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Abstract
This chapter contains the basic theory of small-angle X-ray scattering (SAXS) and its
applications to low-resolution studies of nanostructured materials. The primary
purpose is to explain how to obtain structural information from simple systems
whose low-resolution structure can be described by a two-electron density model,
consisting of either homogeneous nanoparticles embedded in a (solid or liquid)
medium with constant electron density or two-phase bicontinuous systems. The
presented SAXS theory and the examples of applications refer to different procedures
for determinations of geometrical parameters associated to nanoparticles or clusters
in dilute solution, spatially correlated nanoparticles, and more general two-phase
systems, namely, particle radius of gyration, interface area, size distribution, fractal
dimension, and interparticle average distance. Other described applications are in situ
SAXS studies of mechanisms involved in transformation processes leading to
nanostructured materials such as those occurring in nanophase separation and
along the successive steps of sol-gel routes. One section is dedicated to present the
basic concepts and describes an application of grazing incidence small-angle scat-
tering (GISAXS), which allows for studying nanostructured thin films and thin layers
located close to the external surface of solid substrates. Most of the reported
applications refer to nanostructured materials obtained by sol-gel processing and
are based on experimental results published by the author and collaborators.

Introduction

This chapter describes the basic theory of small-angle X-ray scattering (SAXS) and
reports a number of examples of application of this experimental technique to
low-resolution structural investigations. Several examples also show how SAXS is
applied to the characterization of transformation mechanisms in different nanomaterials.

Sol-gel processing starts from colloidal particles in liquid solution and often leads
to solid materials with interesting properties. Along all steps of sol-gel transforma-
tions the nanoscopic nature of the structure is preserved. This chapter includes several
applications of SAXS technique to in situ characterizations of precursor systems
starting from liquid sols up to final solid nanostructured materials.

The basic process of the scattering of X-rays by materials is the photon–electron
interaction. As it will be seen along this chapter, the complex amplitude (or modulus
and phase) of the electromagnetic wavelets associated to photons elastically
scattered in all directions by any material, is related to the tridimensional electron

density function ρ r
!� �

through a Fourier transformation.

1186 A. F. Craievich



The electron density function ρ r
!� �

fully describes the structure of materials; thus

the ultimate goal of crystallographers and materials scientists is to determine this
function, starting from experimental X-ray scattering patterns. Although this detailed
information is not in practice fully obtained, relevant and useful structural features
can generally be inferred.

A typical SAXS setup is schematically shown in Fig. 1a. This technique provides
useful structural information about heterogeneities in electron density sized within
the range ~5 to 500 Å, these limits depending on the photon energy, sample-to-
detector distance, size of the beam-stopper and geometry of the X-ray detector. Very
large objects as compared to the X-ray wavelength (with a size above, say, 1 μm)
produce noticeable scattering intensity only within an extremely small angular

Fig. 1 (a) Schematic SAXS setup. (b) X-ray beam paths from the source (left) to the detector
(right), both located far away from the sample. The total segmentΔs ¼ ABþ BC is the optical path

difference associated to the X-ray scattering by electrons in two elements of volumed r
!
, from which

the phase shift is determined
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domain close to the direction of the incident beam. Thus in this case the scattered
photons hit the incident beam-stopper and are not recorded by the X-ray detector.

Notice that the X-ray scattering intensity patterns within the “small-angle” range
do not contain any information about the very short wavelength modulations in
electron density associated to the atomic nature of the material, the effects from them
only appearing in the scattering intensity profiles recorded at wide angles.

Basic Theory

General Equations

The intensity associated to electromagnetic waves elastically scattered by an electron
was derived by Thompson. Since the amplitude of the X-ray wave scattered by an
electron has a well-defined phase relation with the amplitude of the incident wave,
interference between scattered wavelets occurs. For a nonpolarized incident X-ray
beam with intensity I0, the intensity associated to the wavelets scattered by one
electron per unit solid angle Ω, is Ie 2θð Þ ¼ I0 1þ cos22θð Þ=2½ �:r2e , where 2θ is the
scattering angle (i.e., the angle between the wave-vectors of incident and scattered
photons), and re is the classical electron radius. The X-ray intensity associated to the
elastic scattering by an electron at small angles per unit of incident beam intensity
and per unit of solid angle can be considered as a constant, Ie ¼ r2e . Using this
approximated value, the relative error in Ie for 2θ up to 8� is <1%.

In addition to coherent elastic X-ray scattering, electrons also produce inelastic
Compton scattering. Since in Compton scattering there is no phase relationship
between incident and scattered waves, the scattered wavelets do not interfere, and
thus the total scattering intensity is not modulated by structural effects. On the other
hand, since the intensity of Compton scattering within the small angle range is weak,
its contribution is in practice neglected.

Let us now consider an incident monochromatic and narrow X-ray beam with

wave-vector k
!
0 hitting a material with an arbitrary structure defined by its electron

density function ρ r
!� �

and a generic scattering direction defined by the wave-vector

k
!
, as shown in Fig. 1b. Since Thompson scattering is an elastic interaction, the

moduli of k
!
0 and k

!
are both equal to 2π/λ, λ being the X-ray wavelength.

The contribution from each volume element to the total amplitude of the

scattered wave in a direction defined by the wave-vector k
!

is equal to the
amplitude of the wavelet scattered by one electron, Ae, multiplied by the number

of electrons in the volume element d r
!
and by a factor that accounts for the effect of

phase shift Δφ, i.e., dA ¼ Aeρ r
!� �

d r
!
eiΔφ. Thus the total scattering amplitude is

the integral over the whole sample volume V of the electron density function
multiplied by a phase factor eiΔφ.
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The difference in optical pathsΔs associated to two wavelets corresponding to the
scattering by electrons contained in two volume elements as shown in Fig. 1b is
equal to ABþ BC: Thus the phase shift is Δφ ¼ 2π ABþ BC

� �
=λ or, equivalently,

Δφ ¼ � k
!
: r
! � k

!
0: r

!� �
. Defining the so-called scattering vector as q

!¼ k
! � k

!
0,

the phase shift becomes Δφ ¼ � q
!
: r
!
. Thus the total scattering amplitude asso-

ciated to the whole sample volume V is

A q
!� �

¼
ð
V

ρ r
!� �

e�i: q
!
: r
!
d r
!

(1)

Since the scattering amplitude Ae and scattering intensity Ie ¼ Aej j2 appear as a factor
many times along this chapter, in Eq. 1 and in further equations Ie and Ae are set
equal to 1 for brevity.

As it can be verified in Fig. 1b, the modulus of the scattering vector q
!

is
q ¼ 4π=λð Þ sin θ , θ being half the scattering angle. Since sin θ � θ for small
angles, the modulus of the scattering vector in SAXS experiments is approxi-
mately proportional to the scattering angle.

Equation 1 yields the amplitude of the scattered waves under the assumptions of
the kinematical theory of X-ray scattering, disregarding multiple scattering and
absorption effects (Guinier and Fournet 1955). Equation 1 implies that the total

amplitude A q
!� �

is the Fourier transform of the electron density function ρ r
!� �

.

Consequently, the electron density ρ r
!� �

can be determined by inverse Fourier

transformation of the function A q
!� �

:

ρ r
!� �

¼ 1

2πð Þ3
ð
A q

!� �
ei: q

!
: r
!
d q
!

(2)

The function A q
!� �

corresponds to the amplitude of the scattered waves defined in

the reciprocal or Fourier space ( q
!

space). Notice that the amplitude A q
!� �

is a

complex function specified by its real and imaginary parts or, alternatively, by its
modulus and phase.

Taking into account the mathematical properties of Fourier transformation, the

electron density ρ r
!� �

, which defines the high-resolution material structure (i.e., the

precise atomic configuration), can be determined only if the complex function A q
!� �

is known over a large volume in q
!
space. On the other hand, if the amplitudeA q

!� �
is

determined within a small volume in q
!
space close to q

!¼ 0 (i.e., at small scattering
angles), Eq. 2 only yields the low-resolution features of the structure.
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A fundamental difficulty arises in the analysis of results of scattering experiments
because usual X-ray detectors count photons, i.e., what is experimentally determined

is the scattering intensity I q
!� �

and not the modulus and phase of the amplitude

A q
!� �

. Since I q
!� �

¼ A q
!� �

� A q
!� ��

¼ A q
!� ���� ���2, the square root of the measured

I q
!� �

function yields the modulus of the scattering amplitude A q
!� ���� ���, its phase

remaining unknown. Thus Eq. 2 cannot directly be applied to determine the electron

density function ρ r
!� �

: This is the known phase problem that crystallographers and

materials scientists face when they try to determine atomic structures from results of
X-ray scattering experiments.

Since the phase of the scattering complex amplitude A q
!� �

cannot be experi-

mentally determined, it seems useful to establish which is the function related to the
structure and defined in the direct space that can be obtained by inverse Fourier

transformation of the experimental scattering intensity I q
!� �

.

The electron density ρ r
!� �

can be written as an average density ρa plus local

deviations defined byΔρ r
!� �

, so as ρ r
!� �

¼ ρa þ Δρ r
!� �

:By substituting ρ r
!� �

in Eq. 1, the scattering amplitude becomes

A q
!� �

¼
ð
V

ρae
� q

!
: r
!
d r
! þ

ð
V

Δρ r
!� �

e� q
!
: r
!
d r
!

(3)

For a macroscopic sample with a volume V and large dimensions compared to the
X-ray wavelength, the first integral yields nonzero values only over an extremely small
q range close to q = 0, which is not reached in typical SAXS experiments. Thus, the

scattering intensity, I q
!� �

¼ A q
!� �

:A q
!� ��

over the accessible q
!
range is given by

I q
!� �

¼
ð ð

V

Δρ r
!

1

� �
Δρ r

!
2

� �
e� q

!
: r

!
1� r

!
2ð Þd r!1d r!2 (4)

Putting r
!
1 � r

!
2 ¼ r

!
; Eq. 4 becomes

I q
!� �

¼ V

ð
V

γ r
!� �

:e� q
!
: r
!
d r
!

(5)

where

γ r
!� �

¼ 1

V

ð
V

Δρ r
!0

� �
Δρ r

!0þ r
!� �

d r
!0 ¼ Δρ r

!0
� �

Δρ r
!0þ r

!� �D E
(6)
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the symbol < > indicating the average over the analyzed sample volume V.

As indicated by Eq. 6 the function γ r
!� �

– named correlation function (Debye

and Bueche 1949) – is the volume average of the product of Δρ in two volume

elements connected by the vector r
!
. The correlation function γ r

!� �
is determined

from the experimental scattering function I q
!� �

by inverse Fourier transformation:

γ r
!� �

¼ 1

2πð Þ3V

ð
I q

!� �
ei q

!
: r
!
d q
!

(7)

Provided that ρ r
!� �

is known, the correlation function γ r
!� �

can be determined

by applying Eq. 6. But, inversely, from a known γ r
!� �

function, ρ r
!� �

cannot be

unambiguously inferred.
For isotropic systems, the correlation function is independent of the direction of

the vector r
!
, i.e., γ r

!� �
becomes γ(r) and, consequently, the scattering intensity, I(q),

is also isotropic. For isotropic systems the function e�i q
!� r! is replaced in Eq. 5 by its

spherical average e�i q
!
: r
!D E

Ω
¼ sin qr=qr. Thus Eqs. 5 and 7, respectively, become

I qð Þ ¼ V

ð1
0

4πr2γ rð Þ sin qr
qr

dr (8)

γ rð Þ ¼ 1

2πð Þ3V

ð1
0

4πq2I qð Þ sin qr
qr

dq (9)

A useful procedure that is often applied to characterize low-resolution structures,
circumventing the phase problem, is to begin with an initial model described by a

guessed electron density functionρ r
!� �

. The scattering amplitude is thus determined

by using Eq. 1 and then the resulting scattering intensity I q
!� �

¼ jA q
!� �

j2 is

compared to the experimental intensity function. The use of ad hoc computer pro-
grams allows for many iterations and modifications of the structure model, until a
good fit of the calculated function to the experimental curve is achieved. This
procedure is, for example, applied to the determination of low-resolution structures
(envelope functions) of proteins in dilute solution (Svergun 1999).

For materials consisting of isolated (in general nonidentical) nanoparticles embed-
ded in a homogeneous matrix, the scattering intensity I(q) is often modeled under the
assumption of simple shapes and taking also into account eventual effects from
spatial correlation. The model function is then fitted to the experimental scattering
curves. An eventual good fitting justifies a posteriori the proposed model and yields
the adjusted parameters that characterize the structure of the studied material.
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In another procedure, which is often applied to study structural transformations in
materials subjected to isothermal annealing, the isotropic correlation function γ(r) is
theoretically determined starting from basic thermodynamic and/or statistical con-
cepts (Cahn 1965; Lebowitz et al. 1982). This is followed by the determination of
I(q) for increasing periods of time using Eq. 8 and further comparison of the series of
model functions with the sequence of experimental SAXS curves determined in situ
along the structural transformation. This procedure is applied, for example, to verify
the correctness of theoretical models of particle growth and structure coarsening.

Small-Angle Scattering by Nanoscopic Two-Phase Systems:
Porod’s Law

This section deals with isotropic biphasic materials, i.e., isotropic two-electron
density systems with sharp interfaces, such as those schematically drawn in
Fig. 2a, b. In this model the relevant parameters are the electron densities ρ1 and
ρ2 and the volume fractions φ1 and φ2=1�φ1. This model is applied to characterize
different nanostructured materials such as nanoporous solids, nanocrystals, or dis-
ordered nanoclusters embedded in solid or liquid media, etc.

The general properties of Fourier analysis tell us that the asymptotic trend, at high
q, of the scattering intensity I(q) is connected to the behavior of the γ(r) function at
small r. For isotropic two-electron density systems, the correlation function γ(r) can
be approximated at small r by (Porod 1982):

γ rð Þ ¼ ρ1 � ρ2ð Þ2φ1 1� φ1ð Þ 1� S

4Vφ1 1� φ1ð Þ r
� �

(10)

Fig. 2 Schematic examples of two types of biphasic structures or two-electron density systems.
(a) Set of isolated spherical nano-objects with a constant electron density ρ1 embedded in a
homogeneous matrix with electron density ρ2. (b) Bicontinuous structure, both phases with constant
electron densities ρ1 and ρ2
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where S/V is the area of the interface per unit sample volume. Replacing γ(r) given by
Eq. 10 in Eq. 8 and solving the integral, the leading term of the asymptotic intensity
I(q), at high q, is given by (Porod 1982)

I qð Þ ¼ 2π ρ1 � ρ2ð Þ2S
q4

q ! 1ð Þ (11)

Equation 11, named Porod law, applies to isotropic two-electron density systems
with sharp interfaces, such as disordered porous materials and other two-phase
systems whose relevant structural feature is their interface surface area.

Porod’s law applies to either dilute or concentrated systems of isolated nano-
objects, provided they are not very thin sheets or very narrow cylinders, for which
the asymptotic intensities are proportional to 1/q2 and to 1/q, respectively (Shull
and Roess 1947). Equation 11 does not hold for sets of identical spherical or
cylindrical nano-objects, because in these cases the SAXS intensity exhibits
oscillations even at very high q. By analyzing the features of such oscillations, it
is possible to determine the distance between the parallel portions of the interfaces
(Ciccariello 1991). However, if the spherical or cylindrical nano-objects have a
wide size distribution, the oscillations smear out and the asymptotic Porod’s law
holds. For anisotropic two-electron density systems, Porod’s law still applies along

all q
!
directions, but the parameter S in Eq. 11 has a different meaning (Ciccariello

et al. 2002).
The behavior of I(q) at high q is often analyzed using I(q)q4 vs. q4 plots. Equation 11

implies that I(q)q4 becomes asymptotically constant in the high-q limit but, for many
materials, the SAXS intensity also contains an additional and q-independent contri-
bution from short-range density fluctuations in their phases (Ruland 1971). For these
materials, the asymptotic I(q)q4 vs. q4 plot, at high q, is expected to exhibit a linear
dependence (i.e., I(q)q4 = a + b q4) with a positive slope (b > 0). Extrapolation of
the linear portion of the I(q)q4 function toward q4 = 0 yields I(q)q4(q = 0) = a.
By substituting this value in Eq. 11, the interface area between both phases, S, is
determined. On the other hand, Ruland (1971) demonstrated for two-phase
systems with a smooth transition in electron density between both phases, that the
asymptotic I(q)q4 vs. q4 plot at high q also exhibits linear dependence but in this case
the slope is negative (b < 0).

From Eq. 9 it can be verified that γ(0)=Q/(2π2V ), where Q is the integral defined

as Q ¼
ð1
0

q2:I qð Þdq. On the other hand, for two-electron density systems, γ(0) is

equal to ρ1 � ρ2ð Þ2φ1 1� φ1ð Þ (Eq. 10), so as the integral Q becomes`

Q ¼
ð1
0

q2I qð Þdq ¼2π2 ρ1 � ρ2ð Þ2Vφ1 1� φ1ð Þ (12)

The integral Q depends on the electron density contrast factor (ρ1 – ρ2)
2 and volume

fractions of both phases but not on the specific features of their geometrical
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configuration. For example, along structural transformations that preserve both
electron densities and phase volume fractions, even though the structure and,
consequently, the shape of the scattering intensity curves change, the integral Q is
expected to remain constant. Therefore, the integral Q is named “Porod invariant.”
Examples of transformations that occur without significantly affecting the value of
the integral Q are the processes of growth of homogeneous nanoclusters by mech-
anisms of coarsening or coalescence.

For the determination of the interface surface area S by applying Eq. 11 the
measurement of the scattering intensity in absolute units is required (See “Appendix:
Experimental Issues”). Moreover, from Eqs. 11 and 12, the following equation is
derived:

S

V
¼ π:φ1 1� φ1ð Þ I qð Þq4½ �q!1

Q
(13)

Thus, if the scattering intensity is only known in relative scale and provided the
phase volume fractions are known, Eq. 13 allows for the determination of the
specific interface surface area (S/V). Equation 13 is often applied to powdered
samples, for which the precise measurement of the scattering intensity in absolute
units is difficult.

Small-Angle Scattering by Spatially Uncorrelated Nanoparticles:
Guinier’s Law

The wavelets associated to the X-ray scattering by a dilute set of spatially
uncorrelated nano-objects do not interfere. Under this condition and provided the
objects are identical and centrosymmetric, the total scattering intensity I(q) is
expressed as

I qð Þ ¼ NI1 qð Þ (14)

where N is the number of nanoparticles and I1(q) is the SAXS intensity produced by
a single nanoparticle.

By solving Eq. 8 for an arbitrary correlation function γ(r) associated to a single
nano-object, it can be demonstrated (Guinier and Fournet 1955) that the SAXS
intensity at small q is given by

I qð Þ ¼ N Δnð Þ2e�R2
gq

2=3 q ! 0ð Þ (15)

where Δn is the excess in number of electrons inside the nano-objects and Rg

their radius of gyration. For nano-objects with volume V1 and constant electron
density ρ1, embedded in a homogeneous matrix with electron density ρ2,
the number of electrons in excess is Δ n ¼ ρ1 � ρ2ð ÞV1 and the radius of
gyration is
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Rg ¼
ð
V1

r2d r
!
=V1

	 
1=2

(16)

Equation 15 is named Guinier law.
In order to derive the radius of gyration Rg of nano-objects from results of

SAXS measurements, the Guinier plot (log I vs. q2) is applied. In this plot, a
straight line is expected to be observed at small q, within a more or less wide
q range depending on the size and shape of the objects (Guinier and Fournet
1955). From the slope αG of the straight line in Guinier plots, the radius of

gyration is determined; Rg ¼ 3 �αG=log:eð Þ½ �1=2 ¼ 2:628: αGj j1=2 . For example,
the radius of gyration of homogeneous spherical objects is related to their
radius R by Rg = (3/5)1/2R and that of homogeneous cylinders with radius

R and height H by Rg ¼ R2=2
� �þ H2=12

� �� �1=2
. Guinier plots are also applied

to determine the SAXS intensity at q = 0, I(0), by linear extrapolation of log I
(q2) to q2 = 0.

The total SAXS intensity produced by a dilute set of nano-objects with a
distribution of radii of gyration N(Rg) is given by the sum of the individual contri-
butions of each object. For this system Guinier’s law also holds but the derived
parameters are weighted averages. For example, for two-electron density systems
consisting of a isotropic and polydisperse set of N spatially uncorrelated nano-
objects, Eq. 15 becomes

I qð Þ ¼ N ρ1 � ρ2ð Þ2 V2
1


 �
e�hRgi2Gq2=3 q ! 0ð Þ (17)

where<V1
2> is the average of V1

2 and< Rg>G is a weighted average (named Guinier
average) defined as

Rg


 �
G
¼

ð
N Rg

� �
V2
1R

2
gdRgð

N Rg

� �
V2
1dRg

2
664

3
775
1=2

(18)

with

ð
N Rg

� �
dR ¼ N. Notice that the <Rg>G averaging weights more large objects

than small ones. For a polydisperse set of spherical nano-objects, Eq. 18 becomes

Rh iG ¼

ð
N Rð ÞR8dRð
N Rð ÞR6dR

2
664

3
775
1=2

¼ R8

 �
R6

 �

" #1=2

(19)

Guinier law is usually applied to determine the radius of gyration of nano-objects
with narrow size distribution. For highly polydisperse systems, the q range over
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which Guinier law holds is small and Guinier plot yields a weighted average of the
radius of gyration far from the arithmetic average and strongly biased toward those
of the largest objects. This effect is schematically described for two sets of spherical
objects with same arithmetic average radius <R> = 40 Å but different widths of
radius distribution, as shown in Fig. 3a. For these two systems the slopes of the linear
portion of Guinier plots and, consequently, the average radius <R>G derived by
applying Guinier law are different (Fig. 3b). The extrapolated intensity I(0) for
polydisperse systems, being proportional to the average <V1

2>, also depends on
the shape of the radius distribution.

From Eq. 15, it can be inferred that the experimental SAXS intensity extrapolated
to q= 0 corresponding to a dilute set ofN identical objects is given by I(0)=N (Δn)2.
For two-electron density systems composed of a dilute set of N nano-objects, each of
them with volume V1 and electron density ρ1, embedded in a matrix with electron
density ρ2, the SAXS intensity at q = 0 is

I 0ð Þ ¼ N ρ1 � ρ2ð Þ2V2
1 (20)

Fig. 3 (a) Narrow N1(R) and
wide N2(R) radius
distributions of spheres with
same arithmetic radius
average <R> = 40 Å.
(b) Guinier plots of SAXS
intensities G1 and G2, at small
q, corresponding to the radius
distributions N1(R) and
N2(R), respectively. The
magnitude of the slope of the
linear part of the log I vs. q2

plot at small q and the
extrapolated intensity I
(0) associated to the radius
distribution N2(R) are both
higher than for N1(R)
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For dilute solutions we have φ1V ¼ NV1 and 1� φ1ð Þ � 1 so as Eq. 12 becomes

Q ¼ 2π2N ρ1 � ρ2ð Þ2V1 . Thus, regardless the object shape, its volume V1 can be
determined from the quotient I(0)/Q as follows:

V1 ¼ 2π2
I 0ð Þ
Q

(21)

Equation 21 can also be applied to polydisperse systems, the result being in this case
the quotient between averages, <V1

2>/<V1>.
Identical anisotropic objects with same orientation produce anisotropic scattering

patterns, i.e., the scattering intensity depends on the direction of the vector q
!
. In the

limit of small q
!
, Guinier law becomes (Guinier and Fournet 1955)

I qDð Þ ¼ N ρ1 � ρ2ð Þ2V2
1e

�R2
Dq

2
D (22)

where qD refers to the component of q
!

in the direction along which the scattering
intensity is measured and RD is the inertia distance of the object in the same
direction, from a perpendicular plane containing the center of “mass” of the electron
density function.

If the system is composed of identical and anisotropic nano-objects that are
randomly oriented, the resulting scattering intensity is isotropic. In this case, the
structural parameter determined by applying Guinier law (Eq. 15) is the radius of
gyration of the nano-objects.

Dilute Sets of Nanoparticles

Spherical Nanoparticles

Schematic views of monodisperse and polydisperse sets of spherical nano-objects
are shown in Fig. 4a, b, respectively. The scattering intensity associated to a single
spherical and homogeneous nano-object embedded in a homogeneous matrix, with
spatially constant electron densities ρ1 and ρ2, respectively, is derived from the
amplitude A1(q) defined by Eq. 3. For a spherical nano-object with radius R the
scattering intensity is given by

I1 qð Þ ¼ A1 qð Þj j2 ¼ ρ1 � ρ2ð Þ
ðR
0

4πr2
sin qr

qr
dr

� �2
(23)

By solving the integral, Eq. 23 becomes

I1 qð Þ ¼ ρ1 � ρ2ð Þ 4π=3ð ÞR3Φ q,Rð Þ� �2
(24)

where Φ(q, R) is
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Φ q,Rð Þ ¼ 3
sin qR� qR cos qR

qRð Þ3

Thus the total scattering intensity produced by a dilute (spatially uncorrelated) set of
N identical spheres is I(q) = NI1(q), i.e.,

I qð Þ ¼ N ρ1 � ρ2ð Þ2 4π

3
R3:

	 
2

Φ q,Rð Þ½ �2 (25)

The scattering intensity given by Eq. 25 is plotted in Fig. 4a, for identical spheres
with radius R = 40 Å. At high q the intensity function exhibits several secondary
maxima and zeros, the different zeros being located at qR = 4.50, 7.72, 10.90 . . .

The scattering intensity related to a dilute set of N spherical nano-objects with a
radius distribution defined by N(R) is calculated by

I qð Þ ¼
ð
N Rð ÞI1 q,Rð ÞdR (26)

Fig. 4 Schematic views of systems composed of dilute sets of (a) monodisperse and (b) polydis-
perse sets of spherical nano-objects. (c) Scattering intensities corresponding to three samples
containing spherical objects with the same average radius<R> = 40 Å and a Gaussian distribution
N(R) with three different standard deviations: σ = 0, σ = 5 and σ = 15 Å
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where I1(q, R) is the scattering intensity produced by a single sphere (Eq. 24).
The scattering intensity curves related to three dilute sets of spherical objects, with

different Gaussian radius distributions and same arithmetic average radius<R>= 40 Å,
are plotted in Fig. 4c. The standard deviations of the Gaussians are σ = 0 (monodisperse
system), 5 Å and 15 Å. It can be noticed in Fig. 4 that, for increasing polydispersivity,
the secondary maxima and zeros progressively smear out. On the other hand, in this case
the intensity I(0), being proportional to <V1

2> or <R6>, is higher for wider radius
distributions.

The radius distribution N(R) of a dilute and polydisperse set of spherical
nanoparticles can be derived from the measured I(q) functions by solving the integral
Eq. 26. For this purpose, the program package named GNOM (Svergun 1992) is
often used. The output of GNOM yields the volume weighted distribution function,
D(R), related to N(R) for spheres by D(R) = (4π/3)R3N(R). GNOM is also applied to
determine the volume distribution function of nano-objects with other simple shapes.
Moreover the intensity function I1(q) related to objects with complex shapes can be
independently determined and used as an input file in GNOM program.

Application (Example 1): PbTe Nanocrystals Embedded in a Silicate
Glass

An experimental SAXS study of a system composed of PbTe nanocrystals embedded
in a silicate glass was performed by Craievich et al. (1997). This nanostructured
material exhibits interesting nonlinear optical properties in the infrared, making it
potentially useful for applications to telecommunication devices. A silicate glass
doped with Pb and Te was held at high temperature, quenched by splat-cooling down
to room temperature and then submitted to an isothermal annealing at 650 �C.
Initially, isolated Pb and Te atomic species diffuse through the supersaturated glass
and nucleate PbTe nanocrystals which progressively grow.

A number of SAXS intensity curves were successively recorded in situ, along the
whole annealing process. The experimental results are displayed in Fig. 5. The
SAXS intensity progressively increases for increasing annealing time. At high q,
the intensity curves exhibit satellite peaks or secondary maxima that are character-
istic of the scattering function associated to a set of spheres with nearly identical
radius. The secondary maxima progressively shift toward smaller q, as expected for a
set of growing nanospheres (Eq. 25). Because of the high statistical dispersion in the
scattering intensities at high q, the secondary maxima are not clearly apparent in the
curves corresponding to early stages of nanocrystal growth. The positive deviation
of the experimental points from the theoretical modeled curve, at very small q,
indicates the existence of additional and rather large heterogeneities in electron
density in the glass matrix.

The experimental SAXS curves displayed in Fig. 5 were well fitted by model
functions defined by Eq. 26, which applies to dilute sets of spherical objects,
assuming a time-varying average nanocrystal radius and a Gaussian radius distribu-
tion, N(R), with a time-independent relative standard deviation σ/<R> = 0.08.
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For the sample held 2 h at 650 �C, the best fit of the model scattering curve led to
<R> = 32.5 Å and σ = 2.6 Å. The time dependence of the average radius <R>
agrees with the prediction of the classical theory for nucleation and growth of
spherical precipitates in a homogeneous matrix.

Application (Example 2): Clustering of Colloidal ZnO Nanoparticles

Powders consisting of ZnO nanoparticles produced by sol-gel route are used as
precursors for developments of new materials with interesting properties. The first
step of the sol-gel route leading to ZnO solid nanoparticles is the formation of a
liquid suspension of zinc acetate in ethanol, to which LiOH is added under ultra-
sound treatment.

An in situ SAXS study was performed in order to characterize the first steps of
aggregation of ZnO nanoparticles in liquid solution (Tokumoto et al. 1999). The
different experimental scattering functions, recorded after increasing periods of time
at 40 �C, were analyzed by assuming that the system is dilute and that the colloidal
nano-objects are spherical. In order to determine the radius distribution of the
particles, the integral Eq. 26 was solved by using GNOM program (Svergun and
Semenyuk 1991; Svergun 1992). GNOM was applied to all experimental scattering
curves of the studied ZnO-based suspension corresponding to different aggregation

–0.2
0

2

4

6

8

10

–0.1

Lo
g 

in
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

0.0

q (Å–1)

0.1 0.2 0.3

Fig. 5 Scattering intensity curves recorded in situ, corresponding to a dilute set of spherical PbTe
nanocrystals embedded in a homogeneous silicate glass, during isothermal growth at T = 650 �C.
The period of time for nanocrystal growth increases from 19 up to 119 min from bottom to top. The
continuous line is the best fits of Eq. 26 using a Gaussian N(R) function with a time-varying radius
average and a constant relative standard deviation σ/<R> = 0.08. The curves are vertically
displaced for clarity (Reprinted with permission from Craievich et al. (1997). Copyright 1997 by
the International Union of Crystallography)
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times, thus yielding the set of volume weighted radius distribution functions D(R)
plotted in Fig. 6.

The shape of the D(R) function and its time variation (Fig. 6) suggested that the
kinetics of formation of ZnO clusters is characterized by two main stages. During the
first stage, a growing peak centered at R = 17 Å is apparent, indicating a continuous
formation of small clusters. The number of clusters increases monotonously for
increasing reaction time, while their average radius,<R> = 17 Å, remains constant.
During the second stage, the volume weighted distribution exhibits a still growing
peak at 17 Å, while the formation and growth of a second peak corresponding to an
initial average particle radius <R> = 60 Å is also apparent. This peak shifts
continuously toward higher R values, up to 110 Å, along a period of time of 2 h.
The described time variation of the volume weighted distribution function clearly
evidences the continuous formation of colloidal primary clusters and their simulta-
neous aggregation and growth.

Concentrated Sets of Nanoparticles

Spatially Correlated Spherical Nanoparticles

Many sol-gel based isotropic nanomaterials consist of spatially correlated
nanoparticles embedded in a homogeneous matrix. Examples are concentrated
colloidal sols (solid nanoclusters embedded in a liquid medium) and solid hybrid

150
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R (Å)
50

0

Tim
e

Fig. 6 Time-dependent
volume weighted radius
distribution, D(R), for
ZnO-based colloidal particles
in liquid suspension
maintained inside a sealed cell
during SAXS measurements.
The time of growth increases
from 10 up to 120 min. The
D(R) functions were derived
from the set of experimental
SAXS curves by applying the
GNOM program (Reprinted
with permission from
Tokumoto et al.(1999).
Copyright 1999 by Elsevier)
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nanomaterials (inorganic clusters embedded in a solid polymeric matrix). Two
models of SAXS functions associated to different types of systems composed of
spatially correlated nano-objects will be described, one of them containing identical
nanoclusters and another consisting of a two-level hierarchical structure.

The total scattering intensity produced by a set of identical and spatially corre-
lated nano-objects is affected by interference effects, thus Eq. 14 does not hold. For
isotropic systems composed of a set of N spatially correlated spherical (or more
generally centrosymmetrical) nano-objects, the SAXS intensity is given by

I qð Þ ¼ NI1 qð ÞS qð Þ (27)

where S(q) is the structure function that accounts for interference effects produced by
spatial correlation. For a set of nano-objects without long-range order, the structure
function S(q) tends asymptotically to 1 at high q. For a set of spatially uncorrelated
nano-objects S qð Þ ¼ 1over the whole q domain, and thus Eq. 27 becomes equivalent
to Eq. 14.

A semiempirical structure function that is often applied to describe spatial
correlation in isotropic systems composed of spherical nano-objects embedded in a
homogeneous matrix, derived using the Born–Green approximation, is given by
(Guinier and Fournet 1955):

S qð Þ ¼ 1

1þ kΦS qð Þ (28)

where k, named “packing factor,” is associated to the degree of compactness of the
local structure (for the closest packing of spheres kmax is equal to 5.92) and Φs(q) is

ΦS qð Þ ¼ 3
sin qd � qd cos qd

qdð Þ3 (29)

where d is the average distance between the spatially correlated nano-objects.
Several examples of models for scattering intensity functions are displayed in

Fig. 7a, b. These functions are determined by Eq. 27 with S(q) given by Eq. 28 for a
set of spheres with same radius, R = 10 Å, and different d and k values. The intensity
curves displayed in Fig. 7a show that the q value corresponding to the maximum of the
scattering curves, qmax, decreases for increasing average distances. On the other hand,
the different curves plotted in Fig. 7b indicate that increasing values of packing factor
k yield more pronounced and well-defined scattering peaks. A rough estimate of the
average distance between particles is usually inferred by applying the simple equation
d = 2π/qmax. However, by analyzing the curves plotted in Fig. 7a, it can be verified
that the equation d= 5.6/qmax yields a better estimate of the average distance. Anyway,
the determination of a more precise average distance between particles requires the
fitting of a model intensity function to the whole experimental intensity curve.

Even for nano-objects that are not spherical but instead exhibit a globular shape,
the structure function given by Eq. 28 is usually applied as a good approximation.
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This structure function is also applied to model scattering intensity curves associated
to materials composed of polydispersed nano-objects with narrow radius
distributions.

Many hybrid materials prepared by the sol-gel process were studied by SAXS.
Some of these hybrid materials are composed of a isotropic set of inorganic
nanoclusters embedded in a polymeric matrix. The heterogeneous nature of these
nanostructured materials is characterized by using a simple two-electron density
model consisting of high electron density clusters embedded in a low electron
density matrix (Dahmouche et al. 1999). Certainly, the polymeric phase exhibits
electron density fluctuations at molecular level that also produces small-angle
scattering, but their contribution to the total scattering intensity is assumed to be
weak and/or not strongly varying with q. The basic assumption here is that the
dominant contribution to small-angle scattering intensity comes from the electron
density contrast between inorganic nanoclusters and polymeric matrix.

Some materials are heterogeneous at multiple scale levels. For example,
nanometric clusters may segregate and form cluster-rich domains embedded in a

Fig. 7 Model scattering
intensity curves
corresponding to different sets
of spatially correlated spheres,
all of them with same radius,
R = 10 Å. (a) Packing factor
k= 3 and average interparticle
distances: d= 30 Å, d= 50 Å,
and d = 70 Å. (b) Average
distance d = 50 Å and
packing factors k = 1, k = 3
and k = 5. The normalized
scattering intensity curve for a
dilute set of particles with
same radius is displayed as a
black line in (a) and (b)
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cluster-depleted matrix. For this particular two-level system, the effects on the SAXS
intensity produced by a coarse structural level and another fine level are expected to
be dominant at low and high q, respectively.

For the example to be described in the next section corresponding to a isotropic
two-level structure –with its fine level consisting of spatially correlated nano-objects
– the scattering intensity can be modeled by the following semiempirical equation
(Beaucage et al. 1995):

I qð Þ ¼ G1 � e� 1=3ð ÞR2
g1 q

2 þ B1 � e� 1=3ð ÞR2
c q

2

erf qRg1=6
1=2

� �� �3
=q

n oP1

� �

þ G2 � e� 1=3ð ÞR2
g2 q

2 þ B2 � erf qRg2=6
1=2

� �� �3
=q

n oP2

� �
� S qð Þ

(30)

where sub-indexes 1 and 2 refer to the coarse and fine structure levels, respec-
tively. The factors Gi are equal to Ni(Δni)2 (Eq. 15) and Bi are related to Gi by
specific equations that depend on the object geometry, and Pi are Porod exponents
that are equal to 4 for simple two-electron density systems and may have other
values depending on the geometry of the objects. The second term in Eq. 30
corresponding to the fine level also includes the structure function S(q) accounting
for spatial correlation of the small clusters inside the volume defining the coarse
level. In the first term, associated to the coarse structure, the Gaussian function
given by exp �R2

cq
2=3

� �
is a high-q cutoff factor in which Rc = Rg2 (Beaucage

et al. 1995).
Provided the X-ray scattering experiment covers a wide q range, hierarchical

structures consisting of more than two structure levels can also be characterized. In
order to model SAXS intensity curves associated to these complex materials,
additional terms are included in Eq. 30. Since the q range to be covered for the
study of many-level structures is rather wide, several SAXS measurements with the
same sample but using different collimation conditions, sample-to-detector distances
and/or X-ray wavelengths, are required. Examples of fittings of model functions
assuming multilevel structures to a number of experimental SAXS curves were
reported by Beaucage et al. (1995). In order to characterize coarse structures
composed of very large (micrometric) particles, the use of ultra-small-angle X-ray
scattering (USAXS) – q range below 0.001 Å�1 – or light scattering techniques is
required.

Application: Fe-Doped Organic–Inorganic Hybrid Nanomaterials

Many organic–inorganic composite materials exhibit interesting properties that can
be tailored by an adequate control of the preparation conditions (Dahmouche
et al. 1999). Moreover, the structural characterization of these materials is needed
in order to explain their magnetic behavior. The structure of a number of hybrids
composed of spatially correlated siliceous nanoparticles or clusters embedded in a

1204 A. F. Craievich



matrix consisting of grafted polymeric chains were well described by a two-electron
density model. For these systems the SAXS patterns exhibit a correlation peak
located at decreasing q values for increasing molecular weight of the polymer
molecule (Dahmouche et al. 1999).

A SAXS study of hybrid organic–inorganic nanomaterials composed of Fe(II)-
doped di-ureasils was carried out by Silva et al. (2003). Figure 8a displays the
scattering intensity produced by a di-ureasil hybrid doped with 0.76 wt% Fe(II). In
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Fig. 8 (a) Experimental scattering intensity produced by siliceous clusters containing 0.76 wt%
Fe(II) embedded in a polymeric matrix. The continuous line is the best fit of Eq. 30 to the
experimental curve. The dashed lines indicate the Guinier and Porod contributions to the scattering
intensity produced by siliceous clusters and the structure function (oscillatory curve). The dotted
lines are the Guinier and Porod contributions to the scattering intensity associated to the coarse
domains. (b) Schematic view of the proposed two-level model. The small circles correspond to
siliceous clusters (Figure 8a reprinted with permission from Silva et al. (2003). Copyright 2003 by
the International Union of Crystallography)
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order to characterize the structure of Fe(II)-doped nanohybrids, the two-level model
described in the precedent section (Beaucage et al. 1995) was applied. The SAXS
intensity corresponding to the fine structure level displays a peak associated to
cluster-cluster correlations, centered at q = 0.15 Å�1, which is also observed for
undoped samples. For Fe(II)-doped hybrids, this peak is slightly shifted toward
higher q. For q < 0.1 Å�1, the scattering intensity is mainly related to the coarse
structural level. The model scattering curve defined by Eq. 30 for two structural
levels, including the structure function S(q) for the fine level given by Eq. 28, is
displayed in Fig. 8a. This figure also shows the Guinier and Porod contributions to
the total scattering intensity corresponding to both levels. The radii of gyration Rg

obtained by the best fit procedure are 7.5 Å for the small clusters and 54 Å for the
coarse domains.

Similar analyses of SAXS curves for different Fe(II) doping levels, up to 4.5 wt%,
revealed a decreasing average distance between siliceous clusters for increasing Fe(II)
content. This result suggests that Fe(II) ions are dispersed in the polymeric matrix,
these ions promoting a shrinkage effect that leads to the observed decrease in average
cluster-cluster distance.

The model structure consisting of large domains containing spatially correlated
siliceous particles embedded in a depleted matrix is schematically shown in Fig. 8b.
The reported results indicate that the formation of coarse silicide-rich domains is
promoted by the addition of Fe(II) ions (Silva et al. 2003).

Fractal Structures

Small-Angle Scattering by Fractal Structures

The SAXS method is applied to structural characterization of a number of materials
which exhibit a self-similar or fractal structure, and also to the determination of the
mechanisms involved in aggregation processes, either in precursor sols or after the
sol-gel transition.

Fractal materials are characterized by three relevant structural parameters: (i) a
radius r0 corresponding to the size of the individual primary particles (basic nano-
objects that build up the fractal structure), (ii) a fractal dimension D that depends on
the nature of the mechanism of aggregation, and (iii) a correlation length ξ that
defines the size of isolated aggregates or the cutoff distance of the fractal structure for
percolated systems such as fractal gels.

A homogeneous object and another with fractal structure – built up by N small
primary particles – are schematically shown in Fig. 9a, b, respectively. The number
of primary particles inside a sphere of radius r, measured from the center of mass of
the fractal aggregate, is given by

N rð Þ ¼ r=r0
� �D

(31)
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where r0 is of order of the size of the primary basic units that build up the fractal
object. Thus the massM(r) inside a sphere with radius r, for both (homogeneous and
fractal) objects, is proportional to rD, the exponent being D = 3 for homogeneous
objects and D < 3 for fractal aggregates.

The SAXS intensity associated to a correlated set of primary nanoparticles
building up a fractal structure is defined by Eq. 27, which involves the scattering
intensity by single primary particles, I1(q), and the structure function, S(q), associ-
ated to the nature of their spatial correlation.

Fig. 9 (a) Homogeneous object and (b) fractal object. The red curve in (c) is the scattering
intensity, I(q) = I1(q).S(q), associated to a fractal object with size of primary building blocks
ro = 5 Å, correlation length ξ = 5000 Å, and fractal dimension D = 1.80. The scattering intensity
corresponding to the primary particles, I1(q) (olive), and the structure function, S(q) (blue), are also
plotted in (c). Notice that for large fractal aggregates the determination of the correlation length
requires SAXS measurements down to very low minimum q value (qmin � 1/ξ)
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Different simple functions have been used for I1(q), such as the intensity pro-
duced by spherical particles (Eq. 25) or the Debye–Bueche function, defined by

I1 qð Þ ¼ A

1þ r20q
2

� �2 (32)

where A is a constant.
The structure function S(q) corresponding to a fractal object is derived from the

radial distribution function for primary particles inferred from Eq. 31. This distribu-
tion function is multiplied by a cutting function that defines a structural correlation
length ξ. This analysis finally leads to the following structure function (Teixeira
1988):

S qð Þ ¼ 1þ 1

qr0ð ÞD
D � Γ D� 1ð Þ

1þ 1= qξð Þ2
h i D�1ð Þ=2 sin D� 1ð Þ tan �1 qξð Þ� �

(33)

where Γ is the gamma function.
Thus, by selecting I1(q) defined by Eq. 32 and the structure function S(q) given by

Eq. 33, the scattering intensity produced by a fractal aggregate, or by a set of
spatially uncorrelated fractal aggregates, is

I qð Þ / 1

1þ r20q
2

� �2

� 1þ 1

qr0ð ÞD
D � Γ D� 1ð Þ

1þ 1= qξð Þ2
h i D�1ð Þ=2 sin D� 1ð Þ tan �1 qξð Þ� �

8><
>:

9>=
>; (34)

A scattering intensity function defined by Eq. 34 for particular values of the three
structural parameters (ro, ξ, D) is plotted in log–log scale in Fig. 9c. Since the size of
the primary particles is much smaller than the correlation length, I1(q) is constant
within a rather wide low-q range, thus the variation of the scattering intensity at
small q’s is dominated by the structure function. At high q, S(q) becomes a constant
(S(q)= 1) and thus the variation in the scattering intensity in this q range is governed
by I1(q).

Figure 9c displays a log I vs. log q plot associated to a fractal object with
correlation length much larger than the size of the primary particles (ξ 	 r0). We
notice in this log–log plot the presence of three q ranges over which linear depen-
dences with different slopes are apparent:

(i) Over the small q range (q� l/ξ) the slope is zero. In this q range the scattering
intensity behaves as expected from Guinier’s law, its value extrapolated to
q = 0, I(0), being related to the fractal dimension D by
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I 0ð Þ / ξD or I 0ð Þ / RD
g (35)

with Rg ¼ 2= D Dþ 1ð Þ½ �f g�1=2ξ:
(ii) Over the intermediate q range, i.e., for 1/ξ � q � 1/r0, the magnitude of the

slope is equal to the fractal dimension D. This implies that the scattering
intensity exhibits a simple power q-dependence, I(q) / q–D.

(iii) Over the high q range (q	 1/r0) the slope is�4, this implying that Porod’s law
(I(q)/ q�4) holds.

Two crossovers of the different linear parts in log I vs. log q plots, at q = q1 and
q = q2 (q2 > q1), are shown in Fig. 9c. The radius of the primary particles r0 is
simply related to q2 by r0 = 1/q2 and the size parameter of the fractal aggregate or
correlation length is given by ξ = 1/q1. Thus, if ξ 	 r0, the relevant structure
parameters ξ, and r0 can be directly determined from log–log plots of the scattering
intensity. If the condition ξ 	 r0 is not satisfied no well-defined crossovers are
apparent. In this case, the parameters ξ, D, and r0, are determined by fitting the I(q)
function defined by Eq. 34 to the whole experimental curve.

The fractal dimension D can also be determined by applying Eq. 35 to a set of
experimental SAXS curves determined in situ, during an aggregation process. The
values of I(0) and Rg are determined from Guinier plots (Log I(q) vs. q2) for all
successive SAXS curves. Since I 0ð Þ / RD

G the plot of log I(0)–log Rg is expected to
be linear, the slope of the straight line yielding the fractal dimension D.

If the condition ξ	 r0 is not fulfilled the “fractal”model cannot be safely applied.
It is a general consensus that, in order to establish the fractal nature of an aggregate,
the quotient ξ/r0 should be of the order of or larger than 10. In addition, it must be
remembered that power q-dependences leading to D values smaller than 3 are also
expected for nonfractal objects such as, for example, narrow linear chains or thin
platelets. Therefore, independent evidences supporting the use of fractal models are
often required.

Many mechanisms involved in aggregation processes were analyzed and the
respective fractal dimensions of the resulting structures were theoretically deter-
mined (Meakin 1986). By associating these theoretical results with experimental
determinations of the dimension D, the mechanisms that govern aggregation pro-
cesses leading to fractal structures can be established.

Applications: Aggregation in Zirconia-Based Sols and Gels

The formation of zirconia-based gels promoted by the aggregation of colloidal
particles in sol state was investigated in situ by SAXS (Lecomte et al. 2000). All
experimental scattering curves, plotted as log I(q) vs. log q in Fig. 10, exhibit a wide
q range with well-defined linear behavior. Following the procedure described in the
precedent section, the magnitude of the slope of the straight line was assigned to the
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fractal dimension of the growing aggregates, D being equal to 1.7 along the whole
aggregation process. The low-q limit of the linear portion of the scattering curves
displayed in Fig. 10, and thus the crossover q1, progressively shifts toward lower
q for increasing periods of time. This indicates that the aggregate size (ξ = 1/q1)
continuously grows. The crossover q2 is not visible in the main set of curves
displayed in Fig. 10 but, in the inset, corresponding to a SAXS curve determined
up to a higher q value, this crossover toward a Porod behavior (I(q) / q�4) is
apparent. This suggests that the primary subunits have a smooth and well-defined
external surface.

The results reported by Lecomte et al. (2000) indicate that the fractal clusters in
the studied zirconia-based sols are formed by aggregation of very small colloidal
particles already existing at the beginning of the hydrolysis and condensation
reactions. On the other hand, the maximum observed in the scattering curves for
q 6¼ 0 is related to the existence of spatial correlations between the fractal aggregates,
which could analytically be described by an inter-aggregate structure function S0(q)
defined in the same way as S(q), by Eq. 28, and included as another factor in Eq. 34.
A fractal dimension close to that experimentally determined (D = 1.7) has been
derived by computer simulation (Meakin 1986) for the mechanism of growth named
diffusion-limited cluster-cluster aggregation (DLCA). Since the slope of all scatter-
ing curves displayed in log–log scale does not exhibit any variation with time, it
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Copyright 2000 by the
International Union of
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could be concluded that the fractal dimension D and, consequently, the mechanism
of aggregation remains invariant during the whole aggregation process.

Another SAXS study of sulfate-zirconia sols with several compositions (varying
HNO3, H2O and H2SO4 contents) was reported by Riello et al. (2003). In order to
characterize the aggregation mechanism, these authors determined successive SAXS
curves after progressively increasing time periods keeping the sols in open cells. The
values I(0) and Rg – determined by applying Guinier law (Eq. 15) to every scattering
curve – were plotted as log I(0) vs. log Rg. This plot was analyzed by applying
Eq. 35, which predicts for fractal objects a linear behavior with a slope equal to the
fractal dimension D of the growing aggregates.

The process of cluster growth in sulfate-zirconia sols with different compositions
in sealed cells was also studied. Since, under sealed condition, the reactions in sols
are very fast, only the scattering curves corresponding to the final states could be
determined (Fig. 11a). The log I(0) vs. log Rg plot corresponding to the final states of
all studied samples is displayed in Fig. 11b. Notice that the experimental points lie
on two different straight lines, each of them with a slope similar to those observed by
the same authors in previous in situ studies during the cluster growth in open cells.

The slope of the straight line for Rg < 20 Å in the log I vs. log Rg plot displayed in
Fig. 11b is close to D = 1.0 thus suggesting that the aggregation process starts by the
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Fig. 11 Scattering intensity curves from sulfate-zirconia sols with different HNO3, H2SO4, and
H2O contents. (a) Log–log plots of the scattering intensity produced by a few selected samples
maintained inside a sealed cell at the end of their aggregation process. (b) Plot of I(0) vs. Rg, in
log–log scale, corresponding to the final states of a number of sols with different compositions
(Reprinted with permission from (Riello et al. 2003). Copyright 2003 by the American Chemical
Society)
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formation of short 1D linear chains. This initial regime is followed by another one
involving the cross-linking of the precursor linear chains which build up a three-
dimensional fractal structure. The fractal dimension experimentally determined for Rg
> 20 Å is 1.8, which is close to the expected theoretical value for diffusion-limited
cluster-cluster aggregation. It was then concluded that, even though the sizes of the final
aggregates in a number of sols, with very different compositions, vary from 0.5 nm up
to 10 nm, the mechanism of growth of all of them is essentially the same.

In the SAXS study reported by Riello et al. (2003) the mechanism of growth of
the aggregates is theoretically characterized by an exponent D from the early stages
of the clustering process, when the aggregates are still rather small and the condition
ξ 	 r0 for a fractal object is not yet fulfilled. Therefore, in these early stages, the
exponent D – derived from in situ SAXS experiments by applying Eq. 35 – should
not be assigned to a fractal dimension, but instead it must be considered as a useful
parameter that characterizes the mechanism of growth.

Nanophase Separation

General Considerations

A number of nanoheterogeneous materials are formed by phase separation processes
starting from a homogeneous solid solution at high temperature brought by fast
cooling into a miscibility gap. In supersaturated and initially homogeneous
(quenched) solid solutions with a composition close to the binodal curve (which
defines the solubility limits), phase separation occurs by nucleation and growth of a
minor new phase. This leads to a final two-phase material consisting of isolated and
initially nanoscopic particles embedded in a homogeneous matrix (Fig. 2a). The
growth of the second-phase particles can be characterized by in situ SAXS, using in
this case a model consisting of a dilute or concentrated set of spherical particles
surrounded by a solute-depleted shell.

On the other hand, the final structure – after long periods of heat treatment – of
initially homogeneous solid solutions brought, by quenching, close to the central
part of a miscibility gap is described by a two-phase bicontinuous model,
both phases occupying nearly the same volume fraction (Fig. 2b). For the first
stages of phase separation occurring near the central part of the miscibility gap,
a theoretical model named spinodal decomposition was proposed by Cahn (1965).
At advanced stages of phase separation, even after having reached the equilibrium
concentrations, both phases still exhibit a structural evolution driven by a pure
coarsening mechanism.

Phase Separation and Dynamical Scaling Property

In order to describe the advanced stages of nanophase separation (i.e., the
coarsening regime) in binary materials, a statistical model was proposed by

1212 A. F. Craievich



Marro et al. (1975) and Lebowitz et al. (1982). This model assumes that the
material contains atoms A and B arranged in a simple cubic lattice with an
occupation function η(ri), which takes values +1 or �1 for sites ri occupied by
atoms A or B, respectively. A probability function for atom exchanges and a
simple equation for the energy of the system was proposed. This model is
analogous to that applied to ferromagnetic Ising spin systems. Finally, the
theoretical isotropic and time-dependent structure function, S(q, t), was deter-
mined by computer simulation.

In the proposed model the primary particles are spatially correlated atoms whose
scattering intensity I1(q) at small q is constant. Consequently, the SAXS intensity
(Eq. 27) can be written as

I q, tð Þ / S q, tð Þ (36)

Different moments Sn(t) and normalized moments qn(t) of the structure function,
S(q,t), are defined as

Sn tð Þ ¼
ð1
0

S q, tð Þqndq

qn tð Þ ¼

ð1
0

S q, tð Þqndqð1
0

S q, tð Þdq

(37)

Marro et al. (1975) determined the time variation of the structure function S(q,t) and
its associated moments at advanced stages of phase separation, after both phases
having reached their final compositions. Their results of computer simulations
demonstrated that the structure function and its moments exhibit the following
properties:

(i) The second moment remains invariant, S2(t) = S2. Since S2 is proportional to
the integral Q (Eq. 12), its time invariance implies that the advanced stage of
phase separation is governed by a pure coarsening process.

(ii) The time variation of the structure function S(q,t) exhibits a dynamical
scaling property, evidenced by the existence of a time-independent function F(x)
given by

F xð Þ ¼ S q, tð Þ
S2

q1 tð Þ½ �ds (38)

where the coordinate x is equal to (q/q1) and ds is the dimension of the space in
which the process of phase separation occurs (ds = 3 for classical 3D processes).

(iii) The normalized first moment of the structure function, q1(t), exhibits a power
time-dependence q1(t)/ t–a, the parameter a depending on the detailed mech-
anism of the aggregation of atoms.
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(iv) The time dependence of the maximum of the structure function S(qm, t) is given
by S(qm, t) / ta

0
with a0 = a.ds.

All other moments and normalized moments of the structure function are also
related by simple mathematical relations. A number of experimental investigations
using small-angle (X-ray or neutron) scattering have demonstrated that the described
dynamical scaling property also holds for phase separation processes occurring in
many nanostructured materials, including glasses (Craievich and Sanchez 1981) and
nanoporous xerogels (Santilli et al. 1995).

Since the scattering intensity produced by very small primary particles (atoms)
I1(q) is essentially constant within the small q range, all properties related to the time
dependence of the structure function S(q) also apply to the time dependence of the
experimental SAXS intensity function I(q).

Application (Example 1): Sintering of SnO2-Based Xerogels

The theory described in the precedent section referring to phase separation processes
in binary materials was applied to understand the structural evolution during iso-
thermal treatment of nanoporous SnO2 xerogels studied by SAXS (Santilli
et al. 1995). These nanoporous materials, after a short transient period, preserve
their apparent density thus suggesting that the total fraction of porous volume
remains constant during isothermal annealing.

The series of SAXS curves displayed in Fig. 12a, corresponding to a SnO2-based
xerogel isothermally annealed during increasing time periods at 400 �C, exhibit a
peak located at progressively decreasing q values. This feature is predicted by the
statistical model described in the precedent section. The coincidence of all curves
plotted as [S(q, t)q1

3/S2] vs. (q/q1) in Fig. 12b demonstrates that the dynamical scaling
property (Eq. 38), theoretically derived for phase separation in simple binary sys-
tems, also applies to more complex processes such as the sintering of nanoporous
xerogels.

Application (Example 2): Dynamical Scaling of Zirconia-Based Fractal
Structures

A demonstration of the dynamical scaling property for a system consisting of fractal
zirconia-based aggregates embedded in a liquid matrix was reported by Lecomte
et al. (2000). These authors analyzed the set of SAXS curves displayed in Fig. 10,
which exhibit a maximum shifting progressively toward lower q for increasing periods
of time. As pointed out before, the fractal dimension derived from the linear portions of
the log I(q) vs. log q plots results D= 1.7. The same set of curves displayed in Fig. 10
was plotted in Fig. 13 using a [I(q/qm) � qds] vs. (q/qm) scale and setting ds= 1.7. In this
analysis, the authors assumed that the first normalized moments q1 can be replaced as a
reasonable approximation by the q-values associated to the maximum of the scattering
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curves qm. As it can be seen in Fig. 13 all scattering curves merge into a single scaled
curve, this clearly demonstrating that the dynamical scaling property also applies to
structural transformations of fractal aggregates.

The results reported by Lecomte et al. (2000) referring to fractal structures
demonstrated that the quotient of exponents a0 and a associated to the time depen-
dences of the functions Sm(qm,t) and q1(t), respectively, would not be equal to the
space dimension, ds = 3, but instead equal to the fractal dimension D.

The described experimental results together with those mentioned in the preceding
sections and others reported in the literature suggest that the statistical model derived
for nanophase separation and particularly the dynamical scaling property of the
structure function (Marro et al. (1975)) exhibit universal features, which provide a
unified description of processes of structural coarsening in a wide variety of materials.

Grazing Incidence Small-Angle X-Ray Scattering

Basic Concepts

Thin films deposited on solid substrates such as those prepared by spin or dip coating
and involving sol-gel transitions deserved the attention of many scientists because of
their often interesting technological applications. These films usually have thick-
nesses ranging from about one nanometer up to a few microns. Since the structure of
thin films supported by thick solid substrates cannot be studied by classical trans-
mission SAXS, they are characterized by combining X-ray reflectivity and grazing
incidence small-angle X-ray scattering (GISAXS).

X-ray reflectivity measurements allow one to determine the thickness, average
mass density, and surface roughness of thin films. Details of this experimental
technique are not presented here. Readers interested on the basic concepts and
applications of X-ray reflectivity are encouraged to consult the existing bibliography
(for example Tolan 1999).

Some thin films are heterogeneous at the nanometric scale. For example, thin
films may be composed of a homogeneous matrix containing nanoclusters and/or
nanopores, spatially correlated or not. Other materials consist of a homogeneous
bulk volume with a thin layer close to their external surface containing buried
nanoparticles. These nanoparticles are implanted by sputtering or plasma treatment
or formed by nucleation and growth followed by atomic diffusion from supported
thin films. GISAXS is usually applied to characterize nanostructured supported thin
films and surface layers. Classical GISAXS experiments are performed using a flat
sample, the incident beam hitting the sample surface at grazing incidence angles, αi,
typically ~0.3 to 0.6�. The scattering patterns at small angles are recorded by a
two-dimensional X-ray detector located at rather long distances from the sample,
typically 1–3 m in synchrotron beam lines. Schematic views of the geometry of a
GISAXS setup are shown in Fig. 14a, b. Notice that relevant angles in X-ray optics
are measured with respect to the sample surface and not with respect to its normal as
usual in classical optics.
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The three components of the scattering vector, q
!¼ k

! � k
!
0 , associated to a

scattered beam hitting a given detector pixel in GISAXS measurements (Fig. 14), are

qx ¼ 2π=λð Þ cosψ cos αf � cos αi
� �

qy ¼ 2π=λð Þ sinψ cos αf
qz ¼ 2π=λð Þ sin αf þ sin αi

� � (39)

The angles αf and ψ are determined from the vertical (dz) and horizontal (dy)
distances (Fig. 14) as follows

αf ¼ tg�1 dz=Lð Þ½ � � αi
ψ ¼ tg�1 dy=L

� � (40)

Notice that the detection plane of the 2D detector in real experiments is perpendic-
ular to the incident X-ray beam and not parallel to the normal to sample surface, as

Fig. 14 Schematic GISAXS setup. (a) Frontal view of the 2D X-ray detector taken along the
direction of the incident beam. The distances that are measured in order to determine the three
components of the scattering vector, qx, qy, and qz, associated to each detector pixel (ny, nz) (Eq. 39)
are indicated. A narrow beam-stopper is usually vertically placed to avoid detector damaging by the
strong reflected X-ray beam. (b) Lateral view indicating all relevant directions and angles. The
GISAXS patterns can be recorded only above the sample horizon (dashed line)
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schematically shown in Fig. 14. Anyway, since the incidence angle αi is very small,
the error in the angle αf associated to the use of this geometry can be neglected.

For a X-ray beam propagating through a medium with refraction index n0 and
hitting a flat interface with another medium with refraction index n, the angle of the
refracted beam αr is determined by applying Snell law, n0=nð Þ ¼ cos αr= cos αið Þ.
For an incident beam in vacuum no ¼ 1ð Þ or in a standard gas medium no � 1ð Þ
hitting a flat material surface, the refraction angle results:

αr ¼ cos �1 cos αi=nð Þ (41)

For typical (small) incidence angles, αr is given as a good approximation by

αr ¼ α2i � 2δ
� �1=2

(42)

where δ ¼ 1� n. Since the refraction index of any material for X-rays is slightly
lower than 1(δ ~ 10�5), there is a critical value of the incidence angle, αc, for which
the refracted beam propagates parallel to the sample flat surface. Substituting αr ¼ 0

in Eq. 42 the critical angle results:

αc ¼ 2δð Þ1=2 (43)

Values of δ for any material composition and X-ray photon energy up to 30 KeV
were reported by Henke et al. (1993).

Let us now to describe the main features associated to specular reflection and
refraction of an incident monochromatic X-ray beam hitting a flat sample surface
under grazing incidence. For different incidence angles the following types of effects
occur:

(i) For αi < αc, the incident beam undergoes specular reflection at an exit angle
αe = αi.

(ii) For αi = αc, the refracted beam propagates parallel to the sample surface, i.e.,
αr = 0.

(iii) For αi > αc, the refracted beam propagates inside the sample in a direction
defined by the angle αr and amplitude t(αi) given by Snell law and Fresnel
transmission function, respectively.

The absorption of X-rays penetrating a flat sample produces a decrease in
intensity of the incident beam described by the following basic equation:

I dð Þ ¼ I0e
� μρd= sin αrð Þ (44)

where I0 is the intensity of the incident beam, μ is the mass absorption coefficient, ρ
is the mass density, and d is the distance from the sample surface.

The attenuation length (also named penetration depth) is the distance from the
surface for which the intensity of the X-ray beam – penetrating into a given material
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– becomes equal to I0/e. This distance is considered to be the approximate thickness
of the layer probed in GISAXS measurements. Tables published by Henke
et al. (1993) and a program accessible online in their web page yield the attenuation
length as a function of the incidence angle, photon energy or wavelength, and sample
chemical composition and mass density.

If the incidence angle of the incoming X-ray beam is equal to or lower than the
critical angle, an evanescent wave is formed whose penetration depth is only
~5 nm for typical materials. When a thicker layer is desired to be probed using an
incident beam with same photon energy, the incidence angle αi should be set
higher than αc. As an example, Fig. 15a displays the penetration depth of photons
in three selected materials, SiO2, Al, and Ti, for a photon energy E = 8.04 KeV
(corresponding to λCuKα = 1.542 Å) as a function of the incidence angle.
Figure 15b shows the same functions for a photon energy E = 17.44 KeV
(λMoKα = 0.707 Å). The curves displayed in Fig. 15a, b indicate that the

Fig. 15 X-ray attenuation
length or penetration depth as
function of the incidence
angle αi for three selected
materials (SiO2, Al and Ti) for
incident X-ray beams with
two different wavelengths:
(a) Cu λKα (1.542 Å) and
(b) MoλKα (0.7071 Å). For
an incidence angle below the
critical angle the attenuation
length is very short (a few
nanometers)
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attenuation length below the critical angle αc (a few nanometers) is very small for
the three selected materials, while for α > αc the attenuation length exhibits a
monotonous increase for increasing incidence angles. Notice that the attenuation
length is higher for less dense and lower Z materials. Thus, by adequate choices of
incidence angle and photon energy, and depending on material composition and
density, a wide range of thicknesses of nanostructured surface layers can be
probed.

An additional feature that is apparent in GISAXS patterns is named Yoneda peak
(Yoneda 1963), which is associated to interference effects between the reflected and
refracted waves. This peak appears at an exit angle αY ¼ αc with respect to the
sample surface (Fig. 14a, b).

The analysis of GISAXS results associated to nanostructured thin films and/or
to surface layers is performed by fitting model functions to 2D experimental
patterns. A reasonable model of a GISAXS function requires an initial guess of
particle shape, size distribution, and structure function and should include the
Fresnel transmission and reflection functions and the effects associated to
Snell law.

More detailed descriptions of GISAXS theory and applications were reported by
Kutsch et al. (1997). Moreover, a recent review of modern applications of GISAXS,
GISANS (grazing incidence neutron scattering) and grazing incidence X-ray and
neutron wide angle scattering was published by Hexemer and Muller-
Buschbaum (2015).

Example of Application: Nanostructure of Thin Films Supported by Si
Wafers

A simple method for obtaining arrays of CoSi2 nanoplates endotaxially buried in a
Si(001) single-crystalline wafer was reported by Kellermann et al. (2012). These
authors demonstrated that thermally activated diffusion of Co atoms embedded in a
Co-doped SiO2 thin film deposited on the (001) flat surface of a Si wafer promotes
the formation of CoSi2 nanoplates buried inside the Si host. A transmission electron
microscopy (TEM) study of this material indicated that the CoSi2 nanoplates exhibit
a hexagonal lateral shape, are parallel to Si{111} crystallographic planes, have
remarkably uniform sizes, and their lattices are coherently related to the host Si
lattice. On the other hand, complementary analyses of TEM images showed the
additional presence of a polydisperse set of spherical Co nanoparticles embedded in
the supported SiO2 thin film.

The model GISAXS function for a supported thin film containing an isotropic
and dilute set of spherical nanoparticles with a radius distribution Nsph(R) is given by

Isph qy, qz

� �
/ t αið Þj j2 t αf

� ��� ��2ð Nsph Rð Þ:I1 qx, qy, ~qz,R
� �

dR (45)
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where t(αi) and t(αf) are Fresnel transmission coefficients (Tolan 1999), I1,(qx, qy, qz, R)
is given by Eq. 24 and refers to the SAXS intensity produced by spherical cobalt
nanoparticles with radius R embedded in the silica thin film, and ~qz is the z-component
of the scattering vector considering that the incident beam scattered by nanoparticles is
the refracted beam inside the sample.

On the other hand, the GISAXS function associated to thin hexagonal CoSi2
nanoplates endotaxially buried in Si wafer, with their faces parallel to all Si{111}
crystallographic planes, was modeled as (Kellermann et al. 2012; Kellermann
et al. 2015):

Ihex qy, qz
� � / t αið Þj j2 t

�
αf

�� ��2 Nhex=4ð Þ
X
hkl

Ahex hklð Þ αi,φ, qx, qy, ~qz, L,T
� ��� ��2 (46)

where Nhex is the number of hexagonal nanoplates, Ahex(hkl) are the scattering
amplitudes associated to regular hexagons oriented parallel to Si{111} crystallo-
graphic planes, with thickness T and lateral side L, φ is the azimuthal angle, and
~qz is the component of the scattering vector in z direction inside the sample.

The total GISAXS function associated to Co nanospheres embedded in the SiO2

thin film and CoSi2 nanohexagons buried in the Si wafer was modeled assuming
independent contributions from both types of nano-objects, i.e.,

Itotal qy, ~qz
� � / ½Isph qy, ~qz

� �þ C:Ihex qy, ~qz
� �� (47)

where Isph and Ihex are given by Eqs. 45 and 46, respectively and C is an adjustable
factor.

In modeling the SAXS function, it was assumed that refraction effects are
only produced at the interface between air and the SiO2 thin film. Because of
the relatively low difference in density between the SiO2 thin film containing
Co nanoparticles and the Si substrate, refraction effects associated to this
interface were neglected.

Kellermann et al. (2015) studied Co-doped SiO2 thin films deposited on silicon
wafers with different surface orientations, namely, Si(001), Si(011), and Si(111),
all of them previously heat treated at 750 �C under identical conditions. Exper-
imental 2D GISAXS patterns corresponding to different wafer orientations and
the associated theoretical curves modeled by applying Eq. 47 are displayed in
Fig. 16.

The analysis of the experimental GISAXS results demonstrated that the sizes of
the CoSi2 nanohexagons are functions of the crystallographic orientation of the Si
substrate, the lateral size of the nanohexagons buried in Si(111) wafers being
remarkably (~50%) larger than those grown inside the other two substrates,
Si(011) and Si(001). The thickness of the platelets also varies for different Si
substrate orientations from 2.8 nm for Si(001) up to 5.7 nm for Si(111). On the
other hand, the spherical Co nanoparticles embedded in the SiO2 thin film exhibit
average radii ranging from 0.6 nm for Si(011) up to 1.5 nm for Si(001).
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In conclusion, the GISAXS study reported by Kellermann et al. (2015) led to a
complete low-resolution characterization of the nanostructures developed in -
Co-doped SiO2 thin films deposited on Si(001), Si(011), and Si(111) substrates.

Final Remarks

A relevant issue omitted in this chapter is the experimental method that uses the
properties of “anomalous” (or resonant) small-angle X-ray scattering (ASAXS),
which is today widely applied thanks to the availability of tunable synchrotron
X-ray sources (Goerigk et al. 2003). ASAXS is particularly useful for structural
studies of biphasic materials with low contrast in electron density and also for
analyses of complex multiphase systems.

Additional information about SAXS theory is presented in the classical book
authored by Guinier and Fournet (1955) and the book edited by Glatter and Kratky
(1982). Another book dealing with SAXS, SANS, and light scattering was edited by
Lindner and Zemb (1991). Instrumentation issues mainly focusing on SAXS using
synchrotron radiation were described by Russell (1991), and SAXS/SANS studies of
the structure and structural changes of biological macromolecules in solution were
reviewed by Koch et al. (2003). A useful booklet for beginners was written by
Schnablegger and Singh (2013).

Besides the already mentioned GNOM software for SAXS data analysis (Svergun
and Semenyuk 1991), new packages such as the recently developed SASFit
(Kohlbrecher and Bressler 2014) are available to interested users.

The amount of published articles based on the use of SAXS and SANS exhibited
a fast increase during the past three decades (Craievich and Fischer 2010). This fast
growth was primarily due to the increasing interest of scientists for studies of
structural and physicochemical properties of nanomaterials. Other reasons that
explain the observed strong growth in the annual number of published articles are:
(i) the commercial availability of modern SAXS setups equipped with novel X-ray
sources, focusing and collimating optics and fast high-resolution 2D detectors,
(ii) the development of new theoretical approaches and numerical methods for
data analysis, (iii) the increasing availability of powerful computers, and (iv) the
opening of new small-angle scattering beam lines in many synchrotron and neutron
laboratories around the world.

Appendix: Experimental Issues

Basic Comments

Monochromatic X-ray beams are characterized by their photon energy E or wavelength
λ, both related by λ = hc/Ε, where h is the Plank constant and c is the speed of light in
vacuum, i.e., λ(Å)= 12.398/E(KeV). The wavelengths of typical monochromatic beams
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used in SAXS experiments are within the range 0.6–2.0 Å circa (i.e., photon
energies ranging from ~6 to ~20 KeV). The X-ray beams produced by synchro-
trons or typical commercial sources are usually monochromatized by quartz,
germanium, or silicon single crystals, which yield incident beams with very narrow
pass-bands (Δλ/λ < 10�3).

Considering, for example, a typical SAXS experiment with an X-ray wave-
length λ = 1.542 Å (λCuKα), a sample-to-detector distance D = 1 m, a beam-
stopper with a diameter ϕ1 = 5 mm and a circular 2D detector with a diameter ϕ2

= 150 mm, and remembering that q ¼ 4π=λð Þ sin θ � 2π=λð Þ:2θ for low q, the
range of scattering angles to be covered results 0.14� < 2θ < 4.3�, and the
corresponding minimum and maximum q values are 0.01 Å�1 and 0.30 Å�1,
respectively. Different lower and upper q limits can be reached by selecting
adequate beam collimation, sample-to-detector distances and/or X-ray wave-
lengths. The choice of the experimental q range depends on the sizes of the
nanoparticles to be studied.

X-ray beams for SAXS experiments are produced by classical sealed X-ray
tubes, rotating anode X-ray generators and synchrotron sources. Synchrotron radi-
ation sources are often preferred because they provide powerful, continuously
tunable and well collimated X-ray beams. Another closely related experimental
technique often used for same or similar purposes is small-angle neutron scattering
(SANS), its basic theory being essentially the same as that developed for the
SAXS technique.

Choice of Sample Thickness

Classical SAXS experiments are performed in transmission mode and usually under
normal incidence. The first step for planning SAXS experiments is to determine the
sample thickness that maximizes the scattering intensity for a given material and
photon energy. The SAXS intensity produced by any material with arbitrary struc-
ture, as a function of sample thickness t, is given by

I tð Þ / te�μρt (48)

where ρ is the mass density and μ the mass X-ray absorption coefficient, which is a
function of chemical composition of the material and photon energy. The absorption
coefficient can be obtained from tables published by Henke et al. (1993) or by using
an online program accessible in their web page.

Examples of the function defined by Eq. 48 are plotted in Fig. 17 for three
different materials. The optimum thickness tmax corresponding to the maximum of
the I(t) function is

tmax ¼ ρμð Þ�1
(49)
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This implies that the transmittance of samples with optimum thickness is

T ¼ Itransmitted=Iincidentð Þ ¼ e�1 ¼ 0:37: (50)

Notice that the tmax values determined by Eq. 49 are just a guide for a convenient
choice of sample thickness. However, it is always advisable to avoid the use of very
thick or very thin samples which would lead to high absorption and low probed
volumes, respectively, both yielding weak scattering intensities.

For samples containing large fractions of high Z atoms the optimum thicknesses
could be extremely low using CuλKα photons (E = 8.04 KeV). For these materials
X-ray beams with higher photon energy should be employed. On the other hand, in
order to minimize fluorescence effects, the use of beams with photon energies above
and close to absorption edges of sample elements should be avoided.

Subtraction of Parasitic Scattering

Before further analysis of experimental SAXS results, a pretreatment of rough data is

required. For anisotropic 2D SAXS patterns, the vector q
!
associated to each detector

pixel is calculated. For isotropic 2D SAXS patterns, the scattering intensity is
defined as a function of the modulus of the scattering vector, which is determined
by circular averaging.

Fig. 17 (a) Examples of scattering intensities in arbitrary units as functions of sample thickness for an
incident X-ray beamwith awavelength λCuKα= 1.542Å, corresponding to different selectedmaterials:
Cu, SiO2, and H2O, whose optimum thicknesses tmax are 22 μm, 132 μm, and 1.00 mm, respectively
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In order to subtract the parasitic scattering intensity produced by slits, cell
windows, and air, two SAXS patterns should be recorded: (i) the total scattering

intensity (from sample plus parasitic scattering) defined by the counting rateRT q
!� �

and (ii) the parasitic scattering intensity given by the counting rate RP q
!� �

recorded

under same experimental conditions but without sample. The scattering intensity
exclusively related to the sample is given by

R q
!� �

¼ RT q
!� �

� RD

� �
=TSþW

h i
� RP q

!� �
� RD

� �
=TW

h i
(51)

where RD is the counting rate associated to the detector noise, TS+W is the transmit-
tance of the sample and cell thin windows, and TW is the transmittance of the empty
sample cell. For solid samples placed in a windowless holder, we have TW= 1. Often
the counting rate associated to parasitic scattering for macromolecules in dilute
solution is determined with the sample cell filled with same buffer, thus under this
condition the scattering intensity due to statistical density fluctuations in the solvent
is also subtracted.

When SAXS experiments are conducted using synchrotron beam lines with
continuously decreasing electronic current, the effects of time variation of the
intensity of the incident X-ray beam should be properly accounted for.

Correction of Smearing Effects

The use of X-ray incident beam with rather large cross-section and/or X-ray
detectors with large pixel size may produce serious smearing effects on the
SAXS curves. However, most of the modern commercial setups and synchrotron
beam lines provide an incident beam with pinhole-like cross-section and use X-ray
detectors with very small pixel size, thus often making mathematical desmearing
procedures unnecessary.

When using commercial setups yielding an incident X-ray beam with large
cross section (for example a beam with linear cross-section), two approaches can
be applied for quantitative analyses: (i) fitting the theoretical model of SAXS
curve to previously dismeared experimental functions or (ii) fitting the previ-
ously smeared theoretical model of SAXS curve to the experimental function.
Since mathematical desmearing of experimental SAXS patterns leads to results
with rather high statistical noise, the second procedure is generally preferred.

Determinations of SAXS Intensity in Relative and Absolute Units

For pin-hole collimation of the incident beam, the counting rate R q
!� �

corresponding to the X-ray photons scattered by the sample is proportional to the
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I q
!� �

function used along this chapter. Thus Eq. 51 directly yields the scattering

intensity in relative scale or arbitrary units, to which model functions are fitted after
adequate scaling. However, the SAXS intensity given in absolute scale provides
additional information that is often useful for detailed structural characterization.

The typical scattering intensity function in absolute scale is the differential scattering
cross-section per unit volume (dΣ/dΩ). This function is related to the SAXS intensity

I q
!� �

, which was used along this chapter, by dΣ=dΩð Þ q
!� �

¼ I q
!� �

:r2e=V.

For SAXS measurements using pin-hole collimation (i.e., with a point-like
incident beam cross-section), the differential scattering cross-section per unit volume
is given by

dΣ
dΩ

q
!� �

¼
R q

!� �
=η

I0V:ΔΩ
(52)

where R q
!� �

is the photon counting rate, η is the detector efficiency, I0 is the photon
flux of the incident X-ray beam (number of photons per unit cross-section.second), V
is the probed sample volume, and ΔΩ is the solid angle associated to the surface area
of the detector pixel. The usual unit for the differential scattering cross-section per
unit volume is cm�1. Equation 52 can also be written as

dΣ
dΩ

q
!� �

¼
R q

!� �
:L2

R0tsΔa
(53)

where R0 is the counting rate (number of photons/second) corresponding to the total
incident beam, ts is the sample thickness, Δa is the surface area of the detector pixel,
and L is the sample-to-detector distance. It is assumed in Eq. 53 that the efficiency of

the detectors that records R q
!� �

and Ro are identical. When different detectors are

used for the measurements R q
!� �

and Ro, the counting rates should be properly

normalized to equivalent efficiencies.
Equation 53 is usually applied to plate-shaped solid samples or to liquids

contained in cells with parallel thin windows for entrance of the incident X-ray
beam and exit of the scattered photons. Determinations of SAXS intensity in
absolute units associated to powdered samples or liquid samples contained in
cylindrical capillaries are also possible but their evaluation is less precise (Fan
et al. 2010).

Since the measurement of Ro is in practice difficult using standard detectors, the
differential scattering cross-section per unit volume of solid materials is generally
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determined by means of an independently calibrated sample, such as Lupolen or
glassy carbon (Fan et al. 2010).

In order to determine the differential scattering cross-section per unit volume
associated to colloidal particles embedded in a liquid medium, it is also recorded –
under the same experimental conditions – the SAXS intensity produced by statistical
density fluctuations in water. The differential scattering cross-section per unit
volume of water dΣ=dΩð ÞH2O

– which is a isotropic and constant function at small
q – is given by (Guinier and Fournet 1955):

dΣ
dΩ

	 

H2O

q ! 0ð Þ ¼ NH2Onereð Þ2kTβ (54)

where NH2O is the number of water molecules per unit volume, ne is the number of
electrons per water molecule, k is the Boltzmann constant, T is the absolute temper-
ature, and β is the isothermal compressibility of water at room temperature. Since all
parameters in Eq. 54 are known, the differential scattering cross-section per unit
volume of water can be written as

dΣ
dΩ

	 

H2O

q ! 0ð Þ ¼ 1:65:10�2cm�1 (55)

If the counting rate associated to a isotropic liquid sample (for example proteins in
liquid buffer), [R(q)]sample, and that corresponding to water, R qð ÞH2O

, are determined
under same experimental conditions, the differential scattering cross section per unit
volume of the studied sample is given by

dΣ
dΩ

qð Þ ¼ 1:65:10�2
R qð Þ½ �sample

< R qð ÞH2O
>
cm�1 (56)

where < R qð ÞH2O
> is an average value taken within the small q range over which the

counting rate is approximately constant. If SAXSmeasurements corresponding to sample
and water are conducted under different experimental conditions, adequate corrections
should be applied. Additional details on this matter were reported by Fan et al. (2010).
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