Similarity Search on Massive Data
Based on FPGA

Yanzheng Wang, Hong Gao, Shengfei Shi, and Hongzhi Wang(g)

School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China
{yz_wang, honggao, shengfei, wangzh}@hit. edu. cn

Abstract. Data quality is a very important question in massive data process.
When we want to distill valuable knowledge from a mass set of data, the key
point is to know whether the dataset is clean. So before we extract useful
massage from the dataset we’d better do some data clean job. Similarity search
is a very important method in data clean. MapReduce will be used to do sim-
ilarity search in our data clean system. But the efficiency is very low. We found
that when we process the massive data stored in HDFS with MapReduce pro-
graming model every part of the dataset will be scanned and this is very
time-consuming especially for large scale dataset. In this paper we will do filter
operation on original data with hardware before we use similarity search to do
data clean.

Keywords: Data clean -+ FPGA - Similarity search - MapReduce

1 Introduction

There is growing enthusiasm for the notion of “Big Data”. More and more people want
to find treasure from “Big Data”. However data quality issues will result in lethal
effects of big data applications. Therefore clean the massive data with the problem of
quality is very important. Real treasure will be found only the data quality issue is taken
seriously [1].

In traditional relation database, multi-tuples representing the same entity is the most
common type of poor-quality data. Organizing the multi-tuples which represents the
same entity is an effective method of management of poor-quality data. A Similarity
search [2—4] problem is that given a query, one can get a list of results and each pair of
them meets the similarity threshold. Similarity search is a very important technique in
massive data clean.

In order to clean large amounts of data, we use MapReduce [5] to do similarity
search on massive data stored in HDFS [6]. MapReduce is a part of Hadoop envi-
ronment and it is a programming model for processing large data sets with a parallel,
distributed algorithm on a cluster.

Although the performance is very good when we do similarity search with
MapReduce on massive data, it becomes slow as data size stored in HDFS grows fast.
MapReduce will scan every part of the table stored in HDFS and this is very

© Springer International Publishing Switzerland 2016
H. Gao et al. (Eds.): DASFAA 2016 Workshops, LNCS 9645, pp. 343-352, 2016.
DOI: 10.1007/978-3-319-32055-7_28

344 Y. Wang et al.

time-consuming. In order to fix this problem we will use FPGA [7] to filter the original
data. And FPGA does better in this job.
The main contributions of the paper are summarized as follows:

1. Put FPGA into hadoop environment and call FPGA to do filtration job. In order to
use FPGA in hadoop, we changed Mapreduce programing model.

2. Two algorithm was proposed and implemented. A lot of experiments was per-
formed to test our system.

The rest of the paper is organized as follows: Sect. 2 describes the background of
our work. We present two algorithms in Sect. 3 and we did some explain for each of
them. In Sect. 4, we give the results of our experiment evaluation. Finally, Sect. 5
concludes this paper.

2 Background

2.1 Similarity Search

Due to data reported many times or other human factor, it’s quite normal for data repeat
in real work environment. Field similarity was used to judge repeated data. The sim-
ilarity factor S (0 < S < 1) between two fields represent the level of similarity. It is
calculated according to the content of the fields. The smaller of S, the similarity
between the fields. S = 0 means the two fields completely same. The method to
calculate S is different according to the field type.

For bool type, if the two fields are equal, S is zero; otherwise, S is one.

For numeric field, we use relative difference to get the similarity factor. It can be
represent by

S(S_1,S 2) = |S_1 —S_2|/max(S_1,S_2) (1)

For character type, there is a relatively easy method to calculate the similarity
factor. Divide the number of matching character by the average number of the two
character string.

S(S_1,5_2) = [K|/((IS_1]+S_2])/2) 2)

In this formula, K is matching character of the two character string.
Set the threshold and discover similar objects with similarity search. Then we can
do delete operation or other data clean operations.

2.2 MapReduce Programing Model

In recent years Hadoop was used to solve massive data problem due to its distributed
file system and MapReduce programing model. MapReduce is a software framework
capable of processing large amounts of data-sets in parallel across a distributed cluster
of processors or stand-alone computers. A MapReduce program is composed of two
procedures:

Similarity Search on Massive Data Based on FPGA 345

e Map() procedure performs filtering and sorting
e Reduce() procedure performs a summary operation

2.3 System Architecture

Our data clean system is based on Hadoop environment, data-sets stored in HDFS
(Hadoop Distributed File System) and processed with MapReduce. In order to speed up
similarity search module, we use FPGA to do filter operation instead of CPU. We can
see FPGA does better than CPU in this job in many previous papers. As we write
before, Map procedure performs filtering and sorting. So we will add FPGA into Map
procedure to do filter job (Fig. 1).

Slave

Fig. 1. Hadoop system with FPGA. As we can see from this architecture, FPGA will insert into
each slave.

When we use MapReduce to do data clean job, we will change that job into another
form which can be done with FPGA.

2.4 File Format

ORCFile [8, 9] was introduced in Hive 0.11 and each ORCFile is composed of one or
several stripes. The default size of stripe is 250 MB. Stripes have three sections: a set of
indexes for the rows within the stripe, the data itself, and a stripe footer.

This file format will be used as default file format in our data clean system because
of its excellent compression. This file format is convenient for hardware to process
(Fig. 2).

The stripe footer contains the encoding of each column and the directory of the
streams including their location. In row data each column is stored separately. Index
data includes min and max values for each column and the row positions within each
column. We will use the statistic information of each column stored in index data to do
coarse filtration.

346 Y. Wang et al.

Index Data

Row Data

Stripe

Stripe Footer

Fig. 2. Stripe’s structure, ORCFile is composed of stripes.

3 Filter Operation

ORCFile was used as our default file format. Our dataset was stored in HDFS in this
format. Each file stored in HDFS will be sliced into several ORCFiles and every
ORCFile composed by some stripes. Stripe will be processed as a whole, it won’t be
split at here. This operation was added into map function. Map function was changed
by us to process with FPGA (Fig. 3).

Map Task

__

Local
Input Blocks HDFS Storage 8

Fig. 3. Map task’s execution with FPGA

3.1 Coarse Filtration

If we just use a part of data of one file and the rest of the file has nothing to do with the
result, we do not want to scan all of the file. If we can read the data related the result
only we can avoid many I/O time-consuming.

Stripe has some index data, we use this information to do coarse filtration. When
we store data file in HDFS, program will calculate statistical information for each
column. Each stripe has statistical information for its row data. This information will be
used for coarse filtration.

Similarity Search on Massive Data Based on FPGA 347

Algorithm 1. Coarse Filtration
Input: sinfo — Stripe Information
Input: ficon — filter conditions
Output: true iff this stripe can be ignored without read
1: Function coarseFil(sinfo, ficon)
2: if we want to use FPGA to do filter job then
3 for each filter condition c € ficon do
4 if the variable in condition ¢ can be used to do filtration then
5 get s € sinfo
6: result € compare(c, S);
7
8

: update the ficon with result;
: for each operator op € ficon do
9: if opis ‘alb’ then

10: return a&b;
11: if op is ‘a&b’ then
12: return alb;

For every stripe, we can get its statistic information by its id. Then the information
will be used by function coarseFil. In function coarseFil we can decide whether this
stripe needs to be read from disk through compare stripe’s statistic information with
filter conditions. If one stripe needs not to be read from disk, we can avoid I/O
operations on the stripe. This can save our time.

We analyze the filter condition and compare the data user defined with every stripes
statistic information in Line 2-6. After we will replace the filter condition with the
compare result. And the final result will be calculated in Line 8—12.

3.2 Add Hardware into Software

In this paper, we use FPGA to do filtration job. We expect FPGA will give us a good
performance in this kind of job. In order to use FPGA in hadoop environment we will
change original system.

We pass the whole stripe and some useful information to FPGA. FPGA will do
filter operations with the information on that stripe. Result will be returned to software
after filtration. Software will use the result to do similarity search. Because the data
used to do similarity search was filtered by FPGA. Unnecessary data won’t be used at
this time.

For each stripe, it will be read from disk and passed to FPGA through interface.
Along with the stripe, some useful information will be used by FPGA as parameter. We
get the filter results from FPGA and put it into memory, it will used to do other things.

348 Y. Wang et al.

Algorithm 2. Interface to access Hardware
Input: finfo - ORCFile which we are processing
Input: ficon - filter conditions

Input: rdata — raw data will be used by FPGA

1: Function visit FPGA(finfo, ficon, rdata)
2: if we want to use FPGA to do filter job then

3: for each stripe s € finfo do

t < coarseFil(ficon, s);

if tis true then
get sinfo from stripe;
get raw_data from stripe;
set_para_FPGA(sinfo);
get_result(raw_data);

10: put each result for stripe into memory pool;

11: for each key/value in memory pool do
12: pass down the data to do similarity search;

We get each stripe information from metadata (Line 6). Then the raw data waiting
to be processed will be read from disk (Line 7). Function set_para_FPGA will be used
to set parameters for FPGA (Line 8). We can get the final result from FPGA through
function get_result (Line 9).

3.3 Mechanism of FPGA

In recent years, many researches use FPGA (field-programing gate arrays) to process
high-volume data, e.g., data mining [10, 11], image processing [12—14], or other
high-throughput applications [15, 16]. It seems that we can make use of FPGA in the
field of data clean.

The core component of FPGA is a series of processing unit. Each unit can process
two kinds of judge sentences.

1. Sentence like column 6 constants. In this sentence 6 is compare symbol, it include
=, <>, >, <, >=, <=. Column is the column used to do compare. Constant represent a
constant or string, it was used to be compared.

2. Sentence like column 6 column. In this sentence 6 is compare symbol, it include =,
<>, >, <, >=, <=. Two columns will be used to do compare.

When a query comes, CPU will analyze that query and pass the parameter to
FPGA. Processing unit of FPGA can calculate whether the data meet the condition
based on parameter immediately. It will send signal “1” when the condition are met.
Otherwise, it will send signal “0”.

Similarity Search on Massive Data Based on FPGA 349

4 Experiments

4.1 Framework

The algorithms introduced in Sect. 4 have been implemented in Hadoop-2.6.0. The
experiments were performed on Hadoop system with one namenode and three datan-
ode. Each node running Ubuntu 14.04 equipped with one Intel Core 15-2400 3.10 GHz
quad-core processors and 8§ GB DRAM.

The dataset we used in experiments is generated by TPC-H. We will use different
size to test our system because of we assumed that the lager the dataset the better the
performance of this system. And our FPGA will just do filter job this time, so we will
just use one table in TPC-H.

The experiments will tested with and without coarse filtration in a series of size of
dataset. In this way we can see the performance of coarse filtration and FPGA alone.

4.2 With FPGA Alone

Set the MapReduce run with FPGA and run test query in this model. Compare the
result with the original Hadoop. Do this in different size of dataset.

1400 7 o with FPGA 2
1200 1w Original
8 1.5
@ 1000
£ 800 .
F
.‘éﬂ 600
=
g 400 0.5
200
0 || 0
1 5 10 1 5 10
Dataset Size(GB) Dataset Size(GB)
Fig. 4. Running time on three kind of dataset Fig. 5. Performance improved ratio

size

In Fig. 4 we can see two system’s time cost on three different size of dataset. It
shows that we can improve the performance with FPGA. Time cost by system with
FPGA less than original Hadoop. Figure 5 shows the ratio between our system and
original one. With the increase of the amount of data, the ratio will increase. It means
our system perform better on high-volume dataset.

350 Y. Wang et al.

4.3 Add Coarse Filtration

We know how coarse filtration works from algorithm 1. It performs filtration based on
statistic information of the whole stripe. So it only works on stripe rather than rows.
This means the performance relate with the query sentence. And if one column of the
file was ordered, the performance will be better.

In this section query sentence include a range query on the ordered column.
Therefore, the coarse filtration will be used. Otherwise, we cannot test the performance
of it (Figs. 6 and 7).

1400 . 5
1200 M Coarse fil .
c%u" 1000 Original
T 3
E 800
F
& 600 2
§s
E 400 1
200
n 1 :
0 |
0 10 20
1 5 10)
Dataset Size(GB) Dataset Size(GB)
Fig. 6. Running time on three kind of dataset Fig. 7. Performance improved ratio

size

We can imagine that if the range query on ordered column is fixed, the large the
dataset the more data will be filtered. The performance improved significantly because
of the filtered data won’t be read from disk.

However, we can’t say this System is the best due to its performance rely on the
query sentence. If we can’t filter data from it, its performance is not better than the
system with FPGA alone.

5 Conclusion and Outlook

In this paper, we proposed filtration based on FPGA to improve the performance of
data clean system based on Hadoop. We want to reduce the running time of the most
time-consuming part. We use FPGA to do filtration job to reduce I/O time and ease
CPU’s pressure. The experiment results show that our system performs better than the
original one.

Coarse filtration performs better during the query sentence include range query on
the ordered column. We can filter large amount of data through it when the dataset is
ordered. If the dataset is disorganized, coarse filtration will not bring us benefits. In
order to fix this problem we can chose use it or not based on the query sentence.

Similarity Search on Massive Data Based on FPGA 351

We can do many things with FPGA [17-19] because of its inherent advantages in

data process. We want to implement join, group by and other operations with FPGA.
We hope FPGA and other hardware play a huge role in massive data process in the
future.

Acknowledgements. This paper was partially supported by National Sci-Tech Support Plan
2015BAH10F01 and NSFC grant U1509216, 61472099, 61133002.

References

10.

11.

12.

13.

14.

15.

16.

. Rahm, E., Do, H.: Data cleaning: problems and current approaches. IEEE Data Eng. Bull.

23(4), 3-13 (2000)

Morales, G.D.F., Lucchese, C., Baraglia, R.: Scaling out all pairs similarity search with
mapreduce. In: 8th Workshop on LargeScale Distributed System for Information Retrieval
(2010)

Bayardo, R.J., Ma, Y., Srikant, R.: Scaling uop all pairs similarity search. In: Proceeding of
WWW (2007)

Awekar, A., Samatova, N.F.: Fast matching for all pairs similarity search. In: Intelligent
Agent Technology Workshop (2009)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In:
Proceedings of the 6th OSDI, vol. 51, no. 1, pp. 107-113 (2004)

HDEFS (Hadoop Distributed File System) Architecture. http://hadoop.apache.org/core/docs/
current/hdfs_design.html

Sukhwani, B., Hong, M., Thoennes, M., Dube, P., lyer, B.: Database analytics acceleration
using FPGAs. In: International Conference on Parallel Architectures and Compilation
Techniques, pp. 411-420 (2012)
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC

Woods, L., Teubner, J., Alonso, G.: Real-time pattern matching with FPGAs. In: IEEE
International Conference on Data Engineering, pp. 1292-1295 (2011)

Teubner, J., Muller, R., Alonso, G.: Frequent item computation on a chip. I[EEE Trans.
Knowl. Data Eng. 23(8), 1169-1181 (2011)

Zarifi, T., Malek, M.: FPGA implementation of image processing technique for blood
samples characterization. Comput. Electr. Eng. 40(5), 1750-1757 (2014)

Brost, V., Yang, F., Meunier, C.: Flexible VLIW processor based on FPGA for efficient
embedded real-time image processing. J. Real-Time Image Process. 9(1), 47-59 (2014)
Chenini, H., Dérutin, J.P., Aufrére, R., Chapuis, R.: Parallel embedded processor
architecture for FPGA-based image processing using parallel software skeletons. J. Adv.
Sig. Process. 2013(1), 1-23 (2013)

Choi, Y.M., So, K.H.: Map-reduce processing of K-means algorithm with FPGA-accelerated
computer cluster. In: IEEE International Conference on Application-specific System,
Architectures and Processors, pp. 9-16 (2014)

Belean, B., Borda, M., Bot, A.: FPGA based hardware architectures for iterative algorithms
implementations. In: International Conference on Telecommunications and Signal
Processing, pp. 751-754 (2013)

http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://hadoop.apache.org/core/docs/current/hdfs_design.html
http://docs.hortonworks.com/HDPDocuments/HDP2/HDP-2.0.0.2/ds_Hive/orcfile.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual%2bORC

352 Y. Wang et al.

17. Becher, A., Bauer, F., Ziener, D., Teich, J.: Energy-aware SQL query acceleration through
FPGA-based dynamic partial reconfiguration. In: International Conference on Field
Programmable Logic and Applications, pp. 1-8 (2014)

18. Dennl, C., Ziener, D., Teich, J.: On-the-fly composition of FPGA-based SQL query
accelerators using a partially reconfigurable module library. IEEE Int. Symp. Field-
Programma Custom Comput. Mach. 282(1), 45-52 (2012)

19. Halstead, R.J., Sukhwani, B., Min, H., Thoennes, M., Dube, P., Asaad, S., Iyer, B.:
Accelerating join operation for relational databases with FPGAs. In: Proceeding of the 2013
IEEE 21st Annual International Symposium on Field-Programmable Custom Computing
Machines, pp. 17-20 (2013)

	Similarity Search on Massive Data Based on FPGA
	Abstract
	1 Introduction
	2 Background
	2.1 Similarity Search
	2.2 MapReduce Programing Model
	2.3 System Architecture
	2.4 File Format

	3 Filter Operation
	3.1 Coarse Filtration
	3.2 Add Hardware into Software
	3.3 Mechanism of FPGA

	4 Experiments
	4.1 Framework
	4.2 With FPGA Alone
	4.3 Add Coarse Filtration

	5 Conclusion and Outlook
	Acknowledgements
	References

