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    Abstract 
   Recent advances in understanding the role of the immune system in ovarian can-
cer have culminated in the introduction of multiple promising immunotherapeu-
tic treatment strategies. These include the adoptive transfer of immune effectors 
such as monoclonal antibodies and T cells, vaccination, and immunomodulatory 
therapy. In this chapter, we discuss the various therapeutic strategies, their mech-
anisms of action, and their key clinical trials in ovarian cancer. We also highlight 
promising combinatorial treatment regimens and present the challenges that are 
being critically addressed by clinicians and researchers to enhance the effi cacy of 
immunotherapy.  

       Introduction 

 Recent advances in understanding the role of the immune system in ovarian cancer 
have culminated in the introduction of multiple promising immunotherapeutic treat-
ment strategies. Mounting clinical evidence suggested that ovarian cancers are 
immunogenic, with the early observation that patients with tumor-infi ltrating CD3 +  
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T cells had improved responses to chemotherapy and increased overall survival [ 1 ]. 
Other studies subsequently confi rmed tumor-infi ltrating lymphocytes (TILs), spe-
cifi cally CD8 T cells, as predictors of favorable clinical outcome [ 2 – 4 ]. On the other 
hand, the presence of immunosuppressive CD4 + CD25 + Foxp3 +  regulatory T cells 
(Tregs) in tumors correlated with poor outcome [ 5 ]. Furthermore, several tumor- 
associated antigens (TAAs) recognized by peripheral blood T cells or TILs have 
been identifi ed, including mutated cell cycle regulatory proteins (p53), cancer-testis 
antigens (NY-ESO-1), cancer antigens (CA-125), growth-activating receptors 
(EGFR and HER2/neu), and folate receptors (folate receptor alpha, FRα) [ 6 – 9 ]. 
These TAAs serve not only as markers of disease progression but also as potential 
therapeutic targets for several immunotherapies. Lastly, the expression of immune 
inhibitory receptors such as programmed death 1 (PD-1) on TILs and its ligand 
(PD-L1) on tumor cells has created opportunities for combination therapies with 
checkpoint inhibitors [ 10 – 12 ]. 

 This book chapter will review various immunotherapeutic approaches, their 
mechanisms of action, and their key clinical trials in ovarian cancer. Therapeutic 
strategies are divided into three categories: adoptive transfer of immune effectors, 
vaccination, and immunomodulatory therapy.  

    Immunotherapies for Ovarian Cancer 

    Adoptive Transfer of Immune Effectors 

 Immune effectors employed in adoptive transfer include monoclonal antibodies 
(mAbs) against antigenic targets expressed by tumor cells or within the tumor 
microenvironment, as well as autologous or allogeneic antitumor T cells (also 
known as adoptive T-cell therapy or ACT). Both of these approaches bypass the 
need for in vivo antigen presentation and immune effector proliferation [ 13 ]. 

    Monoclonal Antibodies (mAbs) 
 With the US Food and Drug Administration (FDA) approval of rituximab (anti-
 CD20) in 1997 for chemotherapy-resistant non-Hodgkin lymphoma, a new era of 
cancer therapy dawned. The FDA has since approved more than 20 mAbs for clini-
cal use in oncologic care. Based on their antigenic target, mAbs can be classifi ed 
into mAbs that target tumor cells (direct tumor cell killers), mAbs that target the 
tumor microenvironment (TME) (TME modifi ers), and mAbs that target immune 
checkpoints (checkpoint inhibitors), among others [ 14 ,  15 ]. mAbs have shown 
promise in ovarian cancer and are increasingly being examined in clinical trials. The 
latter category of mAbs (checkpoint inhibitors) will be discussed in section 
“ Depleting Tregs ”. 

 In addition to neutralizing the function of their antigenic targets by inhibiting 
their signaling pathways (such as tumor growth and angiogenesis), mAbs can mod-
ulate the immune response against tumor cells, such as increasing dendritic cell 
(DC) maturation, priming effector cells (T cells and natural killer “NK” cells), and 
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activating complement-dependent cytotoxicity (CDC) and antibody-dependent cell-
mediated cytotoxicity (ADCC) pathways. Conjugation to antineoplastic toxins in 
antibody-drug conjugates (ADCs) bestows additional cytotoxic activity to mAbs 
and allows more precise delivery of chemotherapy following their binding to target 
antigen and subsequent internalization into tumor cells [ 16 ,  17 ]. 

   mAbs Targeting Tumor Cells 

   Anti-EGFR (Cetuximab and Panitumumab) 
 The epidermal growth factor receptor (EGFR) is overexpressed by 9–62 % of ovar-
ian cancers and has been associated with high tumor grade and poor patient out-
come [ 18 ]. Cetuximab (Erbitux®, BMS and Eli Lilly) is an FDA-approved chimeric 
IgG1 mAb that binds to the extracellular domain of EGFR, preventing EGFR sig-
naling and promoting receptor internalization and ubiquitin-mediated degradation 
[ 19 ,  20 ]. Single-agent studies of cetuximab reported minimal activity. In a phase II 
trial of weekly cetuximab monotherapy in patients with persistent/recurrent ovarian 
or primary peritoneal carcinoma, none of the 25 patients achieved complete response 
(CR), 9 patients had stable disease (SD), and only one patient achieved a partial 
response (PR) [ 21 ]. On the other hand, cetuximab in combination with chemother-
apy showed only modest activity. In a phase II trial of cetuximab and carboplatin in 
patients with relapsed, platinum-sensitive ovarian cancer, 9 of the 26 patients with 
EGFR-positive tumors developed an objective response (OR) and eight had 
SD. Additionally, response to this treatment regimen did not correlate with tumor 
EGFR expression and was associated with dermatologic toxicity in the majority of 
patients [ 22 ]. These observations highlight the need for developing effective combi-
nation therapies with chemotherapy and for determining more robust predictors for 
patient responsiveness in order to improve responses to anti-EGFR therapy and 
patient outcomes [ 18 ]. 

 Panitumumab (Vectibix®, Amgen) is another FDA-approved anti-EGFR mAb 
of the IgG2 isotype that has shown encouraging results in a recent phase II clinical 
trial. In patients with platinum-resistant ovarian cancer, the combination of panitu-
mumab and the chemotherapeutic pegylated liposomal doxorubicin (PLD) demon-
strated 9 % PR and 19 % SD [ 23 ]. It should be mentioned that in the intent-to-treat 
population, the overall response rate (18.7 %) was similar to that reported in other 
phase II clinical trials of monotherapy with PLD in patients with platinum- 
refractory/platinum-resistant disease (19.7 %) [ 24 ].  

   Anti-mesothelin (Amatuximab) and Anti-CA-125 (Abagovomab 
and Oregovomab) 
 The high frequency of expression of the TAAs mesothelin and CA-125 in ovarian 
cancer has made them potential targets for mAb therapy. Mesothelin is a glyco-
sylphosphatidylinositol (GPI)-anchored cell surface protein that is involved in 
tumor resistance to several chemotherapeutic drugs and in promoting tumor 
metastasis through its interaction with the mucin CA-125 [ 25 ]. CA-125 (also 
known as MUC16) is a TAA that is also overexpressed in ovarian cancer. CA-125 
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can be proteolytically cleaved from the tumor cell surface and has been employed 
as a serum biomarker to screen for ovarian cancer as well as to monitor responses 
to therapy. In addition to promoting tumor invasion and metastasis, CA-125 
exerts immunosuppressive activity through protecting tumor cells from NK cell 
attack [ 26 ]. Attempts at targeting the mesothelin-MUC16 interaction using mAbs 
have met limited success. In a phase I trial in patients with mesothelin-express-
ing tumors (including four with ovarian cancer) receiving amatuximab (anti-
mesothelin chimeric IgG1 mAb, MORAb-009, Morphotek), no CR or PR was 
seen [ 27 ]. Amatuximab is currently in a phase II trial for mesothelioma patients. 
Abagovomab (anti-idiotypic CA-125 murine IgG1 mAb) and oregovomab (anti-
CA-125 murine IgG1 mAb, OvaRex®, AltaRex) failed to show a survival benefi t 
in large clinical trials [ 28 – 30 ]. Oregovomab is currently in a phase II trial in 
combination with chemotherapy for patients with advanced epithelial ovarian 
cancer (NCT01616303). ADCs may prove a more promising strategy and are 
being explored in preclinical studies and ongoing clinical trials, as will be 
discussed.  

   Anti-FRα (Farletuzumab) 
 FRα is widely expressed on epithelial ovarian cancers, especially in platinum- 
resistant patients, but not on normal ovarian tissues [ 31 ,  32 ]. Farletuzumab 
(Morphotek) is an investigational humanized IgG1 anti-FRα mAb that mediates 
tumor cell cytotoxicity via CDC and ADCC rather than blocking folate transport 
[ 32 ]. In a phase II trial in platinum-sensitive ovarian cancer patients experiencing 
a fi rst relapse, farletuzumab alone was poorly effective but when combined with 
chemotherapy (carboplatin and taxanes) improved objective response rates (ORR) 
to 75 %. Additionally, 80.9 % of patients normalized CA-125 [ 33 ]. However, a 
recent phase III trial was discontinued after farletuzumab in combination with 
paclitaxel failed to meet its end point of improving progression-free survival 
(PFS) in platinum- resistant ovarian cancer patients. Since a trend toward improved 
PFS was observed, additional analyses will be required to determine whether far-
letuzumab may improve outcome for patients [ 34 ]. In 2015, a phase II trial was 
launched to assess the combination of farletuzumab with carboplatin and pacli-
taxel or PLD in patients with low CA-125 platinum-sensitive ovarian cancer 
(NCT02289950).   

   mAbs Targeting Tumor Microenvironment 

   Anti-VEGF (Bevacizumab) 
 The vascular endothelial growth factor (VEGF) binds to its receptors on endo-
thelial cells and activates signaling pathways that regulate normal development 
of the vasculature as well as pathologic angiogenesis in cancer [ 35 ]. In ovarian 
cancer, tumor VEGF gene expression correlates with a poor prognosis [ 36 ]. 
Bevacizumab (Avastin®, Roche) is a humanized IgG1 anti-VEGF mAb that can 
neutralize all isoforms of VEGF. In addition to its antiangiogenic activity, beva-
cizumab can also modulate the immune response by increasing DC maturation 
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and priming of T cells, as demonstrated in multiple myeloma and melanoma 
[ 37 ,  38 ]. Bevacizumab is active in platinum-resistant ovarian cancer, both as 
monotherapy and in combination with chemotherapy [ 39 – 42 ]. In the phase III 
AURELIA trial in platinum-resistant ovarian cancer, combining bevacizumab 
with chemotherapy improved PFS (increased from 3.4 to 6.7 months) and ORR 
(increased from 11 to 27 %) [ 43 ].  

   Anti-TAMs (Anti-CSF-1R, Anti-CCL22, and Anti-B7-H4) 
 Similar to DCs, macrophages are phagocytic innate immune cells that can, to a 
lesser extent, induce T-cell activation. Macrophages are broadly classifi ed into clas-
sical (M1-polarized) and alternative (M2-polarized) phenotypes. M1 macrophages 
are involved in Th1 responses through antigen presentation and secretion of immu-
nostimulatory cytokines such as interleukins 6 and 12 (IL-6 and IL-12), while M2 
macrophages are involved in Th2 responses through secretion of immunosuppres-
sive cytokines such as IL-10 and transforming growth factor β (TGF-β). Tumor- 
associated macrophages (TAMs) are a major component of the TME and, in 
agreement with the M2 signature, have been associated with enhanced tumor pro-
gression, angiogenesis, and immunosuppression [ 44 ]. M2 TAMs are abundantly 
present in ovarian cancers and malignant ascites, and their numbers correlate with 
malignancy, while elevated M1 to M2 TAM ratios correlate with improved 5-year 
prognosis [ 45 – 47 ]. 

 The macrophage colony-stimulating factor-1 receptor (CSF-1R) binds CSF-1 
(also known as macrophage CSF or M-CSF) and is involved in regulating macro-
phage migration, proliferation, survival, and function [ 48 ]. Inhibiting CSF-1R acti-
vation using an antagonistic mAb has been shown in preclinical murine tumor 
models of high TAM infi ltration to strongly reduce TAMs and enhance the CD8/
CD4 T-cell ratio [ 49 ]. RG7155 (by Roche) is an investigational humanized anti- 
CSF- 1R mAb that has recently entered clinical trials. In an ongoing phase Ia/Ib trial 
in patients with tenosynovial giant cell tumor (NCT01494688), RG7155 markedly 
reduced TAMs and was well tolerated [ 50 ]. CSF-1R blockade may thus be a prom-
ising strategy for depleting TAMs in ovarian cancer. 

 Another promising strategy is to modulate TAM-T-cell interactions in the 
TME. TAMs can recruit Tregs to the TME through the chemokine CCL22, which in 
turn suppresses tumor-specifi c T-cell immunity. In xenograft models of primary 
human ovarian tumors, neutralizing CCL22 using anti-CCL22 mAb inhibited Treg 
migration to tumors [ 5 ]. Tregs can also secrete IL-10, which can stimulate the 
expression of the checkpoint B7-H4 on macrophages. B7-H4 is expressed by >70 % 
of freshly isolated TAMs and negatively regulates T-cell responses [ 51 ,  52 ]. It is 
also expressed by ovarian cancer tumor cells, but only B7-H4 +  macrophages sup-
press T-cell immunity and are negatively associated with patient outcome [ 52 ,  53 ]. 
Blocking B7-H4 interactions with single-chain fragments of antibody variable 
regions (scFvs) rescued tumor antigen-specifi c T-cell activation in vitro and delayed 
the growth of established tumors in mice [ 54 ]. The use of mAbs to reverse TAM- 
mediated immunosuppression represents a promising therapeutic approach to 
enhance T-cell tumor immunity in ovarian cancer.   
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   Bispecific Antibodies 

   Anti-EpCAM × Anti-CD3 (Catumaxomab) 
 The epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein 
mediating calcium-independent cell-cell adhesion in the epithelium. It is overex-
pressed in primary, metastatic, and recurrent epithelial ovarian cancers across sub-
types and has been associated with poor prognosis [ 55 – 58 ]. In ovarian cancer-associated 
malignant ascites, EpCAM is expressed by tumor cells in 70–100 % of cases [ 59 ]. 
Catumaxomab (Removab®, Fresenius Biotech GmbH) is a chimeric, bispecifi c, tri-
functional antibody that binds to epithelial tumor cells via EpCAM and to T cells via 
CD3, facilitating the localization of T cells to the tumor tissue. Additionally, catumax-
omab has a functional Fc domain (composed of mouse IgG2a and rat IgG2b) that can 
activate Fc receptor-expressing NK cells and mediate tumor cell cytotoxicity via 
ADCC [ 60 ,  61 ]. In a randomized phase II/III trial in patients with malignant ascites 
(including 129 ovarian cancer patients), catumaxomab prolonged puncture-free sur-
vival (PuFI: time to fi rst need for paracentesis after treatment or time to death, which-
ever occurred fi rst) [ 59 ] and received market approval by the European Medicines 
Agency (EMA) for this indication. In a recent phase II trial in chemotherapy-refrac-
tory ovarian cancer patients with malignant ascites, catumaxomab prolonged both the 
PuFI and the time to fi rst therapeutic puncture (TTPu) and had a benefi cial effect on 
the quality of life through improving ascites symptoms [ 62 ].   

   ADCs 

   Anti-mesothelin Conjugated to DM4 (Anetumab Ravtansine) and Anti-CA-125 
Conjugated to MMAE (Sofituzumab Vedotin) 
 Anetumab ravtansine (BAY 94–9343, Bayer) is an ADC that consists of a human 
anti-mesothelin IgG1 mAb conjugated to the microtubule-targeting drug DM4 via a 
reducible disulfi de linker. Following binding and internalization by tumor cells, 
degradation of the linker releases a cytotoxic DM4 metabolite. Anetumab ravtan-
sine was superior to standard-of-care treatments in patient-derived xenograft mod-
els of ovarian cancer and led to complete eradication. Furthermore, its effi cacy 
correlated with the expression level of mesothelin [ 63 ,  64 ]. Currently, anetumab 
ravtansine is being evaluated in a phase I clinical trial (NCT01439152). 

 Sofi tuzumab vedotin (RG7458 or DMUC5754A, Roche/Genentech) consists of 
a humanized anti-CA-125 IgG1 mAb conjugated to the microtubule-targeting drug 
monomethyl auristatin E (MMAE) via a protease-cleavable peptide linker. In a 
phase I trial in 44 patients with platinum-resistant ovarian cancer (NCT01335958), 
sofi tuzumab vedotin demonstrated a toxicity profi le that was comparable to other 
current therapeutics and led to 1 CR and 4 PR. Similar to anetumab ravtansine, its 
effi cacy correlated with the TAA expression level [ 65 ].  

   Anti-FRα Conjugated to DM4 (Mirvetuximab Soravtansine) 
 Mirvetuximab soravtansine (IMGN853, ImmunoGen) consists of a chimeric anti- 
FRα IgG1 mAb conjugated to DM4 via a reducible disulfi de linker. Preclinical 
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studies in xenograft models showed that the ADC effi ciently targeted FRα +  tumors 
and was also cytotoxic to adjacent FRα −  tumor cells (bystander effect), refl ecting an 
ability to eradicate tumors with heterogeneous expression of FRα [ 66 ]. In an ongo-
ing phase I trial in patients with platinum-resistant epithelial ovarian cancer 
(NCT01609556), mirvetuximab soravtansine as a single agent demonstrated prom-
ising preliminary clinical activity with an ORR of 53 % in the overall cohort and 
80 % in the high FRα expression subset. Preliminary analysis suggested that FRα 
expression correlates well with ADC activity [ 67 ,  68 ]. Other ongoing trials are com-
paring the effi cacy of mirvetuximab soravtansine to chemotherapy in patients with 
FRα +  advanced epithelial ovarian cancer (NCT02631876) or combining it with che-
motherapy (NCT02606305).    

    Adoptive T-Cell Therapy (ACT) 
 Adoptive T-cell therapy (ACT) involves using ex vivo activated tumor-specifi c T 
cells that are either derived from tumors (TILs) and enriched for particular antigen 
specifi city or are genetically engineered to express either tumor-specifi c T-cell 
receptors (TCRs) or chimeric antigen receptors (CARs). Prior to reinfusion into the 
cancer patient, cells are expanded with IL-2, and lymphodepleting chemotherapy 
and/or radiotherapy is administered to promote the in vivo survival and expansion 
of adoptively transferred T cells by increasing cytokines and antigen-presenting cell 
(APC) activity and eliminating immunosuppressive cells [ 69 ,  70 ]. Ongoing inten-
sive research aims to improve this attractive (albeit labor-intensive and expensive) 
approach by improving T-cell constructs, automating T-cell generation, and opti-
mizing toxicity management [ 13 ]. 

   TILs 
 The use of TILs for ACT benefi ts from the natural selection of patient TMEs to 
polyclonal, tumor-specifi c T cells which have escaped thymic deletion and homed 
to tumors [ 71 ]. In the 1990s, the adoptive transfer of TILs expanded ex vivo with 
IL-2 was examined in ovarian cancer [ 72 – 74 ]. Aoki et al. reported that in 17 patients 
with advanced or recurrent ovarian cancer, ACT alone administered to seven patients 
led to 1 CR and 4 PR, while ACT administered to ten patients in conjunction with 
cisplatin led to 7 CR and 2 PR [ 73 ]. In a pivotal trial, Fujita et al. reported that in 
patients with advanced-stage epithelial ovarian cancer, ACT after optimal debulking 
surgery and cisplatin chemotherapy improved the 3-year overall survival rates to 
100 % versus 67.5 % for patients not receiving ACT [ 74 ]. The drawbacks of ACT 
using TILs are numerous, including tolerance to self-antigens and the low yield of 
tumor-specifi c lymphocytes for ex vivo expansion [ 75 ]. Attempts to overcome these 
drawbacks have led to the use of genetically engineered T cells from peripheral 
blood for ACT.  

   Genetically Engineered T Cells 
 To redirect the T-cell specifi city of normal peripheral blood lymphocytes (PBLs), 
T cells are genetically modifi ed to recognize TAA using viral vectors encoding for 
either TCRs (which are MHC-restricted) or CARs. In CARs, TCR intracellular 
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signaling domains are coupled with surface variable regions of antibodies; CARs 
can thus recognize TAA in an MHC-unrestricted fashion and their activation is 
enhanced upon TAA contact [ 70 ]. A phase I/IIa trial is currently ongoing for ACT 
with TCRs recognizing the TAA NY-ESO-1 in patients with recurrent or treat-
ment-refractory ovarian cancer carrying the HLA-A201 allele (NCT01567891). 
In addition, several CAR trials are under way. The fi rst trial was conducted in 
2006 in 14 patients with advanced FRα +  ovarian cancer using FRα-specifi c CARs. 
However, transferred CARs were undetectable at 1 month, and no clinical benefi t 
was observed [ 76 ]. The addition of costimulatory signaling capabilities to the 
intracytoplasmic domain of CARs (such as CD137) has improved in vivo CAR 
persistence and activity [ 77 ,  78 ]. Mesothelin-specifi c CARs are also being pur-
sued in ovarian cancer. In an ongoing phase I trial in patients with mesothelin-
expressing tumors (including two with ovarian cancer), CARs were adoptively 
transferred without lymphodepletion and were found to traffi c to tumor sites and 
to persist in the blood for 3–4 weeks post infusion [ 79 ]. Other trials are also ongo-
ing (NCT02159716 and NCT01583686).    

    Vaccination 

 Therapeutic cancer vaccines aim to “teach” the immune system to recognize 
tumor cells through supplying whole tumor cells or tumor-derived peptides. 
These are provided together with immune adjuvants, including pattern recogni-
tion receptor ligands (such as poly-ICLC and the incomplete Freund’s adjuvant 
Montanide) and granulocyte-macrophage colony-stimulating factor (GM-CSF), 
to promote DC activity. Unlike passive immunotherapy with adoptively trans-
ferred mAbs or T cells, vaccines are an active immunotherapy strategy that can 
generate long-lasting immunological memory. The convenience and low toxicity 
have made vaccines an attractive approach in ovarian cancer as in other types of 
cancer. Nonetheless, limited effi cacy has been observed [ 6 ,  80 ]. Efforts to 
improve performance include optimizing target antigens, improving vaccine 
platforms by using DCs and oncolytic viruses, and developing combinatorial 
approaches with immunomodulatory therapy (the latter will be discussed in sec-
tion “ Combination Therapies ”). 

    Vaccination Based on Tumor Peptides or Tumor Cells 

   Peptide Vaccines 
 Peptide vaccines employ short peptides from TAAs that can directly bind to exact 
HLA class I molecules on DCs, bypassing the need for antigen processing and gen-
erating CD8 T-cell responses (albeit short-lived). In addition to using adjuvants to 
increase peptide immunogenicity, recent advances in improving the effi cacy of pep-
tide vaccines include the use of synthetic or overlapping long peptides, which 
require antigen processing by DCs but are effi ciently presented to both CD4 and 
CD8 T cells [ 81 ]. 
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   NY-ESO-1 
 NY-ESO-1 is an immunogenic TAA that is expressed by 40 % of epithelial ovarian 
cancers and generates antibody and cellular immune responses in multiple cancer 
patients [ 82 ,  83 ]. In a pilot study of patients with advanced ovarian cancer and mini-
mal disease burden, administration of NY-ESO-1 peptide of HLA class I/II speci-
fi cities with Montanide induced both NY-ESO-1-specifi c CD4 and CD8 T-cell 
responses in the majority of patients and improved PFS. Importantly, a patient who 
experienced complete regression had a recurrence later with an NY-ESO-1-negative 
tumor, highlighting the drawback of immune escape tumor variants with peptide 
(single target) vaccines [ 84 ]. In a phase I trial in high-risk ovarian cancer patients in 
their fi rst remission, NY-ESO-1 peptide with Montanide led to NY-ESO-1-specifi c 
CD8 T-cell responses in both NY-ESO-1-positive and NY-ESO-1-negative tumors 
and CR in 33 % of patients [ 85 ]. A phase I trial in 28 patients with advanced ovarian 
cancer in second or third remission examined overlapping long peptides (OLPs) 
from NY-ESO-1 either alone or in combination with Montanide or Montanide and 
poly-ICLC. Antibody and CD8 T-cell responses specifi c to NY-ESO-1 were unde-
tectable with OLP alone but were detected in 91 % of patients receiving OLP and 
both adjuvants, where each had a distinct effect for the induction of NY-ESO-1- 
specifi c Th1 cells [ 86 ,  87 ]. Recently, a phase I trial in 12 patients with relapsed 
ovarian cancer examined the effect of adding decitabine (a DNA methyltransferase 
inhibitor) as an epigenetic modifi er to NY-ESO-1 peptide vaccine administered with 
the adjuvants Montanide and GM-CSF and the chemotherapeutic liposomal doxo-
rubicin. Increased NY-ESO-1 serum antibodies and T-cell responses were observed 
in the majority of patients, while SD or PR was noted in six out of ten evaluable 
patients [ 88 ].  

   p53 
 p53 is a protein that is encoded by the tumor suppressor gene  TP53  and regulates the 
fate of cells upon DNA damage [ 89 ]. p53 is overexpressed in 50–60 % of ovarian 
cancers, and the presence of p53 antibodies has been identifi ed as a positive prog-
nostic factor in ovarian cancer patients [ 90 ,  91 ]. In addition, circulating and tumor- 
infi ltrating p53-specifi c memory T cells were detected in patients with ovarian 
cancer [ 92 ]. In a phase II trial in patients with advanced-stage ovarian cancer, a p53 
peptide vaccine administered with IL-2, GM-CSF, and Montanide as adjuvants led 
to immune responses (as measured by interferon γ (IFN-γ) production and tetramer 
assays). However, IL-2 administration increased toxicity and induced Treg expan-
sion, leading the authors to suggest the removal of IL-2 from this vaccine regimen. 
Importantly, the trial found that the subcutaneous p53 peptide vaccine had a similar 
effi cacy to an intravenous vaccine of DCs pulsed with p53 peptides, suggesting that 
the peptide vaccine is a superior choice given its simpler approach in preparation 
and administration [ 93 ]. Another phase II trial examined p53 synthetic long pep-
tides (p53-SLP) with Montanide in patients with recurrent ovarian cancer. While 
IFN-γ-producing p53-specifi c CD4 T cells were induced, Th2 cytokines dominated 
the p53-specifi c response, and no improvement in clinical outcome was observed 
[ 94 ,  95 ].  
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   HER-2/neu 
 A phase I trial in 19 patients with breast or ovarian cancer showed that vaccination 
with HER-2/neu-derived MHC class II “helper” peptides, which contain MHC class 
I epitopes, administered with GM-CSF as adjuvant induced potent and long-lasting 
HER-2-specifi c IFN-γ-producing CD8 T cells. A larger, phase I trial examined 
HER-2/neu peptides with GM-CSF in patients with advanced HER-2/neu +  cancers 
(including fi ve patients with ovarian cancer). The vaccine induced HER-2/neu- 
specifi c T-cell responses in 92 % of patients. Importantly, the responses were long- 
lived, and epitope spreading to additional HER-2/neu epitopes and to p53, was 
observed in some patients [ 96 ,  97 ].   

   Tumor Cell Vaccines 
 Personalized vaccines based on whole tumor cells represent an alternative to pep-
tide vaccines that allow the generation of a diverse immune response directed at 
multiple TAAs. Because they incorporate both MHC class I and class II epitopes, 
tumor cell vaccines can limit tumor escape variants. On the other hand, using whole 
tumor cells carries the risk of stimulating tolerogenic or autoimmune, rather than 
immunogenic, responses due to the signifi cant presence of self-antigens [ 98 ]. The 
FANG vaccine represents an elegant approach to enhance the immunogenicity of 
whole tumor cells. It is composed of autologous tumor cells genetically modifi ed to 
encode GM-CSF (as an adjuvant) and a bifunctional short hairpin RNAi that inhib-
its TGF-β by targeting furin transferase. In a phase I trial that included fi ve patients 
with ovarian cancer, the vaccine was safe and elicited an immune response correlat-
ing with prolonged survival [ 99 ]. A follow-up phase II/III trial is currently ongoing 
in patients with advanced ovarian cancer achieving CR following primary surgical 
debulking and chemotherapy (NCT02346747). Preliminary results show that 92 % 
of vaccinated patients developed immunity (as measured by IFN-γ production), and 
the median regression-free survival (RFS) was 399 days versus 94 days for control 
patients [ 99 ,  100 ].   

    Vaccination Based on DCs 
 DC-based vaccines were developed to overcome the low number and/or defective 
ability of DCs in cancer patients to process and present tumor antigens. Autologous 
DCs are generated ex vivo from peripheral blood monocytes in the presence of 
cytokine and growth factor cocktails that induce DC expansion and maturation. 
DCs are then loaded with TAAs or whole tumor lysates prior to reinfusion into 
patients [ 101 ]. 

 A promising TAA for DC-based vaccines is mucin 1 (MUC-1), a heavily 
glycosylated surface protein that is overexpressed and aberrantly glycosylated 
in a large number of cancers including ovarian cancer [ 102 ]. In a phase I trial in 
advanced- stage ovarian cancer patients, DCs pulsed with MUC-1 peptides gen-
erated tumor-specifi c CD8 T cells [ 103 ]. A phase II study examined the CVac® 
vaccine (Prima BioMed) of MUC-1-loaded DCs in 63 patients with epithelial 
ovarian cancer in complete remission. In patients who had achieved a remission 
after second- line therapy, PFS and OS were improved with the CVac vaccine as 
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compared to patients receiving standard-of-care therapy [ 104 ]. Another poten-
tial TAA is HER-2/neu. A phase I trial involving four ovarian cancer patients 
evaluated lapuleucel-T (Neuvenge®, Dendreon), a DC-based vaccine composed 
of autologous peripheral blood mononuclear cells (including APCs) cultured 
ex vivo with HER-2/neu peptides linked to GM-CSF. The vaccine generated 
HER-2-specifi c T-cell responses and led to short-term SD in two of the four 
patients [ 105 ]. 

 DCs loaded with whole tumor lysates have also shown promise in ovarian can-
cer. In a phase I trial in six patients with recurrent advanced ovarian cancer, patients 
received DCs pulsed with whole tumor lysates and keyhole limpet hemocyanin 
(KLH) as an adjuvant. The treatment was well tolerated, and three of the six patients 
showed PFS of 25–45 weeks [ 106 ]. A phase II trial further examined the tumor 
lysate-pulsed DCs and KLH that was administered with low-dose IL-2 as an adju-
vant in ten ovarian cancer patients with minimal residual disease. The vaccine 
resulted in 3 CR for 38–83 months and induced tumor-related immunity in respond-
ers, including NK cell activity and IFN-γ-producing T cells [ 107 ]. In another pilot 
study in fi ve patients with recurrent ovarian cancer, DCs pulsed with tumor lysates 
oxidized with hypochlorous acid (which enhances immunogenicity), two patients 
had a PFS of 24 months or more [ 108 ].  

    Vaccination Based on Viruses 
 Recombinant viral vaccines are attractive TAA delivery systems due to their inher-
ent immunogenicity and ability to exploit DC traffi cking to the injection site for 
enhanced TAA uptake and presentation. Commonly employed viral vectors are 
members of the  Poxviridae  family and include vaccinia and fowlpox viruses. The 
vaccinia vector induces strong cellular and humoral immune responses to the trans-
gene it encodes but is limited by the development of host-induced neutralizing anti-
bodies to the vector itself and by the exclusion of use in immunocompromised 
patients. On the other hand, fowlpox viruses can be administered in booster doses 
due to absence of neutralizing antibody development but are less effi cient than vac-
cinia vectors in inducing immune responses [ 109 ]. 

 In a pilot study involving three ovarian cancer patients, the PANVAC vaccine 
regimen was evaluated. It consisted of the transgenes for the TAAs carcinoem-
bryonic antigen (CEA) and MUC-1 along with the transgenes for the TRICOM 
adjuvant (the costimulatory molecule CD80, intercellular adhesion molecule-1 
(ICAM-1), and leukocyte function-associated antigen-3 (LFA-3)) engineered 
into vaccinia (PANVAC-V) as a prime and fowlpox (PANVAC-F) as booster 
 vaccinations. Immune responses to MUC-1 and/or CEA were observed post vac-
cination [ 110 ]. In a follow-up study involving 14 patients with ovarian cancer, 
median OS was 15 months in patients receiving the PANVAC vaccine, and those 
with limited tumor burden and minimal prior chemotherapy seemed to derive the 
most benefi t [ 111 ]. Another heterologous prime-boost vaccine regimen was 
recently examined in a phase II trial in 22 patients with advanced ovarian cancer 
in clinical remission. Patients received NY-ESO-1-vaccinia as a prime and 
NY-ESO-1-fowlpox as booster vaccinations. CD4 and CD8 T-cell responses 
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were induced and found to correlate with improved OS. Ovarian cancer patients 
showed a median PFS and OS of 21 and 48 months, respectively [ 112 ].   

    Immunomodulatory Therapy 

 Immunomodulatory therapy aims to tip the balance in the immunosuppressive TME 
from immune tolerance to immune reactivity. The traditional use of cytokines, 
including IL-2, IL-12, type I and II IFNs, and tumor necrosis factor α (TNF-α), as 
immunotherapeutic agents that broadly activate T cells has proven challenging due 
to systemic toxicity and has met with limited success in ovarian cancer [ 6 ,  113 ]. 
T-cell activation is regulated not only by costimulatory receptors (including CD28 
and CD137) but also by inhibitory receptors or checkpoints, which are induced 
 following TCR stimulation (Fig.  11.1 ). Therapeutic approaches that block the 
 suppressive signals of checkpoints (checkpoint blockade) or selectively target 
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  Fig. 11.1    The major T cell-based immunotherapeutic targets and their tumor or antigen- 
presenting cell ligands. The activation of T cells and their conversion to a cytotoxic phenotype is 
governed by a network of activating and inhibitory receptors. Using immunotherapeutic agents to 
increase activation and decrease inhibitory signaling has the potential to generate T cells with 
enhanced tumor lytic capacity.  APC  antigen-presenting cell,  GAL  galectin-9,  IDO  indoleamine 
2,3-dioxygenase,  ICOS  inducible T-cell costimulator,  MHC  major histocompatibility complex, 
 PD-1  programmed death 1,  PD-L  PD-1 ligand,  TCR  T-cell receptor,  TIM-3  T-cell immunoglobulin 
and mucin domain 3       
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immunosuppressive cells in the TME (such as Tregs) can sustain the activation and 
proliferation of tumor-specifi c T cells and represent one of the most rapidly moving 
and exciting areas in clinical oncology.

       Depleting Tregs 

   Targeting CD25: Anti-CD25 (Daclizumab) and Denileukin Diftitox 
 Tregs constitutively express the IL-2 receptor α chain (CD25). Daclizumab 
(Zenapax®, F. Hoffmann-La Roche) is an FDA-approved humanized IgG1 
mAb that binds to CD25. Traditionally used to inhibit T-cell proliferation in 
autoimmune disorders, it has recently been used to deplete Tregs in combina-
tion with a metastatic breast cancer vaccine. Daclizumab administration led to 
a marked and prolonged decrease in Tregs and boosted T-cell responses to all 
vaccine antigens in absence of autoimmunity [ 114 ]. Daclizumab is currently 
being evaluated in combination with a DC-based vaccine in ovarian cancer 
(NCT01132014). Another approach to targeting CD25 is through denileukin 
diftitox (Ontak®, Eisai), an FDA- approved engineered fusion protein of IL-2 
and diphtheria toxin. In a recent phase II trial of 28 patients with epithelial 
ovarian cancer, denileukin diftitox administration was well tolerated and sig-
nificantly depleted functional Tregs from blood and the TME, but showed no 
significant clinical efficacy [ 115 ]. Combination strategies with checkpoint 
blockade may improve clinical efficacy and have shown promise in preclinical 
studies [ 116 ].  

   Cyclophosphamide 
 Cyclophosphamide is a chemotherapeutic agent that has immunomodulatory 
activity when administered in repeated, low doses (metronomically). It depletes 
Tregs and restores T-cell function and has been used to augment antitumor immune 
responses of ACT and vaccination strategies [ 117 ]. In a phase I/II trial in 11 
patients with recurrent ovarian cancer, a single low dose of cyclophosphamide 
was explored as an adjuvant to a vaccine regimen of peptide-pulsed DCs. While 
the 3-year OS was 90 %, the single dose of cyclophosphamide did not reduce the 
number of circulating Tregs, and no signifi cant survival benefi t over controls was 
observed [ 118 ]. In another phase II trial in patients with recurrent ovarian cancer, 
low-dose cyclophosphamide administered prior to each dose of the p53-SLP vac-
cine led to p53-specifi c IFN-γ-producing T cells in 90 % of evaluable patients 
after two immunizations [ 119 ].   

    Checkpoint Blockade 
 Immune checkpoints tightly regulate the intensity and duration of the T-cell response 
and are critical for avoiding autoimmunity. These include the T-cell surface mole-
cules cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), 
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and lym-
phocyte activation gene-3 (LAG-3). In addition, the metabolic enzyme indoleamine 
2,3-dioxygenase (IDO), which catalyzes the rate-limiting step of the oxidative 
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catabolism of the amino acid tryptophan, regulates T-cell activation. By depleting 
tryptophan and generating the toxic metabolite kynurenine, IDO can inhibit T-cell 
proliferation and trigger cell cycle arrest and apoptosis. Kynurenine can also induce 
naive CD4 T cells into Tregs [ 120 – 123 ]. 

 Activation of immune checkpoint pathways in the TME, however, limits the anti-
tumor immune response. TILs upregulating the expression of checkpoints are hypo-
responsive or functionally exhausted [ 124 ]. In patients with ovarian cancer, a 
signifi cant fraction of antigen-specifi c CD8 TILs co-express LAG-3 and PD-1 and 
demonstrate impaired effector function [ 125 ]. Additionally, Tregs naturally express 
checkpoints and employ them to suppress effector T cells [ 124 ]. Moreover, 56 % of 
ovarian tumors have demonstrated IDO expression, which correlated with a reduced 
number of CD8 TILs and with reduced survival in serous (but not other) ovarian 
cancer histologies [ 126 ,  127 ]. IDO expression was also found to inhibit NK cell 
intratumoral accumulation and to promote tumor angiogenesis [ 128 ]. Reversing 
TME-mediated immunosuppression via targeting checkpoints with mAbs or inhibi-
tors, an approach coined “checkpoint blockade,” was found to boost immune 
responses and is becoming increasingly valuable in the clinic. 

   Anti-CTLA-4 (Ipilimumab) 
 CTLA-4 (CD152) is an inhibitory co-receptor and member of the B7-CD28 
immunoglobulin superfamily. It competes with the costimulatory receptor CD28 
for the ligands (B7 molecules) on APCs, leading to downregulation of T-cell 
activation. Ipilimumab (Yervoy®, BMS) is an FDA-approved human IgG1 mAb 
that blocks the CTLA-4/B7 interaction to restore CD4 and CD8 effector T-cell 
activation and can also deplete tumor-infi ltrating Tregs [ 129 ,  130 ]. Ipilimumab 
represents the fi rst standard-of-care immune checkpoint inhibitor, and the major-
ity of clinical experience is derived from studies in patients with melanoma. In a 
pilot study in two patients with advanced ovarian cancer previously vaccinated 
with GM-CSF- modifi ed irradiated autologous tumor cells (GVAX), a single dose 
of ipilimumab triggered a decrease or stabilization of CA-125 levels for several 
months [ 131 ]. In a subsequent study in additional nine patients, three patients 
had SD, and the extent of therapy-induced tumor necrosis correlated with the 
intratumoral CD8 T-cell/Treg ratio [ 132 ]. An ongoing phase II trial is studying 
ipilimumab as monotherapy in patients with recurrent platinum-sensitive ovarian 
cancer (NCT01611558). The primary drawback of ipilimumab is the high fre-
quency of immune-related adverse events (irAEs) like colitis or hypophysitis: 
approximately 25 % of patients experience an irAE, requiring aggressive man-
agement [ 133 ].  

   Anti-PD-1 (Nivolumab and Pembrolizumab) and Anti-PD-L1 (Several mAbs) 
 PD-1 is another co-inhibitory receptor member of the CD28/B7 immunoglobulin 
superfamily that binds to its ligands PD-L1 and PD-L2 (mainly expressed by epithe-
lial cells, DCs, and macrophages) to down-modulate the immune response [ 124 ]. In 
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addition to the high expression of PD-1 by TILs in ovarian tumors [ 10 ,  125 ], PD-L1 
was also found to be highly expressed by ovarian tumor cells and is negatively cor-
related with CD8 TIL counts and with survival [ 11 ]. PD-L1 tumor expression has 
also been implicated in promoting peritoneal dissemination of ovarian cancer [ 12 ]. 
The blockade of the PD-1 inhibitory pathway is being clinically explored using 
mAbs targeting either the receptor or its ligands and has so far proven less immuno-
toxic than ipilimumab. 

 Nivolumab (Opdivo®, BMS) is an FDA-approved human IgG4 anti-PD-1 mAb 
that is being investigated in ovarian cancer. In a phase I trial in 15 patients with 
advanced platinum-resistant ovarian cancer (regardless of PD-L1 expression), 
nivolumab was well tolerated and led to 3 PR and 4 SD, with an ORR of 17 % [ 134 ]. 
In a recent update, 2 patients with CR survived without disease progression for 17 
and 14 months each [ 135 ]. Another anti-PD-1 mAb is pembrolizumab (Keytruda®, 
Merck), an FDA-approved humanized IgG4 mAb. In a recent interim analysis of a 
phase Ib trial in 26 patients with heavily treated PD-L1 +  advanced ovarian cancer, 
pembrolizumab was well tolerated and achieved 1 CR, 2 PR, and 6 SD with a dura-
ble ORR of 11.5 % [ 136 ]. 

 Several mAbs that block PD-L1 are being investigated in numerous clinical trials 
that include ovarian cancer patients. Examples include avelumab (MSB0010718C, 
human IgG1, Merck Serono), BMS-936559 (human IgG4, BMS-ONO), 
MPDL3280A (human IgG1, Roche/Genetech), and durvalumab (MEDI4736, 
human IgG1, MedImmune). In an ongoing phase Ib trial in 75 patients with 
platinum- resistant or chemotherapy-refractory ovarian cancer (regardless of PD-L1 
expression), avelumab demonstrated an acceptable safety profi le and had an ORR 
of 10.7 % in 67 evaluable patients [ 137 ]. In a phase I trial involving 17 patients with 
ovarian cancer, BMS-936559 demonstrated safety and led to 1 PR and 3 SD lasting 
at least 24 weeks [ 138 ].  

   IDO Inhibitors (Indoximod, GDC-0919, and Epacadostat) 
 Indoximod (D-1-methyl-tryptophan (D-1-MT), NewLink Genetics) is the fi rst 
small-molecule IDO inhibitor to enter clinical trials. Preclinical studies in murine 
models of ovarian cancer have shown that IDO inhibition with the racemic com-
pound 1-MT is synergistic with chemotherapy and that the D (but not the L) race-
mer is responsible for the majority of antitumor activity [ 139 ,  140 ]. Another IDO 
inhibitor is the second-generation GDC-0919 (formerly NLG919, NewLink 
Genetics/Genentech) which specifi cally inhibits IDO1. Both inhibitors are currently 
being examined in several clinical trials for solid tumors. A third is the IDO1 inhibi-
tor epacadostat (INCB024360, Incyte Corporation) that is in several clinical trials 
for ovarian cancer either as monotherapy (NCT01685255 and NCT02042430) or in 
combination with peptide vaccines (NCT02166905 and NCT02575807) or check-
point blockade (NCT02178722 and NCT02327078). In a phase I trial in patients 
with advanced malignancies including ovarian cancer, 90 % inhibition of IDO activ-
ity was achieved [ 141 ].    
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     Combination Therapies 

 Combination immunotherapies can synergize to enhance clinical responses by 
enhancing different stages of the antitumor immune response (antigen uptake 
and presentation, T-cell activation, and T-cell response maintenance) and mod-
ifying various aspects in the TME (angiogenesis and immunosuppression). 
Combining checkpoint blockade with other immunotherapeutic strategies that 
have shown limited efficacy as monotherapies, such as vaccination, is an area 
of intensive research. For example, a phase I trial in six patients with recurrent 
ovarian cancer examined a DC-based autologous whole tumor lysate vaccine in 
combination with Treg- depleting metronomic cyclophosphamide, the antian-
giogenic mAb bevacizumab, and ACT (vaccine-primed ex vivo CD3/CD28-
costimulated peripheral blood autologous T cells). Antitumor immune 
responses (in the form of increased tumor- reactive T cells and reduced Tregs) 
and clinical benefit were observed in four patients, including 1 CR, 1 PR, and 
2 SD [ 142 ]. Checkpoint inhibitors in combination are also being clinically 
tested. For example, an ongoing phase I trial in patients with advanced solid 
tumors (including ovarian cancer) is evaluating the combination of tremelim-
umab (a humanized IgG2 anti-CTLA-4 mAb) with durvalumab (anti-PD-L1) 
(NCT01975831) [ 143 ]. Identification of the optimal immunotherapy combina-
tion will require evaluation of not only synergistic mechanisms of action and 
ideal sequence of dosing but also overlapping toxicities in order to maximize 
clinical benefit. 

   Conclusion s 

 Recent advances and rational immunotherapeutic combinations hold immense 
potential to improve outcomes for patients with ovarian cancer. Nonetheless, a 
number of challenges remain that are being critically addressed. 
Immunotherapies are typically administered in conjunction with or post che-
motherapy. Several chemotherapeutic drugs utilized in ovarian cancer exert 
immunostimulatory effects. Examples include platinum compounds (which 
reduce PD-L2 expression on DCs), trabectedin (which inhibits monocyte dif-
ferentiation into TAMs), and decitabine (which triggers a type I IFN response) 
[ 144 – 146 ]. Integrating immunotherapy with chemotherapy requires careful 
consideration of drugs, dosing, and schedule in order to neutralize the unwar-
ranted immunosuppressive effects and maximize the immunostimulatory 
effects of chemotherapy [ 147 ]. A second challenge is to better characterize the 
TME not only to identify the rare somatic mutations that are immunogenic but 
also to understand host-tumor interactions. Like other cancers, ovarian cancer 
is heterogenic, and recent gene expression profi ling studies have recognized 
several distinct molecular subtypes with markedly different prognoses [ 148 ]. 
Identifying dominant immunosuppressive pathways as well as collateral path-
ways can improve response rates in immunotherapy by improving the design 
of combination treatment regimens [ 149 ,  150 ]. Lastly, identifi cation of 
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 biomarkers that predict response to immunotherapies will allow patients to be 
optimally matched with therapies that are expected to deliver the maximum 
benefi t while minimizing unnecessary toxicity.       
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