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Abstract. Bayesian network (BN) learning from big datasets is poten-
tially more valuable than learning from conventional small datasets as
big data contain more comprehensive probability distributions and richer
causal relationships. However, learning BNs from big datasets requires
high computational cost and easily ends in failure, especially when the
learning task is performed on a conventional computation platform. This
paper addresses the issue of BN structure learning from a big dataset
on a conventional computation platform, and proposes a reservoir sam-
pling based ensemble method (RSEM). In RSEM, a greedy algorithm is
used to determine an appropriate size of sub datasets to be extracted
from the big dataset. A fast reservoir sampling method is then adopted
to efficiently extract sub datasets in one pass. Lastly, a weighted adja-
cent matrix based ensemble method is employed to produce the final
BN structure. Experimental results on both synthetic and real-world big
datasets show that RSEM can perform BN structure learning in an accu-
rate and efficient way.
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1 Introduction

A Bayesian network (BN) [1] is a probabilistic directed acyclic graphical model
for representing multivariate probability distributions. BNs have been widely
applied to various forms of reasoning in many domains such as Health Care,
Finance and Transportation [2–4]. With the increasing availability of big datasets
in science, government and business, BN learning from big datasets is potentially
more valuable than learning from conventional, small datasets as big data contain
more comprehensive probability distributions and richer causal relationships.
However, learning BNs from big datasets requires high computational cost [5],
easily ending in failure. Facing this challenge, one roadmap is performing the
learning task on a big data processing platform using Hadoop or Spark, such
as the MapReduce based method proposed by Fang et al. [6] and our previous
work [7]. But such a platform is not affordable for all institutions. Therefore, an
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alternative is first sampling sub datasets from the big dataset using probabilistic
approximation and then learning a BN from the sampled, small sub datasets on
a conventional computation platform. This study adopts the second roadmap.
Since the most important and challenging step of BN learning is finding the
network structure, this paper addresses the issue of sampling-based BN structure
learning from a big dataset on a conventional computation platform.

We argue that to achieve Bayesian network structure learning from big data
using a conventional computation platform, a big dataset needs to be appropri-
ately sampled into several sub datasets with much smaller sizes, and an ensemble
method is necessary for effectively combining the BN structures learned from the
sub datasets. Hence a reservoir sampling based ensemble method, called RSEM,
is proposed in this paper. The main ideas of RSEM are as follows. We intro-
duce a minimal sample size (MSS) for sub dataset extraction, which can keep
DAG-faithfulness [8] of the sub datasets, and design a greedy algorithm for
calculating MSS, aimed at achieving a trade-off between learning accuracy and
computational efficiency. According to the calculated MSS, we adopt a fast reser-
voir sampling method based on our proposed notion data reservoir index (DRI)
to efficiently extract sub datasets in one pass. Lastly, we employ an ensemble
method using a BDeu score [9] based weighted adjacent matrix to combine the
BN structures learned from the sub datasets and produce the final BN structure
in an approximate but sufficiently accurate way.

Our proposed method has been implemented using R software environment
on a conventional computation platform. To validate the effectiveness of the
method, we conducted experiments on both three synthetic big datasets and one
real-world big dataset. The experimental results show that RSEM can sample
appropriate sub datasets from big datasets by means of the calculated MSS, and
perform Bayesian network structure learning from big datasets in an accurate
and efficient way.

The rest of the paper is organized as follows: Sect. 2 is related work. The pro-
posed method including algorithms is presented in Sect. 3. After giving experi-
mental results and discussion in Sect. 4, we conclude this work in the final section.

2 Related Works

The notion DAG-faithful is the introduced is the work of TPDA algorithm [8].
A dataset is DAG-faithful if its underlying probabilistic model is DAG struc-
tured. This condition makes a dataset suitable for BN learning. The fundamen-
tal assumption of this research is that given a sufficiently large DAG-faithful
dataset, its DAG-faithful sub datasets can be used to approximate the learning
on the whole dataset.

In a Bayesian network, the Markov blanket (MB) of a node includes its
parents, its children and the children’s parents [10]. The MB of a node contains
all the variables that shield the node from the rest of the network and is the
only knowledge needed to predict the behavior of the node. Many algorithms
like MMHC [11] were proposed to learn BN structure. An important property
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of a BN is its Average Markov blanket size, denoted as AMBS, which is defined
as Eq. (1).

AMBS =
∑

i=1..N

MBSi/N (1)

where is the Markov blanket size of node i and is the total number of nodes in
the network. AMBS can measure the complexity of a BN.

Structure Hamming distance (SHD), a metric introduced by Tsamardinos
et al. [11], is defined as the number of the following operators required to make
the network match: add or delete an undirected edge, and add, remove, or reverse
the orientation of an edge [11]. It has become a widely used metric for measuring
structure difference between two networks and evaluating the quality of the
learned network. Small SHD indicates high learning accuracy. The number of
correctly identified edges is equal to the total number of edges in the known BN
minus SHD. This paper, therefore, uses SHD to evaluate the accuracy of the
learning method.

Jiang et al. [12] studied the sampling of the datasets and applied the sampled
datasets to different Bayesian network classifiers to achieve better classification
accuracy, which validates the effectiveness of data sampling methods for BN
learning. Reservoir sampling [13] is a widely used randomized algorithm for ran-
domly choosing samples from a big dataset which doesn’t fit into main memory.
We leverage reservoir sampling to efficiently sample sub datasets from a big
dataset.

In machine learning, ensemble methods [14] use multiple learning methods to
obtain better predictive performance than learning from any of the constituent
methods. Hasna and Salma [15] proposed a weighted ensemble Bayesian network
learning method for gene regulatory networks. Our previous work [16] achieved
higher accuracy of BN structure learning through ensemble methods. In this
paper, we continue to adopt ensemble methods for achieve better learning accu-
racy.

In the field of BN learning from big data, Chickering et al. [17] showed
that identifying high-scoring BN from large dataset is NP-hard. Yoo et al. [18]
reviewed bioinformatics and statistical methods and concluded that Bayesian
networks are suitable in analyzing big datasets from clinical, genomic, and envi-
ronmental domains.

Furthermore, Fang et al. [6] proposed a Map-Reduce based method for learn-
ing BN from massive datasets. Our previous work [7] adopted distributed data-
parallelism techniques and scientific workflow for BN learning from big datasets
to achieve better scalability and accuracy. To the best of our knowledge, most
existing studies applied data parallelization techniques to whole big dataset
learning, much less work had used data sampling to learn BN from big datasets
for reducing learning complexity.
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3 The Proposed Method

3.1 Overview of the Method

Figure 1 is the overview of our proposed reservoir sampling based ensemble
method (abbreviated as RSEM) for Bayesian network structure learning from
big data, which consists of the following three key steps.

Firstly, RSEM takes the big dataset as the input and uses a greedy algorithm
to calculate the minimal sampling size (MSS) of extracted sub datasets for a
specific learning task in the BN learning procedure.

Secondly, a fast reservoir sampling algorithm is designed to sample sub
datasets with the size of MSS from the big dataset. This sampling algorithm
only requires one iteration over the entire dataset.

Lastly, an ensemble algorithm (by means of a BDeu score based, weighted
adjacent matrix) is adopted to merge the Bayesian networks (BNs) learned from
all the sub datasets and then produce a final BN as the output.

Fig. 1. Overview of the RSEM method

3.2 Calculation of MSS

Given a DAG-faithful (big) dataset with a sufficiently large size, it is reasonable
to learn a BN from its sub datasets instead of the whole dataset. Learning on
the sub datasets could achieve high computation efficiency and approximate the
whole data learning without loss of generality. The key challenge here is the
selection of sub dataset size. If the size is too small, then a poorly structured
BN will be learned, otherwise, low computation efficiency as well as overfitting
will occur. Thus, we introduce a novel concept called the minimal sampling size
(MSS), as defined below.

Definition 1. (minimal sampling size)Given a DAG-faithful and independent
identically distributed (iid) dataset D, its minimal sampling size (MSSD) is the
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minimal size of sub dataset that maintains DAG-faithful. MSSD is defined in
Eq. (2):

MSSD = Nattr ∗ AMBS ∗ sampleCoefD (2)

where, Nattr is the number of attributes in the dataset (i.e. the number of nodes
in the underlying Bayesian network). AMBS is the average Markov blanket
size of the Bayesian network. And sampleCoefD is a data sampling coefficient
required to maintain the DAG-faithfulness of extracted sub datasets.

Algorithm 1. CalculateMSS
Input:

D: Dataset;
ε: Threshold;
mstep: Maximum loop steps.

Output:
AMBS: Average Markov blanket size;
MSS: Minimal sampling size.

1: bestAMBS = 1; step = 0;
2: sliceSize = 100 * number of attributes in D;
3: Dsliced = readData(D,nrows = sliceSize); //nrows is the number of rows to read.
4: BNDS = LearnBNStructure(Dsliced);
5: currentAMBS = average Markov Blanket size of BNDS ;
6: while (currentAMBS > bestAMBS&&step ≤ mstep&&((currentAMBS −

bestAMBS) > bestAMBS ∗ ε) do
7: sliceSize = sliceSize ∗ 2;
8: bestAMBS = currentAMBS;
9: Dsliced = readData(D, nrows = sliceSize);

10: BDDS = learnBNStructure(Dsliced);
11: currentAMBS = average Markov Blanket size of BNDS ;
12: step = step + 1;
13: end while
14: MSS = number of records in Dsliced;
15: return bestAMBS and MSS.

Theorem 1. Given a DAG-faithful distribution P , there exists two datasets
DMSS and DS2 drawn from P with sizes MSS and S2 (MSS < S2) respectively
so that the difference of the average Markov blanket size between the Bayesian
networks learned from DMSS and DS2, denoted as DiffAMBS(DMSS ,DS2) is
zero. This theorem can be formalized as follows:

∀P,∃DMSS ,DS2,MSS < S2|DiffAMBS(DMSS ,DS2) = 0 (3)

Proof. By Definition 1, DMSS is DAG-faithful. Since MSS < S2, DS2 is also
DAG-faithful. Every DAG-faithful distribution has a unique essential graph [8].
Since DMSS and DS2 are drawn from the same distribution P , then the essen-
tial graphs of DMSS and DS2 are identical. The only difference between an
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essential graph and a Bayesian network is the edge direction, but the change
of edge direction will not affect the sum of the sizes of Markov blankets. Thus,
DiffAMBS(DMSS ,DS2) = 0.

Based on Eq. (2), to calculate MSSD, both AMBS and sampleCoefD are
required. But in real life, the network structure is unknown. The only way
to estimate AMBS is through learning and obtaining the BN structure. And
sampleCoefD is a varying coefficient dependent on each specific dataset instead
of a constant number. To conquer this challenge, in light of Theorem 1, we pro-
pose a greedy algorithm called CalculateMSS (Algorithm 1) to calculate MSS.

Algorithm 1 starts with small sub dataset Dsliced. It learns the BN from
Dsliced (Step 4) and obtains average Markov blanket size AMBS (Step 5).
Since Dsliced may not be DAG-faithful, consequently, BN structure learning
algorithms will miss many edges, resulting in small AMBS. In order to make
Dsliced DAG-faithful, the loop in the algorithm (Steps 6-13) doubles sliceSize
at each iteration, and stops when AMBS becomes relatively stable. This indi-
cates, based on Theorem 1, that the sub dataset size reaches MSS (Step 14).
Algorithm 1 obtains both AMBS and MSS, making sampleCoefD straightfor-
ward to compute using Eq. (2). Section 4.2 will show the experimental results of
MSS on three datasets and validate the effectiveness of the algorithm.

3.3 Fast Reservoir Sampling

To reduce the scale of learning task, sub datasets need to be drawn from the
whole big dataset for BN learning. To make the sampling more efficient, a novel
concept, data reservoir index, is introduced in Definition 2.

Algorithm 2. GetdataReservoirIndex
Input:

numSubDatasetMSS : Number of sub datasets of size MSS in the whole dataset;
K: Number of sub datasets to be extracted.

Output:
dri: Data reservoir index.

1: Initialize dri as an empty array;
2: for i = 1..numSubDatasetMSS do
3: if i ≤ K then
4: dri[i] = i;
5: else
6: removedEntry = random(1..i);
7: if removedEnry ≤ K then
8: dri[removedEntry] = i;
9: end if

10: end if
11: end for
12: return dri.
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Definition 2. (data reservoir index). A data reservoir index, denoted as dri,
is an array that contains K elements, and is produced by reservoir sampling of
K integers from one to numSubDatasetMSS where numSubDatasetMSS is the
total number of sub datasets of size MSS in the whole dataset.

Based on Definition 2, an algorithm named GetdataReservoirIndex (Algo-
rithm2) is proposed. It uses reservoir sampling to obtain dri. Since it operates
in integer domain up to numSubDatasetMSS , the computation is very efficient.

After obtaining dri and sorting it, K sub datasets can be drawn efficiently
from the whole dataset in one pass by extracting data records starting from
dri[i] ∗ MSS and ending at dri[i] ∗ (MSS + 1), i = 1, 2, ...,K.

3.4 Ensumble Learning

After obtaining the sub datasets, RSEM calls the final procedure Ensemblelearn-
ing (Algorithm 3) to produce the final BN structure from the big dataset.

Algorithm 3. Ensemblelearning
Input:

D: Dataset ;
Dsub: Sub datasets sampled by fast reservoir sampling;
ε:Threshold.

Output:
BNfinal: Final network structure.

1: BNlocal[i] = LearnBNStructure(Dsub[i]);
2: Obtain the Adjacent Matrix AMi from BNlocal[i];
3: Weight each BNlocal[i] by BDeu score and transform BNlocal[i] into a Weighted

Adjacent Matrix WAMi;
4: Sum all WAMi using Equation (4) to get the final weighted adjacent matrix

FWAM;
5: if FWAM[i, j] > ε then
6: Set BNfinal[i, j] = 1;
7: end if
8: return BNfinal.

The algorithm invokes a BN learning algorithm (e.g. hill climbing) to learn
local BN structure for each sub dataset (Step 1). Then, it uses BDeu score [9] to
weight these local structures and transform them into weighted adjacent matrix
WAMi, i = 1, 2, ...,K (Step 3). Next, the algorithm sums all WAMi using
Eq. (4) to obtain the final weighted adjacent matrix FWAM (Step 4).

FWAM =
∑

i=1..K

WAMi (4)

If an edge exists between node i and node j in majority of local structures,
then FWAM[i, j] should be larger than a threshold ε. Therefore, Algorithm 3
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adds an edge between i and j in the final network, transforming FWAM into
the final network structure (Step 5-7).

4 Experiments and Discussion

4.1 Experimental Setup and Datasets

To validate the effectiveness of our proposed method, two experiments were
conducted. The first experiment used three synthetic big datasets to confirm
the effectiveness of MSS calculation as well as to evaluate the learning accuracy
and the computation efficiency of RSEM. The second applied RSEM to a real-
world big dataset, in order to show that the method can effectively model causal
relationships.

The experiment environment is as follows. The computer is Dell PowerEdge
R710, with Intel(R) Xeon(R) CPU E5640, 2.66 GHz, 12 M Cache, and Memory
16 GB (82 GB), 1066 MHz, running the operating system of Windows Server
2008 R2 Enterprise 64-bit, Service Pack 1.

The experiments were run in the R environment (version 3.1.1). Hill climbing
and MMHC algorithms [11] in the Bnlearn R Package [19] were used to learn
BN structures. The number of sampled sub datasets is 10.

Table 1 lists the datasets (CSV files) used in our experiments. Three syn-
thetic datasets with large data volumes were generated using the data simula-
tion module of the SamIam tool (http://reasoning.cs.ucla.edu/samiam/) from
three known Bayesian networks: Child [20], Alarm [21] and HEPAR2 [22]. These
known networks provide ground truth for the comparison of average Markov
blanket size (AMBS) between the learned networks and the original ones, and
for the resulting structural hamming distance (SHD). In Table 1, HMDALAR
[23] is a real-world dataset from the Data.gov portal, representing 2009 Home
Mortgage Disclosure Act (HMDA) Loan Application Register (LAR) Data.

Table 1. Experimental datasets

Name #Rows(million) Size(GB) #Attributes Domain

Child 10 1.2 20 Medical

Alarm 10 1.9 37 Weather

HEPAR2 10 4.9 70 Medical

HMDALAR 5.8 3.8 45 Finance

4.2 MSS Cacluation Results

Table 2 shows the computation results for minimal sampling size (MSS) and
comparison between calculated AMBS and actual AMBS.

http://reasoning.cs.ucla.edu/samiam/
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Table 2. MSS and AMBS comparison

Dataset Calculated MSS Calculated AMBS Actual AMBS

Child 4,000 3.00 3.00

Alarm 14,800 3.30 3.51

HEPAR2 224,000 4.29 4.51

HMDALAR 40,000 8.00 n/a

From the first three lines in the table, we observe that the calculated AMBS
by Algorithm 1 is close to the actual AMBS, indicating an accurate estimation
of the BN complexity.

With the purpose of verifying the correctness of calculated MSS, letting the
calculated MSSs (Table 2) be reference values, we used the hill climbing algo-
rithm to perform BN learning on the synthetic datasets by doubly decreasing
and increasing the values of MSS, and recorded the resulting SHDs. Figure 2
shows SHD trends over varying MSS on three synthetic datasets.

From the curves in Fig. 2, we observe that SHD rises sharply with the decrease
of MSS starting from the reference value, while starting from the calculated MSS
(second column in Table 2), SHD becomes stable with the growth of MSS. In
other words, the calculated MSS by our algorithm (Algorithm1) is a reasonable
tradeoff between learning accuracy and computational efficiency.

In short, the above experimental results (Table 2 and Fig. 2) confirm the
effectiveness of MSS calculation in the proposed RSEM method.

4.3 Results on the Synthetic Datasets

Table 3 shows the comparison of structural hamming distances (SHDs) and com-
putation time for learning BN structures from the datasets between our method
(RSEM) and whole dataset learning (WDL) using hill climbing algorithm. When
applying RSEM, the threshold ε of the ensemble learning procedure is 0.667.

Table 3. SHD and computation time

Dataset Total # of
edges in orig-
inal BNs

SHD Computation time (minute)

RSEM WDL RSEM WDL

Child 25 0 0 1.5 10.1

Alarm 46 13 13 3.20 22.9

HEPAR2 123 17 Failure 34.10 Failure (insufficient memory)

HMDALAR n/a n/a Failure 19.60 Failure (insufficient memory)
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(a) Child

(b) Alarm

(c) HEPAR2

Fig. 2. SHD trends over varying MSS on the synthetic datasets.
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From the third column of Table 3, we can find that RSEM achieves the same
SHD compared with whole dataset learning (WDL) for the Child and Alarm
datasets. In particular, RSEM found the correct network for the Child dataset
(SHD=0). For the HEPAR2 dataset, RSEM identified over 86 % of the correct
edges while WDL failed due to insufficient memory. These results indicate a high
learning accuracy of our proposed RSEM.

Regarding the comparison of computation time (the last column in Table 3),
it is observed that RSEM achieves nearly an order of magnitude improvement
in computation time on the Child and Alarm datasets compared with WDL.
Meanwhile, the HEPAR2 and HMDALAR datasets are too big to learn the BN
structure from the whole dataset, resulting in computation failure caused by
insufficient memory. But our method finished successfully within an hour for
both big datasets.

The above experimental results confirm high learning accuracy and good
computation efficiency of RSEM.

4.4 Results on the Real-World Dataset

For the HMDALAR dataset, there is no ground truth for the comparison of aver-
age Markov blanket size (AMBS) between the learned networks and the original
ones, and for the resulting structural hamming distance (SHD). Nonetheless,
the following results (cf. Figs. 3 and 4) on the real-world dataset show that our

Fig. 3. MI of class variable ActionType and other variables in a sub dataset of
HMDALAR
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method (RSEM) can sample appropriate sub datasets from the big dataset as
well as effectively model causal relationships between the data attributes.

After analyzing the HMDALAR dataset, we found that the ActionType
attribute of the data is a class variable. Based on the calculated MSS (40,000) in
Table 2, ten sub datasets were sampled from the big dataset. Figure 3 shows the
mutual information (MI) of class variable ActionType and other variables in one
of the sub datasets. In Fig. 3, we can find that variables HOEPAStatus (Home
Owners Equity Protection Act Status), LoanType, ApplicantIncome, LoanPur-
pose, and AppRace1 (the race of the first applicant) have the top five MI values
with the class variable. This is reasonable because from the perspective of loan
approval, these variables indeed have a major impact on the approval decision.
On the other hand, Fig. 3 indicates that state code, population, numberOfOwne-
rOccupiedUnits (number of units occupied by the owner), MinorityPolulation-
Per (Percentage of minority population) have the lowest MI values with the class
variable.

As for the modeling of causal relationships between the data attributes, we
applied RSEM to the ten sub datasets and produced the final BN. Figure 4
shows the Markov blanket of node ActionType in the Bayesian network. Observ-
ing the Markov blanket in Fig. 4, we find that the variables (Preapproval,
PurchaserType, HOEPAStatus, and TractooMSA MDincome) that have direct
causal relationships with the class variable are modeled in the Markov blan-
ket. Furthermore, variable Preapproval has six parents including LoanAmount,
LoanPurpose, ActionType, Numberof1 4 Familyunits, HUDMedianFamilyIn-
come, and PurchaserType, which are truly important decision-making factors
in loan pre-approval. On the other hand, most variables that have a low

Fig. 4. Markov Blanket of node ActionType in the learned BN from HMDALAR
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MI value are not in the Markov blanket of the node ActionType. This shows
the effectiveness of RESM in modeling causal relationship for the real world
dataset.

5 Conclusion

In this paper, we have proposed a reservoir sampling based ensemble method
for Bayesian network structure learning from big data. We have demonstrated
through experiments that our method can sample appropriate sub datasets
from big datasets using the probabilistic approximation technique, and perform
Bayesian network structure learning from big datasets in an accurate and effi-
cient way. This method allows Bayesian network structure learning from big
data using a conventional computation platform rather than a big data process-
ing platform. Our future work focuses on enhancing the ensemble method to
obtain higher learning accuracy.
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