
An Efficient Schema Matching Approach
Using Previous Mapping Result Set

Hongjie Fan1, Junfei Liu2(B), Wenfeng Luo1, and Kejun Deng1

1 School of Electronics Engineering and Computer Science, Peking University,
Beijing, China

{hjfan,1201214087,kejund}@pku.edu.cn
2 National Engineering Research Center for Software Engineering,

Peking University, Beijing, China
liujunfei@pku.edu.cn

Abstract. The widespread adoption of eXtensible Markup Language
pushed a growing number of researchers to design XML specific Schema
Matching approaches, aiming at finding the semantic correspondence of
concepts between different data sources. In the latest years, there has
been a growing need for developing high performance matching systems
in order to identify and discover such semantic correspondence across
XML data. XML schema matching methods face several challenges in
the form of definition, utilization, and combination of element similarity
measures. In this paper, we propose the XML schema matching frame-
work based on previous mapping result set (PMRS). We first parse XML
schemas as schema trees and extract schema feature. Then we construct
PMRS as the auxiliary information and conduct the retrieving algorithm
based on PMRS. To cope with complex matching discovery, we com-
pute the similarity among XML schemas semantic information carried
by XML data. Our experimental results demonstrate the performance
benefits of the schema matching framework using PMRS.

Keywords: Schema matching · XML · Previous mapping result set

1 Introduction

eXtensible Markup Language, because of the flexibility of self-description, has
become a standard information representation and exchange of data in a wide
range of scenarios [1,2]. XML has been widely used in many domains, such as
biology [3], business [4], chemistry [5], and geography/geology [6], to name a few.
To make data exchange easier, organizations like the World Wide Web Con-
sortium (W3C) are increasingly committed to define an advanced languages to
describe the structure and content of XML data source, such as DTD/XSD.
Despite the presence of powerful languages, the achievement of the full interop-
erability among applications based on XML data is often illusory. One of the
biggest obstacles to the development of this technology is how to effectively

c© Springer International Publishing Switzerland 2016
H. Gao et al. (Eds.): DASFAA 2016 Workshops, LNCS 9645, pp. 285–293, 2016.
DOI: 10.1007/978-3-319-32055-7 23

286 H. Fan et al.

identify and correspondence between the semantic nodes, called Schema Match-
ing [7]. One of the most important steps of schema matching between source
and target data is to select an appropriate measure which can best calculate
an amount of similarity between documents based on their representation, but
these measures are time consuming.

A promising approach to improve both the effectiveness and efficiency of
schema matching is reusing of previous match results [7]. Exploiting the reuse
potential requires a comprehensive repository to maintain previously determined
correspondences and match results. Schema matching tools such as COMA [8]
and its successor COMA++ [9] apply a so-called MatchCompose operator for a
join-like combination of two match mappings to indirectly match schemas. [10] is
the corpus-based match approach uses a domain specific corpus of schemas and
focuses on the reuse of element correspondences. They augment schema elements
with matching elements from the corpus and assume that two schema elements
match if they match with the same corpus element(s), and use a machine learning
approach to find matches between schema and corpus elements. The OpenII
project is developing an infrastructure, Harmony, for information integration
of schemas to permit their reuse [11]. [12] describes an approach called schema
covering to partition the input schemas such that the partitions can be matched
to schema fragments in the repository. Such techniques are not yet common
in current match systems, and more research is needed in reuse of previous
determined matching result.

In this paper, we develop and implement a schema matching framework based
on previous mapping result set, PMRS. This matching framework consists of
three phases. (1)Parse Schema and Extract Feature. During this step, we pre-
process the XML data and extract the specific features, such as name, attribute,
and comment. (2)Construct the Matching Framework. Similarity among XML
schemas are determined by exploiting semantic information. In this step, we
develop the schema matching framework. We construct PMRS as the auxiliary
information, and conduct the retrieving algorithm based on PMRS. To cope with
complex matching discovery, we need to compute the similarity among XML
schemas. (3)Experiment Demonstration. We carried out a set of experiments to
evaluate the proposed framework. Our experiment results show that the pro-
posed framework is useful and efficient in heterogeneous XML data matching
issue, especially for the situation of reusing previous match results.

2 Framework

This section gives an overview of our proposed method and our processing can
be divided into two major steps: XML Preprocess including feature extraction
and Retrieve Process.

Figure 1 depicts the overall framework of our method. During the matching,
we present the previous result as the auxiliary information. Data entity e from
source schema Xs firstly retrieve from the PRMS. If we find the semantic cor-
respondence in this step, then output the mapping result directly, and delete e

An Efficient Schema Matching Approach Using Previous Mapping Result Set 287

Feature Extraction
Retrieving From

PMRS
Selecting or Combing

the Matcher

Schema Matching

Collecting the Matching
Result

Generating the
Semantic Correspondence

PMRS Extension

Schema Input

XS

XT

Y

N

Fig. 1. The framework of our method

from Entity Set consequently. This action would increasingly reduce the number
of matching entity candidates and boost the matching speed with extension of
PMRS. If there is no semantic correspondence in this step, we switch into the
normal matching workflow. As we known, after collecting the matching result,
we generate the semantic correspondence in succession, and can put these col-
lections as PRMS. With the process of matching, the PRMS will be expanded
and enriched. Finally we can achieve the well performance of matching.

The PMRS is composed of two parts:

(1) the Entity Set(ES) of reference schema and source schema. Entity is the
basic matching element. We construct the ES (Ei) for storing all the match-
ing entities Ei from reference schema.
The structure of (ES) is represented as ES (Ei)={Ei,1,e1,Se1 ,e2,Se2 ,...,
en,Sen

}. In this structure, ei means the entity match Ei. Sei
means the orig-

inal matching similarity, and calculated as Sei
=Sim(ei,Ei). Because entity

Ei has three types: concept, attribute, and individual, all these types storing
in PMRS, the entity belongs to specific type could not match with entity
from other types.

(2) the Comment Key Words Library (CKWL). We need to maintain the
(CKWL) storing ei, keywords after splitting comment, and the frequency
of these keywords. we need to point out if the frequency exceed the thresh-
old, this keyword is called stopping word and will be blocked.

3 Quick Retrieving Algorithm Construction

Each XML schema may contain a large scale of computational attributes. Con-
sidering some attributes information would be meaningless, in this paper, we use
three typical attributes: name, label, and comment. We pick up these features in
data preprocess, and construct them as ei= < name, label, comment >. During
the quick retrieving algorithm, we calculate the similarity using e.name, e.label,
and e.comment with E.name, E.label, and E.comment, e represented as source
entity and E represented as result entity. The similarity calculation between e
and E as:

288 H. Fan et al.

⎧
⎪⎪⎨

⎪⎪⎩

Sim(e,E) = λ1 Sim(e.name,E.name) + λ2 Sim(e.label, E.label)+
λ3 Sim(e.comm,E.comm)

∑3
i=1 λi = 1

(1)

(1) Name/Label Simiarity Computation

We present Sim(e.name,E.name) and Sim(e.label,E.label) to caculate the entity
similarity of name/label between source schema and reference schema. The
values of e.name and E.name are often the words, but may contain some
special symbol such as “-”. We process all these issues including format the
letters in lowercase, get rid of special symbol. Then we use Levenshtein Distance
Algorithm [13] to calculate the similarity these strings. It is the basic program-
ming algorithm for computing the edit distance. Several variants of the edit
distance have been proposed, such as the normalized edit distance [14]. There
are many methods to compare strings depending on the way the string is coded
(as exact sequence of characters, an erroneous sequence of characters, a set of
characters, etc.) [15–17].

(2) Comment Computation

We present Sim(e.comment,E.comment) to calculate the similarity of comment
between source schema and reference schema. Considering comment always con-
tain phrase or sentence, we need to split comment into keywords set. During
this step, another issue, blocking the stopping words which exceed threshold,
should be pay attention to. The stopping words are composed of two parts: Sta-
tic Stopping Words and Dynamic Stopping Words. CKWL store the frequency of
keyword(kw), represented as fkw. The frequency is calculate as p(kw)=fkw+Ng,
while Ng is the number of entities in reference schema. If p(kw) is large than τ
(τ is the threshold we set), we judge kw as stopping word. After that, Then we
use the classic Cosine Method to calculate the similarity. The cosine similarity is
a well known measure from information retrieval. It computes the cosine of the
angle between the two d -dimensional vectors −→σ1 and −→σ2 of the two string σ1 and
σ2. The d dimensions of these vectors correspond to all d distinct tokens that
appear in any string in a given finite domain. For example, we assume that σ1

and σ2 originate from the same attribute A. The Cosine similarity is calculated
as Cosine(σ1,σ2)=

−→σ1·−→σ2
||−→σ1||·||−→σ2|| . Several variants of the Cosine similarity have been

proposed for comment computation, such as the TF-IDF [18] Soft-TFIDF [16].

(3) Quick Rretrieving Algorithm

Based on above algorithm, we calculate the transfer similarity for all same type
entities between e from source schema and Ei from PMRS. We pick up the
highest similarity, and compare it with τPMRS . If it is larger than τPMRS , we
output it as the final matching result. The transfer similarity is represented as
Simtrans(e, ei) = Sim(e, ei)∗Sei

, while Simtrans(e, ei) is caculated from the con-
text similarity, Sei

is the original similarity which denote the similarity between
e and E.

An Efficient Schema Matching Approach Using Previous Mapping Result Set 289

Algorithm 1. Fast Retrieving Algorithm
Require: Input: Entity e.

Output: < e, Ei,Simtrans >.
1: while ES(Ei) in all ES do
2: while ei in all ES(Ei) do
3: Sim(e,ei).
4: Simtrans(e,ei)=Sim(e,ei)*Sei .
5: if MAX(Simtrans(e,ei))>τPMRS then
6: Return < e, Ei, Simtrans >.

There are two points need to pay attention to in the algorithm implementa-
tion process: (1) Only retrieve the same type ES. Concept, attribute and indi-
vidual are the different types of entity, which cannot match with each other. We
need to determine e type with ES. (2) Entity e firstly need to match entities
from reference schema, so we calculate the transfer similarity rather than the
similarity between entity e and ei. The existing result utilized in quick retrieval
is an intermediary, so under this circumstance the transfer similarity is used as
confidence of similarity equivalence.

(4) PMRS Extension

We set the similarity between e and Ei as original similarity, put (e,S) in
ES (E), and add e.comment into CKWL. Since the error information of PMRS
will effect the final match result, we need to set τPMRS and τePMRS precisely
in order to ensure the accuracy of the existing result. We set an expansion
threshold τePMRS , if similarity is bigger than τePMRS after matching between
source schema XS and reference schema XR, we determine it as the matching
pair (e,Ei).

There is no previous matching result in PMRS at the time PMRS constructed
initially. The algorithm is facing the “cold start” problem. In order to properly
use PMRS, we put the entities of reference schema into PMRS, and set the
original similarity manually. So the quick retrieval algorithm would be operated
normally without “cold start”.

Fast Matching based
on PMRS

Level 1
Sim-Computing

based on Comment

Level 3

Sim-
Computing
based on

Name/Label

Level 2

& PMRS
Filtering

Entities of Xs after
filtering

Candidate Result Candidate Result
after Filtering

Alignment

Fig. 2. Matching Workflow by 3-level Filter

290 H. Fan et al.

Figure 2 depicts the overall matching workflow by 3-level filter. In level-1, the
entity e firstly match with entity E from reference schema using Quick Retrieving
Algorithm. If the threshold exceeds τPMRS , then we output the mapping result
directly, and delete data entity e from Entity Set consequently. The rest entities
take participate in the following matching. In level-2 and level-3, we compute
the similarity among XML schemas using similarity measures based on name,
label, and comment, respectively. The main reason of schema matching in this
way is to reduce the computation cost. During such three level filter, we can get
the optimistic matching result in well time cost.

4 Experiment Demostration

In this section, we present the experimental results to demonstrate efficiency and
effectiveness of our method. F-measure combined precision and recall to present
the ratio of error match and missing correct match to evaluate the matching
result comprehensively.

4.1 Datasets & Setup

We use OAEI benchmark as our experiment data set to evaluate our schema
matching algorithm with other algorithms. All experiments are implemented in
Java. Our method is based on disk, and our experiment is conduct on a machine
with Intel Corei7 CPU processor, 8G RAM memory and running Ubuntu 14.04
LTS (64bits). Here, we provide more details and statistics about the datasets.

OAEI1 Since 2004, OAEI organizes evaluation campaigns aiming at eval-
uating ontology matching technologies, and benchmark is an important part
oriented to specific domains. The datasets include 51 schemas come from ref-
erence bibliography fields. #101 is the example schema; #101 and #1XX are
substantially the same; #2XX lacks some essential elements; #3XX comes from
real existing schemas. Figure 3 gives the suitable range of each schema.

Testing purpose Number Explanation

Easy test #103-104 Similar with #101

Comprehensive test #201-266
To test the robustness and availability of the
algorithm. Some elements from the schema
(name, attributes, constraints) are excluded.

Application test #301-304
Real existing schemas. The purpose is to test the
performance and availability of the algorithm in
practical application.

Fig. 3. Testing Purpose using OAEI Dataset

1 http://oaei.ontologymatching.org/.

http://oaei.ontologymatching.org/

An Efficient Schema Matching Approach Using Previous Mapping Result Set 291

4.2 Computational Result and Efficiency

We designed a comparative experiment using PMRS and without using PMRS to
calculate the similarity between #101 schema and #103–304 schemas. Figure 4
presents results for our two quality metrics, the F-measure and time-cost, respec-
tively.

(1) Similarity Measure Quality

They show that schema matching using PMRS in most cases is better than
normal matching method. To get better matching quality, different similarity
measures have been used, such as similarity measure based on comment. Com-
pared to the studied approaches, it improves F-measure by +7.3 % and +14.6 %
for #251–260, #261–266, respectively. For the schemas #254–257 and #261–
266, the original F-measure is barely null, but in our experiment F-measure is
0.12 and 0.14. It proves the schema matching method using PMRS can improve
the similarity quality.

#103−104#201−210#221−230#231−240#241−250#251−260#261−265#301−304
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Datasets

F
m

ea
su

re

without PMRS
using PMRS

(a) similarity measure quality with/without PMRS

#103−104#201−210#221−230#231−240#241−250#251−260#261−265#301−304
0

1

2

3

4

5

6

7
x 104

Time

F
m

ea
su

re

without PMRS
using PMRS

(b) runtime of executing matching with/without PMRS

Fig. 4. Similarity measure quality and efficiency with/without PMRS

(2) Effectiveness of PMRS

We measure the runtime of computing and executing the schema matching.
The results for different datasets are shown in Fig. 4(b). They show the schema
matching algorithm using PMRS achieves stable running time and reduce the
running time efficiently. The average saving runtime achieves at 18 s. Compared
to the studied approaches, it reduce runtime by 58 s at most for #103–104.
For the complex schema such as #301-#304, the improvement achieves at 12 s
(reduce 38 % runtime). Our experimental results demonstrate the effectiveness
of the schema matching framework using PMRS.

292 H. Fan et al.

5 Conclusions

In this paper, we propose the XML schema matching framework based on previ-
ous mapping result set (PMRS). We construct PMRS as the auxiliary informa-
tion and conduct the retrieving algorithm based on PMRS. To cope with complex
matching discovery, we compute the similarity among XML schemas semantic
information. Our experimental results demonstrate the performance benefits of
the schema matching framework using PMRS. Future research is geared towards
efficiently generating candidate queries for similarity evaluations.

Acknowledgements. This research is supported by The National Natural Science
Foundation of China under Grant No. 61272159 and No. 61402125. All opinions, find-
ings, conclusions and recommendations in this paper are those of the authors and do
not necessarily reflect the views of the funding agencies.

References

1. XML schema part 1: Structures. http://www.w3.org/TR/xmlschema-1
2. De Meo, P., Quattrone, G., Terracina, G., Ursino, D.: Integration of XML schemas

at various “severity” levels. Inf. Syst. 31(6), 397–434 (2006)
3. Hucka, M., et al.: The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

4. Ebxml website. http://www.ebxml.org
5. Murray, P.: Chemical markup language: a simple introduction to structured docu-

ments. World Wide Web J. 2(4), 135–147 (1997)
6. Gml website. http://www.opengis.net/gml/
7. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.

VLDB J. 10(4), 334–350 (2001)
8. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching

approaches. In: Proceedings of 28th International Conference on Very Large Data
Bases. VLDB 2002, 20–23 August 2002, Hong Kong, China, pp. 610–621 (2002)

9. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching
with COMA++. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data, Baltimore, Maryland, USA, 14–16 June 2005, pp. 906–908
(2005)

10. Aberer, K., Franklin, M.J., Nishio, S. (eds.). Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, 5–8 April 2005, Tokyo, Japan. IEEE
Computer Society (2005)

11. Seligman, L., Mork, P., Halevy, A.Y., Smith, K.P., Carey, M.J., Chen, K., Wolf,
C., Madhavan, J., Kannan, A., Burdick, D.: Openii: an open source information
integration toolkit. In: Proceedings of the ACM SIGMOD International Conference
on Management of Data. SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June
2010, pp. 1057–1060 (2010)

12. Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse
in information integration. In: Proceedings of the 26th International Conference
on Data Engineering. ICDE 2010, 1–6 March 2010, Long Beach, California, USA,
pp. 285–296 (2010)

http://www.w3.org/TR/xmlschema-1
http://www.ebxml.org
http://www.opengis.net/gml/

An Efficient Schema Matching Approach Using Previous Mapping Result Set 293

13. Levenshtein, V.: Binary codes capable of correcting deletions, insertions, and rever-
sals. In: Soviet physics doklady, pp. 707–710 (1966)

14. Marzal, A., Vidal, E.: Computation of normalized edit distance and applications.
IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 926–932 (1993)

15. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv.
33(1), 31–88 (2001)

16. Cohen, W.W., Ravikumar, P.D., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: Proceedings of IJCAI-03 Workshop on Infor-
mation Integration on the Web (IIWeb 2003), 9–10 August 2003, Acapulco, Mexico,
pp. 73–78 (2003)

17. Formica, A.: Similarity of XML-schema elements: a structural and information
content approach. Comput. J. 51(2), 240–254 (2008)

18. Joachims, T.: A probabilistic analysis of the rocchio algorithm with TFIDF for
text categorization. In: Proceedings of the Fourteenth International Conference on
Machine Learning (ICML 1997), Nashville, Tennessee, USA, 8–12 July 1997, pp.
143–151 (1997)

	An Efficient Schema Matching Approach Using Previous Mapping Result Set
	1 Introduction
	2 Framework
	3 Quick Retrieving Algorithm Construction
	4 Experiment Demostration
	4.1 Datasets & Setup
	4.2 Computational Result and Efficiency

	5 Conclusions
	References

