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Abstract We study the problem, suggested by Singer in [17], and consisting in
determining a notion of “local cohomology” adequate to deal with the problem of
locality in those approaches to local anomalies based on the Atiyah–Singer index
theorem.
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1 Introduction

An anomaly appears in a theory when a classical symmetry is broken at the quan-
tum level. As we consider only local anomalies, we can assume that the group
G is connected. Let L(ψ, s) be a G-invariant Lagrangian density depending on
bosonic fields s ∈ Γ (E) and fermionic fields ψ. At the quantum level, the cor-
responding effective action W (s), defined in terms of the fermionic path integral
by exp(−W (s)) = ∫ DψDψ̄ exp

(− ∫
M L(ψ, s)

)
could fail to be G-invariant. We

define a formA ∈ Ω1(LieG,Ω0(Γ (E))) byA = δW , i.e.A(X)(s) = L X W (s) for
X ∈ LieG, s ∈ Γ (E). Although W is clearly a non-local functional, A is local in
X and s, i.e. we have A ∈ Ω1

loc(LieG,Ω0
loc(Γ (E))). It is clear that A satisfies the
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condition δA = 0 (the Wess–Zumino consistency condition). Moreover, if A = δ�
for a local functional � = ∫

M λ ∈ Ω0
loc(Γ (E)) then we can define a new lagrangian

density L̂ = L + λ, such that the new effective action Ŵ is G-invariant, and in
that case the anomaly cancels. If A �= δ� for every � ∈ Ω0

loc(Γ (E)) then we say
that there exists an anomaly in the theory. Hence the anomaly is measured by the
cohomology class ofA in the BRST cohomology H 1

loc(LieG,Ω0
loc(Γ (E))) (e.g. see

[4, 6–8, 16]).
Local anomalies also admit a nice geometrical interpretation in terms of the

Atiyah–Singer index theorem for families of elliptic operators (see [1, 2, 4, 17]).
The first Chern class c1 (det IndD) ∈ H 2(Γ (E)/G) of the determinant line bundle
det IndD → Γ (E)/G represents an obstruction for anomaly cancellation. How-
ever, the condition c1 (det IndD) = 0 is a necessary but not a sufficient condition
for local anomaly cancellation due to the problem of locality. In [17] (see also [1])
Singer proposes the problem of defining a notion of “local cohomology of Γ (E)/G”,
H 2

loc(Γ (E)/G), adequate to study local anomaly cancellation. The principal difficulty
is the fact that the expression of the curvature of det IndD itself contains non-local
terms (Green operators).

Moreover, we recall (see [2, 5, 15]) that the BRST and index theory approaches
are related by means of the transgression map t (see Sect. 2), i.e., we have [A] =
t (c1 (det IndD)). As t is injective, the condition c1 (det IndD) = 0 on H 2(Γ (E)/G)

is equivalent to [A] = 0 on H 1(LieG,Ω0(Γ (E))). However, the condition for local
anomaly cancellation is [A] = 0 on theBRSTcohomology H 1

loc(LieG,Ω0
loc(Γ (E))).

We define H •
loc(Γ (E)/G) in such a way that the preceding condition is equivalent to

the vanishing of the class of c1 (det IndD) on H 2
loc(Γ (E)/G), hence solving Singer’s

problem.

2 The Transgression Maps

First we recall the definition of equivariant cohomology in the Cartan model (e.g.
see [3]). We consider a left action of a connected Lie group G on a manifold
N . We have an induced Lie algebra homomorphism LieG → X(N ), X �→
XN = d

dt

∣
∣
t=0

ρ(exp(−t X)). We denote by Pk(LieG,Ωr (N ))G the space of degree
k G-invariant polynomials on LieG with values in Ωr (N ). We recall that α ∈
Pk(LieG,Ωr (N ))G if and only ifα(Adg X) = ρ(g−1)∗(α(X)) ∀X ∈ LieG, ∀g ∈ G.

The space of G-equivariant differential q-forms is defined by

Ω
q
G(N ) =

⊕

2k+r=q

(Pk(LieG,Ωr (N )))G . (1)

The Cartan differential dc : Ω
q
G(N ) → Ω

q+1
G (N ), (dcα)(X) = d(α(X))−ιXN α(X)

for X ∈ LieG, satisfies (dc)
2 = 0, and the G-equivariant cohomology ofN , Hq

G(N ),
is the cohomology of this complex.
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We recall (e.g. see [3]) that if N → N /G is a principal G-bundle we have the
(generalized) Chern–Weil homomorphism ChW : H •

G(N ) → H •(N /G). If A is an
arbitrary connection on N → N /G with curvature FA, and α ∈ Ω

q
G(N ), then we

have ChW([α]) = [horA(α(FA))], where horA is the horizontalization with respect
to the connection A. We also use the notation α = ChW(α).

If ω ∈ Ω2
G(N ) is a closed G-equivariant 2-form, then we have ω = ω0 +μ where

ω0 ∈ Ω2(N ) is closed, and μ : LieG → C∞(N ), is a G-equivariant moment map
for ω0, i.e., ιXN ω0 = d(μ(X)) for X ∈ LieG. A direct computation shows that we
have the following

Proposition 1 Assume that N → N /G is a principal G-bundle, and let A ∈
Ω1(N ,LieG) be a connection form. If ω = ω0 + μ ∈ Ω2

G(N ) is a closed G-
equivariant 2-form and we define α ∈ Ω1(N )G by α(X) = μ(A(X))(x) for
X ∈ TxN , then we have ChWA(ω) = ω + dcα.

Corollary 1 The map ChW : H 2
G(N ) → H 2(N /G) is an isomorphism.

Let us assume now that H 1(N ) = H 2(N ) = 0. The cohomology of the Lie
algebra LieG with values in Ω0(N ) is denoted by H •(LieG,Ω0(N )).

Proposition 2 Let ω = ω0 + μ ∈ Ω2
G(N ) be a closed G-equivariant form. If ρ ∈

Ω1(N ) satisfies ω0 = dρ, then the map τρ ∈ Ω1(LieG,Ω0(N )) given by τρ(X)=
ρ(XN ) + μ(X) determines a linear map τ : H 2

G(N ) → H 1(LieG,Ω0(N )) which is
independent of the form ρ chosen, and that we call the transgression map τ . If G is
connected, then τ is injective.

Proof The first part of the Proposition easily follows using that LYN μ(X) =
μ([Y, X ]) by the invariance of μ. We restrict ourselves to prove that τ is injective. By
definition [τρ] = 0 on H 1(LieG,Ω0(N )) if and only if there exists β ∈ Ω0(N ) such
that for every X ∈ LieG we have τρ(X) = L XN β = ιXN dβ. If we set ρ′ = ρ − dβ
then for every X ∈ LieG we have dρ′ = ω0, ιXN ρ′ = −μ(X), L XN ρ′ = 0, i.e.,
ρ′ ∈ Ω1(N )G and dcρ

′ = ω.

Nowwe assume thatπ : N → N /G is a principalG-bundle. Thenwe can consider
the more familiar transgression map defined as follows

Proposition 3 Let ω ∈ Ω2(N /G) be a closed 2-form. If η ∈ Ω1(N ) is a form such
that π∗ω = dη, then the map tη : LieG → Ω0(N ), tη(X) = η(XN ) determines a
linear map t : H 2(N /G) → H 1(LieG,Ω0(N )), which is independent of the form η
chosen, and that we call the transgression map t. If G is connected, then t is injective.

Proof Again we only prove that t is injective. If tη = δυ for certain υ ∈ Ω0(N ),
then η(XN ) = L XN υ. We define η′ = η − dυ, and we have dη′ = π∗ω, ιXN η′ = 0,
L XN η′ = 0. Hence η′ is projectable onto a form η′ ∈ Ω1(N /G) and dη′ = ω.

Proposition 4 If ω ∈ H 2
G(N ) and ω = ChW(ω) then we have τ (ω) = t (ω).

Proof If ω = ω0 + μ, by Proposition 1 we have ω = π∗ω + dcα for some α ∈
Ω1

G(N ) = Ω1(N )G , i.e. ω0 = π∗ω + dα and μ(X) = −α(XN ).
Let η ∈ Ω1(N ) be a form such that π∗ω = dη. If we set ρ = η +α then ω0 = dρ

and for every X ∈ LieG we have τρ(X) = tη(X).
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3 Local Equivariant Cohomology

Let p : E → M be a bundle over a compact, oriented n-manifold M without bound-
ary. We denote by Jr E its r -jet bundle, by J∞E the infinite jet bundle and by Γ (E)

be the manifold of global sections of E (assumed to be not empty).
We denote by ProjE the space of projectable diffeomorphism of E , and by Proj+E

the subgroup of elements preserving the orientation of M . The space of projectable
vector fields on E is denoted by projE . We consider the natural actions of ProjE on
J∞E and Γ (E).

Let j∞ : M ×Γ (E) → J∞E , j∞(x, s) = j∞
x s be the evaluation map.We define a

map 
: Ωn+k(J∞E) → Ωk(Γ (E)), by 
[α] = ∫
M (j∞)∗ α, for α ∈ Ωn+k(J∞E).

The map 
 commutes with the exterior differential and is Proj+E-equivariant (see
[9]). We define the space of local k-forms on Γ (E), as the image of the map 
,
i.e. Ωk

loc(Γ (E)) = 
(Ωn+k(J∞E)) ⊂ Ωk(Γ (E)). The cohomology H •
loc(Γ (E))

of the complex (Ω•
loc(Γ (E)), d) is called the local cohomology of Γ (E). We have

H k
loc(Γ (E)) ∼= H n+k(E) for k > 0 (see [10]).
Let G be a Lie group acting on E by elements Proj+E . In order to define an

adequate notion of local equivariant cohomology we made the following

Assumption 1 We assume that LieG is isomorphic to the space of sections of
a Lie algebroid V → M , i.e. LieG ∼= Γ (V ). We also assume that the map
LieG ∼= Γ (V ) → projE , X �→ X E is a differential operator. Finally, in the def-
inition of G-equivariant cohomology H n+k

G (J∞E), we assume that the polynomial
maps α : LieG → Ω•(J∞E) are differential operators.

We extend the integration operator to a map 
: Ωn+k
G (J∞E) → Ωk

G(Γ (E)), by
setting (
[α])(X) = 
[α(X)] for every α ∈ Ωn+k

G (J∞E), X ∈ LieG. The map 

commutes with the Cartan differential and induces a homomorphism in equivariant
cohomology 
: H n+k

G (J∞E) → H k
G(Γ (E)) (see [9]).

We define the space of local G-equivariant k-forms by

Ωk
G,loc(Γ (E)) = 
(Ωn+k

G (J∞E)) ⊂ Ωk
G(Γ (E)). (2)

The local G-equivariant cohomology of Γ (E), H •
G,loc(Γ (E)), is defined as the coho-

mology of the complex (Ω•
G,loc(Γ (E)), dc).

4 Application to Local Anomaly Cancellation

Let us define the BRST cohomology (see [6, 16]). Recall (see Assumption 1) that
we assume LieG ∼= Γ (V ) for some vector bundle V → M . A map α : ∧k LieG →
Ω0

loc(Γ (E)) is said to be local if there exists a differential operator A : ∧k LieG →
Ωn(J∞E) such that α(X1, . . . , Xk) = 
[A(X1, . . . , Xk)] for every X1, . . . , Xk ∈
LieG.We denote byΩk

loc(LieG,Ω0
loc(Γ (E)) the space of local k-forms onLie G with
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values on Ω0
loc(Γ (E)). The differential δ on the complex Ω•(LieG,Ω0

loc(Γ (E))

induces a differential on Ω•
loc(LieG,Ω0

loc(Γ (E)). The corresponding cohomol-
ogy H •

loc(LieG,Ω0
loc(Γ (E))) is called the BRST cohomology. We assume that

H 2(Γ (E)) = H 1(Γ (E)) = 0 and also that H 2
loc(Γ (E)) = H 1

loc(Γ (E)) = 0.

Proposition 5 The restriction of the transgression map τ to H 2
G,loc(Γ (E)) takes val-

ues on the BRST cohomology H 1
loc(LieG,Ω0

loc(Γ (E))). The map
τ : H 2

G,loc(Γ (E)) → H 1
loc(LieG,Ω0

loc(Γ (E))) is injective for G connected.

Proof Let ω = ω0 + μ ∈ Ω2
G,loc(Γ (E)) be a closed local G-equivariant 2-form. As

H 2
loc(Γ (E)) = 0, we have ω0 = dρ, for certain ρ ∈ Ω1

loc(Γ (E)). By our assump-
tion in the definition of local equivariant cohomology (Assumption 1), the map
τρ : LieG → Ω0

loc(Γ (E)), τρ(X) = ρ(XΓ (E)) + μ(X) ∈ Ω0
loc(Γ (E)) is a local map.

The injectiveness of τ follows from Proposition 2.

Assume that Γ (E) → Γ (E)/G is a principal G-bundle. Then we define the local
cohomology by H k

loc(Γ (E)/G) = ChW(H k
G,loc(Γ (E))). By Proposition 4 we have

the following

Proposition 6 Let ω ∈ Ω2
G,loc(Γ (E)) be a closed local G-equivariant 2-form and

let ω = ChW(ω). Then we have τ (ω) = t (ω), and in particular we conclude that
t (ω) ∈ H 1

loc(LieG,Ω0
loc(Γ (E))). Moreover, the following conditions are equivalent

(a) [ω] = 0 on H 2
G,loc(Γ (E)).

(b) [ω] = 0 on H 2
loc(Γ (E)/G).

(c) [τ (ω)] = [t (ω)] = 0 on H 1
loc(LieG,Ω0

loc(Γ (E))).

Proposition 6 applied to ω = c1(det IndD) shows that our definition of
H 2

loc(Γ (E)/G) solves Singer’s problem. We also note that if ω ∈ Ω2
G,loc(Γ (E)) is

closed, the form ω ∈ Ω2(Γ (E)/G) determining the class ChW([ω]) could contain
non-local terms, as ω depends on the curvature of a connection � on the princi-
pal G-bundle Γ (E) → Γ (E)/G, and � usually contains non-local terms. This fact
explains the appearance of non-local terms on the expression of the curvature of
det IndD commented on the Introduction.
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