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Chapter 1
Greenhouse Gas Emissions and Climate 
Variability: An Overview

Mukhtar Ahmed

Abstract A comprehensive overview of greenhouse gas (GHG) emissions of from 
different sectors across the globe is provide in this chapter. Particular attention is 
given to agriculture, forestry, and other land use (AFOLU). Since agricultural activ-
ities (cultivation of crops, management activities and rearing of livestock) result in 
production and emissions of GHG, quantification of GHG and its mitigation is 
addressed in this chapter. The suggested mitigation techniques include the use of 
bioenergy crops, fertilizer and manure management, conservation tillage, crop rota-
tions, cover crops and cropping intensity, irrigation, erosion control, management of 
drained wetlands, lime amendments, residue management, biochar and biotechnol-
ogy. Furthermore, quantification of GHG emissions is discussed using different pro-
cess based models. These models could further be used as decision support tools 
under different scenarios to mitigate GHG emissions if calibrated and validated 
effectively.

Keywords  Greenhouse gas emissions • Climate variability • AFOLU • Mitigation

M. Ahmed (*) 
Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University,  
Rawalpindi, Pakistan 

Department of Biological Systems Engineering, Washington State University,  
Pullman, WA, USA
e-mail: ahmadmukhtar@uaar.edu.pk; mukhtar.ahmed@wsu.edu

Contents

1.1   Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2
1.2    Greenhouse Gas Emission and Climate Variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12
1.3    Greenhouse Gas Mitigation and Climate Change Adaptation . . . . . . . . . . . . . . . . . . . . . .  15
1.4    Modeling and Simulation (Models Used in GHGE Studies) . . . . . . . . . . . . . . . . . . . . . . .  20
1.5    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

mailto:ahmadmukhtar@uaar.edu.pk
mailto:mukhtar.ahmed@wsu.edu


2

1.1  Introduction

Combustion and extensive use of fossil fuels results in the emission of greenhouse 
gases (GHGs) which contribute to the greenhouse effect. The fundamental phenom-
enon of greenhouse effect is based upon absorption and transmission of energy, 
depending upon its wavelength. High temperature bodies such as sun generally emit 
radiation which is of short wavelength and cooler bodies like earth emit long wave-
length radiation. Longer wavelength radiation is called infrared radiation. Infrared 
radiation is not as harmful according to Planks Quantum theory of radiation energy 
is inversely proportional to wavelength (ʎ) and directly proportional to frequency 
(v) i.e. E = hv where v = c/ʎ. However, short wavelength radiation easily passes 
through glass then after striking colder bodies such it is transmitted back at a longer 
wavelength, which is blocked by the glass resulting in an increased temperature 
under the glass. This phenomenon is largely used in the greenhouse industry to let 
solar radiation in and block longer wavelength radiation to increase inside tempera-
ture for plant growth even if the outside temperature is too low to grow plants. Some 
atmospheric gases have the same property and maintain earth’s temperature at a 
certain level. These gasses are called GHGs, and they include carbon dioxide (CO2), 
methane (CH4), water vapor and oxides of nitrogen (NOX). However, due to inten-
sive use of fossil fuels, industrialization, deforestation and mechanization in agri-
culture  the  amount  of  these GHGs,  particularly CO2, has increased significantly 
resulting in global warming. The Global Warming Potential (GWP) is used as a 
measure of the global warming impacts of different GHGs. It is measure of how 
much energy the emission of one ton of gas will absorb in a particular time period 
in comparison to one ton of CO2. The larger the GWP, the greater will be the impact 
of that gas in comparison to CO2 over a given time period, i.e., 100 years. GWP 
allows policy makers to compare emissions and design reduction strategies. Since 
CO2  is used as  reference  it has GWP of 1 while methane  (CH4) GWP is 28–36, 
nitrous Oxide  (N2O) has a GWP 265–298. High GWP gases, called fluorinated 
gases, have GWPs in range of the thousands or tens of thousands.

Carbon dioxide is the chief GHG emitted through human activities. The emis-
sion of CO2 has increased significantly due to deforestation which resulted in an 
alteration of the carbon cycle. Since forests are a main sink for CO2, their destruc-
tion  results  in  increased  atmospheric  CO2  (NRC  2010). The increase of carbon 
dioxide in the atmosphere is due to the burning of fossil fuels. Methane (CH4) is the 
second dominant GHG emitted by human activities. The main source of methane is 
raising of livestock, rice paddies and bacterial action on landfills and wastes. The 
petrochemical industry and coal mines are also big contributors of methane. In gen-
eral 35 % of the methane emissions are natural, and 65 % are due to human activi-
ties. Nitrous oxide (N2O), another GHG, is naturally present in the atmosphere due 
to the N-cycle but it also comes from human activities such as agriculture, transpor-
tation, and industry (EPA 2010).  Nitrous  oxide  is  the  main  precursor  of  ozone 
depletion. Nitrous oxide emissions from natural lands is 55 % of global N2O emis-
sions. Kim et al. (2013) concluded that nitrous oxide emissions from natural land is 
lowerer than from agricultural land. Fluorinated gases are the longest lasting and 
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most potent GHGs destroying ozone layer. GHG emission is now a critical topic due 
to its devastating effect on different sectors of life, which also results in global 
warming (Kennedy et al. 2009).

The  countries  that  emited  the  highest  amount  of GHG  include China  (23 %), 
USA (19 %), the European Union (13 %), India (6 %), the Russian Federation (6 %), 
Japan (4 %), and Canada (2 %) while other countries produced 28 % (IPCC 2007). 
Global GHG emissions and sinks are related mainly to land use change. The maxi-
mum emission of CO2 globally is due to deforestation, particularly in Africa, Asia, 
and South America. According to Houghton et al. (2012) net flux of carbon from 
land use and land cover change (LULCC) accounted for 12.5 % of anthropogenic 
carbon  emissions.  Hergoualc’h  and Verchot  (2014) studied land use change in 
Southeast Asia where tropical peat swamp forests are located. These forests act as 
global carbon stores but due to their intensive degradation and conversion to agri-
cultural lands GHG emission in the region have increased significantly. The major 
driver of environmental change and increased GHG emissions is land use 
change(LUC)  (Turner  et  al.  2007;  Lambin  and  Meyfroidt  2011;  IPCC  2013). 
Similarly, it leads to alteration in soil organic carbon and changes in biodiversity 
(Sala et al. 2000). Therefore,  there  is a dire need  to mitigate  the  impact of LUC 
through utilization of renewable energy technologies. Similarly, in order to mini-
mize GHG emissions from land use change, quantification of the direct impact of 
land use change on GHG emissions is important in order to design adaptation strate-
gies. Meta-analysis is a robust statistical method of identifying trends and patterns 
in the effects of LUC on GHG emissions. Similarly, different approaches like basic 
estimation equations, models, field measurements, inference and a hybrid equation 
approach could be used used to estimate GHG emission (IPCC 2013). Harris et al. 
2015.  used  meta-analysis  to  quantify  the  impact  of  LUC  on  GHG  emissions. 
Greenhouse gas (GHG) emission factors for iLUC are proposed for inclusion into 
carbon footprints (CF) of biofuels (NRC 2010). LCA is a good tool for quantifying 
environmental impacts throughout the life cycle of a product. LCA, when applied to 
agriculture or forestry products, can include upstream (extraction and production of 
material inputs e.g. fuels, fertilizers) and downstream impacts (use and disposal by 
the end consumer). If we consider the LCA for a grain product it will include emis-
sions from synthetic fertilizer production and N2O emissions from fertilizer applica-
tion (upstream impacts) and emissions from grain transportation, storage, processing, 
use, and disposal (downstream impacts) (Kennedy et al. 2009). Greenhouse gas 
fluxes from a managed ecosystem were elucidated by Paustian et al. (2006). The 
main processes involved are photosynthesis, respiration, decomposition, nitrifica-
tion, denitrification, enteric fermentation and combustion. These processes govern 
the carbon and nitrogen dynamics in soil which could be affected by physical and 
biological processes. The biological processes include microbial as well as animal 
and plant activity while physical process include combustion, leaching and runoff. 
(Fig. 1.1)

Davies-Barnard et al. (2014) concluded that land cover has a significant impact 
on climate and it is significantly affected by agricultural land use. Agricultural and 
forestry activities and land-use change are responsible for in one third of GHG 
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emissions. Agriculture is the dominant land use activity and contributes 5.1–6.1 
GtCO2-eq/year (10–12 % of total global anthropogenic emissions of GHGs). N2O 
and  CH4 contributions from agriculture are 60 and 50 % respectively. However, 
these agricultural emissions can be linked to particular crop or animal products 
(IPCC 2013). The emissions produced by agriculture do not take place at the field 
level only. There can be spatial dislocation of emissions in which products of agri-
culture can be transported to another place and utilized there. Similarly, temporal 
dislocation is the decaying of crop residues over a longer period of time and its later 
utilization as fuel. The other important source of GHG emissions is the energy sec-
tor. The generation and usa of energy results in large emissions of GHGs. Generally 
more attention of GHG emissions from the energy sector has been given to energy 
production rather than energy utilization as household electric and electronic equip-
ment (e-products).

Climate change is a major  threat  to agriculture and food security. GHG emis-
sions from agriculture continue to rise. In order to identify opportunities for reduc-
ing emissions while addressing food security, collection of emissions data is 
necessary to design resilience and rural development goals. FAOSTAT emissions 
database could be used to estimate GHG emissions from a target regions as it is the 
most comprehensive knowledge base regarding agricultural greenhouse gas emis-
sions. According to FAOSTAT, (2015) GHG emission (CO2 equivalent) is continu-
ally increasing across the globe (Fig. 1.2). The highest emission is from the 
agriculture sector followed by land use change. Among continents, Asia is at top 
with reference to GHG emissions from agriculture followed by America (Fig. 1.2). 
Greenhouse  gase  emissions  (CO2  equivalent)  from  agriculture  in Annex  I,  non- 

Fig. 1.1 Greenhouse gas emission sources/removals and processes in managed ecosystems 
(where NMVOC; non‐methane volatile organic compounds) (Source: Paustian et al. (2006)
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Annex I countries and across the globe provide different pictures in different field 
of agriculture (Figs. 1.3a and 1.3b). Generally, non-Annex I countries are higher 
producers of GHGs compared to Annex I countries. Similarly, GHG emissions by 
sectors involved in agriculture revealed that enteric fermentation contributes the 
most (40.0 %) to GHG emission while the lowest emissions reported were due to 
burning crop residues (0.5 %) (FAOSTAT, 2015) (Figs. 1.2, 1.3a and 1.3b). China is 
the top GHG emitter followed by India. The top ten GHG emitters have been shown 
in Figs. 1.4a, 1.4b, 1.4c and 1.4d based upon different sectors in agriculture and land 
use change. FAOSTAT divided GHG emissions under two categories which include 
agriculture and land use.

Fig. 1.2 Greenhouse gase (GHG) emissions from agriculture and land use change across the 
globe
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GHG emissions could be controlled or minimized by using different techniques 
including biofuel, fertilizer and manure, conservation tillage, rotations of crops, 
cover crops, cropping intensity, irrigation, erosion control, drained wetland man-
agement, lime amendments, residue management, biochar and biotechnology. 
Similarly, GHG emissions from rice based cropping systems could be minimized by 
water and residue management, organic amendments, ratoon cropping, fallow man-
agement, use of nitrification and urease inhibitors and by using different fertilizer 
placement methods and sulfur products. In case of animal production GHGs emis-
sions is mainly because of enteric fermentation, housing and manure management. 

Fig. 1.3a  Greenhouse gase (GHG) emissions (CO2 equivalent) from agriculture
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GHG emissions from enteric fermentation and housing could be modified by using 
different methods. It includes management in the feed and use of different microor-
ganism products. However, in case of manure management techniques like anaero-
bic digestion, liquid manure storage and treatment practices could be used to 
minimize or modify GHG emissions.

Forestry has considerable potential to mitigate GHG emissions through the 
sequestration and storage of forest carbon stocks. Various forestry activities have 
potential to reduce GHG emissions. According to Morgan et al. (2010) agroforestry 

Fig. 1.3b  Greenhouse gas (GHG) emissions (CO2 equivalent) from agriculture
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could contribute to carbon sequestration, GHG mitigation, and adaptation to shift-
ing climate. Land use change is the main contributor to GHG emissions, therefore, 
it needs to be managed effectively. Land use change mainly includes three direc-
tional processes – afforestation, reforestation and deforestation. The balance among 
these three processes is important to manage GHG flux. Different methods could be 
used to estimate GHG fluxes from LUC. The GHG flux linked with LUC is the sum 
of  the GHG fluxes  from previous  land  use  categories  plus  the  sum of  the GHG 
fluxes related to the current land use (IPCC 2007). Equations 1 and 2 could be used 
to study annual carbon stock changes for LUC estimates as the sum of changes in 
all land use categories (Dokoohaki et al. 2016).

Fig. 1.4a  Top 10 greenhouse gase (GHG) emitters (CO2 equivalent) from agriculture
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 D D DC C Cluc luco lucn= +  
(1)

 
D D D D DC C C C Cluc luc fl lu cl lu gl lu wl= + + +

 
(2)

where ΔC;  carbon  stock  change  (metric  tons CO2‐eq ha−1 year−1), luc; land use 
change, o; old land use, n; new land use, fl; forest land, cl; crop land, gl; grazing 
land and wl; wetlands.

Fig. 1.4b  Top 10 greenhouse gase (GHG) emitters (CO2 equivalent) from agriculture
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The  annual  carbon  stock  exchange  for  a  particular  section  e.g.  management 
regime could be calculated by the following equation

 
C Cluciluc

i

n

= å D
 

(3)

where ΔCluc; carbon stock changes for a land use change and i denotes a specific 
division

Fig. 1.4c  Top 10 greenhouse gase (GHG) emitters (CO2 equivalent) from agriculture and land use 
change
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Many  forest  and  agricultural  lands  have  live/dead  biomass  carbon  stocks 
(LDBCS) and soil organic carbon which acts as a good carbon store. The following 
equation (Dokoohaki et al. 2016) could be used to estimate the annual change in 
carbon stocks in dead wood due to land conversion.

 
D ¸C C C A Tdom n o on on= -( ) ×

 
(4)

where ΔCdom = annual change in carbon stocks in dead wood or litter (metric tons C 
year−1), Co = dead wood/litter stock, under the old land‐use category (metric tons C 
ha−1); Cn = dead wood/litter stock, under the new land‐use category (metric tons C 
ha−1), Aon = area undergoing conversion from old to new land‐use category (ha), 
Ton = time period of the transition from old to new land‐use category (year) (The 
default is 20 years for carbon stock increases and 1 year for carbon losses.)

Soil organic carbon stock  (SOCS)  is also  influenced by  land use change. The 
significant change in SOCS occurs due to conversion of land to crop land (Six et al. 
2000). Aalde et al. (2006) proposed a method to estimate changes in SOCS from 
mineral soils.

 
D ¸C SOC SOC CO MW Dmineral f i 2= -( )éë ùû×

 
(5)

where ΔCmineral = annual  change  in  mineral  SOCS  (metric  tons  CO2‐eq year−1), 
SOCf = soil organic carbon stock at the end of year 5 (metric tons C), SOCi = soil 
organic carbon stock at the beginning of year 1 (metric tons C), CO2MW = ratio of 
molecular weight of CO2 to C (44/12 dimensionless) and D = time dependence of 
stock change factors (20 years).

Simialrly, SOCS from mineral soils could be calculated by using the following 
equation (Aalde et al. 2006)

 
SOCS SOC F F F Aref lu mg i= × × × ×

 
(6)

Fig. 1.4d  Top 10 greenhouse gase (GHG) emitters (CO2 equivalent) from agriculture and land use 
change
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where SOCS = soil organic carbon stock at the beginning (SOCSi) and end of the 
5 years (SOCSf) (metric tons C), SOCref = reference soil organic carbon stock (met-
ric tons C ha−1), Flu = stock change factor for land use (dimensionless), Fmg = stock 
change factor for management (dimensionless), Fi = stock change factor for input 
(dimensionless) and A = area of land‐use change (ha).

Uncertainty analysis is an important technique to quantify the uncertainty of 
greenhouse gas (GHG) emissions from different sectors. It can help policy makers 
and farmers decide management options to minimize GHG emissions based upon 
an uncertainty range. If uncertainty for an estimate is low farmers can invest in that 
management practices as it has high probability of GHG emission reduction. A 
Monte Carlo approach  is a comprehensive,  sound method  that could be used for 
estimating the uncertainty. Greenhouse Gas Emissions and Climate Variability: An 
Overview covers the GHG emission status by different sectors and how it could be 
mitigated by using different practices in agriculture and land use sectors. This chap-
ter reviews available methods for studying/quantifying GHG emission for accurate 
design of strategies to address the issue of climate variability.

1.2  Greenhouse Gas Emission and Climate Variability

Climate variability is one of the burning issues in all fields from social sciences to 
the  applied  sciences.  Climate  vulnerability  threatens  global  climatic  cycles  and 
world food production systems, thus affecting the lives of all people. Most of the 
world is exposed to the effects of climatic change due to extreme variability in tem-
perature and rainfall. Risk reduction represents a major avenue for responding to 
existing  rise  in  temperature,  carbon  dioxide,  GHGs,  flood  and  drought  hazards. 
Global warming is the greatest environmental challenge of the twenty-first century 
as it results in increased average air temperature (Gnansounou et al. 2004). Wu et al. 
(2010) concluded that cities act as heat islands and since large areas of grassland 
and forest were converted to barren land resulted in greater climate variability. The 
guiding principle to reduce climate risks is to minimize GHG emission. In recent 
decades significant changes in the atmospheric temperature have been observed. 
The global mean annual temperature at the end of the twentieth century was almost 
0.7 °C and it is likely to increase further by 1.8–6.4 °C by the end of this century 
(IPCC 2007). The warmest decade in the last 300 years was 1990–2000 with the 
increase of 0.5 °C in comparison to the baseline temperature of 1961–1990. A vari-
ety of models ranging from simple models to complex earth system models were 
used to project future warming under different representative concentration path-
ways (RCPs). The RCP includes RCP 2.6, RCP 4.5, RCP 6.0 and RCP 8.5 (The 
numbers refer to the rate of energy increase per unit area at the surface of the earth, 
in watts per square meter). RCP 2.6 is the normal scenario in which a guideline was 
established  to  limit global warming  to 2 °C (3.6 °F) above  the  level  that existed 
before industrial times. All other scenarios reflect severe warming due to increasing 
rates of GHG emission. The scenario RCP 8.5 reflects “business as usual” in which 
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no policies are implemented to limit GHG emission. The projected increase in mean 
temperature and rise in sea level in comparison to baseline (1986–2005) are pre-
sented in Table 1.1 (Harris et al. 2015). Climate variability resulted in a change in 
the intensity and frequency of rainfall which increased flooding and soil erosion.

Crop phenology and productivity will be affected by warmer climates. Craufurd 
and Wheeler (2009) reported earlier flowering and maturity due to a rise in tempera-
ture. Moreover,  increased  temperature  resulted  in  reproductive  failure  and  yield 
reductions in many crops. Lobell et al. (2011) reported a 1.7 % reduction in maize 
yield due to exposure of maize to degree days above 30 °C. Increased night tem-
perature is another effect of GHG which could reduce crop yield. Serious effects 
have been reported for rice where an increase in night temperature from 27 °C to 
32 °C caused 90 % yield reduction (Mohammed and Tarpley 2009). Climate vari-
ability can also modify grain quality since high temperature during grain filling 
affects the protein content of wheat (Hurkman et al. 2009). Pittock (2003) con-
cluded in their findings that the frequency of extreme events will  increase due to 
global warming. Plant processes like photosynthesis will be affected by high tem-
perature which could lead to reduction in growth and yield (Calderini and Reynolds 
2000; Talukder et al. 2014; 2013; Wang et al. 2011) (Table 1.2).

A panel of the National Research Council (United States) (2010) on advancing 
the science of climate change concluded that world mean temperature was 0.8 °C 
higher during the first decade of twenty-first century compared to first decade of 
twentieth century. Moreover, they reported that most of the warming was related to 
CO2 and other GHGs which can trap heat. The energy sector is the largest contribu-
tor to climate change as it involves burning of fossil fuels (coal, oil, and natural gas). 
Similarly, the panel identified agriculture, forest clearing, and certain industrial 
activities as big contributors to climate change due to emission of GHGs. Kang and 
Banga (2013) found that climate change is a well-recognized man made global 
environmental challenge and that agriculture is significantly influenced by it. Food 
and Agriculture Organization (FAO) experts reported that each 1 °C rise in tempera-
ture would cause annual wheat yield loss of about 6 million tons. However, when 

Table 1.1  Changes in global mean surface temperature in °C and global mean sea level rise in m 
(bottom) for the two time periods shown, referenced to the baseline period 1986–2005 (The “likely 
range” gives confidence limits for a 5–95 % interval)

Climate variable
RCP 
scenario

2046–2065 2081–2100

Mean Range Mean Range

Mean temperature change (°C) RCP2.6 1 0.4–1.6 1 0.3–1.7

RCP4.5 1.4 09–2.0 1.8 1.1–2.6

RCP6.0 1.3 0.8–1.8 2.2 1.4–3.1

RCP8.5 2 1.4–2.6 3.7 2.6–4.8

Mean Range Mean Range
Mean Sea Level Rise (m) RCP2.6 0.24 0.17–0.32 0.4 0.26–0.55

RCP4.5 0.26 0.19–0.33 0.47 0.32–0.63

RCP6.0 0.25 0.18–0.32 0.48 0.33–0.63

RCP8.5 0.3 0.22–0.38 0.63 0.45–0.82

1 Greenhouse Gas Emissions and Climate Variability: An Overview
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Table 1.2 Impacts of climatic variables on crops with recommended adaptation strategies

Climatic impact Effect on crop Adaptation Reference

Increased 
temperature (0.67, 
0.53, and 0.38 °C 
decade − 1)

Change in crop life 
cycle and decreased 
yield

Adjusting the sowing 
date, converting tillage 
system and adopting 
water-saving 
technologies

Zhang et al. (2015)

  Heat stress   Decreased in number 
of days to mature 
(1.8 days for 2025 
and by 2.3 days for 
2050)

Shift the planting date Bao et al. (2015)

  Increases in 
precipitation and 
CO2 
concentration

  Soybean projected 
yield increase from 6 
to 22 % for 2025 and 
8 to 35 % for 2050 
for rainfed 
conditions.

El Niño–Southern 
Oscillation (ENSO)

Might influence 
growth, maturity, and 
yield of winter wheat

Shift planting date and 
cultivar selection

Woli et al. 2014

Temperature Modification in 
flowering time of wheat

Use longer-season 
wheat varieties and 
varieties with 
increased heat-stress 
resistance

Wang et al. 2015

Climate extremes 
(temperature and 
precipitation)

Change in rainfed crop 
yields

Irrigation Troy et al. 2015

Heat stress Reproductive growing 
duration (RGD) and 
yield

Shifts in cultivars Tao et al. 2015

Heat stress Yield losses due to 
increased frequency 
and magnitude of heat 
stress

Heat-tolerant ideotypes Stratonovitch and 
Semenov 2015

Elevated 
temperature

Alteration in the 
phenology of crops

Agronomic and 
breeding solutions

Sadras et al. 2015

Reduction of annual 
precipitation and an 
increase of air 
temperature

Shortening of growing 
season

Supplemental 
irrigation

Saadi et al. 2015

Higher temperatures Shortening of the grain 
filling period, reduce 
crop yields

Rezaei et al. 2015
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losses of all other crops were taken into consideration it might cause loss of US$ 
20 billion each year (Swaminathan and Kesavan 2012).  Climate  variability  can 
reduce crop duration, disturb source sink relationships, increase crop respiration, 
affect survival and distribution of pest populations, accelerate nutrient mineraliza-
tion and decrease nutrient use efficiency. It can also lead to changes in the frequency 
and intensity of drought and floods (Sharma and Chauhan 2011). Overall agricul-
tural production will be significantly affected by climate variability which will 
influence food security.

1.3  Greenhouse Gas Mitigation and Climate Change 
Adaptation

Climate change is one of the complex burning issues currently faced by the world. 
Greenhouse gases are trapping heat energy which results in global warming. It has 
been reported earlier that if GHGs are stopped completely, climate change will still 
affect future generations. Therefore, we need to show a high level of commitment to 
tackle the issue of climate change. Mitigation and adaptation are two approaches 
used to respond to climate change. Mitigation involves reducing and stabilizing the 
levels of GHGs while adaptation is adapting to climate change using different tech-
niques. Mitigation is possible by finding ways by which we can increase sinks for 
GHGs. Mainly the sinks includes forests, soil and oceans, therefore it is necessary 
to manage  those  resources which  can  absorb GHGs. According  to Calvin  et  al. 
(2015) around 40 % of GHG emissions are from agriculture, forestry, and other land 
use (AFOLU). Their work further elaborated that implementation of climate policy 
is necessary to minimize GHG emissions. A multi-model comparison approach was 
used to study the future trajectory of AFOLU GHG emissions with and without 
mitigation. a similar approach about the role of land for the mitigation of AFOLU 
GHG emissions was earlier reported which includes the use of bioenergy crops 
(Calvin et al. 2013). The models used were Applied Dynamic Analysis of the Global 
Economy (ADAGE) (Ross 2009.); MIT Emissions Prediction and Policy Analysis 
(EPPA) (Paltsev et al. 2005); GCAM (Global Change Assessment Model) (Calvin 
et al. 2011) and TIAM-WORLD (Loulou 2008). The results indicated larger uncer-
tainties in both present and future emissions with and without climate policy.

Bioenergy crops are the biggest potential source that could be used to minimize 
GHG emissions. Hudiburg et al. (2015) proposed perennial grasses as effective bio-
energy crops on marginal lands. They evaluated the DayCent biogeochemical model 
in their studies and concluded that the model predicted yield and GHG fluxes with 
good accuracy. They found that with the replacement of traditional corn-soybean 
rotation with native prairie, switchgrass, and Miscanthus resulted in net GHG reduc-
tions of 0.5, 1.0 and 2.0 Mg C ha−1 year−1 respectively. Since bioenergy crops have 
the potential to mitigate climate change impacts, they have been under consider-
ation for the past decade. However, these bioenergy crops could only be grown on 
marginal lands as most of the world land is occupied by major food crops. Albanito 

1 Greenhouse Gas Emissions and Climate Variability: An Overview



16

et al. (2016)  reported C4 grasses  (Miscanthus  and  switch-grass)  as  the  potential 
bioenergy crops with the highest climate mitigation potential. These crops would 
displace 58.1 Pg of fossil fuel C equivalent (Ceq oil) if the proposed land use change 
took place. Similarly, woody energy crops (poplar, willow and Eucalyptus species) 
could displace 0.9 Pg Ceq oil under proposed land use change. The best climate miti-
gation option is the afforestation of suggested cropland which would sequester 5.8 
Pg C in biomass in the 20-year-old forest and 2.7 Pg C in soil. Croplands could not 
accumulate carbon for more than a year therefore, in order to mitigate climate 
change, agricultural lands should either be converted to forest land or bioenergy 
production (Fig. 1.5). Food security will be a big challenge in the future as the world 
population will be 9–10 billion by 2050. Therefore, bioenergy crops could not come 
at the expense of food crops. Earlier researchers accepted the potential of biomass 
energy production but according to them it was not enough to replace just a few 
percent of current fossil fuel usage. Increasing biomass energy production beyond a 
certain level might imperil food security and worsen condition of climate change 
(Field et al. 2008). However, biomass proponents are recommending the use of 
grasslands and marginal crop lands as potential sites for bioenergy crops (Qin et al. 
2015; Slade et al. 2014). Furthermore, Qin et al. (2015) suggested Miscanthus as the 
best potential crop to mitigate GHGs emissions on marginal lands compared to 
switchgrass. Biomass and ethanol yield were higher in Miscanthus. Coyle (2007) 
concluded that different crops, e.g. corn, sugarcane, rapeseed and soybean could be 

Fig. 1.5  Carbon implications of converting cropland to forest or bioenergy crops for climate miti-
gation: a global assessment (Source: Albanito et al. 2016)
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used to produce biofuel. Energy potential from different feedstocks have been pre-
sented in Table 1.3.

Chum et al. (2011) considered bioenergy as a good renewable source for energy. 
Bioenergy can easily replace fossil fuels and minimize GHG emissions (Dornburg 
and Faaij 2005; Dornburg et al. 2008; 2010). Implementation of all these techniques 
requires identification of terrestrial ecosystems which could contribute to climate 
mitigation. Many  countries  have  announced  different  targets  to  substitute  fossil 
fuels with biofuels (Ravindranath et al. 2008). Table 1.4 shows that C4 bioenergy 
crops have higher  cumulative  carbon mitigation potential  than SRCW. However, 
this mitigation potential changes across the continents as in Oceania, SRCW pro-
duced  higher  C  savings  than  energy  crops. According  to Albanito  et  al.  (2016) 
cumulative carbon strength due to reforestation is highest in Asia, followed by 
Africa, North and Central America, South America, Oceania and Europe. However, 
on a per hectare basis C sequestration strength is higher in South America followed 
by North and Central America, Oceania, Asia, Africa and Europe. Among climatic 
regions, warm-dry climates could save 44.7 % of the C in forest followed by warm- 
moist (42.6 %), cool-dry (11.3 %) and cool-moist (1.4 %) regions (Table 1.5).

Biochar also has potential to mitigate climate change by sequestering carbon. 
Biochar use improved soil fertility, reduced fertilizer inputs, GHG emissions, and 
emissions from feedstock, enhanced soil microbial life and energy generation. Its 
use also increased crop yield. (Woolf et al. 2010) reported that biochar use could 
minimize GHG emissions by 12 %. The concept of sustainable use of biochar is 
presented in Fig. 1.6 as proposed by (Woolf et al. 2010). Photosynthesis is a carbon 
reduction processes  in which plants produce biomass by using atmospheric CO2. 
Residues from crops and forests were subjected to the process of pyrolysis which 
produced bio-oil, syngas, process heat and biochar (output). These outputs serve as 
a good source of energy which could minimize GHG emissions. Furthermore, bio-

Table 1.3 Energy potential from biofuel crops using current technologies and future cellulosic 
technologies

FT
FM (Mt 
year−1)

GBC 
(GJ/ton)

GBE (EJ 
year−1)

NEBR (Output/
Input)

NBE (EJ 
year−1) Refs

Corn kernel 696 8 5.8 1.25 1.2 Hill et al. 2006

Sugar cane 1324 2 2.8 8 2.4 IEA 2004

Cellulosic 
biomass

– 6 – 5.44 – Farrell et al. 2006

Soy oil 35 30 1 1.93 0.5 Worldwatch 2006

Palm oil 36 30 1.1 9 1 Worldwatch 2006

Rape oil 17 30 0.5 2.5 0.3 IEA 2004

Source: Field et al. (2008)
Where FT Feedstock type, FM Feedstock mass, GBC Gross biofuel conversion (Useful biofuel 
energy per ton of crop for conversion into biofuel (1GJ = 109 J)), GBE Gross biofuel energy 
(Product of feedstock mass and gross biofuel conversion (1EJ = 1018 J)), NEBR Net energy balance 
ratio (Ratio of the energy captured in biomass fuel to the fossil energy input) and NBE Net biofuel 
energy (Energy yield above the fossil energy invested in growing, transporting and manufacturing, 
calculated as gross biofuel energy × (net energy balance ratio −1)/net energy balance ratio)
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char could also be used to improve agricultural soils (Fig. 1.6). Roberts et al. (2009) 
suggested biochar (biomass pyrolysis) as a good source to mitigate climate change 
and minimize fossil fuel consumption. They used life cycle assessment (LCA) to 
estimate the impact of biochar on energy and climate change and concluded that 
biochar resulted in negative net GHG emissions. However, the economic viability of 
biochar production depends upon the cost of feedstocks. Similarly, a well-to-wheel 
(WTW) LCA model was developed  to assess  the environmental profile of  liquid 
fuels through pyrolysis (Kimball 2011). Bruckman et al. 2014 reported biochar as a 
potential geoengineering method to mitigate climate change and design adaptation 
strategies. Biochar as a soil amendment can sequester C and it is a useful option to 
mitigate climate change (Hudiburg et al. 2015). Biochar stability and decomposi-
tion are the best criteria to evaluate its contribution to carbon (C) sequestration and 
climate change mitigation. (Macleod et al. 2015) reported that around 97 % of bio-
char contributes directly to C sequestration in soil. Similarly, the biochar effect on 
soil organic matter (SOM) dynamics depends upon characteristics of biochar and 

Table 1.4  Land use change C mitigation potential

Land use CR TCM CMB CSSS ALD

C4 Bioenergy crops Asia 27.62 24.06 3.56 66.07

Africa 8.58 7.69 0.89 61.23

Europe 10.86 7.74 3.12 123.21

North 
America

10.49 8.89 1.6 74.34

South 
America

10.71 9.58 1.13 58.08

Oceania 0.19 0.16 0.03 1.98

Forest Asia 3.84 2.73 1.11 94.52

Africa 1.56 1.11 0.44 42.31

Europe 0.31 0.17 0.15 9.97

North 
America

1.47 0.96 0.5 24.67

South 
America

0.74 0.41 0.34 6.27

Oceania 0.51 0.39 0.12 8.7

Short Rotation Coppice Woody 
(SRCW) crops

Asia 0.48 0.2 0.28 10.49

Africa 0.0045 0.0019 0.0026 0.35

Europe 0.92 0.52 0.41 12.54

North 
America

0.18 0.1 0.07 2.38

South 
America

0.03 0.03 0.01 0.46

Oceania 0.01 0.01 0 0.13

Source: Albanito et al. (2016)
Where CR Continental region, TCM Total C mitigated, CMB C mitigated from biomass use/incre-
ment (Pg C forest and Pg Ceq oil for bioenergy crops), CSSS C stock sequestered in soil (Pg C) and 
ALD; Agricultural land displaced (Mha)
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Table 1.5  Land use change C mitigation potential across global climatic regions

Land use CR TCM CMB CSSS ALD

C4 Bioenergy crops CD 1.69 0.84 0.85 32.47

CM 18.06 13.94 4.12 176.74

WD 0.1 0.08 0.02 2.2

WM 48.59 43.26 5.33 273.49

Forest CD 0.95 0.59 0.36 47.38

CM 0.12 0.04 0.08 2.67

WD 3.77 2.84 0.93 90.96

WM 3.6 2.3 1.3 45.44

Short Rotation Coppice Woody (SRCW) crops CD 0.42 0.06 0.36 13.53

CM 1.05 0.68 0.38 10.37

WD 0.01 0.01 0.01 0.85

WM 0.14 0.12 0.02 1.6

Source: Albanito et al. (2016)
Where CR Climate region, TCM Total C mitigated, CMB C mitigated from biomass use/increment 
(Pg C forest and Pg Ceq oil for bioenergy crops), CSSS C stock sequestered in soil (Pg C), ALD 
Agricultural land displaced (Mha), CD Cool-Dry, CM Cool-Wet, WD Warm-Dry and WM Warm 
moist

Fig. 1.6 Sustainable biochar concept (Source: Woolf et al. 2010)
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soils. Nitrous oxide (N2O), which is the main GHG coming from agricultural soil, 
could be minimized by biochar amendment (Ignaciuk 2015). All of these findings 
support the potential of biochar to be used as a climate change mitigation strategy.

1.4  Modeling and Simulation (Models Used in GHGE 
Studies)

Quantification of GHG emissions is made possible by the use of process based 
models. These models could further be used as decision support tools under differ-
ent scenarios to mitigate GHG emissions. Models should complement field trials in 
order to have realistic assessments of bioenergy crop production on GHG emis-
sions. The results obtained from simulation studies are sufficiently authentic when 
validated with field data. Used properly, models could be used to quantify GHG 
emissions.  Models  used  in  GHG  studies  include  CENTURY  (Bennetzen  et  al. 
2015), RothC (Albanito et al. 2016), EPIC (Williams 1995; Izaurralde et al. 2006), 
SOCRATES (Smith 2015), C-Farm (Calvin et al. 2015), ECOSSE (Hill et al. 2006) 
CropSyst  (Stöckle  et  al.  2003),  ALMANAC  (Agricultural  Land  Management 
Alternatives  with  Numerical  Assessment  Criteria)  (Nayak  et  al.  2015),  DNDC 
(DeNitrification DeComposition) (Zhang et al. 2016), ECOSYS (Frank et al. 2015), 
HOLOS (Wei et al. 2015), DSSAT (Jones et al. 2003) and STICS (Brisson et al. 
1998; 2003). The DAYCENT process based model estimates soil organic carbon on 
daily basis. It also has the potential to simulate GHG fluxes (N2O, NOx, and CH4) 
for terrestrial ecosystems (Kalafatis et al. 2015) (Table 1.6).

Quantification of GHG emissions is the first step to design mitigation strategies 
for climate change. Beside these process based models, different publically- 
accessible tools are also available which could be used to quantify GHG emissions. 
The calculators include Agri‐LCI models, C‐PLAN, Carbon Footprint Calculator, 
DNDC calculator, FarmGAS, Fieldprint Calculator and HOLOS. Similarly, among 
process based models it is essential to use those models that have low uncertainty. 
Ogle et al. (2007) reported that simulation modelling is useful to estimate C seques-
tration and to mitigate GHG emissions under different agricultural managements. 
However, these models are not accurate enough to simulate C dynamics under dif-
ferent agroecosystems which leads to uncertainty in the results. Quantification of 
uncertainty is important to confirm the accuracy of models. Uncertainty analysis 
either uses Monte Carlo Analyses or linear mixed-effects models (empirically based 
methods). Knightes and Cyterski (2005) suggested comparison between observed 
and simulated values as good criteria for the evaluation of model performance. This 
empirically based method was considered a robust estimate of uncertainty 
(Fig. 1.7a). It is in contrast with error propagation methods (Monte Carlo approach) 
in which uncertainty is quantified by probability distribution functions. It requires 
multiple  results  to  obtain  approximate  confidence  intervals  for  a model  estimate 
(Fig.1.7b). Monte Carlo Analysis could not be used on CENTURY which has too 
many parameters (Ogle et al. 2007). Webster et al. (2002) concluded that evaluation 
of uncertainty was important to have accurate prediction from models.
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Table 1.6 Use of processes based models in Greenhouse Gases (GHG) studies

Models Application References

APSIM N2O fluxes Chum et al. (2011)

CropSyst Climate change, Estimate long-term soil 
organic carbon, annual N2O soil 
emissions and N balance

Farrell et al. 2006; Ogle et al. 
2003; Ipcc 2011

CENTURY Soil organic carbon (SOC) dynamics in 
wheat-corn cropping systems

Qin et al. 2015

ECOSSE Simulate soil C dynamics and GHG 
emissions

Hill et al. 2006

DSSAT Irrigation and GHG emissions, GHG 
emissions reduction potentials

Cardozo et al. 2015; Reddy 2015

DNDC and 
DayCent

Estimation of nitrous oxide Calvin et al. 2013; Loulou 2008; 
Ravindranath et al. 2008

DayCent Estimation of soil GHG using inverse 
modelling parameter estimation 
software (PEST)

Daioglou et al. 2015

DayCent Estimation of potential of switchgrass 
(Panicum virgatum L.) as bioenergy 
crop

Paltsev et al. 2005

DayCent Calibration of model using inverse 
modeling approach

Ross 2009

DayCent Studying GHG emissions under 
different cropping systems

Calvin et al. 2011

EPIC C dynamics Izaurralde et al. 2006

RothC SOC sequestration with the introduction 
of cover crops

IEA 2004

STICS Nitrate leaching, N and water dynamics Dornburg et al. 2008; Constantin 
et al. 2015

Empirically-Based Approach

Monte Carlo Approach

Model

Model
Estimate and
Confidence

Interval

Estimate and
Confidence

Interval
Uncertainty Estimator

Model Parameters

Initial Values

Model Inputs

ModelM
ea

su
re

m
en

t

Single
Result

Bias Adjusted
Result

and Variance

Repeated Draws
(N Replicates)

Multiple Results
(N Replicates)

a

b

Statistical Function

Fig. 1.7  Conceptual diagram with the key components for an uncertainty analysis using (a) an 
empirically based vs. (b) Monte Carlo approach. (Source: Ogle et al. 2007)
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1.5  Conclusion

Greenhouse Gas Emissions and Climate Variability: An overview elaborated that in 
order to minimize GHG emissions we need to first accurately estimate GHG emis-
sion  using  different  approaches  like LCA.  Second,  after  quantification,  different 
mitigation approaches, like changes in land use, should be adopted by considering 
different factors. Albanito et al. (2016)) suggested bioenergy cropping as the best 
mitigation strategy under a changing climate. Meanwhile biochar also has potential 
to mitigate climate change by sequestering carbon. Woolf et al. (2010) proposed the 
concept of sustainable use of biochar. Different process based models could be used 
to accurately estimate GHG emissions in response to different land management. 
These models could be finally used as decision support tools to mitigate climate 
change. However, in order to utilize these models as effective decision support 
tools, the use of uncertainty analysis is of utmost importance.
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