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Abstract A survey of results from 2008 to 2014 on the construction of a stochastic
market model, from the empirical data to its modelling interpretation and proof of
mathematical consistency (no-arbitrage and completeness).
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1 Introduction

After 2008, excessive reliance on mathematical models was blamed as the cause for
the subprime collapse and the following global crisis. This criticism soon reached
the popular level on newspaper articles and cartoons

It is true that a closed mathematical model of the economy may be an impossible
dream, as is also true that somemodels use unrealistic assumptions, trading empirical
evidence formathematical beauty or simplicity.On the other hand, there are also cases
where the mathematics is there, providing sound results, but nobody pays attention,
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because sometimes not paying attention is more profitable in the short term. An
example:

A theorem by Föllmer and Schied [1] states that if M is the set of all probability
measures on a finite space of scenarios Ω , ρ will be a convex risk measure iff there
is a penalty function α : M → (−∞,∞] such that

ρ(X) = sup
Q∈P

(EQ[−X] − α(Q)) (1)

with α convex, lower semicontinuous and α(Q) ≥ −ρ(0).
In such a convex riskmeasure, the first term represents themaximal expected loss

in the scenario Q and α(Q) accounts for the probability of the scenario. Whereas
the calculation of EQ[−X] is a simple exercise in stochastic analysis, estimation of
α(Q) involvesmany factorswhich are frequently not taken into account.For example,
if the historical data that is being used does not contain unfavorable events, it is
tempting (or profitable) to say that meltdowns are improbable.

Intrigued by why the well-qualified experts of the rating agencies had rated AAA
the “toxic” products and had not predicted the 2008 crisis, 4 economists of the Federal
Reserve of Atlanta, made an extensive analysis of their reports in the years before
the crisis. The conclusion was that most experts reported that a small fall in the price
of the houses would lead to disaster, but assigned a very small (penalty) probability
to that event [2]. In the Atlanta paper, instead of the language of convex measures,
the authors consider the probability of foreclosures decomposed into

df

dt
= df

dp

dp

dt
(2)

df
dp being the sensitivity of foreclosures to price (HPA) and dp

dt the time variation of

the price of houses. Their conclusion is that the estimation of df
dp was correct but not

of dp
dt (which is equivalent to the effect of the penalty term). However looking at the

housing bubble it should have been clear after 2001 that the probability of a downturn
in HPA was high. In addition, how could inflation-adjusted prices continue to rise
when real incomes of most Americans, especially at the bottom, continued to fall?

Why was a small value assigned to the penalty term? Conflict of interests is a
possible reason. The SEC recognition of the main agencies (Fitch, Moody’s, S&P
and Dominion) together with the recommendations of Basel II, put them in the
center of the financial world. However their clients were exactly the creators of the
securities. If one agency does not provide favorable reports, look elsewhere. A recent
event lends credibility to this hypothesis: In February 2011, Redwood Trust put in
the market the second (since the crisis) mortgage-based private-label security in the
USA. Redwood asked both Fitch andMoody’s for ratings, but only published Fitch’s
report. Later on, perhaps to assert its credibility, Moody’s published its report which
was quite negative. On the other hand if the client were the buyer of the securities, a
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conflict of interest of opposite signmight also occur. A recent proposal is the creation
of government-sponsored clearing agencies. Will it ever work?

Another example is the Bernard Madoff affair. Already in 1999 and later in 2005
Markopoulos’ letters to the SEC had shown, using simple mathematics thatMadoff’s
strategy could not generate the 12% average annual return unless he was either using
insider-trading or a Ponzi scheme. Although some large brokerage institutions
(GoldmanSachs, for example) stayed away fromany dealswithMadoff, he continued
to attract a lot of investment in Europe and the USA. Once again, the mathematics
was there but very few were paying attention.

The work that is reported in this paper concerns another aspect of the relation of
mathematics to economic life, namely the modelization of the price S(t) fluctuations
in stock exchanges. The basic (stylized) facts provided by the empirical data are:

1. The returns (r(t,Δ) = S(t+Δ)−S(t)
S(t) ) have nearly no autocorrelation;

2. The autocorrelations of |r(t,Δ)| decline slowly with increasing lag Δ, a long
memory effect;

3. Leptokurtosis: asset returns have distributions with fat tails and excess peaked-
ness at the mean;

4. Autocorrelations of sign r(t,Δ) are insignificant;
5. Volatility clustering: there is a tendency of large changes to follow large changes

and small changes to follow small changes. Volatility occurs in bursts;
6. Volatility is mean-reversing and the distribution is close to lognormal or inverse

gamma;
7. Leverage effect: volatility tends to rise more following a large price fall than

following a price rise.

Geometrical Brownian motion (GBM)

dSt
St

= μdt + σdB(t) (3)

is a basis for most of mathematical finance (Black-Scholes, etc.). Is it consistent
with the empirical data? No. In GMB price changes would be log-normal. No lep-

tokurtosis and scaling properties E
∣
∣
∣
S(t+Δ)−S(t)

S(t)

∣
∣
∣ ≈ Δ1/2 which is not born out by the

data. In addition, the volatility σ being constant, there is no volatility clustering nor
leverage effect. One of the most famous consequences of GBM is the Black-Scholes
formula for option pricing. When the historical volatility σ is used in the formula,
the resulting price is quite distinct from the one that is actually practiced in the mar-
ket. Nevertheless the Black-Scholes continues to be used in the following way: The
market price of liquid options is used to infer what would be the (implied) volatility
σimp that would lead to that price. σimp is then used to compute the price of less traded
options. Black-Scholes is used as an invertible mapping between price and σimp and
not for its theoretical value.
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In conclusion: the wide use of GBM is a case where oversimplification of the
mathematics leads to important departures from the empirical evidence. This was
the motivation that led to the present attempt to construct a market model, which
although preserving some of the nice features of GBM, would be consistent with
(and directly inspired by) the empirical data.

2 A Data-Reconstructed Market Model [3]

The basic hypothesis for the model construction were:

• (H1) The log-price process log St belongs to a probability space Ω ⊗ Ω
′
, where

the first one, Ω , is the Wiener space W and the second, Ω
′
, is a probability space

to be empirically reconstructed.
Denote log St(ω, ω

′
) with ω ∈ Ω , ω

′ ∈ Ω
′
, and Ft , F

′
t are the σ−algebras in Ω

and Ω
′
generated by the processes up to time t.

• (H2) The second hypothesis is stronger:Assume that for each fixed ω
′
, log St(•, ω

′
)

is a square integrable random variable in Ω

From (H2) it follows [4] that, for each fixed ω
′
,

dSt
St

(•, ω
′
) = μt(•, ω

′
)dt + σt(•, ω

′
)dB(t) (4)

with μt(•, ω
′
) and σt(•, ω

′
) well-defined processes in Ω .

If {Xt,Ft} is a process such that

dXt = μtdt + σtdB(t) (5)

with μt and σt being Ft−adapted processes, then

μt = lim
ε→0

1
ε
{E(Xt+ε − Xt)|Ft}

σ 2
t = lim

ε→0

1
ε

{

E(Xt+ε − Xt)
2
∣
∣Ft

} (6)

The process associated to the probability spaceΩ
′
is now inferred from the data. For

each fixed ω
′
realization in Ω

′
one has

σ 2
t (•, ω

′
) = lim

ε→0

1

ε

{

E(log St+ε − log St)
2
}

(7)

Because each set of market data corresponds to a particular realization ω
′
, the σ 2

t
process may indeed be reconstructed from the data. The question is how to construct
a mathematical model for this induced volatility process. For this purpose we looked
for scaling properties of the data, namely
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Fig. 1 The Rσ process and its scaling properties

E |σ(t + Δ) − σ(t)| ∼ ΔH E

∣
∣
∣
∣

σ(t + Δ) − σ(t)

σ (t)

∣
∣
∣
∣
∼ ΔH (8)

but neither of these hold. By contrast, the empirical integrated log-volatility is well
represented by a relation of the form

∑t/δ
n=0 log σ(nδ) = βt + Rσ (t) with the Rσ (t)

process displaying very accurate self-similar properties (Fig. 1).
If a nondegenerate process Xt has finite variance, stationary increments and is

self-similar
Law(Xat) = Law(aHXt)

then it necessarily has covariance

Cov(Xs,Xt) = 1

2
(|s|2H + |t|2H − |s − t|2H)E(X2

1 ) (9)

and the simplest process with these properties is a Gaussian process called fractional
Brownian motion. Therefore the simplest model compatible with the data is

dSt = μStdt + σtStdB(t)
log σt = β + k

δ
{BH(t) − BH(t − δ)} (10)
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which has been called the fractional volatility model (FVM). δ is the observation
time scale and, from the data, H is found to be in the range 0.8–0.9. From (10) it
follows that the volatility (at resolution δ) is

σ(t) = θe
k
δ
{BH (t)−BH (t−δ)}− 1

2 ( k
δ
)2δ2H (11)

3 Mathematical Consistency of the Fractional Volatility
Model: Arbitrage and Completeness [5]

The main consistency check for any market model is the no-arbitrage principle. In
addition completeness or incompleteness of the model should also be checked.

Theno-arbitrage principle:A (perfect)market does not allow for risk-free profits
with no initial investment or, equivalently, to profits without any risk.

A self-financing portfolio V (t) = ∑n
i=1 h

i
tS

i
t is an arbitrage portfolio if

V (0) = 0; P(V (T) > 0) > 0 (12)

for T > 0, P being the probability measure on the market scenarios. A market is
arbitrage free if and only if there is an equivalent martingale measure Q for the
discounted price processes [1, 6].

On the other hand completeness is related to the possibility of hedging portfolios.
H is said to be an hedge for the portfolio X (or to replicate X) if

H is self-financing; VH(T) = X(T), P − almost surely (13)

A market is complete if all X can be hedged. Furthermore, a market is complete if
and only if the martingale measure Q is unique.

3.1 No-Arbitrage

In the fractional volatility model (FVM) one has two probability spaces (Ω1,F1,

P1)W and (Ω2,F2,P2)BH and the product space (Ω,F ,P) with π1 and π2 the
projections of Ω onto Ω1 and Ω2.

Consider a risky asset with price St and a risk-free asset with dynamics

dAt = rAt dt A0 = 1 (14)
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The volatility σt of the risky asset is a measurable F–adapted process satisfying for
0 ≤ t < ∞

EP

[∫ t

0
σ 2
s ds

]

=
∫ t

0
θ2e−( k

δ
)2δ2H

EP

[

e
2k
δ

{BH (s)−BH (s−δ)}
]

ds

= θ2 exp

{

(
k

δ
)2δ2H

}

t < ∞ (15)

by Fubini’s theorem and the moment generating function of the Gaussian random
variable BH(s) − BH(s − δ).

∫ t
0 |μs| ds being finiteP–almost surely for 0 ≤ t < ∞, application of Itô’s formula

yields

St = S0 exp

{∫ t

0
(μs − 1

2
σ 2
s )ds +

∫ t

0
σsdBs

}

(16)

Lemma 1 Consider the measurable process

γt = r − μt

σt
, 0 ≤ t < ∞ (17)

with μ ∈ L∞([0,T ] × Ω). Then, for a continuous version of BH

exp

[
1

2

∫ T

0
γ 2
s (ω2)ds

]

< A(ω2) < ∞ (18)

P2–almost all ω2 ∈ Ω2.

The proof uses the fact that P2–almost surely, a continuous version of fractional
Brownian motion is Hölder continuous of any order α ≥ 0 less than H, that is, there
is a random variable Cα > 0 such that for P2–almost all ω2 ∈ Ω2 |BH(t) − BH(s)| ≤
Cα(ω2) |t − s|α

Theorem 1 The market (At, St, σt ) is free of arbitrage

Proof Restricting the process to a particular path ω2 of the BH–process, construct
the stochastic exponential of

∫ t
0 γs(ω2)dBs,

ηt(ω2) = exp

{∫ t

0
γs(ω2)dBs − 1

2

∫ t

0
γ 2
s (ω2)ds

}

(19)

The bound in Lemma 1 is the Kallianpur condition that insures

EP1 [ηt(ω2)] = 1 ω2 − a.s. (20)
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Hence, we are in the framework of Girsanov theorem and ηt(ω2) is a true P1–
martingale. We can define for each 0 ≤ T < ∞ a new probability measure QT (ω2)

onF1 by
dQT (ω2)

dP1
= ηT (ω2), P1 − a.s. (21)

By the Cameron-Martin-Girsanov theorem, for each T ∈ [0,∞), the process

B∗
t = Bt −

∫ t

0

r − μs

σs(ω2)
ds 0 ≤ t ≤ T (22)

is a Brownian motion on the probability space (Ω,F1,QT (ω2)).
Under the new probability measure QT (ω2) (equivalent to P1 on F1) the dis-

counted price process, Zt = St
At

0 ≤ t ≤ T with dynamical law

Zt(ω2) = Z0 +
∫ t

0
σs(ω2)Zs(ω2) dB

∗
s (23)

is a martingale in the probability space (Ω1,F1,QT (ω2)). By the fundamental the-
orem of asset pricing [1, 6], the existence of an equivalent martingale measure for
Zt implies that there are no arbitrages, that is, EQT (ω2)

[

Zt(ω2)|F1,s
] = Zs(ω2) for

0 ≤ s < t ≤ T .
This proves that there are no arbitrages for P2−almost all ω2 trajectories of the

BH process. Because this process is independent from the B process it follows that
the no-arbitrage result is also valid in the product space. �

3.2 Incompleteness

In this financial model, trading takes place only in the risky asset and in the money
market. As a consequence the volatility risk cannot be hedged. Having more sources
of risk than tradable assets, suggests that the market is incomplete

Theorem 2 The market defined by (At, St, σt ) is incomplete

Proof Use an integral representation for the fractional Brownian motion

BH(t) =
∫ t

0
KH(t, s)dWs (24)

Wt being a Brownian motion independent from Bt and KH is the square integrable
kernel

KH(t, s) = CHs
1
2 −H

∫ t

s
(u − s)H− 3

2 uH− 1
2 du, s < t (25)
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(H > 1/2). Then the process

η′
t = exp(Wt − 1

2
t) (26)

is a square-integrable P2–martingale. Now, define a standard bi-dimensional
Brownian motion, W ∗

t = (Bt,Wt) and the process η∗
t (ω2) = ηtη

′
t(ω2)

η∗
t (ω2) = exp

{∫ t

0
Γs(ω2) • dW ∗

t − 1

2

∫ t

0
‖Γs(ω2)‖2 ds

}

(27)

where, by the Lemma 1, Γ (ω2) = (γ (ω2), 1) is also a P1–martingale. Then, by the
Cameron-Martin-Girsanov theorem, the process W̃ ∗

t = (W̃ ∗(1)
t , W̃ ∗(2)

t ) defined by

W̃ ∗(1)
t = Bt −

∫ t

0
γs(ω2)ds; W̃ ∗(2)

t = Wt − t (28)

is a bi-dimensional Brownian motion on the probability space (Ω1,F1,Q∗
T (ω2)),

whereQ∗
T (ω2) is the probabilitymeasure dQ∗

T (ω2)

dP1
= η∗

T (ω2).Moreover, the discounted
price process Z remains a martingale with respect to the new measure Q∗

T (ω2).
Q∗

T (ω2) being an equivalent martingale measure distinct from QT (ω2), the market is
incomplete. �

3.3 Leverage, a Modified Model and Completeness [5, 7]

The following nonlinear correlation of the returns

L(τ ) = 〈|r(t + τ)|2 r(t)〉 − 〈|r(t + τ)|2〉 〈r(t)〉 (29)

is called leverage and the leverage effect is the fact that, for τ > 0, L(τ ) starts from
a negative value whose modulus decays to zero whereas for τ < 0 it has almost
negligible values (see Fig. 2 which shows a typical behavior in the NYSE data).

As expressed in (10) the fractional volatility model has the volatility process
σt acting on the log-price, but not conversely. Therefore, in its simplest form, the
fractional volatility model contains no leverage effect.

However, leveragemay be implemented by a small modification of themodel. Use
a (truncated) representation for fractional Brownian motion as a stochastic integral
over Brownian motion and identify the random generator of the log-price process
with the stochastic integrator of the volatility. A leverage effect is then obtained.

H (t) = Π(M)

[

CH

{∫ 0
−∞((t − u)H− 1

2 − (−u)H− 1
2 )dWu

+ ∫ t
0 (t − u)H− 1

2 dWu

}]

(30)
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Fig. 2 Example of the leverage effect in NYSE data

Π(M) meaning the truncation of the representation to an interval [−M,M] with M
arbitrarily large.

Now, instead of two, there is only one source of risk and the new fractional
volatility model would be

dS′
t = μtS

′
tdt + σtS

′
tdWt

log σ ′
t = β + k′

δ
{H (t) − H (t − δ)} (31)

Theorem 3 The market (At, S′
t, σ

′
t ) is free of arbitrage and complete.

Proof Because the two processes are not independent we cannot use the same argu-
ment as before to obtain the Kallianpur condition. However, with the truncation, the
Hölder condition is trivially verified for all the truncated paths of σ ′

t and the construc-
tion of an equivalent martingale measure follows the same steps as in Theorem 2.
Hence we have a P1-martingale with respect to (F1,t)0≤t<T

ηt = exp

{∫ t

0

r − μs

σs
dWs − 1

2

∫ t

o
(
r − μs

σs
)2ds

}

(32)

and QT , defined by dQT

dP1
= ηT is an equivalent martingale measure.
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The set of equivalent local martingale measures being non-empty, let Q∗ be an
element in this set. By the Girsanov converse there is aR-valued process φ such that
the Radon-Nikodym density of Q∗ is

dQ∗
T

dP1
= exp

{∫ T

0
φsdWs − 1

2

∫ T

0
φ2
s ds

}

(33)

Moreover the process W ∗
t given by

W ∗
t = Wt −

∫ t

0
φsds (34)

is a standard Q∗–Brownian motion and the discounted price process Z ′ satisfies the
following stochastic differential equation

dZ ′
t = (μt − r + σ ′

t φt)Z
′
t dt + σtZ

′
t dW

∗
t (35)

Because Z ′
t is a Q∗–martingale, then it must be μ(t, ω) − r + σ ′(t, ω)φ(t, ω) = 0

almost everywhere w.r.t. dt × P in [0,T ] × Ω . It implies

φ(t, ω) = r − μ(t, ω)

σ ′(t, ω)
(36)

a. e. (t, ω) ∈ [0,T ] × Ω1. Hence Q∗
T = QT , that is, QT is the unique equivalent

martingale measure. This market model is complete. �

Figure3 compares the leverage effect in the two models, that is, the original FVM
(10) and the modified one (31).

3.4 A Remark on Long Memory and Fractional
Brownian Motion

In the past, several authors had already tried to describe long memory effects in the
market data by replacing in the price process Brownian motion by fractional Brown-
ian motion withH > 1/2. However it was soon realized [8–11] that this replacement
implied the existence of arbitrage. These results might be avoided either by restrict-
ing the class of trading strategies [12], introducing transaction costs [13] or replacing
pathwise integration by a different type of integration [14, 15]. However this is not
free of problems because the Skorohod integral approach requires the use of a Wick
product either on the portfolio or on the self-financing condition, leading to unrea-
sonable situations from the economic point of view (for example positive portfolio
with negative Wick value, etc.) [16].
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Fig. 3 Comparison of leverage in the original and the modified model

The fractional volatility model in Eq. (10) is not affected by these considerations,
because it is the volatility process that is driven by fractional noise, not the price
process and, as shown, a no-arbitrage result may be proven. This is no surprise
because the requirement (H2) that, for each sample path ω2 ∈ Ω2, log St(·, ω2) is a
square integrable random variable inΩ1 already implies that

∫

σtdBt is a martingale.
The square integrability is also essential to guarantee the possibility of reconstruction
of the σ process from the data.

4 Agent-Based Interpretation of the Fractional
Volatility Model

In [17] two agent-based models were considered:

• In the first the traders strategies play a determinant role.
• In the second the determinant effect is the limit-order book dynamics, the agents
having a random nature.
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4.1 A Market Model with Self-adapted or Fixed Strategies

A set of investors is playing against the market. In addition to the impact of this
group of investors, other factors are represented by a stochastic process ηt

zt+1 = f (zt, ωt) + ηt (37)

(zt = log St) and ωt is the total investment made by the group of traders. After r time
steps, s agents copy the strategy of the s best performers and, at the same time, have
some probability to mutate that strategy.

The model was run with different initial conditions and with or without evolu-
tion of the strategies. When the model is run with evolution the asymptotic steady-
state behavior depends on the initial conditions. Different types of return statistics
corresponded to the relative importance of either “value investors” or “technical
traders”. The occurrence of market bubbles and fat tails corresponds to situations
where technical trader strategies were well represented. A situation where there are
50% of fundamental (value-investing) strategies and 50% trend-following, was cho-
sen to compare its statistical properties with those of the FVM. The squared volatil-
ity σ 2

t = 1
|T0−T1|var(log pt) and the parameters in

∑t/δ
n=0 log σ(nδ) = βt + Rσ (t) and

|Rσ (t + Δ) − Rσ (t)| were estimated from the simulations. Figure4 shows the results.
Notice the lack of scaling behavior of Rσ (t) with an asymptotic exponent 0.55,

denoting the lack of memory of the volatility process. This might already be evident
from the time behavior of Rσ (t) in the lower left plot. Also, although the returns have
fat tails in this case, they are of different shape from those observed in the market
data. Similar conclusions are obtained with other combinations of agent strategies.

In conclusion: It seems that the features of the fractional volatility model (which
are also those of the bulkmarket data) are not easily captured by a choice of strategies
in an agent-based model.

Agents’ reactions and strategies are very probably determinant during market
crisis and market bubbles but not in business-as-usual days.

4.2 A Limit-Order Book Market Model

In this model, asks and bids arrive at random on a window [St − w, St + w] around
the current price St . Every time a buy order arrives it is fulfilled by the closest non-
empty ask slot, the new current price being determined by the value of the ask that
fulfills it. If no ask exists when a buy order arrives it goes to a cumulative register
to wait to be fulfilled. The symmetric process occurs when a sell order arrives, the
new price being the bid that buys it. Sell and buy orders, asks and bids all arrive at
random. Because the window around the current price moves up and down, asks and
bids that are too far away from the current price are automatically eliminated.
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Fig. 4 Statistical properties of the model with agent strategies

The only parameters of the model are the width w of the limit-order book and the
size n of the asks and bids, the sell and buy orders being normalized to one.

The model was run for different widths w and liquidities n. Although the exact
values of the statistical parameters depend on w and n, the statistical nature of the
results is essentially the same. In the Fig. 5 (n = 2) the limit-order book is divided
into 2w + 1 = 21 discrete price slots withΔp = 0.1. The scaling properties of Rσ (t)
are quite evident from the lower right plot in the figure, the Hurst coefficient being
0.96.

Conclusion: the main statistical properties of the market data (fast decay of the
linear correlation of the returns, non-Gaussianity and volatility memory) are already
generated by the dynamics of the limit-order bookwith randombehavior of the agents.
A large part of the market statistical properties (in normal business-as-usual days)
dependsmore on the nature of the price fixing financial institutions than on particular
investor strategies.
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Fig. 5 Statistical properties of the limit order book model

5 Further Properties of the Fractional Volatility Model

In the FVM the statistics of returns is obtained in closed form. From

Pδ(r(Δ)) = 1

4πθkδH−1
√

Δ

∫ ∞

0
dxx− 1

2 e− 1
C (log x)2e−λx (38)

r(Δ) = log St+Δ − log St , θ = eβ, λ = (r(Δ) − r0)2

2Δθ2
(39)

r0 =
(

μ − σ 2

2

)

Δ , C = 8k2δ2H−2 (40)

one obtains

Pδ(r(Δ)) = 1
4πθkδH−1

√
Δ

1√
λ

(e− 1
C (log λ− d

dz )
2
Γ (z))

∣
∣
∣
z= 1

2

(41)

with asymptotic behavior, for large returns
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Pδ(r(Δ)) ∼ 1√
Δλ

e− 1
C log2 λ (42)

This form provides a good fit of the empirical data. Figure6 compares NYSE data
with (41) for H = 0.83, k = 0.59, β = −5, δ = 1, Δ = 1 and Δ = 10.

That NYSE returns are well described by (41) is no wonder because the FVM
itself was reconstructed from that data. What seemed stranger, at first sight, was the
fact that, once the parameters of the model are fixed, a simple change of Δ would
predict the returns in a quite different market. This is shown in Fig. 7 where the same
parameters as above were used, simply changing toΔ = 1

440 (1 min). The prediction
of the model is compared with 1-min data of USDollar-Euro market for a couple
of months in 2001. The result may be surprising, because one would not expect
the volatility parametrization to carry over to such a different time scale and also
because one is dealing with a different market. However, if the conclusion from the
agent-based models is correct, that in business-as-usual days the statistics of the data
depends more on the price fixation process than on agent strategies or other market
features, then this result is no longer a surprise.

Using a simple risk neutrality argument, a new option pricing was also obtained,
namely

V (St, σt, t) = {St [aM (α, a, b) + bM (α, b, a)]
−Ke−r(T−t) [aM(α, a,−b) − bM(α,−b, a)]

} (43)



From Market Data to Agent-Based Models and Stochastic … 241

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10−3

0

500

1000

1500

2000

2500

3000

r (Δ)

p 
(r

(Δ
))

Δ =1/1440

β=−5

(*) 1 min data

Fig. 7 Statistics of returns for 1 min exchange data

0.5
1

1.5

0

50

100
0

0.5

1

S/KT−t

V
/K

   
  k

=
1

0.5
1

1.5

0

50

100
0

0.01

0.02

0.03

S/KT−t

(V
−

C
)/

K
   

  k
=

1

0.5
1

1.5

0

50

100
0

0.05

0.1

S/KT−t

(V
−

C
)/

K
   

  k
=

2

0.5
1

1.5

0

50

100
0

0.05

0.1

S/KT−t

σ im
p   

  k
=

1

Fig. 8 Option price results V /K , comparisonwithBlack-Scholes (V − C)/K and the corresponding
implied volatility



242 R.V. Mendes

with

M(α, a, b) = 1

2πα

∫ ∞

−1
dy

∫ ∞

0
dxe− log2 x

2α2 e− y2

2 (ax+ b
x )2

= 1

4α

√

2

π

∫ ∞

0
dx

e− log2 x
2α2

ax + b
x

erf c

(

− ax√
2

− b√
2x

)

(44)

K is the strike price and T the maturity time. In Fig. 8 is plotted V (St, σt, t) in the
range T − t ∈ [5, 100] with S/K ∈ [0.5, 1.5] as well as (V (St, σt, t) − C(St, σt, t))
/K for k = 1 and k = 2.C(St, σt, t) is the Black-Scholes result. Other parameters are
fixed atσ = 0.01, r = 0.001, δ = 1,H = 0.8. To comparewithBlack-Scholes (BS),
the implied volatility, that would reproduce the same results, was also computed.
The implied volatility surface corresponding to V (St, σt, t) is shown for for k = 1.
It predicts a smile effect with the smile increasing as maturity approaches.
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