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Abstract We present here an extension to the case of general cross sections of the
lower bound obtained in Desvillettes (J Funct Anal 269:1359–1403, 2015, [14]) on
the entropy dissipation of Landau’s collision kernel (in the case of soft potentials,
including the Coulomb potential). We also simplify somewhat the proof of the lower
bound proposed in Desvillettes (J Funct Anal 269:1359–1403, 2015, [14]).
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1 Introduction and Main Result

1.1 Description of the Landau Operator and Equation

We are concerned here with the Landau operator appearing in plasma theory
(cf. [11, 21]), defined by

Qψ( f, f )(v) = ∇v ·
{∫

R3
aψ(v − w)

(
f (w)∇ f (v) − f (v)∇ f (w)

)
dw

}
. (1)

Here, aψ := aψ(z) := (aψ
i j (z))i j (z ∈ R

3) is a (nonnegative symmetric) matrix-
valued function with only one degenerate direction, namely that of z. More precisely,

aψ
i j (z) = Πi j (z)ψ(|z|), (2)

L. Desvillettes (B)
Institut de Mathématiques de Jussieu - Paris Rive Gauche,
UMR 7586, CNRS, Université Paris Diderot, Sorbonne Paris Cité,
F-75013 Paris, France
e-mail: desvillettes@math.univ-paris-diderot.fr

© Springer International Publishing Switzerland 2016
P. Gonçalves and A.J. Soares (eds.), From Particle Systems to Partial
Differential Equations III, Springer Proceedings in Mathematics & Statistics 162,
DOI 10.1007/978-3-319-32144-8_6

121



122 L. Desvillettes

where ψ is a (scalar valued) nonnegative function, and

Πi j (z) = δi j − zi z j
|z|2 (3)

is the i, j-component of the orthogonal projection Π onto z⊥ := {y / y · z = 0}.
We observe that at the formal level (that is, when both f and ϕ are smooth

functions having a reasonable behavior at infinity), the (symmetric) weak version of
the Landau operator can be defined by the following formula:

∫
R3

Qψ( f, f )(v)ϕ(v) dv (4)

= −1

2

∫∫
R3×R3

f (v) f (w) aψ(v − w)
(∇ f

f
(v) − ∇ f

f
(w)

)

(
∇ϕ(v) − ∇ϕ(w)

)
dvdw,

where the symmetric matrix aψ acts as a bilinear form on two vectors.
Using the test functions ϕ(v) = 1, vi (for i = 1, . . . , 3), |v|2

2 , we see that (still
at the formal level), the Landau operator conserves mass, momentum and kinetic
energy, that is: ∫

R3
Q( f, f )(v)

⎛
⎝ 1

vi
|v|2/2

⎞
⎠ dv = 0. (5)

We also get (once again at the formal level) the formula for the entropy dis-
sipation Dψ := Dψ( f ) (defined on functions f from R

3 to R+) by considering
ϕ(v) = ln f (v):

Dψ( f ) := −
∫
R3

Qψ( f, f )(v) ln f (v) dv (6)

= 1

2

∫∫
R3×R3

f (v) f (w)ψ(|v − w|)Π(v − w)

(∇ f

f
(v) − ∇ f

f
(w)

)

(∇ f

f
(v) − ∇ f

f
(w)

)
dvdw ≥ 0.

The most physically relevant function ψ appearing in operator (1), (2) is ψ(z) =
|z|−1. It corresponds to the case when f is the density of charged particles (moving
according to Coulomb interaction) in a plasma, cf. [21]. It also naturally appears
in the so-called weak coupling asymptotics of Boltzmann equation (cf. [6] and the
older reference [7]).
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It is however also interesting, at least from themathematical viewpoint, to consider
more general functions ψ. We refer for example to [13] to see how the Landau kernel
with arbitrary ψ can be obtained from the Boltzmann kernel (with arbitrary cross
section) through a scaling involving the concept of grazing collisions.

We shall use in this paper the terminology of [14], which is very close to that
of [26]. When the dimension of the space is N = 3 (we shall always make that
assumption in the sequel), if ψ is given by a power law, we say that

ψ(|z|) = |z|γ+2 (7)

is coming out of hard potentials when γ ∈]0, 1], Maxwell molecules when γ = 0,
moderately soft potentials when γ ∈ [−2, 0], and very soft potentials when γ ∈
] − 4,−2[. We also shall call general soft potentials the case γ < 0 (that is, γ can
be smaller than −4), and general hard potentials the case γ ∈]0, 2[ (that is, γ can
be larger than 1). Note that the Coulomb case falls within the category of very soft
potentials.

We now introduce the spatially homogeneous Landau equation

∂t f (t, v) = Qψ( f (t, ·), f (t, ·)). (8)

with initial data
f (0, v) = fin(v). (9)

As a consequence of formula (5), the solutions of the Landau equation (8), (9) satisfy
(at least formally) the conservation of mass, momentum and energy, that is

∫
R3

f (t, v)

⎛
⎝ 1

vi
|v|2/2

⎞
⎠ dv =

∫
R3

fin(v)

⎛
⎝ 1

vi
|v|2/2

⎞
⎠ dv. (10)

They also satisfy (at the formal level) the entropy identity (first part of Boltzmann’s
H-theorem)

d

dt
H( f (t, ·)) = −Dψ( f (t, ·)) ≤ 0, (11)

where H := H( f ) is the entropy functional (defined on functions from R
3 to R+):

H( f ) :=
∫
R3

f (v) ln f (v) dv, (12)

and Dψ is the entropy dissipation functional defined in (6).
As stated in detail in [14], identities (10) and (11) naturally furnish an a priori

estimate (when the initial data have a finite mass, energy and entropy): indeed
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sup
t∈[0,T ]

∫
v∈R3

f (t, v)

(
1 + |v|2

2
+ | ln f (t, v)|

)
dv (13)

+
∫ T

0
Dψ( f (t, ·)) dt ≤ C(T,Min),

where the constant C(T,Min) only depends on T and

Min =
∫
v∈R3

fin(v)

(
1 + |v|2

2
+ | ln( fin(v))|

)
dv.

As a consequence (remembering that Dψ( f ) is a nonnegative quantity), any (non-
negative) lower bound of Dψ( f ) will naturally yield an a priori estimate for the
solutions of the Landau equation (when the initial data have a finite mass, energy
and entropy).

One of the first such lower bounds appeared in [17] in the case when ψ is a
so-called “overMaxwellian” cross section, that is ψ(z) ≥ c0 |z|2, for some c0. The
context there was the study of the large time behavior of the Landau equation, and
the lower bound was the relative Fisher information of f .

This result was substantially improved in [14], in order to include soft potentials
including the Coulomb potential, but with the (non relative) Fisher information as a
lower bound. An estimate of the same type but involving the relative Fisher informa-
tion will be provided in a paper in preparation, cf. [10], and is related to Cercignani’s
conjecture (cf. [15] and the references therein).

In the sequel, we denote by L1
p(R

3) the set of functions which have a moment of
order p, that is f (1 + |v|p) in L1(R3), and by L ln L the set of functions such that
f ln f is in L1(R3).
The main theorem of [14] writes (in dimension 3 here, cf. [14] for the same result

in higher dimension).

Theorem 1 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3), be such that

∫
f | ln

f | dv ≤ H̄ , for some H̄ > 0. Let ψ satisfy

∀z ∈ R
3, ψ(z) ≥ c0 inf(1, |z|γ1+2),

for some c0 > 0 and γ1 ≤ 0.
Then, there exists a constant C := C(

∫
f dv,

∫
f v dv,

∫
f |v|2/2 dv, H̄ ,

γ1, c0) > 0 which (explicitly) depends only on the mass, momentum, energy, (an
upper bound of the) entropy and the parameters of the lower bound on ψ (that is, γ1
and c0), such that

∫
R3

|∇√ f (v)|2 (1 + |v|2)inf(γ1/2,−1) dv ≤ C (1 + Dψ( f )),

where Dψ( f ) is defined in (6).
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The inequality in this theorem is an entropy dissipation estimate which enables
to control a weighted H 1(R3) norm of

√
f (that is, a weighted Fisher information)

by the Landau entropy dissipation Dψ of the Landau operator.
It is related to some other results linking smoothness to the dissipation of a Lya-

pounov (entropy) functional. In the case of the Boltzmann equation without cutoff,
such estimates were proven in [1–4, 18–20, 22, 25] (cf. also the older attempts, more
related to the large time behavior of the equation than to the issue of smoothness) in
[8, 9, 12], and used for example in [5] (formula (70) p. 30, Lemma 13, p. 35, and
Remark p. 36).

This theorem can be seen as a mixture of the estimates proven in [2], where the
Boltzmann equation with general cross sections is considered, but where the large
velocities are not part of the estimate, and the estimates proven in [17], in which
the large velocities are treated, but only the Landau operator with overMaxwellian
molecules is considered. It is also related to the Remark p. 36 in [5].

An important feature of Theorem1 is the fact that the constant C appearing in
the estimate only depends on quantities which are known to be controlled in the
evolution of the spatially homogeneous Landau equation (8), (9), provided that they
are initially finite (namely, themass, momentum and (an upper bound of the) entropy,
cf. the a priori estimate (13)). This feature ensures that applying Theorem1 to the
solution at time t of this equation (and with such initial data), we end up with a new
a priori estimate for its solutions. In this way, it was possible to improve in [14]
the existence theory for the Landau equation with very soft potentials (including
the Coulomb case) as well as to recover recent results obtained on moderately soft
potentials by Wu (cf. [26]).

Our goal in this work is to establish an extension of Theorem1 to the case of
more general cross sections ψ (that is which are not moderately soft potentials or
very soft potentials like in [14], and not of Maxwell molecules type like in [17]). We
indeed would like to be able to treat general soft potentials, that is ψ which decay at
infinity like a negative power law (more precisely, cross sections ψ which are such
that ψ(z) ∼ |z|γ+2 when z → 0, for γ < 0), or even ψ which decay very quickly at
infinity (like a negative exponential of a power law, or even a negative exponential of
an exponential of a power law). We would also like to be able to treat cross sections
ψ which are such that ψ(z) ∼ |z|γ+2 when z → 0, for γ ∈]0, 2[, that is, general hard
potentials.

Though those extensions have no direct applications to physics, they enable to
understand the proof of Theorem1more deeply than in [14] (especially the treatment
of the determinant appearing in the denominator ofCramer’s formula, see below), and
provide the occasion of computing explicitly bounds for the constants appearing in
the estimates of Dψ( f ) (something that was done in [14] only for radially symmetric
functions f ).

We propose first an abstract (functional) result, which holds for any cross section
ψ ≥ 0, and will then be used in order to provide estimates for specific cases of ψ.
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Theorem 2 Let f := f (v) ≥ 0, M := M(v) ≥ 0, and φ := φ(|v|2/2) ≥ 0 be func-
tions such that the right-hand side of inequality (14) below is finite.

Then

∫
R3

|∇√ f (v)|2 M(v) dv ≤ 3Δφ( f )
−2

(∫
R3

φ(|w|2/2) f (w) < w >2 dw

)4

(14)

×
{
12

[ ∫
R3

f (v) < v >2 M(v) dv

] [
3

(∫
R3

f (w) < w > φ(|w|2/2) dw
)2

+ 8

(∫
R3

f (w) < w >2 |φ′(|w|2/2)| dw
)2 ]

+ 24 Dψ( f ) sup
v∈R3

M(v)

(∫
R3

f (w)φ2(|w|2/2) |v − w|2
ψ(|v − w|) < w >2 dw

)}
,

where (here and in all the rest of the paper) < v >= (1 + |v|2)1/2, and

Δφ( f ) := Det

(∫
R3

f (w)φ(|w|2/2)
⎡
⎣ 1 wi w j

wi w2
i wi w j

w j wi w j w2
j

⎤
⎦ dw

)
.

This functional estimate leads to the following corollary, which still holds for
any cross section ψ ≥ 0, but can in practice be used only when z → ψ(z)/|z|2 is
bounded below by a strictly positive constant on each bounded set of R3 (typically,
for general soft potentials, but not (general or not) hard potentials).

Corollary 2.1 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3) and such that

Dψ( f ) is finite. We also suppose that M := M(v) ≥ 0 is bounded, and that φ ≥ 0 is
C1, bounded, with φ′ also bounded.

Then ∫
R3

|∇√ f (v)|2 M(v) dv ≤ 72Δφ( f )
−2 ||φ||4∞ E 5

f (15)

×
[
||M ||∞

(
3

2
||φ||2∞ + 4 ||φ′||2∞

)
E 2

f + β Dψ( f )

]
,

where (here and in all the rest of the paper)

E f :=
∫
R3

f (v) (1 + |v|2) dv,
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and β > 0 is any number such that

∀v,w ∈ R
3, M(v)φ2(|w|2/2) ≤ β

ψ(|v − w|)
|v − w|2 . (16)

Note also that in this result and its corollaries below (Corollaries2.2, 2.3 and 2.4),
up to the quantity Δφ( f ) which will be discussed later, the only dependence of the
constants w.r.t. f is that of E f , that is, a dependence through quantities which are
constant in the evolution of the spatially homogeneous Landau equation (8), (9).

This estimate leads in turn to a family of corollaries (Corollaries2.2, 2.3 and 2.4),
which hold for functions ψ satisfying various lower bounds.

We start with the case when ψ satisfies a lower bound corresponding to a nonpos-
itive power law including general soft potentials.

Corollary 2.2 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3), and ψ satisfying

the lower bound ψ(z) ≥ c0 |z|2+γ for some c0 > 0, γ ≤ 0. We assume that Dψ( f ) is
finite.

Then ∫
R3

|∇√ f (v)|2 < v >γ dv ≤ 72Δφ( f )
−2 E 5

f (17)

×
[
(
3

2
+ |γ|2)E 2

f + c−1
0 2sup(0,|γ|−1)+sup(2−|γ|,0) Dψ( f )

]
,

and
φ(z) = (1 + 2z)γ/4.

Note that Corollary2.2 (together with Proposition4 below) gives a completely
explicit estimate in Theorem1 of [14]. Our feeling is that the exponent γ in the
weight appearing in estimate (17) is optimal. This result (like those of Corollar-
ies2.3 and 2.4 below), together with the bound appearing in Proposition4 onΔφ( f ),
enables the building of an existence theory of standard weak solutions (that is, the
concept of H-solutions appearing in [24] is not needed here) for the related spatially
homogeneous Landau equations, provided that ψ has no too strong singularities (for
example singularities at point 0 strictly weaker than ψ(z) ∼ |z|−2 can be handled).
We refer to [14] for that kind of applications to the spatially homogeneous Landau
equation.

Next we turn to the case when ψ can decay much more rapidly at infinity, namely
like an exponential of a power.

Corollary 2.3 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3), and ψ satisfying

the lower bound: ψ(z)
|z|2 ≥ c0 e−c1 |v|δ , for some c0, c1, δ > 0. We assume that Dψ( f ) is

finite.
Then ∫

R3
|∇√ f (v)|2 e−c̃1 |v|δ dv ≤ 72Δφ( f )

−2 e−2c̃1 (18)
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×E 5
f

([
3

2
e−c̃1 + sup

(
4, 4 (c̃1 δ)2−4/δ (2 δ − 2)4/δ e−2+2/δ

) ]
E 2

f + c−1
0 Dψ( f )

)
,

and
φ(z) = e− c̃1

2 (1+2z)δ , c̃1 = c1 2
sup(0,δ−1).

In estimate (18), it is not clear whether the weight e−c1 2sup(δ−1,0) |v|δ is optimal. We
believe however that the optimal weight, if it exists, should be of the same general
shape (that is, an exponential of a power δ), or close to such a shape.

Finally we turn to the case whenψ can decay evenmore rapidly at infinity, namely
like an exponential of an exponential of a power. For this extreme situation, rather
than giving a result concerning all possible decays,we focus on a special case, namely
when ψ(z) ≥ e− e|z|

, for which it is possible to write a quite simple estimate.

Corollary 2.4 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3), and ψ satisfying

the lower bound: ψ(z)
|z|2 ≥ exp (−e|z|). We assume that Dψ( f ) is finite.

Then

∫
R3

|∇√ f (v)|2 e−3 e3 |v|
dv ≤ 72Δφ( f )−2 E 5

f e
−9

(
e−3

(
3

2
e−3 + 81

)
E 2
f + 3 Dψ( f )

)
,

(19)

and

φ(z) = exp(−3

2
e3

√
2z).

As in the previous corollary, one can observe that the weight appearing in the
Fisher information is different from the cross section z → �(|z|)

|z|2 , it is also not optimal.
We then consider the case of cross sections which are not strictly positive at

point 0, so that Corollary2.1 cannot be used, andwe have to come back to Theorem2.
We propose first the following result, which enables to treat as a special case hard
potentials.

Corollary 2.5 Let f := f (v) ≥ 0, belonging to L1
2 ∩ L ln L(R3), and ψ satisfying

the following lower bound: ψ(z) ≥ c0 inf(|z|2, |z|γ+2), with c0 > 0 and γ ∈]0, 3[.
We assume that Dψ( f ) is finite.

Then ∫
R3

|∇√ f (v)|2 dv ≤ 3Δφ( f )
−2 E 4

f

{
132 E 3

f (20)

+ 24 c−1
0 Dψ( f )

(
E f +

(
4π (p − 1)

3 (p − 1) − γ p)

)1−1/p

|| f ||L p

)}
,

for all p > 3
3−γ

, and

φ(z) = (1 + 2z)−1/2.
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In Corollary2.5, we made no effort to obtain a better weight (than 1) in the r.h.s.
of estimate (20). We will discuss this issue in Corollary2.7. Note also that an L p

(with p > 1) norm of f appears in the constants of the estimate. Such a quantity is
not constant in the evolution of the Landau equation, but is sometimes propagated
(or even created), cf. for example [16].

When γ is not too large (that is, for general hard potentials, i.-e. γ < 2), it is
possible to use a Sobolev estimate and an interpolation inequality, in order to get rid
of the L p norm in the result above. The price to pay is the appearance of an exponent
larger than 1 for the entropy dissipation D( f ) appearing in the estimate.

Corollary 2.6 Let f := f (v) ≥ 0, belong to L1
2 ∩ L ln L(R3), and ψ satisfying the

following lower bound: ψ(z) ≥ c0 inf(|z|2, |z|γ+2), with c0 > 0 and γ ∈]0, 2[. We
assume that Dψ( f ) is finite.

Then for any p ∈] 3
3−γ

, 3[,
∫
R3

|∇√ f (v)|2 dv ≤ 792Δφ( f )
−2 E 7

f + 144Δφ( f )
−2 E 5

f c
−1
0 Dψ( f ) (21)

+1441/(1−θ) (1 − θ) θθ/(1−θ)

(
4π (p − 1)

3 (p − 1) − γ p)

) 1−1/p
1−θ

c−1/(1−θ)
0 Cθ/(1−θ)

s E 1+4/(1−θ)
f

×Δφ( f )
−2/(1−θ) Dψ( f )1/(1−θ),

where θ := 3 (p−1)
2p , and Cs is the constant appearing in a Sobolev estimate (cf. proof

of Corollary2.6).

This result, together with the bound appearing in Proposition4 onΔφ( f ), enables
to obtain a new a priori estimate for the solutions f (t, v) of the Landau equation
with (general) hard potentials, when the initial data have a finite mass, energy and

entropy. It gives indeed a bound for

(∫ |∇v
√

f (t, v)|2dv
)1−θ

in L1([0, T ]) for all
T > 0. This result, related to the regularization effect of the Landau equation, is to
be compared with the results of the same kind obtained in [16]. There, much more
informations on the smoothness of the solution are provided, but only under extra
assumptions on the initial data (and on the cross section ψ).

The interpolation procedure used here is reminiscent of those used in [17], or, in
the context of the Boltzmann equation, in [23].

If we now suppose that ψ is growing at infinity at least as fast as | · |γ+2 (like in
general hard potentials), then we can get a slightly better estimate than (20), in which
the weight < · >γ appears. Namely we obtain the

Corollary 2.7 Let f := f (v) ≥ 0, belong to L1
2 ∩ L ln L(R3), and ψ satisfying the

following lower bound: ψ(z) ≥ c0 |z|γ+2, with c0 > 0 and γ ∈]0, 3[. We assume that
Dψ( f ) is finite.



130 L. Desvillettes

Then
∫
R3

|∇√ f (v)|2 < v >γ dv ≤ 36Δφ( f )−2 E 4
f

{(
3 + 8

(γ

2
+ 1

)2)
E 2
f

∫
R3

f (w) < w >2+γ dw

(22)

+ 24 c−1
0 Dψ( f )

(
[2 3

2 γ + 2γ]E f + 3γ/2

(
4π (p − 1)

(3 − γ) p − 3)

)1−1/p

|| f ||L p

)}
,

where p > 3
3−γ

, and

φ(z) = (1 + 2z)−
γ
4 − 1

2 .

Note that in this result, themoment
∫

f (w) < w >2+γ dw appears in the estimate
(as well as || f ||L p , which already appeared in estimate (20)). This moment is not
constant in the evolution of the spatially homogeneousLandau equation (with general
hard potentials). It is however sometimes propagated, or even created (cf. [16]).

We now complete the estimates appearing in Corollaries2.1–2.7 by a lower bound
on Δφ( f ). We start with a proposition showing that Δφ( f ) is somehow bounded
below by a quantity which can be equal to 0 only when f is concentrated on a
hyperplane (provided that φ > 0 a.e.).

Proposition 3 Let f := f (v) ≥ 0 belong to L1
2(R

3).
Then, for all i, j ∈ {1, 2, 3} such that i �= j , and ε > 0, R > 0,

Δφ( f ) := Det

⎛
⎝∫

R3
φ(|v|2/2) f (v)

⎡
⎣ 1 vi v j
vi v2i vi v j
v j vi v j v2j

⎤
⎦ dv

⎞
⎠

≥ ε6 inf
B(0,R)

φ

( | · |2
2

)3 (∫
B(0,R)

f (v) dv (23)

− sup
λ2+μ2+ν2=1

∫
B(0,R)

f (v) 1{|λ+μ vi+ν v j |≤ε} dv
)3

.

With this result in mind, any estimate on f which prevents concentration on
zero-measure sets or at infinity can now be used to bound Δφ( f ) from below. Con-
centration on large velocities will be prevented by using the energy of f (remember
that this quantity is constant during the evolution of Landau’s equation). Concentra-
tion on zero-measure sets can be achieved (with efficiency from the point of view
of numerical constants) if one uses some L p estimate for f (cf. [17]). Though L p

regularity is known to be propagated (or even created) in some cases for the spatially
homogeneous Landau equation, we however prefer to use L ln L regularity, which
is much less efficient (from the point of view of numerical constants), but which can
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be obtained for all solutions of the spatially homogeneous Landau equation, as soon
as the initial mass, energy and entropy are finite.

We provide therefore the following estimate:

Proposition 4 Let f := f (v) ≥ 0 belong to L1
2(R

3), and assume that H( f ) ≤ H̄ .
Then, for all i, j ∈ {1, 2, 3} such that i �= j , we have the estimate

Δφ( f ) ≥
(
1

4

∫
f (v) dv

)3

inf
B(0,sup(1,2 (

∫
f (v) v2 dv/

∫
f (v) dv)1/2))

φ

( | · |2
2

)3

(24)

× inf

[
2−6, 2−42

(∫
f (v) dv

)6
e−24H̄ (

∫
f (v) dv)

−1
sup

(
1, 2−18

( ∫
f (v) dv∫

f (v) v2 dv

)9 )]
.

As can be seen, this estimate can be used (together with Corollaries 2.1–2.6) in
order to yield a priori estimates for the solutions of the spatially homogeneousLandau
equation, since it involves (when φ is strictly positive a.e.) only the mass, energy and
(an upper bound of the) entropy of f , all quantities which are known to be controlled
for those solutions.

We now briefly explain what are the possible extensions of the results presented
in this section.

We first observe that for cross sections ψ which are bounded below (by a strictly
positive constant) on all bounded subsets, it is most probably possible to extend the
results stated in Corollaries2.2, 2.3 and 2.4 to some ψ which are decaying at infinity
even more rapidly than an exponential of exponential. Our feeling is that the more ψ
rapidly decays at infinity, the less optimal the final weight appearing in the estimate
of the entropy dissipation will be, if one uses Corollary2.1. It becomes indeed more
and more difficult to bound from below a function of v − w by a tensor product (that
is, a function of v multiplied by a function of w) when this function tends quickly
towards 0 at infinity.

One can also dealwith functionsψwhich havemore than one point of cancellation,
at least if those points constitute a finite set, and if the cancellation at each point is
not stronger than |z − z0|q , with q < 3. As in Corollary2.5, some L p norm of f will
then appear in the estimate of the entropy dissipation, which can be dealt with as in
Corollary2.6 if q < 2.

Finally, one can in principle deal with functions ψ which both cancel at a finite
number of points, and which have a specific behavior at infinity. When ψ is growing
at infinity more than z → |z|2, we can get results analogous to Corollary2.7, while
if z → ψ(z)/|z|2 is decaying at infinity, one can get an estimate in which some
(decaying) weight appears, and where some L p norm of f also appears (that is,
some mixture of Corollaries2.2, 2.3 and 2.4 with Corollary2.5).

All the results presented in Sect. 1 are proven in Sect. 2.
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2 Proofs of the Theorems

We begin with the

Proof of Theorem 2: We start as in the proof of the corresponding theorem in [14].
We first observe that (for all x, y ∈ R

3)

yT (|x |2 I d − x ⊗ x) y = 1

2

∑
i, j∈{1,2,3}

|xi y j − x j yi |2,

so that

Dψ( f ) = 1

4

∑
i, j∈{1,2,3}

∫ ∫
R3×R3

f (v) f (w)
ψ(|v − w|)
|v − w|2

∣∣∣q f
i j (v,w)

∣∣∣2 dvdw,

where (for i, j ∈ {1, 2, 3}, i �= j),

q f
i j (v,w) := (vi − wi )

(
∂ j f (v)

f (v)
− ∂ j f (w)

f (w)

)
− (v j − wj )

(
∂i f (v)

f (v)
− ∂i f (w)

f (w)

)

=
[
vi

∂ j f (v)

f (v)
− v j

∂i f (v)

f (v)

]
+ wj

∂i f (v)

f (v)
− wi

∂ j f (v)

f (v)

−vi
∂ j f (w)

f (w)
+ v j

∂i f (w)

f (w)
+
[
wi

∂ j f (w)

f (w)
− wj

∂i f (w)

f (w)

]
.

Then, instead of usingw → χ(w) e−λw2
f (w), whereχ is a polynomial of degree 1

as in [14], we use the functions w → χ(w)φ(|w|2/2), where φ is a generic radially
symmetric function. Picking i, j ∈ {1, 2, 3}, i �= j , we see that for χ(w) = 1,

∫
R3

q f
i j (v,w) φ(|w|2/2) f (w) dw =

[
vi

∂ j f (v)

f (v)
− v j

∂i f (v)

f (v)

](∫
R3

φ(|w|2/2) f (w) dw

)

+
(∫

R3
wj φ(|w|2/2) f (w) dw

)
∂i f (v)

f (v)
−
(∫

R3
wi φ(|w|2/2) f (w) dw

)
∂ j f (v)

f (v)

+ vi

(∫
R3

wj φ
′(|w|2/2) f (w) dw

)
− v j

(∫
R3

wi φ
′(|w|2/2) f (w) dw

)
.

Then, for χ(w) = wi ,

∫
R3

q f
i j (v,w)wi φ(|w|2/2) f (w) dw =

[
vi

∂ j f (v)

f (v)
− v j

∂i f (v)

f (v)

](∫
R3

wi φ(|w|2/2) f (w) dw

)
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+
(∫

R3
wj wi φ(|w|2/2) f (w) dw

)
∂i f (v)

f (v)
−
(∫

R3
w2
i φ(|w|2/2) f (w) dw

)
∂ j f (v)

f (v)

+ vi

(∫
R3

wi w j φ
′(|w|2/2) f (w) dw

)
− v j

(∫
R3

(φ(|w|2/2) + w2
i φ′(|w|2/2)) f (w) dw

)

+
∫
R3

wj φ(|w|2/2) f (w) dw.

Exchanging i and j (or, equivalently, taking χ(w) = wj ), we get the identity

∫
R3

q f
i j (v,w)wj φ(|w|2/2) f (w) dw =

[
vi

∂ j f (v)

f (v)
− v j

∂i f (v)

f (v)

](∫
R3

wj φ(|w|2/2) f (w) dw

)

−
(∫

R3
wj wi φ(|w|2/2) f (w) dw

)
∂ j f (v)

f (v)
+
(∫

R3
w2

j φ(|w|2/2) f (w) dw

)
∂i f (v)

f (v)

− v j

(∫
R3

wi w j φ
′(|w|2/2) f (w) dw

)
+ vi

(∫
R3

(φ(|w|2/2) + w2
j φ

′(|w|2/2)) f (w) dw

)

−
∫
R3

wi φ(|w|2/2) f (w) dw.

Considering the above identities as a 3 × 3 system for the unknowns vi
∂ j f (v)
f (v) −

v j
∂i f (v)
f (v) , ∂i f (v)

f (v) and ∂ j f (v)
f (v) , and usingCramer’s formulas, we end upwith the following

formula for ∂i f (v)
f (v) :

∂i f (v)

f (v)
= Δφ( f )

−1

× Det

(∫
R3

φ(|w|2/2) f (w)

⎡
⎢⎣

1 wi q f
i j (v,w) + P1( f )(v,w)

wi w2
i q f

i j (v,w)wi + P2( f )(v,w)

wj wi w j q
f
i j (v,w)wj + P3( f )(v,w)

⎤
⎥⎦ dw

)
,

where

P1( f )(v,w) = v j
wi φ

′(|w|2/2)
φ(|w|2/2) − vi

w j φ
′(|w|2/2)

φ(|w|2/2) ,

P2( f )(v,w) = v j
[φ(|w|2/2) + w2

i φ′(|w|2/2)]
φ(|w|2/2) − vi

wi w j φ
′(|w|2/2)

φ(|w|2/2) − wj ,

P3( f )(v,w) = v j
wi w j φ

′(|w|2/2)
φ(|w|2/2) − vi

[φ(|w|2/2) + w2
j φ

′(|w|2/2)]
φ(|w|2/2) + wi .
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Then, ∣∣∣∣∂i f (v)

f (v)

∣∣∣∣ ≤ 2Δφ( f )
−1

(∫
R3

φ(|w|2/2) f (w) (1 + |w|2) dw
)2

×
(∫

R3
φ(|w|2/2) f (w)

[ 3∑
k=1

|Pk( f )(v,w)| dw + |q f
i j (v,w)| (1 + |wi | + |w j |)

]
dw

)

≤ 2Δφ( f )
−1

(∫
R3

φ(|w|2/2) f (w) (1 + |w|2) dw
)2

×
(

(1 + |vi | + |v j |)
∫
R3

f (w)

[
φ(|w|2/2) (1 + |wi | + |wj |) + |φ′(|w|2/2)| (|wi | + |wj | + 2 |w|2)

]
dw

+
∫
R3

f (w)φ(|w|2/2) |q f
i j (v,w)| (1 + |wi | + |wj |) dw

)

≤ 2Δφ( f )
−1

(∫
R3

φ(|w|2/2) f (w) < w >2 dw

)2

×
(√

3 < v >

∫
R3

f (w)

[√
3 < w > φ(|w|2/2) + 2

√
2 < w >2 |φ′|(|w|2/2)

]
dw

+√
3
∫
R3

f (w)φ(|w|2/2) |q f
i j (v,w)| < w > dw

)
.

Then ∫
R3

f (v)

∣∣∣∣∂i f (v)

f (v)

∣∣∣∣
2

M(v) dv

≤ 4Δφ( f )
−2

(∫
R3

φ(|w|2/2) f (w) < w >2 dw

)4

×
(
6
∫
R3

f (v) < v >2 M(v) dv

×
∣∣∣∣
∫
R3

f (w)

[√
3 < w > φ(|w|2/2) + 2

√
2 < w >2 |φ′|(|w|2/2)

]
dw

∣∣∣∣
2

+ 6
∫
R3

f (v) M(v)

∣∣∣∣
∫
R3

f (w)φ(|w|2/2) |q f
i j (v,w)| < w > dw

∣∣∣∣
2

dv

)

≤ 4Δφ( f )
−2

(∫
R3

φ(|w|2/2) f (w) < w >2 dw

)4
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×
{
12

∫
R3

f (v) < v >2 M(v) dv

[
3

(∫
R3

f (w) < w > φ(|w|2/2) dw
)2

+ 8

(∫
R3

f (w) < w >2 |φ′|(|w|2/2) dw
)2 ]

+ 6
∫
R3

f (v) M(v)

(∫
R3

f (w) |q f
i j (v,w)|2 ψ(|v − w|)

|v − w|2 dw

)

×
(∫

R3
f (w)φ2(|w|2/2) < w >2 |v − w|2

ψ(|v − w|)dw
)}

≤ 4Δφ( f )
−2

(∫
R3

φ(|w|2/2) f (w) < w >2 dw

)4

×
{
12

∫
R3

f (v) < v >2 M(v) dv

[
3

(∫
R3

f (w) < w > φ(|w|2/2) dw
)2

+ 8

(∫
R3

f (w) < w >2 |φ′|(|w|2/2) dw
)2 ]

+ 24 Dψ( f ) sup
v∈R3

M(v)

(∫
R3

f (w)φ2(|w|2/2) |v − w|2
ψ(|v − w|) < w >2 dw

)}
.

We conclude the proof of Theorem2 by noticing that

∫
R3

|∇√ f (v)|2 M(v) dv = 1

4

3∑
i=1

∫
R3

f (v)

∣∣∣∣∂i f (v)

f (v)

∣∣∣∣
2

M(v) dv.

�

We now turn to the proofs of the corollaries of this theorem.

Proof of Corollary 2.1: It is a direct consequence of Theorem 2 and the bounds
assumed on M , φ and ψ. �

Proof of Corollary 2.2: We recall that ψ(z) ≥ c0 |z|γ+2. Using the elementary
inequalities

∀x, y, p ∈ R+, (x + y)p ≤ 2sup(p−1,0) (x p + y p),

∀x, y, p ∈ R+, x p + y p ≤ 2sup(1−p,0) (x + y)p,
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we see that (for any γ < 0, v,w ∈ R
3)

|v − w||γ| ≤ 2sup(|γ|−1,0) (|v||γ| + |w||γ|)

≤ 2sup(|γ|−1,0)+sup(2−|γ|,0) < v >|γ| < w >|γ| .

Then taking
M(v) =< v >γ, φ(z) = (1 + 2z)γ/4,

we see that assumption (16) holds provided that β = c−1
0 2sup(|γ|−1,0)+sup(2−|γ|,0).

Noticing that
||M ||∞ = 1, ||φ||∞ = 1, ||φ′||∞ = γ/2.

and using Corollary2.1, we get Corollary2.2. �

Proof of Corollary 2.3: We recall that ψ(z) ≥ c0 e−c1 |z|δ . Still using the elementary
inequalities used in the proof of Corollary2.2, we see that (for all v,w ∈ R

3)

ec1 |v−w|δ ≤ ec̃1 |v|δ ec̃1 <w>δ

,

with c̃1 = c1 2sup(0,δ−1), so that taking

M(v) = e−c̃1 |v|δ , φ(z) = e− c̃1
2 (1+2z)δ ,

we see that assumption (16) holds provided that β = c−1
0 . We then observe that

||M ||∞ = 1, ||φ||∞ = e− c̃1
2 , ||φ′||∞ ≤ sup

(
1, c̃1 δ

(
2(δ − 1)

c̃1 δ

)2/δ

e−1+1/δ

)
.

Using Corollary2.1, we get Corollary2.3. �

Proof of Corollary 2.4: We recall that ψ(z) ≥ exp(−e|z|). Then

exp(e|v−w|) ≤ exp(e|v| e|w|)

≤ 1 + e|v| e|w| +
∞∑
k=2

1

k (k − 1)

ek|v|

[(k − 2)!]1/2
ek|w|

[(k − 2)!]1/2 .

If we introduce

uk := ek|v|

[(k − 2)!]1/2 ,

we see that
uk+1 ≤ uk ⇐⇒ k ≥ 1 + e2 |v|.
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Then, the sequence uk reaches its maximum when k = [2 + e2 |v|], so that (for all
k ≥ 2)

uk ≤ exp(|v| (2 + e2 |v|))
([e2 |v|]!)1/2 ,

and finally

exp(e|v−w|) ≤ 1 + e|v| e|w| +
( ∞∑
k=2

1

k (k − 1)

)
exp(|v| (2 + e2 |v|))

([e2 |v|]!)1/2
exp(|w| (2 + e2 |w|))

([e2 |w|]!)1/2
(25)

≤ 1 + e|v| e|w| + exp(|v| (2 + e2 |v|)) exp(|w| (2 + e2 |w|))

≤ 3 exp(3 e3 |v|) exp(3 e3<w>).

We then introduce

M(v) := exp(−3 e3 |v|), φ(z) = exp

(
−3

2
e3

√
1+2z

)
,

so that

φ′(z) = − exp

(
−3

2
e3

√
1+2z

)
9

2

√
1

1 + 2z
e3

√
1+2z .

We see that

||M ||∞ = e−3, ||φ||∞ = e− 3
2 , ||φ′||∞ ≤ 9

2
.

Using estimate (25), we obtain the estimate

M(v)φ(|w|2/2) ≤ 3 exp(−e|v−w|)

≤ β
ψ(|v − w|2)

|v − w|2 ,

with β = 3. Using Corollary2.1, we end up with the statement of Corollary2.4. �

Proof of Corollary 2.5: We introduce

M(v) = 1, φ(z) = (1 + 2z)−1/2,

so that
φ′(z) = −(1 + 2z)−3/2.
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Then, using Theorem2, we see that

∫
R3

|∇√ f (v)|2 dv ≤ 3Δφ( f )
−2 E 4

f

{
132 E 3

f

+ 24 c−1
0 Dψ( f ) sup

v∈R3

∫
f (w) sup(1, |v − w|−γ) dw

}
.

We now observe that

sup
v∈R3

∫
f (w) sup(1, |v − w|−γ) dw ≤ E f + || f ∗ | · |−γ 1{|·|≤1}||L∞ .

Then, Young’s inequality for convolutions ensures that, for any p > 3
3−γ

,

|| f ∗ | · |−γ 1{|·|≤1}||L∞ ≤ || f ||L p

(
4π(p − 1)

(3 − γ) p − 3

)1−1/p

.

This concludes the proof of Corollary2.5. �

Proof of Corollary 2.6:We first write on
√

f the Sobolev inequality corresponding
to the Sobolev embedding H 1(R3) ⊂ L6(R3), that is

|| f ||L3 ≤ Cs ||∇√ f ||2L2 , (26)

where Cs > 0 is the (best) constant appearing in the Sobolev inequality.
Denoting

a := 396Δφ( f )
−2 E 7

f ,

b := 72Δφ( f )
−2 E 5

f c
−1
0 ,

c := 72Δφ( f )
−2 E 4

f c
−1
0

(
4π (p − 1)

3 (p − 1) − γ p)

)1−1/p

,

we see thanks to Corollary2.5, Hölder’s inequality, and the Sobolev inequality (26)
that ∫

R3
|∇√ f (v)|2 dv ≤ a + Dψ( f ) (b + c || f ||L p )

≤ a + Dψ( f ) (b + c || f ||θL3 E
1−θ
f )

≤ a + Dψ( f )

[
b + c Cθ

s E
1−θ
f

(∫
R3

|∇√ f (v)|2 dv
)θ ]

,
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where θ = 3 (p−1)
2p ∈]0, 1[ for some p ∈] 3

3−γ
, 3[ small enough (remember that γ ∈

]0, 2[, so that such a choice is possible).
Then, denoting q = ∫

R3 |∇√
f (v)|2 dv, we end up with the inequality

q ≤ a + Dψ( f )

[
b + c Cθ

s E
1−θ
f qθ

]
.

Thanks to Young’s inequality (applied with conjugate numbers 1/θ and 1/(1 − θ)),
we get for any d > 0

qθ ≤ θ d q + (1 − θ) d−θ/(1−θ).

As a consequence,

q ≤ a + Dψ( f ) b + c E 1−θ
f Cθ

s Dψ( f ) θ d q + c E 1−θ
f Cθ

s Dψ( f ) (1 − θ) d−θ/(1−θ).

Selecting d = 1
2 c

−1 E θ−1
f C−θ

s Dψ( f )−1 θ−1, in such a way that

c E 1−θ
f Cθ

s Dψ( f ) θ d q = q/2,

we end up with the estimate

q ≤ 2a + 2 Dψ( f ) b + c1/(1−θ) E f C
θ/(1−θ)
s (1 − θ) θθ/(1−θ) 21/(1−θ) Dψ( f )1/(1−θ).

Recalling the definition of a, b, c, q, θ, we obtain Corollary2.6. �
Proof of Corollary 2.7: We introduce

M(v) =< v >γ, φ(z) = (1 + 2z)−
γ
4 − 1

2 ,

so that
||φ||∞ ≤ 1, ||φ′||∞ ≤ γ

2
+ 1.

Then, using Theorem2, we see that

∫
|∇√ f (v)|2 < v >γ dv ≤ 36Δφ( f )−2 E 4

f

{(
3 + 8

(γ

2
+ 1

)2)
E 2
f

∫
f (w) < w >2+γ dw

+ 24 c−1
0 Dψ( f ) sup

v∈R3

< v >γ

∫
f (w) < w >−γ |v − w|−γ dw

}
.

We now estimate

sup
v∈R3

< v >γ

∫
f (w) < w >−γ |v − w|−γ dw
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≤ 3γ/2 sup
v∈R3

∫
f (w) < w >γ < w >−γ |v − w|−γ 1{|v−w|≤1} dw

+ sup
v∈R3

< v >γ

∫
f (w) < w >−γ |v − w|−γ 1{|v−w|≥1} 1{|w|≤|v|/2} dw

+ sup
v∈R3

< v >γ

∫
f (w) < w >−γ |v − w|−γ 1{|v−w|≥1} 1{|w|≥|v|/2} dw

≤ 3γ/2 || f ∗ | · |−γ 1{|·|≤1}||L∞ + sup
v∈R3

2γ < v >γ

sup(1, |v|γ) || f ||L1

+ sup
v∈R3

< v >γ < v/2 >−γ || f ||L1

≤ 3γ/2 || f ||L p

(
4π(p − 1)

(3 − γ) p − 3

)1−1/p

+ (23γ/2 + 2γ) || f ||L1 .

Using this estimate and the previous one, we get the statement of Corollary2.7

Proof of Proposition 3: Observing that Δφ( f ) is a Grad determinant, we see that
(for all ε > 0, R > 0),

Δφ( f ) ≥
[

inf
λ2+μ2+ν2=1

∫
R3

φ(|v|2/2) f (v) |λ + μ vi + ν v j |2 dv
]3

≥ ε6
[

inf
λ2+μ2+ν2=1

∫
B(0,R)

φ(|v|2/2) f (v) 1{|λ+μ vi+ν v j |≥ε} dv
]3

≥ ε6 inf
B(0,R)

φ

( | · |2
2

)3 (∫
B(0,R)

f (v) dv − sup
λ2+μ2+ν2=1

∫
B(0,R)

f (v) 1{|λ+μ vi+ν v j |≤ε} dv
)3

.

�

Proof of Proposition 4 : Thanks to Proposition3, we know that for all R > 1, ε ∈
]0, 1/2[, A > 1,

Δφ( f ) ≥ ε6 inf
B(0,R)

φ

( | · |2
2

)3 (∫
B(0,R)

f (v) dv − sup
λ2+μ2+ν2=1

∫
B(0,R)

f (v) 1{|λ+μ vi+ν v j |≤ε} dv
)3

.

≥ ε6 inf
B(0,R)

φ

( | · |2
2

)3 (∫
R3

f (v) dv − R−2
∫
R3

f (v) |v|2 dv − H̄ (ln A)−1 − A sup
λ2+μ2+ν2=1

Y{λ,μ,ν,R,ε}
)3

,
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where Y{λ,μ,ν,R,ε} is the Lebesgue measure of the set

{v ∈ R
3, |λ + μ vi + ν v j | ≤ ε} ∩ B(0, R),

and H̄ is any constant larger than
∫

f (v) | ln f (v)| dv.
Using a rotation, we see that supλ2+μ2+ν2=1 Y{λ,μ,ν,R,ε} = supλ2+μ2=1 Z{λ,μ,R,ε},

where Z{λ,μ,R,ε} is the Lebesgue measure of the set

{v ∈ R
3, |λ + μ v1| ≤ ε} ∩ B(0, R).

Then Z{λ,μ,R,ε} ≤ 4 R2 W{λ,μ,R,ε}, where W{λ,μ,R,ε} is the one-dimensional Lebesgue
measure of the set

{v1 ∈ R, |λ + μ v1| ≤ ε} ∩ B(0, R).

As a consequence, for any μ0 > 0, and |μ| ≤ μ0, |v1| ≤ R, λ, μ such that λ2 +
μ2 = 1,

|λ + μ v1| ≥ |λ| − |μ0| R

≥
√
1 − μ2

0 − μ0 R

≥ 1 − μ0 − μ0 R

≥ 1 − 2R μ0.

Taking μ0 = 1−ε
2R , we see that W{λ,μ,R,ε} = 0 if |μ| ≤ μ0.

Then, for |μ| ≥ μ0, W{λ,μ,R,ε} ≤ 2ε
μ0
, so that finally

W{λ,μ,R,ε} ≤ 4ε R

1 − ε
≤ 8ε R,

and
Z{λ,μ,R,ε} ≤ 32 R3 ε.

Taking

R = sup

(
1, 2

(∫
f (v) v2 dv∫
f (v) dv

)1/2
)

,

we see that

R−2
∫

f (v) v2 dv ≤ 1

4

∫
f (v) dv.

Then choosing

A = exp

(
4 H̄∫
f (v) dv

)
,
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we also see that
H̄

ln A
= 1

4

∫
f (v) dv.

Finally, considering

ε = inf

[
2−1, 2−7

∫
f (v) dv exp

(
− 4H̄∫

f (v) dv

)
sup

(
1, 2−3

( ∫
f (v) dv∫

f (v) v2 dv

)3/2
)]

,

we obtain the inequality

32 R3 ε A ≤ 1

4

∫
f (v) dv.

We end up with estimate (24).
This ends the proof of Proposition4. �
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