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Abstract. The skyline query returns a set of interesting points that
are not dominated by any other points in the multi-dimensional data
sets. This query has already been considerably studied over last several
years in preference analysis and multi-criteria decision making applica-
tions fields. Space partitioning, the best non-index framework, has been
proposed and existing methods based on it do not consider the balance
of partitioned subspaces. To overcome this limitation, we first develop
a cost evaluation model of space partitioning in skyline computation,
propose an efficient approach to compute the skyline set using balanced
partitioning. We illustrate the importance of the balance in partitioning.
Based on this, we propose a method to construct a balanced partitioning
point VMP whose ith attribute value is the median value of all points
in ith dimension. We also design a structure RST to reduce dominance
tests among those subspaces which are comparable. The experimental
evaluation indicates that our algorithm is faster at least several times
than existing state-of-the-art algorithms.

1 Introduction

The skyline query [1] returns a set of interesting points that are not dominated
by any other points in the multi-dimensional data sets. A point q is dominated
by a point p if and only if p is not worse than q in all dimensions and strictly
better in at least one dimension. Without loss of generality, here we assume that
lower value is better to users in all dimensions.

The skyline query is important in database community and has already been
considerably studied over last several years in preference analysis, multi-criteria
decision making applications, and so on. It aims to reduce search space when
there is not existing a scoring function.
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The existing algorithms can be summarized into two categories, index-based
algorithms and index-independent algorithms, respectively. Index-based algo-
rithms [8–11] strive primarily to avoid scanning the entire data sets by utilizing
pre-construct index structure. Some points are usually checked to be a skyline
point or a non-skyline point by index structure early on. The main issues are
that it needs a great deal of time and space to pre-construct the data points
index structures and store them respectively and it can’t deal with dynamic or
stream data sets.

The other category is index-independent algorithms, which compute skyline
results without any pre-construct structures. The early algorithms [2,6,7] are
mainly based on sorting. They first sort the data sets by a monotone function
to guarantee that previous points are never dominated by their following points.
These approaches strive to find out early the skyline points which can prune
out most of the non-skyline points. [3] first proposed the schema of space par-
titioning to compute skyline set, and implemented two algorithms which both
outperform significantly than prior methods. This schema divides recursively
the entire space into several disjoint subspaces and compute local skyline results
in their subspace according to the relationship of these subspaces. We collect
all the local skyline points as the results of skyline computation. It reduces
dramatically the dominance tests. While it randomly selects a skyline point as
partitioning point, this method cannot guarantee the stability. Based on the
schema, BSkyTree [4] makes some progress by selecting the skyline point with
the closest value to the main diagonal as the partitioning point. They both do
not consider the importance of the balance in partitioning.

This paper focuses mainly on developing a cost evaluation model of space
partitioning in skyline computation and designing an efficient approximated app-
roach based on it. We illustrate the importance of the balance in partitioning and
provide a low-cost balanced partitioning point VMP whose ith attribute value
is the median value of all points in ith dimension. Finally, we utilize a structure
named RST to reduce the dominance tests among comparable subspaces. We
also implement an algorithm VMPSP using our VMP partitioning point and
RST structure. Our experiments indicate that our algorithm VMPSP is faster
at least several times than existing state-of-the-art algorithms.

In this paper, the key contributions are summarized as follows:

– We analyze the defections of existing sorting-based and space-partitioning-
based algorithms.

– We develop a cost evaluation model of space partitioning in skyline compu-
tation, and illustrate the importance of balance of partitioned subspaces.

– We propose a new more balanced partitioning point Virtual Median Point
(VMP) whose ith attribute value is the median value of all points in ith
dimension. It can reduce the cost of partitioning. We also design a structure
named Recursive Search Tree(RST) to reduce the dominance tests among
comparable subspaces.

– We implement an algorithm VMPSP by constructing VMP as the partitioning
point and utilizing RST structure.
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– We evaluate our proposed algorithm VMPSP by comparing it with state-of-
the-art algorithms in dimensionality and cardinality over real and synthetic
data sets.

The rest of this paper is organized as follows. Section 2 introduces some key
proposed algorithms based on sorting or space partitioning. Section 3 presents
existing definitions and properties about skyline and space partitioning schema.
Section 4 develops a cost evaluation model of space partitioning in skyline com-
putation and illustrates the importance of balance in partitioning. A construc-
tion of balanced partitioning point VMP and a structure of reducing dominance
tests among comparable subspaces RST are presented in this section. Section 5
illustrates our algorithm VMPSP using our constructed partitioning point VMP
and the structure RST. Section 6 evaluates our proposed algorithm with existing
approach in dimensionality and cardinality scalability for real and synthetic data
sets. Finally, our conclusion is summarized in Sect. 7.

2 Related Work

The skyline query mainly resolves the problem that how to reduce the search
space by discarding the non-interesting objects from multi-dimensional data-
bases when the scoring function is not existing. It is important in multi-criteria
decision making and analysis in database community. There are a great many of
existing literatures in this field, while we just summarize sketchily most proposed
key main-memory algorithms into two categories as follows.

2.1 Index-Based Algorithms

Index-based skyline computation techniques utilize the pre-construct indexes on
all data sets to accelerate the skyline query by avoiding scanning the entire
data sets. [1] first roughly imagines the algorithms utilizing B-tree or R-tree
index structures which can prune out non-skyline points immediately without
accessing the entire data sets. Since then a set of techniques [8–11] by using
indexes are proposed to improve the efficiency of the skyline computation. [9]
exploits bitmap to represent data sets and perform a series simple of bitwise
operations to get skyline results. By the observation which the nearest neighbor
point to the origin must be a skyline point, [8] develops NN algorithm. NN first
computes the nearest neighbor point to the origin which must be a skyline point
from the entire data sets by utilizing R-tree. Then divides remaining points
except those dominated by the nearest neighbor point into several overlapping
subsets. Next, keeps on computing NNP from these subsets recursively. Finally
it is necessary to eliminate duplicate skylines from these NNP. Based on NN,
an improvement version named BBS is presented in [11]. It adopts branch-and-
bound strategy and avoids retrieving duplicates to improve performance. The
index-based state-of-the-art algorithm is ZSearch [10]. It improves significantly
the overall performance according to ZBtree in which data points is organized.
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Obviously, the disadvantage of index-based algorithms is need a great deal of
time and space to pre-construct the data points index structures and store them
respectively. When the dimension is high, it is unfeasible since the time cost of
preconstruction is dramatically more than the skyline query response time using
indexes. Also, it is unfeasible to construct indexes for stream or dynamic data
sets. So it is urgent to find out a method that efficiently computes the skyline
results without preconstruction.

2.2 Index-Independent Algorithms

The other type of skyline computation is to retrieve the skyline results straightly
without any pre-prepare structures. The first algorithm is proposed along with
the skyline problem named block-nested-loops(BNL) in [1]. It uses a memory
buffer window to contain the candidate skyline points which have been yet not
dominated by others. The point accessed by the stored order in the data sets
must compare with candidates one by one until it is dominated. If it is dom-
inated by any one of the candidates, discard the point and validate the next
point in the data sets. Otherwise insert the point into the window and remove
those candidates which are dominated by it. The candidates in the window are
definitely all skyline points until the data sets in store have been all accessed.
BNL is much inefficient since the candidates in the buffer may be not the skyline
points, conducts a great extremely many of unnecessary dominance tests among
non-skyline points in the window.

Based on this, Sort-First Skyline(SFS) algorithm [2] is presented. It guar-
antees that the points added into the window are certainly skyline points by
sorting the data sets using a monotone function(such as entropy function and
sum function). In the sorted data sets, a point must certainly not dominate its
previous points. So, we are sure that the candidates in the window must be the
skyline points of the data sets. In the light of this, SFS algorithm accelerates sig-
nificantly the query response time to BNL. Later, Some important approaches,
such as LESS [7] and SaLSa [6], have been developed to improve the performance
of SFS based on the framework of sorting the data sets first. LESS conducts the
elimination by maintaining a small memory buffer when the points are sorting.
SaLSa selects monotone functions carefully and adopts a stop point to terminate
the algorithm early such that not all points in the sorted list need to be accessed.

Although these methods, especially SaLSa, have a better performance, the
greatest disadvantage of above sorting-based algorithms is sensitive to the size of
skyline set since every accessed point must compare with all candidates until it is
dominated. The skyline size becomes larger as the cardinality or dimensionality
higher such that the performance of above algorithms deteriorates severely. The
total numbers of dominance tests are unimaginable huge, as well as the cost of
sorting is not negligible when data sets are large.

In order to overcome the aforementioned problems, a crucial algorithm OSPS
is devised in [3] which first proposes a new framework named space partitioning
to organize already found skyline points as a skyline tree. Any accessed point
need not compare with all the found skylines instead do the dominance tests
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with only a small part of skylines in ROSP even if the point belongs to skyline.
This framework is also effective to other studies [5,12] which are related with
skyline. [3] proposes a method that selects randomly a skyline point as the par-
titioning point. Although avoid the occurrence of the worst case like SFS, it is
failed to guarantee the stability. Also the random partitioning point cannot par-
tition the space into balanced subspaces. BSkyTree [4] both consider dominance
and incomparability relationships which reduces substantially the numbers of
dominance tests and have become state-of-the-art algorithm of the skyline com-
putation in main-memory environment. It selects the skyline point with the
closest value to the main diagonal and makes the subpartitions more balanced
than the random selection method. While only the first partitioned subspaces
are relatively balanced, the subsequent partitioning conduct severely unbalanced
situation. Besides, BSkyTree cannot organize yet found skylines as a recursive
search tree to accelerate dominance tests.

3 Preliminaries and Observation

In this section, we introduce some definitions and properties which are all given
in prior works [1,3,4] as well as present our observations that can be used to
improve the overall performance of skyline computation. Given a data set S in
a d-dimensional positive real space Rd, for any point p in S, we denote the value
of point p in ith dimension by pi.

3.1 Skyline

Definition 1. (Dominate) Given two distinct points p and q in the data set S,
p dominates q, denoted by p � q iff ∀ i ∈ [1, d], pi ≤ qi and ∃i ∈ [1, d], pi < qi.
Otherwise, p doesn’t dominate q, denoted by p � q. We call point p as the first
check point and q as the second check point from here on.

Definition 2. (Skyline) For any point p in S, p is a skyline point iff � q ∈ S
and q �= p, such that q � p. The skyline set consists of all skyline points.

Definition 3. (Incomparable) Given any two points p, q ∈ S, if p � q and q �

p, then p and q are incomparable each other, denoted by p ∼ q.

3.2 The Framework of Space Partitioning

Before the framework of space partitioning is proposed, most prior algorithms
focus heavily on point-wise dominance tests as well as how to fast check out
whether a point is dominated or not. We can know nothing but whether the
second check point is dominated by the first check point from one point-wise
dominance test. If not, we must repeat the same operation for the next point.
While the schema of space partitioning can provide more information even if
the second check point is not dominated by the first check point. And it pro-
motes point-wise dominance tests to space-wise dominance tests which reduces
significantly dominance tests among incomparable point pairs.
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Definition 4. (Partitioning Point [3]) Given a point p̂ in Rd, ∀ i ∈ [1, d], p̂i
partitions Rd into 2 disjoint complementary subspaces S+

i (p̂) and S−
i (p̂) respec-

tively. ∀ p ∈ S, if pi < p̂i, p ∈ S+
i (p̂), otherwise, p ∈ S−

i (p̂). Therefore, the
space Rd is partitioned into 2d non-overlapping subspaces by p̂ which is for-
mally named as partitioning point. We define a subspace set CRd

p̂ consists all of
aforementioned 2d subspaces partitioned by p̂ in Rd. Any point in S except p̂ is
mapped into unique one space of CRd

p̂ . We name a d-bit vector as the address of
any subspace V , denoted by AV

p̂ , ∀ i ∈ [1, d], if V ⊂ S+
i (p̂), set the ith bit value

of AV
p̂ be 0, i.e., AV

p̂ [i]=0; Otherwise AV
p̂ [i]=1.

Based on Definition 4, any partitioning point in Rd can divide S into 2d sepa-
rate subsets corresponding to 2d disjoint subspaces of Rd of which the addresses
range from 0 to 2d-1. We can also represent a subspace by its address.

Definition 5. (Space-wise Dominate [3]) For any two subspaces V , W ∈ CRd

p̂ ,
if ∀ i ∈ [1, d], AV

p̂ [i] � AW
p̂ [i] then V space-wise dominates W , for brevity of rep-

resentation, replace it with dominate, denoted by V � W . Otherwise, V cannot
dominate W , denoted by V � W .

Definition 6. (Incomparable [3] and Comparable)For any two subspaces V , W

∈ CRd

p̂ , if V and W cannot dominate each other, we call that they are incom-
parable, denoted by V ∼ W . Otherwise, W and V are comparable. Specifically,
subspace V is comparable with itself. The space set of all spaces dominating V

is named as the dominating space set, denoted by DV
p̂ = {W ∈ CRd

p̂ | W � V },
the space set of all spaces dominated by V is named as the dominated space set,
denoted by UV

p̂ = {W ∈ CRd

p̂ | V � W}, and the space set of all spaces being
incomparable with V is named as the incomparable space set, denoted by IVp̂ =

{W ∈ CRd

p̂ | V ∼ W}.
For the definitions of space-wise dominate and incomparable, there are a

few differences with prior works. We describe some key properties about space
partitioning in the following.

Property 1. For any two different subspace V , W ∈ CRd

p̂ , if V and W are incom-
parable, then ∀ v ∈ V , ∀ w ∈ W , v and w must be incomparable, here v and w
are both points.

Property 2. For any two different subspace V , W ∈ CRd

p̂ . V � W iff (AV
p̂ | AW

p̂ )
= AW

p̂ .

Property 3. For any two different subspace V , W ∈ CRd

p̂ . V ∼ W iff (AV
p̂ | AW

p̂ )
�= AV

p̂ and (AV
p̂ | AW

p̂ ) �= AW
p̂ .

We ignore detailed process of proof about above properties, which have
already been proofed in [3]. Property 1 can promote point-wise dominance tests
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to space-wise dominance tests. We need first check out whether space V and W
are incomparable or not, if it is, all dominance tests between the points in V and
the points in W can be safely skipped through only one space-wise dominance
tests. If not, i.e., they are comparable with each other, then must do point-
wise dominance tests between the points in the two spaces. Based on this, space
partitioning can significantly reduce dominance tests among incomparable point
pairs. Specifically, if the space V00...0 is not empty, then all the points in space
V11...1 can be discarded immediately since they must be dominated by any point
in space V00...0. Given a space V belonging to CRd

p̂ , and any other space except

V in CRd

p̂ can be summarized into 3 types, DV
p̂ , UV

p̂ and IVp̂ , respectively. For any
point p in V need to be checked to judge whether it is a skyline point, obviously,
those points in UV

p̂ can be immediately ignored since they can certainly not dom-
inate p according to partitioning definitions. Also, above properties imply that it
is also correct to skip the dominance tests with all the points in IVp̂ . We combine
UV
p̂ and IVp̂ as the space set which can be ignored dominance tests of space V ,

denoted by ITV ={W ∈ CRd

p̂ | W ∈ UV
p̂ or W ∈ IVp̂ }. While it is necessary to

compare with the points in DV
p̂ and the other points in itself space V .

We combine DV
p̂ and space V as the space set which cannot be ignored

dominance tests of space V , denoted by NITV ={W ∈ CRd

p̂ | W ∈ DV
p̂ or W =

V }. It is easy to imply that if space V and W are comparable with each other,
then V ∈ NITW or W ∈ NITV . Here, we can claim that any accessing point
p in V , the points in ITV is safely skipped based on above analysis. While it is
necessary to check out with the points in NITV .

4 Constructing Virtual Median Point as Partitioning
Point

This section introduces the importance of partitioning points and illustrates the
schema of space partitioning is a kind of typical divide and conquer algorithm
that sub-problems are non-independent. To simplify the complexity of selecting
optimized partitioning points, we first illuminate the importance of balance in
partitioning, in addition provide a method to construct balanced partitioning
points. Then, we adopt a structure name recursive search tree to reduce domi-
nance tests among those subspaces which are comparable.

4.1 The Cost Evaluation Model of Space Partitioning in Skyline
Computation

The schema of space partitioning needs to divide recursively current space into
several disjoint subspaces until their sizes are small enough, and compute the
local skyline points in all subspaces. Finally, all local skyline points are combined
as the global skyline set, i.e., the results of skyline computation. The schema
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is a typical kind of divide and conquer algorithm that sub-problems are non-
independent. Now we design a cost evaluation model of space partitioning in
skyline computation as follows:

Cost(A) = Cp(A) + Cc(A)

A is any algorithm of utilizing the schema of space partitioning, Cp(A) and
Cc(A) represent the cost in partitioning the spaces and in dealing with com-
parable subspaces, respectively. And Cc(A) relies primarily on the method of
partitioning.

Theorem 1. Using divide and conquer method to solve a problem, if it is divided
into several independent disjoint sub-problems and the cost of dividing and con-
quering is proportional to the size of data set. Then the optimized dividing method
is that all the sub-problems have the same size.

Proof. For any partitioning method, suppose that the problem can be divided
into k sub-problems, the time complexity is T (kn) = T (n + α1) + T (n + α2) +
· · ·+T (n+αk)+kn and ∀ i ∈ [1, k], αi ∈ [−n, n] as well as Σk

i=1αi = 0. The cost
of every iteration is T (kn), the optimized partitioning has the least iteration
times. Thus it is easy to conclude that the times of partitioning is minimum
when α1 = α2 = · · · = αi = 0. 
�

In general, the lowest cost of partitioning the points is proportional to the
size of data set because all points must compare with partitioning point at least
once even though ignore the cost of determining partitioning point. Based on
aforementioned analysis, the optimized space partitioning approach makes that
all subspaces have the same size and can compute their local skylines indepen-
dently. While this partitioning is certainly not existing because there must be
comparable partitioned subspaces.

Considering the complexity of this cost evaluation model, we propose a
approximated method. We separate the process of computing skyline using space
partitioning schema into two phases. Firstly, we maximize the balance of sub-
spaces, i.e. the difference of subspaces’ size is as small as possible. And then we
strive to weak the influence among subspaces with comparable relationship, in
other word, reduce the times of dominance tests among points in those subspaces
which are comparable.

4.2 Virtual Median Point

The balanced degree of partitioned subspaces depends solely on the position of
partitioning point. We now discuss where the partitioning point is can maximize
the balance of subspaces.

Theorem 2. Given a data set S, suppose that all points are distributed uni-
formly and independently [2,7] in d-dimensional [0,m]d space, the point p whose
every attribute value is m

2 can maximize the balance of partitioned 2d subspaces.
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Fig. 1. Selecting partitioning point

Proof. The partitioning point p divides S into 2d subspaces. Under uniform and
independent condition, they have the same number of points since p is the center
point of [0,m]d space. 
�

Based on Theorem 2, the center point of space can maximize the balance of
subspaces under uniform and independent condition. While in some real envi-
ronment, it is difficult to get exact distributed region, for example in Fig. 1(a),
p1(140,25) and p2(28,141) decide the boundary, if we regard straightly the data
set as a uniform and independent distribution, the center of the boundary is
α(84,83) and all points are partitioned in a extremely unbalanced method. To
solve this problem, We construct the Virtual Median Point(VMP) as the parti-
tioning point. The ith attribute value of VMP is the median value of all points
in ith dimension. The VMP is (65,57) in Fig. 1(b) and the partitioned subspaces
are maximum balance. Besides, VMP is infinitely close to the center point when
data set is distributed uniformly and independently.

4.3 Recursive Search Tree

The computations in subspaces based on the framework of space partitioning
are non-independent as we have stated before. And we only need to consider the
influence among subspaces which are comparable. Now we discuss how to reduce
the dominance tests among comparable subspaces as much as possible.

As aforementioned descriptions, for two comparable subspaces V and W , it
is either V ∈ NITW or W ∈ NITV . So we aim to reduce the dominance tests
between any partitioned subspace V and these subspaces which are in NITV .

The naive method of judging whether a point p in V is dominated by any
point in space set NITV such that eliminating p is to do the dominance tests
sequentially with p one by one until the occurrence of point q which can dominate
p [4]. This method is extremely expensive since p will compare with all points
in space set NITV if p is a local skyline point. In order to raise the efficiency
of NIT tests of p, we introduce a structure recursive search tree(RST) which is
similar to skyline tree in [3]. The root and inner nodes of RST are the virtual
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Fig. 2. An example of recursive search tree

median points constructed by respective subspaces. And the leaf nodes are local
skyline sets of their lying subspaces. The partitioning is recursively conducted, it
is necessary to terminate it when space size is less than or equal to a threshold β.

Now we describe the detailed process of maintaining the RST by an example.
As well as discuss how to reduce the compared times using it. Given a 3D data
set S which contains 32 points and set threshold β = 2. We construct the first
level VMP v10 and these points are partitioned into 8 subspaces, V000:{p1, p2,
p3, p4}, V001:{p5, p6, p7, p8}, V010:{p9, p10, p11, p12}, V011:{p13, p14, p15, p16},
V100:{p17, p18, p19, p20}, V101:{p21, p22, p23, p24}, V110:{p25, p26, p27, p28}
and V111:{p29, p30, p31, p32}. Then we recursively partition the new produced
8 subspaces in depth-first by their address values(That is the address value
presents that |V000|=0, |V001|=1, |V010|=2, and so on. The sorted order is V000,
V001, V010, V011, V100, V101, V110, and V111). We recursively divide the subspace
V000 first until the sizes of partitioned subspaces are all not more than β. The
result of partitioning space V000 is shown in Fig. 2(a), v20 is the VMP of subset
{p1, p2, p3, p4}. Suppose that s21={p1}, s31={p2}, s32={p3, p4}, terminate
the partitioning of s1 since 1 < β. Then we continue to partition the subspace
V110 of v20, v30 is constructed and the other 3 points are put into subspace V010

and V100 of v30. Here, V010 and V100 of v30 both satisfy threshold β. Then we
partition the subspace V001 of v10.

The aforementioned descriptions mainly introduce the process of partition-
ing. Now we discuss how to reduce the dominance tests using RST. The status
of RST now is reported in Fig. 2(b), and suppose that s21={p1}, s31={p2},
s32={p3, p4}, s23={p5, p6}, s24={p7, p8}, s25={p9, p10}, s26={p11, p12}.We
start to partition the subspace V011 of v10. Before partition these points, we first
eliminate those which are dominate by some points in space set NITV011 , i.e.,
subspaces V000, V001, and V010 of v10. We suppose p is lied in V011 of v10, now
we check whether p is dominated. First, we compare p with v20, suppose that
p lies in subspace V011 of v20. Then p only needs to compare with point p1 in
s21 and skips all the points in subspace V110 of v20. If p is not dominate by p1,
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we continue this tests in subspace V001 and V010 of v10. Suppose that p lies in
subspace V010 of v21 and in V001 of v22, p only needs to compare with points
in s25 and save 6 times dominance tests with points in s23, s24 and s26. If p is
not dominated by points in s25, keep it and continue this tests for next point in
subspace of V011 of v10. Otherwise, drop p immediately. Finally, we collect all
the leaf nodes as the results of skyline computation.

Based on above introduction about RST, it is easy to observe that the more
balanced the partitioned subspaces, the less average dominance tests the RST
conducts.

5 Algorithms

This section proposes our algorithm VMPSP which adopts constructed virtual
median point as the partitioning point and utilizes a RST structure to reduce the
dominance tests among these subspaces which are comparable. VMPSP strives
to keep the balance of partitioned subspaces which can reduce the cost of par-
titioning and the cost of comparisons in RST. VMPSP algorithm is given in
Algorithm 1.

Algorithm 1. VMPSP(S)
Input: A d-dimensional positive numerical data set S
Output: The RST of S

1: create a recursive search tree node RST .
2: p̂ ← ConstructVirtualMedianPoint(S).
3: max ← 2d−1
4: create Space Subsets {S0, · · · ,Smax} as well as all are empty.
5: RST.value ← p̂. // Assign partitioning point p̂ to current RST node
6: for ∀p ∈ S do
7: i ← Compare(p, p̂). // i represents the address of p locating subspace w.r.t. p̂
8: Add p into Si. // Si contains the ith space subset’s points.
9: for i ← 0 to max do

10: if |Si| > 0 then
11: for ∀j < i, (j | i) = i do
12: for ∀p ∈ Si do
13: flag ← CheckByRST(p,RST [j]).
14: if flag == true then
15: Si.discard(p)
16: if |Si| > β then
17: Ti ← VMPSP(Si). // Recursively conduct partition.
18: RST [i].add(Ti). // Add Ti as the RST’s ith subtree.
19: else if |Si| > 0 then
20: localSkyline ← BNL(Si).
21: RST [i].skyline ← localSkyline.
22: return RST
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Algorithm 1 depicts the pseudo code of VMPSP. We first construct a vir-
tual median point p̂ as partitioning point by ConstructVirtualMedianPoint
function as shown in line 2. And then in lines 3-8 partition all data points into
2d subsets {S0, · · · , Smax} corresponding to 2d subspaces {V0, · · · , Vmax}, and
the subscript i of Si represents the address of subpartitions. Compare func-
tion in line 7 computes the subspace in which p lies w.r.t p̂. For any non-empty
subset Si belonging to Vi, we can immediately skip subsets in ITVi

and solely
check remaining subsets in NITVi

as described in line 11, all subspaces Vj are
in NITVi

if (j | i) = i. Next, for the dominance tests in NITVi
, we only check

a small part of them using RST maintained by yet found local skyline sets and
constructed virtual median points and eliminate dominated points in Si. After
above checking, if the remaining points in Si is still larger than threshold β,
then recursively partition Si until it is not more than β. Otherwise, we could
compute the local skyline sets for the remaining points using basic method BNL
[1], it is not inefficient since the threshold β is small. We create a RST at the
beginning of the algorithm, the root and inner nodes are the virtual median
points constructed by respective subspaces and the leaf nodes are local skyline
points of their lying subspaces.

Algorithm 2. CheckByRST(p,RST )
Input: A d-dimensional positive numerical data set S
Output: Whether point p is dominated by any point in recursive search tree RST or
not

1: if RST.isLeaf() then
2: if DOMINATE(p,RST.skyline) then
3: return ture
4: else
5: i ← Compare(p,RST )
6: for ∀T ∈ RST.child, (T.address | i) = i do
7: if CheckByRST(p,T ) then
8: return true
9: return false

RST is used to reduce the dominance tests among these subspaces which are
comparable as described in Algorithm 2. First, we need to judge whether current
RST node is a leaf. If it is true, check p with local skyline set in it. Otherwise,
compare p with it and recursively recall function until check out whether p is
dominated by some points. Finally return the result of tests.

6 Experiments

In this section, we evaluate the performance of our proposed algorithm VMPSP
in dimensionality and cardinality in detail, by comparing it with state-of-the-
art main-memory algorithms SFS [2], OSPS [3], and BSkyTree [4] using both
synthetic and real data sets.
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6.1 Experimental Settings

We generate two types of synthetic data sets that are Independent(IND) and
Anti-correlated(ANT) according to the instructions in [1], respectively. The syn-
thetic data sets dimensionality ranges from 6 to 16 and the data sets cardinal-
ity ranges from 200 K to 1M. All attributes values are positive real number in
[0,1000]. Specifically, we claim here that the default dimensionality and cardi-
nality are 12 and 200K, respectively. We also collect two real data sets Col-
orMoments1 and IPUMS1. ColorMoments has 68404 tuples with 9 attributes.
It describes the image features extracted from an image collection. IPUMS has
74954 tuples with 23 attributes. It describes unweighted PUMS census data from
the Los Angeles and Long Beach areas for the year 1980. All algorithms are
implemented by C++ languages and run on Intel Core-Q8300 CPU at 2.5GHz,
with 4GB of RAM. Assuming that memory can contain all the origin data sets.

We compare our algorithm VMPSP with three state-of-the-art main-memory
algorithms SFS [2], OSPS [3] and BSkyTree [4]. The monotone function of SFS
adopts the sum function that the sum of all the attributes values. OSPS has two
versions and we adopt the better OSPSOnPartitioningFirst method as OSPS
and BSkyTree has two versions and we adopt the better BSkyTree-P method as
BSkyTree here. We propose a complete algorithm of skyline computation using
VMP named VMPSP which also utilizes our designed structure RST. It is better
than state-of-the-art algorithms by extensive experiments.
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Fig. 3. Performance over dimensionality variation

6.2 Scalability

Varing Dimensionality. This section describes the performance of above algo-
rithms with the dimensionality variation. Figure 3 reports the response time

1 The data set is collected from https://kdd.ics.uci.edu.

https://kdd.ics.uci.edu
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Fig. 4. Performance over cardinality variation

of the four algorithms. The two types distributions data sets that IND and
ANT with dimension from 6 to 16 and 200k cardinality are used to conduct the
experiments. VMPSP outperforms the other three algorithms in every dimen-
sionality. Experiments validate space-based algorithms is better than sort-based
algorithms and our algorithm is the best in existing space-based algorithms.
Specifically, VMPSP is about faster 3 to 5 times over state-of-the-art space-
partitioning algorithm BSkyTree, and outperforms SFS by up to one to two
orders of magnitude.

Varing Cardinality. This section mainly describes the performance of algo-
rithms with cardinality variation. We also generate two types data sets like above
with cardinality from 200 K to 1M and 12 dimensionality. As Fig. 4 reports, our
proposed algorithm VMPSP is always better than others.

6.3 The Performance on Real Data Sets

This section describes the performance of all algorithms on real data sets Color-
Moments and IPUMS. Table 1 presents the response time which it takes to exe-
cute all algorithms in ColorMoments. We observe that our algorithm VMPSP is
the best algorithm. The ColorMoments has 68040 tuples, 9 attributes, and 1533
of them are skyline results.

Table 1. Performance on real data set.

Algorithm ColorMoments IPUMS

n=68,040; d=9 n= 74,954; d=23

skyline=1533; 2.25s% skyline=23190; 30.94 %

SFS 0.17s 35.17s

OSP 0.16s 1.92s

BSkyTree 0.15s 1.37s

VMPSP 0.08s 0.90s
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7 Conclusion

In this paper, we illustrated the development of existing non-index main-memory
algorithms of skyline computation. Compared two popular framework of being
based on sorting and based on space partitioning, respectively. And concluded
that space-partitioning-based schema is better. Then, the defections of existing
algorithms based on it were introduced which they do not consider the impor-
tance of balance in partitioning. To overcome this limitation, we studied the
process of partitioning and develop a cost evaluation model of space partition-
ing in skyline computation. Also, we analyzed the importance of balance in
partitioning and proposed an approach to construct the balanced partitioning
point VMP. In addition, a structure RST was designed to accelerate dominance
tests among comparable subspaces. Finally, the evaluation indicates that our
algorithm is faster several times than existing state-of-the-art algorithms.
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