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Abstract The shock-wave structure problem is investigated for a gasmixture of four
species, undergoing a reversible bimolecular reaction,modelled by a10momentGrad
closure of reactive Boltzmann equations. The presence of jump discontinuitieswithin
the shock structure solution is discussed, the supersonic regime is characterized, and
the critical values of Mach number allowing the formation of sub-shocks in the field
variables of one or more components of the mixture are pointed out.
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1 Introduction

Many recent papers, as among others [2, 5, 6, 12, 17, 18], show that the behaviour
of multi-temperature models for gas mixtures exhibits very interesting features in
the context of the shock wave structure problems.
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For hyperbolic systems of both conservation and balance laws, compatible with
an entropy principle, it is well-stated [7, 8, 21] that a continuous solution of the
shock wave structure problem, between two equilibrium configurations, can not
propagate with a speed, s, greater than the maximum characteristic velocity of the
system, evaluated in the unperturbed state. Despite many efforts in this direction, the
continuity of wave fronts propagating below this threshold is still an open problem,
in the sense that, to authors’ knowledge, no rigorous results are available. Many
references on shock waves propagation in a single gas may be found in the literature,
among which we mention [1, 9, 22].

For what concerns gaseous mixtures, shock structure solutions have been recently
investigated for some specific problems, both from the numerical and the analytical
points of view. In [17, 18] numerical examples, compared with experimental data,
are shown for inert binary mixtures described in the framework of Extended Ther-
modynamics [19] at Euler level. On the other hand, in [15, 16, 20], the analysis is
developed starting from suitable kinetic models of Boltzmann or BGK type.

For what concerns hydrodynamic closures derived from kinetic Boltzmann equa-
tions, a multi-temperature Euler system for an inert binary mixture of monoatomic
gases has been rigorously dealt with in [6], in which the role in the continuity of
travelling waves played by each singularity manifold related to each component of
the mixture is pointed out, and numerical tests show the presence of one or two
sub-shocks within the wave front for suitable values of the Mach number. In [5], the
steady shock problem is faced for a reactive gas of four monoatomic components
undergoing a reversible bimolecular reaction, described by a multi-temperature (and
one-velocity) Euler closure of the reactive Boltzmann equations. The existence of
discontinuous solutions is shown by numerical simulations in which the variables
describing each component may suffer a jump. For the same reacting mixture, but
modelled by a 13-moment Grad closure of the reactive Boltzmann equations [3, 4,
14], the discontinuous shock structure solutions are investigated in [12], and it is
pointed out that, analogously to the simpler systems studied in [5, 6], each compo-
nentmay generate a sub-shock, on its own variables. Each component, in fact, defines
its own singularity sub-manifold in the phase space across which only its own vari-
ables suffer a jump discontinuity, if the two (upstream and downstream) equilibria
lie on opposite sides with respect to such sub-manifold. The role of the maximum
characteristic velocities relevant to each species in the sub-shock formation is also
discussed.

In [11], for an inert mixture of multi-velocity, multi-temperature Euler gases in
the context of Extended Thermodynamics, the long-time behaviour of the solution
of the Riemann problem is studied in order to characterize the corresponding shock
structure, and the Rankine–Hugoniot conditions are used to identify each sub-shock
within the wave front, confirming the results in [6].
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Very recently, in [2], a 10-moment Grad closure of the reactive Boltzmann equa-
tions is used to describe a binary mixture of inert monoatomic gases, and the shock
wave structure problem is facedwithin the whole hierarchy of hyperbolic subsystems
of balance laws: Grad 10-moments equations, the multi-temperature Euler descrip-
tion recovered assuming vanishing viscous stress tensors (restoring the studies in
[6]), and the Euler (single velocity and single temperature) equilibrium sub-system
of the hierarchy. The complete description of possible solutions, exhibiting up to
two sub-shocks, is given and the explicit expressions of all critical Mach numbers,
as well as their admissibility conditions, are deduced in terms of particle masses of
the species and of the unperturbed equilibrium state.

The present paper faces the problem of sub-shock formation in 10-moment Grad
equations for the more interesting and realistic case of reactive gases, again for the
same four-species mixture with the same chemistry considered in [5] and [12], in
order to improve the preliminary available results. From the physical point of view,
the 10-moment closure suffers the heavy drawback of neglecting the heat flux effects
occurring in the evolution. However, with respect to the more realistic 13-moment
approximation, it has the advantage of providing explicit expressions for all the
involved quantities in terms of a field vector of lower dimension, as well as a wider
hyperbolicity region. Therefore, since this paper represents a first attempt of handling
chemical processes, the aim of highlighting their effects on the shock wave structure
solutions, minimizing at the same time the both analytical and numerical difficulties,
may justify the choice of confining again our investigation in the framework of the 10-
moment level description adopted in [2], despite the loss of physical consistency. The
extensions to the classical 13-moment Grad closure, including the evolution of heat
flux vectors, are considered in forthcoming papers.Moreover, from themathematical
point of view, the presence of the reaction (involving exchanges of mass and internal
energy in the transient, and imposing themass action law of chemistry at equilibrium)
does not allow to prove all the huge variety of features deduced in [2] for the inert
mixture, which is here recovered in the limit of vanishing chemical bond energy.
In spite of the drawback of handling the implicit function introduced by the law of
mass action defining the chemical equilibrium, we are able to show the effects of the
chemistry on the solutions. In order to stress the role of the chemistry, the comparison
with the corresponding inert case is carried out. The presence of the reactionmodifies
the characteristic speeds of the system and of its equilibrium subsystem, which
differs from the classical Euler equations establishing the equilibrium subsystem
of the inert gas. It will be shown that this situation translates into a change in the
supersonic regime, that for the inert gas is characterized by Mach numbers greater
than 1, while in the present reactive frame the lower bound of supersonic flows is
decreased below 1.

The paper is organized as follows. In Sect. 2 we briefly present the model, its
equilibrium subsystem, and all the characteristic speeds involved in our analysis. In
Sect. 3 the shock wave structure problem is studied for both inert and reactive gases,
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and the possible analytical investigation (allowed by the involved implicit function)
on the admissible critical Mach numbers is presented. Some results on the existence
and uniqueness of a perturbed equilibrium state defined by the unperturbed state are
also given. Finally, in Sect. 4, a particular reaction is chosen in order to characterize
the different ranges of all possible admitted shock structures, and some concluding
remarks are discussed.

2 Governing Equations

Let us consider a 1-D 10-moment approximation of Grad type for a reactive mixture
of gases undergoing a reversible bimolecular reaction

1 + 2 � 3 + 4. (1)

Under the hypothesis of negligible heat fluxes, imposed on the 13-moment Grad
description proposed in [3, 4], the sixteen macroscopic field variables are species
densities ni, mass velocities ui, species temperatures Ti and stress deviators σi, for
i = 1, 2, 3, 4, and they define the global quantities through the relationships

n =
4∑

i=1

ni, ρ =
4∑

i=1

ρi =
4∑

i=1

mini, ρu =
4∑

i=1

ρiui, (2)

nkBT =
4∑

i=1

nikBTi + 1

3

4∑

i=1

ρi
(
u2i − u2

)
, σ =

4∑

i=1

σi + 2

3

4∑

i=1

ρi
(
u2i − u2

)
,

(3)

where mi is the particle mass for ith species and kB is the Boltzmann constant.
In the vanishing heat flux limit of 13-moments Grad equations [3, 4], the hyper-

bolic system of partial differential equations, in conservative form, reads as

∂tni + ∂x (niui) = Qi, (4)

∂t (miniui) + ∂x
(
miniu

2
i + nikBTi

) = Ri + miuiQi, (5)

∂t

(
1

2
miniu

2
i + 3

2
nikBTi

)
+ ∂x

[(
1

2
miniu

2
i + 5

2
nikBTi + σi

)
ui

]
= Si + uiRi

+
(
1

2
miu

2
i + 3

2
kBTi

)
Qi, (6)

∂t

(
2

3
miniu

2
i + σi

)
+ ∂x

[(
2

3
miniu

2
i + 4

3
nikBTi + 7

3
σi

)
ui

]
= Vi + 4

3
uiRi

+2

3
miu

2
i Qi, (7)
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where

Qi = 2ν34
12 li√
π

[
n3n4

(
m12

m34

) 3
2

exp

(
�E

kBT

)
− n1n2

]
�

(
3

2
,

�E

kBT

)
(8)

Ri = ni

4∑

j=1

ν1ijmijnj
(
uj − ui

) − mi (ui − u)Qi (9)

Si = 2ni

4∑

j=1

ν1ijmij

mi + mj
nj

[
3

2
kB

(
Tj − Ti

) + 1

2
mj

(
uj − ui

)2
]

+
[
3

2

mi

m
kBT − 3

2
(1 − li)�E

m − mi

m
− 3

2
kBTi + 1

2
mi (ui − u)2

]
Qi

+ 2ν34
12 likBT√

π

[
n3n4

(
m12

m34

) 3
2

exp

(
�E

kBT

)
− n1n2

]
m − mi

m
�

(
5

2
,

�E

kBT

)
(10)

Vi = 2

3
mi (ui − u)2 Qi +

4∑

j=1

2ν1ijmij

mi + mj

[
2

3
mjnjni

(
uj − ui

)2 + niσj − njσi

]

−
4∑

j=1

3ν2ijmj

2
(
mi + mj

)2

[
2

3
mimjninj

(
uj − ui

)2 + miniσj + mjnjσi

]
(11)

and l1 = l2 = −l3 = −l4 = 1, m = m1 + m2 = m3 + m4, mij = mimj/(mi + mj),
�E > 0 is the activation energy for the endothermic reaction 1 + 2 → 3 + 4, ν1ij
and ν2ij are suitably weighted elastic collision frequencies and ν34

12 is the chemical
interaction frequency.

An equilibrium state of the system (4)–(7) is characterized by the so-called mass
action law, and by a uniquemean velocity and a unique temperature and by vanishing
stress deviators

n1n2 = n3n4

(
m12

m34

) 3
2

exp

(
�E

kBT

)
, (12)

ui = u, Ti = T , σi = σ = 0, i = 1, 2, 3, 4. (13)

The conservation equations of total mass, momentum and energy, together with two
independent partial conservation equations for number densities through the chemical
reaction, represent the equilibrium sub-system, that is

∂t (n1 + n	) + ∂x [(n1 + n	) u] = 0, 	 = 3, 4, (14)

∂tρ + ∂x (ρu) = 0, (15)

∂t (ρu) + ∂x
(
ρu2 + nkBT

) = 0, (16)

∂t

(
1

2
ρu2 + 3

2
nkBT − �En1

)
+ ∂x

[(
1

2
ρu2 + 5

2
nkBT − �En1

)
u

]
= 0, (17)
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coupled with the additional constraint due to the chemical equilibrium condition
imposed by the mass action law (12).

To conclude this section, let us point out that the characteristic speeds of system
(4)–(7) are

ui −
√
3 (nikBTi + σi)

mini
, ui, ui +

√
3 (nikBTi + σi)

mini
. (18)

Only the greater ones can be involved in the problem of sub-shock formation,
denoted by

λi = ui +
√
3 (nikBTi + σi)

mini
, (19)

together with the highest characteristic velocity of the equilibrium sub-system [10]

μ = u +
√
5nkBT

3ρ

(
1 − 2

5C

)
, (20)

where

C = 1 + 3nk2BT
2

2�E2

(
1

n1
+ 1

n2
+ 1

n3
+ 1

n4

)
, (21)

which, suitably evaluated, represents the lower bound of the wave front speeds in
such kind of problem. Moreover, notice that

μ < μEuler = u +
√
5nkBT

3ρ
,

meaning that the chemical reaction slows down the maximum characteristic speed
of the equilibrium sub-system, which is now smaller than the one for a single Euler
gas, μEuler , and this means an enlargement of the supersonic regime. Let us finally
stress that in the limit as �E → 0, then C → ∞, and μ → μEuler .

3 Shock-Wave Structure Solutions

As well-known, a shock-wave structure solution is a function u (ϕ) of the variable
ϕ = x − st, s > 0 constant, connecting two equilibrium states, u+ and u−, of the
system

lim
ϕ→±∞ u (ϕ) = u±, lim

ϕ→±∞
du
dϕ

(ϕ) = 0 (22)
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so that the wave propagates, at constant velocity s, into the fixed unperturbed down-
stream equilibriumu+. As usual in such kind of problems, let us introduce the relative
velocities vi and Mach number M+ as follows

vi = s − ui, M+ = s − u+
c+

, c2+ = 5n+kBT+
3ρ+

, (23)

where c+ is the classical Euler unperturbed sound speed and

v+ = s − u+ = c+M+ = vi+, ∀ i = 1, 2, 3, 4. (24)

In the reference frame co-moving with the shock front, the set of balance equations
(4)–(7) yields the following system of ODEs

d

dϕ
(nivi) = −Qi (25)

d

dϕ

(
miniv

2
i + nikBTi + σi

) = �vi (26)

d

dϕ

[(
1

2
miniv

2
i + 5

2
nikBTi + σi

)
vi

]
= −�Ti (27)

d

dϕ

[(
2

3
miniv

2
i + 4

3
nikBTi + 7

3
σi

)
vi

]
= −�σi (28)

where

�vi = Ri − miviQi, (29)

�Ti = Si − viRi +
(
1

2
miv

2
i + 3

2
kBTi

)
Qi, (30)

�σi = Vi − 4

3
viRi + 2

3
miv

2
i Qi, (31)

andQi, Ri, Si and Vi have been properly rewritten in terms of the relative velocities vi.
The equilibrium state u− is related to the unperturbed state u+ through the

Rankine–Hugoniot conditions applied to the equilibrium sub-system (14)–(17),
yielding, besides the trivial case u− = u+,

ni− = ni+
c+M+
v−

+ liN (u+,M+; v−) , i = 1, 2, 3, 4 (32)

n− = n+
c+M+
v−

, ρ− = ρ+
c+M+
v−

, (33)

T− = T+
v−

c+M+

[
1 + 5M+

3c+
(c+M+ − v−)

]
, (34)
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where

N (u+,M+; v−) = ρ+c+
2�Ev−

(v− − c+M+)
[
c+

(
M2

+ + 3
) − 4M+v−

]
, (35)

and v− is implicitly defined by the mass action law (12) imposed on ni− and T−
provided in (32) and (34).

As pointed out in [12], the presence of a chemical reaction influences the upstream
equilibrium, whose existence and uniqueness have now to be verified, since it has
to be univocally determined for fixed unperturbed equilibrium and Mach number. It
now differs from the one recovered in the inert case [2], coinciding with the classical
one of the Euler equations, given by

ninerti− = ni+
4M2+

M2+ + 3
, ninert− = n+

4M2+
M2+ + 3

, ρ inert
− = ρ+

4M2+
M2+ + 3

, (36)

vinert− = c+
M2+ + 3

4M+
, Tinert

− = T+

(
M2+ + 3

) (
5M2+ − 1

)

16M2+
. (37)

Let us observe that relations (32)–(35) coincide with the classical ones (36)–(37), if,
and only if, N (u+,M+; v−) = 0, which, besides the trivial case v− = c+M+ corre-
sponding to u− = u+, means that v− has to be given by (37).

The physical constraints due to positivity of species number densities and mixture
temperature of the upstream equilibrium given by (32)–(35) give some ranges of
admissible values for the upstream velocity (different from v+ = c+M+), that from
now on will be denoted as vr− (and the corresponding upstream state will be set ur−).
To be more precise, the positivity of temperature T− yields the condition vr− ∈ IT ,
with

IT :=
(
0, c+

5M2+ + 3

5M+

)
,

whereas, denoting

ξ±
k = ρ+c+

(
5M2+ + 3

) ±
√
9ρ2+c2+

(
M2+ − 1

)2 + 32�E nk+ρ+M2+
8ρ+M+

, k = 1, 2,

η±
	 = ρ+c+

(
5M2+ + 3

) ±
√
9ρ2+c2+

(
M2+ − 1

)2 − 32�E n	+ρ+M2+
8ρ+M+

, 	 = 3, 4,

the positivity of species number densities gives the constraint vr− ∈ In, where, if
η±

	 ∈ R,

In := (
max

{
ξ−
1 , ξ−

2

}
,min

{
η−
3 , η−

4

}) ∪ (
max

{
η+
3 , η+

4

}
,min

{
ξ+
1 , ξ+

2

})
,
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which, if η±
	 ∈ C, reduces to

In = (
max

{
ξ−
1 , ξ−

2

}
,min

{
ξ+
1 , ξ+

2

})
.

This feature has already been investigated numerically in [12] in the context of an
analogous reactive gas mixture described at 13 moment Grad closure, in which the
same equilibrium subsystem is obviously admitted.

3.1 Existence and Uniqueness of Upstream Equilibrium State

In order to prove the existence and uniqueness of a physical solution of the mass
action law (12) as equation in v−, let us denote

F (v−) := m̄ (n3−v−) (n4−v−) exp

(
�E

kBT−

)
− (n1−v−) (n2−v−) = 0 (38)

where m̄ = (m12/m34)
3/2 and ni− and T− are given by (32)–(35). Its derivative can

be written as

F ′ (v−) = −M (v−)

[
m̄ exp

(
�E

kBT−

)
(n3−v− + n4−v−) + n1−v− + n2−v−

]

− m̄ (n3−v−) (n4−v−) exp

(
�E

kBT−

)
�E

kBT 2−
T (v−) (39)

where

M (v−) := li
d

dv−
(ni−v−) = ρ+c+

2�E

[
c+

(
5M2

+ + 3
) − 8M+v−

]
, (40)

T (v−) := dT−
dv−

= T+
3c2+M+

[
c+

(
5M2

+ + 3
) − 10M+v−

]
. (41)

It can be immediately noticed that F (v−) is decreasing for

0 < v− < c+
5M2+ + 3

10M+

and F (v−) is increasing for

c+
5M2+ + 3

8M+
< v− < c+

5M2+ + 3

5M+
.
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Since v+ = c+M+, root of (38), satisfies

c+
5M2+ + 3

8M+
< v+ < c+

5M2+ + 3

5M+
, (42)

for all M+ > 1, and in such interval F is increasing, an admissible root vr− of (38),
different from v+, must be

vr− < c+
5M2+ + 3

8M+
.

Let us also point out that for all M+ > 1

ξ−
k < vinert− < η−

	 , η+
	 < v+ < ξ+

k ,

and

vinert− < c+
5M2+ + 3

8M+
.

By noticing that

F
(
ξ±
k

) = m̄
(
n3−ξ±

k

) (
n4−ξ±

k

)
exp

(
�E

kBT−

)
> 0, k = 1, 2,

F
(
vinert−

)
< m̄ (n3+v+) (n4+v+) exp

(
�E

kBT+

)
− (n1+v+) (n2+v+) = 0,

F

(
3c+
5M+

)
> m̄ (n3+v+) (n4+v+) exp

(
�E

kBT+

)
− (n1+v+) (n2+v+) = 0

and by setting v1 = max
(
ξ−
1 , ξ−

2 , 3c+/(5M+)
)
, one can use the Bolzano’s theorem to

conclude about the existence of at least one physical solution vr− of (38) in
(
v1, vinert−

)

forM+ > 1.
It can be numerically checked that the function F (v−) is convex, therefore even

uniqueness of a physical solution vr− is guaranteed. For M+ >
√
9/5, uniqueness

may be also proved analytically, by using the monotonicity ofF (v−) in the interval(
0, c+

5M2++3
10M+

)
and by verifying that

F (v−) < 0 ∀v− ∈
(
c+

5M2+ + 3

10M+
, c+

5M2+ + 3

8M+

)
∩ In. (43)

In fact, under the hypothesisM+ >
√
9/5, one can easily prove that N (u+,M+; v−)

> 0 and, as consequence,

nk−v− > nk+v+ , n	−v− < n	+v+ k = 1, 2 , 	 = 3, 4
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and also
T− > T+

for every v− ∈
(
c+

5M2++3
10M+ , c+

5M2++3
8M+

)
∩ In; therefore

F (v−) = m̄ (n3−v−) (n4−v−) exp

(
�E

kBT−

)
− (n1−v−) (n2−v−)

< m̄ (n3+v+) (n4+v+) exp

(
�E

kBT+

)
− (n1+v+) (n2+v+) = F (v+) = 0.

Thanks to the previous analysis, it can also be easily shown that

vr− < vinert− ≤ v+, (44)

for all M+ > 1, meaning also that the mean velocity of the upstream equilibrium
in presence of the chemical reaction is greater than in the inert case, ur− > uinert− ,
so that the intensity of the shock structure is increased by the chemical reaction, as
confirmed by Fig. 1.

Moreover, it has to be stressed that in the inert case from (36) and (37), observ-
ing that limM+→1 vinert− (u+,M+) = v+ = c+M+, it is easily obtained that limM+→1

uinert− (u+,M+) = u+, meaning that in the limitM+ = 1 the null-shock solution, i.e.
the constant solution u = u− = u+, is admitted.

0.5 1 1.5 2 2.5 3
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2500

3000

3500
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v
−

inert

v
−

r

0.5 1 1.5 2 2.5 3
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1500

2000

2500

3000

3500

u
−
inert

u
−
r

Fig. 1 Plots of v+ (continuous), vr− (dotted) and vinert− (dot-dashed) (left), and of ur− (dotted) and
uinert− (dot-dashed), with u+ = 0 (right), versus Mach number M+, the parameters are relevant to
the second test for reaction (59) in Sect. 4
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Conversely, in presence of the chemical reaction, by examining the limit as M+
tends to 1 throughout the proof it is easy to prove that

lim
M+→1

ur
− (u+,M+) = u+ ⇔ vr− = v+ = c+,

meaning that the trivial constant solution u = u− = u+ is still admitted, and obvi-
ously coincides with the corresponding one in the inert case. But, as far as non trivial
solutions are concerned, in the limit asM+ tends to 1, it is easily shown that

lim
M+→1

vr− (u+,M+) < vinert− = v+ = c+M+,

as clearly shown in Fig. 1, where the trend, versusM+, of the perturbed equilibrium
relative velocity vr− is plotted, together with the one in the inert case vinert− corre-
sponding to the same unperturbed value v+. The values of vr− keep lower than the
corresponding ones of vinert− , and of v+, for allM+ > 1. Moreover, it can be checked
that both the slopes of vr− and vinert− have the same asymptotic trend as M+ tends to
infinity. Unfortunately, forMsonic+ < M+ < 1 this analysis can be mainly carried out
on the numerical ground.

From Rankine–Hugoniot conditions (32)–(35), it is then easily obtained that

lim
M+→1

ur
− (u+,M+) �= u+,

meaning that in the limit M+ = 1 the null-shock (constant) solution is not reached.
The constraint of themass action law limits the configurations of the two equilibria in
such a way that the shock front speed is increased with respect to the corresponding
either inert, or equilibrium cases.

In the Euler or Grad equations for both a single gas or an inert mixture, the
supersonic regime is characterized by the condition

M+ > 1 ⇔ s > μEuler
+ = u+ + c+

(which for an inert mixture is the maximum eigenvalue of the equilibrium subsys-
tem), whereas in presence of the reversible bimolecular chemical reaction taken into
account it modifies into

M+ > Msonic
+ = C+

c+
=

√

1 − 2

5C+
⇔ s > μ+ = u+ + C+, (45)

where, recalling (20) and (23),

C2
+ = c2+

(
1 − 2

5C+

)
,

√
3

5
<

C+
c+

< 1, (46)
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(for the details [10] is referred to the reader) and then

Msonic
+ < 1, μ+ < μEuler

+ .

Therefore the presence of a chemical reaction with a non-vanishing chemical energy
gap �E enlarges the supersonic regime. It is worth to be stressed that, as already
outlined at the end of Sect. 2, in the limit �E → 0, the behaviour is analogous to
that of the inert mixture, sinceMsonic+ → 1, and μ+ → μEuler+ , even if the mixture is
still reacting: in fact, even in the particular case �E = 0, equilibrium mass action
law (12) is still valid, and provides a relation involving the four number densities,
that remain non-hydrodynamic variables (not governed by conservation equations).

We can conclude that shockwave structure solutions for this reactivemixture exist
for all M+ > Msonic+ and the limit of null-shock solution is reached at the boundary
of the sonic regime, i.e.

lim
M+→ Msonic+

ur
− (u+,M+) = u+.

This allows to expect, as shown in Sect. 4, that jump discontinuities may arise even
forM+ < 1, within the supersonic regime, M+ > Msonic+ .

3.2 Singular Barriers and Critical Mach Numbers

We now turn our attention to the so-called singular barrier [2, 12, 13]. The ODEs
system (25)–(28) can be written in block diagonal matrix form [2], each block being

Bi (ui) · dui
dx

= gi (u) , (47)

where ui = (ni, vi,Ti, σi)
T , and the singular barrier, i.e. the locus of the singularities

of the system, is the manifold characterized by the vanishing of the determinant of
Bi, whose equation is

3

2
kB

4∏

i=1

niv
2
i Bi (ui) = 0, (48)

where
Bi (ui) := miniv

2
i − 3 (nikBTi + σi) = 0, i = 1, 2, 3, 4, (49)

are the singularities sub-manifolds, each one related to a component within the mix-
ture.

As shown in [12] and [2], the presence of sub-shocks within a shock structure
solution is due to the singularities sub-manifolds lying between the equilibrium states
u+ and ur−.
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It is also worth to point out the validity of Lax stability conditions across any
sub-shock. In fact, for a fixed M+, if the singular barrier Bi∗ (u) = 0, relevant to
whatever species i∗, lies between u+ and ur−, and if the signs of Bi∗ evaluated at u+
and ur− (surely opposite) satisfy the additional requirement Bi∗

(
ur−

)
< 0 < Bi∗ (u+),

then the shock front speed s and the characteristic speed λi∗ fulfil the relation
λi∗ (u+) < s < λi∗

(
ur−

)
. Let us also observe that, denoting by ϕi∗ the value of ϕ at

which the relevant sub-shock occurs, and by uR and uL the two generic limiting states
ahead and behind the sub-shock front, limϕ→ϕi∗+ u = uR, limϕ→ϕi∗− u = uL, then it
must be ui∗R �= ui∗L and ujR = ujL, for all j �= i∗, since only the variables relevant to
the component i∗ may suffer a jump discontinuity, all the others being continuous.
Therefore, smoothness arguments on Bi (u) and λ (u), together with the information
on the sign of Bi (u) on each of the two half-spaces separated by Bi∗ (u) = 0, assure
that λi∗ (uR) < s < λi∗ (uL), and hence guaranteeing the stability in the sense of Lax
of the sub-shock generated by the species i∗. We can conclude that the shock wave
structure solution can be either continuous, or discontinuous with at most four (as
many as the components in the mixture) different and stable sub-shocks, located in
different positions, ϕi, within the shock front.

As far as the position of u+ with respect to the barriers Bi = 0 is concerned, the
same results found in the inert case continue to hold [2]. In fact, it is easy to show
that

Bi (u+) = mini+c2+M
2
+ − 3ni+kBT+ ≥ 0 ⇔ M+ ≥ M∗

i+ :=
√
9

5
ξi+, (50)

where

ξi+ = ρ+
min+

= 1

mi

4∑

j=1

mjχj+, χj+ = nj+
n+

.

In the inert gas, the quantities M∗
i+ can be possible critical values for Mach number

if they are greater than one; otherwise Bi (u+) > 0 for all M+ > 1; moreover,

M∗
i+ > 1 ⇔ ξi+ >

5

9
.

For the reactive mixture, the admissibility condition becomes M∗
i+ > Msonic+ ; other-

wise, Bi (u+) > 0 for any Mach number; moreover,

M∗
i+ > Msonic

+ ⇔ ξi+ >
5

9
− 2

9C+
.

Because of the implicit form of vr− due to the presence of the chemical reaction,
it is not possible to carry out an explicit analysis concerning the position of ur− with
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respect to the barriers Bi = 0, as done in the inert case [2]. In fact, Bi
(
ur−

)
can be

rewritten in terms of Mach number as follows

Bi
(
ur

−
) = ni−vr−

[(
mi + 3ρ+

n+

)
vr− − 3ρ+c+

5n+M+

(
5M2

+ + 3
)]

(51)

so, the vanishing of Bi
(
ur−

)
can only be explicitly expressed in terms of the relative

velocity

Bi
(
ur

−
) ≤ 0 ⇔ 0 < vr− ≤ v∗

i− := c+
5M2+ + 3

5M+
3ξi+

3ξi+ + 1
, (52)

and the corresponding critical value of the Mach number, say M∗r
i−, can only be

evaluated numerically.
However, one can observe that

M2
i+ = 9

5
ξi+ > 1 ⇔ 3ξi+

3ξi+ + 1
>

5

8
(53)

and that this last inequality implies that

v∗
i− = c+

5M2+ + 3

5M+
3ξi+

3ξi+ + 1
> c+

5M2+ + 3

8M+
> vinert− > vr− (54)

for any Mach number M+ > 1; this allows to conclude that

M∗
i+ > 1 ⇒ Bi

(
ur

−
)

< 0, ∀M+ > 1. (55)

Moreover, let i∗ be the index such that mi∗ = minj=1,...,4 mj; then, since

mi∗n+ < ρ+ ⇒ mi∗ + 3
ρ+
n+

< 4
ρ+
n+

, (56)

hence
3ξi∗+

3ξi∗+ + 1
>

3

4
>

5

8
, (57)

and then, like in the inert case [2], for the lightest species it is always M∗
i∗+ > 1,

and Bi∗
(
ur−

)
< 0. Therefore, the lightest component can always generate a stable

sub-shock for M+ > M∗
i∗+, since

Bi∗
(
ur

−
)

< 0 < Bi∗ (u+) , ∀M+ > M∗
i∗+.

In order to clarify the role of the chemical reaction, it can be interesting to carry out
a comparison with the ideal inert mixture case, the unperturbed equilibrium being
an arbitrary constant state. As already discussed in [2], in this case the perturbed
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equilibrium is related to the unperturbed one through the classical Euler Rankine–
Hugoniot conditions given by (36) and (37), yielding that

Bi
(
uinert

−
) ≤ 0 ⇔ M+ ≥ M∗inert

i− :=
√
3 (3ξi+ + 5)

5 (9ξi+ − 1)
, (58)

the critical Mach numbers being real and greater than one for 1/9 < ξi+ < 5/9.
Therefore, even if in presence of the chemical reaction it is not possible to obtain

explicit expressions of the critical Mach numbers related to the upstream equilibrium
state, the situation is somehow analogous to that holding for an inert mixture [2].

In fact, as it will be shown by some examples in the next section, it is still true
that if the critical Mach number generated by the ith component in one of the two,
unperturbed or perturbed, equilibria is admissible, in the sense that it is greater
thanMsonic+ , then the criticalMach number related to the same component in the other
equilibrium is certainly not admissible, in the sense that it will be less than Msonic+ .

The presence of the chemical reaction modifies, with respect to the inert case, the
upstream equilibrium which is now constrained to belong to the sub-manifold of the
phase space defined by the additional restriction imposed through the mass action
law. In the inert case, any pair of constant states related by the classical Rankine–
Hugoniot conditions (36), (37) for an Euler gas, with the additional relations for the
species number densities, can represent the boundary values in the problem; in the
reactive case, both the equilibria are constrained to lie on the chemical equilibrium
manifold, and this obviously influences the signs of the barriers, as well as the critical
Mach numbers, and therefore the admitted shock structure solutions.

In order to appreciate the effect of chemistry on the solution,we choose a particular
chemical reaction and we analyze, through the sign of the different barriers, the
behaviour of the critical Mach numbers in various examples (varying the equilibrium
configuration) in both inert and reactive cases.

4 Chemical Reactions and Concluding Remarks

As already said, in presence of the chemical reaction, due to the implicit definition
of the upstream equilibrium, it is not possible to carry on the analysis in order to
characterize all the possible solutions in all the ranges of Mach number, as in the
inert case [2]. Moreover, the presence of more than two components in the mixture
does not even allow to deduce general informations on behaviour of solutions with
respect to equilibrium concentrations and mass ratios, as it was possible in the case
of binary mixtures [2, 6].

Therefore, in order to go deeper into the problem of sub-shock formation, we have
to fix particle masses and the internal energy gap, that will be chosen to be

m1 = 0.018, m2 = 0.001, m3 = 0.017, m4 = 0.002, �E = 63300,
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where m2 < m4 < m3 < m1. These parameters are consistent with the chemical
reaction

H2O + H � OH + H2 (59)

that however involves even polyatomic species and should be suitably modelled by
kinetic (and hydrodynamic) equations with a suitable internal energy variable, which
is here neglected.

As a first test, the unperturbed equilibrium configuration u+ is set to be

n1+ = 0.4, n2+ = 0.3, n3+ = 0.2, n4+ = 0.1, u+ = 0, T+ = 2772.7,

the temperature being determined through themass action law (12).With this choice,
the supersonic regime is bounded byMsonic+ = 0.96, and the admissible critical Mach
numbers are all related to the downstream equilibrium

M∗
1+ = 1.05, M∗

2+ = 4.47, M∗
3+ = 1.08, M∗

4+ = 3.16,

withMsonic+ < 1 < M∗
1+ < M∗

3+ < M∗
4+ < M∗

2+, whose order is reverse with respect
to that of the corresponding masses. Then, the critical Mach numbersM∗inert

i− , if real,
are surely less than Msonic+ ; in particular,

M∗inert
1− = 0.95, M∗inert

2− = 0.48, M∗inert
3− = 0.92, M∗inert

4− = 0.52,

and M∗inert
2− < M∗inert

4− < M∗inert
3− < M∗inert

1− < Msonic+ < 1.
Figure2 clearly shows that only the barriers Bi (u+) change their signs forM+ >

M∗
i+, respectively. More precisely, for any M+ > M∗

i+, it is Bi (u−) < 0 < Bi (u+).
This allows to characterize the five different ranges of possible solutions as follows

• ifMsonic+ < M+ < M∗
1+, only continuous solutions exist, sinceBi (u+)Bi

(
ur−

)
> 0,

for all i = 1, 2, 3, 4;
• if M∗

1+ < M+ < M∗
3+, then a sub-shock may appear in the variables relevant to

species 1, since B1 (u+)B1
(
ur−

)
< 0, and Bi (u+)Bi

(
ur−

)
> 0, for all i = 2, 3, 4;

• if M∗
3+ < M+ < M∗

4+, then two different sub-shocks may appear in the vari-
ables relevant to species 1 and 3, since Bi (u+)Bi

(
ur−

)
< 0, for all i = 1, 3, and

Bi (u+)Bi
(
ur−

)
> 0, for all i = 2, 4;

• ifM∗
4+ < M+ < M∗

2+, then three different sub-shocks may appear in the variables
relevant to species 1, 3 and 4, since in this case Bi (u+)Bi

(
ur−

)
< 0, for all i =

1, 3, 4, and B2 (u+)B2
(
ur−

)
> 0;

• ifM+ > M∗
2+, then four different sub-shocks, one for each component,may appear,

since in this last case Bi (u+)Bi
(
ur−

)
< 0, for all i = 1, 2, 3, 4.

In the inert case, the only difference in the ranges, with respect to the reactive case,
is that Msonic+ ≡ 1.
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Fig. 2 Plots of Bi (u+) (continuous), Bi
(
ur−

)
(dashed) and Bi

(
uinert−

)
(dot-dashed) versus Mach

number M+, for reaction (59), with n1+ = 0.4, n2+ = 0.3, n3+ = 0.2, n4+ = 0.1, u+ = 0, T+ =
2772.7

The results become much more interesting in a second test performed by consid-
ering the following equilibrium configuration

n1+ = 0.8, n2+ = 0.9, n3+ = 0.05, n4+ = 0.1, u+ = 0, T+ = 1285.2,

in which the concentrations of species 1 and 2, which are the products of the exother-
mic reaction, are both larger than those of both the other species. As it will be shown,
the possible behaviours of the shock wave structure solutions are different in the two
cases.

With this choice, in fact, the sonicMach number isMsonic+ = 0.942, and the critical
Mach numbers due to the unperturbed equilibrium are

M∗
1+ = 0.94, M∗

2+ = 3.99, M∗
3+ = 0.97, M∗

4+ = 2.82,

withM∗
1+ < Msonic+ < M∗

3+ < 1 < M∗
4+ < M∗

2+, and

M∗inert
1− = 1.07, M∗inert

2− = 0.49, M∗inert
3− = 1.03, M∗inert

4+ = 0.53,

withM∗inert
2− < M∗inert

4− < Msonic+ < 1 < M∗inert
3− < M∗inert

1− .
In this case, as far as the inert case is concerned [2], onlyM∗

2+ andM∗
4+ are greater

than one and, as shown in [2], this allows to deduce that B2,4
(
uinert−

)
< 0, for all

M+ > 1.This circumstance allows to expect that both species 2 and4generate a stable
sub-shock, since it will be, analogously to the previous test, Bi (u−) < 0 < Bi (u+),
for allM+ > M∗

i+, with i = 2, 4, both in the inert and reactive case. Figure3 clearly
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Fig. 3 Plots of Bi (u+) (continuous), Bi
(
ur−

)
(dashed) and Bi

(
uinert−

)
(dot-dashed) versus Mach

numberM+, for reaction (59), with n1+ = 0.8, n2+ = 0.9, n3+ = 0.05, n4+ = 0.1, u+ = 0, T+ =
1285.2

shows the intersections of B2 and B4 with the horizontal axes at M+ = M∗
2+ and

M+ = M∗
4+, respectively.

Moreover, the fact that M∗
1+ and M∗

3+ are both less than one means that B1 (u+),
B3 (u+) > 0, for allM+ > 1, as shown in Fig. 3, guaranteeing that s > λ1,3 (u+), for
allM+ > 1.

As shown in [2], it happens thatM∗
1,3+ < 1 impliesM∗inert

1,3− > 1, and then, as in the
previous test (except for the nature and the order of the critical Mach numbers), it is
B1,3

(
uinert−

)
< 0 < B1,3 (u+), or equivalently s < λ1,3

(
uinert−

)
, for all M+ > M∗inert

1,3− ,
and each component, for suitable values ofM+, can generate a sub-shock. In details,
since 1 < M∗inert

3− < M∗inert
1− < M∗

4+ < M∗
2+, the possible shock structure solutions

are the following

• if 1 < M+ < M∗inert
3− , only continuous solutions exist, sinceBi (u+)Bi

(
uinert−

)
> 0,

for all i = 1, 2, 3, 4;
• if M∗inert

3− < M+ < M∗inert
1− , a sub-shock may appear in the variables relevant to

species 3 since B3
(
uinert−

)
< 0 < B3 (u+);

• ifM∗inert
1− < M+ < M∗

4+, then two different sub-shocks may appear in the variables
relevant to species 1 and 3 since B1,3

(
uinert−

)
< 0 < B1,3 (u+);

• ifM∗
4+ < M+ < M∗

2+, then three different sub-shocks may arise since in this case
B1,3,4

(
uinert−

)
< 0 < B1,3,4 (u+);

• ifM+ > M∗
2+, then four different sub-shocks, one for each component, may appear

since in this case Bi
(
uinert−

)
< 0 < Bi (u+), for all i = 1, 2, 3, 4.

In the reactive case, the situation is different.
Figure3 clearly shows the intersections ofB2,B3 andB4 with the horizontal axes at

M+ = M∗
2+, M+ = M∗

3+ and M+ = M∗
4+, respectively. The admissible unperturbed
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critical Mach numbers are now M∗
2+, M∗

3+, and M∗
4+, since Msonic+ < M∗

3+ < 1 <

M∗
4+ < M∗

2+, and this, through (55) and since species 2 is the lightest, allows to
deduce that

Bi
(
ur

−
)

< 0, ∀M+ > 1, i = 2, 4.

Numerical simulations show that it is also

B2,3,4
(
ur

−
)

< 0, ∀M+ > Msonic
+ .

This circumstance allows to expect that species 2, 3 and 4 generate a stable sub-shock,
since it will be, analogously to the previous test,

Bi
(
ur

−
)

< 0 < Bi (u+) , ∀M+ > M∗
i+, i = 2, 3, 4.

Moreover, the relation M∗
1+ < Msonic+ again assures that

B1 (u+) > 0, ∀M+ > Msonic
+ ,

as in the inert case. Differently from the inert case, from the relation M∗
1+ < 1, it

is not possible to derive analytically any information either on the existence of the
critical Mach number M∗r

1−, or on its position with respect to 1.
In Fig. 3 the numerical investigation carried out on B1

(
ur−

)
, varying M+, shows

that
B1

(
ur

−
)

< 0, ∀M+ > M∗r
1−,

withM∗r
1− > Msonic+ , and it should be appreciated thatB1

(
ur−

)
intersects the horizontal

axis for a Mach which is very close toMsonic+ .
So for all M+ > M∗r

1− the presence of the chemical reaction yields that

λ1 (u+) < s < λ1
(
ur

−
)
, ∀M+ > M∗r

1−,

and a stable shock may appear in the variables relevant to constituent 1, even for
Mach numbers M+ lower than 1.

The second test also shows how the unperturbed configuration affects the solution.
With respect to the first, in the second test, in fact, the unperturbed concentration of
one of the heavier (but not the heaviest), component 1, and of the lightest species
2 are increased, and the others are decreased. The effect is that, due to its higher
concentration, even if it is not the heaviest, species 1 may generate a sub-shock
for Mach numbers, M+ > M∗r

1−, very close to Msonic+ , and still lower than those,
M+ > M∗

3+, at which the heaviest species 3 can produce a jump discontinuity.
In presence of the chemical reaction, sinceMsonic+ < M∗r

1− < M∗
3+ < M∗

4+ < M∗
2+,

the scenario modifies as follows

• ifMsonic+ < M+ < M∗r
1−, only continuous solutions exist, sinceBi (u+)Bi

(
ur−

)
> 0,

for all i = 1, 2, 3, 4;
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• if M∗r
1− < M+ < M∗

3+, then a sub-shocks may appear in the variables relevant to
species 1 since B1

(
ur−

)
< 0 < B1 (u+);

• ifM∗
3+ < M+ < M∗

4+, analogously to the inert case, two different sub-shocks may
appear in the variables relevant to species 1 and 3, sinceB1,3

(
ur−

)
< 0 < B1,3 (u+);

• if M∗
4+ < M+ < M∗

2+, the situation is analogous to the corresponding one in the
inert case: three different sub-shocksmay appear in the variables relevant to species
1, 3 and 4, since B1,3,4

(
ur−

)
< 0 < B1,3,4 (u+);

• if M+ > M∗
2+, again the situation is analogous to the corresponding one in the

inert case: four different sub-shocks, one for each component, may appear since
Bi

(
ur−

)
< 0 < Bi (u+), for all i = 1, 2, 3, 4.

As already pointed out, in the present reactive frame it is not possible to produce
the same general overview of the different solutions, in terms of Mach numbers,
mass ratios, and equilibrium concentrations shown in [2] for the inert binary mixture.
However, even in presence of a chemical reaction we may deduce that the solution
may exhibit up to four different sub-shocks within the shock front, as many as the
components are, depending on how many critical Mach numbers are admitted, and
on which are exceeded by the fixed value of the Mach number (or of the wave front
speed), or, in other words, on which of the singularity sub-manifolds, Bi = 0, lie
between the two equilibria u+ and ur−.

The constant solution uinert− = u+, which for the inert mixture represents the null
shock limit asM+ → 1, in the reactive case is reached (providing ur− = u+) at sonic
thresholdMsonic+ , which is now lower than 1 due to the chemical processes. The range
ofMach numbers allowing only continuous solutions is then a right neighbourhood of
Msonic+ , and sub-shocks may arise for Mach numbers lower than one, if the minimum
of the admissible critical values of Mach number is below one. We can finally stress
that the inert case can be recovered in the limit as �E → 0 of the reactive mixture.
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