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A las aladas almas de las rosas
del almendro de nata te requiero,
que tenemos que hablar de muchas cosas,
compañero del alma, compañero.

Elegía a Ramón Sijé (1936)
Miguel Hernández
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Introduction

This volume presents a collection of articles to honour Prof. Jaime Muñoz Masqué
on the occasion of his 65th birthday. Jaime was born on 20 September 1950 in
Sabadell, Barcelona (Spain), to his parents, Manuel and Rosenda. He attended high
school in his home village, initially showing an inclination towards literature and
poetry, which he subsequently combined with a strong interest in mathematical
problems. He devoted more time to the latter; for instance, he spent a summer of his
adolescence exploring the intriguing question of the unsolvability of the equations
defined by fifth degree polynomials. This clearly indicated that his destiny was to
study mathematics, which he did at the University of Barcelona.

During his studies at the university, Jaime made acquaintance of two important
persons: First, María Sicilia, his future wife, who was also studying mathematics,
and second, Pedro Luis García Pérez, with whom he decided to do his Ph.D. As
Prof. García held a post in the University of Salamanca, the newly established
family moved to this city after both María and Jaime had completed their studies in
1973. Jaime won his position as High School Professor (Catedrático) in 1975,
working first in Zamora and then in Alba de Tormes (Salamanca). Jaime helped
some of his colleagues at the High School María de Molina to prepare for their
national-level exams in order to obtain permanent positions. They all remember
these years with affection.

In the meantime, Jaime had also begun to lecture at the University of Salamanca.
In 1983, Jaime defended his doctoral thesis at that university, entitled
Hamilton-Cartan Theory for higher-order variational problems on fibered mani-
folds (Teoría de Hamilton-Cartan para los problemas variacionales de orden
superior sobre variedades fibradas). He also began his fruitful scientific career with
the publication of his papers. In his first article, Higher-order structure forms and
infinitesimal contact transformations (Formes de structure et transformations
infinitésimales de contact d’ordre supérieur, CR Acad Sci Paris Sér I Math 1984;
298, no. 8:185–8), he formalized the geometry behind the natural lift of vector
fields from a bundle to its jet extension for arbitrary degree. This tool was essential
for his work on higher-order variational calculus, the topic of his thesis, on which
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he became a world expert. At the same time, his family grew as María and Jaime
had their three children: Ana, Joaquín and Teresa.

From 1984 to 1989, Jaime was first Assistant Professor and then Associate
Professor at the University of Salamanca, where he continued his scientific work,
mainly in the fields of differential geometry and algebra. In 1989 he was appointed
as Researcher at CSIC (Spanish National Research Council) and the family moved
to Madrid. While working in his new position he added cryptography to the list of
his interests, and joined research projects in this field. He continued collaborating in
CSIC and has carried out research on these topics until now.

In parallel with his scientific work, Jaime delivered courses in different uni-
versities where he showed his rare talent of explaining complex mathematics in a
clean, simple and rigorous language. In association with this academic work, he has
been the advisor for nine doctoral theses (Marco Castrillón López, Raúl Durán
Díaz, Víctor Fernández Mateos, Roberto Ferreiro, Ángel Martín del Rey, Alberto
Peinado Domínguez, Luis Pozo Coronado, Eugenia Rosado María, Antonio
Valdés) covering a varied collection of topics in geometry and algebra, from
variational calculus, Riemannian geometry and theory of invariants to cryptogra-
phy. We have borne in mind this versatility for choosing the title of this volume,
which offers an indication of Jaime’s vast knowledge and wide-ranging scientific
works. In this respect, the database of the Mathematical Reviews of the AMS
includes as many as 162 contributions from Jaime, including both books and
articles, on which he has worked with 39 collaborators.

The general consensus among the people who work with Jaime is that he is not
only a hard worker but also possesses a very broad knowledge of mathematics and
physics (as well as poetry and philosophy!) and an incredible capability to tackle
problems in very different areas in an interdisciplinary atmosphere. We all enjoy his
warm personality, the conversations with him over a cup of coffee and especially
his generosity, in all senses of the word. Jaime is a person who loves mathematics
and with whom one feels that excitement which accompanies the search for a
solution or the thrilling experience of finding those hidden mathematical gems
accessible only to a select group—a group of which Jaime is undoubtedly a
member.

Marco Castrillón López
Luis Hernández Encinas
Pedro Martínez Gadea

Mª Eugenia Rosado María

xii Introduction



A Survey on Homogeneous Structures
on the Classical Hyperbolic Spaces

Wafaa Batat, P.M. Gadea and José A. Oubiña

Dedicated to our colleague and friend Jaime Muñoz Masqué, a
good mathematician, with affection and admiration, on the
occasion of his 65th birthday

Abstract This is a survey on homogeneous Riemannian, Kähler or quaternionic
Kähler structures on the real, complex or quaternionic hyperbolic spaces RH(n),
CH(n) and HH(n), respectively.

Keywords Homogeneous Riemannian structures · Classical hyperbolic spaces

1 Introduction

Real, complex and quaternionic hyperbolic spaces and the Cayley hyperbolic plane
are known to be important spaces and have been and are subject of much research.
Two general references are Chen and Greenberg [10] and Ratcliffe [22].

On the other hand, homogeneous Riemannian structures were introduced by
Ambrose and Singer [3], and further studied in depth by Tricerri and Vanhecke
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2 W. Batat et al.

(see for instance [25]) and then by other authors. There exist three basic geometric
types,S1,S2,S3. Later, homogeneous Kähler structures were defined and studied
by Abbena and Garbiero in [1] and then by several authors. This time there are four
basic types,K1, . . . ,K4. Further, homogeneous quaternionic Kähler structures were
introduced by Fino [11], who moreover gave a Lie-theoretical description of the five
basic types,QK 1, . . . ,QK 5, and then studied by several authors. (In the sequel we
shall denoteSi ⊕ Sj simply bySij;Ki ⊕ Kj byKij;QK i ⊕ QK j byQK ij, and
so on.)

Homogeneous Riemannian structures have found some useful applications. Two
of them are: The characterization ofRH(n),CH(n) andHH(n) by such structures and
the characterization of the homogeneous spin Riemannian manifolds whose Dirac
operator is like that on a Riemannian symmetric spin space (see [15]). In our opinion,
Tricerri’s and Vanhecke’s classification of geometric types is so natural, that more
nice applications are to be expected.

The present survey is on the characterization of each of the classical hyperbolic
spaces by linear homogeneous structures and on the geometric types of homoge-
neous structures on them. Recall that the characterization ofRH(n) by homogeneous
Riemannian structures of typeS1 was given by Tricerri and Vanhecke in [25], that of
CH(n) in terms of homogeneous Kähler structures of typeK24 was obtained in [16],
and that of HH(n) by homogeneous quaternionic Kähler structures of type QK 123

with nonzero projection toQK 3 (actually, of type QK 3) was given in [7].
The vector spacesS1,K24 andQK 123 have dimension growing linearly accord-

ing to the dimension of the homogeneous manifold admitting some homogeneous
structure in each of them, that is, hyperbolic spaces. For this reason, these struc-
tures are sometimes called of linear type. However, this is not the unique type that
hyperbolic spaces admit.

As for the contents, we recall in Sect. 2 some definitions on homogeneous Rie-
mannian, Kähler and quaternionic Kähler structures, and recall the classification of
geometric types for each of the three cases.

In Sect. 3we give some results on the types of homogeneous structures thatRH(n),
CH(n) or HH(n) admit.

2 Homogeneous Riemannian, Kähler or Quaternionic
Kähler Structures

2.1 Homogeneous Riemannian Structures

A homogeneous structure on a Riemannian manifold (M, g) is a tensor field S of
type (1, 2) satisfying

˜∇g = 0, ˜∇R = 0, ˜∇S = 0, (1)
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where ˜∇ is (see [25]) the connection determined by ˜∇ = ∇ − S, ∇ being the Levi–
Civita connection of g. The condition ˜∇g = 0 is equivalent to SXYZ = −SXZY , where
SXYZ = g(SXY , Z).

Ambrose and Singer [3] gave the following characterization of homogeneous
Riemannian manifolds: A connected, simply connected and complete Riemannian
manifold (M, g) is homogeneous if and only if it admits a homogeneous structure S.

Let V be a real vector space endowed with an inner product 〈·, ·〉, which is the
model for each tangent space TpM, p ∈ M, of a (homogeneous) Riemannian mani-
fold. Consider the vector spaceS (V ) of tensors of type (0, 3) on (V, 〈·, ·〉) satisfying
the same algebraic symmetry that a homogeneous Riemannian structure S, that is,
S (V ) = {S ∈ ⊗3V ∗ : SXYZ = −SXZY , X, Y , Z ∈ V }.

Tricerri and Vanhecke studied the decomposition of S (V ) into invariant and
irreducible subspaces Si(V ), i = 1, 2, 3, under the action of the orthogonal group
O(n) given by (aS)XYZ = Sa−1X a−1Y a−1Z , a ∈ O(n). The inner product on V induces
in a natural way an inner product onS (V ), given by 〈S, S′〉 = ∑n

i,j,k=1 Seiejek S′
eiejek

,
where {ei} is an orthonormal basis of V . Let c12(S)(Z) = ∑n

i=1SeieiZ , Z ∈ V .
From the theory of representations of the orthogonal group (cf. [26, pp. 153–159])

it follows that S (V ) decomposes into the orthogonal direct sum of three invariant
and irreducible subspaces under the action of O(n). Specifically, the subspace of
c12-traceless tensors of the subspace Y of ⊗3V ∗ corresponding to the nonstandard
Young symmetrizer id + (12) − (23) − (132), the n -dimensional subspace of ten-
sors corresponding to the above c12-trace, and the subspace ∧3V ∗. Then, one has

Theorem 1 ([25]) If dim V � 3, then S (V ) decomposes into the orthogonal direct
sum of subspaces which are invariant and irreducible under the action of O(n),
S (V ) = S1(V ) ⊕ S2(V ) ⊕ S3(V ), where

S1(V ) = {S ∈ S (V ) : SXYZ = 〈X, Y〉θ(Z) − 〈X, Z〉θ(Y), θ ∈ V ∗},
S2(V ) = {S ∈ S (V ) : SXYZSXYZ = 0, c12(S) = 0},
S3(V ) = {S ∈ S (V ) : SXYZ + SYXZ = 0},

with dimensions n, 1
3n(n2 − 4), 1

6n(n − 1)(n − 2), respectively. If dim V = 2 then
S (V ) = S1(V ).

We say that the homogeneous Riemannian structure S on (M, g) is of type {0},Si

(i = 1, 2, 3),Sij (1 � i < j � 3), orS123 if, for each point p ∈ M, S(p) ∈ S (TpM)

belongs to {0},Si(TpM), Sij(TpM) or S123(TpM), respectively.
The similar terminology and notation will be used for the homogeneous Kähler

(Sect. 2.2) and homogeneous quaternionic Kähler (Sect. 2.3) geometric types, that
is, for the different types obtained from the basic typesKi (i = 1, . . . , 4) andQK i

(i = 1, . . . , 5), respectively.
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2.2 Homogeneous Kähler Structures

An almost Hermitian manifold (M, g, J) is called a homogeneous almost Hermitian
manifold if there exists a Lie group of almost complex isometries acting transitively
and effectively onM. In [24], Sekigawa proved that a simply connected and complete
almost Hermitian manifold (M, g, J) is homogeneous if and only if it admits a tensor
field S of type (1, 2) satisfying the Ambrose–Singer equations (1) and ˜∇J = 0. Such
a tensor field S is called a homogeneous almost Hermitian structure (or a homoge-
neousKähler structure if (M, g, J) isKähler).Moreover, a homogeneousRiemannian
structure on a Kähler manifold (M, g, J) is a homogeneous Kähler structure if and
only if SZXY = SZ JX JY for all vector fields X, Y , Z on M.

The classification of homogeneous Kähler structures was obtained byAbbena and
Garbiero. We recall here their result: Let V be a 2n-dimensional real vector space
(which is the model for the tangent space at any point of a manifold equipped with a
Kähler homogeneous structure) endowedwith a complex structure J and a Hermitian
inner product 〈 , 〉, that is, J2 = −I , 〈JX, JY〉 = 〈X, Y〉, X, Y ∈ V , where I denotes
the identity isomorphism of V .

Denoting complexifications by a superscript c, we now consider the decomposi-
tions in (±i)-eigenspaces V c = V 1,0 ⊕ V 0,1 and V ∗c = λ1,0 ⊕ λ0,1, with respect to
the complexified Jc of the complex structure J . In Salamon’s notation [23], let λp,q

denote the space of forms of type (p, q), which is isomorphic to Λpλ1,0 ⊗ Λqλ0,1.
We can decompose the spaceS (V )c = {S ∈ ⊗3V : SXYZ = −SXZY }, X, Y , Z ∈ V c,
into two subspaces invariant under the action of U(n). One summand (that is,
S (V )c− = V ∗c ⊗ (λ2,0 ⊕ λ0,2)) is related to homogeneous almost Hermitian struc-
tures. The other summand is

S (V )c
+ = V ∗c ⊗ λ1,1 ∼= {S ∈ ⊗3V : SXYZ = −SXZY = SXJcYJcZ},

X, Y , Z ∈ V c, which is the complexified of Abbena–Garbiero’s space S (V )+ (see
[1]). The space S(V )+ decomposes ([12, (2.1)]) into four subspaces invariant and
irreducible under the action of U(n). The sum of the first and second subspaces cor-
responds with the irreducible complex representation of U(n) of the highest weight
(1, 1, 0, . . . , 0,−1). The related real tensors of trace zero and those corresponding to
that trace give rise to the first and second types in Theorem2 below. Similarly, the sum
of the third and four subspaces in that theorem, corresponds to the irreducible com-
plex representation of U(n) of the highest weight (2, 0, . . . , 0,−1). Taking traceless
real tensors one gets the third subspace and the fourth one comes from that trace.
We recall that Abbena and Garbiero [1, Theorem 4.4] proved the invariance and irre-
ducibility by using quadratic invariants. In [12], Young diagrams and symmetrizers
are used instead.

The standard representation of U(n) on V induces a representation of U(n) on
S (V )+ given by (A(S))XYZ = SA−1XA−1YA−1Z , A ∈ U(n). Moreover, the scalar prod-
uct in V induces in a natural way the scalar product in S (V ) given by 〈S, S′〉 =
∑2n

i,j,k=1 Seiejek S′
eiejek

, for any orthonormal basis {e1, . . . , e2n} of V . The expression of
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the tensors in each basic geometric type was given by Abbena and Garbiero and is
as follows.

Theorem 2 ([1]) If dim V � 6, S (V )+ decomposes into the orthogonal direct sum
of the following subspaces invariant and irreducible under the action of the group
U(n):

K1 = {S ∈ S (V ) : SXYZ = 1
2 (SYZX + SZXY + SJYJZX + SJZXJY ), c12(S) = 0},

K2 = {S ∈ S (V ) : SXYZ =〈X, Y〉θ1(Z) − 〈X, Z〉θ1(Y) + 〈X, JY〉θ1(JZ)

− 〈X, JZ〉θ1(JY) − 2〈JY , Z〉θ1(JX), θ1 ∈ V ∗},
K3 = { S ∈ S (V ) : SXYZ = − 1

2 (SYZX + SZXY + SJYJZX + SJZXJY ), c12(S) = 0},
K4 = { S ∈ S (V ) : SXYZ =〈X, Y〉θ2(Z) − 〈X, Z〉θ2(Y) + 〈X, JY〉θ2(JZ)

− 〈X, JZ〉θ2(JY) + 2〈JY , Z〉θ2(JX), θ2 ∈ V ∗},

X, Y , Z ∈ V , where c12 is defined by c12(S)(X) = ∑2n
i=1 SeieiX , for any X ∈ V and

{e1, . . . , e2n} being an orthonormal basis of V ; θ1(X) = (1/(2(n − 1)))c12(S)(X)

and θ2(X) = (1/(2(n + 1)))c12(S)(X) , X ∈ V . The dimensions are n(n + 1)(n − 2),
2n, n(n − 1)(n + 2) and 2n, respectively. If dim V = 4, thenS (V )+ = K2 ⊕ K3 ⊕
K4. If dim V = 2, then S (V )+ = K4.

2.3 Homogeneous Quaternionic Kähler Structures

Let (M, g, υ3)be an almost quaternion-Hermitian4n-manifold,υ3 being the structure
subbundle of the bundle of (1, 1) tensors on M and let ∇ denote the Levi–Civita
connection. The manifold is said to be quaternion-Kähler if one has locally (cf.
Ishihara [19]) that

∇XJ1 = τ 3(X)J2 − τ 2(X)J3, etc., (2)

for certain differential 1-forms τ 1, τ 2, τ 3. Here and in the sequel we write “etc.” to
indicate the similar formulas obtained by cyclic permutation of (123). The holonomy
group is contained in Sp(n)Sp(1) . A quaternion-Kähler manifold (M, g, υ3) is said
to be a homogeneous quaternion-Kähler manifold if it admits a transitive group of
isometries (cf. Alekseevsky and Cortés [2, p.218] and [7, Remark 2.2]). A connected,
simply connected and complete quaternion-Kähler manifold (M, g, υ3) is homoge-
neous if and only if it admits a homogeneous quaternionic Kähler structure, that is,
a (1, 2) tensor field S satisfying the Ambrose–Singer equations (1) and equations

˜∇XJ1 = τ̃ 3(X)J2 − τ̃ 2(X)J3, etc., (3)

for three differential 1-forms τ̃ 1, τ̃ 2, τ̃ 3. Let θa = τ a − τ̃ a, a = 1, 2, 3. Then, from
formulas (2) and (3) we have that

SXJ1YJ1Z − SXYZ = θ3(X)g(J2Y , J1Z) − θ2(X)g(J3Y , J1Z), etc.,
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which, together with the condition SXYZ = −SXZY , are the algebraic symmetries sat-
isfied by a homogeneous quaternionic Kähler structure S.

Denote byE the standard representation ofSp(n)onC2n, bySrE the rth-symmetric
power of E (so that S2E ∼= sp(n) ⊗ C), by K the irreducible Sp(n)-module of the
highest weight (2, 1, 0, . . . , 0) in E ⊗ S2E = S3E ⊕ K ⊕ E, and by H the standard
representation of Sp(1) ∼= SU(2) on C

2 , so that S2H ∼= sp(1) ⊗ C and S3H is the
4-dimensional irreducible representation of Sp(1).

Let S (V )+ denote the set of homogeneous quaternionic Kähler structures. The
geometric types were classified from a representation-theoretic point of view as
follows.

Theorem 3 (Fino [11, Lemma 5.1])

S (V )+ = [EH] ⊗ (sp(1) ⊕ sp(n)) ∼= [EH] ⊕ [ES3H] ⊕ [EH] ⊕ [S3EH] ⊕ [KH].

Here, [V ] denotes the real representation whose complexification is V and the
tensor products signs are omitted, that is, one writes EH instead of E ⊗ H, and so
on.

The standard representation [EH] of Sp(n)Sp(1) on V induces a representation of
Sp(n)Sp(1) onS (V )+ given by (A(S))XYZ = SA−1XA−1YA−1Z , A ∈ Sp(n)Sp(1). More-
over, the scalar product in V induces in a natural way the scalar product in S (V )+
given by 〈S, S′〉 = ∑4n

i,j,k=1 Seiejek S′
eiejek

, for any orthonormal basis {e1, . . . , e4n} of
V . The classification of homogeneous quaternionic Kähler structures in terms of
real tensors was given in [7], as we now recall (except for the explanation of a few
notations).

Theorem 4 ([7, Theorem 1.1]) If n � 2, then V decomposes into the orthogonal
direct sum of the following subspaces invariant and irreducible under the action of
Sp(n)Sp(1):

QK 1 = {

Θ ∈ ˜V : ΘXYZ = ∑3
a=1θ(JaX)〈JaY , Z〉, θ ∈ V ∗},

QK 2 = {

Θ ∈ ˜V : ΘXYZ = ∑3
a=1θ

a(X)〈JaY , Z〉, = ∑3
a=1θ

a ◦ Ja = 0, θ1, θ2, θ3 ∈ V ∗},

QK 3 = {

S ∈ ̂V : SXYZ = 〈X, Y〉θ(Z) − 〈X, Z〉θ(Y)

+ ∑3
a=1

(〈X, JaY〉θ(JaZ) − 〈X, JaZ〉θ(JaY)
)

, θ ∈ V ∗},

QK 4 = {

S ∈ ̂V : SXYZ = 1
6

(

SXYZ SXYZ + ∑3
a=1SXJaYJaZ SXJaYJaZ

)

, c12(S) = 0
}

,

QK 5 = {

S ∈ ̂V : SXYZ SXYZ = 0
}

,

with dimensions 4n, 8n, 4n, 4
3n(n + 1)(2n + 1), 16

3 n(n2 − 1), respectively.
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3 Types of Homogeneous Structures on RH(n), CH(n)
or HH(n)

The usual homogeneous description of each hyperbolic space is as a rank-one
noncompact Riemannian symmetric space, that is, as RH(n) = SO(n, 1)/O(n),
CH(n) = SU(n, 1)/S(U(n) × U(1)) and HH(n) = Sp(n, 1)/(Sp(n) × Sp(1)),
respectively. Then the corresponding homogeneous tensor S vanish.

We have the next result.

Proposition 1 (i) ([25, Theorem 5.2]) A connected, simply connected and complete
Riemannian manifold of dimension n � 2 admits a nontrivial homogeneous structure
S ∈ S1 if and only if it is isometric to RH(n).

(ii) ([16, Theorem 1.1]) A connected, simply connected and complete irreducible
Kähler manifold of dimension 2n � 4 admits a nontrivial homogeneous Kähler struc-
ture S ∈ K24 if and only if it is holomorphically isometric to CH(n).

(iii) ([7, Theorem 1.1]) A connected, simply connected and complete quaternionic
Kähler manifold of dimension 4n � 8 admits a nontrivial homogeneous quaternionic
Kähler structure S ∈ QK 123 if and only if it is isometric to HH(n). In this case, the
homogeneous structure is necessarily of type QK 3.

Recall (Heintze [18, Theorem 4]), that a connected homogeneous Kähler 2n-
manifold of negative curvature is holomorphically isometric to CH(n). Hence from
Proposition1, (ii), it follows the next

Corollary 1 Any connected homogeneous Kähler manifold of real dimension 2n �
4 and negative curvature admits a Kähler homogeneous structure S ∈ K24.

However, hyperbolic spaces admit more types of homogeneous structures. We
first recall

Proposition 2 (i) ([8, Theorem 3.1]) The connected groups acting transitively on
RH(n) are the full isometry group SO(n, 1) and the groups G = FrN, where N is
the nilpotent factor in the Iwasawa decomposition of SO(n, 1) and Fr is a connected
closed subgroup of SO(n − 1)R with nontrivial projection to R.

(ii) ([8, Theorem 4.1]) The connected groups acting transitively on CH(n) are
the full isometry group SU(n, 1) and the groups G = FrN, where N is the nilpotent
factor in the Iwasawa decomposition KAN of SU(n, 1) and Fr is a connected closed
subgroup of S(U(n − 1)U(1))R with nontrivial projection to R.

(iii) ([7, Theorem 5.2]) The connected groups acting transitively on HH(n) are
the full isometry group Sp(n, 1) and the groups G = FrN, where N is the nilpotent
factor in the Iwasawa decomposition KAN of Sp(n, 1) and Fr is a connected closed
subgroup of Sp(n − 1)Sp(1)R with nontrivial projection to R.

The simplest choice is Fr = A, giving the description ofRH(n),CH(n) orHH(n)

as the solvable group AN , and one has
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Proposition 3 (i) ([8, Subsection3.1]) Any homogeneous Riemannian structure on
RH(n) ≡ AN with trivial holonomy lies in the class S1.

(ii) ([8, Proposition 4.2]) Any homogeneous Kähler structure on CH(n) ≡ AN
with trivial holonomy lies in the class K234.

(iii) ([7, Proposition 5.3]) Any homogeneous quaternionic Kähler structure on
HH(n) ≡ AN with trivial holonomy lies in the class QK 134.

For structures of linear type one has

Proposition 4 ([25, p. 55], [8, Subsection3.1]) (i) The homogeneous Riemannian
structures of linear type on RH(n) can be realized by the homogeneous model AN,
where AN stands for the solvable part of the Iwasawa decomposition of the full
isometry group SO(n, 1).

(ii) ([8, Theorem 4.4]) The homogeneous Kähler structures of linear type on
CH(n) can be realized by the homogeneous model U(1)AN/U(1), where AN stands
for the solvable part of the Iwasawa decomposition of the full isometry group
SU(n, 1).

(iii) ([7, Theorem5.4])The homogeneous quaternionic Kähler structures of linear
type on HH(n) can be realized by the homogeneous model Sp(1)AN/Sp(1), where
AN stands for the solvable part of the Iwasawa decomposition of the full isometry
group Sp(n, 1).

In the case ofRH(n), even all the holonomy algebras of canonical connections and
the types of the corresponding homogeneous structures are known, see Proposition5
below. We first recall some definitions and notations.

Assume thatG = FrN acts transitively onRH(n) as in Proposition2. This implies
that RH(n) = G/H, with H = Fr ∩ SO(n − 1). Then H is reductive, and thus h =
h0 ⊕ hss, where h0 is abelian and hss is semisimple. Let fr = h ⊕ ar , g = h ⊕ ar ⊕ n,
withar projecting nontrivially toa = R>0.Also fr is reductive,with fr = (h0 ⊕ ar) ⊕
hss. Let s = a ⊕ n and sr = ar ⊕ n, where ar is any one-dimensional complement
to h0 ⊕ n in sf = (fr)0 ⊕ n. A homogeneous Riemannian structure on G/H depends
on a choice of adH -invariant complement m to h in g, which is the graph of an h
-equivariant map ϕr : sr → h. For any h-equivariant map χr : s → sr extending the
identity on n, one defines ϕ : s → h as ϕ = ϕr ◦ χr . Then we have

Proposition 5 ([9, Theorems 1.1,5.2]) The holonomy algebras of canonical con-
nections on RH(n) are so(n) and all the reductive algebras k = k0 ⊕ kss of compact
type with k0 ∼= R

r abelian and kss semisimple such that 3r + dim kss � n − 1.
Let S be a nonzero homogeneous tensor for RH(n) with holonomy algebra hol.

Then S always has a nontrivial component in S1 and S is of type S1 if and only if hol
is 0. The structure is of strict type S13 if and only if a ⊂ ker ϕ and hol is a nonzero
semisimple algebra acting trivially on ker ϕ. Otherwise S is of general type.

All the homogeneous Kähler structures on the solvable description CH(n) ≡ AN
of the complex hyperbolic space have been given in a rather explicit way in [17,
Theorem 3.1]. As expected, the expression simplifies a great deal for n = 1 and
n = 2, which are of course interesting cases on their own.
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On the other hand, the use of the parabolic subgroups of the respective full isometry
groups permits us to make explicit more homogeneous descriptions and give the
corresponding types of structures. In the case of HH(n), n = 2, 3, one has the next
result (for detailed expressions andmore details see [5, Theorem 5]) and [6, Theorem
3.4]).

Proposition 6 Let G = KAN be the Iwasawa decomposition of Sp(2, 1) (resp.
Sp(3, 1)). The homogeneous descriptions of HH(2) (resp. HH(3)) are as in the
Table1, where E is simply connected and abelian. In this case the corresponding
types of homogeneous quaternionic Kähler structures are also given. The figure on
the third column, if any, stands for the number of parameters of the corresponding
n-parametric family of homogeneous quaternionic Kähler structures.

Consider now the Poincaré half-space model

(Hn, g) =
(

{ (

u1, . . . , un
) ∈ R

n : u1 > 0
}

, − 1

c(u1)2

n
∑

i=1

dui ⊗ dui

)

of RH(n), equipped with the metric g of constant curvature c < 0, and the Siegel
domains

DCn =
{

(

u1 = x + iy, u2, . . . , un
) ∈ C

n : x −
n

∑

k=2

|uk|2 > 0
}

,

DHn =
{

(

u1 = x + iy + jz + kt, u2, . . . , un
) ∈ H

n : x −
n

∑

k=2

|uk|2 > 0
}

.

Consider also the next vector fields on the relevant manifolds: ξ , metrically dual
to the form θ in the expression of the elements of S1; ξ and η, metrically dual to
the forms θ1 + θ2 and θ1 − θ2 in the expressions of the elements ofK2 andK4; and

Table 1 Homogeneous descriptions ofHH(2) andHH(3) and the corresponding types of structures

dim E n Type

Sp(2, 1)/(Sp(2) × Sp(1)) 0 {0}
Eλ,μN (λ, μ ∈ R

3 \ {0}) 1 6 QK 12345

E0,μN (μ ∈ R
3 \ {0}) 1 3 QK 1345

AN = E0,0N 1 QK 134

Sp(3, 1)/(Sp(3) × Sp(1)) 0 {0}
Eλ,μ,ν,γ N (λ, μ, ν ∈ R

3 \ {0}, γ ∈ R
4 \ {0}) 1 13 QK 12345

E0,μ,ν,γ N (μ, ν ∈ R
3 \ {0}, γ ∈ R

4 \ {0}) 1 10 QK 1345

AN = E0,0,0,0N 1 QK 134
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ξ , metrically dual to the form θ in the expression of the elements of QK 3. Each
of these vector fields ξ defines the corresponding homogeneous structures of linear
type and we have the next result.

Proposition 7 ([25, (5.26)], [16, (4.4)], [4, Corollary 5.1]) Consider the Poincaré
half-space model (Hn, g) of RH(n) (resp. Siegel domain model (DCn , g) or (DHn , g)

of CH(n) or HH(n)), with x = Re u1 the respective distinguished real coordinate.
Then each of the vector fields,

ξ = −cx
∂

∂x

on (Hn, g) (see Fig.1) and

ξ = − c

2

(

x −
n

∑

k=2

|uk|2
)

∂

∂x
, c < 0,

on (DCn , g) or (DHn , g) (see Fig.2), defines a homogeneous structure of linear type,
c being the ordinary, holomorphic or quaternionic sectional curvature, respectively.

The expressions of the vector fields ξ for the open unit ball models of RH(n),
CH(n) and HH(n) are rather more complicated than those for the previous models,
as one may see in the next proposition.

Fig. 1 The vector field ξ on
the Poincaré half-space
model of RH(n)

Fig. 2 The vector field ξ on
the Siegel domain model of
CH(n) or HH(n)
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Proposition 8 (i) ([4, Proposition 2.7]) The open unit ball model (Bn, g) of RH(n)
with negative constant sectional curvature c, admits a homogeneous Riemannian
structure of linear type defined by the vector field

ξBn = c
(

1 − ∑n
i=1(x

i)2
)

2
(

(1 + x1)2 + ∑n
i=2(x

i)2
)

((

(1+x1)2 −
n

∑

i=2

(xi)2

)

∂

∂x1
+ 2(1 + x1)

n
∑

i=2

xi ∂

∂xi

)

.

(ii) ([4, Proposition 3.11]) The open unit ball model (Bn, g, J) ofCH(n) with negative
constant holomorphic sectional curvature c, admits a homogeneous Kähler structure
of linear type defined by the vector field

ξBn = −c
(

1 − ∑

k((x
k)2) + (yk)2

)

4
(

(1 − x1)2 + (y1)2
)

(

(

(1 − x1)2 − (y1)2
) ∂

∂x1
+ 2(x1 − 1)y1

∂

∂y1

+
n

∑

k=2

((

(x1 − 1)xk − y1yk
) ∂

∂xk

+
(

(x1 − 1)yk + y1xk
) ∂

∂yk

)

)

.

(iii) ([4, Proposition 4.11]) The open unit ball model (Bn, g, υ3) of HH(n) with
negative constant quaternionic sectional curvature c admits a homogeneous quater-
nionic Kähler structure S of linear type defined by the vector field

ξBn = − c
(

1 − ∑n
k=1|qk |2)

4|q1 − 1|2

×
{

((x1 − 1)2 − (y1)2 − (z1)2 − (w1)2)
∂

∂x1
+ 2(x1 − 1)

(

y1
∂

∂y1
+ z1

∂

∂z1
+ w1 ∂

∂w1

)

−
n

∑

k=2

(

(1 − x1)xk + y1yk + z1zk + w1wk)
∂

∂xk
+ ((1 − x1)yk − y1xk + z1wk − w1zk)

∂

∂yk

+ ((1 − x1)zk − y1wk − z1xk + w1yk)
∂

∂zk
+ ((1 − x1)wk + y1zk − z1yk − w1xk)

∂

∂wk

)}

.

Remark 1 We finally point out two open problems:
(a) The analogues of Proposition5 for CH(n) and HH(n).
(b)The characterization of theCayley hyperbolic planeOH(2) by suitable defined

homogeneous Spin(9)-structures (see Friedrich [13, 14], Mykytyuk [20, 21]).

Acknowledgments The second author has been supported by the Ministry of Economy and Com-
petitiveness, Spain, under Project MTM2013-46961-P.
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On the (1+ 3) Threading of Spacetime

Aurel Bejancu

Dedicated to Jaime Muñoz Masqué on the occasion of his 65th
birthday

Abstract Wedevelop a (1 + 3) threading formalismof the spacetimewith respect to
a non-normalized timelike vector field. It is worthmentioning that in our approach the
spatial distribution is not necessarily integrable. Thus, this formalism is suitable for
general Lorentz metrics from both the theory of black holes and perturbation theory.
Also, the simple form of the (1 + 3) decomposition of Einstein Field Equations
stated in the paper, might have an important impact on the work of discovering new
inhomogeneous cosmological models.

Keywords (1+3) Threading formalism · (1 +3) Decomposition of Einstein field
equations · Riemannian spatial connection · Spatial tensor fields

1 Introduction

In cosmology, in order to relate the physics and geometry to the observations, it
is frequently used the (1 + 3) threading of spacetime. Namely, it is taken a unit 4-
velocity field u which is tangent to a preferred congruence of world lines. Then, the
study of both physics and geometry of the spacetime is developed by considering
(provided they exist), orthogonal hypersurfaces to u. This was successfully applied
to the study of the Friedmann–Lemaître–Robertson–Walker universe (cf. [4]). Also,
the gravito-electromagnetism and the splitting of Einstein Field Equations (EFE)
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have been intensively studied (cf. [6, 8–10]). Two conditions have been imposed on
the geometric objects of the spacetime:

(i) u must be a unit vector field.
(ii) The distribution that is orthogonal to the congruence determined by u, must

be integrable.

Recently, we developed a new point of view on the (1 + 3) threading of spacetime,
where we removed both conditions above (cf. [1, 2]). In this general setting we
obtained in a covariant form, the fully general 3D equations of motion and a 3D
identity satisfied by the geodesics of a spacetime. Also, we applied this general
method to the study of Kerr-Newman black holes.

The main purpose of this paper is to state the (1 + 3) decomposition of EFE with
respect to arbitrary timelike vector field and spatial distribution. The study is based
on both the Riemannian spatial connection and the spatial tensor fields defined in
[2]. It is worth mentioning that each group of the EFE given by (7.3) is invariant with
respect to the transformations of coordinates on the spacetime.

Now, we outline the content of the paper. In Sect. 2 we introduce the kinematic
quantities determined by a non-normalized timelike vector field ξ . Note that in [2] we
put on Φ given by (2.2a) the condition that it is independent of time. This condition
is satisfied by all stationary black holes (cf. [3, 5]). However, in perturbation theory
(cf. [7, 11]), Φ is not, in general, independent of time. For the sake of general
applications of our study, we remove the above condition onΦ. In Sect. 3 we present
the Riemannian spatial connection and express the Levi-Civita connection of the
spacetime (M, g) in terms of spatial tensor fields (cf. (3.4)). The local coefficients of
the Riemannian spatial connection and the kinematic quantities are used in Sect. 4
to express the fully general equations of motion in (M, g). In particular, we obtain a
geometric characterization of the spatial geodesics. In Sect. 5 we obtain the structure
equations for the spatial distribution (cf. (5.1)), which lead us to the decomposition
(6.6) of the Ricci tensor of (M, g). Also, in Sect. 6 we deduce the Raychaudhuri
equation (6.8) for the (1 + 3) threading formalism determined by ξ , and find the
local components of the stress-energy-momentum tensor field with respect to the
threading frame field (cf. (6.12)). Finally, we state the (1 + 3) decomposition of the
EFE (cf. (7.3)).

2 Kinematic Quantities in a Spacetime with Respect
to a Non-Normalized Timelike Vector Field

Let (M, g) be a 4D spacetime, and ξ be a timelike vector field on M which is not
necessarily normalized. Then, we have

TM = VM ⊕ SM, (2.1)

where VM is the time distribution spanned by ξ and SM is the spatial distribution
that is complementary orthogonal to VM in TM.
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Throughout the paper we use the ranges of indices: i, j, k, · · · ∈ {1, 2, 3} and
a, b, c, . . . ∈ {0, 1, 2, 3}. Also, for any vector bundle E over M, denote by Γ (E)

the F (M)-module of smooth sections of E, where F (M) is the algebra of smooth
functions on M.

Now, we consider a coordinate system (xa) on M such that ξ = ∂/∂x0. Then, we
put

(a) ξ 0 = g

(

∂

∂x0
,

∂

∂x0

)

= −Φ2, (b) ξ i = g

(

∂

∂xi
,

∂

∂x0

)

,

(c) gij = g

(

∂

∂xi
,

∂

∂xj

)

,

(2.2)

where Φ is a non-zero function that is globally defined on M. The decomposition
(2.1) enables us to use the threading frame {∂/∂x0, δ/δxi} and the threading coframe
field {δx0, dxi}, where we put (cf. [1, 2])

(a)
δ

δxi
= ∂

∂xi
+ Φ−2ξ i

∂

∂x0
, (b) δx0 = dx0 − Φ−2ξ idxi. (2.3)

The Lie brackets of the vector fields from the threading frame are expressed as
follows:

(a)

[

δ

δxj
,

δ

δxi

]

= 2ω ij
∂

∂x0
, (b)

[

∂

∂x0
,

δ

δxi

]

= ai
∂

∂x0
, (2.4)

where we put

(a) ω ij = Φ−2

{

ciξj − cjξ i + 1

2

(

δξ i

δxj
− δξj

δxi

)}

,

(b) ci = Φ−1 δΦ

δxi
, (c) ai = Φ−2

{

∂ξ i

∂x0
− 2Ψ ξ 0

}

,

(d) Ψ = Φ−1 ∂Φ

∂x0
.

(2.5)

As SM is integrable if and only if ω ij = 0 for all i, j ∈ {1, 2, 3}, we say that {ω ij} are
the local components of the vorticity tensor field with respect to the threading frame.

Next, we denote by hij the local components of the Riemannian metric induced
by g on SM with respect to the threading frame, and deduce that

hij = g

(

δ

δxi
,

δ

δxj

)

= gij + Φ−2ξ iξj. (2.6)
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Thus the line element of the Lorentz metric g on M with respect to the threading
coframe is expressed as follows:

ds2 = −Φ2(δx0)2 + hijdxidxj. (2.7)

By using hij and the entries hij of the inverse of the 3 × 3 matrix [hij], we define the
expansion tensor field {Θij}, the expansion function Θ , and the shear tensor field
{σij}, as follows

(a) Θij = 1

2

∂hij

∂x0
, (b) Θ = hijΘij, (c) σij = Θij − 1

3
Θhij. (2.8)

Raising and lowering indices i, j, k, ... are done by using hij and hij, as for example:

(a) ωk
j = hkiω ij, (b) ω ij = hikω

k
j , (c) ωkl = hkihljω ij. (2.9)

In earlier literature, spatial tensor fields have been introduced as projections on SM
of the tensor fields on M (cf. [4, 6, 8]). In our approach, a spatial tensor field of type
(p, q) is locally given by 3p+q locally defined functions Tk···

i··· , satisfying

Tk···
i···

∂ x̃h

∂xk
· · · = T̃ h···

j···
∂ x̃j

∂xi
· · · ,

with respect to the coordinate transformations x̃a = x̃a(x0, xi) on M. It is worth
mentioning that {hij, ω ij,Θij, σij} and {ai, ci} are spatial tensor fields of type (0, 2)
and (0, 1), respectively.

3 The Riemannian Spatial Connection on a Spacetime

Let ∇ be the Levi-Civita connection on the spacetime (M, g). Then the Riemannian
spatial connection on M is a metric linear connection ∇� on SM, given by

(a) ∇�
XsY = s∇XsY , ∀ X, Y ∈ Γ (SM), (3.1)

where s is the projection morphism of TM on SM. Locally, ∇� is given by

(a) ∇�
δ

δxj

δ

δxi
= Γ � k

i j

δ

δxk
, (b) ∇�

∂

∂x0

δ

δxi
= Γ � k

i 0
δ

δxk
, (3.2)

where we put
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(a) Γ � k
i j = 1

2
hkl

{

δhlj

δxi
+ δhli

δxj
− δhij

δxl

}

,

(b) Γ � k
i 0 = Θk

i + Φ2ωk
i .

(3.3)

Remark 3.1 The Riemannian spatial connection ∇� is different from the three-
dimensional operator ∇̄ that has been used in earlier literature (cf. (4.19) of [4]).
Note that ∇� is a metric linear connection on SM, and therefore defines covariant
derivatives of spatial tensor fields with respect to vector fields on M. On the contrary,
∇̄ is an operator which acts on tensor fields on M, but it does not define a linear
connection on M. �

Next, by using (3.1)–(3.3), we express the Levi-Civita connection on (M, g), as
follows:

(a) ∇ δ

δxj

δ

δxi
= Γ � k

i j

δ

δxk
+ (

ω ij + Φ−2Θij
) ∂

∂x0
,

(b) ∇ ∂

∂x0

δ

δxi
= (

Θk
i + Φ2ωk

i

) δ

δxk
+ bi

∂

∂x0
,

(c) ∇ δ

δxi

∂

∂x0
= (

Θk
i + Φ2ωk

i

) δ

δxk
+ ci

∂

∂x0
,

(d) ∇ ∂

∂x0

∂

∂x0
= Φ2bk δ

δxk
+ Ψ

∂

∂x0
,

(3.4)

where we put
bi = ai + ci. (3.5)

Denote by R� the curvature tensor field of ∇� and put

(a) R�(
δ

δxh
,

δ

δxk
,

δ

δxi
) = R�j

i kh

δ

δxj
,

(b) R(
δ

δx0
,

δ

δxk
,

δ

δxi
) = R�j

i k0

δ

δxj
.

Then by using (3.1)–(3.3), (2.4) and the well-known formula for R�, we obtain

(a) R�j
i kh = δΓ

�j
i k

δxh
− δΓ

�j
i h

δxk
+ Γ �l

i kΓ
�j

l h − Γ �l
i hΓ

�j
l k − 2ωkhΓ

�j
i 0,

(b) R�j
i k0 = ∂Γ

�j
i k

∂x0
− Γ

�j
i 0|k − akΓ

�j
i 0.

(3.6)

Here, and in the sequel, the vertical bar “|” represents covariant derivativewith respect
to the Riemannian spatial connection.
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4 3D Equations of Motion in a 4D Spacetime

Let C be a smooth curve in M given by parametric equations

xa = xa(t), a ∈ {0, 1, 2, 3}, t ∈ [α, β],

where (xa) is the special coordinate system introduced by the (1 + 3) threading of
(M, g). The tangent vector field d/dt to C is expressed as follows:

d

dt
= dxi

dt

δ

δxi
+ δx0

δt

∂

∂x0
, (4.1)

where we put

δx0

δt
= dx0

dt
− Φ−2ξ i

dxi

dt
.

By direct calculations, using (4.1) and (3.4) we deduce that C is a geodesic of (M, g),
if and only if,

(a)
d2xk

dt2
+ Γ � k

i j

dxi

dt

dxj

dt
+ 2

δx0

δt

dxi

dt
(Θk

i + Φ2ωk
i ) + Φ2

(δx0

δt

)2
bk = 0,

(b)
d

dt

(δx0

δt

)

+ Φ−2Θij
dxi

dt

dxj

dt
+ δx0

dt
(bi + ci)

dxi

dt
+

(δx0

dt

)2
Ψ = 0.

(4.2)

We note that Eq. (4.2) represent the splitting of the fully general equations of motion
of the spacetime. We call (4.2a) the 3D equations of motion in the 4D spacetime
(M, g). It is worth mentioning that these equations are related to the equations of
autoparallel curves of the Riemannian spatial connection. To show this we introduce
a special class of geodesics in (M, g). A geodesic C of (M, g) is called a spatial
geodesic, if it satisfies one of the following conditions:

(a)
δx0

δt
= 0 or (b)

d

dt
= dxi

dt

δ

δxi
. (4.3)

Taking into account (4.2) and (4.3), we deduce that a curve C is a spatial geodesic,
if and only if, (4.3) and the following equations are satisfied:

(a)
d2xk

dt2
+ Γ �k

i j

dxi

dt

dxj

dt
= 0,

(b) Θij
dxi

dt

dxj

dt
= 0.

(4.4)
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Now,we say that a curveC inM is autoparallel for the Riemannian spatial connection
∇�, if it satisfies (4.3) and

∇�

d

dt

d

dt
= 0. (4.5)

By using (4.3b) and (3.2a) into (4.5) we infer that C is an autoparallel for ∇�, if and
only if, (4.3a) and (4.4a) are satisfied. Now, from (3.4a) we see that

Kij = ω ij + Φ−2Θij, (4.6)

can be thought as local components of the second fundamental form of SM. Then
we say that a curve C in M is an asymptotic line for SM if it satisfies (4.3) and the
following equation

Kij
dxi

dt

dxj

dt
= 0. (4.7)

Taking into account that ω ij define a skew-symmetric spatial tensor field, and using
(4.6) into (4.7), we deduce that C is an asymptotic line for SM, if and only if, it
satisfies (4.3) and (4.4b). Summing up these results, we can state the following:

A curve C in a spacetime (M, g) is a spatial geodesic, if and only if, the following
conditions are satisfied:

(i) C is autoparallel for the Riemannian spatial connection.
(ii) C is an asymptotic line for the spatial distribution.

5 Structure Equations for the Spatial Distribution

In this section, R stands for both curvature tensor fields of types (0,4) and (1,3) of
∇, related by

R(X, Y , Z, U) = g(R(X, Y , U), Z).

Locally, R is completely determined by the following local components with respect
to the threading frame field {∂/∂x0, δ/δxi}:

Rijkh = R
( δ

δxh
,

δ

δxk
,

δ

δxj
,

δ

δxi

)

,

Ri0kh = R
( δ

δxh
,

δ

δxk
,

∂

∂x0
,

δ

δxi

)

,

Ri0k0 = R
( ∂

∂x0
,

δ

δxk
,

∂

∂x0
,

δ

δxi

)

.
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Then, by direct calculations, using (3.4) and (2.4), we deduce that

(a) Rijkh = R�
ijkh + (Θik + Φ2ωik)(ωjh + Φ−2Θjh)

− (Θih + Φ2ωih)(ωjk + Φ−2Θjk),

(b) Ri0kh = Θih|k − Θik|h + Θikch − Θihck

+ Φ2
{

ωih|k − ωik|h + ωihck − ωikch + 2ωkhbi
}

, (5.1)

(c) Ri0k0 = Φ2
{

bibk + 1

2
(bi|k + bk|i)

} + Ψ Θik − Θik|0

− ΘilΘ
l
k − Φ4ωilω

l
k .

We call (5.1) the structure equations for the spatial distribution SM on the spacetime
(M, g). Note that these equations are obtained in the most general spacetime, that is,
SM is not necessarily an integrable distribution and ξ is not necessarily a unit vector
field. Such general spacetimes are intensively studied in perturbation theory (cf. [7,
11]), and the theory of black holes [3, 5].

In particular, suppose that ξ is a unit vector field, that is, we have Φ2 = 1. Then
by using (2.5) and (3.5), we deduce that

Ψ = 0, ci = 0, bi = ai = ∂ξ i

∂x0
, ∀ i ∈ {1, 2, 3}. (5.2)

Hence, in this particular case, the above structure equations become

(a) Rijkh = R�
ijkh + (Θik + ωik)(Θjh + ωjh)

− (Θih + ωih)(Θjk + ωjk),

(b) Ri0kh = ωih|k − ωik|h + Θih|k − Θik|h + 2ωkhai, (5.3)

(c) Ri0k0 = aiak + 1

2
(ai|k + ak|i) − Θik|0 − ΘilΘ

l
k − ωilω

l
k .

Ifmoreover, SM is an integrable distribution, that is, the vorticity tensor field vanishes
identically on M, then (5.3) becomes

(a) Rijkh = R�
ijkh + ΘikΘjh − ΘihΘjk,

(b) Ri0kh = Θih|k − Θik|h ,

(c) Ri0k0 = aiak + 1

2

(

ai|k + ak|i
) − Θik|0 − ΘilΘ

l
k .

(5.4)

Finally, note that (5.4) refers to a spacetime more general than the Friedmann–
Lemaître–Robertson–Walker (FLRW) universe, where we have ai = 0 and θij =
a(x0)hij.
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6 Ricci Tensor and Stress-Energy-Momentum Tensor

The purpose of this section is to express both the Ricci tensor of (M, g) and the
stress-energy-momentum tensor in terms of spatial tensor fields. First, we consider
an orthonormal frame field {Ek} in Γ (SM):

Ek = Ei
k

δ

δxi
, (6.1)

and obtain

hij =
3

∑

k=1

Ei
kEj

k . (6.2)

The Ricci tensor Ric of (M, g) is given by (cf. [12], p. 87)

Ric(X, Y) =
3

∑

k=1

R(Ek, X, Ek, Y) − Φ−2R
( ∂

∂x0
, X,

∂

∂x0
, Y

)

, (6.3)

for all X, Y ∈ Γ (TM). Then, by using (6.1)–(6.3), we obtain

(a) Rik = hjlRijkl − Φ−2Ri0k0, (b) Ri0 = hjlRj0li,

(c) R00 = hjlRj0l0,

(6.4)

where we put

(a) Rik = Ric

(

δ

δxi
,

δ

δxk

)

, (b) Ri0 = Ric

(

δ

δxi
,

∂

∂x0

)

,

(c) R00 = Ric

(

∂

∂x0
,

∂

∂x0

)

.

(6.5)

Next, by direct calculations using (5.1) and (6.4), we deduce that the Ricci tensor of
(M, g) is given by

(a) Rik = R�
ik − bibk − 1

2

(

bi|k + bk|i
)

+ Φ−2
{

Θik|0 + (Θ − Ψ )Θik
}

,

(b) Ri0 = Θ
j
i|j − Θ|i + Θci − Θ

j
i cj (6.6)

+ Φ2
{

ω
j
i |j + ω

j
icj + 2ωj

ibj

}

,

(c) R00 = −Θ|0 − ΘijΘ
ij + Ψ Θ + Φ2

{

bjb
j + bj

|j + Φ2ω2
}

,
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where we put

R�
ik = 1

2

(

R�l
i kl + R�l

k il

)

, Θ|i = δΘ

δxi
, Θ|0 = ∂Θ

∂x0
, ω2 = ω ijω

ij.

Taking into account (2.8b) and (2.8c), we deduce that

ΘijΘ
ij = σ 2 + 1

3
Θ2, (6.7)

where we put

σ 2 = σijσ
ij.

Due to (6.7), we see that (6.6c) becomes

Θ|0 = −σ 2 − 1

2
Θ2 + Ψ Θ + Φ2

{

bjb
j + bj

|j + Φ2ω2
}

− R00. (6.8)

According to the usual terminology, we call (6.8) the Raychaudhuri equation for the
(1 + 3) threading formalism determined by the non-normalized timelike vector field
ξ = ∂/∂x0.

Next, we express the local components of the stress-energy-momentum tensor T
with respect to a threading frame field, in terms of the quantities measured by an
observer moving with unit 4-velocity

u = Φ−1 ∂

∂x0
.

First, we note that
ρ = T(u,u), (6.9)

is the relativistic energy density measured by the observer. Then, we put:

(a) Tij = T
( δ

δxi
,

δ

δxj

)

, (b) Ti0 = T
( δ

δxi
,

∂

∂x0

)

,

(c) T00 = T
( ∂

∂x0
,

∂

∂x0

)

,

(6.10)

and define

(a) p = 1

3
Tijh

ij, (b) qi = −Φ−1Ti0, (c) πij = Tij − phij. (6.11)

Note that qi and πij define spatial tensor fields of types (0, 1) and (0, 2), respectively.
Moreover, comparing with the quantities defined on [4, p. 92], it is easy to see that
p is the relativistic pressure, while qi and πij determine completely the relativistic
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momentum density and the relativistic anisotropic (trace-free) stress tensor field,
respectively. Finally, we conclude that the local components of the stress-energy-
momentum tensor field T with respect to the threading frame field {∂/∂x0, δ/δxi},
are given by

(a) Tij = πij + phij, (b) Ti0 = −Φqi, (c) T00 = Φ2ρ. (6.12)

7 The (1+ 3) Decomposition of Einstein Field Equations

Based on the (1 + 3) decomposition of both the Ricci tensor field and the stress-
energy-momentum tensor field from the previous section, we express in a simple
and elegant form the Einstein Field Equations (EFE).

Let the EFE given by (cf. [4, p. 65]):

Ric = 8πG(T − 1

2
Tg) + Λg, (7.1)

where G is the Newton constant, Λ is the cosmological constant, and T is the trace
of T . Then, by applying the tensor fields to pairs of vector fields from the threading
frame field {∂/∂x0, δ/δxi}, and using (6.12), we deduce that (7.1) is equivalent to

(a) Rik = {4πG(ρ − p) + Λ}hik + 8πGπik,

(b) Ri0 = −8πGΦqi,

(c) R00 = Φ2{4πG(ρ + 3p) − Λ}.
(7.2)

Finally, using (6.6a), (6.6b) and (6.8) into (7.2), we obtain

(a) R�
ik − bibk − 1

2
(bi|k + bk|i) + Φ−2{Θik|0 + (Θ − Ψ )Θik}

− {4πG(ρ − p) + Λ}hik − 8πGπik = 0,

(b) Θ
j
i|j − Θ|i + Θci − Θ

j
i cj + Φ2{ωj

i|j + ω
j
icj + 2ωj

ibj} (7.3)

+ 8πGΦqi = 0,

(c) Θ|0 + σ 2+1

3
Θ2 − Ψ Θ

− Φ2{bj
|j + b2 + Φ2ω2 + 4πG(ρ + 3p) − Λ} = 0,

where we put

b2 = bjb
j.
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In spite of the huge literature on the (1 + 3) threading of spacetime (cf. [4]), the
Eq. (7.3), as far as we know, are stated here for the first time. This is because these
equations apply for any Lorentz metric regardless the threading vector field and the
integrability of the spatial distribution. Most of the literature on this matter presented
these equations in the case of a unit vector field ξ which is also hypersurface orthog-
onal. This particular case applies to the Friedmann–Lemaître–Robertson–Walker
universe, but it fails in any attempt to study metrics given by (2.7), with Φ �= 0 and
ω �= 0. Such metrics are specific to both the black holes theory (cf. [3, 5]) and per-
turbation theory (cf. [7, 11]) where the splitting of the EFE given by (7.3) can be
easy handled into the study.
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Local Structure of Self-Dual Gradient
Yamabe Solitons
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Dedicated to Jaime Muñoz Masqué on the occasion of his 65th
birthday

Abstract We analyze the underlying structure of a pseudo-Riemannian manifold
admitting a gradient Yamabe soliton. Special attention is paid to neutral signature,
where a description of self-dual gradient Yamabe solitons is obtained.

Keywords Yamabe soliton · Self-dual metric · Walker structure · Riemannian
extension

1 Introduction

One of the central questions in modern Differential Geometry is the existence of
canonical metrics on a given manifold M . Inspired by the uniformization theorem
in dimension two, R.S. Hamilton proposed an approach to this problem based on
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parabolic partial differential equations. In general, the goal of geometric evolution
equations is to improve a given metric by considering the flow associated to a cer-
tain geometric object. Geometric flows have been applied to a variety of geometric,
topological, and physical problems. The Ricci flow is one of the most extensively
studied examples in the literature. One of its interests relies on the fact that, under
appropriate conditions, it evolves the initial metric to an Einstein one. Other exam-
ples of geometric flows include the mean and the inverse mean curvature flows of
submanifolds, the Kähler-Ricci and Calabi flows of manifolds, and the Yamabe and
other conformal flows of metrics.

TheYamabe flow is an intrinsic geometric flowwhich can be interpreted as deform-
ing a Riemannian metric to a conformal one of constant scalar curvature. It was
introduced by Hamilton, shortly after the Ricci flow, as an approach to solve the
Yamabe problem on manifolds of positive conformal Yamabe invariant. Formally,
the Yamabe flow is defined by the evolution equation

∂

∂t
g(t) = −τ(t)g(t), (1)

where τ(t) denotes the scalar curvature of g(t). The Ricci flow and the Yamabe
flow are equivalent in dimension n = 2, but they are essentially different in higher
dimensions [2]. In fact, while the Yamabe flow leaves the conformal class of g(0)
invariant, the Ricci flow generically deforms g(0) to a different conformal class.
Hamilton proved that the Yamabe flow has a global solution for every initial metric
[14], and conjectured that for any compact Riemannian manifold the unique solution
of the Yamabe flow converges to a metric of constant scalar curvature. Hamilton’s
conjecture was proven by Ye [24] in the locally conformally flat case (see [2] for
more information).

The genuine fixed points of the Yamabe flow are the metrics with zero scalar
curvature. However, there are other kinds of self-similar solutions that have received
attention in recent years, since they appear as possible singularity models. A family
of metrics g(t) = σ(t)ψ t

∗g(0) solving (1), where σ(t) is a positive smooth function
and ψ t : M → M is a one-parameter family of diffeomorphisms of M , is said to be
a self-similar solution of the Yamabe flow.

Self-similar solutions of (1) are in one to one correspondence with Yamabe soli-
tons. As a matter of notation, a Yamabe soliton is a triple (M, g, X), where (M, g)

is a pseudo-Riemannian manifold and X is a vector field on M satisfying

LX g = (τ − λ)g. (2)

Here τ denotes the scalar curvature of (M, g), L is the Lie derivative and λ ∈ R.
Whenever the vector field X is the gradient of a potential function f , we say that
(M, g, f ) is a gradient Yamabe soliton and for X = 1

2∇ f , Eq. (2) reduces to

Hess f = (τ − λ)g, (3)



Local Structure of Self-Dual Gradient Yamabe Solitons 27

where Hess f = ∇d f is the Hessian tensor of f and ∇ denotes the Levi-Civita con-
nection of (M, g).

It is important to emphasize that although the Yamabe flow is well-posed in the
Riemannian setting, the existence of (even short-time) solutions is not guaranteed
in the pseudo-Riemannian setting due to the lack of parabolicity of (1). However,
the existence of self-similar solutions of the flow is equivalent to the existence of
Yamabe solitons as in (2) (see [11]).

The main purpose of this work is to determine the local structure of self-dual
gradient Yamabe solitons (see Theorem4). As an application, we show the exis-
tence of self-dual gradient Yamabe solitons in neutral signature that are not locally
conformally flat (see Remarks5 and 6).

2 Local Structure of Pseudo-Riemannian Gradient
Yamabe Solitons

We study the local structure of a pseudo-Riemannian gradient Yamabe soliton
(M, g, f ) in general, without restrictions on the dimension or the signature, unless
specification on the contrary. We emphasize that the gradient Yamabe soliton equa-
tion (3) codifies geometric information about the structure of (M, g) by means of the
scalar curvature and the second fundamental form of the level sets of the potential
function f . The analysis of the level sets of f naturally splits into two different
cases. The first case corresponds to non-degenerate hypersurfaces (i.e., ‖∇ f ‖ �= 0),
and (M, g, f ) is called a non-isotropic gradientYamabe soliton. The second case cor-
responds to degenerate hypersurfaces (i.e., ‖∇ f ‖ = 0 but ∇ f �= 0), and (M, g, f )

is called an isotropic gradient Yamabe soliton. We analyze both cases separately in
what follows. When f is constant the Yamabe soliton is said to be trivial and will
be excluded from our analysis.

By contracting Eq. (3) one immediately obtains that (1/n)Δ f = τ − λ. This rela-
tion shows that the Yamabe soliton equation is a special case of the more general
Möbius equation

Hess f = Δ f

n
g. (4)

As an application of (4) one gets that the level sets of the function f are totally
umbilical and the normalized gradient vector field ∇ f/‖∇ f ‖ is a non-null geodesic
vector field. Hence the integral curves of ∇ f are (unparametrized) geodesics and
it follows from [20] that (M, g) has the local structure of a twisted product. Fur-
thermore one shows that the level sets of f are indeed spherical hypersurfaces to
get that the underlying structure of any gradient non-isotropic Yamabe soliton is a
warped product. (See [13, 15, 16] for a discussion of the local structure of pseudo-
Riemannian manifolds admitting a closed conformal vector field, and [22] for the
local structure of solutions of the Möbius equation).
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Theorem 1 Let (M, g) be a pseudo-Riemannian manifold. If (M, g, f ) is a non-
isotropic gradient Yamabe soliton then (M, g) is locally isometric to a warped prod-
uct (−ε, ε) ×ϕ(t) N, where (N , gN ) is a pseudo-Riemannian manifold with constant
scalar curvature.

The potential function f of the soliton is related to the warping function ϕ. In a
neighborhood of a regular point of f one has that ϕ = f ′, while a different relation
holds in a neighborhood of a critical point of f (see [15, 16]).

The local warped product decomposition in the previous theorem can be more
precise in a neighborhood of a critical point of the soliton function f . In such a case
the fiber (N , gN ) is of constant curvature so that (M, g) is locally conformally flat
[15, 16].

Remark 1 In Riemannian signature a global structure result was given in [10] show-
ing that the localwarped product decomposition is global in the completeRiemannian
setting.

Observe that if (M, g, f ) is a gradient Yamabe soliton, then ∇ f is a conformal
vector field. Moreover, if the scalar curvature is constant, then ∇ f is a homothetic
vector field on (M, g). Hence, in this case, either ∇ f = 0 or (M, g) is flat in the
constant scalar curvature Riemannian setting.

Remark 2 An immediate application of the Theorem1 shows that any pseudo-
Riemannian self-dual gradient Yamabe soliton is necessarily locally conformally
flat, since self-dual warped products are locally conformally flat [5].

Next, let (M, g, f ) be an isotropic gradient Yamabe soliton (so ‖∇ f ‖ = 0 on an
open subset U ⊂ M). Then we have the following restrictions on the geometry of
(M, g).

Theorem 2 Let (M, g, f ) be an isotropic pseudo-Riemannian gradient Yamabe
soliton. Then the scalar curvature of (M, g) is constant τ = λ and ∇ f is a parallel
null vector field.

Proof Since ‖∇ f ‖ = 0, it follows that

Hess f (X,∇ f ) = g(∇X∇ f,∇ f ) = 1

2
Xg(∇ f,∇ f ) = 0

for any vector field X . Hence the soliton equation (3) implies τ = λ, thus showing
that the scalar curvature is constant and, moreover, that ∇ f is a parallel null vector
field. �

Remark 3 Theorems1 and 2 immediately apply to Lorentzian gradient Yamabe soli-
tons to provide a description of the local structure. Recall that a Lorentzian manifold
is called a Brinkmann wave if it admits a parallel null vector field X . In such a case
(see [3]), there exist coordinates (u, v, x1, . . . , xn−2) so that
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g = 2du ◦ dv +
n−2
∑

i, j=1

gi j dxi ◦ dx j , (5)

where ∂gi j/∂v = 0 and the parallel null vector field is X = ∂u . Hence X = ∇v. In
conclusion, if (M, g, f ) is a non-trivial Lorentzian gradient Yamabe soliton then if
it is:

(i) non-isotropic, then (M, g) is locally isometric to a warped product (−ε, ε) ×ϕ(t)

N , where (N , gN ) is a pseudo-Riemannian manifold with constant scalar cur-
vature, and

(ii) isotropic, then (M, g) is locally isometric to a Brinkmann wave with coordinates
as in (5) and the potential function f is given by the coordinate function f = v.

Differently to the Riemannian case, Lorentzian gradient Yamabe solitons of constant
scalar curvature are not necessarily flat. Indeed, the existence of non-Killing homo-
thetic vector fields is not so restrictive in the strictly pseudo-Riemannian setting as it is
in the Riemannian one. This is due to the existence of pseudo-Riemannian manifolds
with non-zero nilpotent Ricci operators (observe that any homothetic vector field is
a Ricci collineation). See [9] for a classification of three-dimensional homogeneous
Lorentzian Yamabe solitons.

3 Self-dual Gradient Yamabe Solitons: Local Structure
and Examples

In this section we study self-dual gradient Yamabe solitons in dimension four. Since
any self-dual warped product metric is locally conformally flat [5], it follows from
Theorem1 that any non-isotropic self-dual gradient Yamabe soliton is locally con-
formally flat. Moreover, any self-dual Lorentzian metric is locally conformally flat,
therefore in what follows we restrict to isotropic Yamabe solitons in neutral signa-
ture (− − ++). Our main result not only shows the existence of self-dual gradient
Yamabe solitons which are not locally conformally flat, but also provides the local
structure of the underlying manifold as we shall see in Theorem4.

Let (M, g, f ) be a non-trivial isotropic gradient Yamabe soliton with pseudo-
Riemannian metric of neutral signature (− − ++). Since ∇ f is non-zero and null,
there exist a unit timelike vector field e1 and a unit spacelike vector field e3 such that
∇ f = (1/

√
2)(e1 + e3).

Complete {e1, e3} to a local orthonormal frame {e1(−), e2(−), e3(+), e4(+)},
where (±) indicates the causal character of ei . Consider now the locally defined
vector fields

∇ f = 1√
2
(e1 + e3), U = 1√

2
(e2 + e4),
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and observe thatD = span{∇ f, U } is a totally isotropic distribution which is defined
locally.

As a matter of terminology, a pseudo-Riemannian manifold (M, g) is said to be a
Walker manifold if it admits a parallel null distribution (see [6] for more information
on Walker structures). We have the following result.

Lemma 1 Let (M, g, f ) be a non-trivial isotropic gradient Yamabe soliton with g
of signature (− − ++). Then the null distribution D = span{∇ f, U } is parallel and
hence (M, g) is a Walker manifold.

Proof First of all observe from Theorem2 that the scalar curvature of (M, g) is
constant τ = λ and ∇ f is a parallel null vector field. Now we consider the null
distribution D = span{∇ f, U } and show that it is parallel as follows. Since D is
totally isotropic and D⊥ = D we see that ∇XU ∈ D :

0 = X g(U, U ) = 2g(∇XU, U ),

0 = X g(U,∇ f ) = g(∇XU,∇ f ) + g(U,∇X∇ f ) = g(∇XU,∇ f ).

Therefore ∇XD ⊂ D for all vector fields X , which shows that D is parallel. �

Self-dual Walker metrics are locally isometric to cotangent bundles over affine
surfaces [8]. In order to describe such metrics we briefly recall the following ter-
minology about the geometry of cotangent bundles and refer to [23] (see also [6])
for further details. Let T ∗M be the cotangent bundle of an n-dimensional mani-
fold M and let π : T ∗M → M be the projection. Let p̃ = (p, ω), where p ∈ M and
ω ∈ ∧1

(Tp M), denote a point of T ∗M . Local coordinates (xi ) in a neighborhoodU
in M induce coordinates (xi , xi ′) inπ−1(U ), whereω decomposes asω = ∑

xi ′dxi .
For each vector field X on M , define a function ιX : T ∗M → R by ιX (p, ω) =

ω(X p) . Expand X = X j∂ j and express ιX (xi , xi ′) = ∑

xi ′ Xi . The importance of
the evaluation functions ιX relies on vector fields on T ∗M being completely deter-
mined by their action on evaluations: if Ỹ , Z̃ are vector fields on T ∗M , then Ỹ = Z̃
if and only if Ỹ (ιX) = Z̃(ιX) for all vector fields X on M . The above result allows
the lifting construction: for any vector field X on M , its complete lift XC is the vector
field on T ∗M characterized by the identity XC(ιZ) = ι[X, Z ] for all vector fields Z
on M . The main significance of complete lifts of vector fields is that (0, s)-tensor
fields on T ∗M are determined by their action on complete lifts.

Next, let D be a torsion-free affine connection on M . The Riemannian extension
gD is the pseudo-Riemannian metric gD on T ∗M of neutral signature (n, n) charac-
terized by the identity gD(XC , Y C ) = −ι(∇X Y + ∇Y X). In order to express locally
the Riemannian extension, let D∂i ∂ j = DΓi j

k∂k give the Christoffel symbols of the
connection D. Then:

gD = 2 dxi ◦ dxi ′ − 2xk ′ DΓi j
kdxi ◦ dx j .

Riemannian extensions were originally defined by Patterson andWalker [19] and fur-
ther investigated in [1], showing the relation between pseudo-Riemannian properties
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of T ∗M with the affine structure of the base manifold (M, D). LetΦ be a symmetric
(0, 2)-tensor field on M . The deformed Riemannian extension is the neutral signature
metric on T ∗M given by gD,Φ = gD + π∗Φ.

Let T be a tensor field of type (1, 1) on M and define a 1-form ιT on T ∗M which is
characterized by the identity ιT (XC) = ι(T X) . The modified Riemannian extension
is the neutral signature metric on T ∗M defined by

gD,Φ,T,S := ιT ◦ ιS + gD + π∗Φ,

where T and S are (1, 1)-tensor fields on M and Φ is a symmetric (0, 2)-tensor field
on M . In a system of induced local coordinates one has

gD,Φ,T,S = 2 dxi ◦ dxi ′ +
{

1
2 xr ′ xs′

(

T r
i Ss

j + T r
j Ss

i

)

+ Φi j (x) − 2xk′ DΓi j
k
}

dxi ◦ dx j .

(6)

Self-dual Walker metrics are obtained by a deformation of the modified Rie-
mannian extensions above. The following result gives a local description of self-dual
Walker metrics and provides a large family of examples of non-locally conformally
flat self-dual metrics.

Theorem 3 ([8]) A Walker metric in signature (− − ++) is self-dual if and only if
it is locally isometric to the cotangent bundle T ∗Σ of an affine surface (Σ, D), with
metric tensor

gD,Φ,T,id,X = ιX (ιid ◦ ιid) + ιid ◦ ιT + gD + π∗Φ,

where D, Φ, T and X are a torsion-free affine connection, a symmetric (0, 2)-tensor
field on Σ , a (1, 1)-tensor field and a vector field, respectively.

As an application of the previous result and Lemma1, any isotropic self-dual
gradient Yamabe soliton is a modified Riemannian extension gD,Φ,T,X . Moreover,
one has

Theorem 4 Let (M, g, f ) be a non-trivial self-dual isotropic gradient Yamabe soli-
ton of neutral signature (− − ++). Then (M, g) is locally isometric to the cotangent
bundle T ∗Σ of an affine surface (Σ, D) equipped with a deformed Riemannian exten-
sion gD,Φ . Furthermore, the potential function of the soliton is of the form f = f̃ ◦ π ,
for some function f̃ on Σ which is affine, i.e., Dd f̃ = 0.

Proof ByLemma1 (M, g) is aWalkermanifold and∇ f ∈ D , whereD is the parallel
null distribution. By Theorem3, (M, g) is locally isometric to the cotangent bundle
T ∗Σ of an affine surface and,moreover, the null distribution satisfiesD = ker π∗ (see
[8]). Now observe that the scalar curvature of the modified Riemannian extensions
gD,Φ,T,id,X at Theorem3 is given by τ = 12ιX + 3trace(T ). Hence, since the scalar
curvature of any isotropic gradient Yamabe soliton is constant τ = λ, it immediately
follows that the vectorfield X vanishes identically and,moreover, that trace(T ) = 1

3λ.
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Let f : T ∗Σ → R be the potential function of the soliton. Since Hess f = 0,
considering the components

Hess f (∂xi ′ , ∂x j ′ ) = ∂2

∂xi ′∂x j ′
f

it follows that the function f is of the form

f = ιZ + ( f̃ ◦ π) (7)

for some vector field Z on Σ and some function f̃ : Σ → R.
Assuming the vector field Z is not identically zero, choose coordinates on Σ

so that Z = ∂x1 . Since the potential function f is expressed as f (x1, x2, x1′ , x2′) =
x1′ + f̃ (x1, x2), its gradient becomes

∇ f = ∂x1 + (∂x1 f̃ − Φ11)∂x1′ + (∂x2 f̃ − Φ12)∂x2′ ,

which is a contradiction since ∇ f should belong to the parallel null distribution
D = kerπ∗ = span{∂x1′ , ∂x2′ }.

Hence assume in what follows that the vector field Z is identically zero. Then (7)
reduces to f (x1, x2, x1′ , x2′) = f̃ (x1, x2) and the modified Riemannian extension
gD,Φ,T,id is locally expressed as

gD,Φ,T,id = 2 dxi ◦ dxi ′ +
{

1
2 xr ′ xs′

(

T r
i δs

j + T r
j δs

i

)

+ Φi j (x) − 2xk′ DΓi j
k
}

dxi ◦ dx j .

Note from [12] that one may choose appropriate coordinates on Σ so that DΓ �
11 = 0,

� = 1, 2. Now, a long but straightforward calculation shows that the only non-zero
components of Hess f are

Hess f (∂x1 , ∂x1 ) = f̃11 + x1′ T 1
1 f̃1 + 1

2T 2
1 (x1′ f̃2 + x2′ f̃1),

Hess f (∂x2 , ∂x2 ) = f̃22 + 1
2

((

x2′ T 1
2 − 2DΓ 1

22

)

f̃1 +
(

x1′ T 1
2 + 2x2′ T 2

2 − 2DΓ 2
22

)

f̃2
)

,

Hess f (∂x1 , ∂x2 ) = f̃12 + 1
4

((

2x2′ T 2
1 + x1′

(

T 1
1 + T 2

2

)

− 4DΓ 2
12

)

f̃2

+
(

2x1′ T 1
2 + x2′

(

T 1
1 + T 2

2

)

− 4DΓ 1
12

)

f̃1
)

,

where the f̃i j = ∂2 f̃ /∂xi∂x j denote the partial derivatives of f̃ , and the scalar cur-
vature satisfies τ = 3(T 1

1 + T 2
2 ) = λ.

A straightforward calculation from the previous equations (since the potential
function f is not constant) shows that the (1, 1)-tensor field T vanishes identically
(and so the scalar curvature and the soliton constant λ do). Hence the metric reduces
to a Riemannian extension gD,Φ and the equations above become
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Hess f (∂x1 , ∂x1) = f̃11,
Hess f (∂x2 , ∂x2) = f̃22 − DΓ 1

22 f̃1 − DΓ 2
22 f̃2,

Hess f (∂x1 , ∂x2) = f̃12 − DΓ 2
12 f̃2 − DΓ 1

12 f̃1.

These show that Hess f = 0 if and only if Dd f̃ = 0. �

Remark 4 If the Riemannian extension gD,Φ is locally conformally flat, then the
connection D must be projectively flat [1]. Therefore, if (Σ, D) is a non-projectively
flat surface, then the isotropic gradient Yamabe solitons constructed in Theorem4
are self-dual but not locally conformally flat, in contrast with the non-isotropic case.

Furthermore observe that the construction in Theorem4 is independent of the
symmetric (0, 2)-tensor field Φ. Therefore, given any affine function f̃ on (Σ, D),
its pull-back f = f̃ ◦ π defines an isotropic Yamabe soliton on (T ∗Σ, gD,Φ) for any
symmetric (0, 2)-tensor field Φ.

Remark 5 Following the discussion in [4], one can obtain examples of affine surfaces
(Σ, D) admitting non-constant affine functions f̃ as follows. Let h be a solution of
the affine gradient Ricci soliton equation on (Σ, D) (i.e., Ddh + ρD

sym = 0, where
ρD

sym is the symmetric part of the Ricci tensor of (Σ, D)). Then for any affine-Killing

vector field ξ (i.e.,Lξ D = 0) one has that f̃ = ξ(h) is an affine function and hence
it defines an isotropic gradient Yamabe soliton on T ∗Σ (see also [7]).

Examples of affine gradient Ricci solitons can be constructed on homogeneous
affine surfaces as follows. First of all recall from [18] that if D is a homogeneous
affine connection, then it is the Levi-Civita connection of a metric of constant Gauss
curvature or, otherwise, there are coordinates (x1, x2) such that

(A) all Christoffel symbols are constants, i.e., DΓ k
i j = γ k

i j , γ
k

i j ∈ R, or
(B) all Christoffel symbols are of the form DΓ k

i j = (1/x1)γ k
i j , γ

k
i j ∈ R.

The existence of affine Ricci solitons on projectively flat surfaces implies that
the Ricci tensor is degenerate, and hence D is flat if it is the Levi-Civita connection
of a surface of constant curvature. By contrast, affine connections as in (A) admit
non-trivial affine gradient Ricci solitons if and only if the Ricci tensor is of rank one.
Connections of type (B) also admit non-trivial affine gradien Ricci solitons as shown
in [7].

Remark 6 Let D be an affine connection with symmetric Ricci tensor of rank one
and such that the kernel of ρD is parallel. There exist adapted coordinates (x1, x2)

where the only non-zero Christoffel symbols are [17]

DΓ 1
12 and DΓ 1

22, where ∂x1
DΓ 1

12 = 0. (8)

Moreover, it follows that the only non-zero component of the Ricci tensor is given by
ρD(∂x2 , ∂x2) = ∂x1

DΓ 1
22 − ∂x2

DΓ 1
12 − (DΓ 1

12)
2 and the connection D is projectively

flat if and only if ∂2
x1x1

DΓ 1
22 = 0. A straightforward calculation shows that a function

f̃ (x1, x2) is affine if and only if (see [4])
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(Dd f̃ )(∂x1 , ∂x1) = f̃11, (Dd f̃ )(∂x1 , ∂x2) = f̃12 − DΓ 1
12 f̃1,

(Dd f̃ )(∂x2 , ∂x2) = f̃22 − DΓ 1
22 f̃1 ,

so f̃ (x1, x2) = x1h(x2) + ĥ(x2). Then the above equations reduce to

h′(x2) = DΓ 1
12(x2)h(x2), ĥ′′(x2) = h(x2)DΓ 1

22(x1, x2) − x1h′′(x2).

Working with the previous equations and the expression of the Ricci tensor, one has
that the compatibility condition (∂x1(h(x2)DΓ 1

22(x1, x2) − x1h′′(x2)) = 0) reduces to
h(x2)ρD(∂x2 , ∂x2) = 0. This shows that h(x2) vanishes identically in a neighborhood
of any point where D is non-flat. Hence the potential function of the soliton is of the
form f̃ (x1, x2) = αx2 + β if the connection D is non-flat (α, β ∈ R).

If the connection D is flat (in which case DΓ 1
22(x1, x2) = x1(DΓ 1

12(x2) +
DΓ ′(x2)) + A (x2) for some function A (x2)), then

f̃ (x1, x2) = x1h(x2) + ĥ(x2),

where
h′(x2) = DΓ 1

12(x2)h(x2) , ĥ′′(x2) = h(x2)A (x2).

In any of these cases theRiemannian extension results in a self-dual isotropic gradient
Yamabe soliton (T ∗Σ, gD,Φ, f̃ ◦ π), which is not locally conformally flat for generic
Φ.

4 Conclusion

The analysis of the local structure of gradient Yamabe solitons shows that any non-
isotropic (i.e., ‖∇ f ‖ �= 0) self-dual gradient Yamabe soliton (M, g, f ) is locally
conformally flat. However isotropic examples (i.e., ‖∇ f ‖ = 0) that are not locally
conformally flat exist in the neutral signature case and they are realized on the
cotangent bundle of affine surfaces that admit non-constant affine functions.
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The Prescribed Curvature Problem
in Low Dimension

Giovanni Calvaruso
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Abstract Wedescribe some recent results concerning the inverse curvature problem,
that is, the existence and description of metrics with prescribed curvature, focusing
on the low-dimensional homogeneous cases.

Keywords Homogeneous Lorentzian metrics · Ricci curvature · Segre types

1 Introduction

Geometric properties of a pseudo-Riemannian manifold (M, g) are encoded in its
curvature, and usually expressed by some conditions on the curvature tensor itself.
Starting from the metric tensor g, the curvature tensor R of (M, g) can be completely
determined. The inverse problem, namely, to determine a pseudo-Riemannian man-
ifold with assigned curvature, is known as the prescribed curvature problem, and
it has been extensively studied. In this framework, two distinct problems naturally
arise:

(i) Existence results: necessary and sufficient conditions for an assigned two-form
on a manifold to be (locally) the curvature form of a pseudo-Riemannian metric.
(ii) Explicit examples of such a metric.
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The study of the first problem led to local existence theorems under very general
hypotheses (see for example [6–11, 14] and references therein). In particular, as
proved by DeTurck [6–8], if a symmetric (0, 2)-tensor R is analytic in a neighbor-
hood of a point x0 ∈ R

n and R−1(x0) exists, then there exists an analytic metric g,
of any desired signature, such thatR = ρ is the Ricci tensor of g in a neighborhood
of x0. The Bianchi identity

Bian(g,R) = gab
(

Ram;b − 1
2Rab;m

) = 0

yields some restrictions for the 2-forms admissible as curvature forms. It is worth
to emphasize the physical meaning of such restrictions. In fact, Bian(g,R) =
−div(GR), where G is the gravitation operator Gh = hij − 1

2gij(gabhab). In particu-
lar, Gρ is the stress-energy tensor in Einstein’s theory of gravitation [6].

In this framework, low-dimensional cases have some special properties. In fact, in
dimension three every 2-form with values in a semi-simple Lie algebra is generically
the curvature of a connection form locally [9, 10, 14]. Moreover, in dimension four,
Bianchi’s identities can be eliminated for a large class of Lie algebras (which strictly
includes the semi-simple ones). Curvature forms can be then characterized as the
solutions to a second-order partial differential system, which was proved in [11] to
be formally integrable.

On the other hand, even in special cases, as in low dimension and for particularly
simple forms of the curvature or the Ricci tensor, the second problem is still open
(up to our knowledge). Moreover, it is a natural problem to look for homogeneous
metrics of prescribed curvature, since they are the homogeneousmodels formetrics of
the same dimension. Also with regard to the existence problem, the above cited Refs.
[9–11, 14] showed the special role played by homogeneous examples (in particular,
Lie groups and the corresponding Lie algebras).

In this framework, the three-dimensional case acquires a peculiar relevance, for
several reasons. First of all, in dimension three theRicci tensor completely determines
the curvature.Moreover, a connected, simply connected, complete three-dimensional
homogeneous manifold is either symmetric or isometric to some Lie group equipped
with a left-invariant metric (we may refer to [13] for the Riemannian case and [1] for
the Lorentzian one). Finally, with the obvious exceptions of R × S

2 (Riemannian)
andR1 × S

2 (Lorentzian), three-dimensional connected simply connected symmetric
spaces are also realized in terms of suitable left-invariant metrics on Lie groups [2].

In this note we will illustrate how three-dimensional locally homogeneous
Lorentzian metrics on R

3 were constructed in [3] for all admissible Ricci opera-
tors, that is, for all real-valued matrices which can occur as the Ricci operator of a
homogeneous Lorentzian three-manifold. To do so, we introduce a system of partial
differential equations, whose solutions determine explicitly these Lorentzian met-
rics. Then, solutions are presented for proper Lorentzian models, that is, Lorentzian
homogeneous three-spaces which do not have any counterpart in Riemannian geom-
etry, since their Ricci operator is not diagonalizable. We also mention the fact that
explicit examples for the wider class of curvature homogeneous Lorentzian three-
manifolds were constructed in [4, 5], proving that for all Segre types of the Ricci
operator, there exist examples of curvature homogeneous Lorentzian metrics in R3.



The Prescribed Curvature Problem in Low Dimension 39

2 Locally Homogeneous Lorentzian Three-Manifolds

Let (M, g) be a connected Lorentzian three-manifold. We denote by ∇ the Levi-
Civita connection of (M, g) and by R its curvature tensor, taken with the sign con-
ventionR(X, Y) = ∇[X,Y ] − [∇X ,∇Y ]. Since dim M = 3,R is completely determined
by the Ricci tensor ρ, defined by ρ(X, Y)p = ∑3

i=1 εig(R(X, ei)Y , ei), where {ei} is
a pseudo-orthonormal basis of TpM and εi = g(ei, ei) = ±1 for all i. Throughout the
paper we shall assume that e3 is timelike, that is, ε1 = ε2 = −ε3 = 1.

Because of the symmetries of R, the Ricci tensor ρ is symmetric. Consequently,
the Ricci operator Q, defined by g(QX, Y) = ρ(X, Y), is self-adjoint. Thus, in the
Riemannian case there exists an orthonormal basis diagonalizing Q, while for a
Lorentzian manifold there exists a suitable
pseudo-orthonormal basis {e1, e2, e3}, with e3 timelike, such that Q takes one of
the following forms, called Segre types:

Segre type {11, 1} :
⎛

⎝

ā 0 0
0 b̄ 0
0 0 c̄

⎞

⎠ , Segre type {1zz̄} :
⎛

⎝

ā 0 0
0 b̄ c̄
0 −c̄ b̄

⎞

⎠ ,

Segre type {21} :
⎛

⎝

ā 0 0
0 b̄ ε

0 −ε b̄ − 2ε

⎞

⎠ , Segre type {3} :
⎛

⎝

b̄ ā −ā
ā b̄ 0
ā 0 b̄

⎞

⎠ .

If (M, g) is curvature homogeneous (in particular, locally homogeneous), then its
Ricci operator Q has the same Segre type at every point p ∈ M and there exists (at
least, locally) a pseudo-orthonormal frame field {ei} such that Q is given by one of
the expressions above, for some constants ā, b̄ and c̄. As in [1], we now put

∇ei ej =
∑

k

εjb
i
jkek, (1)

for all indices i, j. Clearly, the functions bi
jk determine completely the Levi-Civita

connection, and conversely. As ∇g = 0, we have

bi
kj = −bi

jk, (in particular, bi
jj = 0) (2)

for all i, j, k. We now put

b112 = α, b113 = β, b123 = γ, b212 = κ, b213 = μ, b223 = ν, b312 = σ, b313 = τ, b323 = ψ.

(3)

By (1)–(3) we get

[e1, e2] = −εα e1 − κ e2 + (εγ − μ) e3, [e1, e3] = −β e1 − (γ + σ) e2 − τe3,

[e2, e3] = (εσ − μ) e1 − ν e2 − εψ e3.
(4)
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Conversely, the functions (bi
jk) are determined by (4) via the Koszul formula [12].

A locally homogeneous Lorentzian three-manifold admits (locally) a pseudo-or-
thonormal basis {ei}, such that (4) holdswith constant connection functionsα, . . . , ψ .
Starting from (4), we compute the curvature components with respect to {e1} and,
by contraction, the Ricci components. We get

ρ11 = −α2 − κ2 + βν − γμ + σ(γ − μ) + β2 − τ2 − γ σ + αψ + μ(γ − σ), (5)

ρ22 = −α2 − κ2 + βν − γμ + σ(γ − μ) + ν2 − ψ2 − κτ + μσ + γ (μ + σ), (6)

ρ33 = −β2 + τ2 + γ σ − αψ − μ(γ − σ) − ν2 + ψ2 + κτ − μσ − γ (μ + σ), (7)

ρ12 = β(γ + σ) + ν(γ − σ) − τ(α + ψ), (8)

ρ13 = −α(μ + σ) − ν(κ − τ) − ψ(μ − σ), (9)

ρ23 = α(β − ν) + κ(γ + μ) − τ(γ − μ). (10)

For the components of the covariant derivative of ρ with respect to {ei}, we find

∇iρjk = −
∑

t

(

εjb
i
jtρtk + εkBi

ktρtj
)

. (11)

Observe that the connection functions α, . . . , ψ are not all independent. In fact,
since (M, g) is locally homogeneous, its scalar curvature r = tr ρ is constant. The
well-known divergence formula dr = 2 div ρ (see [12]) then implies

∑

j ∇jρij = 0,
for all i, which, taking into account (11), gives some restrictions for the connection
functions.

We end this section with the following classification result.

Theorem 1 ([1])A three-dimensional connected, simply connected complete homo-
geneous Lorentzian manifold (M, g) is either symmetric, or M = G is a Lie group
and g is left-invariant. Precisely, one of the following cases occurs:

(I) If G is unimodular, then there exists a pseudo-orthonormal frame field {ei},
with e3 time-like, such that the Lie algebra of G is one of the following:

g1 : [e1, e2] = αe1 − βe3, [e1, e3] = −αe1 − βe2, [e2, e3] = βe1 + αe2 + αe3, α �= 0. (12)

If β �= 0, then G is ˜SL(2,R), while G = E(1, 1) when β = 0.

g2 : [e1, e2] = −γ e2 − βe3, [e1, e3] = −βe2 + γ e3, [e2, e3] = αe1, γ �= 0.
(13)

In this case, G = ˜SL(2,R) if α �= 0, while G = E(1, 1) if α = 0.

g3 : [e1, e2] = −γ e3, [e1, e3] = −βe2, [e2, e3] = αe1. (14)

The following Table1 lists all the Lie groups G which admit a Lie algebra g3, accord-
ing to the different possibilities for α, β and γ :
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Table 1 3D Lorentzian Lie groups with Lie algebra g3
Lie group (α, β, γ ) Lie group (α, β, γ )

˜SL(2,R) (+,+,+) E(1, 1) (+,−, 0)

˜SL(2,R) (+,−,−) E(1, 1) (+, 0,+)

SU(2) (+,+,−) H3 (+, 0, 0)
˜E(2) (+,+, 0) H3 (0, 0,−)

˜E(2) (+, 0,−) R
3 (0, 0, 0)

Table 2 3D Lorentzian Lie groups with Lie algebra g4
Lie group
(ε = 1)

α β Lie group
(ε = −1)

α β

˜SL(2,R) �=0 �=1 ˜SL(2,R) �=0 �= − 1

E(1, 1) 0 �=1 E(1, 1) 0 �= − 1

E(1, 1) <0 1 E(1, 1) >0 −1

˜E(2) >0 1 ˜E(2) <0 −1

H3 0 1 H3 0 −1

g4 : [e1, e2] = −e2 + (2ε − β)e3, [e1, e3] = −βe2 + e3, [e2, e3] = αe1, ε = ±1.

(15)

Table2 describes all Lie groups G admitting a Lie algebra g4.
(II) If G is non-unimodular, there exists a pseudo-orthonormal frame field {ei},

with e3 time-like, such that α + δ �= 0 and the Lie algebra of G is one of the following:

g5 : [e1, e2] = 0, [e1, e3] = αe1 + βe2, [e2, e3] = γ e1 + δe2, αγ + βδ = 0. (16)

g6 : [e1, e2] = αe2 + βe3, [e1, e3] = γ e2 + δe3, [e2, e3] = 0, αγ − βδ = 0. (17)

g7 :− [e1, e2] = [e1, e3] = αe1 + βe2 + βe3,

[e2, e3] = γ e1 + δe2 + δe3, αγ = 0. (18)

3 The Basic System of Equations

We shall express Eqs. (5)–(10) via a system of PDE’s, whose solutions give explicitly
locally homogeneous Lorentzian metrics on R

3 with the required curvature.
Fix a point p ∈ M and consider a pseudo-orthonormal frame field {ei}, satisfying

(4) for some constants α, . . . , ψ . Choose a surface S through p transversal to the lines
generated by e3, a local coordinates system (w, x) on S and a neighborhood Up of p,
sufficiently small that each q ∈ Up is situated on exactly one line generated by e3 and
passing through one point q̄ ∈ S. Choose an orientation of S and define the coordinate
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function y in Up as the oriented distance of q from S along the corresponding line,
that is, y(q) = dist(q, π(q)), where π : Up → S is the corresponding projection. We
also define w(q) = w(π(q)), x(q) = x(π(q)). In this way, a local coordinate system
(w, x, y) is introduced in Up. Observe that e3 = ∂/∂y and the coframe {ω1, ω2, ω3}
of {e1, e2, e3} must take the form

ω1 = Adw + Bdx, ω2 = Cdw + Ddx, ω3 = Gdw + Hdx + dy, (19)

for some functions A, B, C, D, G, H. Next, we introduce the connection forms ωi
j =

∑

k εjbi
jkω

k , which completely determine the Levi-Civita connection, because ∇ei ej

= ∑

k ωk
j (ei)ek , for all i, j. Moreover, from (1) we easily get

ωi
j + εiεjω

j
i = 0 (20)

for all i, j (in particular, ωi
i = 0 for all i). The structure equations for ωi

j give

dωi +
∑

j

ωi
j ∧ ωj = 0, (21)

for all indices i. The curvature forms Ω i
j are completely determined by

−dΩ i
j = dωi

j +
∑

k

ωi
k ∧ ωk

j . (22)

By the definition of the Ricci tensor and taking into account (20) and (4), we obtain
that (22) is equivalent to

dω1
2 + ω1

3 ∧ ω3
2 = −R1212 ω1 ∧ ω2 − ρ23 ω1 ∧ ω3 + ρ13 ω2 ∧ ω3,

dω1
3 + ω1

2 ∧ ω2
3 = ρ23 ω1 ∧ ω2 + R1313 ω1 ∧ ω3 − ρ12 ω2 ∧ ω3, (23)

dω2
3 + ω2

1 ∧ ω1
3 = −ρ13 ω1 ∧ ω2 − ρ12 ω1 ∧ ω3 + R2323 ω2 ∧ ω3.

We then use (19) in (21). Also taking into account (3) and the divergence formula,
we obtain that (21) is equivalent to the following system of nine PDE’s:

A′
y = βA + (μ + σ)C, B′

y = βB + (μ + σ)D,

C′
y = (γ − σ)A + νC, D′

y = (γ − σ)B + νD,

G′
y = −τA − ψC, H ′

y = −τB − ψD,

B′
w − A′

x = αD − βE − (μ + σ)F , D′
w − C′

x = κD − (γ − σ)E − νF ,

H ′
w − G′

x = −(γ − μ)D + τE + ψF ,

(24)
where D,E ,F are auxiliary functions, defined by

D = AD − BC, E = AH − BG, F = CH − DG. (25)
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Observe that, because of (19),D = AD − BC �= 0 is a necessary and sufficient con-
dition for linear independence of theωi. Starting from the connection functions bi

jk of
(M, g), by (24) we determine the functionsA, . . . , H and so, explicit Lorentzianmet-
rics on R3, with the same Levi-Civita connection of (M, g). Conversely, if A, . . . , H
are known, then by (24) we can determine bi

jk .
We now express the curvature conditions (23) using (19). Taking into account that

the connection functions are constant, one can easily prove that (23) is equivalent to
the following system of algebraic equations:

(U3 + R1212)D + (V3 + ρ23)E + (W3 − ρ13)F = 0,
(U2 − ρ23)D + (V2 − R1313)E + (W2 + ρ12)F = 0,
(U1 + ρ13)D + (V1 + ρ12)E + (W1 − R2323)F = 0,
(V3 + ρ23)A + (W3 − ρ13)C = 0, (V3 + ρ23)B + (W3 − ρ13)D = 0,
(V2 − R1313)A + (W2 + ρ12)C = 0, (V2 − R1313)B + (W2 + ρ12)D = 0,
(V1 + ρ12)A + (W1 − R2323)C = 0, (V1 + ρ12)B + (W1 − R2323)D = 0,

where we put

U1 = α(γ + μ) − κ(β − ν) − ψ(γ − μ),

V1 = −β(γ + σ) − ν(γ − σ) + τ(α + ψ),

W1 = −ν2 + ψ2 + κτ − μσ − γ (μ + σ),

U2 = α(β − ν) + κ(γ + μ) − τ(γ − μ),

V2 = −β2 + τ 2 − αψ + γ σ − μ(γ − σ),

W2 = −β(μ + σ) − ν(μ − σ) − ψ(κ + τ),

U3 = α2 + κ2 − βν + γμ − σ(γ − μ),

V3 = −β(α + ψ) − κ(γ − σ) + τ(γ + σ),

W3 = −α(μ + σ) − ν(κ − τ) − ψ(μ − σ).

(26)

Comparing (8)–(10) with (26), we easily get V1 + ρ12 = 0, U2 − ρ23 = 0 and W3 −
ρ13 = 0. Hence, Eq. (26) reduce to

(U3 + R1212)D + (V3 + ρ23)E = 0, (V3 + ρ23)A = 0,
(V2 − R1313)E + (W2 + ρ12)F = 0, (V3 + ρ23)B = 0,
(V2 − R1313)A + (W2 + ρ12)C = 0, (V2 − R1313)B + (W2 + ρ12)D = 0,
(U1 + ρ13)D + (W1 − R2323)F = 0, (W1 − R2323)C = 0,
(W1 − R2323)D = 0.

(27)

In this way, we have proved the following result.

Theorem 2 Given a locally homogeneous Lorentzian three-manifold (M, g), having
R = (ρij) as the matrix of Ricci components with respect to a suitable
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pseudo-orthonormal frame {ei}, let A, B, C, D, G, H be smooth functions on (w, x, y),
satisfying the systems (24) and (27). Then, (19) determines a locally homogeneous
Lorentzian metric ḡ onR3, locally isometric to (M, g) (in particular, having the same
curvature).

4 Explicit Lorentzian Metrics in R
3 with Prescribed

Curvature

For each of the homogeneous models described by (12)–(18), we can now solve sys-
tems (24) and (27), providing explicit Lorentzian metrics on R3 which have exactly
the Ricci tensor of the corresponding model. Curvature equations are remarkably
simpler when the Ricci tensor is diagonal. This special case has been studied in [4].
Hence, we focus here on all the remaining cases, which do not have any correspon-
dence with the Riemannian case. The Ricci tensor of all 3D Lie groups equippedwith
a left-invariant Lorentzian metric was calculated in [2] and can be easily obtained
by direct calculation starting from (12)–(18). According to the results of [2], non-
diagonal cases occur for the Lie algebras g1, g2, g4 and g7.

(g1) Comparing (12) with (4), we find that the connection functions of a locally
homogeneous Lorentzian three-manifold described by (12) are given by

α = β = −ν = ψ = −a, γ = −μ = −σ = − b
2 , κ = τ = 0, (28)

where a �= 0 and b are constant. Straightforward calculations (see also [1]) show that
the Ricci tensor at any point is given by

R1 =
⎛

⎜

⎝

− b2

2 −ab ab
−ab −2a2 − b2

2 2a2

ab 2a2 b2

2 − 2a2

⎞

⎟

⎠
. (29)

On the other hand, because of (28), Eq. (26) reduce to

U1 = −ab, U2 = 2a2, U3 = 2a2 + b2

4 ,

V1 = ab, V2 = −2a2 + b2

4 , V3 = ab,

W1 = b2

4 , W2 = ab, W3 = ab.

(30)

By (29) and (30) it follows at once that all Eqs. (27) reduce to identities, that is,
under the assumption (28), the curvature conditions (27) are identically satisfied.

We now turn our attention to the connection equations (24). Again by (28), we
obtain that (24) reduces to
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A′
y = −aA + bC, B′

y = −aB + bD, C′
y = −bA + aC,

D′
y = −bB + aD, G′

y = aC, H ′
y = aD,

B′
w − A′

x = −aD + aE − bF , D′
w − C′

x = bE − aF , H ′
w − G′

x = bD − aF .

(31)

One can now find explicit solutions of the system (31). Different kinds of solutions
are obtained according to the different possibilities for the sign of a2 − b2. Some
explicit solutions of (31) are resumed in the following

Theorem 3 Let a �= 0 and b be two real constants and R1 any symmetric real
matrix described by (29). Then, (19) determines a family of (locally isometric) locally
homogeneous Lorentzian metrics on R

3[w, x, y] having R1 as the Ricci tensor at any
point, where the functions A, B, C, D, G, H are the following:
(i) When b �= 0 and a2 − b2 > 0, we put η = √

a2 − b2. Then

A = f cosh(η y), B = θ sinh(η y),
C = 1

b f (a cosh(η y) + η sinh(η y)) , D = 1
b θ (η cosh(η y) + a sinh(η y)) ,

G = a
bη

f (η cosh(η y) + a sinh(η y)) − 1
θη f ′

x,

H = a
bη

θ (a cosh(η y) + η sinh(η y)) ,

for a real constant θ �= 0 and f (w, x) = a1(w) cos(bθx) + a2(w) sin(bθx), where
a1, a2 are two arbitrary one-variable functions. Corresponding solutions are found
in [3] in the cases a2 = b2 and a2 − b2 < 0. In all the cases, the corresponding
Lorentzian metric is defined in the open subset of R3 where f �= 0.
(ii) When b = 0:

A = a0(w)e−ay, B = b0(x)e
−ay, C = G = c0(w)eay, D = H = d0(x)e

ay,

where a0, b0, c0, d0 are arbitrary one-variable functions. The corresponding Loren-
tzian metric is defined in the open subset of R3 where a0(w)d0(x) − b0(x)c0(w) �= 0.

(g2) The remaining cases can be treated similarly to the case g1 above. So, for any
of them, we shall only report the Ricci components, the equations for the connection
functions and some explicit solutions. In the case of g2, we have

R2 =
⎛

⎜

⎝

− a2

2 − 2c2 0 0
0 a2

2 − ab c(a − 2b)

0 c(a − 2b) − a2

2 + ab

⎞

⎟

⎠
, (32)

for three real constants a, b, c, and

A′
y = aC, B′

y = aD, C′
y = −bA,

D′
y = −bB, G′

y = cA, H ′
y = cB,

B′
w − A′

x = −aF , D′
w − C′

x = cD + bE , H ′
w − G′

x = bD − cE .

(33)

We present some solutions of (33) in the following
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Theorem 4 Given three real constants a, b, c and any symmetric real matrix R2

described by (32). Then, (19) gives a family of (locally isometric) locally homoge-
neous Lorentzian metrics on R

3[w, x, y] having R2 as the Ricci tensor at any point,
where the functions A, B, C, D, G, H are the following:

If −ab < 0, we put η = √
ab. Then

A = f cos(η y), B = θ sin(η y), C = − η

a f sin(η y),
D = η

a θ cos(η y), G = c
η
f sin(η y) − 1

θη
f ′
x , H = − c

η
θ cos(η y),

where f (w, x) = a1(w) cosh(
√

θ2(b2 + c2)x) + a2(w) sinh(
√

θ2(b2 + c2)θx), θ �= 0
is a real constant and a1, a2 are two arbitrary one-variable functions. The Lorentzian
metric is defined on the open subset ofR3 where f �= 0. Corresponding solutions were
found in [3] in the cases ab < 0, a = 0, b = 0.

(g4) For a locally homogeneous Lorentzian three-manifold described by (15), the
Ricci components are given by

R4 =
⎛

⎜

⎝

− a2

2 0 0
0 a2

2 + 2ε(a − b) − ab + 2 a + 2(ε − b)

0 a + 2(ε − b) − a2

2 + ab + 2 − 2εb

⎞

⎟

⎠
, (34)

for two real constants a, b, and connection equations (24) become

A′
y = aC, B′

y = aD C′
y = −bA,

D′
y = −bB, G′

y = A, H ′
y = B,

B′
w − A′

x = −aF , D′
w − C′

x = D + bE , H ′
w − G′

x = (b − 2ε)D − E .

(35)

Some explicit solutions of (35) are given in the following

Theorem 5 Given two real constants a, b and any symmetric real matrix R4 as
in (34). Then, (19) describes a family of (locally isometric) locally homogeneous
Lorentzian metrics on R

3[w, x, y] whose Ricci tensor at any point is R4, where the
functions A, B, C, D, G, H are the following:

If ab < 0, we put η = √−ab. Then,

A = f cosh(η y), B = θ sinh(η y), C = η

a f sinh(η y),
D = η

a θ cosh(η y), G = 1
η
f sinh(η y) − 1

θη
f ′
x , H = 1

η
θ cosh(η y),

where

f (w, x) =
{

a1(w) cos(|θ(b + ε)|x) + a2(w) sin(|θ(b + ε)|x) if b �= −ε,

a1(w)x + a2(w) if b = −ε,
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for a real constant θ �= 0 and two arbitrary one-variable functions a1, a2. The
Lorentzian metric is defined in the open subset of R3 where f �= 0. Corresponding
solutions were found in [3] in the cases ab > 0, a = 0, b = 0.

(g7) Consider a locally homogeneous Lorentzian three-manifold locally described
by (18). Then, the Ricci components are given by

R7 =
⎛

⎜

⎝

− c2

2 0 0
0 ad − a2 − bc + c2

2 a2 − ad + bc
0 a2 − ad + bc ad − a2 − bc − c2

2

⎞

⎟

⎠
, (36)

where a, b, c, d are four real constants satisfying ac = 0.
If c = 0, then, (24) reduces to

A′
y = aA, B′

y = aB,

C′
y = G′

y = bA + dC, D′
y = H ′

y = bB + dD,

B′
w − A′

x = aD − aE , D′
w − C′

x = H ′
w − G′

x = bD − bE − dF ,

(37)

while if c �= 0, then a = 0 and the system (24) reduces to

A′
y = cC, B′

y = cD,

C′
y = G′

y = bA + dC, D′
y = H ′

y = bB + dD,

B′
w − A′

x = −cF , D′
w − C′

x = H ′
w − G′

x = bD − bE − dF .

(38)

Some solutions of (37) and (38) are given in the following

Theorem 6 Given three real constants a, b, d and any symmetric real matrix R7

described by (36). Then, (19) gives a family of (locally isometric) locally homoge-
neous Lorentzian metrics on R

3[w, x, y] having R7 as the Ricci tensor at any point,
where the functions A, B, C, D, G, H are the following:

(I) When c = 0:

A = a0(w)eay, B = b0(x)e
ay,

C = G = edy(c0(w) + b
a−d a0(w)e(a−d)y), D = H = edy(d0(x) + b

a−d b0(x)e
(a−d)y),

where a0, b0, c0, d0 are arbitrary one-variable functions. The Lorentzian metric is
defined in the open subset of R3 where a0(w)d0(x) − b0(x)c0(w) �= 0.

(II) When a = 0 �= c: if Δ = d2 + 4bc > 0, let λ1 �= λ2 be the solutions of λ2 −
dλ − bc = 0. Then,

A = k1(w)eλ1y + k2(w)eλ2y, B = h1(x)e
λ1y + h2(x)e

λ2y,

C = G = 1
c (k1(w)λ1eλ1y + k2(w)λ2eλ2y), D = H = 1

c (h1(x)λ1eλ1y + h2(x)λ2eλ2y),
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where k1, k2, h1, h2 are four arbitrary one-variable functions, and the Lorentzian
metric is defined on the open subset of R3 where k1(w)h2(x) − k2(w)h1(x) �= 0.
Corresponding solutions exist when Δ = 0 and when Δ < 0 (see [3]).
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H ⊂ G, its Euler–Poincaré reduction in (J 1P)/H = C(P) ×R (P/H) (C(P): the
bundle of connections, P/H : the bundle of H -structures) induces an optimal control
problem. The control variables of this problem are connections σ , the dynamical
variables s̄ are H -structures, the Lagrangian density l(t, σ, s̄)dt is the reduction of
Ldt and the dynamical equations are ∇σ s̄ = 0. We prove that the solution of this
problem are solutions of the original reduction problem. We study the Hamilton–
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1 Introduction

In [3], the authors proposed a new formulation of the Euler–Poincaré reduction
scheme in principal bundles by a subgroup of the structure group bymeans of a canon-
ical reduction morphism. More precisely, given a Lagrangian density Lv defined in
the fiber bundle J 1P of 1-jets of local section of a principal G-bundle π : P → M ,
invariant under the action of a closed subgroup H ⊂ G, the corresponding variational
problem projects to (J 1P)/H which can be identified to

(J 1P)/H−̃→C(P) ×M (P/H)

[ j1x s]H �→ ([ j1x s]G, [s(x)]H )

where (J 1P)/G = C(P) → M is the bundle of connections of P . This reduced
problem is thus defined on connections σ ∈ Γ (M, C(P)) and H -structures s̄ ∈
Γ (M; P/H) by a Lagrangian density lv, the projection of Lv, the constraints
Curvσ = 0 and ∇σ s̄ = 0, and the representation in connections and H -structures
of infinitesimal gauge transformations η ∈ Γ (M, g̃) as the set of admissible infini-
tesimal variations (g̃ → M being the adjoint bundle).

Due to the gauge functoriality of the curvature and the covariant derivative, given
an admissible section (σ, s̄) ∈ Γ (M, C(P) ×M (P/H)), i.e., a section satisfying
Curvσ = 0 and∇σ s̄ = 0, the 1-jet extension j1(δσ, δs̄)of an admissible infinitesimal
variations (δσ, δs̄) are tangent to the submanifold

S = { j1x (σ, s̄) : Curvσ = 0,∇σ s̄ = 0} ⊂ J 1(C(P) ×M (P/H))

along j1(σ, s̄). Therefore, we obtain a subspace of the space of admissible infini-
tesimal variations along an admissible section of the Lagrange problem defined in
J 1(C(P) ×M (P/H)) by the reduced Lagrangian lv and the constraint submani-
fold S (see [5, 6] for a recent geometric version of the Lagrange problem). In other
words, we can canonically associate to the Euler–Poincaré reduction by a subgroup
of symmetries, a Lagrange problem the critical sections of which define a subset
of the set of solutions of the Euler–Poincaré equations of the original variational
problem. We think that the study of this situation is of interest in the framework of
the Euler–Poincaré in fiber bundles.

In [2] we first tackled this study in the case H = G, where the reductionmorphism
is J 1P → (J 1P)/G = C(P) and no H -structures occur. The reduced problem is
defined on connections σ ∈ Γ (M, C(P)) with the constraint Curvσ = 0. In the
work we now present, we study the case for arbitrary H in Mechanics, that is, when
M = R. Note that, in this situation, the condition Curvσ = 0 is trivially satisfied and
the only constraint is ∇σ s̄ = 0. In particular, from the local expression of ∇σ s̄, the
problem of Lagrange can be seen as an optimal control problem where the dynamic
variable is the H structure s̄ and the control variable is the connection σ (see [1,
5] for the notions on optimal control problems). We also study the regularity and
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the Hamilton–Cartan–Pontryagin formalism of the problem, with the conviction that
these results will shed light to the general case with arbitrary manifold M .

The structure of the work is as follows. In Sect. 2, we give the local expressions of
some basic operators appearing in the Euler–Poincaré reduction framework that will
be useful in the following. In Sect. 3, we state the problem of Lagrange associated
to an Euler–Poincaré reduction by a subgroup of symmetries, putting emphasis on
its nature of an optimal control problem, with dynamical variable s̄ and control σ .
In Sect. 4 we compare the solution of the Lagrange problem obtained with Lagrange
multipliers with the solutions of the Euler–Poincaré equations of the initial reduced
problem. Section5 gives the Hamilton–Cartan–Pontryagin formulation of the prob-
lem. Finally, Sect. 6 applies the results to the case of the heavy top, an example where
in addition, we describe the symplectic structure of the set of solutions in the zero
level set of the vertical component of the angular momentum.

2 Some Local Formulas

Let π : P → R be a principal bundle with structure group a Lie group G with
Lie algebra g. Let H ⊂ G be a closed subgroup with Lie algebra h, and let
πH : P → P/H be the H -principal bundle over P/H , which in addition can be
identified to the associated bundle P ×G (G/H) → R with respect of the natural
left action of G on G/H . Let V (P/H) ⊂ T (P/H) be the bundle of vertical vector
fields tangent to the fibers of P/H → R. Following [3] (Sects. 2 and 3), given an
infinitesimal gauge transformation η ∈ Γ (R, g̃), understood as a G-invariant ver-
tical vector field in P , we denote by ηP/H ∈ Γ (P/H, V (P/H)) its projection by
πH . Given a section (σ, s̄) ∈ Γ (R, C(P) ×R (P/H)), the infinitesimal transforma-
tions δσ = Pσ (η) and δs̄ = Ps̄(η) induced along (σ, s̄) by the infinitesimal gauge
transformation η ∈ Γ (R, g̃) reads as

δσ = Pσ (η) = ∇σ η ∈ Γ (R, σ∗V (C(P))), δs̄ = Ps̄(η) = ηP/H ∈ Γ (R, s̄∗V (P/H)).

We note that the operator Ps̄ is surjective and its kernel is

ker Ps̄ = {η ∈ Γ (R, g̃) : η(x) = [u, B]G with [u]H = s̄(x) and B ∈ h}.

In addition, we have the isomorphism

s̄∗h̃→̃ ker Ps̄

[u, B]H �→ [u, B]G

where h̃ → P/H is the adjoint fiber bundle of the principal H -bundle P → P/H .
Let P = R × G → R be a trivialization of P . If {B1, . . . , Bm}, m = dim G, is a

basis of g, then {B̃1, . . . , B̃m} is a basis of the C∞(R)-module of section of g̃ → M ,
where B̃α is the infinitesimal generator of the flow ((t, g), ε) �→ (t, exp(εBα)g) in P .
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In addition, everyG-invariant vector field in P can bewritten as D = f ∂/∂t + gα B̃α ,
for f, gα ∈ C∞(R). In particular, we can introduce coordinates in C(P) → R as

γt

(

∂

∂t

)

= ∂

∂t
+ Aα(γt )B̃α, γt ∈ C(P),

where we understand γt as the horizontal lift γt : TtR → T P of the connection γt in
the point t ∈ R. Given a connection σ ∈ Γ (R, C(P)), the connection 1-form along
the trivial section of P = R × G is

ωσ = −(Aα ◦ σ)dt ⊗ Bα,

from where we deduce (see, for instance, [7], Sect. 5.6) that for all η = ηα B̃α ∈
Γ (R, g̃)

Pσ (η) = ∇σ η =
(

dηα

dt
B̃α − (Aα ◦ σ)ηβ[B̃β, B̃α]

)

⊗ dt. (1)

On the other hand, let P/H = R × (G/H) → R be the trivialization induced by
P = R × G → R in P/H . If (yi ), 1 ≤ i ≤ r , are coordinates in G/H , then the
vector fields (B̃α)P/H in P/H can be expressed as

(B̃α)P/H = Ψ j
α

∂

∂y j
, Ψ j

α ∈ C∞(G/H). (2)

In this situations for every s̄ ∈ Γ (R, P/H) and every η = ηα B̃α ∈ Γ (R, g̃), we have

Ps̄(η) = (ηP/H )s̄ = ηα(Ψ j
α ◦ s̄)

(

∂

∂y j

)

s̄

. (3)

Finally, from the definition of covariant derivative of a section s̄ with respect to a
connection σ (see [3]), we have

∇σ
∂/∂t s̄ = ds̄

(

∂

∂t

)

−
(

∂

∂t
+ (Aα ◦ σ)Ψ j

α

∂

∂y j

)

s̄

= ∂

∂t
+ d(y j ◦ s̄)

dt

(

∂

∂y j

)

s̄

− ∂

∂t
− (Aα ◦ σ)

(

Ψ j
α ◦ s̄

)

(

∂

∂y j

)

s̄

=
(

d(y j ◦ s̄)

dt
− (Aα ◦ σ)Ψ j

α

) (

∂

∂y j

)

s̄

,

so that

∇σ s̄ =
(

d(y j ◦ s̄)

dt
− (Aα ◦ σ)

(

Ψ j
α ◦ s̄

)

)

dt ⊗
(

∂

∂y j

)

s̄

. (4)
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3 The Optimal Control Problem

We begin with the Euler–Poincaré reduction in a principal G-bundle π : P → R

by a closed subgroup H ⊂ G. We then consider the Lagrange problem defined in
J 1(C(P) ×R (P/H)) by the reduced Lagrangian density ldt and

S = { j1t (σ, s̄) : (∇σ s̄)(t) = 0} ⊂ J 1(C(P) ×R (P/H))

as constraint submanifold. From Eq. (4), we can locally characterize S as the set
where the functions

Φ j = ẏ j − AαΨ j
α (y1, . . . , yr ) = 0, 1 ≤ j ≤ r (5)

vanish, where (t, Aα, y j , Ȧα, ẏ j ) are coordinates in J 1(C(P) ×R (P/H)) induced
by the coordinates (t, Aα, y j ) of C(P) ×R (P/H). Equation (5) suggest that the
problem of Lagrange can be seen as an optimal control problem where the dynamic
variable is s̄ ∈ Γ (R, P/H) and the control variable is σ ∈ Γ (R, C(P)). Following
[6], the set of admissible sections is

V = {(σ, s̄) ∈ Γ (C(P) ×R (P/H)) : im j1(σ, s̄) ⊂ S},

that is, ∇σ s̄ = 0, condition which can be locally written as a system of first order
differential equations

(

d(y j ◦ s̄)

dt
− (Aα ◦ σ)

(

Ψ j
α ◦ s̄

)

)

dt ⊗
(

∂

∂y j

)

s̄

= 0. (6)

Similarly, given an admissible section (σ, s̄) ∈ V , the admissible infinitesimal trans-
formations along (σ, s̄) are sections

(δσ, δs̄) ∈ Γ (R, σ ∗V (C(P)) × s̄∗V (P/H))

such that j1(δσ, δs̄) is tangent to the constraint manifold S along j1(σ, s̄). We denote
by T(σ,s̄)V the real vector space of all these infinitesimal transformations. This space
is locally characterized by the following set of first order linear differential equations

[

d(δs̄) j

dt
− (Aα ◦ σ)

(

∂Ψ
j

α

∂yk
◦ s̄

)

(δs̄)k − (δσ )α(Ψ j
α ◦ s̄)

]

dt ⊗
(

∂

∂y j

)

s̄

= 0.

(7)
The main result of this section is the following:

Theorem 1 (δσ, δs̄) ∈ T(σ,s̄)V if and only if there exist an infinitesimal gauge trans-
formation η ∈ Γ (R, g̃) and a 1-form ω ∈ Γ (R, T ∗

R⊗s̄∗h̃) such that
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δσ = ∇σ η + ω, δs̄ = (ηP/H )s̄, (8)

where h̃ → P/H is the adjoint bundle of the principal bundle P → P/H.

Proof As the operator Ps̄ : Γ (R, g̃) → Γ (R, s̄∗V (P/H)) is surjective, there exists
η ∈ Γ (R, g̃) such that Ps̄(η) = (ηP/H )s̄ = δs̄. From (3) andη = ηα B̃α ,ηα ∈ C∞(R),
we locally have

δs̄ = (ηP/H )s̄ = ηα(Ψ j
α ◦ s̄)

(

∂

∂y j

)

s̄

.

If we substitute this expression in (7), we have

0 =
[

d(ηα(Ψ
j

α ◦s̄))
dt − (Aα ◦ σ)

(

∂Ψ
j

α

∂yk ◦ s̄

)

ηβ(Ψ k
β ◦ s̄) − (δσ )α(Ψ

j
α ◦ s̄)

]

dt ⊗
(

∂
∂y j

)

s̄

=
[

dηα

dt

(

Ψ
j

α ◦ s̄
)

+ ηα

(

∂Ψ
j

α

∂yk ◦ s̄

)

d(yk◦s̄)
dt − (Aα ◦ σ)ηβ

(

∂Ψ
j

α

∂yk ◦ s̄

)

(Ψ k
β ◦ s̄)

−(δσ )α(Ψ
j

α ◦ s̄)
]

dt ⊗
(

∂
∂y j

)

s̄

=
[

dηα

dt

(

Ψ
j

α ◦ s̄
)

+ ηα

(

∂Ψ
j

α

∂yk ◦ s̄

)

(Aβ ◦ σ)(Ψ k
β ◦ s̄) − (Aα ◦ σ)ηβ

(

∂Ψ
j

α

∂yk ◦ s̄

)

(Ψ k
β ◦ s̄)

−(δσ )α(Ψ
j

α ◦ s̄)
]

dt ⊗
(

∂
∂y j

)

s̄

=
[

dηα

dt

(

Ψ
j

α ◦ s̄
)

+ ηβ(Aγ ◦ σ)

(

∂Ψ
j

β

∂yk Ψ k
γ − ∂Ψ

j
γ

∂yk Ψ k
β

)

◦ s̄

−(δσ )α(Ψ
j

α ◦ s̄)
]

dt ⊗
(

∂
∂y j

)

s̄
,

where we have taken into account the constraint condition ∇σ s̄ = 0 given in (4). On
the other hand, from (2), we have

[B̃β, B̃γ ]P/H =
(

∂Ψ
j

β

∂yk Ψ k
γ − ∂Ψ

j
γ

∂yk Ψ k
β

)

∂
∂y j ,

so that

0 =
(

(

dηα

dt B̃α

)

P/H
− ηβ(Aγ ◦ σ)[B̃β, B̃γ ]P/H

)

s̄

⊗ dt −
(

(δσ )α B̃α

)

P/H
⊗ dt

= Ps̄(∇σ η − δσ ).

Hence, ∇σ η − δσ ∈ ker Ps̄ , that is

ω = ∇σ η − δσ ∈ Γ (R, T ∗
R⊗s̄∗h̃).

Conversely, it is clear that any choice of η and ω gives a variation (δσ, δs̄) ∈
T(σ,s̄)V .
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Corollary 1 The admissible infinitesimal transformations along an admissible
section (σ, s̄) ∈ V of the Euler–Poincaré reduction coincide with the subspace of
T(σ,s̄)V of those (δσ, δs̄) such that Eq. (8) are satisfied with

ω = ∇σ ς, ς ∈ Γ (R, s̄∗h̃). (9)

Proof For those transformation there must exist η′ ∈ Γ (R, g̃) such that

δσ = ∇σ η + ω = ∇σ η′, δs̄ = (ηP/H )s̄ = (η′
P/H )s̄,

and then, ς = η′ − η ∈ Γ (R, s̄∗h̃) satisfies ∇σ ς = ω and conversely.

As a consequence of this Corollary, the critical section of our optimal control
problem are also solutions of the Euler–Poincaré equations, but the converse is not
true in general. We now explore with more detail this fact on the set of solutions of
the optimal control problem obtained through the method of Lagrange multipliers.

4 The Rule of Lagrange Multipliers

Let EY be the induced fiber bundle over Y = C(P) ×R (P/H) from the vector
bundle E = T ∗

R ⊗P/H V (P/H) and E J 1Y the induced bundle over J 1Y from EY .
The constraint submanifold S ⊂ J 1Y of the described above can be seen as the
preimage of zero of the section Φ ∈ Γ (J 1Y, E J 1Y ) defined as

Φ : J 1Y −→ E J 1Y

j1x (σ, s̄) �→ (∇α s̄)t .

Following [6] and denoting for simplicity by E all these induced vector bundles, we
consider the free variational problem defined on J 1(Y ×Y E∗) by the Lagrangian
density

l̂dt = (l + λ ◦ Φ)dt,

where λ ∈ Γ (J 1(Y ×Y E∗), E∗) is the section induced by the trivial section

λ( j1t (σ, s̄), e∗
(σ (t),s̄(t))) = e∗

(σ (t),s̄(t)),

and ◦ is the duality bilinear product.
Locally, if λi , 1 ≤ i ≤ r , are the induced coordinates in E∗ by the coordinates yi ,

1 ≤ i ≤ r , of G/H , we have

l̂ = l(t, Aα, yi ) +
r

∑

i=1
λi

(

yi −
n
∑

α=1
AαΨαi (yl)

)

. (10)
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As it is well known, the critical sections (σ, s̄) of this problem are “regular solutions”
of the optimal control problem under study (for the Lagrange multipliers rule, see
[5, 6]). Under this perspective we have the following result:

Theorem 2 The Euler–Lagrange equations of the variational problem defined on
J 1(Y ×Y E∗) by the Lagrangian density l̂dt = (l + λ ◦ Φ)dt are

∇σ s̄ = 0, (11)

δl

δσ
− P+

s̄ λ = 0, (12)

P+
s̄

δl

δs̄
− divσP+

s̄ λ = 0, (13)

where (σ, s̄, λ) ∈ Γ (R, Y ×Y E∗), P+
s̄ : Γ (R, s̄∗V ∗(P/H)) → Γ (R, T R ⊗ g̃∗) is

the adjoint operator of Ps̄ : Γ (R, T ∗
R ⊗ g̃) → Γ (R, s̄∗V (P/H)) and δl/δσ ∈

Γ (R, T R ⊗ g̃∗), δl/δs̄ ∈ Γ (R, s̄∗V (P/H)) are the vertical differential of l for σ

and s̄ respectively.

Proof According to (10), the local expressions of the Euler–Lagrange equations are

dy j

dt
− ∑

α

AαΨα j = 0, (14)

∂l

∂ Aα
− ∑

i
λiΨαi = 0, (15)

∂l

∂y j
− dλ j

dt
− ∑

i,α
Aα ∂Ψαi

∂y j
λi = 0, (16)

1 ≤ i, j ≤ r , 1 ≤ α ≤ n. Equation (14) is the local expression of (11). With respect
to Eq. (15), it can be written as

0 =
〈

∂l

∂ Aβ
B̃∗

β ⊗ ∂

∂t
, B̃α ⊗ dt

〉

− ∑

i

〈

λi dyi ⊗ ∂

∂t
, (B̃α)P/H yi ∂

∂yi
⊗ dt

〉

=
〈

δl

δσ
, B̃α ⊗ dt

〉

−
〈

λ,Ps̄(B̃α) ⊗ dt
〉

=
〈

δl

δσ
− P+

s̄ λ, B̃α ⊗ dt

〉

,

which gives (12) as B̃α is arbitrary. Finally, for (16), taking into account that
Ps̄ : Γ (R, T ∗

R ⊗ g̃) → Γ (R, s̄∗V (P/H)) is surjective, it is equivalent to

∑

β

[

∑

j

(

∂l

∂y j
− dλ j

dt
− ∑

α

Aα ∂Ψαi

∂y j
λi

)

Ψβ j

]

ηβ = 0,
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for any η = ηα B̃α , that is,

∑

j

∂l

∂y j
Ψβ j − ∑

j

(

dλ j

dt
Ψβ j − ∑

α

Aα ∂Ψαi

∂y j
λiΨβ j

)

= 0,

for 1 ≤ β ≤ n. The first term in this expression is

∑

j

∂l

∂y j
Ψβ j = ∑

j

〈

∂l

∂y j
dy j , (B̃α)P/H yi ∂

∂yi

〉

=
〈

δl

δs̄
,Ps̄

(

B̃β

)

〉

=
〈

P+
s̄

δl

δs̄
, B̃β

〉

.

With respect to the second term, a computation similar to that of Theorem1 gives

∑

j

(

dλ j

dt
Ψβ j − ∑

α

Aα ∂Ψαi

∂y j
λiΨβ j

)

= ∑

j

[

d

dt

(

λ j (B̃β)P/H y j
)

− ∑

α

λ j Aα[B̃β, B̃α]P/H y j

]

= div〈λ,Ps̄ B̃β〉 −
〈

λ,Ps̄

(

∇σ B̃β

)〉

= div〈P+
s̄ λ, B̃β〉 − 〈P+

s̄ λ,∇σ B̃β〉
= 〈divσ (P+

s̄ λ), B̃β〉.

As B̃β is arbitrary, we get (13).

Given a solution (σ, s̄, λ) ∈ Γ (R, Y ×Y E∗) of the Euler–Lagrange equations
(11)–(13), we can take the divergence operator in the second and substitute in the
third so that we have

0 = divσ δl

δσ
− divσ (P+

s̄ λ) = divσ

(

δl

δσ

)

− P+
s̄

δ1

δs̄
,

which, together with ∇σ s̄ = 0, are the equations of the Euler–Poincaré reduction
(see [3], Sect. 3.2). We thus have that any solution of the optimal control problem
obtained through the Lagrange multipliers is also a solution of the Euler–Poincaré
reduction. The converse need not be true.

5 Hamilton–Cartan–Pontryagin Formulation

Taking into account (10), the local expression of the Cartan form (see [4]) of the
Lagrangian density l̂dt reads
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Θl̂dt = ∑

i

∂ l̂

∂ ẏi

(

dyi − ẏi dt
) + l̂dt

= ∑

i
λi

(

dyi − ẏi dt
) +

(

l + ∑

i
λi

(

ẏi − ∑

α

AαΨαi

))

dt

= ∑

i
λi dyi − Hdt,

where
H = ∑

iα
λi AαΨαi − l(t, Aα, y j ) (17)

is the Pontryagin Hamiltonian of our problem. From here we see that the Cartan form
Θl̂dt is projectable to Y ×Y E∗.

On the other hand, Euler–Lagrange equation (12) defines a closed subset W ⊂
Y ×Y E∗ fibering over R for which the following notion of tangent space can be
given at w ∈ W

TwW = {D̂w ∈ Tw(Y ×Y E∗) : D̂w Iw = 0},

where Iw is the ideal of germs in w of functions in C∞(Y ×Y E∗) vanishing on W .
In terms of the Pontryagin Hamiltonian (17), the local Euler–Lagrange equa-

tions (14)–(16) read as

dyi

dt
= ∂H

∂λi
, (18)

∂H

∂ Aα
= 0, (19)

dλi

dt
= − ∂H

∂yi
, (20)

with 1 ≤ α ≤ n, 1 ≤ i ≤ r . In particular, the subset W is the locus where ∂H/∂ Aα =
0, 1 ≤ α ≤ n, so that for every w ∈ W we have

TwW = {D̂w ∈ Tw(Y ×Y E∗) : D̂w (∂ H/∂ Aα) = 0, 1 ≤ α ≤ n}.

A key point in our results relies in the following condition of regularity.

Definition 1 A Lagrangian density l̂dt is said to be regular if for every w ∈ W ⊂
Y ×Y E∗, the polarity D̂w �→ i D̂w

dΘl̂dt is injective on the set of vertical vectors

D̂w ∈ TwW .

If

D̂w = ai

(

∂

∂yi

)

w

+ bα

(

∂

∂ Aα

)

w

+ ci

(

∂

∂λi

)

w
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belongs to the kernel of the polarity, that is

0 = i D̂w
dΘl̂dt y = i D̂w

(

∑

i
λi ∧ dyi − dH ∧ dt

)

= ∑

i

(

ci dyi − ai dλi
) − (D̂wH)dt,

and then ai = ci = 0 and D̂w(H) = ∑

α bα (∂ H/∂ Aα) (w) = 0. Substituting in
D̂w (∂H/∂ Aα) = 0 we have

∑

β

(

∂2H

∂ Aα∂ Aβ

)

(w)bβ = 0, 1 ≤ α ≤ n,

and the polarity is injective if and only if

det

(

∂2H

∂ Aα∂ Aβ

)

= det

(

− ∂2l

∂ Aα∂ Aβ

)

�= 0 (21)

along W ⊂ Y ×Y E∗. In particular, condition (21) implies that W is a submanifold
of dimension 2r + 1 with local coordinates (t, yi , λi ), 1 ≤ i ≤ r , and parametric
equations

t = t, yi = yi , λi = λi , Aα = Aα(t, yi , λi ),

by virtue of the Implicit function Theorem applied to the constraints ∂H/∂ Aα = 0,
1 ≤ α ≤ n.

From this fact we have that the next two 1-forms
(

dt,Θl̂dt |W =
r

∑

i=1
λi dyi − H|W dt

)

on W ⊂ Y ×Y E∗ define a cosymplectic structure with which the Euler–Lagrange
equations of the Lagrangian density l̂dt in J 1(Y ×Y E∗) can be characterized as
follows:

Theorem 3 (Hamilton–Cartan–Pontryagin formulation) There exists a unique vec-
tor field D̂ in the bundle W → R such that

i D̂dΘl̂dt |W = 0, D̂(t) = 1.

The integral curves of D̂ are the solutions of the Euler–Lagrange equations (11)–(13).
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6 Application to the Dynamic of the Heavy Top

In this case P = R × SO(3) → R and H = SO(2) ⊂ SO(3) and SO(3)/SO(2) =
S2. The reducedfiber bundleY = C(P) ×R (P/H) canbewritten as thefiber product

(R × T
∗
R⊗so(3)) ×R (R × S2) = R × (s0(3) × S2) → R.

Therefore, sections (σ, s̄) of this bundle are of the type

(σ, s̄)(t) = (t,Ω(t),Λ(t))

for curves

Ω : R → so(3) = R
3,

Λ : R → S
2 ⊂ R

3,

where the identification so(3) = R
3 is the standard one

(a, b, c) �→
⎛

⎝

0 c −b
−c 0 a

b −a 0

⎞

⎠ .

Following [3], Sect. 5, the constraint ∇σ s̄ = 0 reads as

dΛ

dt
(t) + Ω(t) × Λ(t) = 0, (22)

where × stands for the cross product in R
3.

On the other hand, taking into account that Γ (R, s̃o(3)) = C∞(R, so(3))
and Γ (R, s̄∗V (P/H)) = Γ (R,Λ∗T S2), the operators PΛ : C∞(R, so(3) = R

3) →
Γ (R,ΛT S2) and P+

Λ : Γ (R,Λ∗T ∗S2) → C∞(R, so(3)∗ = R
3) are

PΛ(η) = Λ × η, P+
ΛΥ = −Λ × Υ. (23)

In particular
ker PΛ = {a(t)Λ(t) : a(t) ∈ C∞(R)}.

Therefore, the 1-forms ω mentioned in Theorem1 have the expression

ω = a(t)Λ(t) ⊗ dt, a(t) ∈ C∞(R). (24)

Taking the infinitesimal variations (8) for the Lagrangian density ldt as η ∈ Γ (R,

s̃o(3)), with compact support, and ω = 0, we obtain the Euler–Poincaré equations.
For η = 0 and ω as in (24), with a compactly supported, we have the additional
equation



Euler–Poincaré Reduction by a Subgroup of Symmetries … 61

〈

δl

δσ
,Λ

〉

= 0, (25)

which gives the zero level set of the vertical component of the angular momentum
of the heavy top. Recall that this component is a first integral.

With respect to Corollary1, Eq. (9) has always a solution. In fact, given ω =
a(t)Λ(t) ⊗ dt , if ζ = b(t)Λ(t) satisfies ∇σ ζ = ω we have

(

d(bΛ)

dt
+ Ω × bΛ

)

⊗ dt = (aΛ) ⊗ dt,

and taking into account (22)

db

dt
(t) = a(t), that is, b(t) =

∫

a(t)dt + K ,

for certain constant K ∈ R.
Hence, the admissible infinitesimal variations of the Euler–Poincaré reduction

of the heavy top coincide with those of the associated optimal control problem.
But this does not mean that both problems define the same critical curves because
solutions of the optimal control problem satisfy the additional Eq. (25). The point
is that the coincidence in the set of admissible infinitesimal variations becomes a
proper inclusion when taking compactly supported variations to define the critical
curves.

From (22) and (23), Eqs. (11)–(13) obtained as the result of the rule of Lagrange
multipliers for the heavy top read

dΛ

dt
+ Ω × Λ = 0, (26)

δl

δΩ
+ (Λ × λ) ⊗ dt = 0, (27)

−Λ × δl

δΛ
+ d

dt
(Λ × λ) + Ω × (Λ × λ) = 0, (28)

where we have used the expression for the divergence operator divσ

divσ

(

ξ ⊗ ∂

∂t

)

= dξ

dt
+ Ω × ξ, ξ ∈ C∞(R, so(3)∗ = R

3).

Substituting Eq. (27) in Eq. (28), we get

d

dt

(

δl

δΩ

)

+ Ω × δl

δΩ
+ Λ × δl

δΛ
= 0

which, together with (26), are the Euler–Poincaré equations of the heavy top.
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On the other hand, multiplying Eq. (27) by Λ, we obtain Eq. (25) and conversely.
Therefore, the solutions of the optimal control problem defined by the rule of
Lagrange multipliers are the solutions of the Euler–Poincaré equations lying on the
zero level set of the first integral 〈δl/δΩ,Λ〉, the vertical component of the angular
momentum.

Finally, due to the identification Y = R × (so(3) × S2) → R we have

Y ×Y E∗ = R × (so(3) × T ∗S2) → R,

so that, according to the local expression of Sect. 5, the Cartan 1-form Θl̂dt projects
in this case to the following 1-form on R × (so(3) × T ∗S2)

Θl̂dt = θ − Hdt,

where θ is the Liouville 1-form on T ∗S2 and H is the function

H(t,Ω, λ) = 〈λ,PΛ(Ω)〉 − l = 〈λ,Λ × Ω〉 − l.

Furthermore, if the problem is regular in the sense of Definition1, we can locally
solve for Ω in the equation ∂ H/∂Ω = 0 defining the submanifold

W ⊂ R × (so(3) × T ∗S2),

as Ω = Ω(t,Λ, λ), and we have a local diffeomorphism Ψ : R × T ∗S2 → W such
that

Ψ ∗Θl̂dt |W = θ − H(t,Ω(t,Λ, λ), λ)dt.

The case where the diffeomorphism is global (that is, hyper-regularity) is of special
interest. This situation occurs for the standard Lagrangian of the heavy top

l = 1
2 〈IΩ,Ω〉 − mg〈Λ,χ〉,

where I is the inertia tensor of the body, 〈·, ·〉 is the standard inner product in R
3, and

χ is the vector joining the fixed point of the heavy top with its center of mass. In this
case the equation ∂H/∂Ω = 0 reads IΩ = λ × Λ, and hence Ω = I

−1(λ × Λ). We
can thus state Theorem3 as follows:

Solutions of the Euler–Lagrange equations (26)–(28) of the heavy top are the
integral curves of the Hamiltonian vector field DH on (T ∗S2, dθ) defined by the
Hamiltonian

H = 1
2 〈I−1(λ × Λ), (λ × Λ〉 − mg〈Λ,χ〉,

where dθ is the canonical symplectic form of the cotangent bundle.
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Morse Families and Lagrangian
Submanifolds

Marco Castrillón López and Tudor S. Ratiu

Dedicated to Jaime Muñoz Masqué on the occasion of his 65th
birthday.

Abstract This short note presents a comprehensive and pedagogical study of the
results in [6] on Lagrangian submanifolds in cotangent bundles T∗X defined by
Morse families S : B → R for arbitrary submersions B → X.

Keywords Symplectic manifold · Lagrangian submanifold · Morse family

1 Introduction

Lagrangian submanifolds play an essential role in the study of symplectic manifolds,
either from a pure mathematical point of view or, in geometric mechanics, when
applied to the Hamiltonian formulation of the equations of motion. With respect to
the latter, Lagrangian submanifolds naturally appear, for example, as singularities
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in ray optics or the level sets of the functions in involution for integrable systems
in the Liouville sense. With respect to the former, there are many concepts that
can be regarded as Lagrangian submanifolds of cotangent bundles endowed with
the canonical symplectic form, such as symplectomorphisms or closed 1-forms,
identified with their graphs. From this point of view, the specific case of exact 1-
forms is particularly interesting and is exploited in the geometric formulation of the
Hamilton-Jacobi theory.

Recent renewed interest in the Cotangent Bundle Reduction Theorem and its
applications to mechanical systems (see, e.g., [1, Theorem 4.3.3 and Sect. 4.5]) and
the structure of coadjoint orbits (see, e.g., [4]), a reduction theorem for Hamilton-
Jacobi theory by a group of point transformations under certain invariance hypotheses
(see [4]), and our own attempts to find a general reduction theory for the Hamilton-
Jacobi equations, led us to review some very interesting old ideas of Alan Weinstein
presented in his well-known lectures [6]. Themost general Cotangent Bundle Reduc-
tion Theorem can be found in Lecture 6 of these notes; it is a vast generalization of
the usual Cotangent Bundle Reduction Theorem at the zero value of the momentum
map. He also describes there families S : N × X → R of functions, where N is
a manifold of labels, when studying Lagrangian submanifolds of T∗X. In fact, the
setup is completely general and is given by a function S is defined on a manifold
B and an arbitrary submersion B → X. Under suitable topological conditions, he
calls these functions S Morse families and studies their properties. Undoubtedly, the
results of [6] have been the inspiring source for many subsequent works and are a
classical contribution to symplectic geometry.

The goal of this short note is to give a comprehensive and pedagogical presentation
of the results in [6, Lecture 6] concerning reduction by a coisotropic regular foliation
and Morse families. We believe that a more elaborate, complete, and self-contained
presentation of these, apparently forgotten, ideas and proofs in [6], is helpful and
may turn out to be crucial for future investigations in Lagrangian submanifolds and,
in particular, the Hamilton-Jacobi theory in the context of reduction by a group of
symmetries.

Notations and conventions. Unless otherwise indicated, all objects are smooth.
The Einstein summation convention on repeated sub- and super-indices is used. If
E → Q is a vector bundle over the smooth manifold Q and E∗ → Q its dual,
〈·, ·〉 : E∗ × E → R denotes the standard fiberwise duality pairing. Given a smooth
manifold Q, τQ : TQ → Q and πQ : T∗Q → Q denote its tangent and cotangent
bundles. If (q1, . . . , qn) are local coordinates on Q, the naturally induced coordinates
on TQ and T∗Q are denoted by (q1, . . . , qn, q̇1, . . . , q̇n) and (q1, . . . , qn, p1, . . . , pn),
respectively, i.e., any tangent vector vq ∈ TqQ is written locally as vq = q̇i ∂

∂qi and

any covector αq ∈ T∗
q Q is written locally as αq = pidqi. If Q and P are manifolds

and f : Q → P a smooth map, Tf : TQ → TP denotes its tangent map, or derivative.
The canonical, or Liouville, one-form θQ on T∗Q is defined by θQ(αq)

(

Vαq

) :=
〈

αq, TαqπQ
(

Vαq

)〉

for any q ∈ Q, αq ∈ T∗
q Q, and Vαq ∈ Tαq(T

∗Q). The canonical
symplectic two-form on T∗Q is defined by ωQ := −dθQ, were d denotes the exterior
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derivative. In standard cotangent bundle coordinates, we have θQ = pidqi and ωQ =
dqi ∧ dpi, where ∧ is the exterior product on forms (with Bourbaki conventions).

2 Coisotropic Reduction of Conormal Bundles

We recall standard terminology from symplectic geometry. If (P, ω) is a sym-
plectic manifold (i.e., the two-form ω on P is closed and non-degenerate) and
E ⊂ TP is a vector subbundle, its ω-orthogonal vector subbundle is defined
by E⊥ := {

v ∈ TpP | ω(p)(u, v) = 0, ∀u ∈ Ep, ∀p ∈ P
}

. The vector subbundle
E ⊂ TP is called isotropic (coisotropic), if E ⊆ E⊥ (E ⊇ E⊥). The vector sub-
bundle E is called Lagrangian, if it is isotropic and has an isotropic complementary
vector subbundle F, i.e., F ⊆ F⊥ and TP = E ⊕ F. Thus, E is Lagrangian if and
only if E = E⊥ if and only if E is isotropic and its rank is half the dimension of P. In
addition, its isotropic complement F is actually Lagrangian. The vector subbundle
E is symplectic, if ω restricted to E × E is nondegenerate. Thus, E is symplectic if
and only if E ⊕ E⊥ = TP. The same terminology is used for vector subbundles of
TP restricted to a submanifold of P.

A submanifold M ⊂ P is called isotropic (coisotropic, Lagrangian, symplectic) if
its tangent bundle is isotropic (coisotropic, Lagrangian, symplectic) in the restriction
(TP)M of the tangent bundle TP to M. For example, a submanifold M is isotropic if
and only if ι∗ω = 0, where ι : M ↪→ P is the inclusion. A submanifold M of P is
Lagrangian if and only if ι∗ω = 0 and dim M = 1

2 dim P.
Let X be a manifold and π : B → X a smooth submersion (possibly a fiber

bundle). Since π is a submersion, it is open and hence π(B) is an open subset of X.
Let πB : T∗B → B and πX : T∗X → X be the cotangent bundle projections. The
conormal bundle to the fibers πB|Nπ

: Nπ := (ker Tπ)◦ → B is the vector subbundle
of T∗B consisting of all covectors annihilating ker Tπ , i.e., the fiber (Nπ )b of Nπ at
b ∈ B is the vector subspace (Nπ )b := {αb ∈ T∗

b B | 〈αb, vb〉 = 0,∀vb ∈ ker Tbπ}.
The upper circle on a vector subspace denotes its annihilator in the dual of the ambient
vector space.

Lemma 1 The conormal bundle to the fibers Nπ ⊂ T∗B is a coisotropic submanifold
with respect to the canonical symplectic form on T∗B.

Proof Let n = dim X, n + k = dim B. Since π is a surjective submersion, it is
locally expressed as a projection, i.e., around every point b ∈ B there are coordinates
(x1, . . . , xn, a1, . . . , ak) on B such that π has the expression

π(x1, . . . , xn, a1, . . . , ak) = (x1, . . . , xn).

In these coordinates, we express an arbitrary covector αb ∈ T∗
b B as

αb = p1dx1 + · · · + pndxn + α1da1 + · · · + αkdak, p1, . . . , pn, α1, . . . , αk ∈ R.
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In these coordinates,

ker Tπ = span

{

∂

∂a1
, . . . ,

∂

∂ak

}

,

and hence αb ∈ Nπ if and only if

αb = p1dx1 + · · · + pndxn,

that is, Nπ is locally defined by the equations α1 = · · · = αk = 0, i.e., the local
expression of Nπ is

Nπ = {

(x1, . . . , xn, a1, . . . , ak, p1, . . . , pn, 0, . . . , 0) ∈ R
n+k

}

. (1)

This shows that Nπ is a submanifold of T∗B of dimension 2n + k, whose tangent
space at any αb ∈ Nπ is expressed locally as

Tαb Nπ = span

{

∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂a1
, . . . ,

∂

∂ak
,

∂

∂p1
, . . . ,

∂

∂pn

}

. (2)

Let ωB ∈ Ω2(T∗B) be the canonical cotangent bundle symplectic form which, in
these local coordinates, has the expression

ωB = dx1 ∧ dp1 + · · · + dxn ∧ dpn + da1 ∧ dα1 ∧ + · · · + dak ∧ dαk .

Using (2), the ωB-orthogonal complement of Tαb Nπ (taken fiber-wise) is easily cal-
culated in these local coordinates to be

(Tαb Nπ )⊥ = span

{

∂

∂a1
, . . . ,

∂

∂ak

}

. (3)

Thus, (Tαb Nπ )⊥ ⊂ Tαb Nπ , which shows that Nπ is coisotropic in T∗B. �

The local expression of (TNπ )⊥ ⊂ T(T∗B) implies that the vector subbundle
(TNπ )⊥ is integrable. This is a general fact, namely, the tangent bundle of a coisotropic
submanifold is an integrable subbundle of the tangent bundle of the ambient sym-
plectic manifold (see, e.g., [6, Lecture 3] or [1, Proposition 5.3.22]). Denote byN ⊥

π

the foliation in T∗B defined by the integrable vector subbundle (TNπ )⊥. From now
on we assume that N ⊥

π is a regular foliation, i.e., its space of leaves Nπ/N ⊥
π is

a smooth manifold and the canonical projection ρ : Nπ → Nπ/N ⊥
π is a smooth

submersion; this uniquely determines the manifold structure on the space of leaves,
assuming it exists.

By (3), in local coordinates, the leaf of the foliationN ⊥
π containing the point

(x10, . . . , xn
0, a1

0, . . . , ak
0, (p1)0, . . . , (pn)0, 0, . . . , 0) ∈ Nπ
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is given by

{(x10, . . . , xn
0, a1, . . . , ak, (p1)0, . . . , (pn)0, 0, . . . , 0) | a1, . . . , ak ∈ R}. (4)

Therefore, the projection ρ : Nπ → Nπ/N ⊥
π has the local expression

ρ(x1, . . . , xn, a1, . . . , ak, p1, . . . , pn, 0, . . . , 0) = (x1, . . . , xn, p1, . . . , pn) (5)

and hence (x1, . . . , xn, p1, . . . , pn) are local coordinates on Nπ/N ⊥
π (remember that

Nπ/N ⊥
π is, by assumption, a manifold).

By the Coisotropic Reduction Theorem (see, e.g., [6, Lecture 3] or [1, Theo-
rem 5.3.33]), the quotient Nπ/N ⊥

π has a canonical symplectic form ωπ , uniquely
characterized by ρ∗ωπ = ι∗ωB, where ι : Nπ ↪→ T∗B is the inclusion.

Proposition 1 ([6], Lecture 6) The following statements hold.

(i) Let

π∗T∗X = {(

b, βπ(b)

) ∣

∣ b ∈ B, βπ(b) ∈ T∗
π(b)X

} � (b, βπ(b)) �−→ b ∈ B

be the pull-back bundle to B of the cotangent bundle T∗X → X by π . The
map Ξ : Nπ → π∗T∗X given by Ξ(αb) := (

b, βπ(b)

)

, where αb ∈ (Nπ )b =
Nπ ∩ T∗

b B and βπ(b) ∈ T∗
π(b)X is defined by

〈

βπ(b), Tbπ(vb)
〉 := 〈αb, vb〉 for all

vb ∈ TbB, is a vector bundle isomorphism. Its inverse Ξ−1 : π∗T∗X → Nπ is
Ξ−1(b, βπ(b)) = βπ(b) ◦ Tbπ .

(ii) Define the submersion π̃ : π∗T∗X → T∗X by π̃(b, βπ(b)) := βπ(b). Then, for

any αb ∈ Nπ , we have TαbΞ
(

(

Tαb Nπ

)⊥)

= ker Tαb π̃; recall that
(

Tαb Nπ

)⊥
is

the tangent space at αb to the fiber of the foliation N ⊥
π containing αb.

(iii) The integral leaves of the foliation N ⊥
π in Nπ are images under Ξ−1 of the

connected components of the fibers of π̃ : π∗T∗X → T∗X.
(iv) The map Φ : Nπ/N ⊥

π → T∗X defined by Φ([αb]) := π̃(Ξ(αb)) is well-
defined, a local diffeomorphism, and a symplectic map.

(v) The map Φ is surjective if and only if π is surjective. The map Φ is injective
if and only if the fibers of π over π(B) are connected.

(vi) If π is surjective and has connected fibers, then Φ : (

Nπ/N ⊥
π , ωπ

) →
(T∗X, ωB) is a symplectic diffeomorphism.

The spaces andmaps involved in this proposition are summarized in the commutative
diagram below. The first vertical arrow is only a surjective submersion, whereas the
second, third, and fourth are vector bundle projections.
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N/N ⊥
π

��

Φ

��
Nπ = (ker Tπ)◦

ρ��

πB|Nπ

��

Ξ �� π∗T∗X
π̃ ��

��

T∗X

πX

��
X ⊇ π(B) Bπ

�� B π
�� X

(6)
Point (vi) of this proposition is a vast generalization of the Cotangent Bundle

Reduction Theorem ([1, Theorem 4.3.3], [4, Chap. 2]) at the zero value of the
momentum map. Finding a similar generalization of this theorem for any value
of the momentum map would be very interesting and relate to the general reduction
procedure for Hamilton–Jacobi theory.

Proof (i) The map Ξ : Nπ → π∗T∗X is well defined. Indeed, any tangent vector
in Tπ(b)X is necessarily of the form Tbπ(vb) for some vb ∈ TbB because π is a
submersion. If Tbπ(vb) = Tbπ(v′

b) for vb, v′
b ∈ TbB, i.e., vb − v′

b ∈ ker Tbπ , then
〈

αb, vb − v′
b

〉 = 0 for any αb ∈ (ker Tbπ)◦ ⊂ Nπ . This shows that 〈αb, vb〉 = 〈

αb, v′
b

〉

thus proving that Ξ is well defined.
We compute the local expression of Ξ . If

αb = (x1, . . . , xn, a1, . . . , an, p1, . . . , pn, 0, . . . , 0) = p1dx1 + · · · + pndxn ∈ Nπ ,

andΞ(αb) = (b, βπ(b)), with βπ(b) = (x1, . . . , xn, r1, . . . , rn) = r1dx1+· · ·+rndxn,
then choosing and arbitrary vector

vb = u1 ∂

∂x1
+ · · · + un ∂

∂xn
+ v1

∂

∂a1
+ · · · + vk ∂

∂ak
∈ TbB,

we have

r1u
1 + · · · + rnun = 〈

βπ(b), Tbπ(vb)
〉 = 〈αb, vb〉 = p1u1 + · · · + pnun

for any u1, . . . , un ∈ R, i.e., βπ(b) = p1dx1 + · · · + pndxn. This shows that, choosing
the standard cotangent bundle coordinates on T∗X,

Ξ(x1, . . . , xn, a1, . . . , an, p1, . . . , pn) = (x1, . . . , xn, a1, . . . , an, p1, . . . , pn), (7)

that is, Ξ is the identity map in these coordinate systems. Thus, Ξ is smooth and,
from the very definition of Ξ , it is a vector bundle morphism.

The smooth vector bundle morphism π∗T∗X � (b, βπ(b)) �−→ βπ(b) ◦ Tbπ ∈ Nπ

is easily verified to equal Ξ−1 : π∗T∗X → Nπ , i.e., Ξ−1(b, βπ(b)) = βπ(b) ◦ Tbπ , as
claimed in the statement.

(ii)Workwith the samecoordinate systems (x1, . . . , xn)onX, (x1, . . . , xn, a1, . . . , ak)

on B, and (x1, . . . , xn, a1, . . . , an, p1, . . . , pn) on both Nπ ⊂ T∗B and π∗T∗X, as in
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the proof of (i). In these coordinate systems, the projection π̃ reads

(x1, . . . , xn, a1, . . . , ak, p1, . . . , pn) �→ (x1, . . . , xn, p1, . . . , pn).

On the other hand, the local expression ofΞ is the identity, as was shown in the proof
of (i). Thus, taking into account formula (3) for the tangent space of a leaf ofN ⊥

π at
a point αb ∈ Nπ , we conclude that its image under TαbΞ is span{∂/∂a1, . . . , ∂/∂ak},
which is exactly the kernel of Tαb π̃ .

(iii) Recall that Ξ is a vector bundle isomorphism. By (ii), its tangent map is an
isomorphism of the vector subbundle TN⊥

π ⊂ TNπ , defining the foliation N ⊥
π , and

the vector subbundle ker T π̃ ⊂ T(π∗T∗X), defining the foliationFπ̃ , whose leaves
are the connected components of the fibers of π̃ . Therefore, the leaves of the two
foliations are mapped onto each other by Ξ .

(iv) By (iii), the smooth map π̃ ◦Ξ is constant on the leaves of the foliationN ⊥
π and

thus it drops to a map Φ : Nπ/N ⊥
π → T∗X uniquely characterized by the relation

Φ ◦ ρ = π̃ ◦ Ξ , i.e., Φ(ρ(αb)) := π̃(Ξ(αb)) = βπ(b).
We prove that Φ is a local diffeomorphism by working in the local coordinates

considered earlier. If αb ∈ Nπ , αb = (x1, . . . , xn, a1, . . . , ak, p1, . . . , pn, 0, . . . , 0),
then ρ(αb) = (x1, . . . , xn, p1, . . . , pn). From (7) and the definition of Ξ , it follows
that Φ(x1, . . . , xn, p1, . . . , pn) = (x1, . . . , xn, p1, . . . , pn), i.e., Φ is the identity map
in these charts. Hence Φ is a local diffeomorphism.

Let ωX ∈ Ω2(T∗X) and ωB ∈ Ω2(T∗B) be the canonical symplectic forms. Then
Φ∗ωX = ωπ if and only if ι∗ωB = ρ∗ωπ = ρ∗Φ∗ωX = Ξ ∗π̃∗ωX by the definition
of the reduced symplectic form ωπ and of the map Φ. The identity ι∗ωB = Ξ ∗π̃∗ωX

is proved in the local coordinates considered above, in which Ξ is the identity and
π̃(x1, . . . , xn, a1, . . . , ak, p1, . . . , pn) = (x1, . . . , xn, p1, . . . , pn). Therefore,

Ξ ∗π̃∗(dx1 ∧ dp1 + · · · + dxn ∧ dpn) = dx1 ∧ dp1 + · · · + dxn ∧ dpn.

On the other hand, ι∗ωB = ι∗(dx1 ∧ dp1 + · · · + dxn ∧ dpn + da1 ∧ dα1 ∧ + · · · +
dak ∧ dαk) = dx1 ∧ dp1 +· · ·+ dxn ∧ dpn, which proves the required identity. Thus,
Φ is a symplectic map.

(v) Since Φ ◦ ρ = π̃ ◦ Ξ and ρ is surjective, Φ is onto if and only if π̃ is onto,
because Ξ is bijective by (i). Since π̃ : π∗T∗X → T∗X is surjective when restricted
to every fiber of the vector bundle π∗T∗X → B, it follows that π̃ is surjective if and
only if π is surjective.

We now study injectivity of φ. We first prove that the fiber π−1(x), x ∈ π(B) ⊂ X,
of π is connected if and only if the fiber π̃−1(β0

x ), β0
x ∈ T∗

x X of π̃ is connected. On
one hand, the restriction of the smooth map π∗T∗X � (

b, βπ(b)

) �→ b ∈ B to the
submanifold π̃−1(β0

x ) of π∗T∗X is a bijective smooth map onto the submanifold
π−1(x) of B. On the other hand, choose a 1-form β on X such that β(x) = β0

x and
define the smooth map B � b �→ (b, β (π(b))) ∈ π∗T∗X. The restriction of this
smooth map to the submanifold π−1(x) of B maps onto the submanifold π̃−1(β0

x ) of
π∗T∗X. These two maps are clearly inverses of each other. Thus, the fibers π−1(x)
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and π̃−1(β0
x ) are diffeomorphic. In particular, π−1(x) is connected if and only if

π̃−1(β0
x ) is connected for any x ∈ π(B).

We assume now that the fibers of π̃ are connected. Take two classes [αb], [α′
b′ ] ∈

Nπ/N ⊥
π such that Φ([αb]) = Φ([α′

b′ ]). The identity Φ ◦ ρ = π̃ ◦ Ξ implies that
π̃(Ξ(αb)) = π̃(Ξ(α′

b′)), that is, Ξ(αb) and Ξ(α′
b′) are in the same fiber of π̃ , which

is connected. By (iii), its image by the diffeomorphism Ξ coincides with a leaf
of the foliation N ⊥

π and hence αb and α′
b′ lie on the same leaf, which means that

[αb] = [α′
b′ ].

Conversely, assume that Φ is injective. Take any two points Ξ(αb) and Ξ(α′
b′)

in the same fiber of π̃ , i.e., π̃(Ξ(αb)) = π̃(Ξ(α′
b′)), or, equivalently, Φ([αb]) =

Φ([α′
b′ ]). As Φ injective, we have [αb] = [α′

b′ ], that is, αb and α′
b′ , are in the same

(connected) leaf ofN ⊥
π , which is equivalent, by (iii), to Ξ(αb) and Ξ(α′

b′) being in
the same connected component of the fiber of π̃ . Thus, the fibers of π̃ , are necessarily
connected.

(vi) This is a direct consequence of (iv) and (v). �

3 Morse Families and Transverse Intersections

Let b ∈ B and ιπ−1(π(b)) : π−1(π(b)) ↪→ B be the inclusion. For a smooth func-
tion S : B → R and b′ ∈ π−1(π(b)), denote by dvS(b′) := dS(b′)|ker Tb′π =
d

(

S ◦ ιπ−1(π(b))

) : Tb′π−1(π(b)) = ker Tb′π → R the vertical derivative at any
b′ ∈ B. Let

ΣS := {b ∈ B | dvS(b) = 0} (8)

be the set of critical points with respect to the projectionπ . Locally, this states thatΣS

is characterized by points in B with coordinates (x1, . . . , xn, a1, . . . , ak) for which

∂S

∂a1
= 0, . . . ,

∂S

∂ak
= 0.

Proposition 2 We have
dS(B) ∩ Nπ = dS(ΣS). (9)

Proof Indeed, dS(b) ∈ Nπ = (ker Tπ)◦ if and only if 〈dS(b), v〉 = 0, for all
v ∈ ker Tπ , which is equivalent to b ∈ ΣS by (8).

Definition 1 A function S : B → R such that the graph dS(B) ⊂ T∗B intersects Nπ

transversally (i.e., TdS(b)dS(B) + TdS(b)Nπ = TdS(b)(T∗B) for any b ∈ ΣS , denoted
dS(B) � Nπ ) is called a Morse family.

Proposition 3 Given a fibered local system of coordinates (x1, . . . xn, a1, . . . , ak)

on B (i.e., a chart on B in which π is the projection (x1, . . . xn, a1, . . . , ak) �→
(x1, . . . xn)), S : B → X is a Morse family if and only if the k × (n + k)-matrix
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(

∂2S

∂ai∂aj
(b)

∂2S

∂ai∂xl
(b)

)

(10)

has rank k at every point b ∈ ΣS.

Proof We express the transversality condition Tαb dS(B) + Tαb Nπ = Tαb(T
∗B) for

any αb ∈ dS(B) ∩ Nπ in these local coordinates. Recall that with respect to the
standard induced cotangent bundle coordinate system

(x1, . . . , xn, a1, . . . , ak, p1, . . . , pn, α1, . . . , αk) (11)

on T∗B induced by a fibered system on B, the expression of Nπ is α1 = · · · = αk = 0
(see (1)). Thus,

Tαb Nπ = span

{

∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂a1
, . . . ,

∂

∂ak
,

∂

∂p1
, . . . ,

∂

∂pn

}

.

On the other hand, the tangent space to the graph dS(B) is generated by the vectors

∂

∂xi
+ ∂2S

∂xi∂xj

∂

∂pj
+ ∂2S

∂xi∂ar

∂

∂αr
, i = 1, . . . , n, (12)

∂

∂al
+ ∂2S

∂al∂xj

∂

∂pj
+ ∂2S

∂al∂ar

∂

∂αr
, l = 1, . . . , k. (13)

Therefore, for any αb ∈ dS(B) ∩ Nπ ,

Tαb Nπ + Tαb dS(B) = span

{

∂

∂xi
,

∂

∂al
,

∂

∂pi
,

∂2S

∂xi∂ar

∂

∂αr
,

∂2S

∂al∂ar

∂

∂αr

}

i=1,...,n; l=1,...,k

,

which shows that Tαb im(dS)+Tαb Nπ = Tαb(T
∗B) if and only if the coefficientmatrix

in the statement has maximal rank k. �

Corollary 1 If S is a Morse family, then the set dS(B) ∩ Nπ is a submanifold of Nπ

and Tαb (dS(B) ∩ Nπ ) = Tαb dS(B) ∩ Tαb Nπ , for any αb ∈ dS(B) ∩ Nπ . In addition,
dim (dS(B) ∩ Nπ ) = n.

Proof Standard intersection theory (see, e.g., [2, Corollary 3.5.13]) guarantees the
first statement. Thus, by linear algebra, dim (dS(B) ∩ Nπ ) = dim dS(B)+dim Nπ −
dim T∗B = (n + k) − (2n + k) − 2(n + k) = n. �

Theorem 1 If S is a Morse family and ρ : Nπ → Nπ/N ⊥
π is the projection, then

the restriction ρ|dS(B)∩Nπ
: dS(B) ∩ Nπ → Nπ/N ⊥

π is an immersion.

Proof We need to prove that ker Tαb(ρ|dS(B)∩Nπ
) = {0}, for any αb ∈ dS(B) ∩ Nπ .

This is equivalent to checking that Tαb(dS(B) ∩ Nπ ) ∩ ker Tαbρ = {0}. Note that
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ker Tαbρ is just the tangent space to the fiber of the foliation N ⊥
π at αb. In the

coordinate system (11), by (3), every tangent vector to the fibers has the expression

X = Al ∂

∂al
, Xl ∈ R. (14)

Suppose X ∈ Tαb(dS(B) ∩ Nπ ) so, in particular, X ∈ Tαb dS(B) and hence X must
be a linear combination of the vectors in (12) and (13). Any linear combination
having vectors from (12) necessarily contains a linear combination of the vectors
{∂/∂xi}i=1,...,n. The form of the vector (14) precludes this and hence the vector X can
only be a linear combination of vectors in (13), i.e.,

X = Al

(

∂

∂al
+ ∂2S

∂al∂xj

∂

∂pj
+ ∂2S

∂al∂ar

∂

∂αr

)

with the condition

Al ∂2S

∂al∂xj
= 0, Al ∂2S

∂al∂ar
= 0, ∀j = 1, . . . n, ∀l, r = 1, . . . , k.

In matrix form, these conditions are expressed as

(Al)

(

∂2S

∂al∂xj

∂2S

∂al∂ar

)

= (0, . . . , 0
︸ ︷︷ ︸

n + k

).

This is only possible if Al = 0, for all l = 1, . . . , k, since the matrix of this linear
system is (10) which has maximal rank k by Proposition 3. �

Corollary 2 The set ρ(dS(B) ∩ Nπ ) is “manifold with self intersections”. If we
denote by ρ(dS(B) ∩ Nπ )0 the subset where it is a manifold, then it is a Lagrangian
submanifold of Nπ/N ⊥

π .

Proof The symplectic formωπ onNπ/N ⊥
π is uniquely characterized by the property

ρ∗ωπ = ι∗ωB, where ι : Nπ ↪→ T∗B is the inclusion and ωB is the canonical
symplectic form on T∗B. For any two tangent vectors U1, U2 ∈ Txρ(dS(B) ∩ Nπ )0,
x ∈ ρ(dS(B) ∩ Nπ )0, there are vectors X1, X2 ∈ Tαb(dS(B) ∩ Nπ ), ρ(αb) = x, such
that Tαbρ(X1) = U1 and Tαbρ(X2) = U2. Then

ωπ(x)(U1, U2) = (

ρ∗ωπ

)

(αb)(X1, X2) = ωB(αb)(Tαb ι(X1), Tαb ι(X2)) = 0,

because X1, X2 ∈ Tαb(dS(B)) and dS(B) is a Lagrangian submanifold of T∗B. By
Theorem 1, dim (ρ(dS(B) ∩ Nπ )0) = dim (dS(B) ∩ Nπ ) = n (see Corollary 1).
Since dim

(

Nπ/N ⊥
π

) = 2n by Proposition 1(iv), this proves that ρ(dS(B) ∩ Nπ )0 is
a Lagrangian submanifold of Nπ/N ⊥

π . �
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Example 1 Let B := R
2, X := R, and π : R

2 � (x, a) �→ x ∈ R. As in the
general theory, coordinates on T∗B = T∗

R
2 = R

4 are denoted by (x, a, p, α) and on
T∗X = T∗

R = R
2 by (x, p). The conormal bundle to the fibers is

Nπ = {(x, a, p, 0) | x, a, p ∈ R} ⊂ T∗
R

2.

We regard Nπ as Euclidean space R3, which enables us to describe the objects of the
general theory, for this case, concretely.

Define the function S : R2 → R by

S(x, a) := a3

3
+ a(x2 − 1).

Since

ΣS =
{

(x, a) ∈ R
2

∣

∣

∣

∣

∂S

∂a
= a2 + x2 − 1 = 0

}

and the matrix
(

∂2S

∂x∂a

∂2S

∂a2

)

= (2a 2x)

never vanishes onΣS , it follows by Proposition 3 that S is a Morse family. Therefore,
the set

dS(R2) ∩ Nπ = {(x, a, 2ax, 0) | x2 + a2 = 1} ⊂ Nπ = R
3

is a one-dimensional manifold (see Corollary 1). Sinceπ is surjective with connected
fibers, by Proposition 1(vi), Nπ/N ⊥

π = T∗
R = R

2, as symplectic manifolds. Of
course, in this special case, this can be shown directly. In fact, in agreement with the
general formula (5), the projection ρ : Nπ → Nπ/N ⊥

π is just ρ(x, a, p, 0) = (x, p).
Therefore

ρ(dS(R2) ∩ Nπ ) =
{

(x, 2xa) | x2 + a2 = 1
}

=
{(

x, ±2x
√

1 − x2
) ∣

∣

∣ x ∈ [−1, 1]
}

.

This is the Bernoulli Lemniscate which clearly has a self-intersection. Away from
this self-intersection point, this is a one-dimensional submanifold of R2 and hence
clearly Lagrangian, in agreement with Corollary 2.

4 The Converse: Construction of a Morse Family
for a Lagrangian Submanifold

A reasonable converse to Corollary 2 is Theorem 2 below. We use the following
notation. If ε : A → B is a locally trivial fiber bundle and M ⊂ B is a submanifold,
εM : AM → M denotes the restriction of the fiber bundle ε obtained by shrinking the
base B to M. For any manifold X, denote by πX : T∗X → X the cotangent bundle
projection.
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In the proof of the theorem below, we need a classical result of Weinstein,
sometimes called the Lagrangian Tubular Neighborhood Theorem or the Relative
Darboux Theorem (see [5, Theorem 7.1], [6, Lecture 5], [1, Theorem 5.3.18]). We
need a general formulation appropriate for our purposes, as stated and proved with
all details in [3, Theorem 31.20]. Let (P, ω) be a symplectic manifold and L ⊂ P
a Lagrangian submanifold. Then there exist an open neighborhood U of L in P, a
tubular neighborhood V of the zero section in T∗L, and a symplectic diffeomorphism
ϕ : (U, ω|U) → (V, ωL|V ) such that ϕ(x) = 0x for all x ∈ L. The proof of the the-
orem starts by considering a Lagrangian complementary vector subbundle E of TL
in (TP)L which ultimately provides the neighborhood U of L in P by constructing
a tubular neighborhood of the zero section in E. If such a complement is given, the
theorem just cited has an important refinement. Suppose that E → L is a given
Lagrangian complement to TL → L in (TP)L. Then the symplectic diffeomorphism
ϕ can be chosen such that Txϕ(Ex) = ker T0x πL ⊂ T0x (T

∗L) for all x ∈ L, where
πL : T∗L → L is the cotangent bundle projection. In other words, Txϕ maps the fiber
Ex to the vertical vectors at 0x ∈ T∗L in T(T∗L).

Theorem 2 Let L ⊂ T∗X be a Lagrangian submanifold such that

• the pull back of the Liouville 1-form θX ∈ Ω1(T∗X) to L is exact, and
• there is a Lagrangian subbundle Λ ⊂ T(T∗X)L which is transversal to both

(ker TπX)L and TL in T(T∗X).

Then there is a locally trivial fiber bundle π : B → X and a Morse family S : B → R

such that L = (Φ ◦ ρ)(dS(B) ∩ Nπ ) (see diagram (6)).

Proof By hypothesis, Λ → L and TL → L are complementary Lagrangian sub-
bundles. Thus, by the Relative Darboux Theorem cited above, there are open neigh-
borhoods U of L in T∗X and V of the zero section in T∗L, and a symplectic dif-
feomorphism f : U → V , such that Tαx f (Λαx ) = ker T0αx

πL ⊂ T0αx
(T∗L) for all

αx ∈ L. Without loss of generality, we can assume that the fibers V ∩ T0αx
(T∗L)

are contractible. Since these are fibers of a locally trivial bundle, they form a folia-
tion of V . Therefore, the collection

{

f −1
(

V ∩ T0αx
(T∗L)

) | αx ∈ L
}

forms a foliation
on U, the tangent space to every leaf being Λαx ; these leaves are simply connected,
by construction.

Let ι : L ↪→ T∗X be the inclusion. The pull back of the canonical Liouville 1-form
θL ∈ Ω1(T∗L) to the zero section vanishes. Since f ◦ ι : L → T∗L is the inclusion of
the zero section in its cotangent bundle, we conclude that ι∗(θX − f ∗θL) = ι∗θX is an
exact 1-form on L, by hypothesis. As the de Rham cohomology of U, V , and L are
isomorphic, it follows that the closed 1-form θX − f ∗θL ∈ Ω1(U) is exact. Therefore,
there is a smooth function S : U → R such that dS = θX − f ∗θL.

The vector subbundle ker TπX is integrable and its leaves are the fibers T∗
x L.

Since the vector subbundles Λ → L and (ker TπX)L → L are transversal along L,
it follows that their leaves are also transversal at every point of L. Therefore, there
is an open neighborhood B ⊂ U of L, which we choose to have contractible fibers,
such that the leaves of these two foliations are transversal at every point of B. Let
π : B → X be the restriction of the cotangent bundle projection πX : T∗X → X to
B. Thus π : B → X is a locally trivial fiber bundle.
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We show that ΣS = L. Let βx ∈ B and Vβx ∈ ker Tβx π be arbitrary. Then βx ∈ ΣS

if and only if dS(βx)|ker Tβx π = 0, i.e.,

0 = dS(βx)
(

Vβx

) = (

θX − f ∗θL
)

(βx)
(

Vβx

)

= 〈

βx, Tβx π
(

Vβx

)〉 − 〈

f (βx), Tf (βx)πLTβx f
(

Vβx

)〉

.

The first term vanishes since Vβx ∈ ker Tβx π . The point βx belongs to a unique
leaf of the foliation

{

f −1
(

V ∩ T0αx
(T∗L)

) | αx ∈ L
}

, i.e., there is a unique αx0 ∈ L
such that f (βx) ∈ V ∩ T0αx0

(T∗L). This defines a smooth map g : V → L,
namely g(βx) is the unique point of intersection of the leaf containing βx and L.
Therefore, πL ◦ f = g and the identity above becomes 0 = 〈

f (βx), Tβx g
(

Vβx

)〉

for all Vβx ∈ ker Tβx π . However, Tβx g
(

Vβx

) �= 0 for any Vβx �= 0βx . Indeed,
Tβx g

(

Vβx

) = 0 if and only if Vβx ∈ ker Tβx g which is the tangent space to the
leaf of the foliation

{

f −1
(

V ∩ T0αx
(T∗L)

) | αx ∈ L
}

at βx. However, this vector
space is complementary to ker Tβx πX , since the leaf is transversal to T∗

x L. Therefore
Vβx ∈ ker Tβx π ∩ ker Tβx g = {

0βx

}

. We conclude, therefore, that 0 = 〈

f (βx), Wf (βx)

〉

for all Wf (βx) ∈ Tf (βx)(T
∗L). This is equivalent to f (βx) = 0f (βx), i.e., βx ∈ L since

only points in L are mapped by f to the zero section of T∗L.
Note that dS(B) ∩ Nπ = dS(L) = dS(ΣS). Indeed, if βx ∈ B, then dS(βx) ∈

Nπ = (ker Tπ)◦ if and only if dS(βx)
(

Vβx

) = 0 for all Vβx ∈ ker Tβx π . But this
is exactly the condition considered above and we conclude that this is equivalent to
βx ∈ L.

We finally check that L = (Φ ◦ ρ)(dS(B) ∩ Nπ ) = (π̃ ◦ Ξ) (dS(ΣS)) (see
diagram (6)). The definition of Ξ from Proposition 1(i) yields for αx ∈ L = ΣS ,
Ξ(dS(αx)) = (αx, βx) ∈ π∗T∗X, where βx ∈ T∗

x X is defined by

〈

βx, Tαx π
(

Vαx

)〉 = 〈

dS(αx), Vαx

〉

, ∀Vαx ∈ Tαx B.

Therefore, (π̃ ◦ Ξ) (dS(αx)) = π̃(αx, βx) = βx.
We show that βx = αx. Indeed, since

〈

f ∗θL(αx), Vαx

〉 = 〈

θL(f (αx)), Tαx f
(

Vαx

)〉 = 〈

f (αx), Tf (αx)πLTf αx

(

Vαx

)〉 = 0

because f (αx) = 0αx , we get

〈

dS(αx), Vαx

〉 = 〈

θX(αx) − (f ∗θL)(αx), Vαx

〉 = 〈

θX(αx), Vαx

〉 = 〈

αx, Tαx πL
(

Vαx

)〉

,

which shows that αx = βx and hence (Φ ◦ ρ)(dS(αx)) = αx ∈ L. �
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Abstract This note presents a short survey on current results about the density and
methods to obtain several kinds of special primes, together with primality algorithms.
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or conjectured contributions, which aim at giving an idea about the relative density
of these classes of primes in the set of natural numbers.

It is interesting to remark that the study of prime numbers is proceeding at good
pace, as it is reported in the interesting survey [9], which reviews the achievements
of recent years. Prime numbers and related topics are still today and, presumably
will be in the future, an enticing source of deep and curious results, which attracts
researchers and often becomes a constant supply of surprising connections to many
other branches not only of Mathematics but also of other sciences.

The present paper is organized around the results obtained for safe primes (Sect. 2),
generalized safe primes (Sect. 3) and optimal strong primes (Sect. 4). For each one
of such groups we detail the definition and main properties, and supply the corre-
sponding counting functions.

In order to keep simple the structure, we omit all proofs, which can be found in
the appropriate references.

2 Safe Primes with Order k

2.1 Definition and Elementary Properties

Definition 1 An odd prime number p is said to be a k-safe prime with signature
(ε1, . . . , εk), where ε1, . . . , εk ∈ {+1,−1}, if k odd prime numbers exist p1, . . . , pk

such that

p = 2p1 + ε1, p1 = 2p2 + ε2, . . . , pk−1 = 2pk + εk .

The integer k is termed the order of the signature.

The set of all prime numbers is denoted by P. For each k > 0, the set of k-safe
primes with signature (ε1, . . . , εk) is denoted by P(ε1, . . . , εk). Unless otherwise
specified, k-safe primes will be of signature ε1 = · · · = εk = +1 and we will
write P

+
k instead of P(ε1, . . . , εk). We also write P

−
k = P(ε1, . . . , εk), as long as

ε1 = · · · = εk = −1.

Proposition 1 If p > 5 is a k-safe prime with signature (ε1, . . . , εk), then

p ≡ 2k +
k

∑

h=1

εh2
h−1 (mod 2k+1).

The proof can be carried out by recurrence on k, observing that if p is a k-
safe prime with signature (ε1, . . . , εk), then p1 is k − 1-safe prime with signature
(ε′

1 = ε2, . . . , ε
′
k−1 = εk).
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Corollary 1 The sets of k-safe primes with different signatures are mutually dis-
joint; i.e.,

P(ε1, . . . , εk) ∩ P(ε′
1, . . . , ε

′
k) = ∅, iff (ε1, . . . , εk) �=(ε′

1, . . . , ε
′
k).

Corollary 2 If the set P(ε1, . . . , εk) is empty, so are all the sets with higher order
signatures.

Indeed, by definition, p ∈ P(ε1, . . . , εk) if and only if p = 2p1 + ε1, with
p1 ∈ P(ε2, . . . , εk). Therefore, if the latter set is empty, so must be the former.

Remark 1 Note that the order of the signs inside the signature is relevant, since if
π is a permutation of {1, . . . , k}, we have that P(ε1, . . . , εk) �= P(επ(1), . . . , επ(k)),
in general. For example, 11 ∈ P(+1,−1) and 11 /∈ P(−1,+1), as follows from
Corollary1, since the signature must be regarded as an ordered system; in other
words, it is an an element of {+1,−1}k . Hence, two signatures are to be considered
equal if and only if ε1 = ε′

1, . . ., εk = ε′
k .

2.2 Alternate Signatures

Definition 2 A signature (ε1, . . . , εk) is alternate as long as indices 1 ≤ i < j ≤ k
exist such that εiε j = −1.

Proposition 2 The sets P(ε1, . . . , εk) displaying alternate signatures are classified
as follows:

1. If k = 2, then
P(+1,−1) = {11}, P(−1,+1) = {13}.

2. If k = 3, then P(+1,+1,−1) = {23} and any other alternate signature is empty.
3. If k = 4, then P(+1,+1,+1,−1) = {47} and any other alternate signature is

empty.
4. If k ≥ 5, all alternate signatures are empty.

2.3 Chains of Safe Primes

Definition 3 A chain of safe primes of length k is a sequence of prime numbers
p, p1, . . . , pk−1 such that

p = 2p1 + ε, p1 = 2p2 + ε, . . . , pk−2 = 2pk−1 + ε, ε ∈ {−1,+1}.

Remark 2 Observe that a prime p sits in the first place of a chain of length k if and
only if p ∈ P

+
k−1 ∪ P

−
k−1.
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Remark 3 Several classes of prime chains are reported in the relevant literature: for
example, Cunningham chains and Shanks chains. Our concept of safe prime chain
is mostly related to Cunningham’s.

A Cunningham chain (see, for example, [10, A7], [19]) is a sequence of k ≥ 2
primes p1, . . . , pk such that pi+1 = 2pi + ε, i = 1, . . . , k − 1, ε ∈ {−1,+1} (if
ε = +1, the chain is termed a Cunningham chain of first class, whereas for ε = −1,
the chain is termed of second class). Remark that for k = 2, a Cunningham chain
of length 2 is simply the pair (q, 2q + 1). In this case, the integer q is known as a
Sophie Germain prime.

The Ref. [8] reports a second class Cunningham chain with 16 prime ele-
ments, the first one being 3203000719597029781. The current record is held by
a pair of second class chains, with 19 primes each, that have been obtained by
Raanan Chermoni and Jarosław Wróblewski in March, 2014, as reported by the
web page Cunningham Chain records (see [1]), and whose first prime elements are
42008163485623434922152331 and 79910197721667870187016101 respectively.

2.4 Counting Function for k-Safe Primes

We define the counting function for k-safe primes as follows:

π±
k (x) = #

{

p ∈ P
±
k : p ≤ x

}

.

The next result is presented as Lemma 3 in the Ref. [4].

Lemma 1 Suppose f1, f2, . . ., fs ∈ Z[x], are distinct irreducible polynomials, with
integral coefficients, and positive leading coefficients. Suppose F is their product.
Let also QF (n) be the number of positive integers j ∈ [1, n] such that f1( j), f2( j),
. . ., fs( j) are all primes. Then, for large n we have

QF (n) ≤ 2ss!C(F)n(ln n)−s + o(n(ln n)−s),

where

C(F) =
∏

p∈P

(

1 − 1

p

)−s (

1 − ω(p)

p

)

the product being extended to all primes, and ω(p) denotes the number of solutions
of the congruence

F(X) ≡ 0 (mod p).
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This lemma gave rise to a conjecture that can be found in [3] asserting that, with
the same conditions and notation as in Lemma1, the following approximation holds:

QF (n) ∼ h−1
1 h−1

2 . . . h−1
s C(F)

∫ n

2
(ln u)−sdu, (1)

where h1, h2, . . . , hs represent the degrees of the polynomials f1, . . . , fs .
This conjecture is clearly applicable to the case of k-safe primes. Indeed, in order

to have that p ∈ P
±
k , the next set of conditions must be simultaneously satisfied:

(1) p is a prime.
(2) p1 = 1

2 (p ∓ 1) is a prime.
(3) p2 = 1

2 (p1 ∓ 1) = 1
4 (p ∓ 3) is a prime.

…

(k + 1) pk = 1
2 (pk−1 ∓ 1) = 1

2k (p ∓ (2k − 1)) is a prime.

It is not difficult to reformulate the previous conditions in such a way that formula
(1) be applicable. Actually, if we define pk = q and we express the successive values
of pi as a function of q, we obtain the following set of polynomials:

f1(q) = q, f2(q) = 2q ± 1, f3(q) = 4q ± 3, . . . , fk+1(q) = 2kq ± (2k − 1).

It is apparent that p = 2kq ± (2k −1) will be an element of P±
k if all the polynomials

fi (q) take on a prime value for some q.
Following the definition of QF , as stated in Lemma1, it is not difficult to find that

it is related to the counting function for k-safe primes as

π±
k (2kq ± (2k − 1)) = QF (q).

Hence, we finally arrive at

π±
k (x) ∼ 1

2k
C(F)

∫ x

2k+1±2k−1
(ln 1

2k (t ∓ (2k − 1)))−k−1dt. (2)

The next step is computing the value for the constant C(F). According to its
definition, we have that for our case,

C(F) =
∏

p∈P

(

1 − 1

p

)−k−1 (

1 − ω(p)

p

)

.

Now, the turn is for the computation of ω(p) for the admissible values of p. Let us
define the following set:

V (k) = { j : p|2 j − 1, 1 < j ≤ k, 2 < p ≤ 2k − 1}.
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The solution can be considered on a case-by-case basis as presented below:

ω(p) =
⎧

⎨

⎩

1, for p = 2
p − #V (k), for 2 < p ≤ 2k − 1
k + 1, for p > 2k − 1.

As an example, we consider the case k = 2, corresponding to 2-safe primes. It is
clear that V (2) = {1} and, hence, the value of ω(p) is:

ω(p) =
⎧

⎨

⎩

1, for p = 2
2, for p = 3
3, for p > 3.

Therefore,C(F) = 9
2

∏

p>3
p2(p−3)
(p−1)3 . As a consequence, gluing all the pieces together,

the counting function eventually results

π+
2 (x) ∼ 9

8

∏

p>3

p2(p − 3)

(p − 1)3

∫ x

11

(

ln
t − 3

4

)−3

dt.

3 Generalized Safe Primes

Taking a suggestion found in the reference [12], we relax the requirements in Defi-
nition3 by considering chains with numbers of the form

p = 2a1 p1 + ε1, p1 = 2a2 p2 + ε2, . . . , pk−1 = 2ak pk + εk, (3)

for certain positive integers a1, . . . , ak , which we assume to be of a size smaller than
that of the respective primes p1, . . . , pk . More information about this type of primes
can be found in [6].

Definition 4 For k-safe primes with a vector a = (a1, . . . , ak) and signature ε =
(ε1, . . . , εk), the counting function is defined as the number π

ε
a (x) of p ∈ P such

that p ≤ x , and p = 2a1 p1 + ε1, p1 = 2a2 p2 + ε2, . . . , pk−1 = 2ak pk + εk .

The case of positive signatures has received detailed attention in the literature
(see, for example, [11–14]). However, alternate and negative signatures have been
hardly considered. For this reason, in what follows we turn our attention to them.
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3.1 Negative Signature

To begin with, we deal with the case of negative signatures. We split further this case
into other two sub-cases, namely, the one in which all the components in the vector a
are equal, and the contrary. A deeper study, along with the proofs of all the theorems
presented in this section can be found in [7].

3.1.1 Vector a with Equal Components

First of all, we present the following result:

Theorem 1 Let us assume that the conjecture giving rise to Eq. (1) is true. If pa

is the least prime divisor of 2a − 1, then for the vector with equal components
a1 = · · · = ak = a, and for ε1 = · · · = εk = −1, the density of chains in the Eq. (3)
is null for all k ≥ pa − 1. In particular, this holds if 2a − 1 is a prime.

Theorem 2 Let a1 = · · · = ak = a, ε1 = · · · = εk = −1, and pa be as in
Theorem1, and let D(a) = {p ∈ P : p|a} be the set of prime divisors of a ∈ N.
Suppose that k ≤ pa − 2. Then,

πε
a (x) ∼ C(F)

(2a)k

∫ x

la,k

(

ln

(

(2a)−k

[

t + (2a)k − 1

2a − 1

]))−k−1

dt,

where la,k = 2(2a)k+1−3(2a)k+1
2a−1 ,

C(F) =
∏

p∈D(2a−1)

(

1 − 1

p

)−k (

1 − k + 1

p

)

·

∏

p∈{2}∪D(a)

(

1 − 1

p

)−k

·

∏

p/∈D(2a−1)
gcd(a,p)=1

(

1 − 1

p

)−k (

1 − min(k + 1, e(2a, p))

p

)

,

where e(2a, p) is the order of 2a in Z
∗
p.

3.1.2 Vector a with Unequal Components

For the case of a vector a = (a1, . . . , ak) with unequal components, we have not
obtained results so sharp as those just presented. We present in the first place some
useful notations.



86 R. Durán Díaz and L. Hernández Encinas

αh j = 2h− j
k− j
∏

l=k−h+1

al , 1 ≤ h ≤ k, 0 ≤ j ≤ h, (4)

βh =
h−1
∑

l=1

αhl + 1, 1 ≤ h ≤ k, (5)

N k
p = #

({0} ∪ {

α−1
h0 βh (mod p) : αh0 ∈ Z

∗
p, 1 ≤ h ≤ k

})

, (6)

Theorem 3 Let p be a prime, and let us consider the notations in formulas (4)–(6).
If either an index 1 ≤ h ≤ k exists such that αh0 ≡ 0 (mod p) and βh ≡ 0 (mod p),
or N k

p = p, then ω(p) = p, and hence C(F) = 0.

Remark 4 Let pa = max
⋃

1≤h≤k D(αh0). If p ≥ pa + 1, then αh0 �≡ 0 (mod p)

for all 1 ≤ h ≤ k.

Theorem 4 With the same notation and hypothesis as those used in Theorem3 and
Remark4, if

{p ∈ P : 2 ≤ p ≤ k + 1} ⊆
⋃

1≤h≤k

(D(αh0) \ D(βh)) ,

then ω(p) < p for all p ∈ P, whence C(F) > 0.

3.2 Alternate Signatures

Last, we consider the general case of a prime chain p, p1, . . . , pk−1, p = 2a1 p1 +
ε1, p1 = 2a2 p2 + ε2, . . . , pk−1 = 2ak pk + εk , for certain values εi ∈ {−1,+1},
1 ≤ i ≤ k and indexes 1 ≤ u < v ≤ k such that εuεv = −1.

If βh = −∑h−1
j=1 αh jεk− j+1 − εk−h+1 then it is easy to check that Theorems3 and

4 also hold for the case of alternate signatures.

Remark 5 In the case of alternate signatures, C(F) can be zero for some particular
value of the vector a, even if the latter vector has equal components.

Proposition 3 If the signature of P(ε1, . . . , εk) is alternate, then ω(3) = 3.

4 Optimal Strong Primes

A novel concept introduced by Prof. Muñoz Masqué is the notion of optimal strong
prime. Remarkably, the authors in [18] recommended the use of strong primes for
the factors of an RSAmodulus. The aim was to prevent attacks from algorithms such
as those of Pollard’s and Williams’ [16, 20] and their improvements [15, 17], along
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with cyclic attacks. While it is true that the use of strong primes does not give a
perfect guarantee against any type of attack (the elliptic curve factorization method
can be successful for certain parameters; the algorithm �k(p) for k > 2 might also
be lucky, see [2]), they can give additional security at a modest extra cost.

A detailed study of optimal strong primes, togetherwith the proofs of the theorems
can be found in [5].

4.1 Standard Definition of a Strong Prime

Definition 5 An odd prime p is said to be strong if it verifies the following three
conditions:

(a) p − 1 has a large prime factor r .
(b) p + 1 has also a large prime factor s.
(c) r − 1 has also a large prime factor t .

Remark 6 Strong primes satisfying the conditions in Definition5 are also called
3-way strong primes.

4.2 The Notion of Optimal Strong Prime

Let us begin with the following

Proposition 4 Let p an odd prime verifying:

(a) p − 1 = ra, r being an odd prime.
(b) p + 1 = sb, s being an odd prime.
(c) r − 1 = tc, t being an odd prime.

The next statement holds:

a + b + c = p − 1

r
+ p + 1

s
+ r − 1

t
≥ 12.

The proof can be carried out on a case-by-case basis.
The rest of the cases (namely, if any of the values r , s, or t is even) is covered by

the following

Proposition 5 If p is an odd prime not verifying the hypothesis of Proposition4, then
either p is a Fermat (or Mersenne) prime, or p is such that all odd prime factors of
p − 1 are Fermat primes.

Definition 6 We say that a strong prime is optimal if the integers r , s, and t in
Proposition4 are as large as can be; or, equivalently, the value
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a + b + c = p − 1

r
+ p + 1

s
+ r − 1

t

is as small as possible.

For a given prime p, satisfying the conditions (a)–(c) in Proposition4, the sum
a + b + c takes its minimum value when r , s, t are selected in such a way that they
are the largest prime factors of p − 1, p + 1, r − 1, respectively (even if r, s or t are
not odd).

Let us draw our attention to the fact that, from Definition5, a prime may be
considered strong if the values r , s and t are “large”. Hence, if we choose them
so that they are the largest possible ones, we will obtain a “good” strong prime,
hopefully, the best one. This fact justifies the selection that we did for that value of
a + b + c in the present definition.

Definition 7 Let S(n) the largest prime factor of the integer n if n ≥ 2 and S(1) = 1.
We define the function

σ : N \ {1, 2} → N

by the formula:

σ(n) = n − 1

S(n − 1)
+ n + 1

S(n + 1)
+ S(n − 1) − 1

S(S(n − 1) − 1)
.

4.3 Characterization of Optimal Strong Primes

Theorem 5 For any prime p ≥ 23 it holds that σ(p) ≥ 12.

Corollary 3 A prime p is an optimal strong prime when it verifies all the conditions
in Proposition5 and σ(p) takes on its minimum value, namely, σ(p) = 12.

Theorem 6 A prime p > 29 is an optimal strong prime if and only if the following
conditions are satisfied:

(i)
p − 1

6
is 1-safe.

(ii) S(p − 1) = p − 1

6
.

(iii) S(p + 1) = p + 1

4
.

Corollary 4 Obtaining an optimal strong prime is equivalent to finding an integer
t such that the integers

t, 2t + 1, 3t + 2, 12t + 7

are all simultaneously odd primes.
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4.4 Counting Function for Optimal Strong Primes

Definition 8 We define πσ : [0,+∞) → N as the counting function for optimal
strong primes, assigning to each real number x ≥ 0 the number of optimal strong
primes p such that p ≤ x . Otherwise expressed,

πσ (x) = #{p optimal strong prime : p ≤ x}.

According to Corollary4, generating an optimal strong prime is equivalent to
finding a number t , such that t , 2t + 1, 3t + 2, 12t + 7 are all simultaneously prime.
Hence, we can immediately apply the results presented in [3], and already provided
in Sect. 2.4. The relevant polynomials for this case are f1(x) = x , f2(x) = 2x + 1,
f3(x) = 3x + 2, f4(x) = 12x + 7. Therefore, for this case, we have

Qσ (y) ∼ Cσ

∫ y

2

du

(ln u)4
, (7)

where

Cσ = 42875
6144

∏

p>7

p3(p − 4)

(p − 1)4
.

It is apparent that the following relation exists

Qσ (y) = πσ (12y + 7),

according to the appropriate definitions. Carrying out the convenient change of vari-
ables, we eventually arrive at

πσ (x) ∼ 1

12
Cσ

∫ x

31

dv

(ln v−7
12 )4

. (8)

The approximate value for the constantCσ must be computed via numericalmethods.
If we define

Cσ (n) =
pn

∏

q=p5

q3(q − 4)

(q − 1)4
,

a good approximation for this constant is

Cσ = 42875
6144 · lim

n→∞ Cσ (n) = 5,53491.
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Rotation Minimizing Vector Fields
and Frames in Riemannian Manifolds

Fernando Etayo

Dedicated to Jaime Muñoz Masqué, with a deep gratitude for
his generous assistance in the earlier years of my career, on the
occasion of his 65th birthday

Abstract We prove that a normal vector field along a curve in R
3 is rotation mini-

mizing (RM) if and only if it is parallel respect to the normal connection. This allows
us to generalize all the results of RM vectors and frames to curves immersed in
Riemannian manifolds.

Keywords Rotation minimizing · Riemannian manifold · Normal connection

1 Introduction

In a celebrated paper [3], Bishop introduced what nowadays are called rotation
minimizing vector fields (RM, for short) over a curve in the Euclidean 3-space. The
purpose of this note is to show how they can be defined in Riemannian manifolds.
This is an expository paper, as self-contained as possible.

When one considers moving orthonormal frames along a curve, one can take into
account two general ideas: defining a frame whose first vector is the tangent vector
to the curve and defining a frame whose first vector is the unit position vector of the
point of the curve. This allows to consider the other two vectors in the normal plane,
having only one degree of freedom, as it is explained, e.g. in [8]. Frames having
the unit tangent (resp. the position vector) as one component are known as adapted
(resp. directed) curve frames.

F. Etayo (B)
Department of Mathematics, Statistics and Computation,
University of Cantabria, Avda. de Los Castros, s/n, 39071 Santander, Spain
e-mail: etayof@unican.es

© Springer International Publishing Switzerland 2016
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The most classical adapted frame is the Frenet moving frame, where the second
vector is the normal vector to the curve, and the third one is the binormal vector
defined as the cross product of tangent and normal vectors (see, e.g., [6]). Given a
curve, one can define a swept surface by sweeping out a profile in planes normal to
the curve. As it is pointed out in [8], the Frenet frame may result a poor choice for
motion planning or swept surface constructions, since it incurs unnecessary rotation
of the basis vectors in the normal plane. The fact that the principal normal vector
always points to the center of curvature often yields awkward-looking motions, or
unreasonably twisted swept surfaces. Besides, in the points where the curvature
vanishes one cannot define theFrenet frame.RMframes,whichwill be defined below,
avoid these drawbacks, and they are widely used in Computer Aided Geometric
Design. In fact, the Frenet frame of a curve in R

n can be defined when the curve
is generic, in the sense that its first (n − 1) derivatives are linear independent (see,
e.g., [19, p.45]). The Frenet frame of a curve is uniquely defined, gives geometrical
information of the curve, but it is defined only in the points where the curve is generic.
RM frames are not uniquely defined, and give geometrical information up to rotation,
and are defined everywhere. In the paper [2] the authors prove that RM frames in
the Euclidean space are preserved by Möbius transformation, i.e., by conformal
transformations, considering the normalization of such a transformation. Obviously,
one cannot expect the same result for the Frenet frame, because the image of a generic
curve under a conformal transformation may not be a generic curve (e.g., a meridian
of the sphere goes to a line by the stereographic projection from the north pole to the
equatorial plane).

One can define other adapted frames, taking into account the algebraic properties
of the ambient Euclidean space. For instance, in the case of plane curves, one can
considerR2 = C and define a moving adapted frame given by {t, it}, i.e., the tangent
vector and this vector multiplied by i. This is an RM frame and it can be defined even
in the points where the curvature of the curve vanishes, but it gives less geometrical
information that the Frenet frame {t,n}, because n points to the center of curvature,
which is not true in general for it. In the case of curves inR4 = H, one can consider the
quaternionic structure and define a quaternionic moving frame {t, it, jt, kt}, which
is not an RM frame.

Adapted frames can be defined in the case of a curve immersed in a Riemannian
manifold, while directed frames has no sense in this general framework, because
one cannot define the position vector in a curved manifold. We shall introduce such
definition of an RM vector field over a curve in a Riemannian manifold as a vector
field parallel respect to the normal connection. It will be shown that this definition
is consistent with that of Bishop for curves in the Euclidean space (Sect. 4), and
that remains invariable under isometries (Sect. 5). In Sect. 2 we shall remember the
basic definitions about RM vector fields and frames, and in Sect. 3 about curves in
Riemannian manifolds.

I have chosen this topic to write about, because it has been one of the many topics
Prof. Muñoz Masqué has worked, as one can see in [4, 16]. Some of his results will
be quoted below.
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2 RM Vector Fields and Frames of a Curve inRRR
3

Let us remember the basic definitions and properties of RM vector fields and frames
in the Euclidean space.

Definition 1 Anormal vector field v = v(t) over a curve γ = γ (t) inR3 is said to be
relatively parallel or rotation minimizing (RM) if the derivative v′(t) is proportional
to γ ′(t).

Then we have:

Remark 1 (1) In this case the ruled surface f (t, λ) = γ (t) + λv(t) is developable,
because [γ ′(t), v(t), v′(t)] = 0.

(2) If v is an RM vector field, then ‖ v ‖ is constant. Let t denote the tangent
vector to γ . Then v′ = λt ⇒ v′ ⊥ v ⇒ d

dt (v · v) = 0.

Besides, one can easily prove the following results:

Remark 2 (1) Let γ (t) = t be the line given by the x-axis in R
3. Then a normal

vector field v(t) over γ is RM respect to γ iff it is constant.
(2) Let γ (t) = (cos t, sin t, 0) the unit circle in the horizontal plane. Let (0, 0, h)

any point in the vertical axis. Let us consider the vector v(t) joining x(t) and (0, 0, h).
Then v is RM. The developable surface generated is the corresponding cone.

(3) Normal and binormal vector fields, n and b, of a Frenet moving frame are
not RM vector fields in general. Let γ = γ (s) a curve parametrized respect to the
arc-length. Then, the Frenet–Serret formulas say that n′ = −κt + τb, and b′ = −τn
where κ and τ denote the curvature and the torsion. For a twisted (non plane) curve,
τ �= 0, the above equations show thatn andb are norRMvectorfields.This is the case,
for instance, of the helix (a cos t, a sin t, bt). The normal vector is (− sin t, cos t, 0)
and the surface generated by the normal lines is the helicoid,which is not developable,
because its Gauss curvature does not vanish. For a plane curve, n and b are RMvector
fields.

Definition 2 Let γ = γ (t) in R3 be a curve. An RM frame, parallel frame, natural
frame, or Bishop frame is a moving orthonormal frame {t(t),u(t), v(t)} along γ ,
where t(t) is the tangent vector to γ at the point γ (t) and u, v are RM vector fields.

As in the case of Frenet frames, a normal vector field is enough to define an RM
frame:

Remark 3 If u is a unitary RMvector field along γ , then {t,u, t × u} is an RM frame
along γ .

The Frenet frame of a curve is uniquely defined while there exist many RM
frames. The following result summarizes the Frenet–Serret-type equations and the
Darboux-type vector in a general setting.
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Proposition 1 Let γ = γ (s) be a curve parametrized respect to the arc length, and
let {t,u, v} be a moving frame along a curve γ . Then there exists a unique vector
field ω = At + Bu + Cv along γ such that the following equations hold:

dt
ds

= ω × t ; du
ds

= ω × u ; dv
ds

= ω × v.

Moreover, the derivatives of the vectors of the frame in terms of the frame are given
in matrix expression by the skew symmetric matrix:

⎛

⎝

0 −C B
C 0 −A

−B A 0

⎞

⎠ .

In particular:
(1) If the moving frame is the Frenet frame {t,n,b}, then ω = κb + τ t is the

Darboux vector field and the above equations are the Frenet–Serret equations

⎛

⎝

0 κ 0
−κ 0 τ

0 −τ 0

⎞

⎠ .

(2) The moving frame is an RM frame iff ω · t = 0. In this case, then Frenet–
Serret-type formulas reduce to:

⎛

⎝

0 −C B
C 0 0

−B 0 0

⎞

⎠ .

The component A of the Darboux vector ω measures the rotation of the frame
respect to the tangent direction generated by t. In the case of a Frenet frame,A = −τ ,
and it vanishes iff the curve is plane, thus showing that the Frenet frame is an RM
frame iff the curve is plane. In the case of RM frames, A always vanishes, thus
showing why they are called ‘rotation minimizing’. For the Darboux vector, see,
e.g., [22].

Remark 4 One can obtain an RM frame from the Frenet frame by considering the
vectors u, v given by:

(

u
v

)

=
(

cos θ sin θ

− sin θ cos θ

) (

n
b

)

where θ = − ∫

τds cancels unnecessary rotation in normal plane.
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On the other hand, there exists a direct relation between Frenet ‘curvatures’ κ, τ

and RM ‘curvatures’ B, C: For the sake of simplicity let us call κ1 = −C and κ2 = B,
and then the Frenet formulas for RM frames read as:

⎛

⎝

0 κ1 κ2
−κ1 0 0
−κ2 0 0

⎞

⎠

which is the usual notation (see, e.g., [14, 21]). With this notation one has:

Proposition 2 ([14, p. 52]) The following relations hold:

κ =
√

κ2
1 + κ2

2 and τ = θ ′ = κ1κ
′
2 − κ ′

1κ2

κ2
1 + κ2

2

where θ = arg(κ1, κ2) = arctan κ2
κ1

and θ ′ is the derivative of θ with respect to the
arc length.

Functions κi are known as natural curvatures, and play the same rôle that curvature
and torsion in the Frenet case. They determine uniquely the curve up to an orthogonal
transformation. It is a very remarkable fact that Bishop had introduced RM frames
before they were interesting in Computer Aided Geometric Design. Nowadays, RM
frames are a very useful tool in some aspects of that discipline. See [7] as a basic
reference. Besides, they are used in Physics, in the study of solitons [12], and in other
Sciences involving the notion of surface growth from a spine curve, such as in the
study of DNA [5] and Biology [15].

The above construction of RM frames in the Euclidean space can be generalized
to Rn as Bishop himself pointed out [3].

3 Curves Immersed in a Riemmanian Manifold

In this section we shall remember the main facts about curves immersed in a Rie-
mannian manifold.

As it is well known, if M is a submanifold of a Riemannian manifold (M, g),
then the Levi-Civita connection ∇ of (M, g) induces a Levi-Civita connection
in (M, g = g|M) and a normal connection D⊥ : X(M) × Γ TM⊥ → Γ TM⊥, where
X(M) denotes the module of vector fields of the submanifold and Γ TM⊥ the module
of sections of the normal bundle. We shall use the notation of [11, VIII].

The normal connection is defined as follows. First of all, consider a point p ∈ M.
Then the tangent space at the manifold M can be decomposed as a orthogonal direct
sum Tp(M) = TpM ⊕ T⊥

p M, where TpM (resp. T⊥
p M) denotes the tangent (resp.

the normal) space to the submanifold. The set TM = ⋃

p∈M TpM (resp. T⊥M =
⋃

p∈M T⊥
p M) is a manifold called the tangent bundle (res. the normal bundle) and it
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has a structure of vector bundle over M, given by the natural projection π : TM →
M;π(u) = p if u ∈ TpM (resp. π⊥ : TM⊥ → M;π⊥(v) = p if v ∈ T⊥

p M). Let us
denote by X(M) (resp. Γ TM⊥) the module of vector fields over M, i.e., the module
of sections of π : TM → M (resp. the module of sections of π⊥ : TM⊥ → M).

Then for any X ∈ X(M) and v ∈ Γ TM⊥ one has the following decomposition,
which will be called the Weingarten formula:

∇Xv = −AvX + D⊥
X v

where −AvX ∈ X(M) and D⊥
X v ∈ Γ TM⊥. The Weingarten operator A is a F(M)-

bilinear map and the normal connection D⊥ is a connection in the normal bundle
T⊥M → M.

Moreover, if v, w ∈ Γ TM⊥ are two normal vector fields, then

g(D⊥
X v, w) + g(v, D⊥

X w) = X(g(v, w))

which shows that the normal connection D⊥ is metric for the fibre metric in the
normal bundle TM⊥.

A normal vector field v is said to be parallel respect to X ∈ X(M) if D⊥
X v = 0.

Let π : E → M be a vector bundle with a connection D, compatible with a metric
on E. The parallel transport induced by D defines an isometry between any two
different fibres of π : E → M (see [18] for details). Thus, the norm of a parallel
section remains constant and the angle between two parallel sections also remains
constant. In the present case of having a submanifold M of a Riemannian manifold
(M, g), the vector bundle we are considering is the normal bundle, and the metric is
the restriction of g to normal vectors.

Many results about curves in Riemannian manifolds have been obtained in the
past. We would like to point out that generalizations of Frenet frames have been
obtained in [13] and [9], in [16] for the case of spaces of constant curvature, and in
[17] for the case of the Minkowski space. Besides in [4] some results about the total
curvature of a curve in a Riemannian manifold are also obtained.

The aim of the present note is not to show Frenet frames in Riemannianmanifolds,
but RM frames. Nevertheless, I would like to comment the very beautifulmain results
of the paper [16]: (1) a Frenet theorem: two curves in the Euclidean, Spherical or
Hyperbolic space are congruent if and only if their n − 1 curvatures are equal, and (2)
the converse: Frenet’s theorem holds for curves in a connected Riemannian manifold
(M, g) if and only if (M, g) is of constant curvature. Thus, one cannot expect to
extend this Theorem to other Riemannian manifolds.
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4 RM Vector Fields Over a Curve Immersed
in a Riemmanian Manifold

The notion of RM vector field implies a notion of parallel transport. We shall show
this carefully.

Let us consider the case where (M, g) isR3 with the standard product and (M, g =
g|M) is a curve γ . Let us denote byTγ (t0) (resp.T

⊥
γ (t0)

) the tangent line (resp. the normal
plane) to γ in γ (t0). Then we have:

Theorem 1 A normal vector field v over a curve γ immersed in R
3 is an RM vector

field iff it is parallel respect to the normal connection of γ .

Proof Let us denote as (x1, x2, x3) the global coordinates in R3. The curve γ can be
expressed as γ (s) = (γ 1(s), γ 2(s), γ 3(s)), s being the arc-length parameter, and the
tangent vector is t = γ ′(s) = ∂

∂xi
dγ i

ds (Einstein’s convention is assumed).
Let v be a normal vector field over γ , v = ∂

∂xi vi. The condition of being normal
to the curve means that

3
∑

i=1

vi dγ i

ds
= 0.

The condition of being v an RM vector field means that v′(t) is proportional to
γ ′(t), i.e.

dvi

ds
= λ(s)

dγ i

ds
, ∀i = 1, 2, 3

where λ = λ(s) is a function.
Now, we shall check the value of D⊥

γ ′(s)v. We must prove that D⊥
γ ′(s)v = 0 iff the

above equation is satisfied. Let ∇ be the Levi-Civita connection of R3. The all of its
Christoffel symbols vanish, and then one has:

∇ t v = ∇ ∂

∂xi
dγ i

ds

(

∂

∂xj
vj

)

= dγ i

ds
∇ ∂

∂xi

(

∂

∂xj
vj

)

= ∂

∂xj

dγ i

ds

∂vj

∂xi
.

Applying the chain rule one has:

∂vj

∂xi
= dvj

ds

ds

dxi
= dvj

ds

(

dxi

ds

)−1

= dvj

ds

(

d(xi ◦ γ −1)

ds

)−1

= dvj

ds

(

dγ i

ds

)−1

.

And then,

∇ t v = ∂

∂xj

dγ i

ds

∂vj

∂xi
= ∂

∂xj

dγ i

ds

dvj

ds

(

dγ i

ds

)−1

= ∂

∂xj

dvj

ds
.
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Finally, v is parallel ⇔ D⊥
γ ′(s)v = 0 ⇔ ∇ tv is tangent to γ ⇔ dvi

ds = λ(s) dγ i

ds ,

∀i = 1, 2, 3 ⇔ v is an RM vector field, thus finishing the proof. �

The above result is important because it allows to obtain the definition of an RM
vector field over a curve immersed in a Riemmannianmanifold.Moreover, one easily
can deduce the following properties of the above Proposition.

Corollary 1 With the above notation:
(1) Given a vector v0 ∈ T⊥

γ (t0)
there exists a unique RM vector field v over γ such

that v(t0) = v0.
(2) If v is an RM vector field over γ then the norm ‖v‖ is constant.
(3) If v and w are RM vector fields over γ then the angle between v(t) and w(t)

is constant. �

Thus, we can give the following:

Definition 3 Let γ be a curve immersed in a Riemannian manifold (M, g).
(1) A normal vector field v over γ is said to be an RM vector field if it is parallel

respect to the normal connection of γ .
(2) A parallel frame, natural frame, or RM frame is a moving orthonormal frame

{t(t), v1(t), . . . , vn(t)}

along γ , where t(t) is the tangent vector to γ at the point γ (t) and vi are RM vector
fields, ∀i ∈ 1, . . . , n.

If one defines an orthonormal frame {t(t0), v1(t0), . . . , vn(t0)} at a point γ (t0) of
a curve γ then by parallel transport it can be extended along γ . Parallel transport is
an isometry, this meaning that norms and angles are preserved.

Remark 5 Taking into account the Weingarten formula one can easily check that an
RM frame satisfies:

∇t t ⊥ t ; ∇t vi ‖ t

where ∇ is the Levi-Civita connection of (M, g), thus coinciding our definition with
that given in [1]. The first equation is an easy consequence of the well-known iden-
tity g(∇XY , Z) + g(Y ,∇XZ) = X(g(Y , Z)), when one consider X = Y = Z vector
extensions of

−→
t , which is a vector field along γ of constant norm equal to 1.

As in the case of the Euclidean space, any parallel moving frame differs from a
classical Frenet frame by a point-dependent SO(n − 1) rotation acting in the normal
space of the curve γ . As the components of a Frenet connection matrix along γ

are differential invariants of the curve, then the components of a parallel connection
matrix are invariantly defined up to the covariant action of the equivalence group of
rigid SO(n − 1) rotations. The Frenet-type equations have a similar expression to
that given in Proposition1 (see [13] or [20]).
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RM frames in Riemannian manifolds are used in the study of the structure
equations for the evolution of a curve embedded in an n-dimensional Riemannian
manifold with constant curvature (see, e.g., [13, 20]) or a symmetric Riemannian
space (see [1]). They are also used in the study ofmathematicalmodels of equilibrium
configurations of thin elastic rods (see, e.g., [10] and the references therein).

5 RM Frames and Transformations

We prove that RM vector fields and frames are preserved by isometries. Let μ :
(M, g) → (M, g) be an isometry and letμ∗p : TpM → TpM its differential or tangent
map. Then μ∗p is a linear isometry respect to gp, i.e., g(μ∗v, μ∗w) = g(v,w).

Theorem 2 Let γ be a curve immersed in a Riemannian manifold (M, g) and let
μ : (M, g) → (M, g) be an isometry.

(1) If v is an RM vector field over γ , then μ∗(v) is an RM vector field over μ ◦ γ .
(2) If {t, v1, . . . , vn} is an RM frame over γ , then {μ∗(t), μ∗(v1), . . . , μ∗(vn)} is

an RM frame over μ ◦ γ .

Proof The following claims are well known:

1. If t(t0) is the tangent vector of γ at the point γ (t0), then μ∗(t(t0)) is the tangent
vector of μ ◦ γ at the point (μ ◦ γ )(t0).

2. If v ∈ T⊥
γ (t0)

, then μ∗(v) ∈ T⊥
(μ◦γ )(t0)

, because μ∗ is an isometry.

3. μ∗(∇XY) = ∇μ∗X μ∗Y (cfr., e.g. [11, p. 161, vol. 1]).

Claims (1) and (2) show that μ∗ maps tangent (resp. normal) vectors in tangent
(resp. normal vectors).

Now, we can easily prove the theorem.
(1) Let v be anRMvector field over γ . ThenD⊥

t v = 0, where t denotes the tangent
vector to γ . We must prove that D⊥

μ∗t μ∗v = 0.
We have the tangent and normal decomposition:

∇μ∗t μ∗v = −Aμ∗v μ∗t + D⊥
μ∗t μ∗v

and, on the other hand,

∇μ∗t μ∗v = μ∗(∇t v) = μ∗(−Avt + D⊥
t v) = μ∗(−Avt)

which is tangent to (μ ◦ γ ), thus proving D⊥
μ∗t μ∗v = 0.

(2) It’s a direct consequence of part (1) and claims 1 and 2 at the beginning of the
proof. �

Acknowledgments The author wants to express his gratitude to his colleagues Marco Castrillón,
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RM vectors and frames.
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Local Anomaly Cancellation and Equivariant
Cohomology of Jet Bundles

Roberto Ferreiro Pérez

Dedicated to Jaime Muñoz Masqué on the occasion of his 65th
birthday, with my best wishes.

Abstract We study the problem, suggested by Singer in [17], and consisting in
determining a notion of “local cohomology” adequate to deal with the problem of
locality in those approaches to local anomalies based on the Atiyah–Singer index
theorem.

Keywords Local cohomology · Equivariant cohomology · Jet bundle · Anomaly
cancellation

1 Introduction

An anomaly appears in a theory when a classical symmetry is broken at the quan-
tum level. As we consider only local anomalies, we can assume that the group
G is connected. Let L(ψ, s) be a G-invariant Lagrangian density depending on
bosonic fields s ∈ Γ (E) and fermionic fields ψ. At the quantum level, the cor-
responding effective action W (s), defined in terms of the fermionic path integral
by exp(−W (s)) = ∫ DψDψ̄ exp

(− ∫

M L(ψ, s)
)

could fail to be G-invariant. We
define a formA ∈ Ω1(LieG,Ω0(Γ (E))) byA = δW , i.e.A(X)(s) = L X W (s) for
X ∈ LieG, s ∈ Γ (E). Although W is clearly a non-local functional, A is local in
X and s, i.e. we have A ∈ Ω1

loc(LieG,Ω0
loc(Γ (E))). It is clear that A satisfies the
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condition δA = 0 (the Wess–Zumino consistency condition). Moreover, if A = δ�
for a local functional � = ∫

M λ ∈ Ω0
loc(Γ (E)) then we can define a new lagrangian

density L̂ = L + λ, such that the new effective action Ŵ is G-invariant, and in
that case the anomaly cancels. If A �= δ� for every � ∈ Ω0

loc(Γ (E)) then we say
that there exists an anomaly in the theory. Hence the anomaly is measured by the
cohomology class ofA in the BRST cohomology H 1

loc(LieG,Ω0
loc(Γ (E))) (e.g. see

[4, 6–8, 16]).
Local anomalies also admit a nice geometrical interpretation in terms of the

Atiyah–Singer index theorem for families of elliptic operators (see [1, 2, 4, 17]).
The first Chern class c1 (det IndD) ∈ H 2(Γ (E)/G) of the determinant line bundle
det IndD → Γ (E)/G represents an obstruction for anomaly cancellation. How-
ever, the condition c1 (det IndD) = 0 is a necessary but not a sufficient condition
for local anomaly cancellation due to the problem of locality. In [17] (see also [1])
Singer proposes the problem of defining a notion of “local cohomology of Γ (E)/G”,
H 2

loc(Γ (E)/G), adequate to study local anomaly cancellation. The principal difficulty
is the fact that the expression of the curvature of det IndD itself contains non-local
terms (Green operators).

Moreover, we recall (see [2, 5, 15]) that the BRST and index theory approaches
are related by means of the transgression map t (see Sect. 2), i.e., we have [A] =
t (c1 (det IndD)). As t is injective, the condition c1 (det IndD) = 0 on H 2(Γ (E)/G)

is equivalent to [A] = 0 on H 1(LieG,Ω0(Γ (E))). However, the condition for local
anomaly cancellation is [A] = 0 on theBRSTcohomology H 1

loc(LieG,Ω0
loc(Γ (E))).

We define H •
loc(Γ (E)/G) in such a way that the preceding condition is equivalent to

the vanishing of the class of c1 (det IndD) on H 2
loc(Γ (E)/G), hence solving Singer’s

problem.

2 The Transgression Maps

First we recall the definition of equivariant cohomology in the Cartan model (e.g.
see [3]). We consider a left action of a connected Lie group G on a manifold
N . We have an induced Lie algebra homomorphism LieG → X(N ), X �→
XN = d

dt

∣

∣

t=0
ρ(exp(−t X)). We denote by Pk(LieG,Ωr (N ))G the space of degree

k G-invariant polynomials on LieG with values in Ωr (N ). We recall that α ∈
Pk(LieG,Ωr (N ))G if and only ifα(Adg X) = ρ(g−1)∗(α(X)) ∀X ∈ LieG, ∀g ∈ G.

The space of G-equivariant differential q-forms is defined by

Ω
q
G(N ) =

⊕

2k+r=q

(Pk(LieG,Ωr (N )))G . (1)

The Cartan differential dc : Ω
q
G(N ) → Ω

q+1
G (N ), (dcα)(X) = d(α(X))−ιXN α(X)

for X ∈ LieG, satisfies (dc)
2 = 0, and the G-equivariant cohomology ofN , Hq

G(N ),
is the cohomology of this complex.
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We recall (e.g. see [3]) that if N → N /G is a principal G-bundle we have the
(generalized) Chern–Weil homomorphism ChW : H •

G(N ) → H •(N /G). If A is an
arbitrary connection on N → N /G with curvature FA, and α ∈ Ω

q
G(N ), then we

have ChW([α]) = [horA(α(FA))], where horA is the horizontalization with respect
to the connection A. We also use the notation α = ChW(α).

If ω ∈ Ω2
G(N ) is a closed G-equivariant 2-form, then we have ω = ω0 +μ where

ω0 ∈ Ω2(N ) is closed, and μ : LieG → C∞(N ), is a G-equivariant moment map
for ω0, i.e., ιXN ω0 = d(μ(X)) for X ∈ LieG. A direct computation shows that we
have the following

Proposition 1 Assume that N → N /G is a principal G-bundle, and let A ∈
Ω1(N ,LieG) be a connection form. If ω = ω0 + μ ∈ Ω2

G(N ) is a closed G-
equivariant 2-form and we define α ∈ Ω1(N )G by α(X) = μ(A(X))(x) for
X ∈ TxN , then we have ChWA(ω) = ω + dcα.

Corollary 1 The map ChW : H 2
G(N ) → H 2(N /G) is an isomorphism.

Let us assume now that H 1(N ) = H 2(N ) = 0. The cohomology of the Lie
algebra LieG with values in Ω0(N ) is denoted by H •(LieG,Ω0(N )).

Proposition 2 Let ω = ω0 + μ ∈ Ω2
G(N ) be a closed G-equivariant form. If ρ ∈

Ω1(N ) satisfies ω0 = dρ, then the map τρ ∈ Ω1(LieG,Ω0(N )) given by τρ(X)=
ρ(XN ) + μ(X) determines a linear map τ : H 2

G(N ) → H 1(LieG,Ω0(N )) which is
independent of the form ρ chosen, and that we call the transgression map τ . If G is
connected, then τ is injective.

Proof The first part of the Proposition easily follows using that LYN μ(X) =
μ([Y, X ]) by the invariance of μ. We restrict ourselves to prove that τ is injective. By
definition [τρ] = 0 on H 1(LieG,Ω0(N )) if and only if there exists β ∈ Ω0(N ) such
that for every X ∈ LieG we have τρ(X) = L XN β = ιXN dβ. If we set ρ′ = ρ − dβ
then for every X ∈ LieG we have dρ′ = ω0, ιXN ρ′ = −μ(X), L XN ρ′ = 0, i.e.,
ρ′ ∈ Ω1(N )G and dcρ

′ = ω.

Nowwe assume thatπ : N → N /G is a principalG-bundle. Thenwe can consider
the more familiar transgression map defined as follows

Proposition 3 Let ω ∈ Ω2(N /G) be a closed 2-form. If η ∈ Ω1(N ) is a form such
that π∗ω = dη, then the map tη : LieG → Ω0(N ), tη(X) = η(XN ) determines a
linear map t : H 2(N /G) → H 1(LieG,Ω0(N )), which is independent of the form η
chosen, and that we call the transgression map t. If G is connected, then t is injective.

Proof Again we only prove that t is injective. If tη = δυ for certain υ ∈ Ω0(N ),
then η(XN ) = L XN υ. We define η′ = η − dυ, and we have dη′ = π∗ω, ιXN η′ = 0,
L XN η′ = 0. Hence η′ is projectable onto a form η′ ∈ Ω1(N /G) and dη′ = ω.

Proposition 4 If ω ∈ H 2
G(N ) and ω = ChW(ω) then we have τ (ω) = t (ω).

Proof If ω = ω0 + μ, by Proposition 1 we have ω = π∗ω + dcα for some α ∈
Ω1

G(N ) = Ω1(N )G , i.e. ω0 = π∗ω + dα and μ(X) = −α(XN ).
Let η ∈ Ω1(N ) be a form such that π∗ω = dη. If we set ρ = η +α then ω0 = dρ

and for every X ∈ LieG we have τρ(X) = tη(X).
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3 Local Equivariant Cohomology

Let p : E → M be a bundle over a compact, oriented n-manifold M without bound-
ary. We denote by Jr E its r -jet bundle, by J∞E the infinite jet bundle and by Γ (E)

be the manifold of global sections of E (assumed to be not empty).
We denote by ProjE the space of projectable diffeomorphism of E , and by Proj+E

the subgroup of elements preserving the orientation of M . The space of projectable
vector fields on E is denoted by projE . We consider the natural actions of ProjE on
J∞E and Γ (E).

Let j∞ : M ×Γ (E) → J∞E , j∞(x, s) = j∞
x s be the evaluation map.We define a

map 
: Ωn+k(J∞E) → Ωk(Γ (E)), by 
[α] = ∫

M (j∞)∗ α, for α ∈ Ωn+k(J∞E).
The map 
 commutes with the exterior differential and is Proj+E-equivariant (see
[9]). We define the space of local k-forms on Γ (E), as the image of the map 
,
i.e. Ωk

loc(Γ (E)) = 
(Ωn+k(J∞E)) ⊂ Ωk(Γ (E)). The cohomology H •
loc(Γ (E))

of the complex (Ω•
loc(Γ (E)), d) is called the local cohomology of Γ (E). We have

H k
loc(Γ (E)) ∼= H n+k(E) for k > 0 (see [10]).
Let G be a Lie group acting on E by elements Proj+E . In order to define an

adequate notion of local equivariant cohomology we made the following

Assumption 1 We assume that LieG is isomorphic to the space of sections of
a Lie algebroid V → M , i.e. LieG ∼= Γ (V ). We also assume that the map
LieG ∼= Γ (V ) → projE , X �→ X E is a differential operator. Finally, in the def-
inition of G-equivariant cohomology H n+k

G (J∞E), we assume that the polynomial
maps α : LieG → Ω•(J∞E) are differential operators.

We extend the integration operator to a map 
: Ωn+k
G (J∞E) → Ωk

G(Γ (E)), by
setting (
[α])(X) = 
[α(X)] for every α ∈ Ωn+k

G (J∞E), X ∈ LieG. The map 

commutes with the Cartan differential and induces a homomorphism in equivariant
cohomology 
: H n+k

G (J∞E) → H k
G(Γ (E)) (see [9]).

We define the space of local G-equivariant k-forms by

Ωk
G,loc(Γ (E)) = 
(Ωn+k

G (J∞E)) ⊂ Ωk
G(Γ (E)). (2)

The local G-equivariant cohomology of Γ (E), H •
G,loc(Γ (E)), is defined as the coho-

mology of the complex (Ω•
G,loc(Γ (E)), dc).

4 Application to Local Anomaly Cancellation

Let us define the BRST cohomology (see [6, 16]). Recall (see Assumption 1) that
we assume LieG ∼= Γ (V ) for some vector bundle V → M . A map α : ∧k LieG →
Ω0

loc(Γ (E)) is said to be local if there exists a differential operator A : ∧k LieG →
Ωn(J∞E) such that α(X1, . . . , Xk) = 
[A(X1, . . . , Xk)] for every X1, . . . , Xk ∈
LieG.We denote byΩk

loc(LieG,Ω0
loc(Γ (E)) the space of local k-forms onLie G with
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values on Ω0
loc(Γ (E)). The differential δ on the complex Ω•(LieG,Ω0

loc(Γ (E))

induces a differential on Ω•
loc(LieG,Ω0

loc(Γ (E)). The corresponding cohomol-
ogy H •

loc(LieG,Ω0
loc(Γ (E))) is called the BRST cohomology. We assume that

H 2(Γ (E)) = H 1(Γ (E)) = 0 and also that H 2
loc(Γ (E)) = H 1

loc(Γ (E)) = 0.

Proposition 5 The restriction of the transgression map τ to H 2
G,loc(Γ (E)) takes val-

ues on the BRST cohomology H 1
loc(LieG,Ω0

loc(Γ (E))). The map
τ : H 2

G,loc(Γ (E)) → H 1
loc(LieG,Ω0

loc(Γ (E))) is injective for G connected.

Proof Let ω = ω0 + μ ∈ Ω2
G,loc(Γ (E)) be a closed local G-equivariant 2-form. As

H 2
loc(Γ (E)) = 0, we have ω0 = dρ, for certain ρ ∈ Ω1

loc(Γ (E)). By our assump-
tion in the definition of local equivariant cohomology (Assumption 1), the map
τρ : LieG → Ω0

loc(Γ (E)), τρ(X) = ρ(XΓ (E)) + μ(X) ∈ Ω0
loc(Γ (E)) is a local map.

The injectiveness of τ follows from Proposition 2.

Assume that Γ (E) → Γ (E)/G is a principal G-bundle. Then we define the local
cohomology by H k

loc(Γ (E)/G) = ChW(H k
G,loc(Γ (E))). By Proposition 4 we have

the following

Proposition 6 Let ω ∈ Ω2
G,loc(Γ (E)) be a closed local G-equivariant 2-form and

let ω = ChW(ω). Then we have τ (ω) = t (ω), and in particular we conclude that
t (ω) ∈ H 1

loc(LieG,Ω0
loc(Γ (E))). Moreover, the following conditions are equivalent

(a) [ω] = 0 on H 2
G,loc(Γ (E)).

(b) [ω] = 0 on H 2
loc(Γ (E)/G).

(c) [τ (ω)] = [t (ω)] = 0 on H 1
loc(LieG,Ω0

loc(Γ (E))).

Proposition 6 applied to ω = c1(det IndD) shows that our definition of
H 2

loc(Γ (E)/G) solves Singer’s problem. We also note that if ω ∈ Ω2
G,loc(Γ (E)) is

closed, the form ω ∈ Ω2(Γ (E)/G) determining the class ChW([ω]) could contain
non-local terms, as ω depends on the curvature of a connection � on the princi-
pal G-bundle Γ (E) → Γ (E)/G, and � usually contains non-local terms. This fact
explains the appearance of non-local terms on the expression of the curvature of
det IndD commented on the Introduction.
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Classes of Nonlinear Filters for Stream
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Queremos dedicar este trabajo al profesor Jaime Muñoz Masqué
con motivo de su 65◦ cumpleaños. Gracias por todo Jaime.

Abstract Long period, good statistical properties and large linear complexity are
necessary conditions that every cryptographic sequence must satisfy. In this work, an
algebraic method to compute classes of nonlinear filters with large linear complexity
has been proposed. Two filter operations (addition and shifting operations) are per-
formed to give rise to a complete class of nonlinear filters adequate for cryptographic
purposes. The procedure here developed is simple, efficient and can be carried out at
the price of minimal computational operations. Different filter representations have
been systematically addressed.

Keywords Linear complexity ·Sequence generator ·Filter function ·Cryptography

1 Introduction

A stream cipher cryptosystem consists of a short key and a public algorithm or
sequence generator. The output sequence generated by such a generator (keystream
sequence) is XORed with the plaintext (in emission) to obtain the ciphertext or with
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the ciphertext (in reception) to recover the original plaintext. References [9–11, 18]
provide a solid introduction to the study of stream ciphers.

At the present moment, stream ciphers are the fastest among the encryption
procedures so they are implemented inmany engineering applications e.g. the encryp-
tion algorithm RC4 [12] used in Wired Equivalent Privacy (WEP) as a part of the
802.11 standard, the recent proposals HC-128 or Rabbit coming from the eSTREAM
Project [16] that are included in the latest release versions of CyaSSL (lightweight
open source embedded implementation of the SSL/TLS protocol [19]) or the J3Gen,
a promising pseudo random number generator for low-cost passive Radio Frequency
Identification (RFID) tags [14].

Typically, keystream generators are based on maximal-length Linear Feedback
Shift Registers (LFSRs) [3] whose output sequences, the so-called m-sequences, are
combined in a nonlinear way (e.g. by means of nonlinearly filtering or combination,
irregular decimation, modelling with cellular automata, introduction of typical ele-
ments from block ciphers, etc) to produce sequences of cryptographic application.
One general technique for building keystream generators is to use a nonlinear filter,
i.e. a nonlinear function applied to the stages of a single maximal-length LFSR [2,
11]. That is the output sequence is generated as the image of a nonlinear Boolean
function F in the LFSR stages.

Desirable properties for such sequences can be enumerated as follows: (a) Long
Period, (b) Good statistical properties, (c) Large Linear Complexity (LC). Period and
statistical properties of the filtered sequences are characteristics deeply studied in
the literature, see the references above mentioned as well as [1, 13, 15]. In addition,
such sequences have to pass a battery of tests (DIEHARD tests [6], Tuftests [7])
to be accepted as cryptographic sequences. Regarding the third requirement, linear
complexity of a sequence is defined as the length of the shortest LFSRable to generate
such a sequence. In cryptographic terms, LC must be as large as possible in order
to prevent the application of the Berlekamp-Massey algorithm [8]. A recommended
value for LC is about half the sequence period. Although the exact value of the
linear complexity attained by any filtered sequence is still an open problem [5], in
this work a method of computing the whole class of filtering functions with a linear
complexity adequate for cryptographic purposes is proposed. The method is based
on the handling of nonlinear filters by means of algebraic operations.

2 Main Concepts and Basic Notation

Specific notation and different basic concepts to develop such a computing method
are introduced.

Maximal-sequence (m-sequence). Let {sn} be the binary output sequence of a
maximal-length LFSR of L stages, that is a LFSR whose characteristic polynomial

P(x) =
L
∑

j=0
pj xj with pj ∈ {0, 1} is primitive of degree L, see [18]. In that case, the

output sequence is a m-sequence of period 2L − 1. The sequence {sn} satisfies the
linear recursion:



Classes of Nonlinear Filters for Stream Ciphers 109

L
∑

j=0
pj sn+j = 0.

The roots of P(x) are of the form α2i
(i = 0, 1, . . . , L − 1) where α is a primitive

element in GF(2L) that is an extension of the binary field GF(2) with 2L elements
[4]. The generic term of the sequence {sn} can be written by means of the roots of
P(x) as [3]:

sn = Tr(C αn) =
L−1
∑

j=0

(Cαn)2
j
, n ≥ 0 (1)

where C ∈ GF(2L). If C = 1, then {sn} it is said to be in its characteristic phase.
Nonlinear filter It is a Boolean function F(x0, x1, . . . , xL−1) in L variables of

degree k. For a subset A = {a0, a1, . . . , ar−1} of {0, 1, . . . , L − 1} with r ≤ k, the
notation xA = xa0 xa1 . . . xar−1 is used. The Boolean function can be written as [17]:

F(x0, x1, . . . , xL−1) =
∑

A

cA xA, (2)

where cA ∈ {0, 1} are binary coefficients and the summation is taken over all subsets
A of {0, 1, . . . , L − 1}.

Filtered sequence. The sequence {zn} is the keystream or output sequence of
the nonlinear filter F applied to the L stages of the LFSR. The keystream bit zn is
computed by selecting bits from the m-sequence such that

zn = F(sn, sn+1, . . . , sn+L−1).

Cyclotomic coset. Let Z2L−1 denote the set of integers [1, . . . , 2L − 1]. An equiv-
alence relation R is defined on its elements q1, q2 ∈ Z2L−1 such as follows: q1R q2 if
there exists an integer j, 0 ≤ j ≤ L − 1, such that

2j · q1 = q2 mod 2L − 1.

The resultant equivalence classes into which Z2L−1 is partitioned are called the cyclo-
tomic cosets mod 2L − 1, see [3]. All the elements qi of a cyclotomic coset have the
same number of 1’s in their binary representation; this number is called the coset
weight. The leader element, E, of every coset is the smallest integer in such an
equivalence class. Moreover, the cardinal of any coset is L or a proper divisor of L.

Characteristic polynomial of a cyclotomic coset. It is a polynomial PE(x) defined
byPE(x) = (x + αE)(x + α2E) . . . (x + α2(r−1)E),where the degree r (r ≤ L)ofPE(x)
equals the cardinal of the cyclotomic coset E.

Characteristic sequence of a cyclotomic coset. It is a binary sequence {SE
n } defined

by the expression {SE
n } = {αEn + α2En + · · · + α2(r−1)En} with n ≥ 0. Recall that the

sequence {SE
n } is in its characteristic phase and satisfies the linear recurrence rela-

tionship given by PE(x), see [4].
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3 Nonlinear Filter Representations and Equivalence
Classes

The Eq. (2) describes the Algebraic Normal Form (ANF) of a nonlinear filter
F(sn, sn+1, . . . , sn+L−1). This representation of Boolean functions is currently used
by the designer of nonlinear filters as he can handle the degree and particular form
of the function. Nevertheless, the ANF of nonlinear filters do not give information
on the linear complexity of the filtered sequence. In this sense, a different repre-
sentation closely related to the linear complexity is required. Thus, a new nonlinear
filter representation is introduced. Indeed, if all the variables sn+j (0 ≤ j ≤ L − 1) of
F are substituted by their corresponding expressions in (1) and the resulting terms
grouped, then the term zn of the filtered sequence {zn} can be written as:

zn = F(sn, sn+1, . . . , sn+L−1) =
CE1α

E1n + (CE1α
E1n)2 + · · · + (CE1α

E1n)2
(r1−1)+

...

CEiα
Ein + (CEiα

Ein)2 + · · · + (CEiα
Ein)2

(ri−1)+ (3)

...

CEN αEN n + (CEN αEN n)2 + · · · + (CEN αEN n)2
(rN −1)

,

where ri is the cardinal of coset Ei, the subindex i ranges in the interval 1 ≤ i ≤ N
and N is the number of cosets of weight ≤ k. Thus, a nonlinear filter F(sn, sn+1,

. . . , sn+L−1) can be represented in terms of the N characteristic sequences {SEi
n } that

appear in this sequential decomposition shown in Eq. (3).
Note that the ith row of (3) corresponds to the nth-term of the sequence {CEiα

Ein +
(CEiα

Ein)2 + · · · + (CEiα
Ein)2

(ri−1)}, that is the characteristic sequence {SEi
n } where

the coefficient CEi ∈ GF(2ri) determines the starting point with reference to its char-
acteristic phase. If CEi = 0, then the corresponding cyclotomic coset Ei would be
degenerate. Otherwise, the coset is nondegenerate. Linear complexity of the filtered
sequence is related with the number of coefficients CEi �= 0 as the contribution of
any nondegenerate coset to LC equals the cardinal of such a coset [18]. In this way,
the above sequential representation already provides quantitative information on the
LC of the filtered sequence.

Now,we can introduce a third nonlinear filter representation that is a simplification
of the previous one. In fact, a nonlinear filter F(sn, sn+1, . . . , sn+L−1) can be also rep-
resented by a N-tuple of coefficients (CE1 , CE2 , . . . , CEN ) where CEi ∈ GF(2ri) and
N is as before the number of cosets of weight≤ k. This representation is particularly
useful as allows us to treat separately the distinct cosets.
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In brief, a nonlinear filter can be represented in three different ways:

1. The traditional Algebraic Normal Form.
2. The sum of its characteristic sequences.
3. A N-tuple of coefficients that define the starting point of such characteristics

sequences.

The idea of grouping nonlinear filters in equivalence classes for their analysis
and handling has been already treated in the literature, see [17]. In this section, an
equivalence relationship specific to design filters with guaranteed LC is proposed.

Let G be the set of the kth-order nonlinear filters applied to a single LFSR of
length L. We can group the elements of G producing the filtered sequence {zn} or
a shifted version of {zn}, denoted by {zn}∗. From equation (3), it is clear that if we
substitute CEi for CEi · αEi (1 ≤ i ≤ N), then we will obtain {zn+1}. In general,

CEi → CEi · αjEi ∀i ⇒ {zn} → {zn+j}.

This fact enables us to define an equivalence relationship∼ on the setG as follows:
F ∼ F ′ with F, F ′ ∈ G if they generate shifted versions of the same filtered sequence
{zn},

{F(sn, . . . , sn+L−1)} = {zn} and {F ′(sn, . . . , sn+L−1)} = {zn}∗.

It is easy to see that the relation defined above is an equivalence relationship and
that the number of filters in each equivalence class equals the period of the filtered
sequence. Making use of the third representation for nonlinear filters (N-tuple of
coefficients), we see that the coefficients associated with F, F ′, notated (CEi) and
(C′

Ei
) respectively, satisfy for an integer j

C′
Ei

= CEi · αj Ei (1 ≤ i ≤ N). (4)

4 Computing Nonlinear Filters with a Guaranteed LC

Previously to the method’s description, several results that will be used in the com-
putation are introduced.

Definition 1 Two nonlinear filters F0 and F1 in the same equivalence class are
consecutive if they satisfy the Eq. (4) with j = 1 or equivalently

F1(sn, . . . , sn+L−1) = F0(sn+1, . . . , sn+L).

Moving from filter F0 to filter F1 in the three forms of representation means:

1. An increment by 1 in all the sub-indices of the ANF representation followed (if

necessary) by a substitution of sn+L by
L−1
∑

j=0
pj sn+j.
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2. A simultaneous cyclic shift of all the characteristic sequences {SEi
n } in the char-

acteristic sequence-based representation.
3. The product of each coefficient by its corresponding factor αEi (1 ≤ i ≤ N) in

the N-tuple representation.

Let E1, E2, . . . , EM be the leaders of the M nondegenerate cosets of weight ≤ k in
{zn} and r1, r2, . . . , rM their corresponding cardinals. Two different Lemmas that
allow one to handle the different filters of an equivalence class can be pointed out.

Lemma 1 If p nonlinear filters in the same equivalence class are chosen

(CEi), (CEi · αq1Ei), (CEi · αq2Ei), . . . , (CEi · αqp−1Ei), (5)

(q1, q2, . . . , qp−1) being integers in such a way that no characteristic polynomial
PEi(x) (1 ≤ i ≤ M) divides the polynomial

Q(x) = (1 + xq1 + · · · + xqp−1),

then the nonlinear filter characterized by the coefficients

C̃Ei = CEi(1 + αq1Ei + · · · + αqp−1Ei) (1 ≤ i ≤ M)

preserves the same cosets Ei as those of the filters defined in (5).

Proof The result follows from the fact that the coefficients of the new nonlinear filter
verify

C̃Ei = CEi(1 + αq1Ei + · · · + αqp−1Ei) �= 0 (1 ≤ i ≤ M)

as no αEi is a root of Q(x). �

Therefore an easy way to guarantee the presence of all the cosets Ei in the new
filter is just summing p ≤ rmin consecutive nonlinear filters in the same equivalence
class (rmin being the least cardinal of all the cosetsEi) as deg Q(x) < deg PEi(x) (1 ≤
i ≤ M).

Lemma 2 The sum of nonlinear filters satisfying the conditions of Lemma1 gives
rise to a new nonlinear filter in a different equivalence class.

Proof We proceed by contradiction. Suppose that the new filter belongs to the same
equivalence class. Then,

C̃Ei = CEi(1 + αq1Ei + · · · + αqp−1Ei) = CEi · αjEi (1 ≤ i ≤ M). (6)

Assume without loss of generality that coset E1 = coset 1. Therefore, according to
Eq. (6)

(1 + αq1 + · · · + αqp−1) = αj
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and consequently

(1 + αq1Ei + · · · + αqp−1Ei) = αjEi (2 ≤ i ≤ M).

Thus, it follows that

(1 + αq1 + · · · + αqp−1)Ei = (1 + αq1Ei + · · · + αqp−1Ei) (2 ≤ i ≤ M).

Nevertheless, it is a well known fact that in GF(2L) this equality only holds for Ei

of the form 2m (i.e. the elements of coset 1) but not for the leaders of any coset Ei �=
coset 1. �

Both lemmas allow us to construct a new equivalence class that preserves the
same cosets as those of the initial class.

From the previous results, an easy method of computing all the nonlinear filters
that guarantee the cosets of weight k is given. Indeed, we start from a filter with a
unique term product of k equidistant phases of the form:

F0(sn, sn+1, . . . , sn+L−1) = snsn+δsn+2δ . . . sn+(k−1)δ (7)

with 1 ≤ k ≤ L and gcd(δ, 2L − 1) = 1. In the sequel, we will focus exclusively on
the Nk cosets of weight k making use of the Nk-tuple representation.

Given F0 in (7), the computation of its Nk-tuple is carried out as follows. Let
E = 2e0 + 2e1 + · · · + 2ek−1 be the leader element of an arbitrary coset of weight k
where ei (0 ≤ i ≤ k − 1) are integers. According to Eqs. (2), (3) and grouping terms,
the coefficient CE for F0 in the Nk-tuple representation, denoted by C0

E , is given by
the determinant

C0
E =

∣

∣

∣

∣

∣

∣

∣

∣

α0· 2e0
αδ 2e0

α2 δ 2e0
. . . α(k−1) δ 2e0

α0· 2e1
αδ 2e1

α2 δ 2e1
. . . α(k−1) δ 2e1

. . . . . . . . .

α0· 2ek−1
αδ 2ek−1

α2 δ 2ek−1
. . . α(k−1) δ 2ek−1

∣

∣

∣

∣

∣

∣

∣

∣

,

or equivalently,

C0
E =

∣

∣

∣

∣

∣

∣

∣

∣

1 λ0 λ2
0 . . . λ

(k−1)
0

1 λ1 λ2
1 . . . λ

(k−1)
1

. . . . . . . . .

1 λk−1 λ2
k−1 . . . λ

(k−1)
k−1

∣

∣

∣

∣

∣

∣

∣

∣

= Π(λi + λj),

with λi = αδ 2ei , λj = αδ 2ej
(0 ≤ i < j ≤ k − 1). Thus, each coefficient C0

E is a Van-
dermonde determinant that can be easily computed as well as it is guaranteed to be
different from 0. Thus, the cosets of weight k for the filter F0 are nondegenerate and
their contribution to the linear complexity equals

(L
k

)

, see [18]. Next, the coefficient
of coset E for F1 in the Nk-tuple representation, denoted by C1

E , is given by the
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determinant

C1
E =

∣

∣

∣

∣

∣

∣

∣

∣

α1· 2e0
α(δ+1) 2e0

α(2 δ+1) 2e0
. . . α((k−1) δ+1) 2e0

α1· 2e1
α(δ+1) 2e1

α(2 δ+1) 2e1
. . . α((k−1) δ+1) 2e1

. . . . . . . . .

α1· 2ek−1
α(δ+1) 2ek−1

α(2 δ+1) 2ek−1
. . . α((k−1) δ+1) 2ek−1

∣

∣

∣

∣

∣

∣

∣

∣

thus,
C1

E = α2e0 · α2e1
. . . α2ek−1 · C0

E = αE · C0
E .

At the same time, the coefficient of coset E for the filter F0 + F1, denoted by C01
E , is

C01
E = C0

E + C1
E = C0

E(1 + αE).

The key idea in this construction method is shifting the filter F0 + F1 through its
equivalence class and summing it with F0 in order to cancel the successive compo-
nents of its Nk-tuple. The procedure is sketched in algorithm 1. After a succession
of sums and shiftings, the final result is:

1. A set of Nk basic nonlinear filters of the form (0, 0, . . . , di, . . . , 0, 0) (1 ≤ i ≤
Nk) with di ∈ GF(2L), di �= 0 where each filter includes a unique coset Ei of
weight k.

2. Their corresponding ANF representations.

The combination of all these basic filters with di (1 ≤ i ≤ Nk) ranging in GF(2L)

(with the corresponding ANF representations) gives rise to all the possible terms of
order k that preserve the cosets of weight k. Later, the addition of terms of order < k
in ANF permits the generation of all the nonlinear filters of order k that guarantee a
linear complexity LC ≥ (L

k

)

.

Algorithm 1. Computation of nonlinear filters with a unique k-weighted coset

Input:
The pair (L, k), Nk , LFSR characteristic polynomial P(x), filter F0 in ANF

01: Compute the Nk-tuple for filter F0, (C0
Ei

), (1 ≤ i ≤ Nk);
02: for i = Nk − 1 to 2 do
03: Compute the Nk-tuples for filters F1 and F0 + F1, (C1

Ei
) and (C01

Ei
), respectively;

04: Shift (C01
Ei

) through its equivalence class until the i − th component equals C0
Ei
;

05: Sum (C01
Ei

) + (C0
Ei

) getting a Nk-tuple with 0 at the i − th component;
06: (C0

Ei
) ← (C01

Ei
) + (C0

Ei
)

07: end for
Output:

Nk basic filters of the form (0, 0, . . . , di, . . . , 0, 0) (1 ≤ i ≤ Nk) with di ∈ GF(2L), di �= 0
Their corresponding ANF representations.
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4.1 Discussion of the Method

Regarding the previous method, distinct considerations must be taken into account.
Recall that the construction method above described to compute the basic filters

(0, 0, . . . , di, . . . , 0, 0), di �= 0 involves very simple operations:

• Sum operation: that is reduced to a sum of filters in the ANF representation or
to a sum of elements CEi in the extended field GF(2L) that expressed in binary
representation is just an exclusive OR operation.

• Shifting operation through an equivalence class: that means for each shifting an
increment by 1 in all the indexes in the ANF representation or the multiplication
of powers of α by their corresponding factors αEi in the Nk-tuple representation.

Consequently, the efficiency of the computation method is quite evident. In brief, we
provide one with the complete class of nonlinear filters with LC ≥ (L

k

)

at the price
of minimal computational operations.

In the case that the presence of more cosets of weight <k were guaranteed, the
procedure here described continues being applicable just enlarging the coefficient
vector to new components corresponding to those new guaranteed cosets in the N-
tuple representation. Let us now see an illustrative example.

4.2 A Numerical Example

Let F0 be a nonlinear filter of third order applied to the stages of a LFSR of length 5
and characteristic polynomial P(x) = x5 + x3 + 1, where α is a root of P(x) so that
α5 = α3 + 1. There are 2 cyclotomic cosets of weight 3: coset 7= {7, 14, 28, 25, 19}
and coset 11= {11, 22, 13, 26, 21}. The form of the filter with guaranteed cosets of
weight 3 is F0(s0, s1, s2) = s0s1s2. The algorithm previously described is applied.

INPUT: (L, k) = (5, 3), N3 = 2, LFSR characteristic polynomial P(x) = x5 +
x3 + 1, filter F0 = s0s1s2 in ANF.

Computation of the 2-tuples for the filters F0, F1, F0 + F1:

• F0(s0, s1, s2) = s0s1s2 → (C0
7 , C0

11) = (α20, α13).
• F1(s0, s1, s2) = s1s2s3 → (C1

7 , C1
11) = (α20 · α7, α13 · α11) = (α27, α24).

• F0 + F1 = s0s1s2 + s1s2s3 → (C01
7 , C01

11) = (α20, α13) + (α27, α24) = (α5, α5).

Computation of (d1, 0):

• Shifting of (C01
7 , C01

11) through its equivalence class until C01
11 = C0

11 = α13, that is
(α5, α5) is shifted up to (α27, α13).

• Sum (α27, α13) + (α20, α13) = (α5, 0), so that (d1, 0) = (α5, 0).

Computation of (0, d2):
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Table 1 Class of nonlinear filters (d1, 0) with coset 7 exclusively

Filter Algebraic normal form Coeff.

F0 s0s1s2 + s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s3 +
s1s2s4 + s1s3s4

(α5, 0)

F1 s0s1s2 + s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 + s1s2s4 (α12, 0)

F2 s0s1s2 + s0s1s3 + s0s2s3 + s1s2s4 + s1s3s4 (α19, 0)

F3 s0s2s3 + s0s2s4 + s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (α26, 0)

F4 s0s1s3 + s0s2s3 + s0s2s4 + s0s3s4 + s1s3s4 (α2, 0)

F5 s0s1s3 + s0s1s4 + s0s2s4 + s1s2s4 + s2s3s4 (α9, 0)

F6 s0s1s2 + s0s1s3 + s0s2s3 + s0s3s4 + s1s2s3 + s1s2s4 (α16, 0)

F7 s0s1s4 + s0s2s3 + s1s2s3 + s1s2s4 + s2s3s4 (α23, 0)

F8 s0s1s2 + s0s2s3 + s0s3s4 + s1s2s3 + s1s3s4 + s2s3s4 (α30, 0)

F9 s0s1s4 + s0s2s4 + s0s3s4 + s1s2s3 (α6, 0)

F10 s0s1s2 + s0s1s3 + s0s1s4 + s1s2s3 + s1s3s4 + s2s3s4 (α13, 0)

F11 s0s1s2 + s0s2s4 + s0s3s4 + s1s2s4 (α20, 0)

F12 s0s1s3 + s0s1s4 + s0s2s3 + s1s2s3 + s1s3s4 (α27, 0)

F13 s0s1s2 + s0s2s4 + s1s2s3 + s1s2s4 + s1s3s4 (α3, 0)

F14 s0s1s3 + s0s2s3 + s0s2s4 + s1s2s3 (α10, 0)

F15 s0s1s3 + s1s2s4 + s1s3s4 + s2s3s4 (α17, 0)

F16 s0s2s3 + s0s2s4 + s0s3s4 + s1s2s4 + s2s3s4 (α24, 0)

F17 s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 (1, 0)

F18 s0s1s2 + s0s1s4 + s1s2s3 + s1s2s4 (α7, 0)

F19 s0s1s2 + s0s2s3 + s2s3s4 (α14, 0)

F20 s0s3s4 + s1s2s3 + s1s3s4 (α21, 0)

F21 s0s1s4 + s0s2s4 + s1s3s4 (α28, 0)

F22 s0s1s2 + s0s1s3 + s0s2s4 + s1s2s3 + s2s3s4 (α4, 0)

F23 s0s1s3 + s0s3s4 + s1s2s3 + s1s2s4 + s2s3s4 (α11, 0)

F24 s0s1s4 + s0s2s3 + s0s3s4 + s1s2s4 + s1s3s4 + s2s3s4 (α18, 0)

F25 s0s1s2 + s0s1s4 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s3 + s2s3s4 (α25, 0)

F26 s0s1s2 + s0s1s3 + s0s1s4 + s0s3s4 + s2s3s4 (α, 0)

F27 s0s1s2 + s0s1s4 + s0s3s4 + s1s2s4 + s1s3s4 (α8, 0)

F28 s0s1s2 + s0s1s4 + s0s2s3 + s0s2s4 + s1s3s4 + s2s3s4 (α15, 0)

F29 s0s1s2 + s0s1s3 + s0s2s4 + s0s3s4 + s1s3s4 + s2s3s4 (α22, 0)

F30 s0s1s3 + s0s1s4 + s0s2s4 + s0s3s4 + s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (α29, 0)

• Shifting of (C01
7 , C01

11) through its equivalence class until C01
7 = C0

7 = α20, that is
(α5, 0) is shifted up to (α20, 0).

• Sum (α20, 0) + (α20, α13) = (0, α13), so that (0, d2) = (0, α13).

OUTPUT: Two basic nonlinear filters expressed in their 2-tuple and ANF repre-
sentations.
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1. The 2-tuple (d1, 0) = (α5, 0) and its ANF representation
s0s1s2 + s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s3 + s1s2s4 + s1s3s4.

2. The 2-tuple (0, d2) = (0, α13) and its ANF representation
s0s2s4 + s0s3s4 + s1s2s4.

Basic filters (d1, 0) and (0, d2) range in their corresponding equivalence class
(with 25 − 1 filters per class) as it is shown in Tables1 and 2, respectively. Filter
(d1, 0) includes a unique coset of weight 3 that is (coset 7) as so does (0, d2) with

Table 2 Class of nonlinear filters (0, d2) with coset 11 exclusively

Filter Algebraic normal form Coeff.

F0 s0s2s4 + s0s3s4 + s1s2s4 (0, α13)

F1 s0s1s3 + s0s1s4 + s0s2s3 + s1s3s4 (0, α24)

F2 s0s1s2 + s0s2s4 + s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (0, α4)

F3 s0s1s3 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s3 (0, α15)

F4 s0s1s3 + s0s1s4 + s1s2s4 + s2s3s4 (0, α26)

F5 s0s1s2 + s0s2s3 + s0s3s4 + s1s2s3 + s1s2s4 (0, α6)

F6 s0s1s4 + s0s2s3 + s1s2s3 + s2s3s4 (0, α17)

F7 s0s1s2 + s0s3s4 + s1s2s3 + s1s3s4 + s2s3s4 (0, α28)

F8 s0s1s4 + s0s2s4 + s0s3s4 + s1s2s3 + s1s3s4 (0, α8)

F9 s0s1s2 + s0s1s3 + s0s1s4 + s0s2s4 + s1s2s3 + s1s3s4 (0, α19)

F10 s0s1s2 + s0s1s3 + s0s2s4 + s1s2s4 (0, α30)

F11 s0s1s3 + s0s2s3 + s1s2s3 + s1s2s4 (0, α10)

F12 s0s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (0, α21)

F13 s0s2s3 + s0s2s4 + s0s3s4 + s1s3s4 + s2s3s4 (0, α)

F14 s0s1s3 + s0s1s4 + s0s2s4 + s0s3s4 + s2s3s4 (0, α12)

F15 s0s1s2 + s0s1s3 + s0s1s4 + s0s3s4 + s1s2s3 + s1s2s4 + s1s3s4 (0, α23)

F16 s0s1s2 + s0s1s4 + s0s2s3 + s0s2s4 + s1s2s4 + s1s3s4 (0, α3)

F17 s0s1s2 + s0s1s3 + s0s2s3 + s0s2s4 + s1s3s4 + s2s3s4 (0, α14)

F18 s0s1s3 + s0s2s4 + s0s3s4 + s1s2s3 + s1s2s4 + s1s3s4 + s2s3s4 (0, α25)

F19 s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s4 + s1s3s4 (0, α5)

F20 s0s1s2 + s0s1s3 + s0s1s4 + s0s2s3 + s0s2s4 + s1s2s3 + s1s2s4 + s2s3s4 (0, α16)

F21 s0s1s2 + s0s1s3 + s0s2s3 + s0s3s4 + s1s2s4 + s1s3s4 + s2s3s4 (0, α27)

F22 s0s1s4 + s0s2s3 + s0s2s4 + s0s3s4 + s1s2s3 + s1s2s4 + s2s3s4 (0, α7)

F23 s0s1s2 + s0s1s3 + s0s1s4 + s0s2s3 + s0s3s4 + s1s2s3 + s2s3s4 (0, α18)

F24 s0s1s2 + s0s1s4 + s0s3s4 + s1s2s4 + s2s3s4 (0, α29)

F25 s0s1s2 + s0s1s4 + s0s2s3 + s0s3s4 + s1s3s4 (0, α9)

F26 s0s1s2 + s0s1s4 + s0s2s4 + s2s3s4 (0, α20)

F27 s0s1s2 + s0s1s3 + s0s3s4 (0, 1)

F28 s0s1s4 + s1s2s3 + s1s2s4 + s1s3s4 (0, α11)

F29 s0s1s2 + s0s2s3 + s0s2s4 + s1s2s3 (0, α22)

F30 s0s1s3 + s1s2s3 + s1s3s4 + s2s3s4 (0, α2)



118 A. Fúster-Sabater and F.M. Vitini

(coset 11). None of the filters depicted in the previous tables attains the lower bound
LC ≥ (5

3

)

corresponding to the cosets of weight 3. Nevertheless, summing up each
one of the ANF representations in Table 1 with every one of the ANF representations
inTable 2,weget the 31 × 31possible combinations of termsof order 3 that guarantee
the cosets of weight 3 (coset 7 and coset 11). Next, the addition of terms of order <3
in ANF representation permits us the generation of all the nonlinear filters of order
3 applied to the previous LFSR that guarantee a linear complexity LC ≥ (5

3

)

.

5 Conclusion

In this work, different representations of nonlinearly filtering functions (ANF,
sequential decomposition, N-tuple representation) have been considered and ana-
lyzed. At the same time, a method of computing all the nonlinear dynamical filters
applied to a LFSR that guarantee the cosets of weight k has been developed. The
procedure is based on algebraic operations (addition and shifting operations) on non-
linear filters in different equivalence classes. Starting from a nonlinear filter that is
the product of equidistant phases, the computation method formally completes the
class of filters with a guaranteed linear complexity of value LC ≥ (L

k

)

. In crypto-
graphic terms, this procedure means an easy way of designing keystream generators
for stream ciphers.
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Abstract The development of side-channel and fault injection attacks against the
implementation of algorithms used in elliptic curve cryptography (ECC), has pointed
out that it is not enough to implement efficient algorithms that are secure from a
theoretical point of view. In this sense, it is necessary to design algorithms that do
not leak information which could allow an attacker to obtain the used keys, thus
making the physical implementations of those algorithms resistent to this kind of
attacks. In this work, some of the options to implement the scalar multiplication for
elliptic curves are described.
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physical implementations of cryptographic algorithms in those devices are specially
threatened by side-channel or fault injection attacks (commonly known as physical
attacks), highlights the importance of analyzing the characteristics of the elliptic
curve cryptography (ECC) algorithms used by those devices.

Scalar multiplication is the basic operation in ECC when physical devices with
limited computational and memory resources are used. Thus, it is necessary to take
into account the cost of its implementation in terms of the type and number of
operations to perform. As it is well known, a scalar multiplication in additive groups
is algorithmically analogous to an exponentiation in multiplicative groups. There
are, however, some differences that justify the study of scalar multiplication on its
own. For instance, the fact that a point inversion within the group of points on an
elliptic curve has a relatively low cost, allows some algorithmic optimizations.

In this work we have focused on elliptic curves, E(Fp) with infinity point O ,
defined over prime fields, Fp, p > 3, because they are the most widely used in prac-
tical applications (the American National Security Agency has selected the option
of prime fields for its Suite B, [18]), and because the use of ECC over binary fields
is protected by several patents.

The rest of the work is organized as follows: in Sect. 2 some concepts related to
elliptic curve arithmetics are presented. Section3 describes the classical algorithms
for scalar multiplication. Finally, algorithms that include some type of countermea-
sure to avoid some physical attacks are analyzed in Sect. 4. For a more exhaustive
treatment of ECC and its arithmetics, the interested reader can see [5, 9].

2 Elliptic Curve Arithmetics

The computational cost of additions and subtractions is usually considered negligible
as compared to that of multiplications. In spite of this consideration being asymptot-
ically correct for personal computers and similar devices, this is not accurate in the
case of implementing algorithms in small embedded cryptographic devices which
use an arithmetic coprocessor capable to add, subtract, multiply, and make modular
operations such as multiplication or squaring.

In most cases, modular additions and subtractions are carried out by means of
normal additions and subtractions and, respectively, conditional subtractions and
additions. In practice, these conditional operations imply a side-channel vulnerabil-
ity which could be avoided by performing the operations unconditionally, that is,
performing dummy operations half of the time. On the other hand, as each operation
carried out by the coprocessor requires an extra software processing to configure and
start it, it seems clear that the cost of additions and subtractions is not negligible in
practice.

However, the most computationally costly operation is multiplication. It is gen-
erally considered that, for operands of a few hundred of bits, S/M ∼ 0.8, M being
the cost of a modular multiplication and S that of a squaring. The cost of a modu-
lar inversion is much higher than that of a multiplication; in smartcards it has been
observed that I/M ∼ 100, I being the cost of a modular inversion [21].
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Most of the computation time employed in the aforementioned embedded devices
is related to the curve point arithmetic, namely additions, subtractions, multiplica-
tions by scalars and inversions. The remaining operations (conditional branching,
assignments, loop processing, etc.), have a negligible cost as compared to the com-
putational cost of the above arithmetic operations.

In some cases, it is adequate to use Jacobian projective coordinates [9], or modi-
fied (or mixed) Jacobian coordinates [2], to avoid performing some operations. For
example, if two points in Jacobian coordinates have the same Z coordinate, they can
be added very efficiently [15]. Indeed, if P1 = (X1 : Y1 : Z) and P2 = (X2 : Y2 : Z),
with X1 �= X2, the sum P1 + P2 = P3, with P3 = (X3 : Y3 : Z3) can be computed
as:

⎧

⎨

⎩

X3 = D − B − C,

Y3 = (Y2 − Y1)(B − X3) − Y1(C − B),

Z3 = Z(X2 − X1),

with

⎧

⎪

⎪

⎨

⎪

⎪

⎩

A = (X2 − X1)
2,

B = X1A,

C = X2A,

D = (Y2 − Y1)2.

This Meloni’s addition formula [15] is known as co-Z addition, and it has a very
small computational cost. An interesting property of this formula is that the point P1
can be converted after the addition into another representative P ′

1 = (X ′
1 : Y ′

1 : Z3),
with no cost. It can be seen that Z3 = Z(X2 − X1), which yields X ′

1 = X1(X2 −
X1)

2 = X1A and Y ′
1 = Y1(X2 − X1)

3 = Y1(C − B), expressions which are part of
the Meloni’s addition formula above.

Co-Z addition and update (ZADDU) uses Meloni’s addition formula, such that
ZADDU(P1, P2) = (P3, P ′

1). Goundar et al. [7] extended this operation to a conju-
gate addition, referred to asZADDC(P1, P2) = (P3, P4), observing that the previous
co-Z addition can also yield P1 − P2 = (X4 : Y4 : Z3) with [21]

{

X4 = (Y2 + Y1)2 − B − C,

Y4 = (Y2 + Y1)(B − X4) − Y1(C − B).

3 Efficient Scalar Multiplication Algorithms

In this section, the most efficient classical algorithms to compute the scalar mul-
tiplication when there is no threat of potential side-channel attacks are presented
(assuming, for instance, that the calculations to be performed are public, or that they
take place in a secure environment).

The simpler binary methods are commonly called double-and-add algorithms,
either left-to-right or right-to-left. There are also methods based on the non-adjacent
form (NAF) representation of the scalar with sign, which use can improve the effi-
ciency of the simple binary methods. Moreover, the sliding windowmethods are also
presented. These are methods that use time-memory trade-offs to speed up the scalar
multiplication, provided that extra memory is available.
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In the following, when the computational cost of an algorithm is mentioned, it is
assumed that the curve point is represented in affine coordinates. This allows several
improvements when using algorithms which operate with the scalar bits from left
to right. This assumption is reasonable because the use of affine coordinates is a
standard procedure in most protocols.

3.1 Simple Binary Algorithms

There are several formulations to calculate the scalar multiplication (kP) starting
from the binary decomposition of the scalar, k = (kl−1kl−2 . . . k0)2. If, for example,
the following formulas are considered,

kP = k0P + k12P + · · · kl−12
l−1P,

kP = k0P + 2(k1P + 2(· · · + 2(kl−1P) · · · )),

the algorithms to perform the corresponding operations are known as double-and-
add algorithms (due to the additive group structure), and are similar to the classical
exponentiation algorithms based on squaring and multiplying. Algorithm1 is called
left-to-right because it starts using the scalar bits from themost significant to the least
significant. In Algorithm2 the scanning of the bits is made in the opposite direction
and, thus, it is called right-to-left algorithm.

Algorithm 1 Double-and-add left-to-right scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)2
2: Output: kP
3: Uses: P , Q
4: Q ← O
5: for i = l − 1 to 0 do
6: Q ← 2Q
7: if ki = 1 then
8: Q ← Q + P
9: end if
10: end for
11: return Q

Both algorithms have the same complexity in terms of point operations. However,
their cost differ when considering field multiplications. In Algorithm1 it is possible
to use themixed affine-projective addition formula when the affine coordinates of the
input point are known. Furthermore, in [12] it was pointed out thatAlgorithm2 allows
using the Jacobian addition formula at step8 and the modified Jacobian doubling
formula at step10, provided the Jacobian coordinates of point Q and the modified
Jacobian coordinates of point R are known. This allows fast point multiplication on
elliptic curves without precomputation.



Implementation of Cryptographic Algorithms for Elliptic Curves 125

Algorithm 2 Double-and-add right-to-left scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)2
2: Output: kP
3: Uses: P , Q, R
4: Q ← O
5: R ← P
6: for i = 0 to l − 1 do
7: if ki = 1 then
8: Q ← Q + R
9: end if
10: R ← 2R
11: end for
12: return Q

3.2 Algorithms with Non-adjacent Forms (NAF)

It is relevant to notice that an inversion operation P ← −P has a computational cost
almost negligible. Thus, it is interesting to use signed representations to decrease
the number of additions to be performed in the scalar multiplication. This can be
made by first converting the scalar into its non-adjacent form, which is a binary
representation with sign in such a way that there is no two consecutive bits equal to
1. That is, the NAF representation of an integer k ∈ N

∗ is k = (kl−1kl−2 . . . k0)NAF
with ki ∈ {−1, 0, 1}, 0 ≤ i < l − 1 and kl−1 = 1 such that, for any consecutive digits
ki and ki+1, ki ki+1 = 0.

There is a unique NAF representation of a given scalar so that its length is the
same than the binary representation of the scalar or has one more digit, its number of
non-zero digits is always minimal among base 2 signed representations for a given
scalar, and there exists a simple algorithm to obtain the NAF representation of a
positive integer which uses only low-cost operations (see Algorithm3).

Algorithm 3 Calculation of the NAF representation of an scalar
1: Input: k ∈ N

∗
2: Output: kNAF
3: i ← 0
4: while k ≥ 1 do
5: if k (mod 2) = 1 then
6: ki ← 2 − (k (mod 4))
7: k ← k − ki
8: else
9: ki ← 0
10: end if
11: k ← k/2
12: i ← i + 1
13: end while
14: return kNAF = (kl−1kl−2 . . . k0)NAF
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Algorithm4 shows how to calculate the left-to-right scalar multiplication using
the NAF decomposition of the scalar. Algorithm5 [12] includes the computation of
the NAF representation of the scalar and is a right-to-left variant of Algorithm4.

Algorithm 4 Left-to-right NAF scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)NAF
2: Output: kP
3: Uses: P , Q
4: Q ← O
5: for i = l − 1 to 0 do
6: Q ← 2Q
7: if ki = 1 then
8: Q ← Q + P
9: end if
10: if ki = −1 then
11: Q ← Q + (−P)

12: end if
13: end for
14: return Q

3.3 Window NAF Algorithms

If some odd multiples of the input point are precomputed, a scalar multiplication can
be calculated in a more efficient way. The basic idea is to operate with the bits of the
scalar in windows of an adequate size and store in a table the result of multiplying
the point by each window of bits.

As an example, if the scalar has two bits 11, the calculation which is made accord-
ing to the left-to-right double-and-add algorithm is 2(2Q + P) + P . However, if 3P
is known, the same result is obtained by computing 2(2Q) + 3P , thus saving an addi-
tion. This idea can be extended to blocks with more bits (windows of different sizes)
and NAF representations [6, 14]. With right-to-left algorithms, a similar strategy can
be used. In this case some values which are stored during intermediate calculations
of the scalar multiplication are combined at the end [16, 22].

In [9], two families of algorithms which use blocks of several bits (windows)
at the same time are defined, namely, sliding window NAF, and window width-w
NAF algorithms. Both can be implemented either left-to-right or right-to-left. The
algorithm to perform a left-to-right sliding window NAF scalar multiplication is
shown in Algorithm6.

Algorithm7 shows a right-to-left window width-w NAF. In this case, the width-w
non-adjacent form of the scalar is computed on-the-fly.
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Algorithm 5 Right-to-left NAF scalar multiplication
1: Input: P ∈ E(Fp), k ∈ N

∗
2: Output: kP
3: Uses: P , R
4: Q ← O
5: R ← P
6: while k ≥ 1 do
7: if k (mod 2) = 1 then
8: u ← 2 − (k (mod 4))
9: k ← k − u
10: if u = 1 then
11: Q ← Q + R
12: else
13: Q ← Q + (−R)

14: end if
15: end if
16: k ← k/2
17: R ← 2R
18: end while
19: return Q

Algorithm6 requires to store (2w − (−1)w)/3 − 1 more points than Algorithm4.
In the case of Algorithm7, 2w−1 − 1 more points need to be stored, as compared to
Algorithm5.

Algorithms6 and 7 have a similar efficiency. Choosing the optimal one depends
on the length of the scalar, and also on the amount of available memory (the larger
the memory, the larger the possible width of the window).

TheseNAF techniqueswere generalized in [16]with the signed fractional window
representation,which allows to use any set of consecutive odd digits±1,±3,±5, . . ..
In this way the efficiency of the scalar multiplication can be optimized by using a
window of width w ≥ 4 and all the available memory storage [21].

4 Algorithms Which Include Countermeasures

As mentioned in Sect. 2, side-channel attacks use some assignments or conditional
branching of the algorithms, which frequently depend on the bits of the key, to
obtain information about the latter. Thus, a large variety of countermeasures have
been proposed in order to modify the algorithms such that their execution includes
a series of regular operations which are independent of the value of the scalar bits.
Those are known as regular algorithms, and the sequence of operations they perform
is constant no matter whether the bits of the scalar are 0 or 1. In this section, several
ways of applying this regularity are described.
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Algorithm 6 Left-to-right sliding window NAF scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)NAF, w ≥ 2
2: Output: kP
3: Uses: Q, P1, P3, . . . , Pm , where m = 2 2w−(−1)w

3 − 1
4: Q ← O
5: i ← l − 1
6: Precomputations
7: for i = 1 to m by 2 do
8: Pi ← i P
9: end for
10: Main loop
11: while i ≥ 0 do
12: if ki = 0 then
13: Q ← 2Q
14: i ← i − 1
15: else
16: s ←max(i − w + 1, 0)
17: while ks = 0 do
18: s ← s + 1
19: end while
20: u ← (ki . . . ks)NAF
21: for j = 1 to i − s + 1 do
22: Q ← 2Q
23: end for
24: if u > 0 then
25: Q ← Q + Pu
26: end if
27: if u < 0 then
28: Q ← Q + (−P−u)

29: end if
30: i ← s − 1
31: end if
32: end while
33: return Q

4.1 Double-and-Add Always

In Sect. 3.1 it can be observed that in step8 of Algorithm1 and Algorithm2 a point
addition is performed only when the value of the processed scalar bit is 1. This can
leak information to an attacker. An obvious countermeasure against side-channel
attacks, first proposed in [3], is to always perform a point addition, no matter if
ki = 1 or ki = 0 (in this case the point addition is a dummy operation). The method
is thus called double-and-add always. Algorithm8 presents the right-to-left variant
of this countermeasure, where a dummy addition is included in step 10.

It is possible that applying a countermeasure against a certain kind of attack could
generate a vulnerability to other attacks. This is the case of Algorithm8, because
if an attacker is able to induce a fault during the addition of points (this can be
made in steps 8 or 10), it is possible to deduce the value of the corresponding bit
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Algorithm 7 Right-to-left on-the-fly window width-w NAF scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)2, w ≥ 2
2: Output: kP
3: Uses: R, Q1, Q3, . . . , Qm , where m = 2w−1 − 1
4: R ← P
5: Q1, Q3, . . . , Qm ← O
6: Main loop
7: while k ≥ 1 do
8: if k (mod 2) = 1 then
9: t ← k (mod 2w) � where k (mod 2w) ∈ [−2w−1, 2w−1 − 1]
10: if t > 0 then
11: Qt ← Qt + R
12: end if
13: if t < 0 then
14: Q−t ← Q−t − R
15: end if
16: k ← k − t
17: end if
18: R ← 2R
19: k ← k/2
20: end while
21: Postcomputations
22: for i = 3 to m by 2 do
23: Q1 ← Q1 + i Qi
24: end for
25: return Q1

Algorithm 8 Right-to-left double-and-add-always scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)2
2: Output: kP
3: Uses: Q, R, T
4: Q, T ← O
5: R ← P
6: for i = 0 to l − 1 do
7: if ki = 1 then
8: Q ← Q + R
9: else
10: T ← T + R
11: end if
12: R ← 2R
13: end for
14: return Q
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by just checking the output of the algorithm. Indeed, a correct result implies that the
operation that was performed was dummy, and the bit is ki = 0. On the contrary, a
wrong result indicates that ki = 1. This is the basic idea used in the safe-error attacks,
introduced in [23]. The positive aspect, however, is that when using Algorithm8 it is
easy to check whether there has been an attempt to induce a fault because, as at the
end of the algorithm it is expected that Q = kP , T = (2l − k − 1)P and R = 2l P , it
would be enough to check that Q + T + P = R to ensure that no attack has occured.

4.2 Montgomery Ladder

Another well known countermeasure is theMontgomery ladder, presented in Algo-
rithm9. It was introduced in [17] to accelerate the scalar multiplication on a specific
class of curves, and has been generalized to elliptic curves over fields of large char-
acteristic [1, 4, 10].

Algorithm9 allows to accelerate the scalar multiplication provided that the y
coordinate of the result is not needed. This occurs in ECDSA and many other cryp-
tographic protocols. As it can be observed, there is no dummy operation in the
Montgomery ladder algorithm and, thus, it is not threatened by safe-error attacks.
Another advantage is that it can be easily parallelized [4].

Algorithm 9 Montgomery ladder scalar multiplication
1: Input: P ∈ E(Fp), k = (kl−1kl−2 . . . k0)2 where kl−1 = 1
2: Output: kP
3: Uses: Q0, Q1
4: Q0 ← P
5: Q1 ← 2P
6: for i = l − 2 to 0 do
7: Q1−ki ← Q0 + Q1
8: Qki ← 2Qki
9: end for
10: return Q0

4.3 Joye Double and Add Ladder

As a general rule, in order to prevent or avoid side-channel attacks, right-to-left
algorithms are usually better than left-to-right ones. In [11], the author proposed a
right-to-left algorithm (see Algorithm10) which, besides, is not affected by safe-
error attacks, a powerful type of fault induction attacks. Joye’s algorithm, similarly
to Algorithm9, carries out a doubling and an addition for every bit of the scalar.
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Algorithm 10 Joye double-and-add ladder scalar multiplication
1: Input: P ∈ E(Fp) y k = (kl−1kl−2 . . . k0)2
2: Output: kP
3: Uses: Q0, Q1
4: Q0 ← O
5: Q1 ← P
6: for i = 0 to l − 1 do
7: Q1−ki ← 2Q1−ki + Qki
8: end for
9: return Q0

4.4 Joye m-ary Ladders

Algorithm11, called regular m-ary, was presented in [13] and, with m = 2, is very
similar to the Montgomery ladder. Regarding its performance, Algorithm9, which
uses only the x coordinate, is the fastest one. The performance of Algorithm11 with
m = 2 is better than that of Algorithm10.

Algorithm 11 Regular left-to-right Joye m-ary scalar multiplication
1: Input: P ∈ E(Fp), k = (klm−1kl−m−2 . . . k0)m where k > 0
2: Output: kP
3: Uses: Q, R0, R1, . . . , Rm−1
4: Q ← −P
5: Precomputations
6: for i = 0 to m − 1 do
7: Ri ← (m + i − 1)P
8: end for
9: Main loop
10: for i = lm − 1 to 0 do
11: Q ← mQ + Rki � t duplications and an addition if m = 2t

12: end for
13: Final correction
14: Q ← Q + P
15: return Q

4.5 Co-Z Ladders

New scalar multiplicationmethods based on the co-Z Jacobian arithmetics (J ) were
presented in [7, 20], later on extended in [8, 19]. As an example, the Montgomery
ladder algorithm can be converted to Algorithm12. In this way it is possible to take
advantage of the ZADDU and ZADDC co-Z Jacobian addition formulas.
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In [15] it was pointed out that a formula of ZADDU which only uses the (X : Y )

coordinates could be used in scalar multiplication algorithms (in this case the for-
mula is denoted ZADDU’). The Z coordinate can be generally obtained at the end
with a few extra field operations. This can also be applied to Algorithm12 (see
Algorithm13), by using the ZADDC’ operation, which is a (X : Y )-only variant of
ZADDC [8, 20].

Algorithm 12Montgomery ladder scalar multiplication usingJ with co-Z addition
1: Input: P = (x, y) ∈ E(Fp), k = (kl−1kl−2 . . . k0)2 where kl−1 = 1
2: Output: kP
3: Uses: Q0, Q1
4: Q1 ← (X2P : Y2P : Z2P ) � Jacobian representation of 2P
5: Q0 ← (x Z2

2P : yZ3
2P : Z2P ) � Jacobian representation of P

6: for i = l − 2 to 0 do
7: (Q1−ki , Qki ) ← ZADDC(Qki , Q1−ki )

8: (Qki , Q1−ki ) ← ZADDU(Q1−ki , Qki )

9: end for
10: return Q0

Algorithm 13 Montgomery ladder scalar multiplication usingJ with (X : Y )-only
co-Z addition
1: Input: P = (x, y) ∈ E(Fp), k = (kl−1kl−2 . . . k0)2 where kl−1 = 1
2: Output: kP
3: Uses: Q0, Q1
4: Q1 ← (X2P : Y2P )

5: Q0 ← (x Z2
2P : yZ3

2P )

6: for i = l − 2 to 1 do
7: (Q1−ki , Qki ) ← ZADDC’(Qki , Q1−ki )

8: (Qki , Q1−ki ) ← ZADDU’(Q1−ki , Q1−ki )

9: end for
10: (Q1−k0 , Qk0 ) ← ZADDC’(Qk0 , Q1−k0 )

11: Z ← xYQk0
(XQ0 − XQ1 )

12: λ ← yXQk0
13: (Qk0 , Q1−k0 ) ← ZADDU’(Q1−k0 , Qk0 )

14: return (λ2XQ0 : λ3YQ0 : Z)
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1 Introduction

Supermanifolds appeared inMathematics as a way to unify the description of bosons
and fermions in Physics. Of course, there would be nothing special about them if
the resulting theory were just the juxtaposition of separate theorems, what is really
interesting is the possibility of new phenomena arising from the interaction of both
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(the bosonic and the fermionic) worlds. From the point of view of Physics, the most
prominent exponent is the phenomenon of supersymmetry, much questioned these
days in view of the absence of experimental evidence coming from the LHC research,
but from a purely mathematical point of view there is the exciting possibility of
investigating geometric structures which can be understood only by looking at them
through “fermionic lenses”.

Symplectic scalar curvature is one of these structures: if one starts out with a con-
nection on a usual manifold, it is straightforward to define its associated curvature,
but if a refinement such as Ricci or scalar curvature is desired (as in General Rel-
ativity), then a non-degenerate bilinear form (a second-order covariant tensor field)
is required to take the relevant traces. Riemannian geometry enters the stage when
that tensor field is taken symmetric, leading to a plethora of well-known results, but
there is another possibility. A symplectic form could be used to make the successive
contractions needed to pass from the curvature four-tensor to the scalar curvature,
but it is readily discovered that the would-be symplectic scalar curvature obtained
this way vanishes due to the different symmetries involved (the Ricci tensor is sym-
metric and is contracted with the skew-symmetric symplectic form). Thus, it would
seem that there is no room for a non-trivial Riemannian-symplectic geometry, an
idea further supported from the observation that locally Riemannian and symplectic
geometries are quite opposite to each other, as in the symplectic case there are no
invariants because of the Darboux theorem.

However, things are different if we allow for supermanifolds. In this case, there
are two variants of symplectic forms, even and odd ones, and it is remarkable that,
while even symplectic forms lead to the same results as in the non graded setting,
for odd symplectic manifolds it is possible, a priori, to define a symplectic scalar
curvature, because the symmetries involved in this setting do not forbid its existence.
However, the explicit construction of examples is very difficult, and in this paper
we try to explain why. The ultimate reason is that the structure of odd symplectic
manifolds is very restrictive. In particular, they strongly depend on the existence on an
isomorphism between the tangent bundle TM and the Batchelor bundle E (that is, the
vector bundle over M such that the supermanifold (M,A ) satisfies A � Γ ΛE).
When this isomorphism comes from a non-degenerate bilinear form on TM with
definite symmetry (e.g., a Riemannian metric or a symplectic form), the symmetries
of the graded Ricci tensor lead to a trivial scalar curvature, as in the non-graded case.

While we will not deepen into the physical applications, neither of this odd sym-
plectic curvature nor supersymplectic forms in general (for this, see [1, 2, 4, 9]), we
will offer a detailed review of the mathematics involved in this construction under
quite general conditions, avoiding excessive technicalities with the aim of making
this topic available to a wider audience.

2 Preliminaries

Let M be a differential manifold, letX (M) denote theC∞(M)-module of its vector
fields, and let ∇ be a linear (Koszul) connection on it. The curvature of ∇ is the
operator Curv : X (M) × X (M) → EndX (M) such that
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Curv(X, Y ) = [∇X ,∇Y ] − ∇[X,Y ],

where [X, Y ] is the Lie bracket of vector fields and [∇X ,∇Y ] is the commutator of
endomorphisms. Given a Riemannian metric on M (that is, a symmetric, positive-
definite, covariant 2-tensor field g ∈ S2+(M)), there is a particular linear connection
on M , the Levi-Civita connection, such that ∇g = 0. With the aid of the metric, two
further contractions of the curvature can be defined, the first one leading to the Ricci
covariant 2-tensor

Ric(X, Y ) = Trg(Z → Curv(X, Z)Y ), (1)

and the second one to the Riemannian scalar curvature

S = Tr(g−1Ric). (2)

Let us remark that the Ricci tensor (1) is symmetric, as it is g, so the contraction in
(2) does not vanish a priori.

Now suppose that we use a compatible symplectic formω ∈ Ω2(M) (that is, such
that ∇ω = 0) to compute these contractions. Using a superindex to distinguish them
from the previous ones, we obtain

Ricω(X, Y ) = Trω(Z → Curv(X, Z)Y ), (3)

and
Sω = Tr(ω−1Ricω). (4)

The symplectic Ricci tensor (3) is again symmetric, but this time the contraction in
(4) involves the skew-symmetric ω−1, so we get Sω = 0.

The study of symplecticmanifolds (M, ω) endowedwith a connection∇ such that
∇ω = 0 can be carried on along lines similar to those of Riemannian geometry (see
[7]). The resulting Fedosov manifolds appeared first in the deformation quantization
of Poisson manifolds (see [5]). The fact that a basic local invariant such as the scalar
curvature vanishes on any Fedosov manifold has led to a certain lack of interest in
its use in Physics and Mathematics, aside from the mentioned rôle in deformation
quantization. However, if supermanifolds are considered a new possibility appears.
There are two classes of symplectic forms on a supermanifold and, as we see below,
one of them has the symmetry properties required to obtain a non-trivial contraction
defining the symplectic scalar curvature.

A supermanifold can be thought of as a non-commutative space of a special
kind, one in which the sheaf of commutative rings of C∞(M) functions has been
replaced by a sheaf of Z2-graded supercommutative algebras, that is, to each open
subsetU ⊂ M of a manifold, we assign an algebraA (U ) = A0(U ) ⊕ A1(U )with a
product such thatAi (U ) · A j (U ) ⊂ A(i+ j)mod2(U ) and a · b = (−1)|a||b|b · a, where
|a|, |b| denote theZ2 degree of the elements a, b ∈ A (U ). An exposition of the basic
facts about supermanifolds oriented to physical applications can be found in [15].



138 R. Hernández-Amador et al.

For completeness, let us give here the definition: a real supermanifold is a ringed
space (M,A ), whereA is a sheaf of Z2-graded commutative R-algebras such that:

(a) If N denotes the sheaf of nilpotents of A , then A /N induces on M the
structure of a differential manifold.

(b) The subsheaf N /N 2 is a locally free sheaf of modules, with A locally iso-
morphic to the exterior sheaf

∧ (

N /N 2
)

.

The sheaf of differential forms on a manifold M , where Ω(U ) = ⊕

p∈Z Ω p(U ),
provide a good example. The nilpotents in this case are all the α ∈ Ω p(M) with
p ≥ 1, so A /N = C∞(M) (the smooth functions on M). Moreover, N /N 2 =
Ω1(M), the space of 1-forms, is locally generated by the differentials dx1, . . . , dxm

of the functions xi of a chart on M . Thus, as amodel for a supermanifold we can think
of a usual manifold M endowed with “superfunctions”, which are just differential
forms and can be classified as even and odd by their degree. From now on, until
otherwise explicitly stated, we will assume that our supermanifold is (M,Ω(M)),
and sometimes we will refer to it as the Koszul or Cartan–Koszul supermanifold.1

The replacement of C∞(M) by Ω(M) leads to the definition of other basic struc-
tures of differential geometry. For instance, (super) vector fields on the supermanifold
(M,Ω(M)) are now the derivations DerΩ(M) (such as the exterior differential d,
which has degree |d| = 1, the Lie derivativeLX , which has degree |LX | = 0, or the
insertion iX , which has degree |iX | = −1). A straightforward corollary to a theorem
of Fröhlicher–Nijenhuis (see [6]) states that, given a linear connection ∇ on M , the
derivations of the form ∇X , iX generate the Ω(M)-module DerΩ(M).

The (super) differential 1-forms on (M,Ω(M)) are defined as the duals
Der∗Ω(M), and k-forms are defined by taking exterior products as usual, and not-
ing that they are bigraded objects; if, for instance, ω ∈ Ω2(M,Ω(M)) (that is the
way of denoting the space of 2-superforms), its action on two supervector fields
D, D′ ∈ DerΩ(M) will be denoted

〈

D, D′;ω
〉

, a notation well adapted to the fact
that DerΩ(M) is considered here as a left Ω(M)-module and Ω2(M,Ω(M)) as a
right one. Other objects such as the graded exterior differential can be defined as in
the classical setting, but taking into account the Z2-degree (for details in the spirit of
this paper, see [16]). Thus, if α ∈ Ω0(M,Ω(M)), its graded differential d is given by
〈D;dα〉 = D(α), and ifβ ∈ Ω1(M,Ω(M)),wehave a2-formdβ ∈ Ω2(M,Ω(M))

whose action is given by

〈

D, D′;dβ
〉 = D(

〈

D′;β
〉

) − (−1)|D||D′| D′(〈D;β〉) − 〈[D, D′];β
〉

,

where |D| denotes the degree of the derivation D.

1This is not a great loss of generality in view of the existence of the vector bundle isomorphism
TM → E , between TM and the Batchelor bundle, already mentioned in the Introduction (see [13]),
so the changes needed to deal with the most general case are mainly notational.
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3 Symplectic Supergeometry

A supersymplectic form is a non-degenerate2 graded 2-form ω ∈ Ω2(M,Ω(M))

such that dω = 0. Notice that there are two classes of supersymplectic forms: the
even ones (for which |ω| is even) act in such a way that, in terms of the induced
Z2-degree,

| 〈D, D′;ω
〉 | = |D| + |D′|

and lead to symmetry properties similar to that of the non graded case, but the odd
symplectic forms (for which |ω| is odd) satisfy

| 〈D, D′;ω
〉 | = |D| + |D′| + 1.

As we will see below, these different properties translate into different symmetry
properties of the symplectic Ricci tensors.

By the aforementioned result of Frölicher–Nijenhuis, given a linear connection
∇ on M , the study of the action of any 2-superform ω can be reduced to that of a
matrix of the type

(〈∇X ,∇Y ;ω〉 〈∇X , iY ;ω〉
〈iX ,∇Y ;ω〉 〈iX , iY ;ω〉

)

where X, Y ∈ X (M).
In the case of an odd symplectic form ω, this structure can be made more explicit

as follows. Starting from a vector bundle isomorphim H : T M → T ∗M , we define
an odd 1-form λH , given by its action on basic derivations,

〈∇X ;λH 〉 = H(X)

〈iX ;λH 〉 = 0.

(notice that this action is actually independent of ∇). Next, we define ωH by ωH =
dλH . Thus, the matrix of ωH now reads

〈∇X ,∇Y ;ωH 〉 = (∇X H)Y − (∇Y H)X

〈∇X , iY ;ωH 〉 = −H(X)(Y )

〈iX ,∇Y ;ωH 〉 = H(Y )(X) (5)

〈iX , iY ;ωH 〉 = 0.

In a sense, these are all the odd symplectic superforms, according to the following
result.

Theorem 1 ([11]) Let ω be an odd symplectic form on (M,Ω(M)), then there
exist a superdiffeomorphism φ : Ω(M) → Ω(M) and a fibre bundle isomorphism

2In a technical sense that we will not describe here. See [12] for the details.
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H : T M → T ∗M such that
φ∗ω = ωH .

In what follows, we will restrict our attention to odd symplectic forms of the type
ωH . Let us insist that the reason is that even symplectic forms give rise to graded
symmetric symplectic Ricci tensors (see [9] for details), and further contraction with
the graded skew-symmetric symplectic form gives zero, thus leading to a trivial
symplectic scalar supercurvature.

4 Fedosov Supermanifolds

Now that we know the essentials about the structure of supersymplectic forms, to
begin the program sketched in Sect. 2 we need some facts about superconnections
∇∇ on (M,Ω(M)). In particular, we will need the analog of the Levi-Cività theorem
concerning the existenceof superconnections such that∇ω = 0 for a supersymplectic
formω, and also their corresponding structure theorem.We follow here the approach
in [14], although with some differences, the main one being that we do not assume
that ∇∇ is adapted to the splitting H (also, see Theorem 3 below).

A superconnection on (M,Ω(M)) is defined just as in the non-graded case, as an
R-bilinear mapping ∇∇ : Der Ω(M) × Der Ω(M) → Der Ω(M), whose action on
(D, D′) is denoted ∇∇D D′, with the usual properties of Ω(M)-linearity in the first
argument and Leibniz’s rule in the second3:

∇∇D(αD′) = D(α)D′ + (−1)|α||D|α∇∇D D′ .

The definition of torsion and curvature also mimics the non-graded case:

〈

D, D′;Tor∇∇ 〉 = ∇∇D D′ − (−1)|D||D′|∇∇D′ D − [D, D′],

and
〈

D, D′, D′′;Curv∇∇ 〉 = [∇∇D,∇∇D′ ]D′′ − ∇∇[D,D′] D′′,

where [D, D′] = D ◦ D′ − (−1)|D||D′| D′ ◦ D, [∇∇D,∇∇D′ ] = ∇∇D∇∇D′ − (−1)|D||D′|
∇∇D′∇∇D are the graded commutators. As in the case of supersymplectic forms, we
can describe a superconnection, once a linear connection ∇ on M is chosen, by a set
of tensor fields characterizing its action on basic derivations,

∇∇∇X ∇Y = ∇∇X Y+K0(X,Y ) + iL0(X,Y )

∇∇∇X iY = ∇K1(X,Y ) + i∇X Y+L1(X,Y )

3In particular, ∇∇ is not a tensor, hence the difference in notation.
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∇∇iX ∇Y = ∇K2(X,Y ) + iL2(X,Y )

∇∇iX iY = ∇K3(X,Y ) + iL3(X,Y ),

where Ki , Li : T M ⊗ T M → ΛT ∗M ⊗ T M , for i ∈ {0, 1, 2, 3}. As a simplifying
assumption, we will take a symmetric ∇∇. The relevant result is the following.

Theorem 2 ([14]) Let ∇ be a linear connection on M. A superconnection ∇∇ on
(M,Ω(M)) is symmetric if and only if

K0(X, Y ) = K0(Y, X) − Tor∇(X, Y ), L0(X, Y ) = L0(Y, X) + Curv∇(X, Y ),

K1(X, Y ) = K2(Y, X), L1(X, Y ) = L2(Y, X),

K3(X, Y ) = −K3(Y, X), L3(X, Y ) = −L3(Y, X),

(6)
for all X, Y ∈ X (M).

When the linear connection ∇ on M is symmetric, in the first equation of (6) we
have,

K0(X, Y ) = K0(Y, X),

and this will be assumed in the sequel.
The next step is to study those superconnections ∇∇ which are compatible with a

given odd supersymplectic form ωH , in the sense that ∇∇ωH = 0. This amounts to
saying that

D(〈D1, D2;ωH 〉) = 〈∇∇D D1, D2;ωH 〉 + (−1)|D||D1|〈D1,∇∇D D2;ωH 〉,

for all D, D1, D2 ∈ Der Ω(M). As a further simplifying assumption, we will take
the linear connection ∇ compatible with the isomorphism H : T M → T ∗M , that
is, ∇H = 0 (so, (5) also gets modified). Then, we get the following result (which
corrects the one appearing in [14]).

Theorem 3 ([9]) A symmetric superconnection, ∇∇, is compatible with the odd sym-
plectic form ωH if and only if

(a) H(K3(X, Y ), Z) = −H(K3(X, Z), Y )

(b) H(K2(X, Y ), Z) = −H(Y, L3(X, Z))

(c) H(X, L2(Y, Z)) = H(Z , L2(Y, X))

(d) H(K1(X, Y ), Z) = H(K1(X, Z), Y )

(e) H(K0(X, Y ), Z) = −H(Y, L1(X, Z))

(f) H(X, L0(Y, Z)) = H(Z , L0(Y, X)),

for all X, Y, Z ∈ X (M).

It is a straightforward generalization of the corresponding result in the non-graded
setting, that superconnections compatible with a given supersymplectic form exist
and, moreover, they possess an affine structure (see [9] and, for a different approach
[3]).Also generalizing the non-graded case [7], a Fedosov supermanifold is defined as
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a supermanifold endowed with a supersymplectic form and a compatible symmetric
superconnection, see [8]. Combining Theorem3 and (6) with (5), we get the follow-
ing. LetωH be an odd supersymplectic form on (M,Ω(M)), with H : T M → T ∗M
the associated bundle isomorphism. Let ∇ be a compatible, symmetric, linear con-
nection on M (that is, ∇H = 0), so the action of ωH on basic derivations reads

〈∇X , iY ;ωH 〉 = −H(X)(Y )

〈iX ,∇Y ;ωH 〉 = H(Y )(X) (7)

〈∇X ,∇Y ;ωH 〉 = 0 = 〈iX , iY ;ωH 〉 .

Finally, let ∇∇ be a superconnection on (M,Ω(M)), symmetric and compatible with
ωH , characterized by the tensors Ki , Li , i ∈ {0, 1, 2, 3}. From the above results, a
pair ((M,Ω(M)),∇∇,ωH ) is a Fedosov supermanifold if and only if:

(g) K0 is symmetric, L0 satisfies L0(X, Y ) = L0(Y, X) + Curv∇(X, Y ), and K3, L3

are skew-symmetric (from (6)).
(h) K1(X, Y ) = K2(Y, X) and L1(X, Y ) = L2(Y, X) (also from (6)).
(i) The above items (a) to (f) hold.

These conditions turn out to be very restrictive. From (b), (h) and (d), we get

−H(X, L3(Y, Z)) = H(K2(Y, X), Z) = H(K1(X, Y ), Z) = H(K1(X, Z), Y ) ,

and, because of the skew-symmetry of L3 (g), this equals

H(X, L3(Z , Y )) = −H(K2(Z , X), Y ) = −H(K1(X, Z), Y ).

Thus, H(K1(X, Z), Y ) = −H(K1(X, Z), Y ), which, in view of the fact that H is
an isomorphism, leads to

K1 = 0 = K2

and, a posteriori,
L3 = 0.

An immediate consequence is the following.

Corollary 1 A symmetric superconnection ∇∇, compatible with the odd symplectic
form ωH , acts as

∇∇∇X ∇Y = ∇∇X Y+K0(X,Y ) + iL0(X,Y )

∇∇∇X iY = i∇X Y+L1(X,Y )

∇∇iX ∇Y = iL1(Y,X)

∇∇iX iY = ∇K3(X,Y ),

for any X, Y ∈ X (M).
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Notice that such a ∇∇ is determined just by four ordinary tensor fields K0, K3, L0,
and L1.

5 Odd Symplectic Scalar Curvature

To study the simplest case, we will start with an n-dimensional manifold M , an iso-
morphism H : T M → T ∗M and a linear connection on M ,∇, such that∇H = 0.We
also consider the odd symplectic formω (actuallyωH , but we suppress subindices for
simplicity) given by (7) (denoting H(X, Y ) = H(X)(Y )) and a compatible supercon-
nection∇∇ as in Corollary1. Due to the symmetry properties of Curv∇∇ , to characterize
the action of the symplectic curvature tensor

〈D1, D2, D3, D4;Rω〉 := 〈 〈D1, D2, D3;Curv∇∇〉 , D4 ; ω〉

it suffices to study the following cases, which define corresponding 7 tensor fields
A1, . . . , A5, B1, and B3 (any other case gives a vanishing curvature) :

〈∇X ,∇Y ,∇Z ,∇T ; Rω〉 = H(T, B1(X, Y, Z))

〈∇X ,∇Y ,∇Z , iT ; Rω〉 = −H(A1(X, Y, Z), T )

= 〈∇X ,∇Y , iT ,∇Z ; Rω〉
〈∇X , iY ,∇Z ,∇T ; Rω〉 = H(T, B3(X, Y, Z))

= −〈iY ,∇X ,∇Z ,∇T ; Rω〉
〈∇X ,∇Y , iZ , iT ;Rω〉 = −H(A2(X, Y, Z), T )

〈∇X , iY ,∇Z , iT ;Rω〉 = −H(A3(X, Y, Z), T )

= 〈∇X , iY , iT ,∇Z ;Rω〉
= −〈iY ,∇X ,∇Z , iT ;Rω〉
= −〈iY ,∇X , iT ,∇Z ;Rω〉

〈∇X , iY , iZ , iT ;Rω〉 = −H(A4(X, Y, Z), T )

= −〈iY ,∇X , iZ , iT ;Rω〉
〈iX , iY ,∇Z , iT ;Rω〉 = −H(A5(X, Y, Z), T )

= 〈iX , iY , iT ,∇Z ;Rω〉.

Of course, these new tensors can be explicitly computed from the Ki , Li ’s. For
instance, A2, A3 ∈ Γ (T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T ∗M ⊗ T M), are given by

A2(X, Y, Z)· = −K3(Curv
∇(X, Y )·, Z) (8)

A3(X, Y, Z)· = −K3(Y, L0(X, Z)·). (9)

From these expression and items (a)–(i) above, we get the following [9].

Proposition 1 If ((M,Ω(M)),∇∇,ω) has the structure of a Fedosov supermanifold,
then

1. A3(X, Y, Z) = A3(Z , Y, X) − A2(X, Z , Y ).
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2. H(A3(X, Y, Z), T ) = H(A3(Z , Y, X), T ) − H(A2(Z , X, T ), Y ).
3. H(A3(Y, Z , X), T ) = −H(A3(Y, T, X), Z),

for any X, Y, Z , T ∈ X (M).

If some additional symmetry properties of H are added to these conditions, we get
those symmetries of the Ricci tensor mentioned in the introduction, leading to a
trivial scalar curvature as we will see below.

Corollary 2 If H comes from a Riemannian metric or a symplectic form on M, then
the graded Ricci tensor satisfies

〈∇X , iY ;Ricω
〉 = − 〈

iY ,∇X ;Ricω
〉

.

Finally, we proceed to compute the symplectic scalar curvature from a graded Ricci
tensor with this property. To this end, we take a basis of homogeneous derivations
{∇Xi , iXi } (where {Xi }, for i ∈ {1, . . . , n} is a local basis of vector fields on M). The
odd supermatrix locally representing ω has the form

ω =
(

0 −H(Xi , X j )

H(X j , Xi ) 0

)

=
(

0 −Hi j

H t
i j 0

)

.

Thus, the graded morphism induced by ω, ω� : Der Ω(M) → Ω1(M,Ω(M)), has
a supermatrix representative

ω� =
(

0 Hi j

−H t
i j 0

)

.

This supermatrix is invertible, and its superinverse is readily found to be

(ω�)−1 =
(

0 −(H t
i j )

−1

(Hi j )
−1 0

)

.

Now, the supermatrix associated to Ricω has the structure

Ricω =
(

A B
C D

)

,

so

(Ricω)� =
(

At −(−1)0Ct

Bt (−1)0Dt

)

=
(

At −Ct

Bt Dt

)

.

The scalar curvature is defined by the supertrace ofRicω with respect toω; therefore,
a straightforward computation shows that
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Scalω = STr
(

(

ω�
)−1 ◦ (

Ricω
)�

)

= −Tr
(

Ct (Hi j )
−1) + Tr

(−Bt (H t
i j )

−1) .

Now, if H has a definite symmetry, from Corollary 2 we get C = −Bt and conse-
quently

Scalω = −Tr
(

Ct (Hi j )
−1

) + Tr
(

C (H t
i j )

−1
)

.

But for any homogeneous invertible block A we have

(At )−1 = (−1)|A|(A−1)t

(because, for homogeneous blocks, (AB)t = (−1)|A||B| Bt At ), and also, because of
the invariance of the trace under transpositions, Tr(At B) = Tr(A Bt ), so

Scalω = −Tr(C (H−1
i j )t ) + Tr(C (H−1

i j )t ) = 0.

Thus, we deduce the following obstruction result (where we put back the subindex
H for clarity).

Theorem 4 If (M, H) is either a Riemannian or a symplectic manifold, then
ScalωH = 0 on (M,Ω(M)).

We believe that the preceding computations shed some light on the origin of the
difficulties related to the construction of explicit examples of odd scalar supercurva-
tures (letting aside the question of their geometric meaning).

Let us finish by mentioning two possible ways of avoiding this obstruction. Of
course, one consists in taking a general H : T M → T ∗M , not symmetric nor skew-
symmetric. The problem here is that such objects are not as natural from the point
of view of Physics as a metric or a symplectic form, and its introduction should be
carefully justified. The other possibility involves the choice of a connection ∇ such
that ∇H �= 0. This one is more interesting, as physically the choice of a connection
is often part of the problem (for instance, in the Lagrangian version of Ashtekar’s
Canonical Gravity, connections are precisely the variables [10]). However, the study
of this case is much more difficult and will be treated somewhere else [9].
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Abstract Prime submodules of amodule N and its symmetric algebra S(N ) are used
to study radicals of submodules and minimal components of symmetric algebras by
translating results from one categorie to the another one and vice versa.

Keywords Prime submodules ·Radical of submodules · Symmetric algebra ·Min-
imal components

1 Introduction

Let R be a (commutative and unitary) ring and let N be an R-module. The intersection
of all prime submodules of N containing a submodule M ⊂ N is called the radical
of M and it is denoted by radN (M) (see [8]). As is well-known, the radical

√
I of

an ideal I ⊂ R is characterized as the set of elements a ∈ R such that an ∈ I for
some n ∈ Z

+. This result has stimulated several efforts to obtain a somewhat similar
characterization for the radical of a submodule (see [2, 3, 8, 9]). In this article we
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first associate a prime ideal of the symmetric algebra of N—called the expansion
of M—to each prime submodule M ⊂ N and then we use it in order to obtain a
characterization of the radical of a submodule, which is as follows: an element of
a finitely generated R-module N belongs to radN (M) if and only if it is contained
in the radical of the ideal of the symmetric algebra of N generated by all elements
of M . As this result reduces the calculation of radN (M) to that of the radical of an
ideal in a symmetric algebra, we apply our characterization to design an algorithm
for computing some radicals of submodules of free modules by using the computer
software package CoCoA 3 (See [5, Sect. 3.2]).

On the other hand, by using as main tool the theory of prime submodules we
describe the structure of the minimal prime ideals of the equidimensional symmetric
algebra of a finitely generatedmodule.We first characterize when the ideal generated
by a submodule of a free module in the symmetric algebra is equidimensional and
determine the minimal components of equidimensional symmetric algebras. Prob-
ably the most outstanding result about this question was obtained by Huneke and
Rossi in [1, Sect. 3]. These authors showed, among other results, that if N is a finitely-
generated module over a commutative Noetherian ring, then the symmetric algebra
of N , S(N ), can have arbitrarily large number of minimal components and they tried
to identify the prime ideals of R which are the contraction of a minimal prime of
S(N ).

Let R be auniversally catenaryNoetheriandomain and let N be afinitely generated
R-module such that S(N ) is equidimensional. If p is a prime ideal of R, then the least
number of generators of Np is denoted by ν(Np). Let f : SpecS(N ) → Spec(R)

denote the induced natural map. Then, given p ∈Spec(R), our basic purpose is to
prove that in f −1(p) there is a minimal prime ideal of S(N ) if and only if ν(Np) −
htp =rank N . If p fulfils this condition, then there exists a unique minimal prime
ideal of S(N ) in f −1(p), denoted by Ep(0) and defined as

Ep(0) = {b ∈ S(N ) : ab ∈ p · S(N ) for some a ∈ R − p} .

2 Preliminaries

Let R be a commutativeNoetherian ringwith identity and let N be a finitely generated
R-module. If one tries to generalize the concept of a prime ideal (resp. primary) from
R to N , one is led to the following

Definition 1 Recall that a proper submodule P of N is said to be a prime (resp.
primary) submodule if for every a ∈ R, the induced homothety N/P

·a−→ N/P is
either injective or null (resp. nilpotent).

In light of this definition, it turns out that if P is a prime (resp. primary) submodule
of N then the set of homotheties of R vanishing on N/P , i.e.,

(P : N ) = {a ∈ R / aN ⊆ P} = Ann(N/P)
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is a prime (resp. primary) ideal of R. Furthermore, if P is a primary submodule
of N , the radical of the primary ideal (P : N ), denoted by

√
(P : N ), is a prime

ideal of R formed by all nilpotent homotheties of R on N/P , i.e.,
√

(P : N ) =
{a ∈ R / an N ⊆ P for some n > 0}. Thus if P is a prime submodule of N with
p = (P : N ) we shall call P a p-prime submodule and if P is a primary submodule
of N being p = √

(P : N ) we will say that P is a p-primary submodule. Note that a
p-primary submodule P of N is p-prime if and only if (P : N ) = p ∈ SpecR.

Definition 2 Let L be a proper submodule of a R-module N . Given a prime ideal p
of R, we will denote by p(L) the following submodule of N :

p(L) = {n ∈ N : an ∈ L + pN , for some a ∈ R − p} .

With the above notations, it is easy to see that either p(L) = N or p(L) is a p-prime
submodule of N , which is contained in every p-prime submodule of N containing L .

Definition 3 Let R be a Noetherian domain. Let N be a finite R-module. A submod-
ule M of N is said to be a 0-prime submodule if N/M is a torsion-free R-module
or, equivalently, if zero is the unique noninjective homothety on N/M .

Definition 4 Let R be a (commutative and unitary) ring and let N be an R-module.
The intersection of all prime submodules of N containing a submodule M ⊂ N is
called the radical of M and it is denoted by radN (M) (see [8]).

Let S(N ) = ⊕i≥0Si (N ) be the symmetric algebra of an R-module N endowed
with its naturalZ-graduation. Throughout this paperwe identify S0(N ) (resp. S1(N ))
to R (resp. N ).

Definition 5 Let N be a finitely generated R-module and let M be a prime submod-
ule of N . We define the expansion EM of M to be the set of all elements b ∈ S(N )

for which there exists a ∈ R, a /∈ pM such that a · b ∈ (pM , M) · S(N ).

Proposition 1 With the assumptions and notations above we have

1. EM is a prime ideal of S(N ).
2. EM ∩ R = pM , EM ∩ N = M .
3. EM is a homogeneous ideal; i.e., EM = ⊕i≥0E

i
M , E i

M = EM ∩ Si (N ).
4. The mapping M 
→ EM is an injection from the set of prime submodules of N

into SpecS(N ). (See [4, Sect. 2])

3 Computing the Radical of a Submodule

In [9] it is shown that if R is a principal ideal domain and N a finitely generated
R-module then the radical of every submodule M ⊆ N coincideswith the submodule
generated by its envelope; that is, radN (M) = 〈E(M)〉, where E(M) is the set of
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all x ∈ N for which there exist a ∈ R, y ∈ N such that x = a · y and an y ∈ M for
some n ∈ Z

+. In this case the module N is said to satisfy the radical formula (in
short, N s.t.r.f). In [2] this result has been extended to any Dedekind domain R and
any R-module.

Now we obtain the following characterization of the M-radical of a submodule
which ensures that the radical of a submodule coincides to the radical of an ideal of
the symmetric algebra.

Theorem 1 Let R be a ring, let N be a finitely generated R-module and let Q ⊆ N
be a submodule. An element x ∈ N belongs to radN (Q) if and only if x ∈ √

Q · S(N ),
or equivalently, xn ∈ Q · S(N ) for some n ∈ Z

+.

Proof First, assume x ∈ radN (Q). Let p ∈ SpecS(N ) such that Q · S(N ) ⊆ p. If
we set M = p ∩ N , by applying [4, Proposition1.2], it is easy to see that M is a
prime submodule of N . Moreover, since Q ⊆ M we have x ∈ M . Hence x ∈ p and
consequently x ∈ √

Q · S(N ).
Conversely, let x ∈ N be an element such that xn ∈ Q · S(N ) for some n ∈ Z

+.
We must show that if M is a prime submodule of N such that Q ⊆ M , then x ∈ M .
Indeed, let EM be the expansion of M . Since Q ⊆ M we have Q · S(N ) ⊆ EM so that
xn ∈ EM and since EM is a prime ideal we obtain x ∈ EM . Hence x ∈ EM ∩ N = M
and the result is proved.

Next we are going to apply the above result to calculate some radicals of submod-
ules.

From now on, we denote by A = R[x1, . . . , xn] = ⊕
i≥0

A(i) the positively graded

ring of all polynomials over a ring R. If N is an R-module, then there is an exact
sequence of R-modules

0 −→ K −→ F
π−→ N −→ 0 (1)

where F is a free R-module. Given a proper submodule M ⊂ N we set L = π−1(M).
If {e1, . . . , en} is a basis of F , we have an isomorphism ϕ : F −→ A(1), ϕ(ei ) = xi ,
1 ≤ i ≤ n. We denote by I , J the ideals ϕ(K ) · A, ϕ(L) · A, respectively. Clearly
I ⊆ J and from (1) we obtain an exact sequence

0 −→ I −→ A −→ S(N ) −→ 0.

Moreover, I , J and
√

J are homogeneous ideals with gradings I = ⊕k≥0 I (k), J =
⊕k≥0 J (k), and

√
J = ⊕k≥0

√
J (k), respectively.

Proposition 2 With the above notations, the following equality holds true

radN (M) = √
J (1)/I (1).

Proof From the exact sequence (1) we have radN (M) = radF (L)/K . Moreover,
since ϕ(K ) = I (1) and ϕ(L) = J (1), we can apply Theorem1 to obtain radN (M) =√

J (1)/I (1).
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By using the above result we can calculate some radicals of submodules of free
modules.

Let R = k[y1, . . . , yn] be the ring of polynomials over a field k, let A = R[x1,
. . . , xn] and let M be a submodule of a free module F generated by {e1, . . . , en}.
By using the isomorphism ϕ : F −→ A(1) above it turns out that J = ϕ(M) · A.
So if we know the generators of the submodule M , we only need to replace ei by
xi to obtain the generators of the ideal J . Once we know this, by using computer
algebra systems it is possible to obtain the generators of the ideal

√
J . Finally, taking

into account the preceding Proposition it follows that the radF (M) is spanned by the
linear generators of

√
J in the variables x1, . . . , xn . To illustrate the whole process

we present the following

Example 1 Let R = Q[x, y, z] be the polynomial ring overQ in three variables and
let F be a free R-module with basis {e1, . . . , e5}. Let M be the following submodule
of F :

M = 〈

x2e1 + y2e2, x2ze2 + y3e3, y3ze3 + x4e4, xz3e4 + y4e5
〉

.

By replacing {e1, . . . , e5} by {a, b, c, d, e} respectively, we shall consider the ideal

I = 〈

x2a + y2b, x2zb + y3c, y3zc + x4d, xz3d + y4e
〉

.

Next, according to the computation made by T. Recio using the package Radical, by
M. Caboara, implemented in CoCoA 3.5, we obtain that the

√
I is given by

√
I = 〈x2a + y2b, ycd2 + xabe, xcd2 − yb2e, xzd2 − y2ae, − yzac + x2bd,

yzb2 − y2ac, xzb2 − xyac, yz2b − x2yd, xz2b − x3d, x2zb + y3c,

xz2a + xy2d, xyd3 + yza2e, yz2ae + y3de, x2d3 + xza2e,

yzbd2 + xya2e, yz2cd − xy2be, xz2cd − x2ybe, xz3d + y4e,

xza2c + xyb2d, y3zc + x4d, xb2d3 + ya3ce, xa3c2 + xb4d,

ya3c2 + yb4d, yz4c − x3y2e, ybd5 − ya4e2, xbd5 − xa4e2,

y2bd4 − xza3de, yb3d3 − xa4ce, − y2a2c3d + xyb5e〉.

Thus the radical of the submodule M of F is

radF (M) = 〈x2e1 + y2e2, yz2e2 − x2ye4, xz2e2 − x3e4, x2ze2 + y3e3,

xz2e1 + xy2e4, xz3e4 + y4e5, y3ze3 + x4e4, yz4e3 − x3y2e5〉
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4 Determining Minimal Components of Equidimensional
Symmetric Algebras

This section is devoted to describing minimal components of equidimensional sym-
metric algebras but to do it we need the following preliminaries results (see [6],
Sect. 2):

Proposition 3 Let (R, p) be a Noetherian local ring, let F be a free R-module of
rank n and let M be a proper submodule of F. Then either p(M) = pF or p(M) =
pF + (e1, . . . , eh), where e1, . . . , eh form a part of a basis of F.

Remark 1 From now on, we assume that h is the largest possible value.

Proposition 4 Let (R, p), F and M be as above. Then, either

Ep(M) = pS(F)

or
Ep(M) = pS(F) + (x1, x2, . . . , xh)S(F),

where S(F) = R
[

x1, x2, . . . , xh, xh+1, . . . , xn
]

.

Proposition 5 Let (R, p), F, and M be as above. Then, either

tr. degk(p) k(Ep(M)) = n if Ep(M) = pS(F),

or
tr. degk(p) k(Ep(M)) = n − h if Ep(M) = pS(F) + (x1, . . . , xh)S(F).

Again, let (R, p), F and M be as above. Let us consider the short exact sequence
0 −→ M −→ F

π−→ N −→ 0 and let ν(N ) be the minimal number of generators
of N . As we have seen, if M + pF = pF + (e1, e2, . . . , eh), then there exists a basis
{e1, e2, . . . , eh, eh+1, . . . , en} of F . Thus, by Nakayama’s Lemma, ν(N ) = n − h.

Proposition 6 With the same hypotheses and notations as above,

tr. degk(p) k(Ep(M)) = ν(N ).

4.1 Equidimensional Ideals

Let R be a Noetherian domain, let F be a free R-module of finite rank, and let S(F)

be the symmetric algebra of F . In what follows, we assume that every irredundant
chain of prime ideals of S(F) has the same length.
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Remark 2 Let M be a submodule of F and denote by M · S(F) the ideal generated
by M in S(F). As is well known, the ideal M · S(F) is said to be equidimensional if
all its minimal prime ideals have the same codimension. These ideals are interesting
because the quotient S(F)/M · S(F) is an equidimensional symmetric algebra.

Proposition 7 Every minimal prime ideal over M · S(F) is the expansion Ep(M) for
some p ∈Spec(R).

Proof Let I ∈ SpecS(F) be aminimal prime ideal over M · S(F) and set p = I ∩ R.
Then it is easily shown that P = I ∩ F is a p-prime submodule containing M . Hence
p(M) ⊆ P and we have Ep(M) ⊆ EP ⊆ I . Since I is a minimal ideal over M · S(N )

and M · S(N ) ⊆ Ep(M) it is deduced that Ep(M) = I and the desired equality follows.

Proposition 8 With the same notations as above, let M ⊂ F be a submodule and
let rp(M) be the greatest rank of a free direct summand of Fp contained in Mp,
p ∈ Spec(R). Then,

htEp(M) = htp+rp(M).

Proof From the properties of localization it follows

htEp(M) = (

htEp(M)

)

p
.

On the other hand, we have
Mp = M ′

p ⊕ lp(M),

where lp(M) is a direct summand of Fp contained in Mp of rank rp(M) and M ′
p

is a submodule of Mp. This implies that M ′
p ⊆ pFp since if an element m ′ ∈ M ′

p is
not included in pFp then (m ′) would be a direct summand of Fp as follows from
Nakayama’s lemma. Hence

Mp = M ′′
p ⊕ (m ′) ⊕ lp(M),

thus contradicting the greatest rank of lp(M). Now it is not difficult to see that

p(Mp) = pFp ⊕ lp(M).

By identifying, as usual, F to S1(F) it follows that pFp ⊕ lp(M) generates an
ideal of S(F)p whose height is just htp+rp(M). Again by properties of localization
we obtain that the precedent height coincides with the height of the ideal Ep(M), and
so the proof is completed.

Before passing to the statement of our next result, we need to prove the following
lemma:

Lemma 1 E0(M) is a minimal prime ideal over M · S(M) such that

htE0(M) = rank(M).
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Proof First assume that E0(M) is not minimal over M · S(M). Let I be a prime ideal
of S(F) such that

M · S(F) ⊆ I ⊂
�=
E0(M).

If I ∩ R = (0) it is not difficult to see that I = E0(M), contrary to the initial
assumption. Thus let I ∩ R = p �= (0). Since E0(M) ∩ R = (0), after localizing S(F)

by the multiplicative set S = R − (0) it turns out that (E0(M))(0) is a proper ideal of
S(F)(0) and the same happens for the ideal I(0) since I ⊂

�=
E0(M). But in S(F)(0) we

have p(0) = R(0) it follows that I(0) contains the identity element. Therefore I(0) =
S(F)(0) which leads us to a contradiction. Hence I = E0(M). On the other hand,
S(F)(0) is a polynomial ring over the field R(0) in which M · S(F)(0) is a prime ideal
whose height is just rank(M). Finally, since M · S(F)(0) = (E0(M))(0) we deduced
the desired result taking into account that htE0(M) = ht (E0(M))(0).

Theorem 2 With the same notations, the following conditions are equivalent:

1. M · S(F) is an equidimensional ideal.
2. If Ep(M) is a minimal prime ideal over M · S(F), then

htp+rp(M) = rank(M).

Proof Assume M · S(F) is an equidimensional ideal and let I be a minimal prime
ideal over M · S(M). By virtue of Proposition7 the ideal I is the expansion of a
prime submodule p(M) where by definition we have

I ∩ F = p(M) and I = Ep(M).

By applying Proposition8 it now follows that

ht I = htp+rp(M).

On the other hand, by localizing M · S(F) in the generic point of R and by
contracting this localization to S(F) we obtain just the ideal E0(M).

Using now the precedent lemma and the hypothesis of equidimensionality of
M · S(F), we deduce that

htp+rp(M) = rank(M).

Let us assume now that for every minimal prime ideal Ep(M) over M · S(F) is
htp+rp(M) = rank(M). Clearly in this case M · S(F) is equidimensional and we
can conclude.
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4.2 Minimal Components of S(N)

We first need the following

Lemma 2 Let R be a universally catenary Noetherian domain, let p be a prime
ideal of R, let N be a finitely generated R-module and let

0 −→ M · S(F) −→ S(F)
λ−→ S(N ) −→ 0

be the exact sequence induced from the exact sequence of R-modules,

0 −→ M −→ F
π−→ N −→ 0,

in which F is free. Then, Ep(0) is a minimal prime ideal of S(N ) if and only if Ep(M)

is a minimal prime ideal over M · S(F).

Proof Assume that Ep(0) is a minimal prime ideal of S(N ). In this case, we can easily
see that λ−1(Ep(0)) is a minimal prime ideal over M · S(F) and λ−1Ep(0) = Ep(M).

Conversely, if Ep(M) is a minimal prime ideal of S(F) over M · S(F), then
λ(Ep(M)) = Ep(0) is also a minimal prime in S(N ).

Theorem 3 With the same notations and assumptions as in the previous lemma,
Ep(0) is a minimal prime ideal of S(N ) if and only if rank N = ν(Np) − htp.

Proof Let T = T (S(N )) be the torsion R-module of S(N ). By [1, p. 201] T is a
minimal prime ideal of S(N ). Therefore λ−1(T ) is a prime ideal of S(F) minimal
over M · S(F). Moreover, we have λ−1(T ) = E0(M), where E0(M) is the expansion
of the 0-prime submodule 0(M), i.e.,

E0(M) = {b ∈ S(F) : ab ∈ M S(F) for some a �= 0} .

Assume now Ep(M) is a minimal prime ideal over M · S(F). Taking into account that
S(F) is a catenary ring because R is universally catenary and by hypothesis S(N ) is
equidimensional, it is not difficult to see that all minimal prime ideals over M · S(F)

have the same height. Then htEp(M) = htE0(M) (see [7, p. 118]). On the other hand,
by applying [3, Theorem 15.5, p. 118] is obtained

htE0(M) = tr. degk(0) S(F)(0) − tr. degk(0) k(E0(M)),

where k(0) is the field of fractions of R.
Next, from Proposition 4, we have

tr. degk(0) k(E0(M)) = ν(N(0)) = rank N .
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Hence
htE0(M) = tr. degk(0) S(F)(0) − rank N .

Again by ([7, p. 118]) we have

htEp(M) = tr. degk(0) S(F)(0) + htp − tr. degk(p) k(Ep(M)),

thus
htEp(M) = tr. degk(0) S(F)(0) + htp − ν(Np),

which implies that rank N = ν(Np) − htp.

Conversely, suppose that rank N = ν(Np) − htp. By applying [7, p. 118] we obtain

htEp(M) = htp+tr. degk(0) S(F)(0) − tr. degk(p) k(E0(M))

= htp+tr. degk(0) S(F)(0) − ν(Np),

On the other hand,

htE0(M) = tr. degk(0) S(F)(0) − tr. degk(0) k(EM)

= tr. degk(0) S(F)(0) − ν(N(0))

= tr. degk(0) S(F)(0) − rank N .

Then, by virtue of hypothesis htEp(M) = htE0(M). By using the fact that S(F) is
a catenarian ring it is deduced that Ep(M) is a minimal prime ideal over M · S(F) in
S(F) since Ep(0) is minimal in S(N ).
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Application to Cybersecurity of the Stability
Theory of the Systems of Ordinary
Differential Equations

Ángel Martín del Rey and Gerardo Rodríguez Sánchez

One machine can do the work of fifty ordinary men. No machine
can do the work of one extraordinary men (E. Hubbard).
Dedicated to Jaime Muñoz Masqué, our mentor and friend, on
the occasion of his 65th birthday.

Abstract Themain goal of this work is to show an application of the stability theory
of systems of ordinary differential equations to cybersecurity. Specifically, we will
focus our attention on the study of the systems used in the mathematical models to
simulate malware spreading on computer networks. Thus, a compartmental SCIRS
model for computer worms spreading is proposed and analyzed.

Keywords Malware propagation · Differential equations · Stability

1 Introduction

In the last three decades the scientific and technological progress of our society has
been enormous, which is due to the development of the information and communi-
cation technologies.

It is safe to say that the great majority of our relationships depend on these tech-
nologies, so that the so-called e-society becomes a reality. This suggestive scenario,
which managed in a timely manner can lead to high levels of welfare, it is not with-
out risks and dangers. Consequently, it is very important to manage their security
in an effective way. In this sense we can highlight the development of new and

Á. Martín del Rey (B) · G. Rodríguez Sánchez
Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics,
University of Salamanca, Salamanca, Spain
e-mail: delrey@usal.es

G. Rodríguez Sánchez
e-mail: gerardo@usal.es

© Springer International Publishing Switzerland 2016
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increasingly sophisticated malware specimens whose economic and social effects
can be very serious [2].

Cybersecurity is the branch of science that deals with protection (both reactively
and proactively) of the information that are stored, managed and transmitted elec-
tronically via different computer networks. The design and development of security
protocols involve different disciplines which include mathematical modeling. This
plays a very important role in the study of malware spreading on computer networks.
The great majority of mathematical models proposed to date to simulate this phe-
nomenon are based on the use of systems of ordinary differential equations [3]. Its
mathematical analysis allows us to draw conclusions that make us understand better
the propagation mechanisms and design control strategies to minimize the malicious
behavior of malware.

The main goal of this work is to show the use of the stability theory of
(autonomous) systems of ordinary differential equations in analyzing the behav-
ior of the dynamic of the last mentioned mathematical models. To achieve this goal,
we propose a newmodel to simulate the spreading of a computer worm in a computer
network such that the local stability of their equilibrium points is studied.

The rest of the paper is organized as follows: in Sect. 2 the basic notions on the sta-
bility theory of the systems of (three) ordinary differential equations are introduced;
the detailed description of the proposed model and the study of its local stability is
shown in Sect. 3; finally, in Sect. 4 the main conclusions are stated.

2 Mathematical Background

Set
⎧

⎨

⎩

x′(t) = f (x, y, z)
y′(t) = g(x, y, z)
z′(t) = h(x, y, z)

(1)

an autonomous system of ordinary differential equations such that f , g, h ∈ C 1(Γ ),
where Γ is the feasible region. The point e∗ = (x∗, y∗, z∗) ∈ Γ is said to be an
equilibrium point of (1) if:

f
(

x∗, y∗, z∗
) = g

(

x∗, y∗, z∗
) = h

(

x∗, y∗, z∗
) = 0. (2)

The equilibrium points can be classified according to the behavior of the trajectories
of the system near them as follows:

• The equilibrium point e∗ is (locally) stable if, for any R > 0, there is a 0 < r ≤ R
such that every trajectory within Br(e∗) at t0, stay within BR(e∗) for every t > t0.
That is, e∗ is stable if all solutions starting near e∗ stay nearby.

• The equilibrium point e∗ is (locally) unstable if it is not (locally) stable.
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• The equilibrium point e∗ is (locally) asymptotically stable if it is stable and, in
addition, there is a δ > 0 such that every trajectory within Bδ(e∗) at t approaches
e∗ as t → ∞.

The following result characterizes the equilibrium points:

Theorem 1 Let e∗ be an equilibrium point of the system (1) such that J(e∗) is the
associated Jacobian matrix, and set λ1, λ2 and λ3 its eigenvalues. Then the following
hold:

(1) e∗ is (locally) asymptotically stable if Re(λi) < 0 for every 1 ≤ i ≤ 3.
(2) e∗ is (locally) stable if Re(λi) ≤ 0 for every 1 ≤ i ≤ 3.
(3) e∗ is (locally) unstable if Re(λi) > 0 for some 1 ≤ i ≤ 3.

The Routh–Hurwitz method [4] helps to determine the position of the roots of the
characteristic polynomial in the complex plane.

Theorem 2 Let P(λ) = λ3 + p1λ2 + p2λ + p3 be a polynomial whose coefficients
are real and positive numbers. The necessary and sufficient conditions for all roots
have real part negative are the following:

Δ1 = p1 > 0, Δ2 =
∣

∣

∣

∣

p1 p3
1 p2

∣

∣

∣

∣

> 0, Δ3 =
∣

∣

∣

∣

∣

∣

p1 p3 0
1 p2 0
0 p1 p3

∣

∣

∣

∣

∣

∣

> 0. (3)

Corollary 1 All roots of P(λ) = λ3 + p1λ2 + p2λ + p3 have negative real parts if
and only if p3 < p1p2.

3 Description of the Proposed Mathematical Model

The mathematical model introduced in this work to study and simulate the spreading
of a computer worm through a computer network is a compartmental model, that is,
the population (of computers) can be classified into four types or compartments:

(1) Susceptible computers are those computers which have not been reached by the
computer worm, and remain “healthy”.

(2) Infected computers are those computers which have been reached by the com-
puter worm and are able to transmit it to other computers. These infected com-
puters can be further classified into the following two subtypes:

a. Carrier computers: infected computers that the computer worm is not able to
carry out its damaging function since the operating system of the computer
does not match with the OS targeted by the malware.

b. Infectious computers: infected computers whose OS is targeted by the com-
puter worm, and consequently, the malware can carry out the payload.
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(3) Recovered computers are those susceptible computers onwhich patches (or other
necessary security software) have been installed in order to avoid their infection
by the computer worm, or those infected computers (both carriers or infectious)
that the malware has been successfully detected and removed.

Here, it is supposed that computers are endowed with the recovery state during a
finite period of time. That is, the immunity period obtained when patches or other
security software have been installed and ran is a temporary period.As a consequence,
the recovery computers become susceptible again once the immunity period has
finished. Moreover, as the propagation speed of computer worms is high, we can
assume that the total population of computers remains constant through time.

3.1 The Equations that Govern the Dynamic of the Model

As was previously mentioned, the proposed model is a compartmental SCIRSmodel
(see Fig. 1).

Since the population of computers remains constant over the time, then:

N = S(t) + C(t) + I(t) + R(t), (4)

where N is the total number of computers, and S(t),C(t), I(t) and R(t) stand for the
number of susceptible, carrier, infectious and recovered computers at time t, respec-
tively. The dynamic of themodel is governed bymeans of the following (autonomous)
system of ordinary differential equations:

S′(t) = −a · S(t) · (I(t) + C(t)) − v · S(t) + ε · R(t), (5)

C′(t) = a · (1 − δ)S(t) · (I(t) + C(t)) − b · C(t), (6)

I ′(t) = a · δ · S(t)(I(t) + C(t)) − b · I(t), (7)

R′(t) = b · (C(t) + I(t)) + v · S(t) − ε · R(t), (8)

with the following initial conditions:

Fig. 1 Flow diagram representing the dynamic of the model
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S(0) = S0,C(0) = C0, I(0) = I0,R(0) = N − S0 − C0 − I0, (9)

S(t) ≥ 0,C(t) ≥ 0, I(t) ≥ 0,R(t) ≥ 0. (10)

Furthermore, the parameters involved in this model are the following: the transmis-
sion coefficient a, the vaccination coefficient v, the loss of immunity coefficient ε,
the fraction δ of computers whose operating system is the same as the attacked by
the computer worm, and the recovery coefficient associated to infected computers b.
Note that 0 ≤ a, v, ε, δ, b ≤ 1.

TheEq. (5) states that the variation of the number of susceptible computers is equal
to the difference between the recovery computers that have lost the immunity ε · R(t),
and the susceptible computers that have lost such status. The latter are the sum of
the susceptible computers that become infected at every step of time (the incidence:
a · S(t) · (C(t) + I(t))), plus the susceptible computers that are “vaccinated” at every
step of time: v · S(t).

The Eq. (6) shows that the variation of the number of carrier computers is equal
to the difference between the new susceptible computers (whose operating systems
is different from the targeted one) that have been infected, a · (1 − δ) · S(t) · (I(t) +
C(t))), and those carrier computers that have been recovered (once the computer
worm has been detected and successfully deleted): b · C(t).

The evolution of the number of infectious computers is given in Eq. (7) such
that the variation of this compartment is the different between the new susceptible
computers (with the same operating system as the targeted by the malware) that have
been infected, a · δ · S(t)(I(t) + C(t)), and the infectious computers that have been
recovered: b · I(t).

Finally, Eq. (8) shows that the variation of the number of recovered computers is
the difference between the new recovered computers (both carriers and infectious), b ·
(C(t) + I(t)) and the “vaccinated” susceptible computers: v · S(t), and the computers
that loses the immunity: ε · R(t).

Note that the system of four ordinary differential equations (5)–(8) can be reduced
to the following systemof three ordinary differential equations by simply considering
the Eq. (4):

S′(t) = −a · S(t) · (I(t) + C(t)) − v · S(t) + ε · R(t), (11)

C′(t) = a · (1 − δ)S(t) · (I(t) + C(t)) − b · C(t), (12)

I ′(t) = a · δ · S(t)(I(t) + C(t)) − b · I(t). (13)

3.2 Determination of Parameters

The parameters involved in the system of ordinary differential equations that gov-
erns the dynamic of the model are the transmission coefficient a, the “vaccination”
coefficient v, the immunity coefficient ε, the fraction of population running under the
same operating system as the targeted by the malware δ, and the recovery coefficient
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b. In what follows, we will describe how to determine theoretically each of these
coefficients.

3.2.1 The Transmission Coefficient a

The incidence is defined as the number of new infected computers that appeared
in each step of time. Mathematically, it is defined as λ · S(t), where λ is the force
of infection. To simulate the spreading of computer worms it is very important to
determine correctly λ; this can be achieved in different ways taking into account
the different choices we can make to estimate the number of contacts between the
computers.

The malware infection is transmitted through adequate and effective contacts
(infectious contacts) between susceptible and infectious computers. Note that a con-
tact is said to be adequate when it enables the transmission of malware; moreover,
an adequate contact is said to be effective (and, consequently, an infectious contact)
when the malware successfully reaches the host computer. In this work, it is sup-
posed that the transmission vector is defined by the emails and, as a consequence,
the infectious contacts will be made by sending the malicious code by email.

The number of times a computer comes into adequate contact with other computer
per unit time is defined as the contact rate. Usually, the contact rate depends on the
total number of computers N , and consequently k = k(N). Let q be the probability
that an adequate contact becomes an infectious contact, then q · k(N) stands for the
total number of infectious contacts between each computer with the rest of computers
per unit time. Consequently, the force of infection is given by the following equation:

λ = q · k(N)

N
· (C(t) + I(t)). (14)

Note that this coefficient depends on time (it is not constant through the duration of
the epidemic period).

The epidemiological significance of this coefficient is as follows: as k(N)

N is the
average of the number of adequate contacts between each computer and the rest of
computers of the network at every step of time, then q · k(N)

N is the average number
of infectious contacts of each susceptible computer with the rest of computers of
the network at every step of time. Consequently λ = q · k(N)

N · (P(t) + I(t)) is the
average of infectious contacts of each susceptible computer with the total number of
infected computers at every step of time.

As a consequence, the transmission coefficient can be defined as follows:

a = q · k(N)

N
. (15)

As mentioned above, the degree of plausibility of the simulations obtained with the
mathematical model depends strongly on the choice of the transmission coefficient
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and more specifically, on the contact rate k(N). In this sense, several explicit expres-
sions for the contact rate can be considered, and we can highlight the following:

• Bilinear contact rate: k(N) = α · N , where α stands for the average of contacts
between two computers of the network at every step of time. It yields to the so-
called bilinear incidence or mass action.

• Standard contact rate: k(N) = δ, where δ stands the average of contacts of each
computer with the rest of computers of the network at every step of time. Conse-
quently, the standard incidence is obtained.

In this work, the proposed model is based on the bilinear incidence, then: λ · S(t) =
a · S(t) · (P(t) + I(t)), where a = q · α.

3.2.2 The “Vaccination” Coefficient v

The susceptible computers can acquire temporary immunitywhennecessary software
patches, operating system updates or/and other security software are installed. Then
v = ν · ξ , where ν stands for the fraction of the susceptible population that has been
vaccinated at every step of time, and 0 ≤ ξ ≤ 1 is the success rate of vaccination.

3.2.3 The Immunity Coefficient ε

The immunity period (whose length is denoted by TI ) is the period of time between
the instant at which the computer worm is removed from the infected computer and
the instant when the computer becomes susceptible again. Suppose that at a particular
step of time (for example, t = 0, without loss of generality) all computers are isolated
(and, in particular, the recovered), then the evolution of this compartment is given
by the following equation:

dR

dt
= −ε · R(t), (16)

whose solution is:
R(t) = R(0) · e−ε·t, (17)

that is e−ε·t = R(t)
R(0) is the fraction of the total number of computers that are still being

recovered t time units after isolation.
Consequently, we can suppose that e−ε·t is an estimator of the probability to

remain susceptible t time units after isolation. Thus 1 − e−ε·t stands for the fraction
of recovery computers that ceases to be at time step t, that is, it can be supposed
that it estimates the probability to stop being recovered at time t. As a consequence
1 − e−ε·t estimates the probability that the length of the immunity period will be t.

Since FR(t) = 1 − e−ε·t is a strictly increasing function of class C∞(R) then it
is the probability distribution function associated to the random variable XR rep-
resenting the length of the immunity period. Thus, FR(t) = p(XR ≤ t). Moreover,
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the associated probability density function is fR(t) = F ′
R(t) = ε · e−ε·t , so that the

expected value of XR is the mathematical expectation:

E [XR] =
∫ ∞

0
t · fR(t)dt =

∫ ∞

0

(

ε · t · e−ε·t) dt = 1

ε
. (18)

As a consequence ε = 1
TI
.

3.2.4 The Recovery Coefficient b

As discussed above, the recovery of an infected computer depends on two factors: the
malware detection and the malware successful removal (once it has been detected).
As a consequence if d stands for the probability to detect the computer worm at every
step of time, and e is the probability of successful removal, then b = d · e.

3.2.5 The Coefficient δ

Usually, the targeted computers of malware are those whose operative system is one
in particular, such that no harm is caused to the rest of computers (even if they are
infected and act as transmission vectors). In this sense δ stands for the fraction of the
number of computers running under the targeted operating system.

3.3 The Basic Reproductive Number

The basic reproductive number, R0, is perhaps the most important parameter in the
study of malware propagation since its numerical value will indicate whether or not
an outbreak of a malicious code will become epidemic (the number of infected com-
puters will grow). Roughly speaking the basic reproductive number can be defined
as the average number of secondary infections that occur when only one infectious
computer appears in a completely susceptible host population of computers. Then
if R0 > 1 the number of infected computers increases (and the outbreak becomes
epidemic), whereas if R0 ≤ 1 the computer worm will not spread. Consequently, it
is very important to explicitly determine this threshold parameter.

It is possible to compute theR0 from the system of ordinary differential equations
(5)–(8) and it is therefore necessary to compute the equilibriumpoints of such system.
These points are the solutions of the following nonlinear system:

0 = −a · S · (I + C) − v · S + ε · R,

0 = a · (1 − δ)S · (I + C) − b · C,
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0 = a · δ · S(I + C) − b · I,
0 = b · C + b · I + v · S − ε · R.

Asimple computation shows that this systemhas two solutions: the disease-free equi-
librium point E∗

0 = (

S∗
0 ,C

∗
0 , I

∗
0 ,R

∗
0

) = (

εN
ε+v , 0, 0,

vN
ε+v

)

, and the endemic equilibrium
point: E∗

1 = (

S∗
1 ,C

∗
1 , I

∗
1 ,R

∗
1

)

, where:

S∗
1 = b

a
, C∗

1 = − (1 − δ) (b (v + ε) − εaN)

a (ε + b)
(19)

I∗1 = −δ (b (v + ε) − εaN)

a (ε + b)
, R∗

1 = b (aN − b + v)

a (ε + b)
. (20)

Note that the endemic equilibrium point exists if b (v + ε) − εaN < 0, that is, the
total number of computers exceeds a certain threshold value:

N >
b (v + ε)

εa
. (21)

The next generation method [1] will be used to determine the basic reproductive
number. This is a general method of deriving R0 when more than one class of
infected computers are considered (recall that in our case we take into account two
subtypes: carriers and infectious). If

FC (S,C, I,R) = a · (1 − δ) · S · (I + C) , (22)

FI (S,C, I,R) = a · δ · S · (I + C) , (23)

are the appearance functions of new carrier and infectious computers respectively,
then the appearance matrix F is defined as follows:

F =
⎛

⎜

⎝

∂FC

∂C

∂FC

∂I
∂FI

∂C

∂FI

∂I

⎞

⎟

⎠
=

(

a (1 − δ) S a (1 − δ) S
aδS aδS

)

. (24)

On the other hand, if V+
C ,V−

C (resp. V+
I ,V−

I ) are the transfer functions asso-
ciated to carrier computers (resp. infectious computers), then V+

C (S,C, I,R) =
V+
I (S,C, I,R) = 0, V−

C (S,C, I,R) = bC, V−
I (S,C, I,R) = bI , and the following

is obtained:

VC (S,C, I,R) = V−
C (S,C, I,R) − V+

C (S,C, I,R) = bC, (25)

VI (S,C, I,R) = V+
I (S,C, I,R) − V+

I (S,C, I,R) = bI. (26)
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As a consequence:

V =
⎛

⎜

⎝

∂VC

∂C

∂VC

∂I
∂VI

∂C

∂VI

∂I

⎞

⎟

⎠
=

(

b 0
0 b

)

. (27)

Therefore the basic reproductive numberR0 is the spectral radius of the next gener-
ation matrix in the disease-free equilibrium:

(

F · V−1
)

E∗
0

=

⎛

⎜

⎜

⎝

a (1 − δ) εN

b (ε + v)

a (1 − δ) εN

b (ε + v)
aδεN

b (ε + v)

aδεN

b (ε + v)

⎞

⎟

⎟

⎠

, (28)

that is:

R0 = aεN

b (ε + v)
. (29)

Note that in order to prevent that an epidemic occurs it is mandatory to reduce the
basic reproductive number R0 as necessary. In this sense, and taking into account
its explicit expression given by Eq. (29), this is achieved by considering some of the
following measures: (1) Reducing the total number of computers on the network N
by means of, for example, isolation. (2) Reducing the transmission coefficient a by
reducing the number of effective contacts between computers or extreme caution
when opening suspicious emails. (3) Increasing the recovery rate b by improving the
performance of antivirus software.

3.4 Local Stability of the Disease-Free Equilibrium

The following result holds:

Theorem 3 The disease-free equilibrium point E∗
0 = (

εN
ε+v , 0, 0,

vN
ε+v

)

is locally
asymptotically stable if and only ifR0 < 1.

Proof The Jacobianmatrix associated to the systemof ordinary differential equations
(11)–(13) in the disease-free equilibrium is:

J
(

E∗
0

) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−v − ε − εaN

ε + v
− ε − εaN

ε + v
− ε

0 −b + ε (1 − δ) aN

ε + v

ε (1 − δ) aN

ε + v

0
εδaN

ε + v
−b + εδaN

ε + v

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (30)
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Fig. 2 Evolution of the compartments when R0 < 1

so that a simple calculus shows that its eigenvalues are:

λ1 = −v − ε, λ2 = −b, λ3 = −εaN − (ε + v) b

ε + v
= b (−1 + R0) . (31)

As a consequence Re (λ1) < 0 and Re (λ2) < 0. Furthermore, Re (λ3) < 0 iffR0 <

1, thus finishing.

The evolution of the different compartments when a = 0.000138 (α = 1
72 , q =

0.01), v = 0.005 (ν = 1
100 , ξ = 0.5), ε = 1

48 , b = 0.0375 (d = 1
24 , e = 0.9) and δ =

0.6 is shown in Fig. 2. The time ismeasured in hours, S (0) = 100,C (0) = 1, I (0) =
1,R (0) = 0 and the simulation period comprises the first 150h after the onset of
the first infectious computer. In this caseR0 ≈ 0.304659 < 1 and consequently the
number of infected computers does not increase.

The disease-free equilibrium is E∗
0 ≈ (82.2581, 0, 0, 19.7419), so that at t = 150

the value of the compartments are S (150) ≈ 81.7380,C (150) ≈ 0.0073, I (150) ≈
0.0148 and R (150) ≈ 19.2399.

3.5 Local Stability of the Endemic Equilibrium

Aswas previously mentioned, the model exhibit the endemic equilibrium point E∗
1 =

(

S∗
1 ,P

∗
1, I

∗
1 ,R

∗
1

)

given by (19) and (20) ifΩ = b (ε + v) − εaN < 0. In this case, the
following result holds:

Theorem 4 The endemic equilibriumE∗
1 = (

S∗
1 ,C

∗
1 , I

∗
1 ,R

∗
1

)

defined by (19) and (20)
is locally asymptotically stable ifR0 > 1.
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Proof The Jacobian matrix of the system in the endemic equilibrium point E∗
1 is:

J
(

E∗
1

) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ε (b − v − aN)

ε + b
− ε −b − ε −b − ε

− (1 − δ) ((ε + v) b − εaN)

ε + b
−δb (1 − δ) b

−δ ((ε + v) b − εaN)

ε + b
δb − (1 − δ) b

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (32)

such that its characteristic polynomial is the following:

p (λ) = −λ3 + −aNε − b2 − bε − vε − ε2

b + ε
λ2

+ bε(−aN + v + ε) − abNε − aNε2 + b2(v + ε) − bvε − bε2

b + ε
λ

+ b2ε(−aN + v + ε) − abNε2 + b3(v + ε)

b + ε
. (33)

By applying the Routh–Hurwitz stability criterion, the real part of the eigenvalues
of p (λ) will be negative when the following conditions hold:

Δ1 = b2 + bv + 2bε + vε − Ω + ε2

b + ε
> 0, (34)

Δ2 =
∣

∣

∣

∣

Δ1 −bΩ
1 aεN

R0
− 2b+ε

b+ε
Ω

∣

∣

∣

∣

> 0, (35)

Δ3 =
∣

∣

∣

∣

∣

∣

Δ1 −bΩ 0
1 aεN

R0
− 2b+ε

b+ε
Ω 0

0 Δ1 −bΩ

∣

∣

∣

∣

∣

∣

= −bΩΔ2 > 0. (36)

Since Ω < 0, then Δ1 > 0. Moreover, Δ3 > 0 if Δ2 > 0. A simple (and long) com-
putation shows that this inequality holds if R0 > 1. Then the endemic equilibrium
is locally asymptotically stable ifR0 > 1.

The evolution of the different classes of computers when a = 0.000208 (α =
1
48 , q = 0.01), v = 0.005 (ν = 1

100 , ξ = 0.5), ε = 1
48 , b = 0.03125 (d = 1

24 , e =
0.75) and δ = 0.6 is shown in Fig. 3. It is suppose that S (0) = 1000,C (0) =
1, I (0) = 1,R (0) = 0. Moreover, the time is measured in hours and the simulation
period represents the first 200h after the appearance of the first infectious computers.
In this simulation R0 ≈ 5.3871 > 1 and consequently the outbreak becomes epi-
demic. In this case the endemic equilibrium is E∗

1 = (150, 130.56, 195.84, 525.6),
and the values of the different compartments at t = 200 are the following S (200) ≈
150.166,P (200) ≈ 130.524, I (200) ≈ 195.785 and R (200) ≈ 525.525.
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Fig. 3 Temporal evolution of the compartments when R0 > 1

4 Conclusion

The great majority of mathematical models proposed to date whose goal is to simu-
late malware spreading are based on systems of ordinary differential equations. The
stability theory plays an important role as it yields to the classification of the equilib-
rium points taking into account the behavior of the trajectories (and, consequently,
the evolution of the different types of computers). This classification depends on the
so-called basic reproductive number, R0. That is, if R0 < 1 (an outbreak does not
become epidemic) the disease-free equilibrium (where there are not infected comput-
ers) is locally and asymptotically stable, whereas the endemic equilibrium (there are
always infected computers) point is locally unstable. On the other hand, if R0 > 1
(the number of infected computers increases) then the disease-free equilibrium point
is unstable whereas the endemic equilibrium point is locally and asymptotically
stable.
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On the Non-triviality of the Eight-Form
τ4(ω) on Manifolds with a Spin(9)-Structure

I.V. Mykytyuk

Dedicated to Jaime Muñoz Masqué on the occasion of his 65th
birthday.

Abstract It is proved that Parton-Piccinni’s expression τ4(ω) of the canonical 8-
formon amanifoldwith holonomygroupSpin(9) is not trivial, by using the properties
of the octonions.

Keywords Spin(9) holonomy · Canonical 8-form

1 Introduction and Preliminaries

The group Spin(9) belongs to Berger’s list of restricted holonomy groups of locally
irreducible Riemannian manifolds which are not locally symmetric. Manifolds with
holonomy group Spin(9) have been studied byAlekseevsky [3], Brown andGray [6],
Friedrich [8, 9], and Lam [10], among other authors. As proved in [3, 6], a connected,
simply-connected, complete non-flat Spin(9)-manifold is isometric to either the Cay-
ley projective plane OP(2) ∼= F4/Spin(9) or its dual symmetric space, the Cayley
hyperbolic plane OH(2) ∼= F4(−20)/Spin(9).

Moreover, Δ9 being the unique irreducible 16-dimensional Spin(9)-module,
the Spin(9)-module Λ8(Δ∗

9) contains one and only one (up to a non-zero factor)
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8-formΩ8
0 which is Spin(9)-invariant and defines the unique parallel form onOP(2).

It induces a canonical 8-form Ω8 on any 16-dimensional manifold with a fixed
Spin(9)-structure. This form is said to be canonical because (cf. [6, p. 48]) it yields,
for the compact case, a generator of H8(OP(2),R).

Some explicit expressions ofΩ8
0 have been given. The first one byBrown andGray

in [6, p. 49] in terms of a Haar integral. Other expression was then given by Brada and
Pécaut-Tison [4, pp. 150,153], [5], by using a “cross product.” Unfortunately, their
formula is not correct (see [7] for more detailed explanations). Another expression
was then given by Abe and Matsubara in [2, p. 8] as a sum of 702 suitable terms
(see also Abe [1]). Their formula contains some errors (see [7] for more detailed
explanations).

In the paper [7] Castrillón López, Gadea and Mykytyuk found an explicit expres-
sion for the canonical 8-form Ω8 on a Spin(9)-manifold in terms of the 9× 9 skew-
symmetric matrix ω = (ω ij) of the involved local Kähler 2-forms. They proved the
invariance and non-triviality of Ω8 using the properties of the automorphisms of the
octonion algebra.

Later, another expression τ 4(ω) for the canonical 8-form, as the fourth coefficient
of the characteristic polynomial of thematrixω, was proposed by Parton and Piccinni
in [11]. To prove the non-triviality of τ 4(ω) they performed computer computations
with the help of the software Mathematica.

We recall that a Spin(9)-structure on a connected, oriented 16-dimensional Rie-
mannian manifold (M, g) is defined as a reduction of its bundle of oriented ortho-
normal frames SO(M), via the spin representation ρ(Spin(9)) ⊂ SO(16). Equiva-
lently (Friedrich [8, 9]), a Spin(9)-structure is given by a nine-dimensional subbun-
dle ν9 of the bundle of endomorphisms End(TM) locally spanned by Ii ∈ Γ (ν9),
0 � i � 8, satisfying the relations IiIj + IjIi = 0, i �= j, I2i = I, ITi = Ii, tr Ii = 0,
i, j = 0, . . . , 8. These endomorphisms define 2-forms ω ij, 0 � i < j � 8, on M
locally by ω ij(X,Y) = g(X, IiIjY). Similarly, using the skew-symmetric involutions
IiIjIk , 0 � i < j < k � 8, one can define 2-forms σijk . The 2-forms {ω ij, σijk} are
linearly independent and a local basis of the bundle Λ2M.

The expression for the (global) canonical 8-form on the Spin(9)-manifold (M, g,
ν9) is given (see [7, Theorem1]) by

Ω8 =
∑

i,j=0,...,8
i′,j′=0,...,8

ω ij ∧ ω ij′ ∧ ω i′j ∧ ω i′j′ , (1)

where ω ij = −ω ji if i > j and ω ij = 0 if i = j. The expression τ 4(ω) (see [11]) for
the canonical 8-form on (M, g, ν9) is given by

τ 4(ω) =
∑

0�α 1<α 2<α 3<α 4�8

(ωα 1α 2 ∧ωα 3α 4 −ωα 1α 3 ∧ωα 2α 4 +ωα 1α 4 ∧ωα 2α 3)
2. (2)

Remark that the fourth coefficient τ 4(ω) (above) of the characteristic polynomial
of the skew-symmetric matrix ω is computed with a summation over the squared
Pfaffians of the principal 4 × 4-submatrices of ω.
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The main purpose of the present paper is to prove, using the properties of the
automorphisms of the octonion algebra (and without computer calculations), the
next result.

Proposition 1 The Spin(9)-invariant 8-form τ 4(ω) is not trivial.

As a consequence, one has the following corollary.

Corollary 1 The two expressions Ω8 and τ 4(ω) of the canonical 8-form on the
Spin(9)-manifold (M, g, ν9) are related by Ω8 = −4τ 4(ω).

2 Proof of Proposition 1

To prove that the form τ 4(ω) is nontrivial consider its restriction τ 4(ω)|TpM and the
restrictions of the 2-forms ω ij|TpM, i, j = 0, . . . , 8, where p ∈ M is an arbitrarily
fixed point. To simplify the notationwewill write τ 4(ω) andω ij for these restrictions.

There exists an isomorphism betweenO2 ≡ R
16 and TpM such that the restriction

of g at p ∈ M induces the standard scalar product 〈·, ·〉 of O2, given by

〈(x1, x2), (y1, y2)〉 = 〈x1, y1〉 + 〈x2, y2〉, 〈xa, ya〉 = 1

2
(xaȳa + yax̄a), (3)

for a = 1, 2. Since τ 4(ω) is an 8-form, we consider the eight vectors Xi = (ui, 0),
where u0 = 1 ∈ O and ui, i = 1, . . . , 7, stand for the imaginary units of O, and two
vectorsX = (x, 0) andY = (y, 0)belonging to the spaceO2. Then for i, j = 0, . . . , 7,
i �= j, we have [7, Eq.7]

ω ij(X,Y) = 〈x, ui(ūjy)〉 and ω i8(X,Y) = 0. (4)

We can rewrite the expression for ω ij(X,Y) as

ω ij(X,Y) = 〈x, ui(ūjy)〉 = 〈ūix, ūjy〉 = 〈x̄ui, ȳuj〉, (5)

because (cf. [6, Sect. 2]) for arbitrary octonions a, b, c ∈ O, one has

〈ab, c〉 = 〈b, āc〉 = 〈a, cb̄〉 and 〈a, b〉 = 〈ā, b̄〉. (6)

It is clear that the 8-form τ 4(ω) is nontrivial if

τ(α 1, α 2, α 3, α 4)

= (ωα 1α 2 ∧ ωα 3α 4 − ωα 1α 3 ∧ ωα 2α 4 + ωα 1α 4 ∧ ωα 2α 3)
2(X0, . . . ,X7) > 0

for any subset {α 1, α 2, α 3, α 4} ⊂ {0, . . . , 7}.
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To reduce calculations we will prove that, for an arbitrary subset {α 1, α 2, α 3, α 4}
of {0, . . . , 7}, we have that

either τ(α 1, α 2, α 3, α 4) = τ(0, 1, 2, 3) or τ(α 1, α 2, α 3, α 4) = τ(0, 1, 2, 4).

(7)

Let Sα
4 be the permutation group acting on the set {α 1, α 2, α 3, α 4} ⊂ {0, . . . , 7}.

The form τ 4(ω) is a linear combination of the 8-forms V(α 1, α 2, α 3, α 4;βα, γ α),
where βα, γ α ∈ Sα

4 , β
α = (β1, β2, β3, β4), γ α = (γ1, γ2, γ3, γ4) and

V(α 1, α 2, α 3, α 4;βα, γ α) = ωβ1β2 ∧ ωβ3β4 ∧ ωγ1γ2 ∧ ωγ3γ4 .

Let S8 be the permutation group acting on the set B = {u0, . . . , u7} and let B± =
{±u0, . . . ,±u7}. Let {w1,w2,w4,w4} be an arbitrary subset of the set B± such that
wi �= ±wj for all i �= j. Denote by S4 the permutation group acting on the set
{1, 2, 3, 4}. Choose two permutations β, γ ∈ S4, β = (β1, β2, β3, β4) and γ =
(γ1, γ2, γ3, γ4). Put

V(w1,w2,w3,w4;β, γ ) = 2−4
∑

σ∈S8
Cσ (w1,w2,w3,w4;β, γ ),

where Cσ (w1,w2,w3,w4;β, γ ), for σ = (ui0 , . . . , ui7), is given by

Cσ (w1,w2,w3,w4;β, γ )

= ε(σ )〈ui0 ,wβ1(w̄β2ui1)〉〈ui2 ,wβ3(w̄β4ui3)〉〈ui4 ,wγ1(w̄γ2ui5)〉〈ui6 ,wγ3(w̄γ4ui7)〉.

As the elements w1,w2,w3,w4 occur in this expression twice, we have

V(w1,w2,w3,w4;β, γ ) = V(±w1,±w2,±w3,±w4;β, γ ). (8)

By definitionV(α 1, α 2, α 3, α 4;βα, γ α) = V(uα 1 , uα 2 , uα 3 , uα 4;β, γ ), where the
permutation group Sα

4 is identified naturally with the group S4. We will write simply
V(w1,w2,w3,w4) and Cσ (w1,w2,w3,w4) if β = γ = id.

We now prove two lemmas.

Lemma 1 For an arbitrary automorphism Φ of the algebra O preserving the set
B±, one has V(w1,w2,w3,w4;β, γ ) = V(Φ(w1),Φ(w2),Φ(w3),Φ(w4);β, γ ).

Proof It is clear that Φ(uk) = εΦ
ukσ

Φ(uk), where εΦ
uk = ±1 and σΦ is some per-

mutation in S8. Moreover, since Φ is an element of the compact exceptional Lie
group G2 ⊂ SO(7), we have

∏7
k=0 εΦ

uk · ε(σΦ) = 1 and, consequently, we have
CσΦσ (Φ(w1),Φ(w2),Φ(w3),Φ(w4);β, γ ) = Cσ (w1,w2,w3,w4;β, γ ), because
ε(σΦσ) = ε(σΦ)ε(σ ) and σΦσ(uk) = εΦ

σ(uk)
Φ(σ (uk)) (Φ preserves the scalar

product and commutes with the conjugation). Since σΦS8 = S8, we conclude. �
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Lemma 2 For any u ∈ B±, one has

V(w1,w2,w3,w4;β, γ ) = V(uw1, uw2, uw3, uw4;β, γ ).

Proof Since the lemma is obvious for u = ±u0, assume that u �= ±u0. Due to the
relations (5), we can rewrite the expression for Cσ (w1,w2,w3,w4;β, γ ) as

ε(σ )〈w̄β1ui0 , w̄β2ui1〉〈w̄β3ui2 , w̄β4ui3〉〈w̄γ1ui4 , w̄γ2ui5〉〈w̄γ3ui6 , w̄γ4ui7〉.

But for arbitrary octonions a, b, c, their associator (a, b, c) = (ab)c−a(bc) is skew-
symmetric with respect to the second and third arguments, i.e. (ab)c + (ac)b =
a(bc + cb) (cf. [6, Sect. 2]). Thus, if uku = −uuk then (auk)u = (−au)uk . Since
u �= ±u0, one has uku �= −uuk if and only if either uk = u0 or uk = ±u. It is
clear that in these two cases one has (au)uk = (auk)u. Noting then that precisely
six elements of the set B anticommute with u and that by (6), one has 〈au, bu〉 =
〈a, (bu)ū〉 = 〈a, b|u|2〉 = 〈a, b〉, we conclude. �

Suppose now as usual that the basis B coincides with the set {1, i, j, ij, e, ie,
je, (ij)e}, where i = u1, j = u2 and e = u4, so that for instance u5 = u1u4. Each
element of the algebra O admits a unique expression as q1 + q2e with q1, q2 ∈ H,
where H is the quaternion algebra generated by i, j. Then the multiplication in O is
defined by the standard multiplication relations in H and by the relations

q1(q2e) = (q2q1)e, (q1e)q2 = (q1q̄2)e, (q1e)(q2e) = −q̄2q1. (9)

Put B0 = B\{u0}. Let i′, j′, e′ be three arbitrary distinct elements of the set B0 ∪
(−B0) such that e′ �= ±i′j′. Then there exists a unique automorphism Φ of the
octonion algebra O such that Φ(i′) = u1, Φ(j′) = u2 and Φ(e′) = u4 (cf. [12, Lect.
15]). It is evident that Φ(u0) = u0. Now, taking into account Lemmas 1 and 2 we
obtain the relations (7).

Indeed, calculating V(uα 1 , uα 2 , uα 3 , uα 4;β, γ ), by Lemma 2 we can suppose that
uα 1 = u0. Since all elements uα 1 = u0, uα 2 , uα 3 , uα 4 are distinct, then according
to either uα 4 = ±uα 2uα 3 or uα 4 �= ±uα 2uα 3 , we can obtain as image of the triple
uα 2 , uα 3 , uα 4 , under some automorphism Φ of O, the triple u1, u2, u3 or u1, u2, u4,
respectively.

To calculate τ(0, 1, 2, 3) consider the following 4-form (see definition (2) of
τ 4(ω)):

ω 0123
def= ω 01 ∧ ω 23 − ω 02 ∧ ω 13 + ω 03 ∧ ω 12. (10)

Denote by ω′
ij the restriction of the form ω ij to the subspace V ⊂ O

2 generated by
the vectors Xk , for k = 0, . . . , 7. Let {x∗

0, . . . , x
∗
7} be the dual basis of V∗. Using the

relations (9) it is easy to verify that
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ω′
01 = x∗

0 ∧ x∗
1 + x∗

2 ∧ x∗
3 + x∗

4 ∧ x∗
5 − x∗

6 ∧ x∗
7,

ω′
23 = x∗

0 ∧ x∗
1 + x∗

2 ∧ x∗
3 − x∗

4 ∧ x∗
5 + x∗

6 ∧ x∗
7,

ω′
02 = x∗

0 ∧ x∗
2 − x∗

1 ∧ x∗
3 + x∗

4 ∧ x∗
6 + x∗

5 ∧ x∗
7,

ω′
13 = −x∗

0 ∧ x∗
2 + x∗

1 ∧ x∗
3 + x∗

4 ∧ x∗
6 + x∗

5 ∧ x∗
7,

ω′
03 = x∗

0 ∧ x∗
3 + x∗

1 ∧ x∗
2 + x∗

4 ∧ x∗
7 − x∗

5 ∧ x∗
6,

ω′
12 = x∗

0 ∧ x∗
3 + x∗

1 ∧ x∗
2 − x∗

4 ∧ x∗
7 + x∗

5 ∧ x∗
6 .

Calculations are very simple because for each item ωβ1β2 ∧ ωβ3β4 in (10) the permu-
tation (β1, β2, β3, β4) of the set {0, 1, 2, 3} satisfies the relation: uβ1uβ2 = ±uβ3uβ4 .
Now it is easy to verify that

ω′
01 ∧ ω′

23 = −ω′
02 ∧ ω′

13 = ω′
03 ∧ ω′

12 = 2x∗
0 ∧ x∗

1 ∧ x∗
2 ∧ x∗

3 + 2x∗
4 ∧ x∗

5 ∧ x∗
6 ∧ x∗

7,

and, consequently,

τ(0, 1, 2, 3) = (ω 0123 ∧ ω 0123)(X0, . . . ,X7) = 72.

To calculate τ(0, 1, 2, 4) consider the following 4-form (see definition (2) of
τ 4(ω)):

ω 0124
def= ω 01 ∧ ω 24 − ω 02 ∧ ω 14 + ω 04 ∧ ω 12. (11)

Since ω ij = −ω ji, we can rewrite the expression for ω 0124 ∧ ω 0124 as

− 2ω 01 ∧ ω 02 ∧ ω 41 ∧ ω 42 − 2ω 01 ∧ ω 04 ∧ ω 21 ∧ ω 24 (12)

− 2ω 02 ∧ ω 04 ∧ ω 12 ∧ ω 14 + (ω 01 ∧ ω 24)
2 + (ω 02 ∧ ω 14)

2 + (ω 04 ∧ ω 12)
2.

Remark that the first three terms of this sum are terms of the formω ij∧ω ij′ ∧ω i′j∧ω i′j′
for some sequence of distinct elements {i, j, i′, j′} = {0, 1, 2, 4}. Therefore, by [7,
p.1170],

−2ω 01 ∧ ω 02 ∧ ω 41 ∧ ω 42 − 2ω 01∧ω 04 ∧ ω 21 ∧ ω 24

− 2ω 02 ∧ ω 04 ∧ ω 12 ∧ ω 14(X0, . . . ,X7) = 48.

Let us show that for each term above of the type (ω ij ∧ ω i′j′)
2 we have (ω ij ∧

ω i′j′)
2(X0, . . . ,X7) = 8.

Note that for any i �= j such that ujui �= ±u0 there exists some automorphism Φ

of O such that Φ(±ujui) = u1. Now taking into account the expression for the form
ω′

01 we obtain that

ω′
ij = ε0x

∗
i0 ∧ x∗

i1 + ε2x
∗
i2 ∧ x∗

i3 + ε4x
∗
i4 ∧ x∗

i5 + ε6x
∗
i6 ∧ x∗

i7 ,
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where σij = (i0, . . . , i7) is some permutation of the set {0, . . . , 7}, ε2k = ±1, and
∏3

k=0 ε2k · ε(σij) = −1. Consider also the form

ω′
i′j′ = ε′

0x
∗
j0 ∧ x∗

j1 + ε′
2x

∗
j2 ∧ x∗

j3 + ε′
4x

∗
j4 ∧ x∗

j5 + ε′
6x

∗
j6 ∧ x∗

j7 ,

where i �= i′ and j �= j′.
We now prove two more lemmas. Remark that for the terms (ω ij ∧ ω i′j′)

2 in (12),
uiuj �= ±ui′uj′ .

Lemma 3 For arbitrary distinct elements i, j, i′, j′ ∈ {0, . . . , 7} such that uiuj �=
±ui′uj′ , the 4-form ω′

ij ∧ ω′
i′j′ is a sum of at most eight linearly independent terms

(4− forms) ω′
k,ij,i′j′ , k = 0, . . . , 7, of type ±x∗

k0
∧ x∗

k1
∧ x∗

k2
∧ x∗

k3
. For each such term

ω′
k,ij,i′j′ , there is a unique term ε2p x∗

i2p
∧x∗

i2p+1
of ω′

ij and a unique term ε′
2p′x∗

j2p′ ∧x∗
j2p′+1

of ω′
i′j′ such that their exterior product is proportional to ω′

k,ij,i′j′ (and, consequently,
it is equal to ω′

k,ij,i′j′).

Proof Put ul = ±uiuj and ul′ = ±ui′uj′ . By the assumptions of the lemma ul and ul′
are two distinct imaginary units of O. Therefore if ω′

ij(ui0 , ui1) = ±〈ui0 , ului1〉 �= 0
then ul = ±ui0ui1 and ul′ �= ±ui0ui1 , i.e. ω

′
i′j′(ui0 , ui1) = 0. So precisely two terms of

ω′
i′j′ contain x

∗
i0
and x∗

i1
as a factor. Therefore there exists precisely two terms of ω′

i′j′
such that their exterior product with x∗

i0
∧ x∗

i1
is not zero. Since the form ω′

ij contains
four terms, the number of linearly independent terms of ω′

ij ∧ ω′
i′j′ is at most eight.

Assume that the product of the terms x∗
i0
∧x∗

i1
and x∗

j0
∧x∗

j1
of the formsω′

ij andω′
i′j′

respectively, is not trivial, i.e. {i0, i1} ∩ {j0, j1} = ∅. The forms ω′
ij and ω′

i′j′ contain a
unique term with the factor x∗

i0
. As we show above, in the form ω′

i′j′ the second factor
of this term is not equal to x∗

i1
. Assume that this factor is equal to x∗

jk
, k = 0, 1. Then

ω′
i′j′(ui0 , ujk ) �= 0, i.e. ui0 = ±ul′ujk . But uj0 = ±ul′uj1 , i.e. {i0, i1} ∩ {j0, j1} �= ∅.

This contradicts our non-triviality assumption. We can proceed similarly in the case
of the factor x∗

i1
. �

Lemma 4 For any distinct elements i, j, i′, j′ ∈ {0, . . . , 7} such that uiuj �= ±ui′uj′ ,
the expressionV(ui, uj, ui′ , uj′) = 2−4 ∑

σ∈S8 Cσ (ui, uj, ui′ , uj′), contains atmost24·8
non-zero terms.

Proof By the previous lemma, each term of ω′
ij ∧ ω′

i′j′ is the exterior product of a
uniquely defined pair of terms of the forms ω′

ij and ω′
i′j′ . On the other hand, this

term of ω′
ij ∧ ω′

i′j′ determines a unique complementary factor in x∗
0 ∧ · · · ∧ x∗

7 which
belongs to ω′

ij ∧ ω′
i′j′ . If such a factor exists, by the previous lemma this factor is the

exterior product of a uniquely defined pair of terms of the forms ω′
ij and ω′

i′j′ . Since
the number of terms of ω′

ij ∧ ω′
i′j′ equals at most 8 and due to the skew-symmetry of

the 2-forms, the lemma follows. �
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Suppose that i, j, i′, j′ ∈ {0, . . . , 7} are distinct elements such that uiuj �= ±ui′uj′ .
Due to the skew-symmetry of the 2-forms, one hasV(ui, uj, ui′ , uj′)= ∑

[σ ]∈S′
8
Cσ (ui,

uj, ui′ , uj′), where S′
8 = S8/S′ and the subgroup S′ ⊂ S8 is generated by the 4 trans-

positions (0, 1), (2, 3), (4, 5), and (6, 7). By Lemma 4 this sum contains at most 8
non-zero terms. Let us describe these terms. To this end, using (5) we can rewrite
the expression for Cσ (ui, uj, ui′ , uj′) as

−ε(σ )〈ui0ui, ui1uj〉〈ui2ui′ , ui3uj′ 〉〈ui4ui, ui5uj〉〈ui6ui′ , ui7uj′ 〉,

since ūk = −uk for all of the seven imaginary units. Let u ∈ B and a ∈ B±. Arguing
as in the proof of Lemma 2, we obtain that if au = −ua then (uka)u = (−uku)a.
But au �= −ua if and only if a = ±u or a = ±u0 or u = ±u0. In all these cases
(uka)u = (uku)a. Since 〈au, bu〉 = 〈a, b〉, we obtain the following expression for
Cσ (ui0 , ui, ui1 , uj):

−ε(σ )
〈

(ui0u)ui, (ui1u)uj
〉〈

(ui2u)ui′ ,(ui3u)uj′
〉

· 〈

(ui4u)ui, (ui5u)uj
〉〈

(ui6u)ui′ , (ui7u)u
′
j′
〉

(the elements ui0ui, ui1uj occur in this expression twice).
Suppose now that Cσ (ui, uj, ui′ , uj′) �= 0 for some σ ∈ S8. Right multiplication

by u determines the permutation σ u of the set B: uku = εuukσ
u(uk) (εuuk = ±1). This

permutation is even since if u �= u0 then u2 = −u0 and σ u is a product of four
independent transpositions. The sequence (εuu0 , . . . , ε

u
u7) contains an even number of

−1 (see [7, p. 1170]).
Thus Cσ (ui, uj, ui′ , uj′) = Cσ uk σ (ui, uj, ui′ , uj′) for all of the eight even permuta-

tions σ uk , k = 0, . . . , 7. It only remains to be proved that the permutations σ ukσ

determine distinct classes in the quotient group S′
8.

Suppose that σ ukσ = σ upσ · s for some element s ∈ S′
8 and k �= p. Taking into

account that σ upσ uk = σ ukσ up = σ uq , where uq ∈ B and uq = ±ukup = ±upuk , we
can assume that up = u0 and σ(u0) = u0. But for u ∈ B we have {±u0u,±ui1u} =
{±u0,±ui1} if and only if u ∈ {u0, ui1}. Since Cσ (ui, uj, ui′ , uj′) �= 0, we have
ui1 = ul and ui3 = ±ul′ui2 , where ul = ±uiuj and ul′ = ±ui′uj′ . Taking into account
that ul �= ul′ , we obtain that ui3 �= ±ului2 = ±ui1ui2 , i.e. uk = u0, a contradiction.

So V(ui, uj, ui′ , uj′) = 8Cσ (ui, uj, ui′ , uj′), where σ ∈ S8 is an arbitrary permu-
tation such that Cσ (ui, uj, ui′ , uj′) �= 0. Using now the relations (9), we can show
that there exists a common odd permutation σ = (0, 1, 2, 4, 3, 5, 6, 7) for the fol-
lowing sequences (i, j, i′, j′): (0, 1, 2, 4), (0, 2, 1, 4) (0, 4, 1, 2). For all these cases
Cσ (ui, uj, ui′ , uj′) = 1 and, consequently,

(ω 01 ∧ ω 24)
2 + (ω 02 ∧ ω 14)

2 + (ω 04 ∧ ω 12)
2(X0, . . . ,X7) = 24.



On the Non-triviality of the Eight-Form τ4(ω) on Manifolds … 179

Thus τ(0, 1, 2, 4) = (ω 0124 ∧ ω 0124)(X0, . . . ,X7) = 72 and by expressions (2) and
(7), one has

τ 4(ω)(X0, . . . ,X7) =
(

8

4

)

· 72 = 70 · 72 = 5040,

so concluding the proof of Proposition1.
Noting now thatΩ8

0 (X0, . . . ,X7) = −14 ·1440 = −4 ·5040, Corollary 1 follows.
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Flaws in the Application of Number
Theory in Key Distribution Schemes
for Multicast Networks

A. Peinado

Dedicated to Jaime Muñoz Masqué, unquestionable reference
and irreplaceable guide in science and life on the occassion of
his 65th birthday

Abstract In this note, an interesting trend about the way in which the number theory
in multicast networks is often applied, is reported. Surprisingly, in recent years, some
new proposals for key distribution schemes are still proposed employing very simi-
lar erroneous concepts than those applied in 1999, which were already reported by
professor Muñoz-Masqué in 2005. Some apparently well-constructed cryptographic
equations suffer from a real weakness due to a flaw in the definition of the crypto-
graphic keys, allowing to perform an easy factorization and, as a consequence, the
recovering of the user’s keys. Thirteen years later, very similar weaknesses arise.

Keywords Integer factorization · Cryptanalysis · Key distribution scheme ·
Multicast

1 Introduction

Unicast communication stands for the traditional scheme in which the information
is transmitted from one host to another. It is known as one-to-one communication.
However, when the same information has to be transmitted to many users, the unicast
architecture turns inefficient because the transmitter sends multiples copies of the
same information. This is the case of live TV channels on Internet where many users
are watching the same content simultaneously. This causes the increasing of data
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traffic that could congest the entire network when the number of target users is high.
Furthermore, a computational overhead appears in the transmitter if the information
is encrypted, because each data frame or packet will be encrypted with a different
key in order to be decrypted by each user.

The alternative approach is the Multicast communication, defined as the trans-
mission of information from one host to multiple hosts, and known as one-to-many
communication. The advantages over the unicast communication turn more evident
in cases of huge numbers of receivers, such as multimedia communications. Multi-
cast operation sends only one message that will be duplicated following a tree-based
structure in order to reach the target users using the least numbers of messages. The
information is duplicated only when a bifurcation appears in the path to the multiple
destinations.

In general, secure multicast requires specific protocols and schemes, different
from those applied in classical unicast communications. One of the most important
and complex issues in securemulticast is the keymanagement because of the network
topology and the amount of users that join or leave the multicast group continuously.
The encryption keys must be periodically renewed to avoid external attacks and to
provide forward and backward secrecy, so as to the users who joins to the system
cannot decrypt previous contents and the users who leaves the system cannot decrypt
future contents.

Many proposals formulticast/broadcast encryption and key distribution have been
presented from the last century, with the following objectives in mind: minimization
of the number of messages between the hosts; reducing the size of cryptographic
parameters and the messages; increasing of efficiency in cryptographic operations in
order to reduce the computation time; simplification of the processes related to the
joining and/or leaving of users; and providing forward and backward secrecy.

One of those proposals is the one presented by Liaw in 1999 [3]. It is a centralized
system with a Central Authority Server (CAS) which generates the keys of each
user that participates in the multicast scheme. That system, based on a multiplicative
group key, reduces the number of messages, thus facilitating the joining operation.
However, Sun [10] proved that it cannot be operated because a very large amount of
information (271 bits) must be kept by each user and be sent for each broadcast. Later,
Tseng and Jan [11] founded several weaknesses on the Liaw’s cryptosystem and
proposed a modification in 2001. Muñoz-Masqué and Peinado [5] reported in 2005
an inconsistency in the improvement of Tseng and Jan, provided a new cryptanalysis
of both the original and the improvement scheme, and presented a new modification
that overcomes the previous known attacks.

Many years later, in 2012,Naranjo et al. [6] proposed a centralized key distribution
scheme based on the extended Euclidean algorithm [2]. The main advantage of this
scheme is very similar to that of mentioned protocols, that is, only one message is
generated at each rekeying operation and only one long-term key is associated to
each user. This similarity has produced similar flaws, reported by Peinado and Ortiz
[7] in 2013. Despite of that, Vijayakumar et al. [12] has proposed again a slight
modification of this algorithm using the same approach and suffering from the same
flaws.
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Next section describes the Liaw’s cryptosystem and the improvement proposed
by Tseng and Jan. Section3 shows the flaws detected in the application of the number
theory. Section4 deals with the recent secure multicast proposals, their similarities
with the previous schemes and the flaws that once more are presented in this kind of
schemes. Finally, Sect. 5 shows the conclusions.

2 Liaw’s Cryptosystem and Its Improvement

In this section, the Liaw’s original cryptosystem and its modification are described,
using the same notations as in [3, 11]. In both cases, the protocol is composed by
three phases, in which a CAS and n users Ui , 1 ≤ i ≤ n, interact.

2.1 Liaw’s Cryptosystem

System setup phase. This is a previous phase to generate the necessary parameters.
The CAS generates the private and public keys of the system that allow the users to
communicate with the CAS. This pair of keys is generated using an RSA scheme [9].
Hence, theCAScomputes themodulus N = p · q, where p = 2p′ + 1, q = 2q ′ + 1,
are safe prime numbers, i.e., p, q, p′, q ′ are all prime. We set λ(N ) = lcm(p −
1, q − 1) and denote the Euler totient function byφ(N ). The integers d, e are selected
such that d · e ≡ 1 (mod φ(λ(N ))). Hence, N and d are made public, whereas p, q
and e are kept secret.

Next, the CAS generates a pair of keys for each user Ui . A secret integer K0 is
chosen to compute the private key (ti , Ki ) and the public key f(ti ) such that

Ki = K ti
0 (mod N ) (1)

f (ti ) = t ei

where ti is prime.
Broadcasting phase. Without loss of generality, let us suppose thanU1 is the user

who wants to transmit data to the group of users U2,U3, . . . ,Ua . Then, U1 sends a
request to the CAS in order to generate the encryption key MK1. To do this, the CAS
computes the following parameters:

f (B1) = Be
1

MK1 = K B1
0 (mod N ) (2)

PK1 = Et1(MK1)
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where B1 = t2 · t3 · · · ta and Ek(.) is the symmetric encryption function of the system
with key k. Next, CAS sends f (B1) and PK1 to the userU1 and f (B1) to every user
Ui , 2 ≤ i ≤ a. When U1 receives PK1, he can recover the encryption key as

MK1 = Dt1(PK1). (3)

The userU1 encrypts the message M asC = EMK1(M). Finally, he broadcastsC .
Decryption phase. When a user Uj , 2 ≤ j ≤ a, receives f (B1) and C , the se-

cret key MK1 must be obtained to decrypt C . Hence, Uj performs the following
computation:

MK1 = K
( f (B1)/ f (t j ))d

j (mod N ) = K

tj ·
⎛

⎜

⎝

∏

i �= j,2≤i≤a

tei

⎞

⎟

⎠

d

0 (mod N ) (4)

= K t2·t3···ta
0 (mod N ) = K B1

0 (mod N ) .

2.2 Improvement of Liaw’s Cryptosystem

Only twomodifications were proposed by Tseng and Jan [11] to improve the original
system. On the one hand, the private key ti is only known to the CAS. Therefore, the
private key and public key of every user Ui are now Ki and f(ti ), respectively. This
modification tries to avoid a conspiracy attack to obtain K0. Note that ti is no longer
known by the user Ui .

On the other hand, the function f is redefined as f (x) = xe (mod λ(N )). Hence,
the public key f(ti ) of user Ui and f (B1) are computed as

f (ti ) = t ei (mod λ(N )) , (5)

f (B1) = (t2 · t3 · · · ta)e (mod λ(N )) .

3 Flaws in the Liaw-Type Cryptosystems

In this section, the different flaws detected in the previous systems by Tseng and Jan
[11], Sun [10] and Muñoz-Masqué and Peinado [5] are presented. All of them are
related with misapplications of the number theory.

Flaw 1. (Detected in Liaw’s cryptosystem [3]. Reported by Tseng and Jan [11],
Sun [10] and Muñoz-Masqué and Peinado [5]) In [3] the parameter f(ti ) = t ei is a
component of the public key of the user Ui . Although it looks like an RSA system,
one can observe that no modular operation is applied. Hence, publishing the value
f(ti ) = t ei compromises the security, though factoring integers is a hard problem,
detecting whether a given integer is a prime power is not that hard. In fact, if k = π e,
π being a prime, then by Fermat’s theorem we have
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bk = (F◦ e. . . ◦F)(b) ≡ b (mod π) (6)

for every integer b, where F is the function defined by F(x) = xπ . Hence, π divides
gcd(bk − b, k) and for most values of b we will even have gcd(bk − b, k) = π . The
running time for the Euclid algorithm is O((ln k)2) and computing bk (mod k) is
O((ln k)2 ln b). Hence, k = π e can be factored in O((ln k)3) (see [1], Algorithm
1.7.4).

Flaw 2. (Detected in Tseng’s cryptosystem [11]. Reported by Muñoz-Masqué
and Peinado [5]) Tseng and Jan proposed the utilization of the value f(ti ) =
t ei (mod λ(N )) instead of f(ti ) = t ei , in order to increase the security level. However,
the procedure to recover the encryption key (Eq.4) suffers from an inconsistency. A
simple numerical example shows that the quotient f (B1)/ f (ti )may not be an integer
and hence the decryption process could fail. More precisely, the procedure to recover
the key MK1 is not valid as the quotient f (B1)/ f (ti ) does not always exist in Z.

4 Recent Proposals

Naranjo et al. [6], in 2012, and Vijayakumar et al. [12], in 2013, proposed very sim-
ilar centralized key distribution schemes based on the extended Euclidean algorithm
for multicast communications. In both schemes, the CAS generates a multicast en-
cryption key, that is distributed to the users. To do so, the CAS generates a long-term
secret key Ki for each user Ui . The main parameter of this scheme is L defined as

L =
n

∏

i=1

Ki (7)

where L is not a public parameter; it is a secret value of the CAS.

4.1 Similarities with Liaw-Type Cryptosystems

Although the protocols in [6, 12] are different to Liaw’s cryptosystem, there exist
several similarities that determine similar effects when they are analyzed from a
cryptographic point of view. The analogy can be summarized in two main items.

• No modular operation is performed to compute the main parameters. This affects
to the size of the parameters, increasing dramatically. Furthermore, it is a source
of insecurity as it is reported in the next subsection.

• The participation of the users is multiplicative; that is, the procedure defined to
recover the encryption key requires to perform a multiplication of some parameter
of each user. In Liaw’s cryptosystem B1 = t2 · t3 · · · ta , and in the recent proposals
L is the product of all the secret keys (Eq.7).
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4.2 Flaw of Recent Proposals

On the one hand, the secret long-term key of the users is defined to be 64-bit long;
a prime number in the case of [6], and an integer co-prime with the other keys, in
the case of [12]. In any case, this bit length allows a brute force attack. Probably, the
keys are not larger in order to bound the size of the parameters computed from the
product of all keys.

On the other hand, as it is reported in [7], the secret parameter L can be obtained
in most cases, but the most important weakness is that a multiple of L can always
be obtained. As a consequence, the factorization of L could be performed to get the
user’s key [4].

The flaw is a combination of a low key size and the multiplicative operation
without modular reduction. Although the size of L is very large, (6400 bits long for
64-bit keys and a hundred of users, see [6]), it does not provide a real protection. It
is important to note that the factorization problem is reduced to find prime factors of
64 bits. Hence, it is not a general factorization problem. In [7], a genetic algorithm
is applied to find those prime factors. The case of [12] if trivial, since small factors
are present in L . The Pollard’s rho method [8] can be applied to recover them.

5 Conclusion

The big numbers often convey a false sense of security. For that reason, we can
observe how the cryptographic protocols and schemes keep proposing the utilization
of big numbers as a method to provide security and protection. Sometimes, the
specific operational conditions are the source of this erroneous design. Multicast
communication is a representative example where a very big numbers are generated
(the dummy security parameter) from the product of many small numbers (the secret
key of users). This approach is employed due to the limitation in size of message
and parameters that a user has to store and transmit. In most cases, the definition of
the computations in a finite field reduces the size of the parameters and increases the
security. This note is an evidence that big numbers are not always secure.
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Abstract Let pF : FN → N be the bundle of linear frames of a C∞ manifold N .
The Lagrangian induced on FN by the Einstein–Hilbert Lagrangian is written as a
differentiable function of the system of DiffN-invariant Lagrangian defined on the
linear frame bundle.

Keywords Bundle ofmetrics ·Bundle of linear frames ·Einstein-HilbertLagrangian ·
Linear frame bundle · Jet bundles

1 Introduction

Let pM : M = M (N) → N be the bundle of pseudo-Riemannian metrics of a given
signature (n+, n−), n++n− = n = dim N , over a connectedC∞ manifoldN oriented
by a volume form v ∈ Ωn(N). The Einstein–Hilbert functional is the second-order
Lagrangian density LEHv onM defined along a metric g by Sgvg, where Sg denotes
the scalar curvature of g and vg its Riemannian volume form; namely,
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LEH ◦ j2g=√| det(gab)|gjk
{

∂(Γ g)i
jk

∂xi − ∂(Γ g)i
ik

∂xj +(Γ g)
l
jk (Γ g)

i
il−(Γ g)

l
ik (Γ g)

i
jl

}

,

whereweconfineourselves to consider coordinate systems (x1, . . . , xn)onM adapted
to v, i.e.,

v = dx1 ∧ · · · ∧ dxn, vg = √| det(gab)|v, g = gabdxa ⊗ dxb,

and where (Γ g)i
jk are the Christoffel symbols of the Levi-Civita connection ∇g of

the metric g.
The bundle of metrics pM : M → N can be viewed as the quotient bundleFN/G,

where FN is the bundle of linear frames of N and G = O(n+, n−) ⊂ GL(n;R) is the
orthogonal group corresponding to the signature (n+, n−). Hence every Lagrangian
L on Jr(M ) induces a Lagrangian L̄ on Jr(FN) in a natural way, which is DiffN-
invariant if L is DiffN-invariant. Accordingly, the problem of determining DiffN-
invariant Lagrangians on the bundle of metrics reduces to that of determining DiffN-
invariant Lagrangians on the bundle of linear frames which, in addition, are pro-
jectable onto the quotient bundle q : FN → FN/G ∼= M . Let D r be the involutive
distribution on Jr(FN) spanned by the natural lifts of vector fields on N , and let
V r = ker Jr(q)∗ be the involutive distribution of Jr(q)-vertical vector fields. A
Lagrangian L̄ on Jr(FN) is DiffN-invariant if it is a first integral of the distrib-
ution D r , and it is projectable onto Jr(M ) if it is a first integral of V r . Hence,
DiffN-invariant Lagrangians on Jr(M ) can be identified to the first integrals of the
involutive distribution D r + V r . Moreover, V r has a simple gauge interpretation:
V r

jr
xs

∼= Jr
x (N, g), where g is the Lie algebra ofG, thus providing a similar meaning for

the r-jet prolongation as the usual one in gauging g. Essentially, this is the geometry
behind the theory that considers General Relativity as a gauge theory from the initial
works by Kibble, Sciama, etc. (e.g., see [3, 8]); i.e., one first obtains DiffN-invariant
Lagrangians on the bundle of linear frames and then, one imposes them to be invariant
under the “gauge algebra” V r . Of course, one can work directly with orthonormal
frames, specially in the 1+ 3 approach (e.g., see [9]) but the former setting seems to
be very suitable in dealing with a spacetimeN with no preferred geometric decompo-
sition. In any case, such an approach has the advantage of separating diffeomorphism
invariance—a purely geometric condition—from the invariance under the group G.

In [1], P.L. García and J. Muñoz Masqué determined a canonical basis for the
rings of r-order differential invariants of linear frames on a differentiable manifold
N with respect to the Lie algebra of the vector fields of N .

The purpose of the present paper is to write the Lagrangian induced on J2(FN) by
the Einstein–Hilbert Lagrangian as a differentiable function of the basis of DiffN-
invariant Lagrangians defined on J2(FN).
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2 Preliminaries and Notations

2.1 Jet-Bundle Notations

Let p : E → N be an arbitrary fibred manifold and let pk : JkE → N be the bundle
of k-jets of local sections of p, with projections pk

l : JkE → JlE, k ≥ l. Let m =
dim E −dim N . Every fibred coordinate system (xj, yα), 1 ≤ j ≤ n, 1 ≤ α ≤ m, for p
induces a coordinate system (xj, yα

I ), on the r-jet bundle, where I = (i1, . . . , in) ∈ N
n

is an integer multi-index of order |I| = i1 + · · · + in ≤ r, given by,

yα
I

(

jr
xs

) = ∂ |I|(yα ◦ s)

∂(x1)i1 . . . ∂(xn)in
(x),

where s is a local section of p defined on a neighbourhood of x ∈ N . We set (j) =
(0, . . . , 0,

(j)
1 , 0, . . . , 0) ∈ N

n, (jk) = (j) + (k), etc., and yα
0 = yα .

Every morphism Φ : E → E′ whose associated map φ : N → N ′ is a diffeomor-
phism, induces a map

Φ(r) : JrE → JrE′,
Φ(r)(jr

xs) = jr
φ(x)(Φ ◦ s ◦ φ−1).

(1)

If Φt is the flow of a vector field X ∈ aut(p), then Φ
(r)
t is the flow of a vector field

X(r) ∈ X(JrE), called the infinitesimal contact transformation of order r associated
to the vector field X. The mapping aut(p) � X �→ X(r) ∈ X(JrE) is an injection of
Lie algebras.

2.2 The Bundle of Linear Frames

Let pF : FN → N be the bundle of linear frames of N . Each coordinate system (xi)

on an open domain U ⊆ N induces a coordinate system (xi, xi
j) on (pF)−1(U), where

the functions xi
j are defined by,

u = (

(∂/∂x1)x, . . . , (∂/∂xn)x
) · (

xi
j(u)

)

, x = pF(u),∀u ∈ (pF)−1(U),

or equivalently,

u = (X1, . . . , Xn) ∈ Fx(N), Xj = xi
j(u)

(

∂

∂xi

)

x

, 1 ≤ j ≤ n,
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and also a coordinate system (xi, xi
j, xi

j,(k1...kq)
), 1 ≤ q ≤ r, k1 ≤ · · · ≤ kq, on Jr(FU)

defined by,

xi
j,(k1...kq)

(jr
xs) = ∂q(xi

j ◦ s)

∂xk1 . . . ∂xkq
(x).

2.3 The Bundle of Metrics

Let pM : M = M (N) → N be the bundle of pseudo-Riemannian metrics of a
given signature (n+, n−), n+ + n− = n on N . Every coordinate system (xi) on an
open domain U ⊆ N induces a coordinate system (xi, yjk) on (pM )−1(U), where the
functions yjk = ykj are defined by,

gx =
∑

i≤j

yij(gx)(dxi)x ⊗ (dxj)x, ∀gx ∈ (pM )−1(U), (2)

and also a coordinate system (xi, yij, yij,(k1...kq)), 1 ≤ q ≤ r, k1 ≤ · · · ≤ kq, on
Jr((pM )−1(U)) defined by,

yij,(k1...kq)(j
r
xs) = ∂q(yij ◦ s)

∂xk1 . . . ∂xkq
(x).

2.4 Natural Lifts

Let fM : M → M , cf. [7] (resp. f̃ : FN → FN , cf. [2, p. 226]) be the natural lift
of f ∈ DiffN to the bundle of metrics (resp. linear frame bundle); namely fM (gx) =
(f −1)∗gx (resp. f̃ (X1, . . . , Xn) = (f∗X1, . . . , f∗Xn), where (X1, . . . , Xn) ∈ Fx(N));
hence pM ◦ fM = f ◦ pM (resp. pF ◦ f̃ = f ◦ pF), and fM : M → M (resp.
f̃ : FN → FN) have a natural extension to jet bundles f (r)

M : Jr(M ) → Jr(M ) (resp.
f̃ (r) : Jr(FN) → Jr(FN)) as defined in the formula (1), i.e.,

f (r)
M

(

jr
xg

) = jr
f (x)(fM ◦ g ◦ f −1) (resp. f̃ (r)

(

jr
xs

) = jr
f (x)(f̃ ◦ s ◦ f −1)).

If ft is the flow of a vector field X ∈ X(N), then the infinitesimal generator of (ft)M

(resp. f̃t) in DiffM (resp. DiffFN) is denoted by XM (resp. X̃) and the following
Lie-algebra homomorphisms are obtained:

{

X(N) → X (M ) , X �→ XM

X(N) → X (FN) , X �→ X̃.
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2.5 DiffN- andX(N) -Invariance

A differential form ωk ∈ Ωk(Jr(M )), k ∈ N, is said to be DiffN-invariant—or
invariant under diffeomorphisms—(resp. X(N)-invariant) if the following equation
holds: (f (r)

M )∗ωk = ωk , ∀f ∈ DiffN (resp. LX(r)
M

ωk = 0, ∀X ∈ X(N)). Obviously,
DiffN-invariance implies X(N)-invariance and the converse is almost true (see [1,
4]). Because of this, below we consider X(N)-invariance only.

As N is an oriented manifold, there exists a unique p-horizontal n-form vg on
M such that, vgx (X1, . . . , Xn) = 1, for every gx-orthonormal basis (X1, . . . , Xn)

belonging to the orientation of N . Locally vg = ρv, where ρ = √

(−1)n− det(yij)

and v = dx1∧· · ·∧dxn. As proved in [7, Proposition 7], the form vg isDiffN-invariant
and hence X(N)-invariant.

A Lagrangian density Λ on Jr(M ) can be globally written as Λ = L vg for a
unique functionL ∈ C∞(Jr(M )) andΛ isX(N)-invariant if and only if the function
L is X(N)-invariant. Therefore, the invariance of Lagrangian densities is reduced
to that of scalar functions.

A Lagrangian density Λ defined on Jr(FN) can be written as follows: Λ =
L θ1∧· · ·∧θn, where θ = (θ1, . . . , θn) is the canonical 1-formonFN ([2, III, Sect. 2,
p. 118]), and L ∈ C∞(Jr(FN)) is called the ‘canonical Lagrangian’ associated to
Λ. A Lagrangian density Λ is DiffN-invariant (resp. X(N)-invariant) if and only if
L ◦ Jr(φ̃) = L , ∀φ ∈ DiffN (resp. X̃(r)(L ) = 0, ∀X ∈ X(N)), as θ is DiffN-
invariant and hence, X(N)-invariant. DiffN-invariance implies X(N)-invariance and
both notions are equivalent except when N is orientable and admits an orientation-
reversing diffeomorphism onto itself (see [4, Sect. 2.1]).

3 A Basis ofIIIX(N)X(N)X(N)

LetL i
jk : J1(FN) → R, j < k, be the LagrangianL i

jk(j
1
x s) = ωi([Xj, Xk])(x), where

s = (X1, . . . , Xn) and (ω1, . . . , ωn) denotes the dual coframe. We remark that the
definition makes sense as the value ωi([Xj, Xk])(x) only depends on j1x s. Moreover,
from the very definition we have [Xj, Xk]x = L i

jk(j
1
x s)(Xi)x. The local expression of

this Lagrangian in an induced coordinate system on J1(FN), is

L i
jk = (xh

j xl
k,h − xh

k xl
j,h)z

i
l, (3)

where zi
j = (xi

j)
−1. The Lagrangians L i

jk are DiffN-invariant and functionally inde-
pendent and every L ∈ IX(N) can be written locally as a differentiable function of
this system (see [1]).

As is known (see [1, Theorem 4.8], [5, formula (6)]), every X(N)-invariant
Lagrangian on J2(FN) can be written as a differentiable function of the following

1
2n2(n − 1) + 1

6n2(n − 1)(2n + 2)
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Lagrangians:L c
ab, a < b;L c

ab,d , a < b, a ≤ d, whereL c
ab is defined by the formula

(3) and L c
ab,d is given as follows:

L c
ab,d =

∑

r

xr
dDr

(

L c
ab

)

= xr
d(x

u
a,rxe

b,u − xu
b,rxe

a,u)z
c
e − xr

dxs
t,r(x

u
axe

b,u − xu
bxe

a,u)z
c
s zt

e

+ xr
d(x

v
axs

b,(rv) − xv
bxs

a,(rv))z
c
s , (4)

where Di denotes the total derivative with respect to the coordinate xi; that is,

Di = ∂

∂xi
+

∞
∑

|I|=0

xh
k,I+(i)

∂

∂xh
k,I

,

I = (i1, . . . , in) ∈ N
n being a multi-index of order |I| = i1 + · · · + in.

The geometric meaning of such functions is the following. If s : U → FN is the
section induced by a linear frame (X1, . . . , Xn) on an open neighbourhood of a point
x ∈ N , we denote by ∇s the only linear connection on FU that parallelizes each
vector field Xi; i.e., (∇s)Xj Xi = 0, for i, j = 1, . . . , n. Then, we have

L c
ab(j

1
x s) = −ωc (Tor∇s (Xa, Xb)) (x),

L c
ab,d(j

2
x s) = −ωc (∇sTor∇s) (Xd, Xa, Xb) (x),

where (ω1, . . . , ωn) denotes the dual coframe. Moreover, the inequality a ≤ d is due
to the constraints imposed by Bianchi’s first identity for the linear connection ∇s;
namely,

L h
abL

c
hd + L h

bdL
c

ha + L h
daL

c
hb = L c

bd,a + L c
da,b + L c

ab,d .

For the details of these facts, see [1, 4].

4 Einstein–Hilbert Lagrangian onMMM

Following the notations in [2, Chap. VI, Sect. 5], the Ricci tensor field attached to the
symmetric connection Γ is given by SΓ (X, Y) = trace(Z �→ RΓ (Z, X)Y), where
RΓ denotes the curvature tensor field of the covariant derivative ∇Γ associated to Γ

on the tangent bundle; hence SΓ = (RΓ )jldxl ⊗ dxj, where (RΓ )jl = (RΓ )k
jkl, and

(RΓ )i
jkl = ∂Γ i

jl

∂xk − ∂Γ i
jk

∂xl + Γ m
jl Γ i

km − Γ m
jk Γ i

lm, (5)

(see [2, Chap. III, Proposition 7.6]).
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The Einstein–Hilbert Lagrangian density is given by

(ΛEH)j2x g = gij(x)(Rg)h
ihj(x)vg(x) = LEH(j2x g)vx,

where v = dx1 ∧ · · · ∧ dxn, Rg is the curvature tensor of the Levi-Civita connection
Γ of the metric g, and vg denotes the Riemannian volume form attached to g; i.e., in

coordinates, vg =
√

(−1)n− | det((gab)
n
a,b=1)|v. Hence,

LEH ◦ j2g = (ρ ◦ g)(yij ◦ g)(Rg)h
ihj, ρ =

√

(−1)n−| det((yab)
n
a,b=1)|,

where yij is introduced in (2) and yij = (yij)
−1.

Taking (5) into account, the local expression for LEH is readily seen to be

LEH = ρyij
(

∂Γ h
ij

∂xh − ∂Γ h
ih

∂xj + Γ k
ij Γ

h
hk − Γ k

ihΓ
h

jk

)

,

or, in terms of the local coordinates on J2(M ),

LEH = ρyijyhk
(

yki,(jh) − yij,(kh)

)

+ 1
2ρyijyakybh

(−yab,h
(

yki,j + ykj,i − yij,k
)

+ yab,jykh,i + 1
2

(

yai,j + yaj,i − yij,a
)

ybh,k

− 1
2

(

yai,h + yah,i − yih,a
) (

ybk,j + ybj,k − ykj,b
))

. (6)

5 The Einstein–Hilbert Lagrangian Induced on FN

The bundle of metrics pM : M → N can be viewed as the quotient bundle q : FN →
FN/G ∼= M , where FN is the bundle of linear frames of N and G = O(n+, n−) ⊂
GL(n;R) is the orthogonal group corresponding to the signature (n+, n−), n++n− =
n = dim N . In fact, if (X1, . . . , Xn) is a linear frame at x ∈ N with dual coframe
(ω1, . . . , ωn), then the identification between FN/G and M is given by the bundle
map

(X1, . . . , Xn)modG �→ gx = (ω1)2 + · · · + (ωn+
)2 − (ωn++1)2 − · · · − (ωn)2.

A linear frame (X1, . . . , Xn) ∈ Fx(N) is said to be orthonormal with respect to
gx ∈ Mx(N) (or simply gx-orthonormal) if gx(Xi, Xj) = εiδij where εi = 1 for
1 ≤ i ≤ n+ and εi = −1 for n+ + 1 ≤ i ≤ n.

Theorem 1 The Lagrangian L̄EH induced on J2(FN) by the Einstein–Hilbert
Lagrangian LEH can be written as a differentiable function of the basis of DiffN-
invariant Lagrangians as follows:
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L̄EH = ρ̄εr
(

2L a
ra,r − L a

arL
b

br − 1
2L

a
rb

(

L b
ra − εaεbL

a
rb

))

,

where

ρ̄ =
√

det((za
b)

n
a,b=1).

Proof Let q(2) : J2(FN) → J2(M ) be the morphism induced by the bundle mor-
phism q : FN → M . Let ȳjk = yjk ◦ q, ȳij,k = yij,k ◦ q(2) and ȳij,(kh) = yij,(kh) ◦ q(2)

be the coordinates system on J2(M ) induced by the coordinates on J2(FN); that is,

ȳjk = εiz
i
jz

i
k, (7)

ȳij,k = −εaza
r

(

zs
i z

a
j + za

i zs
j

)

xr
s,k, (8)

ȳij,(kh) = εaza
uxu

v,hzv
r

(

zs
i z

a
j + za

i zs
j

)

xr
s,k

+ εaza
r

(

zs
uza

j + za
uzs

j

)

zv
i xu

v,hxr
s,k

+ εaza
r

(

zs
i z

a
u + za

i zs
u

)

zv
j xu

v,hxr
s,k

− εaza
r

(

zs
i z

a
j + za

i zs
j

)

xr
s,(kh), (9)

where zi
j is introduced in Sect. 3.

Taking (6) into account, the local expression for the Einstein–Hilbert Lagrangian
induced on J2(FN) is written as follows:

L̄EH = ρ̄ȳij ȳhk
(

ȳki,(jh) − ȳij,(kh)

) + 1
2 ρ̄(L̄EH)0,

where

(L̄EH)0 = ȳij ȳak ȳbh
(−ȳab,h

(

ȳki,j + ȳkj,i − ȳij,k
)

+ ȳab,j ȳkh,i + 1
2

(

ȳai,j + ȳaj,i − ȳij,a
)

ȳbh,k

− 1
2

(

ȳai,h + ȳah,i − ȳih,a
) (

ȳbk,j + ȳbj,k − ȳkj,b
))

,

and

ρ̄ =
√

| det((ȳab)
n
a,b=1)|.

Taking (7)–(9) and

ȳrs = εix
r
i xs

i ,
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into account, after long but simple calculations, we obtain

L̄EH = 2ρ̄εwxk
w

(

xh
wxr

a,(kh) − xh
axr

w,(kh)

)

za
r

+ ρ̄
{

2εwxh
wxr

w,hxu
s,uzs

r − 4εwxh
wxk

wza
uxu

v,hxr
a,kzv

r + 2εwxh
wxu

w,rxr
s,hzs

u

+ 2εaεpεwxh
w

(

xk
pxr

w,k − xk
wxr

p,k

)

za
r za

uxu
p,h

− 1
2εrxa

r,bxb
r,a − εrxa

r,axb
r,b

− 2εrxh
r xb

r,hzn
bxa

n,a + 2εrxh
r zn

bxb
n,hxa

r,a + 2εrxh
r zn

bxa
r,hxb

n,a

− εrxh
r zn

bxb
r,axa

n,h − εrxa
r xb

r zh
s zk

uxu
k,bxs

h,a

+ 3
2εrxa

r xb
r zh

s zk
uxu

h,bxs
k,a − εmεwεnzn

r zn
s xb

mxs
m,bxa

wxr
w,a

+ 3
2εnεmεwzn

s zn
r xa

mxb
mxr

w,bxs
w,a − 1

2εmεnεwzn
t zn

r xa
mxr

w,axb
wxt

m,b

}

.

Finally, taking (3) and

L a
ma,m = xh

mxu
m,hxr

v,uzv
r − xh

mxu
v,hza

uxk
mxr

a,kzv
r + xh

m(xk
mxr

a,(hk) − xk
axr

m,(hk))z
a
r ,

(see (4)) into account we obtain the statement.

Remark 1 The Einstein–Hilbert Lagrangian L̄EH induced on J2(FN) is an affine
function and its Poincaré–Cartan form projects onto J1(FN) (see [6, Proposition
2.1]).

Let τ 1
N , τ

2
N be the mappings given by,

τ 1
N : J1(FN) −→ ∧2T∗N ⊗ TN, τ 1

N (j1x s) = (Tor∇s)x ,

τ 2
N : J2(FN) −→ T∗N ⊗ ∧2T∗N ⊗ TN, τ 2

N (j2x s) = (∇sTor∇s)x ,

where ∇s is the linear connection parallelizing the linear frame bundle defined by
the section s.

Let C̄1
3 and C1

1 be the contractions given by

C̄1
3 : T∗N ⊗ ∧2T∗N ⊗ TN −→ T∗N ⊗ T∗N,

C̄1
3

(

τ d
abcdxa ⊗ dxb ∧ dxc ⊗ ∂

∂xd

) = τ c
abcdxa ⊗ dxb,

C1
1 : ∧2 T∗N ⊗ TN −→ T∗N,

C1
1

(

τ c
abdxa ∧ dxb ⊗ ∂

∂xc

) = τ c
cbdxb,
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and let C̃1
4 , C̃2

2 be the contractions given by

C̃1
4 , C̃2

2 : ∧2 T∗N ⊗ TN ⊗ ∧2T∗N ⊗ TN −→ T∗N ⊗ T∗N,

C̃1
4

(

τ cc′
aba′b′dxa ∧ dxb ⊗ ∂

∂xc ⊗ dxa′ ∧ dxb′ ⊗ ∂

∂xc′
)

= τ cc′
aba′cdxa ∧ dxb ⊗ dxa′ ⊗ ∂

∂xc′ ,

C̃2
2

(

τ cc′
aba′b′dxa ∧ dxb ⊗ ∂

∂xc ⊗ dxa′ ∧ dxb′ ⊗ ∂

∂xc′
)

= τ cc′
ac′a′b′dxa ⊗ dxa′ ∧ dxb′ ⊗ ∂

∂xc .

Proposition 1 The Einstein–Hilbert functional induced on J2(FN) is the second-
order Lagrangian density L̄EHθ1 ∧ · · · ∧ θn on FN where L̄EH is defined as follows

L̄EH = g∗
s ◦

(

2
(

C̄1
3 ◦ τ2N

)

−
((

C1
2 ◦ τ1N

)

⊗
(

C1
2 ◦ τ1N

))

− 1
2

((

C̃1
4 ⊗ C̃2

2

)

◦
(

τ1N ⊗ τ1N

)))

+ 1
2

(

g�
s ◦

(

τ1N ⊗ τ1N

))

,

where g∗
s : T∗N ⊗ T∗N −→ R, g∗

s = (X1)
2 + · · ·+ (Xn+)2 − (Xn++1)

2 − . . .− (Xn)
2,

with s = (X1, . . . , Xn), and g�
s is the map induced by g∗

s and gs on ∧2T∗N ⊗ TN ⊗
∧2T∗N ⊗ TN.
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