
Join Query Processing in Data Quality
Management

Mingliang Yue(&), Hong Gao, Shengfei Shi, and Hongzhi Wang

School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

{ml_yue,honggao,wangzh}@hit.edu.cn

Abstract. Data quality management is the essential problem for information
systems. As a basic operation of Data quality management, joins on large-scale
data play an important role in document clustering. MapReduce is a program-
ming model which is usually applied to process large-scale data. Many tasks can
be implemented under the framework, such as data processing of search engines
and machine learning. However, there is no efficient support for join operation
in current implementations of MapReduce. In this paper, we present a strategies
to build the extend bloom filter for the large dataset using MapReduce. We use
the extend bloom filter to improve the performance of two-way and multi-way
joins.

Keywords: Data quality management � MapReduce � Bloom filter � Join

1 Introduction

In recent year, with the wide popularity of Internet technology, along with the rapid
development of cloud computing technology, the data in the Internet is growing at an
unprecedented speed and accumulation. Data quality management [1] is the essential
problem for information systems. As a basic operation of Data quality management,
joins on large-scale data play an important role in document clustering.

Hadoop [2] provides a default join mechanism for relational data, the MapReduce
programming model is widely applied to massive data based processing because of its
good scalability, fault tolerance and usability. However because of its own limitation,
the performance of MapReduce [3] is slow when it is adopted to perform complex data
analysis tasks that require the joining of data sets in order to compute certain aggre-
gates. Therefore, it is necessary to design an improved method for Join operation under
MapReduce framework.

Aiming at the shortage for processing join operations based on MapReduce. In this
paper we presents a join algorithm based on extend Bloom Filter, whose core idea is to
use Bloom Filter to decrease the network overhead between the map and reduce phases
so as to improve the efficiency. First of all, an efficient algorithm building a Bloom
Filter for a dataset is proposed; secondly, join algorithms based on Bloom Filter axe
proposed, including two-way and multi-way. In this paper, we study relational data join
within MapReduce, and make the following contributions:

© Springer International Publishing Switzerland 2016
H. Gao et al. (Eds.): DASFAA 2016 Workshops, LNCS 9645, pp. 329–342, 2016.
DOI: 10.1007/978-3-319-32055-7_27

1. We present and compare an extended bloom filter [4] for a large dataset using
MapReduce.

2. We consider the optimization of joins using mutual filtering policy based on
extended Bloom Filter and conduct an extensive experimental evaluation.

The rest of this paper is organized as follows. We present related work in Sect. 2. In
Sect. 3, we compute the Bloom Filter Using MapReduce. In Sect. 4, we present our
approach for join operator. We will study how use the bloom filter to improve the
efficiency of the join algorithm. In Sect. 5, experimental results demonstrating the
performance of proposed join implementation are presented. We conclude the whole
work in Sect. 6.

2 Related Work

In this section, we first review the Hadoop and join processing techniques in
MapReduce. Then, we describe the Bloom filter.

2.1 Hadoop

Hadoop, the open source project of Apache, is a distributed parallel computing plat-
form for large-scale data, including Hadoop Distributed File System (HDFS) and
MapReduce.

MapReduce programs run on HDFS, which is the primary storage system used by
Hadoop applications and provides high throughput access to application data. Data on
HDFS is usually divided into many small blocks (splits). HDFS creates multiple replicas
for each data block and distributes them on computing nodes throughout a cluster. One
replica of a block would be processed by a Mapper locally on the node where it is
distributed. This mechanism enables reliable and extremely rapid computations.

2.2 Joins in MapReduce

Join algorithms in MapReduce [12, 14] are roughly classified into two categories:
map-side joins and reduce-side joins [5]. Map-side join algorithms are more efficient
than reduce-side joins, because they only produce the final result of the join in map
phase. However, they can be used only in particular circumstances. For Map-Merge
join [6, 13], two input datasets should be partitioned and sorted on the join keys in
advance, or an additional MapReduce job is required to meet the condition. Broadcast
join [6] is effective when the size of one dataset is small.

Map-Reduce-Merge [7] adds merge phase after the reduce phase to support oper-
ations with multiple heterogeneous datasets, but it has the same drawback as reduce-side
join algorithms. There are some attempts to optimize multiway joins in MapReduce.
They discuss the same idea to minimize the size of the records replicated to reduce
processes. In this paper, we address only two-way joins. However, our approach can be
extended to multi-way joins by combining these work.

330 M. Yue et al.

2.3 Bloom Filter

Bloom filter consists of an array of m bits and a set of k hash functions, which hash the
element of the dataset to an integer in the range of [1, m]. The example for a bloom
filter is shown in Fig. 1. All bits of the array are initialized to zero. Each hash function
maps an element to some bits of the filter. In order to check the membership of an
element, we must look at k positions. We answer positively only if all k bits are set to 1.
The bloom filter allows false positives, but never false negatives.

Bloom join [4, 11] is a join algorithm which uses the Bloom filter to filter out tuples
not matched in a join. Suppose relations R(a, b) and S(a, c) that reside in site 1 and site
2 respectively. In order to join these two relations, Bloom join algorithm generates a
Bloom filter with the join key a of a relation, say R. Then, it sends the filter to site 2
where R resides. At the site 2, the algorithm scans R and sends the only tuples which
are set in the received Bloom filter to site 1. Finally, a join of the filtered R and S is
performed at site 1.

Give a set R(x), m is the size of the bit array, k is the number of hash functions, p is a
false positive, we denote the bloom filter for the relation R on the attribute x by BFR(x).

mp ¼ - ln p

ln 2ð Þ2

The total size of the bloom filter for the whole set R(x) is

m ¼ mp � Rj j ¼ � Rj j � ln p
ðln 2Þ2

3 Computing Bloom Filter Using MapReduce

A Bloom filter is a probabilistic data structure used to test whether an element is a
member of a set. It consists of an array of m bits and k independent hash functions. All
bits in the array are initially set to 0. When an element is inserted into the array, the
element is hashed k times with k hash functions, and the positions in the array cor-
responding to the hash values are set to 1. To test membership of an element, if all bits

0 0 1 0 1 1 0 1 0 0 1 1 0 0

a b c

Fig. 1. Example for a bloom filter

Join Query Processing in Data Quality Management 331

of its k hash positions of the array are 1, we can conclude that the element is in the set.
Bloom filter may yield false positives, but false negatives are not generated.

The false positive of standard bloom filter:

p ¼ 1� 1� 1
m

� �kn
 !k

� 1� e
kn
m

� �k

Because of the false positive of standard bloom filter, many attributes that are not
matched with the join condition have been transferred to the reduce phase. That will
bring some of the network transmission overhead, I/O overhead. Therefore if we can
further reduce the false positive of the bloom filter, so we can use bloom filter to
decrease the network overhead between the map and reduce phases so as to improve
the efficiency.

On the basis of the data structure, we define a new bit array of m. All bits in the
array are initially set to 0. The element is hashed k times with k hash functions, we
performed XOR operations on the results. The position in the array corresponding to the
result is set to 1.

In the extend bloom filter, in this array, the probability of assigning a value to 1 is
1/m. When the hash address of each element of the XOR operation is mapped to the
array, One bit is the probability of 0:

p0 ¼ 1� 1
m

� �n

� e�
n
m

So the false positive of the extend bloom filter:

p ¼ 1� e�
kn
m

� �k
� 1� e�

n
m

� �

The map phase: Each map function build a bloom filter for its local data of its own
partition named BFR(x). |BFR(x)| = mp*|R|. And the map function also make the XOR
bloom filter named BFK(x). The intermediate results of the map function output will be
sent to a single reducer.

The reduce phase: The reduce function unions the intermediate results by a bit-wise
OR operation.

The example of the strategy is shown in Fig. 2. There are two relation R(A, B) and S
(B, C). First, the two tables of all the local filter files for “OR” operation. Such as the
relation R has m slices. We build BFR(B1) and BFK(B1), BFR(B2) and BFK(B2)… BFR
(Bm) and BFK(Bm) in the map phase. We unions the result by OR operation in the
reduce phase. We build BFR(B) and BFK(B) for the relation R(A,B) and use BFR(B)
and BFK(B) to filter the relation S(B, C). We do the same to the relation S.

332 M. Yue et al.

4 Extend Bloom Join Using MapReduce

In this section, we will study how to use the bloom filter to improve the efficiency of
the join algorithm. The concept of using the bloom filter to improve the efficiency is
based on the semi-join technique.

4.1 Two-Way Joins Using MapReduce

Aiming at the shortage for processing join operations based on MapReduce, we pro-
posed the optimized strategy. When processing two tables join based on MapReduce
model, we use mutual filtering policy based on extended bloom filter. After the
extended bloom filter process, the two tables join attribute values are extracted
respectively, and form the file. Then the files are used to filter two tables do not meet
the join condition. The optimized method of join, can be achieved to extend bloom
filter and reduce the false positive rate, reducing shuffle phase time, improving the
execution efficiency of the system.

We present a algorithms using the extend bloom filter to compute R(A, B) and S(B,
C), each record of R and S has two attributes. This algorithm has two phases, each
corresponding to a separate.

MapReduce job. In the first MapReduce job, we build a extend bloom filter EBF(R)
on the attribute B for the relation R and S. The extend bloom filter EBFR(R) consists of
BFR(B) and BFK1(B) for the relation R. The relation S includes BFS(B) and BFK2(B).
BFK(B) is the array which the hash address of each element of the XOR operation is
mapped to. BFK(B) can reduce the false positive of the bloom filter.

In the second MapReduce job, Map function reads the two relations R and S, while
reading EBFR(B) and EBFS(B). For the elements in the relation S. The map function
uses EBFR(B) to filter the relation S. The detection of the attribute is true means that the
values of the join attributes need to send out. In the map phase, to express the natural
join R(A, B) and S(B, C), the input to the map function is key-value pairs (r, t), where
r is the relation name (either R or S), and t is a tuple of the relation named by r. the
output is a key-value pair (r, t). All these output records form the intermediate result.

The key is a composite of two elements. The first element is the value of the join
attribute B, the second element is a flag bit, indicates that this property is derived from
the relation S. The value contains an element, its value is the value of the attribute B.
We do the same to the relation R. The map function uses EBFS(B) to filter the
relation R for the elements in the relation R.

In the suffer phase, because the key is a composite value, If the entire key value is
used as a partition element, It cannot guarantee that the same value is sent to the same
reduce node and satisfy the equijoin condition. So we define a Partition function in
advance, the first value of the key is used as the partition element. In the reduce phase,
although the same key value is assigned to the same reduce, But extend bloom filter has
the possibility of a miscarriage of justice too. So we need to add a step in the reduce
function to check if the join property is equal. The final results are computed in the
reduce function just like the improve repartition join described in [9].

The algorithm of Two-Way Joins Using MapReduce is as follows.

Join Query Processing in Data Quality Management 333

334 M. Yue et al.

Mutual filtering strategy by improved Filter Bloom is mainly in order to filter out
the two table does not meet the join conditions of the tuple, reduce the output of the
map phase, greatly reduce the shuffle phase of the time, as well as the I/O overhead of
the data. The efficiency of the system to perform the join task will be greatly improved.

Figure 3 is an example of the second phase of the algorithm. Relation R and S
are stored in HDFS. The first phase of the MapReduce program for relation R generates
EBFR(B). and it do the same thing for the relation S. The second stage is shown in Fig. 3.
Each map function reads the block of relation R and S. The map function reads the
EBFR(B) and EBFS(B). The map function uses it EBFR(B) to filter relation S. Therefore,
the values of join attribute B (6, 7, 8, 9) are filtered out without passing through the
network transmission in the relation S, just send a value of 1 and 2 to the reduce phase.

4.2 Multi-way Joins Using MapReduce

In this section, we solve the problem how to use bloom filters to a multi-way joins. Let
us consider the case of a 3-way joins: R(A, B) ⋈ S(B, C) ⋈ T (C, D). We can implement
this join by a sequence of two two-way joins, choosing either to join R and S first, and
then join T with the result. In [10], Afrati proposed another algorithm to deal with this
join using only one MapReduce job. However, there are still a lot of tuples to be copied
in this process. Naturally, we can use extend bloom filters to filter useless data to
improve the efficiency of the multi-way joins.

We introduce an algorithm called multi-way-bf join having two MapReduce pha-
ses. In the first MapReduce phase, we build EBFS(B) and EBFS(C) for the relation S on
the attribute B and C. In the second MapReduce phase, we use the EBFS(B) and EBFS
(C) and adopt the algorithm [10] to get the final results.

R

HDFS Map

R

HDFS

BFR(B)

BFR(B)

BFR(B)

BFR(B)

BFK(B)

BFK(B)

BFK(B)

BFK(B)

Reduce

BFR(B)

BFR(B)

BFR(B)

BFR(B)

BFK(B)

BFK(B)

BFK(B)

BFK(B)

OR

OR

OR

OR

OR

OR

Fig. 2. Example for a extend bloom (EBFR(B)) filter generating

Join Query Processing in Data Quality Management 335

The algorithm of the Replicated join with extend bloom filter as follows.

336 M. Yue et al.

The algorithm of the Replicated join with extend bloom filter as follows.

Join Query Processing in Data Quality Management 337

The algorithm of the Replicated join with extend bloom filter as follows.

The general process of the algorithm is as follows, Let H be a hash function. The
hash range is from 1 to n. Use (i, j) label each reduce, the range of values of I and j is 1
to n. Each element S(B, C) is sent to the label (h(B), h(C)) for the reduce, Each element
R(A, B) is sent to the label (h(B), *) for the reduce, * represents any value, Each
element T(C, D) is sent to the label (*, h(C)) for the reduce. In the end, the equivalent
connection operation is done in each reduce.

5 Experiments

Our experiments run on a cluster consisting of 1 master node (served as both
Namenode and Jobtracker) and 3 slave nodes. The release of Hadoop is 2.6.0. The size
of each data block, which has 3 replicas on HDFS, is no more than 64 MB. In this

338 M. Yue et al.

paper, the data used in the experiments are derived from TPC-H. We compare our
algorithm with the algorithm called EBF-M and EBF-RSJ.

We used the default Hadoop join RSJ and the EBF-RSJ to join these two relations
on the cluster respectively. In the experiment of two table joins, we use relation
ORDERS and CUSTOMER to do the join experiment in the TPC-H. Six sets of data of
different sizes are selected in the experiment. The different datas are show as follows.
Figure 4 shows the performance of the two joins (Table 1).

From Fig. 4, when the size of the relation is small, RSJ is as the same as EBF-RSJ,
because they add the additional MapReduce rounds to waste time. When the size of the
relation is bigger, EBF-RSJ is more efficient than RSJ, because this filters a lot of
useless data to save network overhead and processing overhead.

HDFS Map HDFSReduce

1,R
1,R
2,R
3,R
4,R
5,R

1,S
2,S
6,S
7,S
8,S
9,S

1,R
1,R
1,S
2,S

EBFR(B)
EBFS(R)

2,R
4,R
6,S
7,S

EBFR(B)
EBFS(B)

4,R
5,R
8,S
9,S

EBFR(B)
EBFS(B)

1,R,R,S,S

2,R,S

1,R,S

1,R,S

2,R,S

Fig. 3. Example of the second phase of the algorithm

Table 1. Six groups of data for two relations

Data 1 2 3 4 5 6

CUSTOMER 160M 225M 525M 750M 900M 1.1G
ORDERS 175M 275M 400M 760M 940M 1.2G

Join Query Processing in Data Quality Management 339

For joins of three (or more) relations, the default Hadoop join has to join two
relations and then join the intermediate result with the third relation. Figure 5 shows the
performance comparison of Hadoop join and EBF-M. The different datas are show as
follows (Table 2).

We compare our algorithm with the algorithm called EBF-M and the default
Hadoop join. The result is shown in Fig. 5. From Fig. 5, we can observe that our
method is as efficient as the default Hadoop join when the relations are small, because
our method adds an additional MapReduce phase to build the bloom filters. While the
size of relations become large, our method is more efficient, as our method uses the
extend bloom filter to filter a lot of useless data to save the network overhead and
processing overhead.

Fig. 4. MapReduce time for the default Hadoop join and extend Bloom Filter Join

Table 2. Six groups of data for three relations

DATA 1 2 3 4 5 6

CUSTOMER 65M 125M 200M 400M 640M 780M
ORDERS 70M 100M 240M 390M 520M 680M
LINEITEM 81M 110M 234M 350M 510M 620M

340 M. Yue et al.

6 Conclusion

In this paper, We present and compare an extended bloom filter for a large dataset using
MapReduce, and we present a way to join relations within MapReduce framework by
extend bloom filter. For joins of two relations, our approach avoids sorting large data
records and reduces network overhead. It proves more efficient than the default join
algorithm provided by Hadoop. For multi-joins, which the default join in Hadoop does
not support directly, our method can improve the performance of multi-way joins.

In the future, we are planning to develop a dynamic cost analyzer. This will help us
to implement a best MapReduce approach to any multi-way joins problems. We are
also planning to investigate techniques of incorporating Hadoop parameters into the
cost model to improve the join efficiency.

Acknowledgements. This paper was partially supported by National Sci-Tech Support Plan
2015BAH10F01 and NSFC grant U1509216, 61472099, 61133002.

References

1. Lueebber D, Grimmer U.: Systematic development of data mining based data quality tools.
In: 29th VLDB (2003)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: OSDI,
pp. 137–150 (2004)

3. Apache Software Foundation. Hadoop, April 2010. http://hadoop.apache.org

Fig. 5. MapReduce time for multi-way joins

Join Query Processing in Data Quality Management 341

http://hadoop.apache.org

4. Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evaluation for
distributed queries. In: Proceedings of the 12th International Conference on Very Large Data
Bases (VLDB), pp. 149–159 (1986)

5. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with
MapReduce: a survey. ACM SIGMOD Rec. 40(4), 11–20 (2011)

6. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join
algorithms for log processing. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD 2010), pp. 975–986 (2010)

7. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: simplified
relational data processing on large clusters. In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data (SIGMOD 2007), pp. 1029–1040 (2007)

8. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
(CACM) 13(7), 422–426 (1970)

9. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A comparison of join
algorithms for log processing in MapReduce. In: SIGMOD, pp. 975–986 (2010)

10. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environment. IEEE
Trans. Knowl. Data Eng. 23(9), 1282–1297 (2011)

11. Broder, A., Mitzenmacher, M.: Network applications of bloom filters: a survey. In: Internet
Mathematics, pp. 636–646 (2002)

12. Lee, K.-H., Lee, Y.-J., Choi, H., Chung, Y.D., Moon, B.: Parallel data processing with
MapReduce: a survey. In: SIGMOD, pp. 11–20 (2011)

13. Yang, H.C., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: simplified relational
data processing on large clusters. In: SIGMOD 2007, pp. 1029–1040 (2007)

14. Friedman, E., Pawlowski, P., Cieslewicz, J.: SQL/MapReduce: a practical approach to
self-describing, polymorphic, and parallelizable user-defined functions. In: Proceedings of
VLDB (2009)

342 M. Yue et al.

	Join Query Processing in Data Quality Management
	Abstract
	1 Introduction
	2 Related Work
	2.1 Hadoop
	2.2 Joins in MapReduce
	2.3 Bloom Filter

	3 Computing Bloom Filter Using MapReduce
	4 Extend Bloom Join Using MapReduce
	4.1 Two-Way Joins Using MapReduce
	4.2 Multi-way Joins Using MapReduce

	5 Experiments
	6 Conclusion
	Acknowledgements
	References

