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Abstract. Recent years have witnessed the rapid growth of event-based
social networks (EBSNs) such as Plancast and DoubanEvent. In these
EBSNs, followee recommendation which recommends new users to fol-
low can bring great benefits to both users and service providers. In this
paper, we focus on the problem of followee recommendation in EBSNs.
However, the sparsity and imbalance of the social relations in EBSNs
make this problem very challenging. Therefore, by exploiting the hetero-
geneous nature of EBSNs, we propose a new method called Heterogenous
Network based Followee Recommendation (HNFR) for our problem. In
the HNFR method, to relieve the problem of data sparsity, we combine
the explicit and latent features captured from both the online social
network and the offline event participation network of an EBSN. More-
over, to overcome the problem of data imbalance, we propose a Bayesian
optimization framework which adopts pairwise user preference on both
the social relations and the events, and aims to optimize the area under
ROC curve (AUC). The experiments on real-world data demonstrate the
effectiveness of our method.

Keywords: Followee recommendation · Event-based social networks ·
Heterogenous network

1 Introduction

In the past few years, event-based social networks (EBSNs), such as Plancast1

and DoubanEvent2, have grown rapidly and attracted millions of users. These
EBSNs provide online platforms for users to establish, manage and join social
events. In these EBSNs, followee recommendation can bring great benefits to
both users and service providers. On one hand, users could find like-minded
people or their friends in real life to follow, and thus are able to enjoy better
user experiences through effective followee recommendation. On the other hand,
service providers can exploit followee recommendation to drive users’ engagement
and loyalty. In this paper, we focus on the problem of followee recommendation
in EBSNs.
1 http://www.plancast.com/.
2 http://beijing.douban.com/.
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To make a study, we collect real data from Plancast and DoubanEvent. Based
on our analysis, the social relations in Plancast and DoubanEvent are extremely
sparse and imbalanced. In particular, the distributions of the number of followees
and followers in both the datasets almost follow a power-law distribution. The
problem of data sparsity and imbalance can significantly degrade the recom-
mendation performance, due to the lack of enough data and the huge amount
of negative samples. However, since an EBSN is a heterogeneous network which
consists of an online social network and an offline event participation network,
in addition to the social relations, there is an unprecedented source which can be
utilized for our problem: the event participation records. As users attend events
mainly based on their interests, the events attended by a user can reflect the
user’s interest. According to the social theory of homophily, users with similar
interests are more likely to establish social relations. Besides, since the events
are held at physical places, users who have attended the same event may have
a chance to meet each other and develop new social links between them. There-
fore, we can exploit the event participation records to improve the effectiveness
of followee recommendation.

To relieve the problem of data sparsity, we utilize both the social relations
and event participation records for followee recommendation. In particular, we
extract two kinds of explicit features for our problem: (1) social features, which
are extracted from the online social network and (2) event-based features, which
are captured from the offline event participation network. Moreover, to take
advantage of the latent factor model, we employ matrix factorization model in
the online social network and the offline event participation network to capture
the latent features in both the networks. More importantly, to derive users’s
latent features better and more comprehensively, we assume that these two net-
works share the same latent user feature in the matrix factorization model for
each user. Finally, we combine all the explicit and latent features into a unified
recommendation model.

To overcome the problem of data imbalance, a common way is to consider
the area under ROC curve (AUC) as the optimization object, which is not influ-
enced by the distribution of classes. Since our problem can be regarded as a
ranking problem with implicit feedback, inspired by the Bayesian Personal Rank-
ing (BPR) [16], we propose a Bayesian optimization framework which aims to
optimize the AUC. By exploiting the heterogeneous network, our framework
adopts pairwise user preference on both the social relations and the events, and
optimizes for ranking pairs correctly.

To sum up, the primary contributions of our research are listed as follows.

– To the best of our knowledge, we are the first to study the problem of followee
recommendation in EBSNs.

– We extract several social and event-based explicit features from the online
social network and the offline event participation network. Moreover, we com-
bine all the explicit and latent features into a unified recommendation model.

– We propose a new Bayesian optimization framework which adopts pairwise
user preference on both the social relations and the events.



Followee Recommendation in Event-Based Social Networks 29

Fig. 1. An illustration of EBSNs.

– We evaluate the performance of our method using real-world data collected
from Plancast and DoubanEvent. Experimental results show that our method
is superior to alternatives and methods that consider only part of the factors
exploited in this paper.

The rest of this paper is organized as follows. In Sect. 2, we give an overview
of EBSNs, formally define the problem, and make some analyses about our data.
In Sect. 3, we show the details of our followee recommendation model. We report
the experimental results in Sect. 4 and review related works in Sect. 5. Finally,
we make the conclusion in Sect. 6.

2 Preliminaries

2.1 Event-Based Social Network

A graph representation of EBSNs such as Plancast and DoubanEvent is shown
in Fig. 1. We can observe that users and events are the two main entities in an
EBSN. In particular, an event is an activity that is held in a physical venue,
e.g., a drama held in a theater. Moreover, users are the participants of events,
who can express their willingness to join an event by RSVP (‘Yes’ or ‘Maybe’).
The RSVP(‘Yes’ or ‘Maybe’) indicates that a user wants to attend or is inter-
ested in an event. Besides, they can establish social relations by following other
users. From Fig. 1, we can also find that the network structure of an EBSN is
heterogeneous, which consists of an online social network and an offline event
participation network.

2.2 Problem Definition

In an EBSN, we have two types of entities: {U(user) and E(event)}, and two kinds
of networks: {Gon(online social network) and Goff (offline event participation net-
work)}. Let U = {u1, u2, ..., un} denote the set of users and E = {e1, e2, ..., em}
denote the set of events, respectively. For each user u ∈ U , it has a set of followees
F+

u ⊆ U , a set of followers F−
u ⊆ U , and a set of attended events Eu ⊆ E. For con-

venience, we use a matrix R ∈ R
n×n to represent the online social network Gon,

where rij = 1 indicates that user ui is a follower of user uj and rij = 0 means
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Fig. 2. Followee and Follower distributions

that user ui has not yet followed user uj . Similarly, let matrix V ∈ R
n×m repre-

sent the offline event participation network Goff , where vij is equal to 1 if user
ui has attended event ej and equal to 0 otherwise. Then, the problem of followee
recommendation can be formally defined as ranking all users in the candidate set
Cu = U − (F+

u ∪ u) for each user u ∈ U , according to user u’s preference to other
users, and recommending top-k users for user u.

2.3 Data Analysis

To make a study of the problem, we collect real data from Plancast and Douban-
Event. The Plancast dataset was published by the work [13] and the Douban-
Event dataset was obtained by querying Douban API3. To make data sufficient
for evaluation, for the Plancast dataset, we remove the inactive users who have
less than 5 followees and have not attended any event; for the DoubanEvent
dataset, we remove the inactive users who have less than 3 followees and have
not joined any event. After preprocessing, some statistics of the two datasets

3 http://developers.douban.com/

http://developers.douban.com/
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Table 1. Statistics of the pre-processed datasets

Plancast DoubanEvent

Number of users 28,060 8,299

Number of events 237,994 104,591

Number of follower-followee links 1,228,714 103,604

Number of use-event links 591,870 531,113

Max number of followees 6,943 465

Max number of followers 6,149 1,148

are shown in Table 1. In summary, we obtain the density of the online social net-
work (i.e., the social relations) as 1.56×10−3 for Plancast dataset and 1.5×10−3

for DoubanEvent dataset, which indicates the high sparsity of the social rela-
tions.

To further understand the social relations in Plancast and DoubanEvent,
we analyze the distributions of the followee and follower numbers in both the
datasets. As shown in Fig. 2, the distributions in both datasets almost follow
a power-law distribution, which means that while most of users have a small
amount of followees and followers, there exist a few users who have a large num-
ber of followees and followers. On average, each user of Plancast has 44 followees
and a user in DoubanEvent has 12 followees, which indicates the extreme imbal-
ance of the social relations, i.e., the number of a user’s followees is very small
with regard to the total number of the users.

To sum up, the social relations in both the datasets are extremely sparse
and imbalanced, which makes the problem of followee recommendation very
challenging.

3 Followee Recommendation Modeling

In this section, we introduce the details of our model. We first present the explicit
features and the latent features in Sects. 3.1 and 3.2, respectively. Then, we intro-
duce our recommendation model in Sect. 3.3. Finally, we describe the parameter
learning method in Sect. 3.4.

3.1 Explicit Features

Explicit features for a pair of users are usually used to measure the similarity
of two users from different points of view. According to the social theory of
homophily, two users are likely to develop new social links between them if
they are similar to each other. In this work, we generate two kinds of explicit
features: social features and event-based features. In the following, we describe
each explicit feature in detail.
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Social Features. Online social relations intuitively play an important role in
helping create new social links. In the following, we define several social features
based on node neighborhoods in the online social network of the EBSN.

Number of common neighborhoods. Given a user pair 〈ui, uj〉, this feature cal-
culates how many user ui’s followees have followed user uj and is defined as
follows:

common neighbor(ui, uj) =
∣
∣F+

i ∩ F−
j

∣
∣ .

Ratio of overlapped neighborhoods. This feature measures the Jaccard similarity
between user ui’s followees and user uj ’s followers, which is defined as follows:

overlap neighbor(ui, uj) =

∣
∣F+

i ∩ F−
j

∣
∣

∣
∣F+

i ∪ F−
j

∣
∣
.

Adamic/Adar. This feature measures the Adaminc/Adar [1] score of two users,
which sums up the reciprocal value of a logarithmic function with the number
of each common neighbor’s followees, and is defined as follows:

aa neighbor(ui, uj) =
∑

c∈F+
i ∩F−

j

1
log(|F+

c |) .

Event-Based Features. Offline event participation is a unique characteristic
of EBSNs, compared with conventional social networks. In this work, we define
several event-based features for a user pair 〈ui, uj〉 as follows.

Number of common events. This feature captures the number of common events
attended by two users and is formally defined as follows:

common event(ui, uj) = |Ei ∩ Ej | .

Ratio of overlapped events. This feature measures the overlap ratio of two user’s
event sets using the Jaccard similarity, which is defined as follows:

overlap event(ui, uj) =
|Ei ∩ Ej |
|Ei ∪ Ej | .

Adamic/Adar with event entropy. Distinct events may have different impacts on
social link creation and, intuitively, events with a few attendees have a larger
probability of creating new social links among the attendees than those with a
large number of attendees, e.g., the attendees of a small home party are more
likely to be good friends, while large events are usually public events such as
concerts and exhibitions. To estimate the weights of the events, we introduce
an entropy-based measure based on the information theory. Let Nek denote the
number of attendees of event ek and we use a discrete uniform distribution
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pi = 1/Nek to describe the proportion of a certain user among the attendees.
Let ENek denote the entropy of event ek, then we define ENek as follows:

ENek = −
∑

i

pi log pi = log Nek .

As shown, the event entropy has a positive correlation with the number of atten-
dees of an event. Inspired by the Adamic/Adar measure, we define a feature
ent event as the sum of the reciprocal value of each event entropy in common
events between two users, i.e.,

en event(ui, uj) =
∑

ek∈Ei∩Ej

1
ENek

.

Weighted common events. This feature takes the weights of events into considera-
tion. In particular, we assign an event participation vector μi = (μi1, μi2, ..., μim)
for each user ui ∈ U , where if the user has attended event ej then μij is the
reciprocal value of the entropy of event ej , i.e., μij=1

/

ENej , otherwise, μij = 0.
Then, we define a feature w common event as the inner product of two users’
event participation vectors, i.e.,

w common event(ui, uj) = μi · μj .

Weighted overlapped events. Similar to weighted common events, this feature
also takes the weights of events into consideration but focuses on the overlapped
events. Given two users, we define a feature w overlap event as the cosine simi-
larity of their event participation vectors, i.e.,

w overlap event(ui, uj) =
μi · μj

‖μi‖ × ‖μj‖ .

Since each aforementioned explicit feature has a clear meaning and the fea-
ture space is small, to derive a user’s preference towards another user based on
the explicit features, we adopt the linear model to combine all the explicit fea-
tures, which is simple but effective enough. Let zij denote the explicit feature
vector of the user pair 〈ui, uj〉 and ruf (ui, uj) denote the user ui’s preference
towards user uj based on the explicit features. Then, we define ruf (ui, uj) as
follows:

ruf (ui, uj) = wT zij , (1)

where w is the weight coefficient vector.

3.2 Latent Features

In this work, we employ matrix factorization model to capture the latent features
of users and events, which is widely employed in recommendation system. The
main idea of matrix factorization model is to seek a low-dimension latent feature
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vector to represent each entity and the rating scores can be approximated by
a function of these low-dimension feature vectors. In our problem, there are
two kinds of entities: users and events, correspondingly, we use latent feature
vectors xi ∈ R

d×1 and yj ∈ R
d×1 with d 	 |U | ∧ d 	 |E| to represent each

user ui ∈ U and each event ej ∈ E. Let rum(ui, uj) and rem(ui, ek) denote the
user ui’s preference towards user uj and event ek based on the latent features,
respectively. Then, we can define rum(ui, uj) and rem(ui, ek) as follows:

rum(ui, uj) = bui + buj + xi
THxj ,

rem(ui, ek) = bui + bek + xi
T yk, (2)

where the matrix H ∈ R
d×d represents the correlations among users’ latent

features. Besides, bui, buj , and bek are the bias items of user ui, user uj , and
event ek, respectively. Notice that, these two preferences share the same latent
user feature for each user.

3.3 Recommendation Model

In this work, we combine the explicit and latent features to obtain a user’s
overall preference towards another user. Let ru(ui, uj) denote the user ui’s overall
preference towards user uj . Then, we define ru(ui, uj) as follows:

ru(ui, uj) = ruf (ui, uj) + rum(ui, uj)

= wT zij + bui + buj + xi
THxj . (3)

Moreover, we derive a user’s overall preference towards an event only based on
the latent features. Let re(ui, ek) denote the user ui’s overall preference towards
event ej . Then, we define re(ui, ek) as follows:

re(ui, ek) = rem(ui, ek) = bui + bek + xi
T yk. (4)

Since our problem can be regarded as a ranking problem with implicit feed-
back, inspired by the BPR, we propose a Bayesian optimization framework which
aims to optimize the AUC. In particular, for each user ui ∈ U , it has two user
sets: one is his/her followees (i.e., the positive user set), denoted as Pui

, the
other one is the remaining users that user ui has not followed (i.e., the negative
user set), denoted as Nui

. Besides, it also has two event sets: one consists of the
attended events (i.e., the positive event set), denoted as EPui

, the other one
includes the remaining events (i.e., the negative event set), denoted as ENui

.
Our model assumes that a user prefers the items in the positive set to these in
the negative set, which is equal to the following formulas:

ru(ui, uj) > ru(ui, uk) ∀ui ∈ U, uj ∈ Pui
, uk ∈ Nui

,

re(ui, ej) > re(ui, ek) ∀ui ∈ U, ej ∈ EPui
, ek ∈ ENui

.

Let p(ru(ui, uj) > ru(ui, uk)) and p(re(ui, ej) > re(ui, ek)) denote the proba-
bility that user ui prefers user uj to user uk and the probability that user ui
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prefers event ej to event uk. Then, we define p(ru(ui, uj) > ru(ui, uk)) and
p(re(ui, ej) > re(ui, ek)) as follows:

p(ru(ui, uj) > ru(ui, uk)) := ε(ruijk),

p(re(ui, ej) > re(ui, ek)) := ε(reijk),

where

ε(x) :=
1

1 + e−x
,

ruijk := ru(ui, uj) − ru(ui, uk)

= wT (zij − zik) + buj − buk + xT
i H(xj − xk),

reijk := re(ui, ej) − re(ui, ek)

= bej − bek + xT
i (yj − yk).

Let Θ = (X,H, Y, bu, be, w) denote the parameters of our model, where X ∈
R

d×n and Y ∈ R
d×m denote the latent user feature matrix and the latent event

feature matrix, and Φ = (σ2
x, σ

2
h, σ2

w, σ2
bu, σ2

be, σ
2
y) denote the prior parameters of

Θ. By assuming that users are independent to each other and each training sam-
ple is also independent, we aim to maximize the following posterior probability:

p(Θ|R, V, Φ) ∝
∏

ui∈U,uj∈Pui
,uk∈Nui

p(ru(ui, uj) > ru(ui, uk)|Θ)·
∏

ui∈U,ej∈EPui
,ek∈ENui

p(re(ui, ej) > re(ui, ek)|Θ) · p(Θ|Φ), (5)

where R and V denote the online social network and the offline event participa-
tion network, respectively. To avoid over-fitting, we introduce Gaussian priors
with zero-mean on the parameters Θ. After applying logarithmic function on
Eq. (5), maximizing the posterior probability can be equivalent to minimizing
the following objective function:

E = −
∑

ui∈U

∑

uj∈Pui

∑

uk∈Nui

lnε(ruijk)

−
∑

ui∈U

∑

ej∈EPui

∑

ek∈ENui

lnε(reijk) +
λx

2
‖X‖2F +

λy

2
‖Y ‖2F

+
λh

2
‖H‖2F +

λbu

2
‖bu‖2F +

λbe

2
‖be‖2F +

λw

2
‖w‖2F , (6)

where λx = 1/σ2
x, λy = 1/σ2

y, λh = 1/σ2
h, λbu = 1/σ2

bu, λbe = 1/σ2
be, λw = 1/σ2

w,
and ‖ · ‖F is the Frobenius norm.

3.4 Parameter Learning

To learn the parameters of our model, we use the stochastic gradient descent
(SGD) algorithm to minimize the Eq. (6), since it provides fast convergence
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to the local optimums and has good expandability. In employing SGD, we ran-
domly choose an instance from the training samples. For each selected training
instance, we calculate its partial derivative and update the parameters Θ as
follows:

Θ ← Θ − α ∗ ∂E

∂Θ
,

where α is the learning rate. In updating the parameters iteratively, each para-
meter moves along the descending gradient direction until it converges or the
maximum number of iterations is reached.

4 Experiments

4.1 Experimental Setup

Data Allocation. We use the same datasets used in our data analysis for
performance evaluation. The details of these two datasets have been shown in
Sect. 2.3. For both the datasets, we use s-fold cross validation to evaluate the
performance. In detail, we randomly divide each user ui’s positive user set Pui

into s subsets and repeat the holdout method s times. Each time, one of the s
subsets is used as the testing set, denoted as Stest

ui
, and the other s-1 subsets form

a positive training user set, denoted as Strain
Pui

. We combine Stest
ui

and its original
negative user set Nui

into a new negative training user set, denoted as Strain
Nui

.
Our model is trained based on each user’s training sets Strain

Pui
and Strain

Nui
, and

the recommendation performance is evaluated on each user’s testing set Stest
ui

.
Finally, we take the average performance results of all the trials. In this work,
we use 5-fold cross validation.

Evaluation Metrics. To evaluate the recommendation performance, we adopt
three widely used evaluation metrics: AUC, Precision@k, and MAP@n.

AUC is especially suited for measuring the overall performance in highly
imbalanced dataset, as in our case where the number of a user’s followees is
usually very small with regard to the total number of the users. In our problem,
the AUC is defined as follows:

AUC =

∑

ui∈U

∑

uj∈Stest
ui

∑

uk∈Nui

δ(ru(ui, uj) > ru(ui, uk) )

∑

ui∈U

∣
∣Stest

ui

∣
∣ · |Nui

| ,

where δ(x) is an indicator function which is equal to 1 if x is true and equal to 0
otherwise.

Precision@k and MAP@n are mainly used to evaluate the performance of
top-k recommendation. In our problem, the Precision@k measures the ratio of
users in the top-k recommendation list that are corresponding to the followees
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in users’ testing sets. MAP@n is the mean of all the users’ Average Precision
(AP) scores at position n. The AP@n score of each user is defined as follows:

APui
@n =

n∑

k=1

Precision@k × I(k)

|Stest
ui

| ,

where I(k) is an indicator function which is equal to 1 if the user at rank k is
in user ui’s testing set Stest

ui
and equal to 0 otherwise. To measure the overall

results of recommendation, we set n to the maximum value for MAP@n. For
convenience, in the following, we omit the argument n in MAP@n and replace
Precision@k with P@k.

Comparison Methods. Since our proposed method, denoted as HNFR, com-
bines all the explicit features (social features and event-based features) and latent
features, we devise methods that incorporate these factors individually. Beside,
we compare our method with some existing works which are designed for fol-
lowee recommendation in traditional social networks. In summary, we compare
HNFR with the following methods:

– FoF [5]: For each user u, this method ranks the candidates according to the
number of user u’s followees who have followed the candidate.

– CB-MF [21]: This method first employs a LDA-based method on the social
relations to discover communities and then applies WRMF [9] on each dis-
covered community.

– BPR-SF: This method only uses the social features described in Sect. 3.1
and employs BPR for optimization.

– BPR-EF: Similar to BPR-SF, this method only considers the event-based
features introduced in Sect. 3.1.

– BPR-AF: This method combines all the social features and event-based
features, which can be used to verify the effectiveness of integrating all the
explicit features.

– BPR-MF: This is the basic matrix factorization model for followee recom-
mendation discussed in Sect. 3.2, which only considers the latent features in
the online social network and applies BPR for optimization.

– BPR-MAF: This method uses the explicit and latent features in the online
social network, however, it does not consider the latent features in the offline
event participation network.

In our experiment, all the methods are implemented with the LibRec [6]
library using JAVA.

Parameter Settings. Empirically, for the regularization parameters λx, λy,
λh, λbu, and λbe, we set all of them to 10−2. Specially, we set the regularization
parameter λw to 10−3. Besides, we empirically set the dimension of latent fea-
tures to 20. In both the datasets, we set the initial learning rate α to 10−2 for
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the methods containing the latent features and 10−4 for the methods that only
use the explicit features. Note that, the LibRec library will adjust the learning
rate automatically during the training process.

4.2 Experimental Results

Performance Comparison Under the AUC Metric. In this section, we
evaluate the performance of all the methods under the AUC metric. The AUC
metric can reflect the overall performance under pairwise ranking.

The AUC results of all the methods in both datasets are shown in Table 2. We
can clearly observe that our proposed model, HNFR, always outperforms all the
baseline methods in both the datasets significantly. Moreover, the performance
of HNFR is better than BPR-MAF, which demonstrates the effectiveness of
considering the latent features in the offline event participation network. In both
the datasets, BPR-AF achieves better performance than BPR-SF and BPR-
EF, which indicates the strength of combining social features and event-based
features. We also find that matrix factorization based methods such as BPR-
MF and BPR-MAF perform much better than the methods which only consider
explicit features like BPR-SF, BPR-EF, and BPR-AF. Besides, we observe that
the performance of most methods in Plancast dataset is much better than those
in DoubanEvent dataset, which might be due to that the density of the online
social network in Plancast dataset is denser than that in DoubanEvent dataset.

Performance Comparison in Top-k Recommendation. In this section, we
evaluate the overall performance of all the methods in top-k recommendation.

Table 2. The AUC results

FoF CB-MF BPR-SF BPR-EF BPR-AF BPR-MF BPR-MAF HNFR

Plancast 0.84236 0.89496 0.84455 0.60117 0.86309 0.92363 0.92959 0.94738

DoubanEvent 0.75785 0.78461 0.75888 0.72511 0.80788 0.88330 0.88560 0.91735
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As users mainly focus on the top of the recommendation results, we evaluate the
P@k performance under k = 1, 3, 5, 10. Meanwhile, we use MAP to measure the
overall recommendation ranking list.

The P@k and MAP performance of all the methods in both datasets are
shown in Fig. 3. As shown, our method HNFR also achieves the best performance
in all the tests, which verifies the effectiveness of our proposed method in followee
recommendation in EBSNs. Moreover, we observe that BPR-MF performs much
worse than the methods that only consider explicit features, which is contrary
to the performance under AUC metric. This may be caused by the following
reasons: (1) explicit features play an important role in top-k recommendation; (2)
pairwise ranking learning strategy does not focus on the top-k recommendation
results. Analogously, we also observe that most methods in Plancast dataset
perform better than the corresponding methods in DoubanEvent dataset.

5 Related Work

In this section, we briefly review the related works, including followee/friend
recommendation and collaborative filtering.

Followee/Friend Recommendation. The problem of followee/friend recom-
mendation in social networks, which can also be regarded as a special kind of link
prediction problem that foucuses on predicting the social links among users, has
been widely studies for many years [2,5,7,8,12,14,18–21]. Liben-Nowell et al.
[12] first study the link prediction problem in social networks. They develop
and compare several unsupervised methods based node proximity in a social
network, such as methods based on node neighborhoods and methods based on
the ensemble of all paths. Zhao et al. [21] propose a community-based followee
recommendation in Twitter-style social networks. They first employ an LDA-
based community discovery method based on the followers/folloewee relations
and then apply matrix factorization method on the discovered communities to
recommend followees.

In addition to using the network structure information, there are many works
exploiting other types of information such as user-generated content, user profile,
and locations. For example, Chen et al. [5] study the people recommendation
problem in an enterprise social networking and propose four recommendation
methods based on social network structure or user-generated contents. They
find that methods based on social network structure are good at recommend-
ing known contacts for users while methods based on user-generated content
are stronger in discovering new friends. Moreover, Hannon et al. [8] propose to
recommend followees in Twitter based on user profiling. They evaluate different
profiling strategies based on the tweets or relations of users’ Twitter social graphs
and find that the collaborative strategies perform better than the content strate-
gies. In addition, Yuan et al. [20] study how to exploit sentiment homophily for
link prediction. They propose a topic-sentiment affiliation based graphical model
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which incorporates the sentiment features extracted from tweets, structural
features based on social graph, and topical features based on the topical affilia-
tion of two users.

Recently, there exist some studies focusing on different friend recommenda-
tion problem to satisfy different needs. For instance, Barbieri et al. [2] study the
problem of link prediction with explanations for user recommendation. They pro-
pose a stochastic topic model over directed and nodes-attributed graphs which
can produce different types of explanation for different kinds of links (a topical
link or a social link). In addition, Wan et al. [19] study the problem of infor-
mational friend recommendation which aims to recommend friends according to
users’ informational needs. They first employ collaborative filtering method to
predict a user’s rating for each post and then rank the candidate users based on
their informational utilities.

In this work, we propose to exploit the offline event participation information
for followee recommendation, which is a unique and important characteristic of
EBSNs, and no previous works in followee recommendation have considered such
informantion. Moreover, we design a novel recommendation model utilizing all
the latent and explicit features of both the social relations and the offline event
participation records, which is also different from previous works.

Collaborative Filtering. Collaborative filtering is a main recommenda-
tion method, which has been widely employed in recommendation systems.
[3,4,9–11,15–17]. Matrix factorization plays an important role in collaborative
filtering techniques. The basic concept of matrix factorization is to seek latent
representations for both items and users, which are usually low-dimensional vec-
tors of factors in the latent space. In these works, Koren et al. [10] propose to
incorporate bias factors, temporal dynamics, or confidence levels into matrix fac-
torization. Salakhutdinov et al. [17] propose probabilistic algorithms for matrix
factorization which scale linearly with the number of observations. Lee et al. [11]
propose a matrix factorization algorithm with non-negativity constraints which
produces a parts-based representation of the original matrix.

There are some works focusing on the matrix factorization based recommen-
dation with implicit feadbacks [9,15,16]. For example, Hu et al. [9] proposed
a factor model which treats the implicit feedbacks as indication of positive and
negative preference associated with vastly varying confidence levels. Rendle et al.
[16] propose a Bayesian optimization criterion named BPR for personal ranking
from implicit feedbacks and apply it to matrix factorization. Unlike previous
works, they adopted pairwise user preference towards items, which have the
underlying assumption that a user prefers item viewed by the user to all other
non-observed items.

In this work, inspired by BPR, we propose a new Bayesian optimization
framework which adopts pairwise user preference on both the online social net-
work and the offline event participation network.
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6 Conclusion

In this paper, we study the problem of followee recommendation in EBSNs. We
propose a new followee recommendation method called HNFR, which exploits
the heterogeneous nature of EBSNs. In our method, we combine all the explicit
and latent features which are captured from the online social network and the
offline event participation network. Moreover, we propose a Bayesian optimiza-
tion framework which adopts pairwise user preference on both the social rela-
tions and the events. The experimental results on real-world data demonstrate
the effectiveness of our method.
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