float * C, int N)

{
// Compute row index in A, B, and C
int j = blockIdx.x * blockDim.x + threadIdx.x;
// Compute column index in A, B, and C
int i = blockIdx.y * blockDim.y + threadIdx.y;
// Compute global 1D index in A, B, and C
int index=i*N+j;
// Thread computes C element if within valid range
if (i < N && j < N)

C[index] = A[index] + B[index];
}

int main()
{ .......
// Kernel Launch code
dim3 threadsPerBlock (16, 16);
dim3 numBlocks( ceil ((float)(N)/threadsPerBlock.x),

ceil ((float)(N)/threadsPerBlock.y) );
MatAdd <<<numBlocks, threadsPerBlock>>> (A, B, C, N);
}

� �

Listing 3 CUDA program to add matrices

Fig. 10 Transparent scalability for CUDA programs

• The qualifier __device__ introduces a function which runs on GPU and is
called from the GPU (device):
� �

__device__ int Function_name (...) {.....}
� �

These device functions are invoked in the kernel function.
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Fig. 11 Structure of a CUDA program

4.5 Memory Organization and Variable Declarations

As we introduced in Sect. 3.1, CUDA supports several types of memory. Each
memory type has usage constraints and can be used by programmers declaring
suitably the variables in the CUDA program. The adequate use of the available
memory types is very important to obtain a good performance in a kernel execution.
Each type of memory has different characteristics that we can denote by:

• Functionality: it is the intended use of the memory space.
• Size: it is measured in number of Kbytes.
• Average access speed: it indicates the global efficiency in accessing data which

are allocated in the particular memory space.
• Variable declaration: it specifies how we must declare the variables which are

resident in that memory space.
• Scope: it identifies the group of threads which can access a variable which is

resident in that memory space.
• Lifetime: it denotes the phase of the program execution where the variable

(resident in that memory space) is available for use.

Now we present the properties of the multiple memory spaces where CUDA
threads can access data during the execution of a CUDA program (see Fig. 12):

• Registers: This memory space is used to hold variables which are frequently
accessed by each thread in a kernel function. Each CUDA thread has its own
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Fig. 12 Memory organization in a CUDA program

private registers. The speed access to registers is extremely high. While the
capacity of the register storage is not exceeded, all scalar variables (not arrays)
declared (without qualifiers) in kernel and device functions are placed into
registers. The scope of these variables is the single owner thread (when the thread
finishes its execution, these variables are also terminated). The number of 32-bit
registers per thread and multiprocessors for several modern GPU architectures is
shown in Table 1.

• Local memory: Array variables declared (without qualifiers) in a kernel and
several scalar variables (also declared without qualifiers) which exceed the
limited capacity of the register storage are not stored in registers. These variables
have the same scope and lifetime as register variables but they are not stored into
the registers (they are usually stored in DRAM device memory). Therefore, the
speed access to local memory could be very low and this can generate long access
delays.

• Shared memory: Shared memory is part of the memory space which resides
on the processor chip. This implies that the access speed is also very high (in
comparison with the access to variables resident in global memory) but lower
than accessing directly to registers. The variables resident in shared memory
(shared memory variables) are accessible, to read and write, for all the threads
within the same block (the threads of the block share that space memory) and
only last for the thread block activity period. They provide an excellent means
by which threads within a block can communicate and collaborate efficiently on
computations.
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Table 1 CUDA Compute Capability of Fermi, Kepler and Maxwell GPUs

Fermi Fermi Kepler Kepler Maxwell
GF100 GF104 GK104 GK110 GM107

Compute capability 2.0 2.1 3.0 3.5 5.0

Threads/warp 32 32 32 32 32

Max warps/multiprocessor 48 48 64 64 64

Max threads/multiprocessor 1536 1536 2048 2048 2048

Max blocks/multiprocessor 8 8 16 16 16

32-bit registers/multiprocessor 32,768 32,768 65,536 65,536 65,536

Max numb. registers/thread 63 63 63 255 255

Max numb. threads/block 1024 1024 1024 1024 1024

Shared memory config. 16K 16K 16K 16K 16K

48K 48K 48K 48K 48K

32K 32K 32K

In order to declare a shared memory variable in a kernel or device function,
we use the qualifier __shared__. Hence, for example, the following code can
be used to declare a shared memory vector of 32 float values in a kernel code:
� �

__shared__ float vector[32];
� �

• Global memory: Variables in global memory can be written and read by the
host by calling API functions as we will see in Sect. 5.4. These variables are
located off the processor chip, into the so-called device DRAM memory (as the
local memory variables). Since the DRAM technology is used to implement this
memory, the speed access is much lower than in on-chip memories (registers and
shared memory).

The lifetime of a variable resident in global memory is the duration of
the entire CUDA application (it is shared and available for all kernels in the
application).

The __device__ qualifier is used to declare device variables which are
resident in global memory. These variables are accessible from all threads
through the entire CUDA application.
� �

__device__ float Global_A[32];
� �

Global memory variables can be used to implement the thread block collabo-
ration in a kernel call, but the main goal of these variables is providing a way to
communicate data between different CUDA grids associated to different kernel
calls (see Fig. 12).
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We can define pointers to global memory data in CUDA. Thus, the program-
mer can declare a pointer variable in a host function (for example, in the main
function) and then to use the function cudaMalloc to allocate global device
memory for that pointer. For example, to declare and allocate a pointer to a vector
of 1024 integers in global memory, we can write:
� �

int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );
� �

This pointer can be passed to a kernel function as a parameter. For example,
the parameters A, B and C of the kernels shown in Listings 1, 2 and 3 are samples
of this class of pointers. Listing 4 shows the declaration, allocation, usage in a
kernel and freeing of several pointers to global memory data.

� �

__global__ void VecAdd(float* A, float* B, float* C,int N){ ...
}

...
int main()
{ int N = ...; int size = N * sizeof(float);
float* h_A = (float*) malloc(size); float* h_B = (float*)

malloc(size);
float* h_C = (float*) malloc(size);
Initialize(h_A, h_B, N);
float* d_A; float* d_B;float* d_C; cudaMalloc((void**)&d_C,

size);
cudaMalloc((void**)&d_A, size); cudaMalloc((void**)&d_B, size);

// Step 1
cudaMemcpy (d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy (d_B, h_B, size, cudaMemcpyHostToDevice);

// Step 2
VecAdd <<<(ceil((float) N/BLOCKSIZE), BLOCKSIZE>>> (d_A, d_B,

d_C, N);

// Step 3
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

cudaFree(d_A);cudaFree(d_B); cudaFree(d_C);}
� �

Listing 4 CUDA program with host-device data transfers
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Fig. 13 Memory hierarchy
in modern CUDA-enabled
GPUs

• Constant memory: The constant variables are global variable declarations which
should be outside any function in the source file. The __constant__ qualifier
is used to declare device variables in constant memory. The following code
declares a constant vector of 64 float values:
� �

__constant__ float A[64];
� �

These variables are accessible from all threads in a CUDA application but only
to be read. They last for the entire CUDA application. These variables are also
stored in the device DRAM memory but they are cached (using a small cache
memory) and this makes it possible to obtain high speed access if the patterns to
read the data are suitable.

These variables are used to provide input values (they will not change during
the execution) to a kernel function.

It is important to note that in modern CUDA-enabled GPUs, there exists an on-
chip space memory that can be partially dedicated to cache memory for each kernel
call (see Fig. 13). This cache memory might reduce the global memory access cost
and avoids the explicit control of the programmer [17]. Moreover, the programmer
can specify the amount of memory which is allocated to L1 cache and shared
memory.

4.6 CUDA Thread Scheduling

Each active block resulting from a kernel launch is divided into warps to be executed
on the assigned multiprocessor. A warp is a group of 32 threads (see Table 1)
with consecutive indices (the thread ordering depends on ThreadIdx) that run
physically in parallel on a multiprocessor. All threads in a warp execute the same
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Fig. 14 Execution of a thread block by generating several warps

instruction of the kernel simultaneously, following the Single Instruction Multiple
Data (SIMD) execution model (Fig. 14).

When a block is assigned to a multiprocessor of the GPU, the block is split into
warps and periodically a scheduler of the multiprocessor switches from one warp to
another (without penalties). This allows to hide the high latency when accessing the
GPU device memory, since some threads can continue their execution while other
threads are waiting. Therefore, the definition of a high number of threads when
launching a kernel improves the efficiency in the kernel execution because makes it
possible to hide the latency.

The decomposition of a thread block into warps is based on thread indices (the
threadIdx field values). When only threadIdx.x is used (1D blocks), the
threads of a warp and its ordering are imposed by the values of threadIdx.x.
So, for example, for the CUDA program of Listing 2 (the block size is 256
threads), the arrangement of the threads would be (Ti denotes the thread with
threadIdx.x D i):

First warp: T0; : : : : : : ::; T31:

Second warp: T32; : : : : : : :; T63:
: : : : : : : : : : : : :: : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : :

Last warp (8th): T224; : : : : : : ; T255:

When the block size is not a multiple of 32, the last warp will be completed with
additional threads. For that reason it is usual to define a block size that is a multiple
of 32.
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For a 2D or 3D block, the dimensions are mapped to a linear 1D arrangement
in order to decompose the block into warps. This linear order is obtained by
advancing forward firstly the x-dimension, secondly the y-dimension and finally the
z-dimension. For instance, in Listing 3, where 2D 16�16 blocks are used, we would
have the following arrangement (Ti;j denotes the thread with threadIdx.x D i
and threadIdx.y D j):

First warp: T0;0; T1;0; : : : : : : :; T15;0; T0;1; T1;1; : : : : : : :; T15;1:

Second warp: T0;2; T1;2; : : : : : : :; T15;2; T0;3; T1;3; : : : : : : :; T15;3:
: : : : : : : : : : : : :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

: : : : : : : : : : : : :: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

Last warp (8th): T0;14; T1;14; : : : : : : :; T15;14; T0;15; T1;15; : : : : : : :; T15;15:

We can check that the mapping of threads to elements of the input and output
matrices in Listing 3 implies that the threads of a warp access to matrix elements
with are located contiguously in the global memory. This way of mapping threads
to data is very important to obtain a good performance because makes it possible to
take advantage of the on-chip cache for the global memory space which is available
in modern GPUs.

4.7 Block Thread Synchronization

Although there are no synchronization constraints between the CUDA blocks of a
kernel, CUDA provides a mechanism to coordinate the execution of the threads in
the same block, provoking a barrier-type synchronization. The following function
� �

void __syncthreads();
� �

can be used to synchronize all the threads in the same block of a kernel launch.
It establishes a synchronization barrier for all the threads in a block. When this
function is called in a particular point of a kernel function, all threads in each
generated block will wait until the rest of threads also reaches the same execution
point in the kernel.

It is used to prevent the threads from accessing variables before these have been
written by other threads, as will be seen later. This function should only be called in
a conditional code when the condition has the same evaluation for all threads in the
block.
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5 CUDA C/C++ Programming Interface

CUDA C/C++ is a minimal extension of C to define kernels as C++ functions. In
order to program with a high abstraction level in CUDA C, one must use the CUDA
runtime API [19], which provides functions to perform the following tasks:

• To query the properties of multiple devices.
• To allocate and free device memory.
• To transfer data between host memory and device memory.

The CUDA Runtime API requires the usage of the compiler driver nvcc.
It is also possible to develop CUDA programs using the CUDA driver API [18]

but it is harder to program with this interface.

5.1 Querying GPU Properties

The CUDA Runtime API provides functions to find out the available resources and
capabilities of the underlying GPU hardware. The CUDA runtime system numbers
all the available GPUs in the system from 0 to num_GPUs� 1.

The cudaGetDeviceCount function makes it possible to know the number
of available CUDA GPUs in a particular computer system. Thus, for instance, to
obtain the number of GPUs into an integer variable, we write:
� �

int num_GPUs;
cudaGetDeviceCount ( &num_GPUs );
� �

In order to know the characteristics of a particular GPU, CUDA Runtime API
provides the built-in type cudaDeviceProp which is a C structure with fields
representing different properties of a CUDA GPU. Using this type, the function
cudaGetDeviceProperties can be used to query the characteristics of a GPU
in the system. For example, this code piece:
� �

cudaDeviceProp GPU_prop; int dev_id=...;
cudaGetDeviceProperties ( &GPU_prop, dev_id);
� �

returns the properties of the GPU which has the number dev_id in the GPU_prop
variable. Some of the properties we can query in GPU_prop are:

• GPU_prop.totalGlobalMem: Global memory available on device in bytes.
• GPU_prop.sharedMemPerMultiprocessor: Shared memory available

per multiprocessor in bytes.
• GPU_prop.maxThreadsPerBlock: maximal number of threads allowed in

a block (512, 1024,. . . ).
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• GPU_prop.multiProcessorCount: number of multiprocessors.
• GPU_prop.maxThreadsDim[dim_id]: maximal number of threads

allowed along dimension dim_id of a block.
• dev_prop.maxGridSize [dim_id]: maximal number of blocks allowed

along dimension dim_id of a grid.
• dev_prop.warpSize: Number of threads in a warp (unit of thread schedul-

ing in multiprocessors).

The CUDA Compute Capability (CCC) indicates the architecture and features of
the particular GPU. It is defined by a major revision number and a minor revision
number X.X. Devices with the same major revision number denote the same core
architecture. Table 1 shows some features of modern GPU architectures (Fermi,
Kepler and first generation of Maxwell architecture) with different CCC.

5.2 Reporting Errors

All CUDA API calls return an error code (with built-in type cudaError_t). This
error can be caused by:

• Error in the API call itself. For example:
� �

cudaError_t err; err=cudaGetDevice(&devID);
if (err!=cudaSuccess) {cout<<"ERROR!!"<<endl;}

� �

• Error in an earlier asynchronous operation (for example in a kernel call):
� �

kernel<<<blocksPerGrid,threadsPerBlock >>>(a,b,c);
err = cudaGetLastError();
if (err != cudaSuccess) {...}

� �

We can get a string which describes the particular error by using the following
code piece:
� �

char *cudaGetErrorString(cudaError_t)
printf("%s\n", cudaGetErrorString(cudaGetLastError()));
� �
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5.3 Compiling CUDA Code

The CUDA compilation includes two stages [22]:

• Independent on GPU (Virtual): It generates a code written in a lower level
intermediate language called PTX code (Parallel Thread eXecution) [23].

• Physical: It generates object code for a particular GPU.

The CUDA Toolkit includes a compilation tool called nvcc, which is the
compiler driver. It performs the calls to the required compilers and tools: cudac, g++,
etc. This tool decouples CPU and GPU code. The CPU C code must be compiled
by another tool. PTX object code must be adapted to a particular GPU architecture
and CUDA Capability.

In order to execute code on devices of an specific CUDA Compute Capability, it
is necessary to load code that is compatible with this CCC. Which PTX and binary
code gets embedded in a CUDA C application is controlled by the -arch and
-code compiler options or, more concisely, by using the -gencode compiler option.

• -arch=<compute_xy>: it generates PTX code for capability x.y.
• -code=<sm\_xy>: it generate binary code for capability x.y, by default same

as -arch.

Example
� �

nvcc filename.cu -gencode arch=compute_35,
code=sm_35 -o filename

� �

This command generates binary and PTX code compatible with CCC 3.5.
Host code is generated to automatically select at runtime the most appropriate

code.
In order to ensure 64-bit or 32-bit compatibility, we can use the following

switches:

• m64: compile device code in 64-bit mode.
• m32: compile device code in 32-bit mode.

5.4 Device Memory Management

CPU and GPU have separated memory spaces. To enable the data management and
the communication, there are runtime functions to (Fig. 15):

• Allocate and free DRAM device global memory.
• Set a value in several positions of device global memory.
• Transfer data between global (device) memory and host memory.
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Fig. 15 Host-device memory transfer

We can use the function cudaMalloc to allocate memory device with the
following syntax:
� �

cudaMalloc(void ** pointer, size_t numbytes)
� �

The size_t type is an unsigned integer type used to represent the sizes of data
objects as a number of bytes.

We use cudaFree to free memory device:
� �

cudaFree(void* pointer)
� �

The function cudaMemsetmakes it possible to set a particular value in linear
device memory:
� �

cudaMemset(void * pointer, int value, size_t nbytes)
� �

Example Reset all elements of a vector with 1024 integers
� �

int numbytes = 1024*sizeof(int);
int *a_d;
cudaMalloc( (void**)&a_d, numbytes );
cudaMemset( a_d, 0, nbytes);

...

...
cudaFree(a_d); // Free a_d when it is not needed
� �
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The function CudaMemcpy is used to transfer data between global memory and
host memory:
� �

CudaMemcpy (void *dest, void *source, size_t nbytes,
enum cudaMemcpyKind direction);

� �

This function copies nbytes bytes from the memory area pointed to by source
to the memory area pointed to by dest, where the location (host or device) for
dest and source is given by direction:

• cudaMemcpyHostToDevice: From host to device.
• cudaMemcpyDeviceToHost: From device to host.
• cudaMemcpyDeviceToDevice: Between two global memory positions in

device.

The invocation of this function blocks the CPU thread and only returns when
the data copy has been completed. The data transfer does not begin if any previous
CUDA call have not returned.

The program in Listing 4 shows the CUDA calls which are necessary in order
to execute the vector addition kernel. After initializing vectors A and B (stored
in a memory area pointed to by h_A and h_B), the area for the input and output
vectors in device memory is allocated using cudaMalloc (pointers d_A, d_B and
d_C). Then input vectors are transferred to the memory area pointed to by d_A and
d_B before the kernel launch. After the kernel execution, the resultant value of C,
obtained in device global memory (pointed to by d_C), must be copied to the host
memory. Finally, the device memory area pointed to by d_A, d_B and d_C is freed.
Figure 16 illustrates the main steps of this program.

Fig. 16 Description of data transfers and kernel launch in a CUDA program
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5.5 CUDA Samples

To assist in the development of CUDA software, the CUDA Samples [20] provide
several examples with source code which can be useful to build a wide range of
interesting applications.

6 Solving the 1D Linear Advection Equation in CUDA

6.1 1D Linear Advection

The 1D advection equation [15] is the simplest hyperbolic equation and can be
written as:

@	

@t
C u

@	

@x
D 0; (1)

where 	 D 	.x; t/ is a real function with x 2 Œa; b� and t > 0. The scalar u 2 R

represents the speed at which information propagates along the x-direction and is
assumed to be constant. The initial state for this equation is specified as

	.x; 0/ D 	0.x/;

and we assume periodic boundary conditions.
We can verify that the exact solution for this equation is given by

	.x; t/ D 	0.x � ut/:

6.2 The Lax-Friedrichs Method

We discretize the spatial and time domain using uniform grids which consist of:

• nC 1 spatial grid points:

xi; i D 0; : : : ; n; where xi D aC i�x; with �x D b� a

n
:

• M time steps:

t1; t2; : : : ; tM with a constant�t; .tkC1 D tk C�t/:
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Now, we can define the Lax-Friedrichs finite difference scheme to approximate
the solution of equation (1) as follows (see [15]):

	kC1
i D 1

2

�
	k

i�1 C 	k
iC1 � C.	k

i�1 � 	k
iC1/

�
; (2)

C D u�t

�x
; i D 0; : : : ; n; k D 1; : : : ;M:

In the previous scheme 	.xi; tk/ denotes 	k
i .

The boundary conditions are imposed by defining:

	k�1 D 	k
n; 	k

nC1 D 	k
0:

This method is linearly stable and convergent under the usual CFL condition
provided jCj � 1 (see [15]).

6.3 A Sequential C Program to Implement the Method

Listing 5 shows a sequential C program to approximate the 1D linear advection
equation using the Lax-Friedrichs scheme on a uniform grid. As we can see, at each
time step, each data element of the output vector phi_new is computed from two
neighbouring input elements of vector phi. Figure 17 shows graphically the data
dependencies between the input and output vectors at each time step. Vector phi
includes elements at the edges to store the ghost values needed to perform the stencil
computation.

After each state vector update the pointers, phi and phi_new, must be swapped
(using the swap_pointers function), because the state vector computed in a time
step will be the previous state vector in the next time step.

6.4 A CUDA Linear Advection Solver

Since the calculation of all output elements of phi_new for a time step can be done
in parallel (see Listing 5), we can assign a different thread to the computation of each
element of phi_new at each time step. We will need to use at least nC 1 threads
and the body of each thread is given by a kernel function with four arguments:

• A pointer to array, d_phi, denoting the initial state vector (	k in Eq. (2)).
• A pointer to array, d_phi_new, denoting the new state vector 	kC1.
• An integer cu representing the value of the Courant number (cu D u�t

�x ).
• The integer value n, which denotes the value of n in Eq. (2).

The definition of this kernel function is given in Listing 6.
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� �

...
void swap_pointers(float * *a, float * *b)
{float * tmp=*a;*a=*b;*b=tmp;}

...
int main(int argc, char* argv[]){

// Define Delta x, Delta t and velocity (u)
int n= ... ;float dx = ...;float dt=..; float u=...
// Compute the Courant number
float cu = u*dt/dx;
//Declare the initial and final state vectors
float * phi =new float[n+3]; float * phi_new=new float[n+3];
..
Initialize(phi); // Set phi values at t=0
// Time steps
for(int k=1; k <= M; k++)
{// Impose Homogeneous Neumann Boundary Conditions
phi[index(-1)] =phi[index(n)];
phi[index(n+1)]=phi[index(0)];

//Lax-Friedrichs Update
for(int i=0;i<=n;i++)

phi_new[index(i)]=0.5*((phi[index(i+1)]+phi[index(i-1)])
-cu*(phi[index(i+1)]-phi[index(i-1)]));

swap_pointers (&phi,&phi_new);
}

...}
� �

Listing 5 Sequential C program which implements the Lax-Friedrichs scheme

Fig. 17 Two-point stencil of
the Lax-Friedrichs method

As can be seen in Listing 6, we follow a similar approach as the vector addition
kernel (see Listing 2). All threads read two elements of the same input vector except
for two threads which read an additional element to impose the boundary conditions.
The work of threads which are not assigned to elements of d_phi_new is avoided
(threads verifying that i � nC2). The same threads which have computed the values
close to the edges of d_phi_new (positions 1 and n+1) impose the boundary
conditions by assigning values on the edges of d_phi_new.
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� �

__global__ void FD_kernel1(float * d_phi,
float * d_phi_new,

float cu, int n)

{int i=threadIdx.x+blockDim.x*blockIdx.x+1;

// Lax-Friedichs Stencil
if (i<n+2)
d_phi_new[i]=0.5*((d_phi[i+1]+d_phi[i-1])

-cu*(d_phi[i+1]-d_phi[i-1]));

// Impose Boundary Conditions
if (i==1) d_phi_new[0]=d_phi_new[n+1];
if (i==n+1) d_phi_new[n+2]=d_phi_new[1];}

� �

Listing 6 CUDA kernel to apply the Lax-Friedrichs method stencil

Listing 7 shows a CUDA C program to implement the Lax-Friedrichs scheme
using the previously introduced kernel (FD_kernel1). Before launching
the kernel, the memory of the input and output state vectors (d_phi and
d_phi_new) must be allocated on the device using calls to cudaMalloc().
Using cudaMemcpy(), the initial values of the state vector (computed by calling
a initialization function) are copied to the device memory. Then, at each time step,
we launch the FD_kernel from the host code by using blocks of 256 threads.
After each kernel launch the memory device pointers, d_phi and d_phi_new,
must be swapped. Finally, when the time integration loop has finished, the final
state vector is copied from device memory to the host memory.

6.5 A Tiled CUDA Advection Solver

In the kernel of Listing 6, the ratio of floating-point calculations regarding with the
global memory accesses is low. This prevents us from achieving high performance.
One approach that could improve the performance consists of managing the shared
memory which is much faster than global memory. This involves to replace global
memory accesses with shared memory accesses (into each block). This approach
frequently involves a reorganization of the code to enable the reuse of data which
are placed in shared memory.

The typical approach to use shared memory in order to reduce the traffic to global
memory consists of two steps:

1. The input data elements are organized in small pieces, called tiles.
2. Threads of a thread block collaborate to load a tile into shared memory before

the threads use these elements.
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� �

#define BLOCKSIZE 256

... //FD_kernel function definition

int main(int argc, char* argv[]){
int size=(n+3)*sizeof(float);
float * d_phi=NULL; float * d_phi_new=NULL;
cudaMalloc((void **) &d_phi, size);
cudaMalloc((void **) &d_phi_new, size);

Initialize(phi); // Set phi values at t=0

cudaMemcpy(d_phi,phi,size,cudaMemcpyHostToDevice);
// Time Steps
for(int k=1; k <= M ;k++)
{

int blocksPerGrid =(int) ceil((float)(n+1)/BLOCKSIZE);

// ********* CUDA Kernel Launch

************************************
FD_kernel1<<<blocksPerGrid, BLOCKSIZE >>> (d_phi, d_phi_new,

cu, n);

swap_pointers (&d_phi,&d_phi_new);
}

cudaMemcpy(phi_GPU, d_phi, size, cudaMemcpyDeviceToHost);
...

}
� �

Listing 7 CUDA program to implement the Lax-Friedrichs method

3. Once the threads of the same block have loaded its corresponding tile, they re-use
the elements by accessing the shared memory.

In these so-called tiled algorithms [13], the size of the tiles must be chosen to fit
into the shared memory (which is quite small).

In order to apply this approach to the Lax-Friedrichs kernel of Listing 6, we can
load all input elements of d_phi, which are needed to compute all output elements
of d_phi_new for a thread block, into the shared memory. The number of elements
to be loaded must be equal to BLOCKSIZE C 2 because we need two additional
elements at the edges to compute BLOCKSIZE elements of d_phi_new. Listing 8
shows the tiled kernel which implements this computation.
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� �

__global__ void FD_kernel2 (float * d_phi, float * d_phi_new,
float cu, const int n)

{
int li=threadIdx.x+1; //local index in shared memory vector
int gi= blockDim.x*blockIdx.x+threadIdx.x+1; // global

memory index
int lstart=0; // start index in the block (left value)
int lend=BLOCKSIZE+1; // end index in the block (right value

)

__shared__ float s_phi[BLOCKSIZE + 2]; //shared mem. vector

float result;

// Load internal points of the tile in shared memory
if (gi<n+2) s_phi[li] = d_phi[gi];

// Load the halo points of the tile in shared memory
if (threadIdx.x == 0) // First Thread (in the current block)

s_phi[lstart]=d_phi[gi-1];

if (threadIdx.x == BLOCKSIZE-1) // Last Thread
if (gi>=n+1) // Last Block

s_phi[(n+2)%BLOCKSIZE]=d_phi[n+2];
else

s_phi[lend]=d_phi[gi+1];

__syncthreads();

if (gi<n+2)
{
// Lax-Friedrichs Update
result=0.5*((s_phi[li+1]+s_phi[li-1])

-cu*(s_phi[li+1]-s_phi[li-1]));
d_phi_new[gi]=result;

}

// Impose Boundary Conditions
if (gi==1) d_phi_new[0]=d_phi_new[n+1];
if (gi==n+1) d_phi_new[n+2]=d_phi_new[1];

}
� �

Listing 8 Lax-Friedrichs CUDA kernel using shared memory
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Fig. 18 Loading the tile in shared memory: (a) Loading internal points; (b) Loading the halo
points

Initially, a shared memory array with BLOCKSIZE C 2 elements, s_phi, is
declared to hold all elements to be loaded in order to compute the corresponding
BLOCKSIZE elements of d_phi_new. Then the tile is loaded in shared memory
in two phases (see Fig. 18):

(a) All threads in the block load in parallel the internal elements of the input tile
(without taking into account the elements on the edges).

(b) The first and last threads in the block load the elements at the edges of the tile
(the halo elements).

After loading the tile in shared memory, it is necessary to make sure that all
threads in a block have finalized the load before using the tile to compute the output
data elements. This is done by invoking the function __syncthreads() .

When the tile is completely loaded for the particular thread block, we can
compute the output BLOCKSIZE elements of d_phi_new reading only elements
of s_phi.

Finally, the boundary conditions are imposed in a similar way as in Listing 6.
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