
ISSA: Efficient Skyline Computation
for Incomplete Data

Kaiqi Zhang(B), Hong Gao, Hongzhi Wang, and Jianzhong Li

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, China

{zhangkaiqi,honggao,wangzh,lijzh}@hit.edu.cn

Abstract. Over the past years, the skyline query has already caused
wide attention in database community. For the skyline computation over
incomplete data, the existing algorithms focus mainly on reducing the
dominance tests among these points with the same bitmap representation
by exploiting Bucket technique. While, the issue of exhaustive compar-
isons among those points in different buckets remains unsolved, which
is the major cost. In this paper, we present a general framework COBO
for skyline computation over incomplete data. And based on COBO, we
develop an efficient algorithm ISSA in two phases: pruning compared list
and reducing expected comparison times. We construct a compared list
order according to ACD to diminish significantly the total comparisons
among the points in different buckets. The experimental evaluation on
synthetic and real data sets indicates that our algorithm outperforms
existing state-of-the-art algorithm 1 to 2 orders of magnitude in compar-
isons.

1 Introduction

The skyline query coined out by Börzsönyi et al. in [1] is an important query in
database community. Over the years, it has caused wide attention to researchers,
especially in multi-criteria decision making field. For a data set S with multiple
dimensions, the skyline query retrieves out the interesting points which are not
dominated by others. Any two points p and q in S, p dominates q if p is smaller
or equal to q in every dimension and smaller than q in at least one dimension.

The skyline query can diminish the amount of the concern points down to
the skyline set and non-skyline points will never take up users’ decision time. In
the light of the importance of the skyline query, a series of efficient algorithms
[1,3,9] for the skyline computation have been proposed. They are devised based
on the completeness assumption, i.e., all dimensions are available for every data
point. While there are many real life scenarios do not hold this assumption. For
instance, there is a movie rating data set (MovieLens [5]). Users usually rate
a few of all the movies, which results in many null value for the movie that a
user does not rate. In this incomplete data set, [6] gives the new definition about
skyline, which makes all aforementioned traditional algorithms invalid. Also,
proposes a ISkyline algorithm. It reduces the dominance tests among these points
c© Springer International Publishing Switzerland 2016
H. Gao et al. (Eds.): DASFAA 2016 Workshops, LNCS 9645, pp. 321–328, 2016.
DOI: 10.1007/978-3-319-32055-7 26



322 K. Zhang et al.

with the same bitmap representation by exploiting Bucket technique. While, the
issue of exhaustive comparisons among those points in different buckets remains
unsolved, which is the major cost for computing skyline set over incomplete data.

In this paper, we first illustrate the challenge brought by non-transitive dom-
inance relation for incomplete data set. Then, a general framework for skyline
computation over incomplete data, named COBO, is presented to accommodate
the relation. Later, based on COBO, we propose an efficient algorithm ISSA
in two phases: pruning compared list and reducing expected comparison times.
Pruning compared list could delete safely these points which are eliminated
that have no effect on the result of skyline computation. And reducing expected
comparison times constructs a compared list order according to ACD to strive
to diminish the total expected comparisons among points in different buckets.
We summarize our contributions as follows:

– We generate a general framework named COBO for skyline computation over
incomplete data.

– We analyze that there are only two techniques to improve the general frame-
work: pruning compared list and reducing expected comparison times.

– We propose a compared list order according to ACD to strive to diminish the
total expected comparisons.

– We evaluate our presented algorithm with state-of-the-art algorithm on syn-
thetic and real data sets.

2 Related Work

The skyline query is first pioneered in [1] in the database community, and after-
ward, many skyline algorithms have been presented, such as SFS [3], OSPS [9]
and so on. In addition, many efforts have been paid to the variants of traditional
skyline, for instance k-dominant skyline [2], probabilistic skyline [7], reverse sky-
line [4], and skyline cube [8].

However, for incomplete data set, there are quite few of literatures up to now.
The issue is first introduced in [6] which gives the new definition about skyline
in incomplete data set. Unfortunately, the transitive dominance relation cannot
remain hold, i.e, dominance relation become non-transitive, which leads to that
all the traditional skyline algorithms are not applicable. In the light of this, [6]
presents an algorithm ISkyline for skyline computation over incomplete data.
ISkyline stores automatically the points with the same bitmap representation
into the identical bucket. It reduces the dominance tests among the points in the
same bucket, in which the transitive dominance relation become valid. While, the
issue of exhaustive comparisons among those points in different buckets remains
unsolved, which is the major cost for computing skyline set over incomplete data.

3 Preliminaries

This section first introduces the description about incomplete data set. And then
the definitions of dominance and skyline are both given referring to the prior
work [6].



ISSA: Efficient Skyline Computation for Incomplete Data 323

Up to now, we have referred to many times of incomplete data, so what is it
and how to represent it? In incomplete data set, there maybe exist missing value
in any dimension for every data point. For each data point, we call the dimension
with missing value as incomplete dimension, otherwise the dimension is complete
dimension. For example, p(1,−, 4) is an incomplete point in 3-dimensional data
space, where ‘–’ denotes the missing value. Also, the ith dimensional value of p
is represented by pi, we know that p3=4. Here, we first explain some symbols
used through the paper from now on. Incomplete data set S has d dimensions
whose value is positive number. Specially, any data point in S has 1 to d − 1
incomplete dimensions. Now, we introduce formally the definitions about skyline
over incomplete data in the following:

Definition 1 (Dominance for Incomplete Data). Given any two points p, q ∈
S, it is said that p dominates q, denoted by p � q, if and only if the following
conditions both satisfy:

(1) ∃i ∈ [1, d], pi and qi both exist and pi < qi.
(2) ∀i ∈ [1, d], pi is missing or qi is missing or pi ≤ qi.

If p � q, we call that p is the dominating point of q and q is the dominated point
of p.

Definition 2 (Skyline for Incomplete Data). Using SKY (S) represents the sky-
line set of S, where SKY (S) = {∀p ∈ S | � q ∈ S, q � p}.

4 A General Framework for Skyline Computation over
Incomplete Data

In this section, we first present a general framework named Compared One by
One (COBO) for computing skyline result over incomplete data. Based on it, we
propose an efficient algorithm ISSA in two phases: pruning compared list and
reducing expected comparison times. And then we illuminate them in detail.

4.1 A General Framework

For the skyline computation over complete data, points hold the transitive dom-
inance relation. For instance, there are three points p1 = (2, 3, 2), p2 = (3,
3, 4) and p3 = (4, 5, 4). p1 dominates p2 and p2 dominates p3, therefore p1
must dominate p3. All existing approaches are based on transitive dominance
relation. While, the dominance relation is non-transitive [6] among incomplete
points according to the Definition 1. An example as follows: p1 = (2, 3, –), p2
= (4, –, 1), p3 = (–, –, 2). Apparently, p1 dominates p2 and p2 dominates p3,
while p1 cannot dominate p3. Non-transitive makes it extremely difficult that
the skyline computation over incomplete data. Not like computing skyline result
in complete data set, once one point is checked out to be non-skyline, it can
be removed immediately. Because all points it dominates must be dominated



324 K. Zhang et al.

by the points which dominate it. So traditional skyline algorithms exploiting
the property can only maintain a skyline window organized as sorted list [3] or
skyline tree [9] to justify the subsequent points. Unfortunately, for incomplete
data set, it is not safe to discard the points which, even though, are determined
to be non-skyline. Any point, whether it is skyline or not, must be contained in
the window to check other points.

Fig. 1. A general framework: COBO

Based on above analysis, we present a general framework named Compared
One by One (COBO) for computing skyline result over incomplete data as shown
in Fig. 1. The framework is made of two parts, compared list (CL) and candidate
window (CW). Compared list is mainly used to justify whether a point is skyline
or not, and it generally contains all points of the data set because of the non-
transitive dominance relation. For candidate window, it stores these points which
maybe belong to the skyline result. Simply initialize candidate window by all
points since any point has the possibility to be skyline. Now we will illustrate
the process of skyline computation in the framework. After initialization of two
parts, every point in candidate window do this operation: For any being checked
point pi in candidate window, generating a compared list order according to
pi. Then compare the points in this order, one by one, with pi. Once one point
dominating pi occurs, eliminate pi from candidate window. Finally, the remaining
points in candidate window are the skyline result of the incomplete data set.

The basic process of the framework COBO is shown in Algorithm 1. While,
its cost is significantly expensive. Now, based on COBO, we propose an efficient
algorithm ISSA in two phases: pruning compared list and reducing expected
comparison times.

4.2 Phase I: Pruning Compared List

The first phase is pruning compared list, i.e., remove all these points which are
eliminated that have no effect on the result of skyline computation. While, what
the points can be removed safely in the compared list? This issue has already
been figured out in [6] by introducing the bucket technique. These points with the
same bitmap representation are stored automatically into the identical bucket.
The transitivity of dominance relation becomes valid among the points in the



ISSA: Efficient Skyline Computation for Incomplete Data 325

Algorithm 1. COBO(S)
Input: A d-dimensional positive numerical incomplete data set S
Output: The skyline result of data set S

1: Candidate Window candidate = S
2: Compared List CL = S
3: for ∀p ∈ candidate do
4: determine the order of CL as CLp according to p.
5: for ∀q ∈ CLp do
6: if q dominates p then
7: delete p from candidate;
8: break;
9: return candidate

same bucket. Therefore we can straightforwardly discard the dominated points
in each bucket.

For example, p1 = (2, 3, –), p2 = (3, 4, –), p3 = (–, 5, 1). The points p1
and p2 are in the same bucket 110 and p1 dominates p2. Then we can remove
p2 safely, the remaining point p3 dominated by p2 must be dominated by p1.

Theorem 1. Bucket technique can maximize to delete these points which are
eliminated that have no effect on the result of skyline computation.

Proof. Suppose that there is one point p which can be discarded safely and it
does not belong to these points that are eliminated by bucket technique. It is
obvious to infer that there must exist a point q which satisfy following conditions
if p can be safely removed: q is not worse than p in every dimension and q and p
have the same representation. Then q dominates p and they are in the identical
bucket. So point p must be pruned by bucket technique. This contradicts with
origin assumptions. ��

Bucket technique prunes as many safe points as possible. Then, use the
remaining points to initialize CL and CW as shown in Algorithm1 in line
1–2. Although the cost is still extremely expensive, there is no better way since
the dominance relation is non-transitive in incomplete data.

4.3 Phase II: Reducing Expected Comparison Times

Only adopting phase I makes it still inefficient, which is mainly due to the
point in candidate list stopping being checked until find its dominating point
in compared list. So we should strive to find out the dominating point of the
being checked candidate point as soon as possible. As the skyline points, they
must be compared with all the points in compare list. While for the other points,
the ideal way is to only need one comparison, i.e., compared with one of their
dominating points. Unfortunately, if we know which points are their dominating
points, the skyline result will be given immediately.



326 K. Zhang et al.

100K 200K 300K 400K 500K 600K
10

100

1000

10000
C

om
pa

ris
on

(M
)

Cardinality(n)

ISkyline
ISSA

(a) varying cardinality

6 8 10 12 14 16
0.1

1

10

100

C
om

pa
ris

on
(M

)

Dimensionality(d)

ISkyline
ISSA

(b) varying dimensionality

Fig. 2. Performance on synthetic data set

Now, the most important task is to pay low cost to construct a compared
list order, in which all points can quickly find their dominating points. So as to
achieve the goal of reducing expected comparison times. Under UI condition [3],
especially in incomplete data set, for those points with the same size of complete
dimensions, we observe that the point with lower sum have greater probability
of being not dominated by any point than that with higher sum. To extend it
to general incomplete situation, we sort all points in compared list according to
their average value in all complete dimensions (ACD).

For instance, p1 = (2, 7, –), p2 = (4, –, 3) and p3 = (–, 3, 2) in compared
list. The order is p1, p2, p3 before sorting. Now we sort the list according to
ACD, and result in the sorted list p3, p2, p1. We call the list sorted compared
list. Then, all the points in candidate window are checked by the order of sorted
compared list.

5 Experimental Evaluation

In this section, we evaluate our algorithm by experiments. We compare our
algorithm ISSA with state-of-the-art approach ISkyline [6] in dimensionality and
cardinality in synthetic and real data sets. All algorithms are performed on a
Microsoft Windows 7 computer with an Intel Core i7-4790 CPU at 3.6 GHz and
8 GB memory.

5.1 The Performance on Synthetic Data Sets

This section describes the performance of our algorithm ISSA and state-of-the-
art approach ISkyline [6] on synthetic data sets. We generate several incomplete
synthetic data sets with dimensions and incompleteness ratio ranging from 6 to
16 and 25 % to 50 %, respectively. First, we produce the complete data set under
the UI condition in [3], and the domain of complete dimensions is [0,1000]. Then,
randomly remove some dimensions to make them incompleteness according to



ISSA: Efficient Skyline Computation for Incomplete Data 327

0.5K 1.0K 1.5K 2.0K 2.5K 3.0K 3.5K 4.0K
0

10

20

30

40

50
C

om
pa

ris
on

(K
)

Cardinality(n)

ISkyline
ISSA

(a) varying cardinality

1K 2K 3K 4K 5K 6K
0

10

20

30

40

50

C
om

pa
ris

on
(K

)

Dimensionality(d)

 ISkyline
 ISSA

(b) varying dimensionality

Fig. 3. Performance on real data set

identical ratio for every data point. These synthetic incomplete data sets are
generated as above methods.

Figure 2(a) shows the total comparisons of them over cardinality variation
from 100K to 600K, where the dimensionality is 12 all the time and the incom-
pleteness ratio is 25 %. Apparently, ISSA outperforms ISkyline 1 to 2 orders of
magnitude in comparisons. Figure 2(b) describes the performance of algorithms
by varying dimensionality from 6 to 16. The cardinality and incompleteness ratio
of the data sets are all 200K and 50 %, respectively. As Fig. 2(b) reports, ISSA
is always faster than ISkyline.

5.2 The Performance on Real Data Sets

This section describes the performance of ISSA and ISkyline on real data set
MovieLens [5]. It is one of data sets in [5] and contains 1 million ratings. Actually,
95.75 % is incomplete for the data set which includes 3952 points(movies) and
each of them has 6040 dimensions (users). We conduct experiments by varying
cardinality and dimensionality. In Fig. 3(a), the cardinality is ranging from 658
to 3952 where the dimension is 6040. In Fig. 3(b), the dimension is ranging from
1 K to 6 K where the cardinality is 3952. It is clear that ISSA is always several
times faster than ISkyline as shown in Fig. 3.

6 Conclusions

In this paper, we presented a general framework COBO for skyline computation
over incomplete data. And based on COBO, we developed an efficient algorithm
ISSA in two phases: pruning compared list and reducing expected comparison
times. Pruning compared list could delete safely these points which are elimi-
nated that have no effect on the result of skyline computation. And reducing
expected comparison times constructs a compared list order according to ACD
to strive to diminish the total expected comparisons among points in different



328 K. Zhang et al.

buckets. Experimental results on synthetic and real data sets indicated that
our algorithm outperforms existing state-of-the-art algorithm 1 to 2 orders of
magnitude in comparisons.

References

1. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings
of the 17th International Conference on Data Engineering, Heidelberg, Germany,
pp. 421–430, 2–6 April 2001

2. Chan, C.Y., Jagadish, H.V., Tan, K., Tung, A.K.H., Zhang, Z.: Finding k-dominant
skylines in high dimensional space. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Chicago, Illinois, USA, pp. 503–514,
27–29 June 2006

3. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: Proceed-
ings of the 19th International Conference on Data Engineering, Bangalore, India,
pp. 717–719, 5–8 March 2003

4. Dellis, E., Seeger, B.: Efficient computation of reverse skyline queries. In: Proceed-
ings of the 33rd International Conference on Very Large Data Bases, University of
Vienna, Austria, pp. 291–302, 23–27 September 2007

5. http://movielens.umn.edu
6. Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Skyline query processing for incom-

plete data. In: Proceedings of the 24th International Conference on Data Engineer-
ing, ICDE 2008, Cancún, México, pp. 556–565, 7–12 April 2008

7. Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
University of Vienna, Austria, pp. 15–26, 23–27 September 2007

8. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation
of the skyline cube. In: Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, pp. 241–252, 30 August–2 September 2005

9. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-
based space partitioning. In: Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD, Providence, Rhode Island, USA,
pp. 483–494, 29 June–2 July 2009

http://movielens.umn.edu

	ISSA: Efficient Skyline Computation for Incomplete Data
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 A General Framework for Skyline Computation over Incomplete Data
	4.1 A General Framework
	4.2 Phase i: Pruning Compared List
	4.3 Phase ii: Reducing Expected Comparison Times

	5 Experimental Evaluation
	5.1 The Performance on Synthetic Data Sets
	5.2 The Performance on Real Data Sets

	6 Conclusions
	References


