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Abstract. Data quality assessment outcomes are essential for analytical
processes, especially for big data environment. Its efficiency and efficacy
depends on automated solutions, which are determined by understanding
the problem associated with each data defect. Despite the considerable
number of works that describe data defects regarding to accuracy, com-
pleteness and consistency, there is a significant heterogeneity of terminol-
ogy, nomenclature, description depth and number of examined defects.
To cover this gap, this work reports a taxonomy that organizes data
defects according to a three-step methodology. The proposed taxonomy
enhances the descriptions and coverage of defects with regard to the
related works, and also supports certain requirements of data quality
assessment, including the design of semi-supervised solutions to data
defect detection.
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1 Introduction

The effects of poor data quality on the reliability of the outcomes of analyti-
cal processes are notorious, especially for big data environment. Improving data
quality requires alternatives that combine procedures, methods and techniques.
The Data Quality Assessment process (DQAp) provides practical inputs for
choosing the most suitable alternative through its mapping of data defects. To
provide a reliable outcome, this process requires know about data defect struc-
tures to know how to assess them.

Data defects descriptions provide structural understanding of the problem
associated with each defect. Descriptions are relevant for different DQAp issues
such as the rule definition of certain computational approaches of data assess-
ment and the establishment of measurement-based data quality program.
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Much literature has described data defects through hierarchical [14], formal
[13] or formal-textual-example [5] models. However, the analysis of this literature
shows remarkable differences in terminology, nomenclature, coverage, granularity
of description, and the description model used (as also mentioned by [8]). This
poor organization and description cause uncertainties on which data defects
should be assessed, which their structures are, and it also hampers the ability
to determine the corresponding detection approaches.

To address this situation, this work reports a taxonomy of data defects related
to the accuracy, completeness and consistency quality dimensions. The taxonomy
is characterized and categorized according to a three-step methodology and its
main contribution is a major coverage of data defects and enhanced descriptions
in terms of terminology, examples and mathematical formalism.

The work reported here is organized as follows: Sect. 2 reviews all related
works. Section 3 presents the methodology applied to the development of the
proposed taxonomy, while Sect. 4 describes the taxonomy and its basic concepts.
Section 5 presents the conclusions of this work.

2 Related Works

In literature, works that describe data defects are common in certain research
areas, including Information and Data Quality Management, Data Mining and
Statistics. Here, these works are analysed according to how the following ques-
tions are answered: What is the representative set of defects related to the qual-
ity dimensions of accuracy, completeness and consistency? What is the problem
structure behind each defect?

Certain works describe data defects as a complementary topic for their main
subject of interest. This approach by [3,4,15] leads to ambiguous structure
descriptions of the data defects. Moreover, the data defects representativeness is
assigned by common sense within a context.

In contrast, the data defects issues are relevant for Data Profiling [12], Sta-
tistics [16] and Data Cleaning [5] works. Such works expose the data defect
structure through the combination of textual, instance-based examples and for-
mal resources. However, they cover few defects.

Lastly, taxonomies intend to provide reasonable descriptions aligned to a
broad coverage and classification of data defects. However, a review of state-of-
art taxonomies [1,2,7,9,10,13,14] reveals heterogeneous descriptions and cov-
erage. This situation is caused by the degree of accuracy afforded by the defect
definition, terminology and absence of theoretical support on defect selection.

The defect description model determines the degree of accuracy afforded by
the defect definition. Except by [13], the taxonomies use an informal or example-
driven description model which require considerable interpretations when con-
sidered from a technical perspective.
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Regarding terminology and nomenclature, the taxonomies use distinct terms
to well known database jargon defects. For instance, “Domain format errors” by
[10] and “Wrong data type” by [7,9] are the different terms applied to the same
database jargon of “Domain Constraint Violation”.

The shared absence of theoretical support to identify the set of data defects
and the lack of concern with extending the descriptions contribute to an incom-
plete coverage of data defects. For instance, despite the sequence of citation
between [13,14] and [9], data defects as “Embedded values” by [14] do not appear
in [9,13]. Moreover, defects regarding data modelling rules (e.g., Cardinality
Ratio) and data life cycle failures (e.g., Missing References, False Tuple) are not
addressed by any taxonomy. Further examples of data defect heterogeneities are
also mentioned by [8].

3 Methodological Approach to Organize the Taxonomy

The taxonomy proposed to address the limitations and the questions in Sect. 2
resulted from applying three steps in sequence. The first step re-examined a broad
set of topics related to relational theory. Among the topics, but no restricted to
them, it can be mentioned conceptual data modelling, transformation decisions
between conceptual and logical models, and constraints [5,6,11].

These topics revealed a broad rule set that may be applied on a relational
schema to represent properties and behavior of the Universe of Discourse (UoD).
Each rule was basis to identify one or more violations (data defects) that leads
data to defective states. Furthermore, the review also determined the terminol-
ogy, nomenclature and the description model.

The second step classified the data defects in layers according to their shared
properties. The first layer determined whether or not data defects violate rules
about the UoD, named respectively as “Data Constraint” and “Fact Represen-
tation Deviation”. “Data Constraint” gathers data defects that violate static
or dynamic rules. The former denotes explicit rules or inherent characteristics
of relational model (implicit rules) that a valid state of a relation must satisfy,
including data domains, integrity and participation in data relationships. In
contrast, the latter comprises rules applied during state transitions of a relation.
“Fact Representation Deviation” denotes defects related to differences between
data representation and the corresponding fact about the objects of the UoD,
including meaning, content and element of representation.

The third step classified each data defect based on its place or granularity
of occurrence, which are attribute value (V), single attribute (A), single tuple
(T), single relation (R) or interrelation (IR), which may involve one or more
database instances. The outcome of this three-step methodology is observed in
Fig. 1. This figure provides an effective arrangement to identify data defects and
comprehend their properties (denoted by the class hierarchy) and interrelation-
ships. Moreover, this arrangement is basis to incorporate additional data defects
to the taxonomy, such as the time-related ones.
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Fig. 1. Taxonomy of data defects (Granularity: V-Attribute Value, A-Single Attribute,
T-Single Tuple, R-Single Relation, IR-Interrelations. Note: Data Defects in italic, bold
and underline were not addressed by any of the state-of-art taxonomies.)

4 Data Defect Taxonomy

4.1 Structural Background

This work applies a formalization language well known by database community
based on [5,6,11], which the main elements are observed in Table 1. It is beyond
the scope of this work to evaluate the most proper language for this goal.

Moreover, each defect is illustrated by examples selected from a simple finan-
cial domain, as shown in the logical model below.

Customer (CID, Name, Job, Salary, State, City, Zip, Age, Ms, SpouID)
SpouID references Customer
CreditCardAccount (CAccID, ActivationDate, UsageTime, IsFreeOffer)
CustomerCreditAccount (CCAID, CAccID, CID, Score, IsHolder, State)
CAccID references CreditCardAccount

CID references Customer

In this model, Customer has certain properties of Natural People and Legal
Entities in regard to owners of credit cards. CreditCardAccount denotes the
properties of acquired credit cards. CustomerCreditAccount represents all of the
relationship roles (holder or joint holder) between the customers and the credit
cards. An instance I0 of each logical relation is observed in Tables 2, 3 and 4.
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Table 1. Main elements of the formalization language
R
e
la
ti
o
n
a
l

Relational Database Schema Set of relations schemas BD = {R1, R2, R3..., Rm}, m ≥ 1

Relation Schema Set of attributes A = {a1,..., ak} denoted by R(A), R ∈ DB

Attribute Each aj , j = [1, k], is regulated by a domain Dj , given as dom(aj)

Subset of a Relation Set of attributes X,Y ⊂ R(A), where R ∈ DB and X ∩ Y =

State of Relation Set of n tuples, r = {t1, t2, t3..., tn}, denoted by r(R)

Tuple Each tuple tp, p ∈ [1, n], is a list of q values tp = {v1, v2, ..., vq}
Tuple Value Each value vs, s ∈ [1, q], is a domain element of the corresponding

attribute as, denoted as t[as]

Relationship Referential integrity rule between relations W (refer to) and

U (referred), denoted by Rel : RW → RU

Universal Thesaurus Lexical definitions, relationships and similarity degrees of terms in

common usage, denote by LEX.

O
p
e
ra

ti
o
n
a
l

Value Predicate Symbols = {<,≤,=,=,≥, >}
Set Elements and Operators Q = {∈, /∈,⊆,⊂,∪,∩}
Logical Connectives {∧,∨} of type Boolean × Boolean → Boolean

Unary Connective {¬} of type Boolean → Boolean

Quantifiers {∀, ∃} are the universal and existential quantifiers

Table 2. An instance of customer

CID Name Job Salary State City Zip Age Ms SpouID

c1: 1 John Taylor Bassist 20k SP SP 08000 52 E 19

c2: 3 Joan Ripley Tapster 320k BHZ BHZ 03000 20 M 40

c3: 8 John T Bartender 20k MG BHZ 08200 52 W NULL

c4: 13 Ann P. Taylor Barkeeper NULL MG BHZ 31000 44 U 1

c5: 19 Chris Taylor NULL 8k SP SP 08100 39 J 28

c6: 28 Carl de la Poll Student 21k SP SP 08400 34 M 13

c7: 29 James Bond Bassist 22k SP SJC 08000 53 W NULL

c8: 40 Alice Bond Principle Manager 1k SP SP 08501 53 E 49

c9: 41 John N. T Principal Manager 40k MG BHZ 03099 17 Y NULL

c10: 3 Ann P. Taylor Writer 38k MG BHZ 03100 44 J 1

c11: 52 Jean P. Jones Student 33k SP SJC 08400 15 S NULL

c12: 53 Dick Rhodes Writer 35k SP SJC 12200 45 W NULL

Table 3. An instance of CreditCardAccount

CAccID ActivationDate UsageTime IsFreeOffer

cr1: 100 07/30/2001 13 No

cr2: 155 01/19/2004 10 No

cr3: 199 05/12/2005 9 Yes

cr4: 200 01/19/2004 1 No

cr5: 201 04/11/2013 1 No
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Table 4. An instance of CustomerCreditAccount

CCAID CAccID CID Score IsHolder State

cc1: 120 100 1 2.12307 Yes SP

cc2: 312 100 13 3.00999 No MG

cc3: 138 100 19 1.80500 No SP

cc4: 813 100 3 3.10999 Yes MG

cc5: 883 155 28 2.11001 Yes SP

cc6: 901 199 44 3.89099 Yes SP

cc7: 902 200 40 2.12320 Yes MG

cc8: 903 201 52 1.83449 Yes MG

cc9: 909 201 41 1.80011 No MG

cc10: 911 100 3 19.13329 No SP

4.2 Taxonomy Description

This section formally describes the higher granularity of each data defect, as
observed in Fig. 1. For each definition, there is an example based on the financial
logical model aforementioned. The taxonomy has a subset of defect that requires
deep knowledge of data context to determine its occurrence, i.e., requires high
human curation. Therefore, this subset’s formalization applies elements that
denote a specialist knowledge.

Definition 1 (Atypical Tuple). Let outl : R(A) → {true, false} be a func-
tion that maps an attribute from relation R to a statistical result of outlier
detection methods. An atypical value occurs iff ∃t ∈ R,∃a ∈ R(A) such that
outl(t[a]) is true.

An atypical tuple deviates from the common behavior of most tuples within
a relation. The unusual composition of attributes values or the unusual value of
an isolated attribute are instances of atypical tuple.

Example: A Customer tuple c2 reveals an uncommon situation due to the com-
position of its Salary, Job and Age values.

Definition 2 (Cardinality Ratio Violation). Let cr : R1 × R2 → N be
a function that maps the cardinality association of Rel : R1 → R2. Let s :
r(R1) × r(R2) → N be a function defined as follows:

s(a, b) =

{
1 if a = b,

0 if a �= b.

The cardinality violation occurs iff ∃ti ∈ R1, tj ∈ R2 such that∑
s(ti[W ], tj [U ]) > cr(R1, R2).
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The cardinality ratio establishes the maximum number of relationship
instances so that each tuple from a relation can participate within a binary
relationship. A violation occurs when any tuple does not comply with the max-
imum as the referred or refer to role.

Example: In regard to the self-relationship of the “marriage” role (SpouID), each
customer must be referred to at most once. However, the customer on tuple c1
is referred twice (tuples c4, c10).

Definition 3 (Conditional Functional Dependency Violation). Let Tp
be a pattern tableau with attributes in X1 and Y1, where for each attribute
a ∈ X1 ∪ Y1 and for each pattern tuple tp ∈ Tp, tp[a] is either a particular
value in dom(a) or a “wildcard” symbol “ ” that draws values from dom(a).
Let Y1 be conditionally dependent on X1 defined as (X1 → Y1, Tp) on relation
R. This conditional dependency is violated iff ∃ti, tj ∈ r(R), i �= j, such that
ti[X1] = tj [X1] = tp[X1] and ti[Y1] = tj [Y1] �= tp[Y1] or ti[Y1] �= tj [Y1].

A conditional functional dependency (A → B, Tp) on a relation R denotes
that B values depend functionally on A values only for the tuples of R that
satisfies a data pattern specified at Tp. A violation arises when this constraint
is not obeyed by a some B value.

Example: The Customer relation has a conditional functional dependency
between State, City and Zipcode, denoted by [State, City → ZipCode, Tp]. Pat-
tern Tableau Tp specifies that state “SP” and city “SP” uses the zipcode range
between 08000 and 08499, while the same state and city “SJC” has a zipcode
range from 12200 to 12248. However, the tuples c7 and c11 violate these patterns.

Definition 4 (Conditional Inclusion Dependency Violation). Let Tp be
a pattern tableau with attributes in Xp and Yp, where for each attribute a ∈
Xp ∪Yp and for each pattern tuple tp ∈ Tp, tp[a] is a particular value in dom(a).
Let R1 be conditionally dependent on R2, as represented by (R1[X;Xp] ⊆
R2[Y ;Yp], Tp). This dependency is violated iff ∃ti ∈ r(R1),∃tj ∈ r(R2) such
that ti[Xp] = tp[Xp] and tj [Yp] = tp[Yp] and ti[X] �= tj [Y ].

The OR exclusive constraint specifies that relationships set to a root relation
must be disjunct. A violation of this constraint arises when there are root relation
tuples that participate in two or more mutually exclusive relationships.

Example: An disjoint constraint prohibits that holder and joint holder roles be
exerted by the same customer. However, there are a customer (c2) with both
roles on the same card (cc4 and cc10).

Definition 5 (Disjoint Subdomains). The problem of disjoint subdomains
holds when exists subdomains S1, S2, ..., Sn for an attribute aj such that
dom(aj) =

⋃n
i=1 Si, and exists a function f : ai → {S1, S2, . . . , Sn} that maps

ai to one subdomain of aj , i �= j and ai, aj ∈ R(A). It establishes that values of
aj depend on values of ai.

An attribute has disjoint subdomains (or multiple uses) when its values rep-
resent different facts about the objects of the UoD, according to some assignment
predicate.
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Example: The Salary attribute may represent an adjusted remuneration for pro-
viding services (e.g., tuple c1) or an estimated family income (e.g., tuples c6, c11).
The latter occurs when the customer does not have an income source, i.e., Job
equal to “Student” or Age lower than sixteen years old.

Definition 6 (Domain Constraint Violation). The domain violation occurs
iff ∃t ∈ R,∃a ∈ R(A) such that t[a] /∈ dom(a).

A domain constraint regulates the allowed values for an attribute domain. In
this work, a domain constraint denotes a set of values (such as enumerations),
a interval or semi-interval constraint, a mandatory (Not-Null) constraint or a
regular expression. A domain constraint violation arises when a value does not
match the permissible values of the attribute.

Example 1: The Ms attribute (abbreviation of “Marital Status”) of the cus-
tomer relation has a domain defined as: “M”, “E”, “J”, “U”, “D”, “W”, or “S”.
However, the tuple c9 contains “Y” for this attribute.

Example 2: The Score attribute of the CustomerCreditAccount relation has a
domain constraint between −2.99999 and 9.9999. However, the tuple cc10 has a
score of 19.13329.

Definition 7 (Duplicate Tuples). Let X1 and X2 be attribute subsets, where
X1 ⊂ R1 and X2 ⊂ R2. Let X1 and X2 be pairwise compatible, where for all
ai
1 ∈ X1 and ai

2 ∈ X2, i ∈ [1, k], k ≥ 1, dom(ai
1) and dom(ai

2) are identical. Let 
i

be the record matching similarity predicate on attributes a1
1 
1 a1

2∧...∧ak
1 
k ak

2 ,
denote as X1 
 X2. There are duplicate tuples iff ∃t1 ∈ r(R1),∃t2 ∈ r(R2) such
that t1[X1] 
 t2[X2].

This defect denotes multiple tuples from one or more relations that refer to
the same object in the UoD. The content of these tuples may have identical
values, have a certain similarity degree or be mostly divergent.

Example: The Customer tuples c4 and c10 represent the same object in the UoD
with equal values in almost all the attributes.

Definition 8 (False Tuple). Let ftup : r(R) → {true, false} be a function
which returns if a tuple from R complies with the rules that define its usefulness
for the UoD. A tuple is false iff ∃t ∈ r(R) such that ftup(t) is false.

A database schema must represent only the required objects of an UoD. A
tuple is named false when it represents an object beyond the UoD interest.

Example: The tuple c7 represent a customer who have never had a credit card.

Definition 9 (Functional Dependency Violation). Let Y be functionally
dependent on X, denoted by X → Y , X,Y ⊆ R(A). This dependency is violated
iff ∃ti, tj ∈ R, i �= j, such that ti[X] = tj [X] and ti[Y ] �= tj [Y ].

A functional dependency A → B denotes that each B values is associated
with precisely one A value. A violation arises when this constraint is not obeyed
by some B value.

Example: The Customer relation has the functional dependency State → City.
However, this dependency is violated by the tuple c2.
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Definition 10 (Heterogeneous Granularity). Let G be the granularity
defined for the attribute a from relation R, a ∈ R(A). Let grain : a →
{true, false} be a function which returns if an value of attribute a complies
with the granularity G. This defect occurs iff ∃ti ∈ r(R) such that grain(ti[a])
is false.

Granularity denotes the abstraction level of value representation. There is a
heterogeneous granularity attribute when some of its values represent facts about
objects of the UoD using different abstraction levels. These abstraction levels
may have distinct degrees of disparity and also expose a random or attribute-
driven pattern.

Example: Salary attribute of Customer relation must represent monthly pay.
However, the tuple c2 has the annual payment.

Definition 11 (Heterogeneous Measurement Unit). Let Ω be an equiva-
lence relation on the values of attribute a, a ∈ R(A), such that viΩvj iff vi and
vj have the same measurement unity. Let MUΩ be an equivalence class on Ω
which contains all the values of attribute a which has the measurement unity
required by the UoD. Heterogeneous measurement unit holds iff ∃ti ∈ r(R) such
that ti[a] /∈ MUΩ .

A measurement unit denotes the magnitude of a given physical quantity,
which provides useful basis for comparison. This defect occurs when certain
values of an attribute represent facts about objects of the UoD using different
measurement units. These units denote dissimilar magnitudes and also expose a
random or attribute-driven pattern.

Example: Customer relation must represent salaries in American dollars. How-
ever, the customers whose job is “Writer” (tuples c10, c12) have their salaries
represented in Euros.

Definition 12 (Homonymous Values). Let sp : r(R)×r(R) → {true, false}
be a function which returns if the graphy and pronunciation of attributes values
are equal, according to LEX. Let me : r(R)×r(R) → {true, false} be a function
which returns if the meaning of attributes values are equal or nearly the same,
according to LEX. An attribute has homonymous values iff ∃a ∈ R(A),∃ti, tj ∈
r(R), i �= j, such that sp(ti[a], tj [a]) is true and me(ti[a], tj [a]) is false.

The homonym denotes terms pronounced in the same way but with distinct
meanings. This defect arises when homonymous terms are applied interchange-
ably and indicate the same fact about objects of the UoD.

Example: The customer tuples c8 and c9 has different jobs (“Main Manager”
and “Principal”, respectively) represented with homonymous terms.

Definition 13 (Imprecise Value). Let σ be the imprecise degree allowed to
each value v of the attribute a, a ∈ R(A), such that v − σ � v � v + σ. Let
rv : a → dom(a) be a function on relation R which returns the value of attribute
a in the UoD. Imprecise value occurs iff ∃t ∈ r(R) such that |t[a] − rv(a)| > σ.
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The term “imprecise” denotes a value that is close to the fact about of an
object of the UoD. This closeness denotes an certain accuracy level determined
by a range of values within which the accurate value is asserted to be.

Example: The Score attribute of CustomerCreditAccount allows a imprecision
degree between ± 0.00049. The tuple cc3 has the score of 1.80500 for an accurate
value of 1.80538.

Definition 14 (Inclusion Dependency Violation). Let Rel : R1 → R2 be
a relationship set between relations R1, R2. There is an inclusion dependency
violation iff ∃ti ∈ r(R1), ∀tj ∈ r(R2) such that ti[W ] �= tj [U ].

Inclusion dependency imposes acceptance conditions on actions over
instances of relationships to ensure referential integrity consistency. A viola-
tion is created when a tuple t1 refers to tuple t2, which is not available for the
referred relation.

Example: The CustomerCreditAccount tuple cc6 refers to a customer who is
absent within the Customer relation.

Definition 15 (Incompatible Replication). Let X ⊂ R1(A), Y ⊂ R2(A) be
two subsets of relations R1, R2. A replication X ⇒ Y occurs if ∀ti ∈ R1, tj ∈ R2,
ti[W ] = tj [U ] ⇒ ti[X] = tj [Y ]. A replication defect occurs iff ∃ti ∈ r(R1),
tj ∈ r(R2), such that ti[W ] = tj [U ] and ti[X] �= tj [Y ].

Due to certain reasons (including performance and poor data modelling), a
base attribute may have its content replicated into multiple attribute copies.
There is a contradictory situation when these attributes have different values.

Example: The State attribute of the Customer relation should have been repli-
cated to the State attribute of the CustomerCreditAccount relation. However,
the two hold different values for the same client (tuples cc4, cc7, cc8).

Definition 16 (Incorrect Reference). Let Rel : R1 → R2 be a relationship
set between relations R1, R2. Let rrel : Rel → {true, false} be a function which
returns if an instance of relationship Rel holds in the UoD. Incorrect reference
occurs iff ∃(ti, tj) ∈ Rel such that rrel(ti, tj) is false.

This occasion refers to a relationship instance that does not represent a fact
about an object of the UoD, although it obeys all of the other rules.

Example: Customer tuple c8 is owner of credit card number 199 (tuple cc6).
However, this customer is related to the credit card number 200 (tuple cc7).

Definition 17 (Incorrect Value). Let rv : a → dom(a) be a function on
relation R which returns the value of attribute a in the UoD. Incorrect values
occurs iff ∃t ∈ r(R) such that t[a] �= rv(a).

An incorrect value is an unfaithful or contradictory representation of a fact
about an object of the UoD. In other words, such a defect denotes a large dis-
crepancy between the represented value and the real value of the object.

Example: A customer’s salary is 73.4k, but it was represented as 8k on tuple c5.
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Definition 18 (Inference Rule Violation). Let Rel : R1 → R2 be a rela-
tionship set between relations R1, R2. Let ir : Rel → {true, false} be a function
which returns if an instance of relationship Rel complies with its inference rule.
There is an inference rule violation iff ∃(ti, tj) ∈ Rel such that ir(ti, tj) is false.

An inference rule is a procedure that generates new facts based on the ones
available in a database. A violation arises when an inferred attribute value, tuple
or relationship instance is not represented, or when it is different from the one
that was determined by the rule.

Example: The Score attribute of the CustomerCreditAccount relation is inferred
by a complex analysis of credit card usage for the last six months. This relation
has a tuple (cc8) where Score is 1.83449 instead of 1.01553, which was inferred.

Definition 19 (Key Dependency Violation). Let X be an attribute subset
of relation R, X ⊆ R(A). Let R(A) be key dependent on X, as represented by
X → R(A). This dependency is violated iff ∃ti, tj ∈ r(R), i �= j, such that
ti[X] = tj [X].

The purpose of the identifier attribute subset is to uniquely identify all rela-
tion tuples to enable data relationship. This situation is violated when two or
more tuples share the same value for their identifiers’ attributes.

Example: The tuples c2 and c10 share their CID, but they are distinct customers.

Definition 20 (Missing Reference). Let Rel : R1 → R2 be a relationship set
between relations R1, R2. Let rrel : Rel → {true, false} be a function which
returns if an instance of relationship Rel holds in the UoD. A reference is absent
iff ∃ti ∈ r(R1),∃tj ∈ r(R2) such that (ti, tj) /∈ Rel and rrel(ti, tj) is true.

Relationship instances represent facts about objects of the UoD. The missing
reference defect arises when a required relationship instance is not represented.

Example: The Customers tuples c11 and c12 are married. However, this marriage
relationship has not been represented.

Definition 21 (Missing Tuple). Let mist : DB → {true, false} be a function
which returns if a relation from DB represents all of the required objects of the
UoD. A tuple is absent iff ∃Ri ∈ DB such that mist(Ri) is false.

A database schema must represent only the required objects of the UoD and
their properties. The missing tuple defect denotes the lack of representation of
certain important objects of the UoD.

Example: Certain joint holders of credit card accounts (tuples cc5 to cc8) are
not represented in the Customer relation.

Definition 22 (Overloaded Tuple). Let overt : r(R) → {true, false} be a
function which returns if a tuple from R represents a single object of the UoD.
A tuple is overloaded iff ∃ti ∈ r(R) such that overt(ti) is false.

A single tuple represents facts about a single object of an UoD. An overload
denotes an excessive representation (more than one) of objects by one tuple.

Example: “Dick Rhodes” and “Dick Rhodes” are two distinct people of the UoD.
Nonetheless, only a single customer tuple c12 represents both.
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Definition 23 (Participation Constraint Violation). Let pc : R1×R2 → N

be a function that maps the minimal participation of tuples from R1 to R2. Let
s : r(R1) × r(R2) → N be a function defined as follows:

s(a, b) =

{
1 if a = b,

0 if a �= b.

A minimum participation violation occurs iff ∃ti ∈ R1, tj ∈ R2 such that∑
s(ti[W ], tj [U ]) < pc(R1, R2).
The participation constraint determines the minimum number of relationship

instances in which each tuple from a relation must participate in a binary rela-
tionship. The violation occurs when a tuple does not comply with the minimum
referred or refer to role.

Example: A credit card must be associated with at least two customers. However,
there are credit cards in the CustomerCreditAccount relation with only one
customer (tuples cc5 to cc7).

Definition 24 (Semantic Integrity Violation). Let Rel : R1 → R2 be a
relationship set between relations R1 and R2. Let rule : Rel → {true, false}
be a function which returns if an instance of relationship Rel complies with its
semantic integrity rule. Let RURel be the set of semantic rules on relationship
Rel, denoted as RURel = {rule1, ..., rulez}, z � 1. There is a semantic integrity
violation iff ∃(ti, tj) ∈ Rel,∃ruleh ∈ RUREL such that ruleh(ti, tj) is false.

The semantic integrity comprises a set of complex rules for an UoD that
guarantees a state of data consistency. A violation arises when one of these rules
is disobeyed.
Example: A Customer relation rule determines that only 9–17 years old people
living at “SP” state can possess a credit card as joint holder. For the remaining
states this relationship is forbidden. However, such a rule is disobeyed by a
certain customer (tuple c9) of “MG” state that has a credit card (tuple cc9).

Definition 25 (Synonymous Values). Let sp : r(R) × r(R) → {true, false}
be a function which returns if the graphy and pronunciation of attributes values
are equal, according to LEX. Let me : r(R)×r(R) → {true, false} be a function
which returns if the meaning of attributes values are equal or nearly the same,
according to LEX. An attribute has synonymous values iff ∃a ∈ R(A),∃ti, tj ∈
r(R), i �= j, such that sp(ti[a], tj [a]) is false and me(ti[a], tj [a]) is true.

Synonyms denote distinct terms in writing that share the same or similar
meanings. Such terms can be expressed as vernacular words, acronyms, abbre-
viations or symbols. This defect arises when synonymous terms are used inter-
changeably to indicate the same fact about objects of the UoD.

Example 1: Customer relation tuples c1, c4, c5, c8, c10 have marital statuses such
as “E” (espoused), “J” (joined), “U” (united) that designate married (“M”) in
each case.

Example 2: Customer relation tuples c2 and c4 have job titles as “Tapster” and
“Barkeeper” that designate “Bartender” in each case.
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Definition 26 (Transition Constraint Violation). Let tran : R → R be
a transitional function that leads the original state of R to another state R′,
according to a inference system R →tran R′. A transition violation occurs iff
∃t ∈ R such that t[R′(A)] �= t[tran(R(A))].

The transition or dynamic constraints represent a set of rules that enforces
the valid state transitions of data. These constraints are evaluated on a pair
of successive pre and post-transaction states of a database relation. A violation
arises when a tuple possesses an invalid post-transaction state.

Example: There is a rule that regulates the transitions between the valid states
of MS (“MaritalStatus”) attribute. The tuple c12 violates this rule because his
marital status has changed from “S” (Single) to “W” (Widower).

5 Conclusions

This work reports a taxonomy that organized a detailed description of data
defects regarding to the quality dimensions of accuracy, completeness and consis-
tency. The taxonomy applied a three-step methodology to address all the issues
discussed in Sect. 2: the theoretical review enabled the systematic and broad
coverage of data defects (nine defects were not addressed by the state-of-art tax-
onomies, as highlighted in Fig. 1), and improved the data defect descriptions;
the classification steps organized data defects according to their properties and
granularity of occurrence.

The taxonomy structure can support relevant issues in data quality assess-
ment, including the training of data quality appraisers, the establishment of
measurement-based process and guiding the design decisions in regard to semi-
supervised approaches for detecting data defects. Nevertheless, the taxonomy
does not address time-related data defects, as well as it offers high level formal
descriptions of some defects since they involve human curation or complex and
broad rules. In future works, this taxonomy will be the basis for classifying data
defects according to time-related data and designing a supervised approach for
data defect detection.
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