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Abstract Wedescribe some recent results concerning the inverse curvature problem,
that is, the existence and description of metrics with prescribed curvature, focusing
on the low-dimensional homogeneous cases.
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1 Introduction

Geometric properties of a pseudo-Riemannian manifold (M, g) are encoded in its
curvature, and usually expressed by some conditions on the curvature tensor itself.
Starting from the metric tensor g, the curvature tensor R of (M, g) can be completely
determined. The inverse problem, namely, to determine a pseudo-Riemannian man-
ifold with assigned curvature, is known as the prescribed curvature problem, and
it has been extensively studied. In this framework, two distinct problems naturally
arise:

(i) Existence results: necessary and sufficient conditions for an assigned two-form
on a manifold to be (locally) the curvature form of a pseudo-Riemannian metric.
(ii) Explicit examples of such a metric.
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The study of the first problem led to local existence theorems under very general
hypotheses (see for example [6–11, 14] and references therein). In particular, as
proved by DeTurck [6–8], if a symmetric (0, 2)-tensor R is analytic in a neighbor-
hood of a point x0 ∈ R

n and R−1(x0) exists, then there exists an analytic metric g,
of any desired signature, such thatR = ρ is the Ricci tensor of g in a neighborhood
of x0. The Bianchi identity

Bian(g,R) = gab
(
Ram;b − 1

2Rab;m
) = 0

yields some restrictions for the 2-forms admissible as curvature forms. It is worth
to emphasize the physical meaning of such restrictions. In fact, Bian(g,R) =
−div(GR), where G is the gravitation operator Gh = hij − 1

2gij(gabhab). In particu-
lar, Gρ is the stress-energy tensor in Einstein’s theory of gravitation [6].

In this framework, low-dimensional cases have some special properties. In fact, in
dimension three every 2-form with values in a semi-simple Lie algebra is generically
the curvature of a connection form locally [9, 10, 14]. Moreover, in dimension four,
Bianchi’s identities can be eliminated for a large class of Lie algebras (which strictly
includes the semi-simple ones). Curvature forms can be then characterized as the
solutions to a second-order partial differential system, which was proved in [11] to
be formally integrable.

On the other hand, even in special cases, as in low dimension and for particularly
simple forms of the curvature or the Ricci tensor, the second problem is still open
(up to our knowledge). Moreover, it is a natural problem to look for homogeneous
metrics of prescribed curvature, since they are the homogeneousmodels formetrics of
the same dimension. Also with regard to the existence problem, the above cited Refs.
[9–11, 14] showed the special role played by homogeneous examples (in particular,
Lie groups and the corresponding Lie algebras).

In this framework, the three-dimensional case acquires a peculiar relevance, for
several reasons. First of all, in dimension three theRicci tensor completely determines
the curvature.Moreover, a connected, simply connected, complete three-dimensional
homogeneous manifold is either symmetric or isometric to some Lie group equipped
with a left-invariant metric (we may refer to [13] for the Riemannian case and [1] for
the Lorentzian one). Finally, with the obvious exceptions of R × S

2 (Riemannian)
andR1 × S

2 (Lorentzian), three-dimensional connected simply connected symmetric
spaces are also realized in terms of suitable left-invariant metrics on Lie groups [2].

In this note we will illustrate how three-dimensional locally homogeneous
Lorentzian metrics on R

3 were constructed in [3] for all admissible Ricci opera-
tors, that is, for all real-valued matrices which can occur as the Ricci operator of a
homogeneous Lorentzian three-manifold. To do so, we introduce a system of partial
differential equations, whose solutions determine explicitly these Lorentzian met-
rics. Then, solutions are presented for proper Lorentzian models, that is, Lorentzian
homogeneous three-spaces which do not have any counterpart in Riemannian geom-
etry, since their Ricci operator is not diagonalizable. We also mention the fact that
explicit examples for the wider class of curvature homogeneous Lorentzian three-
manifolds were constructed in [4, 5], proving that for all Segre types of the Ricci
operator, there exist examples of curvature homogeneous Lorentzian metrics in R3.
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2 Locally Homogeneous Lorentzian Three-Manifolds

Let (M, g) be a connected Lorentzian three-manifold. We denote by ∇ the Levi-
Civita connection of (M, g) and by R its curvature tensor, taken with the sign con-
ventionR(X, Y) = ∇[X,Y ] − [∇X ,∇Y ]. Since dim M = 3,R is completely determined
by the Ricci tensor ρ, defined by ρ(X, Y)p = ∑3

i=1 εig(R(X, ei)Y , ei), where {ei} is
a pseudo-orthonormal basis of TpM and εi = g(ei, ei) = ±1 for all i. Throughout the
paper we shall assume that e3 is timelike, that is, ε1 = ε2 = −ε3 = 1.

Because of the symmetries of R, the Ricci tensor ρ is symmetric. Consequently,
the Ricci operator Q, defined by g(QX, Y) = ρ(X, Y), is self-adjoint. Thus, in the
Riemannian case there exists an orthonormal basis diagonalizing Q, while for a
Lorentzian manifold there exists a suitable
pseudo-orthonormal basis {e1, e2, e3}, with e3 timelike, such that Q takes one of
the following forms, called Segre types:

Segre type {11, 1} :
⎛

⎝
ā 0 0
0 b̄ 0
0 0 c̄

⎞

⎠ , Segre type {1zz̄} :
⎛

⎝
ā 0 0
0 b̄ c̄
0 −c̄ b̄

⎞

⎠ ,

Segre type {21} :
⎛

⎝
ā 0 0
0 b̄ ε

0 −ε b̄ − 2ε

⎞

⎠ , Segre type {3} :
⎛

⎝
b̄ ā −ā
ā b̄ 0
ā 0 b̄

⎞

⎠ .

If (M, g) is curvature homogeneous (in particular, locally homogeneous), then its
Ricci operator Q has the same Segre type at every point p ∈ M and there exists (at
least, locally) a pseudo-orthonormal frame field {ei} such that Q is given by one of
the expressions above, for some constants ā, b̄ and c̄. As in [1], we now put

∇ei ej =
∑

k

εjb
i
jkek, (1)

for all indices i, j. Clearly, the functions bi
jk determine completely the Levi-Civita

connection, and conversely. As ∇g = 0, we have

bi
kj = −bi

jk, (in particular, bi
jj = 0) (2)

for all i, j, k. We now put

b112 = α, b113 = β, b123 = γ, b212 = κ, b213 = μ, b223 = ν, b312 = σ, b313 = τ, b323 = ψ.

(3)

By (1)–(3) we get

[e1, e2] = −εα e1 − κ e2 + (εγ − μ) e3, [e1, e3] = −β e1 − (γ + σ) e2 − τe3,

[e2, e3] = (εσ − μ) e1 − ν e2 − εψ e3.
(4)
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Conversely, the functions (bi
jk) are determined by (4) via the Koszul formula [12].

A locally homogeneous Lorentzian three-manifold admits (locally) a pseudo-or-
thonormal basis {ei}, such that (4) holdswith constant connection functionsα, . . . , ψ .
Starting from (4), we compute the curvature components with respect to {e1} and,
by contraction, the Ricci components. We get

ρ11 = −α2 − κ2 + βν − γμ + σ(γ − μ) + β2 − τ2 − γ σ + αψ + μ(γ − σ), (5)

ρ22 = −α2 − κ2 + βν − γμ + σ(γ − μ) + ν2 − ψ2 − κτ + μσ + γ (μ + σ), (6)

ρ33 = −β2 + τ2 + γ σ − αψ − μ(γ − σ) − ν2 + ψ2 + κτ − μσ − γ (μ + σ), (7)

ρ12 = β(γ + σ) + ν(γ − σ) − τ(α + ψ), (8)

ρ13 = −α(μ + σ) − ν(κ − τ) − ψ(μ − σ), (9)

ρ23 = α(β − ν) + κ(γ + μ) − τ(γ − μ). (10)

For the components of the covariant derivative of ρ with respect to {ei}, we find

∇iρjk = −
∑

t

(
εjb

i
jtρtk + εkBi

ktρtj
)
. (11)

Observe that the connection functions α, . . . , ψ are not all independent. In fact,
since (M, g) is locally homogeneous, its scalar curvature r = tr ρ is constant. The
well-known divergence formula dr = 2 div ρ (see [12]) then implies

∑
j ∇jρij = 0,

for all i, which, taking into account (11), gives some restrictions for the connection
functions.

We end this section with the following classification result.

Theorem 1 ([1])A three-dimensional connected, simply connected complete homo-
geneous Lorentzian manifold (M, g) is either symmetric, or M = G is a Lie group
and g is left-invariant. Precisely, one of the following cases occurs:

(I) If G is unimodular, then there exists a pseudo-orthonormal frame field {ei},
with e3 time-like, such that the Lie algebra of G is one of the following:

g1 : [e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3, α �= 0. (12)

If β �= 0, then G is S̃L(2,R), while G = E(1, 1) when β = 0.

g2 : [e1, e2] = −γ e2 − βe3, [e1, e3] = −βe2 + γ e3, [e2, e3] = αe1, γ �= 0.
(13)

In this case, G = S̃L(2,R) if α �= 0, while G = E(1, 1) if α = 0.

g3 : [e1, e2] = −γ e3, [e1, e3] = −βe2, [e2, e3] = αe1. (14)

The following Table1 lists all the Lie groups G which admit a Lie algebra g3, accord-
ing to the different possibilities for α, β and γ :
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Table 1 3D Lorentzian Lie groups with Lie algebra g3
Lie group (α, β, γ ) Lie group (α, β, γ )

S̃L(2,R) (+,+,+) E(1, 1) (+,−, 0)

S̃L(2,R) (+,−,−) E(1, 1) (+, 0,+)

SU(2) (+,+,−) H3 (+, 0, 0)

Ẽ(2) (+,+, 0) H3 (0, 0,−)

Ẽ(2) (+, 0,−) R
3 (0, 0, 0)

Table 2 3D Lorentzian Lie groups with Lie algebra g4
Lie group
(ε = 1)

α β Lie group
(ε = −1)

α β

S̃L(2,R) �=0 �=1 S̃L(2,R) �=0 �= − 1

E(1, 1) 0 �=1 E(1, 1) 0 �= − 1

E(1, 1) <0 1 E(1, 1) >0 −1

Ẽ(2) >0 1 Ẽ(2) <0 −1

H3 0 1 H3 0 −1

g4 : [e1, e2] = −e2 + (2ε − β)e3, [e1, e3] = −βe2 + e3, [e2, e3] = αe1, ε = ±1.

(15)

Table2 describes all Lie groups G admitting a Lie algebra g4.
(II) If G is non-unimodular, there exists a pseudo-orthonormal frame field {ei},

with e3 time-like, such that α + δ �= 0 and the Lie algebra of G is one of the following:

g5 : [e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γ e1 + δe2, αγ + βδ = 0. (16)

g6 : [e1, e2] = αe2 + βe3, [e1, e3] = γ e2 + δe3, [e2, e3] = 0, αγ − βδ = 0. (17)

g7 :− [e1, e2] = [e1, e3] = αe1 + βe2 + βe3,

[e2, e3] = γ e1 + δe2 + δe3, αγ = 0. (18)

3 The Basic System of Equations

We shall express Eqs. (5)–(10) via a system of PDE’s, whose solutions give explicitly
locally homogeneous Lorentzian metrics on R

3 with the required curvature.
Fix a point p ∈ M and consider a pseudo-orthonormal frame field {ei}, satisfying

(4) for some constants α, . . . , ψ . Choose a surface S through p transversal to the lines
generated by e3, a local coordinates system (w, x) on S and a neighborhood Up of p,
sufficiently small that each q ∈ Up is situated on exactly one line generated by e3 and
passing through one point q̄ ∈ S. Choose an orientation of S and define the coordinate
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function y in Up as the oriented distance of q from S along the corresponding line,
that is, y(q) = dist(q, π(q)), where π : Up → S is the corresponding projection. We
also define w(q) = w(π(q)), x(q) = x(π(q)). In this way, a local coordinate system
(w, x, y) is introduced in Up. Observe that e3 = ∂/∂y and the coframe {ω1, ω2, ω3}
of {e1, e2, e3} must take the form

ω1 = Adw + Bdx, ω2 = Cdw + Ddx, ω3 = Gdw + Hdx + dy, (19)

for some functions A, B, C, D, G, H. Next, we introduce the connection forms ωi
j =

∑
k εjbi

jkω
k , which completely determine the Levi-Civita connection, because ∇ei ej

= ∑
k ωk

j (ei)ek , for all i, j. Moreover, from (1) we easily get

ωi
j + εiεjω

j
i = 0 (20)

for all i, j (in particular, ωi
i = 0 for all i). The structure equations for ωi

j give

dωi +
∑

j

ωi
j ∧ ωj = 0, (21)

for all indices i. The curvature forms Ω i
j are completely determined by

−dΩ i
j = dωi

j +
∑

k

ωi
k ∧ ωk

j . (22)

By the definition of the Ricci tensor and taking into account (20) and (4), we obtain
that (22) is equivalent to

dω1
2 + ω1

3 ∧ ω3
2 = −R1212 ω1 ∧ ω2 − ρ23 ω1 ∧ ω3 + ρ13 ω2 ∧ ω3,

dω1
3 + ω1

2 ∧ ω2
3 = ρ23 ω1 ∧ ω2 + R1313 ω1 ∧ ω3 − ρ12 ω2 ∧ ω3, (23)

dω2
3 + ω2

1 ∧ ω1
3 = −ρ13 ω1 ∧ ω2 − ρ12 ω1 ∧ ω3 + R2323 ω2 ∧ ω3.

We then use (19) in (21). Also taking into account (3) and the divergence formula,
we obtain that (21) is equivalent to the following system of nine PDE’s:

A′
y = βA + (μ + σ)C, B′

y = βB + (μ + σ)D,

C′
y = (γ − σ)A + νC, D′

y = (γ − σ)B + νD,

G′
y = −τA − ψC, H ′

y = −τB − ψD,

B′
w − A′

x = αD − βE − (μ + σ)F , D′
w − C′

x = κD − (γ − σ)E − νF ,

H ′
w − G′

x = −(γ − μ)D + τE + ψF ,

(24)
where D,E ,F are auxiliary functions, defined by

D = AD − BC, E = AH − BG, F = CH − DG. (25)



The Prescribed Curvature Problem in Low Dimension 43

Observe that, because of (19),D = AD − BC �= 0 is a necessary and sufficient con-
dition for linear independence of theωi. Starting from the connection functions bi

jk of
(M, g), by (24) we determine the functionsA, . . . , H and so, explicit Lorentzianmet-
rics on R3, with the same Levi-Civita connection of (M, g). Conversely, if A, . . . , H
are known, then by (24) we can determine bi

jk .
We now express the curvature conditions (23) using (19). Taking into account that

the connection functions are constant, one can easily prove that (23) is equivalent to
the following system of algebraic equations:

(U3 + R1212)D + (V3 + ρ23)E + (W3 − ρ13)F = 0,
(U2 − ρ23)D + (V2 − R1313)E + (W2 + ρ12)F = 0,
(U1 + ρ13)D + (V1 + ρ12)E + (W1 − R2323)F = 0,
(V3 + ρ23)A + (W3 − ρ13)C = 0, (V3 + ρ23)B + (W3 − ρ13)D = 0,
(V2 − R1313)A + (W2 + ρ12)C = 0, (V2 − R1313)B + (W2 + ρ12)D = 0,
(V1 + ρ12)A + (W1 − R2323)C = 0, (V1 + ρ12)B + (W1 − R2323)D = 0,

where we put

U1 = α(γ + μ) − κ(β − ν) − ψ(γ − μ),

V1 = −β(γ + σ) − ν(γ − σ) + τ(α + ψ),

W1 = −ν2 + ψ2 + κτ − μσ − γ (μ + σ),

U2 = α(β − ν) + κ(γ + μ) − τ(γ − μ),

V2 = −β2 + τ 2 − αψ + γ σ − μ(γ − σ),

W2 = −β(μ + σ) − ν(μ − σ) − ψ(κ + τ),

U3 = α2 + κ2 − βν + γμ − σ(γ − μ),

V3 = −β(α + ψ) − κ(γ − σ) + τ(γ + σ),

W3 = −α(μ + σ) − ν(κ − τ) − ψ(μ − σ).

(26)

Comparing (8)–(10) with (26), we easily get V1 + ρ12 = 0, U2 − ρ23 = 0 and W3 −
ρ13 = 0. Hence, Eq. (26) reduce to

(U3 + R1212)D + (V3 + ρ23)E = 0, (V3 + ρ23)A = 0,
(V2 − R1313)E + (W2 + ρ12)F = 0, (V3 + ρ23)B = 0,
(V2 − R1313)A + (W2 + ρ12)C = 0, (V2 − R1313)B + (W2 + ρ12)D = 0,
(U1 + ρ13)D + (W1 − R2323)F = 0, (W1 − R2323)C = 0,
(W1 − R2323)D = 0.

(27)

In this way, we have proved the following result.

Theorem 2 Given a locally homogeneous Lorentzian three-manifold (M, g), having
R = (ρij) as the matrix of Ricci components with respect to a suitable
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pseudo-orthonormal frame {ei}, let A, B, C, D, G, H be smooth functions on (w, x, y),
satisfying the systems (24) and (27). Then, (19) determines a locally homogeneous
Lorentzian metric ḡ onR3, locally isometric to (M, g) (in particular, having the same
curvature).

4 Explicit Lorentzian Metrics in R
3 with Prescribed

Curvature

For each of the homogeneous models described by (12)–(18), we can now solve sys-
tems (24) and (27), providing explicit Lorentzian metrics on R3 which have exactly
the Ricci tensor of the corresponding model. Curvature equations are remarkably
simpler when the Ricci tensor is diagonal. This special case has been studied in [4].
Hence, we focus here on all the remaining cases, which do not have any correspon-
dence with the Riemannian case. The Ricci tensor of all 3D Lie groups equippedwith
a left-invariant Lorentzian metric was calculated in [2] and can be easily obtained
by direct calculation starting from (12)–(18). According to the results of [2], non-
diagonal cases occur for the Lie algebras g1, g2, g4 and g7.

(g1) Comparing (12) with (4), we find that the connection functions of a locally
homogeneous Lorentzian three-manifold described by (12) are given by

α = β = −ν = ψ = −a, γ = −μ = −σ = − b
2 , κ = τ = 0, (28)

where a �= 0 and b are constant. Straightforward calculations (see also [1]) show that
the Ricci tensor at any point is given by

R1 =
⎛

⎜
⎝

− b2

2 −ab ab
−ab −2a2 − b2

2 2a2

ab 2a2 b2

2 − 2a2

⎞

⎟
⎠ . (29)

On the other hand, because of (28), Eq. (26) reduce to

U1 = −ab, U2 = 2a2, U3 = 2a2 + b2

4 ,

V1 = ab, V2 = −2a2 + b2

4 , V3 = ab,

W1 = b2

4 , W2 = ab, W3 = ab.

(30)

By (29) and (30) it follows at once that all Eqs. (27) reduce to identities, that is,
under the assumption (28), the curvature conditions (27) are identically satisfied.

We now turn our attention to the connection equations (24). Again by (28), we
obtain that (24) reduces to
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A′
y = −aA + bC, B′

y = −aB + bD, C′
y = −bA + aC,

D′
y = −bB + aD, G′

y = aC, H ′
y = aD,

B′
w − A′

x = −aD + aE − bF , D′
w − C′

x = bE − aF , H ′
w − G′

x = bD − aF .

(31)

One can now find explicit solutions of the system (31). Different kinds of solutions
are obtained according to the different possibilities for the sign of a2 − b2. Some
explicit solutions of (31) are resumed in the following

Theorem 3 Let a �= 0 and b be two real constants and R1 any symmetric real
matrix described by (29). Then, (19) determines a family of (locally isometric) locally
homogeneous Lorentzian metrics on R

3[w, x, y] having R1 as the Ricci tensor at any
point, where the functions A, B, C, D, G, H are the following:
(i) When b �= 0 and a2 − b2 > 0, we put η = √

a2 − b2. Then

A = f cosh(η y), B = θ sinh(η y),
C = 1

b f (a cosh(η y) + η sinh(η y)) , D = 1
b θ (η cosh(η y) + a sinh(η y)) ,

G = a
bη

f (η cosh(η y) + a sinh(η y)) − 1
θη f ′

x,

H = a
bη

θ (a cosh(η y) + η sinh(η y)) ,

for a real constant θ �= 0 and f (w, x) = a1(w) cos(bθx) + a2(w) sin(bθx), where
a1, a2 are two arbitrary one-variable functions. Corresponding solutions are found
in [3] in the cases a2 = b2 and a2 − b2 < 0. In all the cases, the corresponding
Lorentzian metric is defined in the open subset of R3 where f �= 0.
(ii) When b = 0:

A = a0(w)e−ay, B = b0(x)e
−ay, C = G = c0(w)eay, D = H = d0(x)e

ay,

where a0, b0, c0, d0 are arbitrary one-variable functions. The corresponding Loren-
tzian metric is defined in the open subset of R3 where a0(w)d0(x) − b0(x)c0(w) �= 0.

(g2) The remaining cases can be treated similarly to the case g1 above. So, for any
of them, we shall only report the Ricci components, the equations for the connection
functions and some explicit solutions. In the case of g2, we have

R2 =
⎛

⎜
⎝

− a2

2 − 2c2 0 0
0 a2

2 − ab c(a − 2b)

0 c(a − 2b) − a2

2 + ab

⎞

⎟
⎠ , (32)

for three real constants a, b, c, and

A′
y = aC, B′

y = aD, C′
y = −bA,

D′
y = −bB, G′

y = cA, H ′
y = cB,

B′
w − A′

x = −aF , D′
w − C′

x = cD + bE , H ′
w − G′

x = bD − cE .

(33)

We present some solutions of (33) in the following
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Theorem 4 Given three real constants a, b, c and any symmetric real matrix R2

described by (32). Then, (19) gives a family of (locally isometric) locally homoge-
neous Lorentzian metrics on R

3[w, x, y] having R2 as the Ricci tensor at any point,
where the functions A, B, C, D, G, H are the following:

If −ab < 0, we put η = √
ab. Then

A = f cos(η y), B = θ sin(η y), C = − η

a f sin(η y),
D = η

a θ cos(η y), G = c
η
f sin(η y) − 1

θη
f ′
x , H = − c

η
θ cos(η y),

where f (w, x) = a1(w) cosh(
√

θ2(b2 + c2)x) + a2(w) sinh(
√

θ2(b2 + c2)θx), θ �= 0
is a real constant and a1, a2 are two arbitrary one-variable functions. The Lorentzian
metric is defined on the open subset ofR3 where f �= 0. Corresponding solutions were
found in [3] in the cases ab < 0, a = 0, b = 0.

(g4) For a locally homogeneous Lorentzian three-manifold described by (15), the
Ricci components are given by

R4 =
⎛

⎜
⎝

− a2

2 0 0
0 a2

2 + 2ε(a − b) − ab + 2 a + 2(ε − b)

0 a + 2(ε − b) − a2

2 + ab + 2 − 2εb

⎞

⎟
⎠ , (34)

for two real constants a, b, and connection equations (24) become

A′
y = aC, B′

y = aD C′
y = −bA,

D′
y = −bB, G′

y = A, H ′
y = B,

B′
w − A′

x = −aF , D′
w − C′

x = D + bE , H ′
w − G′

x = (b − 2ε)D − E .

(35)

Some explicit solutions of (35) are given in the following

Theorem 5 Given two real constants a, b and any symmetric real matrix R4 as
in (34). Then, (19) describes a family of (locally isometric) locally homogeneous
Lorentzian metrics on R

3[w, x, y] whose Ricci tensor at any point is R4, where the
functions A, B, C, D, G, H are the following:

If ab < 0, we put η = √−ab. Then,

A = f cosh(η y), B = θ sinh(η y), C = η

a f sinh(η y),
D = η

a θ cosh(η y), G = 1
η
f sinh(η y) − 1

θη
f ′
x , H = 1

η
θ cosh(η y),

where

f (w, x) =
{

a1(w) cos(|θ(b + ε)|x) + a2(w) sin(|θ(b + ε)|x) if b �= −ε,

a1(w)x + a2(w) if b = −ε,
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for a real constant θ �= 0 and two arbitrary one-variable functions a1, a2. The
Lorentzian metric is defined in the open subset of R3 where f �= 0. Corresponding
solutions were found in [3] in the cases ab > 0, a = 0, b = 0.

(g7) Consider a locally homogeneous Lorentzian three-manifold locally described
by (18). Then, the Ricci components are given by

R7 =
⎛

⎜
⎝

− c2

2 0 0
0 ad − a2 − bc + c2

2 a2 − ad + bc
0 a2 − ad + bc ad − a2 − bc − c2

2

⎞

⎟
⎠ , (36)

where a, b, c, d are four real constants satisfying ac = 0.
If c = 0, then, (24) reduces to

A′
y = aA, B′

y = aB,

C′
y = G′

y = bA + dC, D′
y = H ′

y = bB + dD,

B′
w − A′

x = aD − aE , D′
w − C′

x = H ′
w − G′

x = bD − bE − dF ,

(37)

while if c �= 0, then a = 0 and the system (24) reduces to

A′
y = cC, B′

y = cD,

C′
y = G′

y = bA + dC, D′
y = H ′

y = bB + dD,

B′
w − A′

x = −cF , D′
w − C′

x = H ′
w − G′

x = bD − bE − dF .

(38)

Some solutions of (37) and (38) are given in the following

Theorem 6 Given three real constants a, b, d and any symmetric real matrix R7

described by (36). Then, (19) gives a family of (locally isometric) locally homoge-
neous Lorentzian metrics on R

3[w, x, y] having R7 as the Ricci tensor at any point,
where the functions A, B, C, D, G, H are the following:

(I) When c = 0:

A = a0(w)eay, B = b0(x)e
ay,

C = G = edy(c0(w) + b
a−d a0(w)e(a−d)y), D = H = edy(d0(x) + b

a−d b0(x)e
(a−d)y),

where a0, b0, c0, d0 are arbitrary one-variable functions. The Lorentzian metric is
defined in the open subset of R3 where a0(w)d0(x) − b0(x)c0(w) �= 0.

(II) When a = 0 �= c: if Δ = d2 + 4bc > 0, let λ1 �= λ2 be the solutions of λ2 −
dλ − bc = 0. Then,

A = k1(w)eλ1y + k2(w)eλ2y, B = h1(x)e
λ1y + h2(x)e

λ2y,

C = G = 1
c (k1(w)λ1eλ1y + k2(w)λ2eλ2y), D = H = 1

c (h1(x)λ1eλ1y + h2(x)λ2eλ2y),
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where k1, k2, h1, h2 are four arbitrary one-variable functions, and the Lorentzian
metric is defined on the open subset of R3 where k1(w)h2(x) − k2(w)h1(x) �= 0.
Corresponding solutions exist when Δ = 0 and when Δ < 0 (see [3]).
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