
Versatile Safe-Region Generation Method
for Continuous Monitoring of Moving Objects

in the Road Network Distance

Yutaka Ohsawa(B) and Htoo Htoo

Graduate School of Science and Engineering, Saitama University, Saitama, Japan
ohsawa@mail.saitama-u.ac.jp

Abstract. This paper proposes a fast safe-region generation method
for several kinds of vicinity queries including distance range queries,
set k nearest neighbor (NN) queries, and ordered kNN queries. When
a user is driving a car on a road network, he/she wants to know objects
located in a vicinity of the car. However, the result is changing accord-
ing to the movement of the car, and therefore, the up-to-date result is
always expected, and requested to the server. On the other hand, fre-
quent requests for updating results to the server cause heavy loading. To
cope with this problem efficiently, the idea of safe-region has been pro-
posed. This paper proposes a fast generation method of the safe-region
applicable to several types of vicinity queries. Through experimental eval-
uations, the proposed algorithm achieves a great performance in terms
of processing times, and is one or two orders of magnitude faster than
existing algorithms.

1 Introduction

With the availability of wireless communication and enormous utility of mobile
devices, continuous queries over moving objects have been an explosive increase
in the demand for various location based services (LBS) applications. A continu-
ous query continuously monitors over data objects which meets a specific query
condition to a query point. Contrary, when a query is answered only one time
over static objects, this type of query is known as a snapshot query.

Various algorithms for continuous queries in Euclidean distance have been
actively researched in the literature. In practice, moving objects including cars
and pedestrian are moving on a road network in real world scenarios, and hence-
forward, queries based on distance or travel time on road network is more prefer-
able than in Euclidean distance.

Some literature proposed algorithms adaptable to the road network distance,
however, they are targeting to an individual type of query, for example, k nearest
neighbor (kNN) query, reverse k nearest neighbor (RkNN) query, and distance
range query. The aim of this study is to develop a framework adaptable to
versatile vicinity queries, including set-kNN, ordered-kNN, RkNN, and distance
range query.
c© Springer International Publishing Switzerland 2016
H. Gao et al. (Eds.): DASFAA 2016 Workshops, LNCS 9645, pp. 377–392, 2016.
DOI: 10.1007/978-3-319-32055-7 32

378 Y. Ohsawa and H. Htoo

In applications for continuous queries, the client-server model is configured in
general. In this architecture, when a moving object sends a query to the server,
a thread to manage each moving object is initiated at the server side. Then
the server sends back its query result to the moving object. The moving object
changes the location continuously, and thus, the query result becomes useless
according to the location changes. To cope with this problem, three types of
update methods have been proposed; (1) update periodically, (2) update by the
fixed distance move, (3) set safe-region.

The periodical update and the update by the fixed distance move are apt to
overlook the changes of the result or repeat futile queries to get the same result.
Hence, safe-region methods have been proposed to solve these problems. The
safe-region is an area on the road network in which the query result remains
unchanged. As long as a moving object is inside the safe-region, a new query
request to the server is not necessary. On the other hand, when the moving
object leaves the region, the query result becomes different at the location, and
therefore the moving object requests the server to send a new query result and
the safe-region.

Fig. 1. Example of a safe-region

Figure 1 shows an example of a safe-region
of ordered-3NN query at q by thick line. The
result of the ordered-3NN of q are data points
a, b, and c. In this case, when a moving object
leaves the safe-region, it issues a new query
to the server, and gets a new ordered-3NN
data objects and the safe-region.

The safe-region approaches have been
actively studied as described in the next
section, however, these algorithms have been
developed for each individual query type.
This paper proposes a fast algorithm applica-
ble to versatile vicinity queries in the road
network distance. The contributions of the
paper are summarized as follow:

– we propose a generation method of versatile safe-region on demand in the road
network distance which is applicable to vicinity queries including set-kNN,
ordered-kNN, reverse-kNN, and distance range query.

– we evaluate our proposed method comparing to existing works, and show that
the proposed method has a great performance in terms of processing time,
and is one or two orders of magnitude faster than existing approaches.

The rest of the paper is organized as follow. In Sect. 2, related works of
continuous queries are discussed. Section 3 presents the basic principles in safe-
region generation for vicinity queries. In Sect. 4 discusses how to improve the
efficiency for continuous queries, the generalization of the algorithm for various
type of vicinity queries, and the determination of the border points on the road
network edge. Section 5 describes evaluations of the performance of the proposed
method. Section 6 concludes this paper and describes future works.

Versatile Safe-Region Generation Method for Continuous Monitoring 379

2 Related Work

Continuous queries for the moving objects have been actively researched since
2000s. They can be classified into three main categories based on (1) query
types, (2) Euclidean distance or road network distance, and (3) mobility nature
of queries and data objects.

In the literature, variety of continuous query types have been researched,
consisting of range query [1,2], kNN query [3], RNN query [4,5], spatial semi-
join query [6], path NN query [7], skyline query [8].

In continuous queries for moving objects, researches have been mainly focused
on Euclidean distance in the pioneer studies. However, the movement of cars
and humans are constrained on a road network in practice. To the best of our
knowledge, Mouratidis et al. [3] first proposed a continuous query method in the
road network distance. In their approach, k nearest neighbors are continuously
monitored on road network, where the distance between a query and a data
object is determined by the length of the shortest path connecting them.

In real world scenarios, continuous queries can be categorized into three
groups depend on the mobility of a query and/or data objects [9].

(1) moving query objects querying static data objects.
(2) static query objects querying moving data objects.
(3) moving query objects querying moving data objects.

For an instance in case (1), a user queries a convenience store while driving
a car. In case (2), a person queries to get the closest available taxi among taxis
running around. Cheema et al. [10] proposed an algorithm for the reverse k
nearest neighbor query (RkNN) based on (2). Researches on mobility of both
queries and data objects (case (3)) have been introduced by Stojanovic et al. [9],
Cheema et al. [11] and Liu et al. [12]. These types of queries are necessary, for
example, a car queries to nearest rival cars within a certain region while driving
in a car race.

Continuous queries are generally based on the client-server model, and the
task of a server is to continuously compute and update the result of each query
according to the location changes of the moving objects. Consequently, queries
are repeated periodically or by moving a certain distance. However, if the fre-
quency of updates becomes high, the performance in monitoring declines.

To overcome overloads at the server side, Prabhakar et al. [2] proposed a safe-
region method. When a moving object queries for kNN or range query, the server
generates a safe-region in which the query result remains unchanged. By the time
the moving object leaves the safe-region, a new query result and the safe-region
are requested to the server. Thereafter, various continuous query methods based
on safe-regions have been proposed focusing on Euclidean distance. Yiu et al.
[13] proposed efficient algorithms for RkNN queries in road network distance.
Among them, the Eager algorithm can be applied to safe-region generations for
static RkNN queries.

Alternatively, Cheema et al. [14] proposed an efficient and effective moni-
toring technique based on the safe-region for range queries: they used the term

380 Y. Ohsawa and H. Htoo

of safe-zone instead of safe-region. They also proposed safe-region generation
method for continuous RkNN queries. Although safe-region generation methods
have been actively researched, these algorithms were proposed for an individual
query type. Moreover, these algorithms are based on a similar methodology in
region expansions. In region expansions, the region is gradually expanded veri-
fying the query condition from the query point. The most time consuming step
is the verification for the query condition at each network node.

This paper first proposes a safe-region generation method applicable to versa-
tile vicinity queries; including set-kNN, ordered-kNN, reverse-kNN, and distance
range queries. Secondly, the performance efficiency is improved in the verification
process, which checks whether the query condition is satisfied or not, by apply-
ing incremental Euclidean restriction (IER) [15] and the idea of the SSMTA*
algorithm [16]. As the result, the method presented in this paper improves the
processing time to generate safe-region for versatile vicinity queries by one or
two orders of magnitude.

3 Basic Principles in Safe-Region Generation

3.1 Safe-Region for Vicinity Queries

First, we give definitions of the safe-regions for three types of vicinity queries
related to nearest neighbor queries.

Definition 1 (Safe-region for Set-kNN Query). Safe-region is a region
where kNN queries invoked anywhere in the region give the same set of data
points, ignoring the order in distances.

Definition 2 (Safe-region for Ordered-kNN Query). Similar to set-kNN
query, however, the order of the distances in the kNN result is considered.

Definition 3 (Safe-region for RkNN Query). Safe-region is a region where
kNN query result invoked anywhere in the region always contains a specified
given data point.

For an example, in Fig. 2(a), p1 ∼ p4 belong to a data objects set P , and a ∼ d
are query points. Here, we deal with 2NN of each point. For a, the 2NN is p1 and
p2, and for b, they are p2 and p1. Therefore, when the order of 2NN is considered
for the ordered-kNN query, the result of their 2NN are different. However, the
result set of the 2NN queries are the same with {p1, p2} in any order for the
set-kNN query. This is the difference between the set-kNN and the ordered-kNN
queries. Furthermore, the 2NN of c is p4 and p1, as the result, all 2NN of a, b
and c contain p1. As a consequence, p1 is included in 2NN results invoked from
a, b and c. Therefore, when p1 is specified as a query point, 2NN queries invoked
at a, b, and c include p1 in their results. Therefore, the safe-region of R2NN of
p1 includes these three data points. In set-kNN and ordered-kNN queries, the
space is partitioned into non-overlapping regions. Contrary, the space is divided
into mutually overlapping regions in RkNN query (except when k is one), and

Versatile Safe-Region Generation Method for Continuous Monitoring 381

Fig. 2. Examples of vicinity queries

therefore, generated safe region for RkNN is larger than in the ordered and set-
kNN queries. Hence, to specify a data object as the query point is necessary for
RkNN query.

Definition 4 (Safe-region for Distance Range Query). Safe-region is a
region where distance range query, with a given distance D and a query point,
invoked anywhere in the region contain the same set of data points.

Figure 2(b) shows an example of the distance range query. In the figure, e, f
and g are query points. p5, p6 and p7 are data objects and circles in dotted line
show the areas centered at each data object and the radiuses are D. The area
shown by bold lines shows the region in which the distance range query result
is p5, p6 and p7. The objects e and f are included in this area, therefore, the
distance range query results invoked from these two points give the same result
{p5, p6, p7}, and the region in which these two points lie is the safe-region of the
distance range query.

Definition 5 (Safe-region for Vicinity Queries). A query on a road network
to find the objects in P whose result is the same. This type of queries includes
set-kNN, ordered-kNN, RkNN and distance range query. Especially, a safe region
for set-kNN is denoted by SRs, for ordered-kNN by SRo, for RkNN by SRr, and
for distance range query by SRd.

For the distance range query SRd, its query condition is considered on a given
distance, and different from other nearest neighbor queries. Hence, the rela-
tionship among vicinity queries based on kNN queries satisfies the following
relationship:

SRo ⊆ SRs ⊆ SRr

3.2 Basic Principle of the Proposed Method

In this paper, a large road network is considered and modeled as a directed graph
G(V,E,W), where V is a set of nodes (intersections), E is a set of edges (road
segments), and W is a set of edge weights and w(∈ W) ≥ 0 stands. w is assumed
as the length of edge in the rest of the paper.

382 Y. Ohsawa and H. Htoo

We define a safe-region (SR) as a region that gives the same query result.
The generation of SR is emerged based on Voronoi region. Hence, SR for 1NN,
in other words, order-1 Voronoi region (VR) is discussed in this section. The
order-1 Voronoi region is the simplest SR. If Voronoi region in the road network
distance is to be considered, VR(q) is the set of road segment in which q(∈ P)
lies as the nearest object. An edge on G may belong to plural VRs, and the edge
is exactly partitioned into plural regions to be belonged to respective VRs.

Fig. 3. The order-1 VR

Figure 3 illustrates a road
network. In this figure, white
circles are road network nodes,
black circles are data objects
in P and the numbers attached
along road segments are dis-
tances. The area bounded by
the symbol × shows the order-1
Voronoi region in which q is
included as the nearest object.

The algorithm described in
the next subsection can be
applied to several types of vicin-
ity queries. The basic principle
how to generate SR for these
queries is followed by two steps below:

(1) Gradually expanding the search region from a query point q to adjacent
nodes as the similar way in Dijkstra’s algorithm.

(2) At every visited node in step (1), verifying whether expanded nodes meet
the query condition or not. If the result of verification is true, the node is
expanded. Contrary, if the result is false, the node is not expanded anymore.

In the above step (1), a best-first search is applied from a query point to
a current noticed node referring to a priority queue (PQ). In the step (2) after
verifying whether the current node meets the query condition, all adjacent nodes
to the current node are inserted into PQ. Then, the further search is proceeded
from these nodes ahead. Contrary, if the query condition is not satisfied at the
current node, node expansions from this node ahead are terminated. The query
condition differs from each query type. The detail is described in Sect. 4.2.

3.3 Basic Method

In this subsection, an algorithm how to generate the safe region is described.
The process in this algorithm is to generate a region by expanding the search
area gradually while the query condition is satisfied. The search starts at q, and
it is controlled by a best-first search using a priority queue (PQ). The record
format in PQ is as follow:

< cost, n, p, �(p, n) >

Versatile Safe-Region Generation Method for Continuous Monitoring 383

Here, n represents a current node, cost is the cost (the road network distance
from q to n), p is the previously visited node to n, and �(p, n) is the road segment
between p–n. The cost is assumed in the road network distance, and the length
of �(p, n) is expressed as dN (p, n) for the road network distance.

At first, for two end nodes of the road segment on which q exists, the following
records are inserted into PQ.

< 1, a, q, �(a, q) >,< 1, b, q, �(b, q) >

Then, the record with the minimum cost is dequeued from PQ. Thus,
< 1, a, q, �(a, q) > is dequeued from PQ. Moreover, the nearest neighbor (NN)
of a is searched and checked whether the NN is q or not. If q is the NN of a, a
also lies in SR(q) where q is a generator of SR.

In the NN search, the incremental Euclidean restriction (IER) [15] frame-
work is used to find the NN faster. In IER framework, the NN candidates are
incrementally searched in Euclidean distance, and verified these candidates in
road network distances by A* algorithm. The verification process invokes next
NN search while the Euclidean distance of the next NN candidate is smaller than
or equal to the road network distance to the current NN candidate.

To expand the search range, records for adjacent nodes to a, those are c, d
and e in Fig. 3, are enqueued into PQ.

< 3, c, a, �(c, a) >,< 3, d, a, �(d, a) >,< 3, e, a, �(e, a) >

In the next time, < 1, b, q, �(b, q) > is dequeued from PQ and the similar
process is performed at the node b.

Then, let < 3, c, a, �(c, a) > be the next dequeued record from PQ. Similarly,
NN of c is checked whether q is NN of c. In this case, the result is false, therefore
c does not lie in SR(q). At this point, a border point is determined on the road
segment �(c, a). The same process is performed to the next dequeued record
< 3, d, a, �(d, a) >. When the record < 3, e, a, �(e, a) > is dequeued, e can be
considered as a border point because e is equidistant from q, p3 and p4. By
repeating the process, SR(q) where q is the generator can be generated.

Algorithm 1 shows the above process in pseudocode. The PQ in lines 2 and 3
is the priority queue (heap) to control the region expansion, and in these lines,
initial records at q are inserted into PQ. In line 4, a closed set (CS) is prepared for
once checked road segments to avoid duplicated checks. R in line 5 is the result
set of road segments included in the safe-region. In line 6, initialSet function
is called to search NN of q and the result is assigned into T . The function
initialSet is differently implemented depending on the query type. In the case
of 1NN query, the 1NN of q is set to T (in this case, only one data object). The
detail of this function for general query types is explained in Sect. 4.2.

Line 7 to 22 perform the following process. Initially, a record with the mini-
mum cost is dequeued from PQ, and the road segment of the record r.� is checked
whether it is already registered in the CS. If r.� is in the CS, it means that the
segment has already been checked, and the rest steps are skipped. In line 12, r.�
is added into the closed set. In line 13, the current node r.n is checked whether

384 Y. Ohsawa and H. Htoo

the node meets the query condition. As in the example of SR(q), the query con-
dition is that NNs of current node r.n are same as objects in T . If the result of
verify is true, the node (r.n) is expanded. Hence, adjacent road segments of
r.n are searched by referring to the adjacency list, and records for all adjacent
road segments are created. Then, these records are enqueued into PQ. Moreover,
the whole edge (r.�) is added into the result set R as shown in line 18. However,
if the verify result is false, the function addWithCheck calculates the part
of the edge where the verify condition is still satisfied, and the result part is
inserted into R. The detail, how to determine the part of the edge, is discussed
in Sect. 4.3.

Algorithm 1. Safe-region generation: SRG
1: function SRG(q)
2: PQ.enqueue(< dN (n1, q), n1, q, �(n1, q) >)
3: PQ.enqueue(< dN (n2, q), n2, q, �(n2, q) >)
4: CS ← ∅
5: R ← ∅
6: T ← initialSet(q)
7: while PQ.size() > 0 do
8: r ← PQ.deleteMin()
9: if CS contains r then

10: continue;
11: end if
12: CS ← CS ∪ r.�
13: if verify(r.n,T) then
14: ns ← AdjacentNode(r.n)
15: for all n ∈ ns do
16: PQ ← PQ∪ < r.d + dN (r.n, n), n, r.n, r.� >
17: end for
18: R ← R ∪ add(r.�)
19: else
20: R ← R ∪ addWithCheck(r.�, q, T)
21: end if
22: end while
23: return R
24: end function

4 Improving Efficiency and Generalization

4.1 Improvement in the Processing Time

The most time consuming step in Algorithm 1 is at the verify procedure called
for every node in the region expansion. For a visiting node n, kNN candidates
of n are searched in Euclidean distance, and these candidates are verified in the
road network distance. To verify in the road network distance, the A* algorithm
can be applied. However, in general SR, at least k number of objects are searched

Versatile Safe-Region Generation Method for Continuous Monitoring 385

as targets at every node n. In such condition, even if A* algorithm is fast for a
single query, the total processing time becomes long due to repeated searching
in adjacent regions.

To improve in the efficiency in terms of processing time for the distance cal-
culation, the idea of the single source multi- targets A* (SSMTA*) [16] algorithm
has been applied to the proposed method. The original SSMTA* algorithm con-
currently finds the shortest paths from a source node to multiple target nodes
efficiently. Contrary, when it is applied to SR generation, the target points are
changing sequentially.

(a) (b)

Fig. 4. The distance calculation by SSMTA* algorithm

In Fig. 4(a), q is a query point in SR, and p is a kNN candidate searched
in Euclidean distance. The A* algorithm is applied to find the road network
distance from p to q. In the A* algorithm, a priority queue PQA and a closed
set CSA are used. The record format in PQA and CSA is the following (these
are different from CS and PQ introduced in Sect. 3).

< c, v, d > (1)

Here, v is a current node in A* search, d shows the distance on a road network
between p and v. The first item c is the lower bound distance between p and q,
that is c = dN (p, v) + dE(v, q) where dN (p, v) is the road network distance
between p and v, and dE(v, q) is the Euclidean distance between v and q.

The priority queue PQA stores these records and returns a record in ascend-
ing order of c value. The current nodes (v) in PQA are called wave-front, and
their distances from p have not been determined yet. Once a record is dequeued
from PQA, it is registered into CSA. Since the distance d in a record in CSA
has already been determined, it shows the shortest path length between p and v.
The symbols � in Fig.4 show the nodes in PQA, and the symbols + show the
nodes in CSA.

Figure 4(b) shows the region expansion from q to neighboring nodes. In this
figure, the search region in Algorithm 1 is enlarged from q to n1 ∼ n4 gradually.
Every time a new neighboring node is investigated, the function verify needs to

386 Y. Ohsawa and H. Htoo

calculate the road network distance from p to the node. If A* algorithm is used
in this check, almost the same road network nodes are repeatedly processed. To
improve the efficiency of the verification process, we reuse the contents of PQA
and CSA in the verification of the neighboring nodes.

When a new data object p′ becomes a candidate of kNN of a node (in the first
step, it is q), the distance between p′ and q is obtained by applying A* algorithm.
And then, the contents in PQA and CSA are kept for the next search. When a
neighbor node (n) becomes a target, the distance between q and n is obtained
by one of the following two cases.

case 1 If n has already been in CSA, the distance between q and n can be
obtained by referring to d value in the record, that is n.d.

case 2 Otherwise, recalculate c value of all records in PQA for a new target point
n, and then resume the search by A* algorithm.

When n has been included in CSA, we can obtain dN (p, n) by case 1. In
this case, the search area is not expanded at all. Otherwise, the c values in
PQA are recalculated by the equation c = dN (p, v) + dE(v, n). This process is
necessary because the target node (n) is changed. By referring to updated PQA,
the distance search targeting to n is started again. The basic A* algorithm
(called pair-wise A* algorithm) finds the shortest path from p to n repeatedly
every time the target point is changed. Comparing to it, it is realized that the
processing time can be considerably reduced in the improved method. Moreover,
the update process for all records in PQA is taken place in the memory and it
does not take long processing time.

Figure 4(b) shows the wave-front of PQA and contents of CSA for searching
the shortest paths targeted to 5 adjacent nodes (q and n1 ∼ n4). Comparing
to Fig. 4(a), the region of expanded nodes in PQA and CSA is larger, however,
the total number of nodes are smaller than repeatedly invoking pair-wise A*
algorithm. By pair-wise A* algorithm, the similar node expansion to Fig. 4(a)
must be repeated five times, and then, the total number of nodes becomes about
five times for Fig. 4(a).

4.2 Generalized SR

The algorithm for SRG shown in Algorithm1 is applicable to a variety of kNN
queries including set-kNN, ordered-kNN and RkNN. To adapt these queries,
three functions, initialSet(q), verify and addWithCheck are needed to
prepare for an individual query. Among them, addWithCheck is described in
Sect. 4.3.

In set-kNN query and ordered-kNN query, initialSet(q) returns kNN data
objects to q as the result. In set-kNN query, verify(n,T) returns true if kNN
results at node n are exactly the same (order omitted) as the objects in the set
T. In ordered-kNN query, verify returns ture when kNN results at node n is
exactly the same as the objects in T in a sorted order.

Versatile Safe-Region Generation Method for Continuous Monitoring 387

In RkNN query, 1NN to q in data objects is searched by the result of
initialSet(q), and returns the data object (let sq be a specified query point).
This means that T holds only one data point sq. The verify(n,T) returns true
if sq is included in kNN results of n.

The distance range query is also included as a variation of the vicinity query.
In this query, initialSet(q) searches the data objects located in the range whose
distance from q is less than or equal to D (the radius of the range), and they are
set to T . In verify, the distances from the current node n to each object in T
are investigated. If all distances do not exceed D and do not include any other
data object except objects in T , it returns true. Otherwise, it returns false.

4.3 The Borders Determination on Edges

The safe-region is a collection of road network edge segment on which the query
condition is satisfied at any part. In Sect. 4.1, we described that the verification
of the query condition was checked at road network nodes. If the query condition
is satisfied at a node, it is also satisfied on the whole edge ended at the node.
Therefore, the whole edge is added into the safe-region by add in Algorithm 1.
On the contrary, when the query condition is not satisfied at a node, the border
of the safe-region exists on the edge. How to determine the border points on the
road network have been studied by Cho et al. [17,18].

Figure 5(a) shows a part of a road network, and in this example verify
returns ‘true’ at node A, but it returns ‘false’ at node B. Then, a border of the
safe-region exists on the edge labeled LinkL (shown by bold line). In this figure,
‘d’, ‘e’, and ‘g’ are data objects.

Figure 5(b) shows the distance between each object and node A (left vertical
axis), and between each object and node B (right vertical axis). The horizontal
axis shows the normalized position on the edge. The lines in this figure show
the distance change from each data object. The absolute value of all gradient of
lines are the same. If there are plural objects existed on the left side of A, plural
lines with the same gradient but different intercept appear. The similar situation
appears for the right side of B. If there are plural objects on the edge having ‘e’,
lines similar with ‘e’ but having different peak positions and intercepts appear.
The border point on LinkL can be determined easily to find the nearest position
from A and beginning at the position where the query condition is not satisfied.

Fig. 5. The borders determination on edges

388 Y. Ohsawa and H. Htoo

Figure 5(c) shows another case, a data object ‘f’ is on LinkL. In this case,
a new line type appears in Fig. 5(d), the distance between A and ‘f’ decreases
according to the move toward B, and it becomes zero at ‘f’, and then it increases
according to the move toward B. The determination of the border position
becomes complex a little, however, the method how to determine is the same
with the case Fig. 5(a) and (b).

5 Experimental Results

This section presents evaluations of the proposed method comparing to existing
works. Algorithms were implemented by Java language. The computer used for
this evaluation was Intel Core i7 4770 CPU (3.4 GHz). Table 1 shows the road
networks used in this experiment. MapA is a road network of the center part of
a city, and MapB includes the center of a city and rural area. Data points to be
searched were generated by pseudo-random sequence on the road network edges
with various densities. For example, the density of 0.001 means a data point
exists once 1,000 road edges. For the moving paths of an object, we used both
real paths and randomly generated paths for moving objects in experiments.
To generate a path on a road network, we randomly set a start point s and a
destination point e, and a moving object was started a move from s to e via the
shortest route. When the moving object arrived at e, a new destination point e
was set and the moving object continuously moved to e from the current location.
By repeating this process, paths for moving objects were generated. Besides, we
prepared 100 real paths. It took about 30 min for the moving object to move on
each path.

Table 1. Road maps

Map-name No. of node No. of link Area-size

MapA 16,284 24.914 168 km2

MapB 109,373 81,233 284 km2

Figure 6(a) shows the processing time to generate a safe-region for set-kNN
queries. In this figure, ‘Basic’ shows the processing time of the basic algorithm
described in Sect. 4.1 (it is an existing algorithm) and ‘Prop’ shows the processing
time of the proposed method. ‘A’ and ‘B’ in the parentheses correspond to
‘MapA’ and ‘MapB’ respectively. The horizontal axis shows k, the number of
nearest neighbors to be searched. The density of the data points were set to
0.005. As shown in this figure, the proposed method requires less than one-tenth
to the basic method. Figure 6(b) shows the processing time when the density of
the data points was varied. The value of k was fixed to 5 in this experiment.

Versatile Safe-Region Generation Method for Continuous Monitoring 389

10-1

100

101

102

 1 3 5 7 10

Pr
oc

es
si

ng
 T

im
e

(s
)

k

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(a)

10-1

100

101

 0.001 0.002 0.005 0.01 0.02 0.05

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(b)

Fig. 6. The processing time of a safe-region for set-kNN

Figure 7 shows the processing time to generate a safe-region for ordered-kNN
queries. The size of the safe-region in ordered-kNN queries becomes smaller
than in set-kNN queries, because the order of the distances is also considered in
ordered-kNN queries. Accordingly, the processing time in both proposed method
and the basic method becomes faster in this case. However, the proposed algo-
rithm still outperforms the basic algorithm.

10-1

100

101

102

 1 3 5 7 10

Pr
oc

es
si

ng
 T

im
e

(s
)

k

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(a)

10-1

100

101

 0.001 0.002 0.005 0.01 0.02 0.05

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(b)

Fig. 7. The processing time of a safe-region for ordered-kNN

Figure 8 compares the processing time for reverse-kNN queries. In this experi-
ment, the nearest-neighbor (p) to the current position of the moving object is first
searched, and then the region where p is included in the kNN set is retrieved. This
means that p is always included in the kNN of the moving object which moves
inside the safe-region. The size of the safe-region of reverse-kNN becomes the
biggest among three types of nearest neighbor queries. Therefore, the process-
ing time is also longer than set-kNN and ordered-kNN queries. However, the
processing time of the proposed algorithm is one to two orders of magnitude
shorter than the basic algorithm.

390 Y. Ohsawa and H. Htoo

10-1

100

101

102

103

 1 3 5 7 10

Pr
oc

es
si

ng
 T

im
e

(s
)

k

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(a)

10-1

100

101

102

 0.001 0.002 0.005 0.01 0.02 0.05

Pr
oc

es
si

ng
 T

im
e

(s
)

Density

Basic(A)
Prop(A)

Basic(B)
Prop(B)

(b)

Fig. 8. The processing time of a safe-region for reverse-kNN

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0.5 1 1.5 2

Pr
oc

es
si

ng
 T

im
e

(s
)

distance (km)

Basic(A)
Prop(A)

Basic(B)
Prop(B)

Fig. 9. Distance range query

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0.001 0.002 0.005 0.01 0.02

Av
er

ag
e

Sp
an

 (m
)

Density

SkNN
OkNN

DRange

Fig. 10. Average distance between
queries

Figure 9 shows the processing time in generating the safe-region for distance
range query when distances D vary. In this experiment, the density of data
points was fixed to 0.005. When D is larger, the processing time becomes longer.
However, the proposed algorithm is also faster than the basic algorithm.

In Fig. 10, we measure the communication cost to the server in terms of
traveling distance by a moving object. When a moving object is moving along
the route and it reaches the end of the safe-region, a new query result and its
safe-region are provided by the server. The frequency of query requests depends
on the traveling distance across the safe-region. In this figure, the vertical axis
shows that the average traveling distance of a moving object within a safe-
region, and the horizontal axis shows the density of data points for three types
of queries. In this figure, the value of k is set to 5 for SkNN (set-kNN) and OkNN
(ordered-kNN) queries, and D is 1.5 km for distance range query. As shown in
this figure, the average traveling distance decreases according to the density
increase. When the data density increases, the distance within the safe-region
becomes shorter and frequent generation of new safe regions are requested to the
server. Consequently, the communication cost becomes higher in such situation.

Versatile Safe-Region Generation Method for Continuous Monitoring 391

6 Conclusion

In this paper, a versatile safe-region generation method for continuous queries
over moving objects in road network distance is proposed. In the safe-region gen-
eration process, repeated expansions over same road network nodes are avoided
in the proposed method, and it improves the efficiency. Moreover, in evaluations,
the proposed method is applied to continuous vicinity queries including set-kNN
query, ordered-kNN query, reverse-kNN query, and distance range query. Com-
paring to existing works, our proposed method has a great efficiency in terms
of processing time, and shows that two orders of magnitude faster than existing
approaches especially when data objects are sparsely distributed. To apply the
proposed method to more complicated spatial queries is future works.

Acknowledgments. The present study was partially supported by the Japanese Min-
istry of Education, Science, Sports and Culture (Grant-in-Aid Scientific Research (C)
15K00147).

References

1. Gedik, B., Liu, L.: MobiEyes: distributed processing of continuously moving
queries on moving objects in a mobile system. In: Bertino, E., Christodoulakis, S.,
Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004.
LNCS, vol. 2992, pp. 67–87. Springer, Heidelberg (2004)

2. Prabhakar, S., Xia, Y., Kalashnikov, D., Aref, W., Hambrush, S.: Query indexing
and velocity constrained indexing: scalable techniques for continuous queries on
moving objects. IEEE Trans. Comput. 51(10), 1124–1140 (2002)

3. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neigh-
bor monitoring in road networks. In: Proceedings of the 32nd VLDB, pp. 43–54
(2006)

4. Bentis, R., Jensen, C.S., Karčlauskas, G., Šaltenis, S.: Nearest and reverse nearest
neighbor queries for moving objects. VLDB J. 15(3), 229–250 (2006)

5. Xia, T., Zhang, D.: Continuous reverse nearest neighbor monitoring. In: Proceeding
of the 22nd International Conference on Data Engineering, p. 77 (2006)

6. Iwerks, G.S., Samet, H., Smith, K.P.: Maintenance of spatial semijoin queries on
moving points. In: Proceedings of VLDB (2004)

7. Chen, Z., Shen, H.T., Zhou, X., Yu, J.X.: Monitoring path nearest neighbor in
road networks. In: SIGMOD 2009, pp. 591–602 (2009)

8. Huang, Y.K., Chang, C.H., Lee, C.: Continuous distance-based skyline queries in
road networks. Inf. Syst. 37, 611–633 (2012)

9. Stojanovic, D., Papadopoulos, A.N., Predic, B., Djordjevic-Kajan, S., Nanopoulos,
A.: Continuous range monitoring of mobile objects in road network. Data Knowl.
Eng. 64, 77–100 (2007)

10. Cheema, M.A., Lin, X., Zhang, W., Mhang, Y.: Influence zone: efficiently process-
ing reverse k nearest neighbors queries. In: Proceeding ICDE, pp. 577–588 (2011)

11. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y., Li, X.: Continuous reverse k nearest
neighbors queries in Euclidean space and in spatial networks. VLDB J. 21, 69–95
(2012)

392 Y. Ohsawa and H. Htoo

12. Liu, F., Do, T.T., Hua, K.A.: Dynamic range query in spatial network environ-
ments. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080,
pp. 254–265. Springer, Heidelberg (2006)

13. Yiu, M.L., Papadias, D., Mamoulis, N., Tao, Y.: Reverse nearest neighbor in large
graphs. IEEE Trans. Knowl. Data Eng. 18(4), 1–14 (2006)

14. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Continuous monitor-
ing of distance based range queries. IEEE Trans. Knowl. Data Eng. 23, 1182–1199
(2011)

15. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial net-
work databases. In: Proceedings of 29th VLDB, pp. 790–801 (2003)

16. Htoo, H., Ohsawa, Y., Sonehara, N., Sakauchi, M.: Incremental single-source multi
target A* algorithm for LBS based on road network distance. IEICE Trans. Inf.
Syst. E96–D(5), 1043–1052 (2013)

17. Cho, H.J., Kwon, S.J., Chung, T.S.: A safe exit algorithm for continuous nearest
neighbor monitoring in road networks. Mobile Inf. Syst. 9, 37–53 (2013)

18. Cho, H.J., Chung, C.W.: An efficient and scalable approach to CNN queries in a
road network. In: Proceedings of the 31st International Conference on Very Large
Data Bases, pp. 805–876 (2005)

	Versatile Safe-Region Generation Method for Continuous Monitoring of Moving Objects in the Road Network Distance
	1 Introduction
	2 Related Work
	3 Basic Principles in Safe-Region Generation
	3.1 Safe-Region for Vicinity Queries
	3.2 Basic Principle of the Proposed Method
	3.3 Basic Method

	4 Improving Efficiency and Generalization
	4.1 Improvement in the Processing Time
	4.2 Generalized SR
	4.3 The Borders Determination on Edges

	5 Experimental Results
	6 Conclusion
	References

