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Abstract. Data disseminations based on Roadside Access Points
(RAPs) in vehicular ad-hoc networks attract lots of attentions and have
a promising prospect. In this paper, we focus on a roadside data dissem-
ination, including three basic elements: RAP Service Provider (RSP),
mobile vehicles and requesters. The RSP has deployed many RAPs at
different locations in a city. A requester wants to rent some RAPs, which
can disseminate their data to vehicles with some probabilities. Then, it
tries to select the minimal number of RAPs to finish the data dissemina-
tion, in order to save the expenses. Meanwhile, the selected RAPs need
to ensure that the probability of each vehicle receiving data successfully
is no less than a threshold. We prove that this RAP selection problem
is NP-hard, since it’s a meaningful extension of the classic Set Cover
problem. To solve this problem, we propose a greedy algorithm and give
its approximation ratio. Moreover, we conduct extensive simulations on
real world data to prove its good performance.

Keywords: Vehicular ad-hoc network · Data dissemination · Roadside
access points selection

1 Introduction

Vehicular ad-hoc networks (VANETs) as a new paradigm of mobile ad-hoc net-
works, can offer convenient data service for passengers and have attracted atten-
tions of many researchers. Further, with the development of intelligent trans-
portation system, some cities have deployed many RAPs at different locations,
such as bus stations, taxi pickup points and intersections. These RAPs usually
have good capacities of storage and communication. When a vehicle enters a
RAP’s communication range, the RAP can deliver the information stored in its
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memory to the vehicle via WiFi or other protocols of short-range wireless com-
munication. Obviously, the introduction of RAPs can improve the connectivity
of VANETs. Moreover, by using these RAPs in urban areas, some large-size data
can be disseminated to passengers in vehicles at a low cost. Due to this advan-
tage, much research ([1–3]) has studied the new form of data dissemination based
on RAPs in VANETs.

Consider a scenario of roadside data dissemination. There is a RAP Service
Provider (RSP), for instance, certain government agency, who has deployed many
RAPs at different locations in a city. If a requester hopes to disseminate its data,
it can rent parts of the RAPs from the RSP to finish the dissemination. For
example, a shop can be a requester, which wants to disseminate advertisements
of its new commodities. On the one hand, they need to select as less RAPs as
possible for this requester to conduct the data dissemination, in order to save
the requester’s expenses. On the other hand, they also need to let these RAPs
cover adequate vehicles, so that the data can be received by as many passengers
as possible. Moreover, as the communication connections between RAPs and
mobile vehicles are unstable and intermittent, the selected RAPs also need to
ensure that the probability of each vehicle receiving the data successfully is no
less than a reasonable threshold.

Fig. 1. A example of the roadside data dissemination. (Three vehicles pass six RAPs,
during which the vehicles can receive data with some probabilities.)

Let’s take Fig. 1 as an example. There are 6 RAPs (r1, · · · , r6) and 3 mobile
vehicles (v1, v2, v3). Suppose that a requester hopes to disseminate its data to the
three vehicles, and expects that the probability of each vehicle receiving the data
successfully is not less than the threshold 0.7. In this example, we assume that
the requester selects {r2, r3, r4, r5} to perform the data dissemination. Although
each vehicle cannot receive the data successfully from each single RAP with the
probability no less than 0.7, their joint probability exceeds the threshold. For
instance, v1’s probabilities of receiving the data successfully from r2 and r4 are
0.6 and 0.5, respectively. Their joint probability is 1−(1−0.6)∗(1−0.5) = 0.8,
beyond the threshold 0.7.
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For the schemes of data dissemination in VANETs, most of them pay atten-
tions to the delivery ratio or delay of messages. However, our roadside data
dissemination focuses on how to select the minimal number of RAPs to conduct
the dissemination. Unlike other schemes of data dissemination, our scheme can
ensure that the probability of each vehicle receiving data successfully is no less
than a predefined threshold. For example, in [2], the authors select several seed
vehicles to disseminate advertisement data to other vehicles, and the seed vehi-
cle selection is based on the degree centrality [4] of each vehicle. Nevertheless,
the solution cannot guarantee that each vehicle’s probability of receiving adver-
tisement data successfully is large enough. From another perspective, the data
dissemination can be regarded as the problem of coverage. For example, in [2],
the dissemination is achieved by selecting some seed vehicles to cover as many
vehicles as possible. Their “cover” means that there is at least one social contact
between a single seed vehicle and each vehicle. In contrast, our problem is to
ensure the joint dissemination probability from all selected RAPs no less than
the threshold. Actually, our problem will lead to a combining probabilistic set
cover mixed by non-linear programming, which is also different from the classic
Set Cover problem.

In this paper, we first describe the moving pattern of a mobile vehicle, by
using a set of RAPs which this vehicle often passes by. The mobile vehicles can
receive data successfully from these passed RAPs with some probabilities. Then,
we define the RAP selection problem for roadside data dissemination and prove
its NP-hardness. The problem is to select the minimal number of RAPs to cover
all of the vehicles, while ensuring that each vehicle can receive data successfully
from the RAPs with probability no less than a threshold. Finally, we propose
a greedy algorithm to solve the RAP selection problem, analyze the complexity
and approximation ratio of this algorithm, and conduct extensive simulations to
prove its good performance.

We highlight our main contributions as follows:

1. We propose a scheme for roadside data dissemination based on probabilistic
coverage of some selected RAPs.

2. We introduce a new optimization problem, which is the RAP selection prob-
lem for roadside data dissemination. We prove that this problem is NP-hard.

3. We propose a greedy approximation algorithm to solve the RAP selection
problem, give the corresponding approximation ratio of this algorithm and
conduct extensive simulations to prove its good performance.

The remainder of this paper is organized as follows. Section 2 presents the
related work. In Sect. 3, the network model, the definition of RAP selection
problem and the proof of the NP-hardness of this problem are described. We
propose a greedy algorithm, analyze its complexity and approximation ratio in
Sect. 4. In Sect. 5, the evaluation of this algorithm is showed, followed by the
conclusion of this paper in Sect. 6. Partially complex proofs are moved to the
Appendix.
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2 Related Work

The scenario of data dissemination based on RAPs in VANETs is different from
data dissemination in Delay Tolerant Networks or Mobile Social Networks [5–7].
In VANETs, J. Qin et al. [2] considered to select seed vehicles to diffuse adver-
tisement data to others. They analyzed the sociality of the vehicular network
and proved the dynamic and temporal correlations of sociality. Based on the
analysis, they proposed a greedy scheme to solve it. Z. Li et al. [3] proposed
a scheme for advertisement data diffusion with an incentive-centered architec-
ture. The architecture encourages the advertisement providers to trade off the
effect and cost of their advertisements messages, aiming to avoid unnecessary
distractions to drivers and message storms in VANETs. In [1], H. Zheng et al.
designed a system, which can disseminate advertisement data via some placed
RAPs. When a driver receives a shop’s advertisements from RAPs, he or she may
detour to the shop and the detour probability depends on the detour distance.
The RAP placement needs to balance the tradeoff between the traffic density
and the detour probability. S.-B. Lee et al. [8] proposed a secure incentive frame-
work to avoid the noncooperative behavior of selfish or malicious vehicle nodes
in the advertisement data dissemination. Unlike these schemes, our paper uses
the RAPs to disseminate data to the vehicles passing by.

Our roadside data dissemination is relevant to the data dissemination based
on roadside units (RSUs) in VANETs. For example, in [9], J. Jeong et al. con-
sidered to forward data from stationary APs to moving vehicles. The forwarding
scheme took into account the AP’s location and the destination of the vehicle’s
trajectory, and selected a target point as packet-and-vehicle-rendezvous-point.
M. Sardari et al. in [10] proposed a message dissemination paradigm, in which
each RSU encoded a huge message into k data packets and forwarded them to
vehicles, then the vehicles can decode a specific RSU’s message by collecting
sufficient packets. K. Liu et al. [11] focused on accessing information stored at
RSUs and paid attention to the channel division. Comparing with these papers,
we consider how to select the minimal RAPs to finish the data dissemination
from RAPs to vehicles.

Our problem, i.e., the RAP selection, is related to the deployment of RSUs in
VANETs. In [12], T. Wu et al. studied the RSU placement problem for vehicular
networks in a highway-like scenario. Their placement strategy maximized the
aggregate throughput in the network, taking into account the impact of wireless
interference, vehicle population distribution, and vehicle speeds in the formula-
tion. In [13], B. Aslam et al. focused on the placement problem in the scenario
of urban vehicular network environment. They proposed two methods aiming to
minimize the reporting time of event for RSUs, with incorporating the density
and speed of vehicle, as well as the occurrence likelihood of an event in urban. By
comparison, our problem is based on the joint probabilistic coverage of RAPs.

Therefore, our roadside data dissemination is different from other studies of
advertisement or data dissemination, and cannot be solved directly by existing
solutions.
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3 Network Model and Problem Definition

In this section, we set up the network model, define the RAP selection problem
for roadside data dissemination and analyze the hardness of this problem.

3.1 Network Model

We first describe the set of i vehicles, that is, V = {v1, v2, · · · , vi}. We assume
that the vehicles have been equipped with wireless communication devices.
Consequently, they can communicate with the RAPs. Then, we use the set
R = {r1, r2, · · · , rj} to denote all the RAPs which are deployed by the RSP
at different locations in a city. As we know, a vehicle often visits some locations
frequently due to the sociality of the vehicle (actually, the driver or the pas-
senger). For simplicity, we describe the moving pattern of each vehicle with a
set of locations where the vehicle passes and the RAPs are placed. Namely, we
use a subset of R, i.e., R(vi)={ri1 , ri2 , · · · , rik , · · · } to describe the move of the
vehicle vi. Next, for vi ∈V and rj ∈R(vi), we use pi

j(0<pi
j < 1) to indicate the

probability that vi successfully receives data from rj . Although a vehicle vi may
pass by certain RAP twice or more, we only consider the vehicle passing by each
RAP in R(vi) once. This assumption is reasonable. If vi passes by rj n times,
we can use the 1−(1−pi

j)
n to replace the pi

j , and meanwhile, treat it as one-time
passing. In addition, we assume that the value of pi

j can be derived from the
history records.

We construct a graph G to describe the model. The vertex set of G is V ∪R.
For an arbitrary pair of vi and rj , if rj ∈ R(vi), we add an edge (vi, rj) into
the edge set of G, and attach pi

j as the weight of (vi, rj). Let’s take Fig. 2(a)
as an example. The vehicle node set is V = {v1, v2, · · · , v5}, the RAP node set
is R = {r1, r2, r3, r4}. v1 passes by the RAPs in R(v1) = {r1, r2}, v2 passes by
the RAPs in R(v2) = {r2, r3}, and so on. By the way, we denote V (·) as the
set of neighbor vehicle nodes of one RAP, denote R(·) as the set of neighbor
RAP nodes of one vehicle, denote deg(·) as the degree of a node. In Fig. 2(a),
V (r1)={v1, v3}, R(v3)={r1, r3, r4}, deg(v1)=2.

3.2 Problem Definition

In our scheme of roadside data dissemination, a requester hopes that the vehicles
in V can successfully receive its data from the RAPs with probability. Therefore,
it’s necessary to select as less RAPs as possible to conduct the data dissemination
to these vehicles, and ensure that each vehicle’s probability of receiving data
successfully is not less than a threshold. We use τ to denote this threshold
(0<τ <1), use S to denote the set of all selected RAPs from R. Moreover, for a
vehicle vi, it may receive data from each RAP in S∩R(vi), and we denote S(vi)=
S∩R(vi). As a result, given a selected RAP set S, vi’s probability of receiving
data successfully from the RAPs in S(vi) is Pr(vi|S) = 1 − ∏

rj∈S(vi)
(1 − pi

j).
Especially, if S(vi)=∅, Pr(vi|S)=0.
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In this scheme, the problem we need to solve is how to select minimal number
of RAPs and ensure that each vehicle’s probability of receiving data successfully
is not less than the threshold τ . In summary, we illustrate this problem of RAP
selection as follow.

minimize : |S|
subject to :

⋃
rj∈SV (rj)=V ;

Pr(vi|S)≥τ for ∀vi ∈V ;
Pr(vi|S) = 1 − ∏

rj∈S(vi)
(1 − pi

j);
S ⊆R.

(1)

Here, we assume that Pr(vi|R)≥τ for ∀vi ∈ V . If there is a vehicle vk satisfying
Pr(vk|R)<τ , the vk cannot receive data successfully with the probability no less
than τ , even if all RAPs in R are selected. Actually, there is no feasible solution
to this case. In this paper, we only study the cases which exist feasible solutions.

3.3 Problem Hardness Analysis

Theorem 1. The RAP selection problem for roadside data dissemination is
NP-hard.

Proof. We simplify the RAP selection problem by assuming pi
j = 1 for ∀vi ∈

V and ∀rj ∈R. Hence, Pr(vi|S) ≥ τ for ∀vi ∈ V always holds. Therefore, the
simplified problem is to select the minimal number of RAPs from R to cover all
vehicles in V . It is obvious that

⋃
rj∈R V (rj) = V and V (rj) ⊆ V . Let’s denote

VR = {V (r1), V (r2), · · · , V (rj)}, i.e., VR is a collection of V ’s subsets. For the
RAP selection problem, if to make the selection of the RAP rk corresponds to
the selection of V ’s subset V (rk), this problem finally can be illustrated as the
following (2).

minimize : |VS |
subject to :

⋃
V (rk)∈VS

V (rk)=V ;
VS ⊆VR.

(2)

Based on [14], we can conclude that Eq. 2 is same as the problem of Set Cover.
Therefore, the RAP selection problem is NP-hard. Moreover, we can find that,
the RAP selection problem is different from the Set Cover problem and is a
meaningful extension of it.

4 Greedy Algorithm and Performance Analysis

In this section, we propose a greedy algorithm to solve the RAP selection prob-
lem, and analyze the correctness, complexity and approximation ratio of this
algorithm.
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4.1 Greedy Algorithm

Before the algorithm, we define a utility function f(·) : 2R → Q+, which is a
mapping from a RAP set to a real utility value. It indicates the probabilistic
coverage utility of a given RAP set, in other words, the sum of probabilities
that each vehicle in V successfully receives data from the given set of RAPs.
Concretely, the utility is defined as follows.

f(S)=θ ∗
∑

vi∈V

min{Pr(vi|S), τ} (3)

where θ=max{ 1
θ1

, 1
τ−θ2

, 1
θ3

}, θ1=pmin∗(1−pmax)dmax , θ2=max{Pr(vi|S) | ∀vi ∈
V, S ⊆ R,Pr(vi|S) < τ}, θ3 = τ∗|V |

|R| , dmax = max{deg(vi) | ∀vi ∈ V }, pmax =
max{pi

j | ∀vi ∈V,∀rj ∈R}, pmin =min{pi
j | ∀vi ∈V,∀rj ∈R}.

In Eq. 3, min{Pr(vi|S), τ} is the probabilistic coverage utility of S to the
vehicle vi, i.e., the (joint) probability that vi successfully receives data from the
RAPs in S. Moreover, along with the increase of the probability, the utility value
min{Pr(vi|S), τ} will become larger and larger. When the probability exceeds
the threshold τ , the utility value will not change any more. θ is a parameter that
we defined for the approximation ratio analysis in the following part.

Let S be the selected RAP set. When a RAP rk is added to S, some vehicles
which haven’t been covered will be covered by rk, or some vehicles’ probabilities
of receiving data successfully will increase. Both of them result in the growth of
the utility. Then, the basic idea of our algorithm is to select the RAP rk which
maximizes the growth of the utility, and add it to the set S in each round. The
concrete algorithm is showed in Algorithm 1, where S is initialized to be ∅. In
each round, the RAP rk which maximize f(S+{rk}) is selected and added into S.
The algorithm terminates when f(S)=θ∗τ ∗|V |.

Algorithm 1. Greedy Algorithm for RAP Selection
1: Input: V , R, S, τ , pi

j for ∀vi and ∀rj ;
2: Start:
3: S =∅;
4: while f(S)<θ∗τ ∗|V | do
5: choose the RAP rk ∈R\S which maximize f(S+{rk});
6: S = S ∪ {rk};
7: End
8: Output: S

We use the example in Fig. 2(a) to illustrate Algorithm 1 and let τ =0.6. In
addition, there is a small trick in Algorithm1. Since θ is a constant and only
be used in the theoretical analysis of approximation ratio, we can simply let
θ =1 in the real implementation of Algorithm1. That will not change the final
result. Note that, we denote fi(S)=min{Pr(vi|S), τ}. Figure 2(b)∼(d) show the
corresponding results.
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1. First round: f({r1}) = 0.9, f({r2}) = 1.6,f({r3}) =1.2, f({r4}) = 1.2.
Hence, we select r2 and add it to S. After this round, Pr(v1|S) = 0.4,
Pr(v2|S)=0.6,Pr(v3|S)=0, Pr(v4|S)=0.4, Pr(v5|S)=0.2. That is to say, v2
is covered and its probability of receiving data successfully is not less than
0.6, v3 isn’t covered, v1, v4, v5 are covered with some probabilities of receiving
data successfully less than 0.6.

2. Second round: f(S∪{r1})=2.3, f(S∪{r3})=2.2, f(S∪{r4})=2.5. Therefore,
r4 is selected and added into S. After this round, both v4 and v5 can receive
data successfully with the probability no less than 0.6.

3. Third round: f(S ∪ {r1})=3, f(S ∪ {r3})=2.8. Therefore, r1 is selected and
added into S.
After this round, we have f(S)=3=θ∗τ ∗|V |. Therefore, Algorithm 1 termi-
nates. As fi(S)=0.6 for ∀vi ∈V, S ={r1, r2, r4} is a feasible solution.

Fig. 2. The results of Algorithm 1 being conducted on the example in Fig. 2(a). (The
white RAP nodes are not selected and the black RAP nodes are selected. The white
vehicle nodes are not covered, the black vehicle nodes are covered and their probabilities
of receiving data successfully are not less than 0.6, the grid vehicle nodes are covered
but their probabilities of receiving data successfully are less than 0.6.)

4.2 Correctness, Complexity and Approximation Ratio

We first show the correctness of Algorithm 1 by theoretical analysis. On the
one hand, in Algorithm1, only one RAP is added into S in each round. In the
worst case, all of RAPs in R are added into S after |R|-th round. For each
vehicle, if all of RAPs are selected, its probability of receiving data successfully
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is not less than τ (assumed before). In this case, f(S) must be θ∗τ ∗|V |, since
min{Pr(vi|S), τ} = τ for ∀vi ∈ V . Therefore, Algorithm 1 terminates for sure.
On the other hand, if f(S) = θ∗τ ∗|V |, min{Pr(vi|S), τ} must equal to τ for
∀vi ∈ V . Hence, each vehicle in V can receive data successfully from the RAPs
in S with the probability no less than τ , namely, S is a feasible solution of the
RAP selection problem. In turn, if S is a feasible solution, f(S) must be θ∗τ∗|V |
after each RAP in S is selected. In summary, our Algorithm 1 is correct.

Then, we analyze the complexity of Algorithm1. In Algorithm 1, the loop
body will run |R| times in the worst case. During each round of Algorithm 1, in
order to choose the maximal f(S+{rk}) for ∀rk ∈R\S, the algorithm needs to
test all of |R\S| cases. Moreover, Algorithm 1 also need to compute f(S+{rk}), so
as to compare the values of f(S+{rk}) for ∀rk ∈R\S. The complexity of compute
f(S) is O(|V |∗|R|), according to Eq. 3. In sum, the complexity of Algorithm1 is
O(|V |∗|R|3).

Finally, we give the approximation ratio of Algorithm1, via the following
Theorem 2, and its detail proofs are showed in appendix.

Theorem 2. Our Algorithm1 produces an approximation solution with a ratio
of 1+ ln( θ∗τ∗|V |

opt ) from the optimal, where opt is the number of selected RAPs
produced by the optimal solution.

5 Evaluation

We conduct extensive simulations to evaluate the performance of our proposed
algorithm. The compared algorithms, the traces that we used, the simulation
settings, and the results are presented as follows.

5.1 Compared Algorithms and Traces

In order to evaluate the performance of our proposed algorithm, some compared
algorithms need to be introduced. As we know, it’s an effective method to solve
the problem of coverage, by using the degree centrality. In [2], the authors also
took into account the degree centrality of each vehicle, in order to select the
seeds. Based on this fact, we design two compared algorithms: MSCC (Mini-
mum Selection for Covering Completely) and MSPE(Minimum Selection with
Probability Ensuring). Differing from our Algorithm1, which selects the RAP
rk from R\S to maximize f(S +{rk}) in each round until all of the vehicles
are covered with some probabilities of receiving data successfully no less than
the threshold, MSCC selects the RAP rk with maximum degree, i.e., the RAP
with maximum deg(rk) for ∀rk ∈ R\S in each round, until all of the vehicles
are covered. Note that, MSCC do not ensure that each vehicle can receive data
successfully with probability no less than the threshold. Obviously, it’s the min-
imal guarantee that a vehicle can receive data. MSPE is similar with MSCC,
which also select the RAP with maximum degree in each round, and terminates
when each vehicle can receive data successfully with enough probability, i.e., no
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less than the threshold. Finally, we also design RS (Random Selection), which
randomly selects a RAP in each round until each vehicle in V is covered with
probability of receiving data successfully no less than the threshold. Moreover,
in order to improve the performance of RS, its values showed in Figs. 3, 4 and 5
are the optimal among 10 running results.

We evaluate the metric of these four schemes, by using the real data of bus
systems in two cities, Hefei and Shanghai in China. The data of Hefei includes
125 bus lines and 899 bus stations, and the data of Shanghai includes 503 bus
lines and 3850 stations. We regard each bus line as a mobile vehicle, each station
as a location where a RAP is deployed. Therefore, the moving pattern of a
vehicle is the set of the stations passed by corresponding bus line. Further,
the probabilities that each vehicle receives data successfully from the RAPs are
generated randomly.

5.2 Evaluation Metrics, Methods and Results

First, we use the metric Selection Ratio to compare these algorithms. Selection
ratio refers to the ratio of the number of the selected RAPs to the total number
of all RAPs. We compare their performances with different threshold τ , and θ
is set to 1.0. The detail results are showed in Fig. 3.

Fig. 3. Performance comparison: selection ratio vs. τ

In both Fig. 3(a) and (b), we can see that Algorithm 1 achieves good perfor-
mance and precedes MSPE and RS, with τ = {0.1, · · · , 0.9}. MSCC selects the
minimal number of RAPs, about 3% in Fig. 3(a) and 2.4% in Fig. 3(b), without
ensuring the probabilities. And its values don’t change with the increment of τ ,
therefore can be regard as benchmark. RS has the worst performance. Its ratio
much exceeds the others and fluctuates strongly. MSPE has close performance
to Algorithm 1 when τ is rather small, and becomes worse and worse with τ
increasing. When τ = 0.9, the results of Algorithm 1 showed in Fig. 3(a) and
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(b) are about 36% and 25% smaller than MSPE, respectively. The reason is
that, when τ is small, most of vehicles can receive data successfully with some
probabilities no less than τ from one single RAP. Along with τ increases, more
and more vehicles need to be covered jointly by two or more RAPs, and at this
moment, taking into account only degree without the probability attached by
the edge is partial. However, for Algorithm1, its RAP selection in each round
considers the coverage utility to all of vehicles, therefore, it achieves the best
performance.

We also conclude from Fig. 3, that the selection ratio of Algorithm 1 doesn’t
rise severely as the threshold τ increases. Therefore, an appropriate and large
value of τ can be chose without worrying about the consequent bad performance.

Second, we also define the metric of average receiving probability to compare
Algorithm 1, MSPE, and RS. Here, we don’t care that, whether or not the prob-
ability of each vehicle of receiving data successfully is less than the threshold
τ . And we only select parts of RAPs (1%, · · · , 9%), and compute the corre-
sponding average probability of all of vehicles receiving data successfully. The
results are depicted in Fig. 4(a) and (b). From Fig. 4(a) and (b), we can find

Fig. 4. Performance comparison: average receiving probability vs. percentage of
selected RAPs

that, with percentage of selected RAPs increasing, the three values of average
receiving probabilities increase. Among them, RS increases slowly and show fluc-
tuation with the lowest average probability. However, the average probabilities of
Algorithm 1 and MSPE increases fast when selected RAPs is less than roughly
5%, then approach slowly to about 0.9. in spite of this, Algorithm1 is still better
than MSPE since its average probability reaches to 0.9 faster. It’s because that
Algorithm 1 considers the coverage utility of each RAP to all vehicles in each
round, instead of just the degree of a RAP.

Finally, we also examine the metric of selection ratio of these schemes, by
randomly selecting the probability between any pair of vehicle and RAP, i.e., pi

j
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Fig. 5. Performance comparison: selection ratio vs. range of probabilities for data
receiving

for ∀vi ∈V and ∀rj ∈R(vi), from [0.1, 0.3], [0.1, 0.5], [0.1, 0.7] [0.1, 0.9]. Here, τ =
0.5, θ=1.0. Such settings have practical significance, because it simply describe
the environment of VANETs with different levels of connectivity. Figure 5(a) and
(b) plot the results, from which we still can get that Algorithm1 achieves the
best performance.

6 Conclusion

In this paper, we focus on the roadside data dissemination in VANETs. Its
scenario includes three basic elements: RSP, mobile vehicles and requesters. We
first introduce the model of the roadside data dissemination. Based on the model,
we propose a RAP selection problem for roadside data dissemination, which
is to select the minimal number of RAPs to cover all vehicles in model, and
ensure that each vehicle can receive data successfully with probability no less
than a threshold. Then we prove that the RAP selection problem is NP-hard by
converting it to the Set Cover problem. Next, we propose a greedy approximation
algorithm to solve this problem, analyze the complexity and approximation ratio
of this proposed algorithm. Finally, we conduct extensive simulations to show
the good performance of our greedy algorithm. The results indicate that our
algorithm can select the minimum number of RAPs to finish the roadside data
dissemination, than other compared schemes.
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Appendix: The Detailed Proof of Theorem2

We first give two important properties of our utility function f(·).
Lemma 1. f(∅)=0 and f(·) is an increasing function.

Proof. 1. We define fi(S)=min{Pr(vi|S), τ}. If S = ∅, Pr(vi|S)=0 for ∀vi ∈ V .
Hence, fi(S)=0 for ∀vi ∈V . Further, f(S)=

∑
vi∈V fi(S)=0.

2. Giving any two sets X and Y , and suppose X ⊆ Y ⊆ A, obviously we have
Pr(vi|X) ≤ Pr(vi|Y ). Consequently, we have fi(X) ≤ fi(Y ) for ∀vi ∈ V . More-
over, because of θ > 0, f(X)= θ ∗ ∑

vi∈V fi(X)≤ θ ∗ ∑
vi∈V fi(Y )= f(Y ) when

X ⊆Y ⊆R. Therefore, f(·) is an increasing function.

Then, we prove that our utility function f(·) is submodular by giving the below
Lemma 2, since we all know that, submodular function relates closely to greedy
algorithm.

Lemma 2. f(·) is a submodular function.

Proof. Given X ⊆ Y ⊆ R, ∀rk ∈ R\Y , if Δrk
f(X) = f(X + {rk}) − f(X) ≥

Δrk
f(Y ) = f(Y + {rk}) − f(Y ), f(·) is a submodular function. Before proving

this conclusion, we first compare the size of Δrk
fi(X)=fi(X+{rk})−fi(X) and

Δrk
fi(Y )=fi(Y +{rk})−fi(Y ), by dividing all possibilities into the following six

cases. Note that, Pr(vi|(X + {rk}))≥Pr(vi|X), Pr(vi|(Y + {rk}))≥Pr(vi|Y ),
Pr(vi|Y )≥Pr(vi|X) and Pr(vi|(Y + {rk}))≥Pr(vi|(X + {rk})).

1. τ <Pr(vi|X), τ <Pr(vi|Y ). Hence, Δrk
fi(X)−Δrk

fi(Y ) = [min{Pr(vi|(X+
{rk})), τ}−min{Pr(vi|X), τ}]−[min{Pr(vi|(Y+{rk})), τ}−min{Pr(vi|Y ), τ}]
= (τ −τ)−(τ −τ)=0;

2. Pr(vi|X)≤τ <Pr(vi|(X+{rk})), τ <Pr(vi|Y ). Hence, Δrk
fi(X)−Δrk

fi(Y )=
(τ −Pr(vi|X))−(τ −τ) ≥ 0;

3. Pr(vi|X)≤τ <Pr(vi|(X + {rk})), Pr(vi|Y )≤τ <Pr(vi|(X + {rk})). Hence,
Δrk

fi(X)−Δrk
fi(Y ) = (τ−Pr(vi|X))−(τ−Pr(vi|Y )) = Pr(vi|Y )−Pr(vi|X)≥

0;
4. Pr(vi|(X + {rk})) ≤ τ , τ < Pr(vi|Y ). Hence, Δrk

fi(X) − Δrk
fi(Y ) =

[Pr(vi|(X + {rk}))−Pr(vi|X)]−(τ −τ)≥0;
5. Pr(vi|(X + {rk})) ≤ τ , Pr(vi|(Y + {rk})) ≤ τ . Hence, Δrk

fi(X)−Δrk
fi(Y )

= [Pr(vi|(X + {rk}))−Pr(vi|X)]−[Pr(vi|(Y + {rk}))−Pr(vi|Y )];
6. Pr(vi|(X + {rk}))≤τ , Pr(vi|Y )≤τ <Pr(vi|(Y + {rk})). Hence, Δrk

fi(X)−
Δrk

fi(Y ) = [Pr(vi|(X + {rk}))−Pr(vi|X)]−[τ −Pr(vi|Y )] ≥ [Pr(vi|(X +
{rk}))−Pr(vi|X)]−[Pr(vi|(Y + {rk}))−Pr(vi|Y )].

For the cases 5 and 6 above, we need to continue analyzing the size of Pr(vi|(S+
{rk}))−Pr(vi|S) for ∀vi ∈V and ∀rk ∈R\S. We define Δrk

Pr(vi|S)=Pr(vi|(S +
{rk}))−Pr(vi|S). In fact, Δrk

Pr(vi|S) for ∀vi is the increment of its probability
of receiving data successfully when a new RAP rk is added to S. It is obvious
that rk only influences the vehicles in V (rk). In order to compute Δrk

Pr(vi|S),
there exists three possible case below:
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1. vi is covered by rk and (part or all of) the RAPs in S. Hence, Δrk
Pr(vi|S)

= [1 − ∏
rj∈(S+{rk})(vi)

(1 − pi
j)]−[1 − ∏

rj∈S(vi)
(1 − pi

j)] =
∏

rj∈S(vi)
(1 − pi

j)−
(1−pi

k)
∏

rj∈S(vi)
(1 − pi

j) = pi
k ∗ ∏

rj∈S(vi)
(1 − pi

j);
2. vi is covered by rk but isn’t covered by any RAPs in S. Hence, Δrk

Pr(vi|S)=
[1 − (1 − pi

k)] − 0=pi
k;

3. vi isn’t covered by rk, namely, wether or not rk is selected has no influence
on vi. Obviously, Δrk

Pr(vi|S)=0.

Based on the analyses above, we can compute Δrk
Pr(vi|X)−Δrk

Pr(vi|Y ) by
dividing it into following four possible cases. Note that, X ⊆Y and X(vi)⊆Y (vi).

1. vi isn’t covered by any RAPs in Y , but is covered by rk. Hence, Δrk
Pr(vi|X)−

Δrk
Pr(vi|Y ) =pi

k−pi
k =0;

2. vi isn’t covered by any RAPs in X, but rk and RAPs in Y \X cover vi. Hence,
Δrk

Pr(vi|X)−Δrk
Pr(vi|Y ) = pi

k−pi
k ∗ ∏

rj∈Y (vi)
(1 − pi

j)≥0;
3. rk and RAPs in X and Y cover vi. Hence, Δrk

Pr(vi|X)−Δrk
Pr(vi|Y ) =

pi
k ∗ [

∏
rj∈X(vi)

(1 − pi
j) − ∏

rj∈Y (vi)
(1 − pi

j)] ≥ 0 since X(vi)⊆Y (vi);
4. vi isn’t covered by rk. Hence, Δrk

Pr(vi|X)−Δrk
Pr(vi|Y ) = 0−0=0.

In summary, we have Δrk
Pr(vi|X) − Δrk

Pr(vi|Y ) ≥ 0. Finally, we also can
conclude that Δrk

fi(X)−Δrk
fi(Y ) ≥ 0 in all six cases. Moreover, as θ > 0,

Δrk
f(X)−Δrk

f(Y )= θ ∗ ∑
vi∈V [Δrk

fi(X)−Δrk
fi(Y )]≥ 0. Therefore, we have

the conclusion that f(·) is a submodular function.

According to Lemmas 1 and 2, we know that, f(·) is polymatroid since it’s an
increasing submodular function with f(∅) = 0. Similarly, we can easily prove
that the cardinality function c(X) = |X| is polymatroid. Given two polyma-
troid functions g(·) and h(·) on 2E , the problem of Minimum Submodular Cover
with Submodular Cost (MSC/SC) is defined, which is the minimization problem
min{h(X)|g(X)=g(E),X ⊆E}[15].

In this paper, for the utility function f(·), given a selected RAP set S, if
f(S) = θ ∗ τ ∗ |V |, S is a feasible solution of the RAP selection problem and
f(S)=f(V )=θ∗τ ∗|V |. Therefore, the RAP selection problem can be described
as: min{c(S)|f(S)=f(V ), S ⊆V }, where c(·) is the cardinality function. That is
to say, our selection problem is a MSC/SC problem. Based on this fact, we give
the following Theorem3.

Theorem 3. [15] Suppose g(·) is a polymatroid function on 2E, and g(E)≥opt
where opt is the cost of a minimum submodular cover. For a greedy algorithm,
if the selected x in each round always satisfies that g(X+{x})−g(X)

c({x}) ≥ 1, then the

greedy solution is a 1+ρln( g(E)
opt )-approximation, where ρ = 1 if c(·) is modular

(i.e., linear).

Now, we give the following crucial Lemma 3.

Lemma 3. Give the set S ⊆ R, which is the set of RAPs selected by
Algorithm1 after r-th round, and the RAP rk selected during (r+1)-th round,
we have f(S+{rk})−f(S)

c({rk}) ≥1.
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Proof. 1. It is obvious that the cardinality function c(·) is linear and c({rk})=1.
2. In each round of Algorithm1, if f(S)<θ∗τ∗|V |, a new RAP will be selected and
added into the set S. In fact, if Algorithm 1 doesn’t terminate after r-th round,
there must exist a vehicle vi with Pr(vi|S) < τ . Otherwise, if Pr(vi|S) ≥ τ for
∀vi ∈V , then f(S)=θ∗τ∗|V |, consequently, Algorithm 1 will terminate. Moreover,
for this vehicle vi and the selected RAP rk, since f(S+{rk}) is maximized during
(r+1)-th round, we can suppose rk must cover this vi, i.e., pi

k >0, without loss
of generality. That is to say, if the RAP rk is selected during (r+1)-th round,
rk must cover at least one vehicle vi with Pr(vi|S) < τ . Otherwise, we have
f(S+{rk})−f(S)=0 for ∀rk ∈R\S, which conflicts with the fact that there must
exist a vehicle vi with Pr(vi|S)<τ if Algorithm 1 doesn’t terminate. Based on
these analyses, we have

f(S+{rk})−f(S) = θ∗∑
vi∈V [min{Pr(vi|(S+{rk})), τ}−min{Pr(vi|S), τ}]

≥ θ ∗ (min{Pr(vi|(S + {rk})), τ} − min{Pr(vi|S), τ}) = θ ∗ (min{Pr(vi|(S +
{rk})), τ} − Pr(vi|S)) = θ ∗ min{Pr(vi|(S +{rk})) − Pr(vi|S), τ − Pr(vi|S)}
=θ ∗ min{pi

k ∗ ∏
rj∈S(vi)

(1 − pi
j), τ − Pr(vi|S)} ≥min{θ∗θ1, θ∗(τ − θ2)}≥1

To sum up, f(S+{rk})−f(S)
c({rk}) ≥f(S+{rk})−f(S)≥1

Finally, suppose that Sopt is an optimal solution of the RAP selection problem
and c(Sopt)= |Sopt|=opt which is number of RAPs in Sopt. Consequently, we have
f(R)=θ∗τ∗|V |≥ τ∗|V |

θ3
≥|R|≥opt since θ≥ 1

θ3
. Therefore, we can conclude that our

proposed Algorithm 1 is a 1+ln( θ∗τ∗|V |
opt )-approximation, by applying Theorem3.
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