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Abstract. Event-based social networks (EBSNs) provide convenient
online platforms for users to organize, attend and share social events.
Understanding users’ social influences in social networks can benefit
many applications, such as social recommendation and social market-
ing. In this paper, we focus on the problem of predicting users’ social
influences on upcoming events in EBSNs. We formulate this prediction
problem as the estimation of unobserved entries of the constructed user-
event social influence matrix, where each entry represents the influence
value of a user on an event. In particular, we define a user’s social influ-
ence on a given event as the proportion of the user’s friends who are influ-
enced by him/her to attend the event. To solve this problem, we present
a combined collaborative filtering model, namely, Matrix Factorization
with Event Neighborhood (MF-EN) model, by incorporating event-based
neighborhood method into matrix factorization. Due to the fact that the
constructed social influence matrix is very sparse and the overlap values
in the matrix are few, it is challenging to find reliable similar event neigh-
bors using the widely adopted similarity measures (e.g., Pearson corre-
lation and Cosine similarity). To address this challenge, we propose an
additional information based neighborhood discovery (AID) method by
considering three event-specific features in EBSNs. The parameters of our
MF-EN model are determined by minimizing the associated regularized
squared error function through stochastic gradient descent. We conduct
a comprehensive performance evaluation on real-world datasets collected
from DoubanEvent. Experimental results demonstrate the superiority of
the proposed model compared to several alternatives.

1 Introduction

In the past few years, event-based social networks (EBSNs), such as Plancast1

and DoubanEvent2, have proliferated to be the online platforms for users to
organize, attend and share social events to be held in offline physical venues
[18]. EBSNs link online and offline social worlds, providing not only typical
1 http://www.plancast.com.
2 http://www.douban.com.
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online social networking services, but also face to face offline communication
by attending events. Previous studies [6,26,29] have shown that users could
influence others to attend events in EBSNs, especially for close social ties. For
instance, when an organizer publishes an event, users can express their will-
ingness to join the event by RSVP (“yes” or “maybe”)3 and broadcast posts
about their participating information to their friends (i.e., followers), who hes-
itate in making decisions. When a user’s friends see his/her participating post,
they might want to attend the event together with the user.

Social influence aims to study the behavioral change of a person because of
the perceived relationships with other people in social networks. Since it has
a wide range of applications, such as social recommendation [27] and social
marketing [12], considerable works have been conducted to the influence analysis
or prediction in social networks (e.g., Twitter and Facebook) [2,24,25]. However,
as a newly emerged online social service, EBSN has its unique characteristics,
such as event location and event organizer, which leads to the social influence
analysis or prediction approaches used in conventional social networks might be
ineffective in EBSNs. Nevertheless, social influences of EBSN users can provide
valuable insights. For an upcoming event (i.e., the event which has not been held
but has been published in the EBSNs), the event organizer hopes to maximize the
attendees. This goal makes him/her desire to target the influencers on this event.
These influencers are able to let many friends to attend this event by sharing the
event. In this case, the event organizer needs to know users’ influences to their
friends. Therefore, understanding users’ influences is a key issue in EBSNs.

In this paper, we focus on the social influence prediction problem in EBSNs.
We formulate this prediction problem as the estimation of unobserved entries
of the constructed social influence matrix S, where each entry (u, e) represents
the social influence of user u on event e. Notice that, we focus on predicting
users’ influences on upcoming events which could provide valuable information
for event organizers. In particular, similar to the definition of item-level social
influence in conventional social networks [7], we define user u’s influence on event
e as the proportion of u’s friends who are influenced by u to attend e. Different
from the structure-level influence [21] and the topic-level influence [17,23], the
predicted event-level influence can be used in two angles. On one hand, given an
upcoming social event, we could find out the influencers to attract more friends
for attending the event. On the other hand, given a user, we could recommend
events for him/her to share, which can improve the interactions between the user
and their friends. Matrix factorization is a straightforward approach to solve this
prediction problem. By using users’ observed influences, we could predict their
influences on the upcoming events which have already some RSVPs (“yes” or
“maybe”). However, as matrix factorization does not detect associations among
the closely related items (i.e., users or events), the prediction performance of
this approach might be poor. To improve the prediction accuracy, a potential

3 The RSVP (“yes” or “maybe”) indicates that a user wants to attend or is interested
in an event. We assume that a user will attend the events which he/she has expressed
RSVP (“yes”) to.
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approach is to integrate neighborhood method with matrix factorization [13].
However, since the social influence matrix S is very sparse and the overlap values
in S are few, it is hard to find reliable similar neighbors using the widely adopted
similarity measures (e.g., Pearson correlation and Cosine similarity). Therefore,
how to discover reliable event neighbors in S is a challenging problem.

In EBSNs, event content, event location and event organizer are the major
components of an event which affect users’ decisions in attending the event.
Therefore, if two events are similar on these three aspects, we can consider these
two events as similar events. To this end, we propose an additional information
based neighborhood discovery (AID) method to identify event neighborhood. To
find the neighborhood of a targeted event e, we first capture three event-specific
features (i.e., event content, event location and event organizer) and compute the
similarities between e and other events on each feature. Then, we take the most
similar events on each feature as a neighborhood of e. Such that, we obtain three
neighborhood sets corresponding to the three features. Finally, a neighborhood
aggregation strategy is proposed to derive the final neighborhood. In particular,
in such strategy, we pick up the events contained in at least two neighborhood
sets to make up the final neighborhood of e.

Based on AID, we present a combined collaborative filtering model, namely,
Matrix Factorization with Event Neighborhood (MF-EN) model, to predict
users’ social influences on upcoming events in EBSNs. The model incorporates
event-based neighborhood method into matrix factorization and thus can take
advantages of both matrix factorization and neighborhood method. Model para-
meters are determined by minimizing the associated regularized squared error
function through stochastic gradient descent. In summary, the major contribu-
tions of our work are listed as follows:

– We present a novel combined collaborative filtering model, namely, Matrix
Factorization with Event-User Neighborhood (MF-EN) model, which incor-
porates event-based neighborhood method into matrix factorization, for social
influence prediction in EBSNs. To the best of our knowledge, this is the first
attempt to define and solve the event-level social influence prediction problem
in EBSNs.

– To find reliable similar neighbors, we propose an additional information based
neighborhood discovery (AID) method by considering event-specific features
(i.e., event content, event location and event organizer) in EBSNs.

– We evaluate the performance of our prediction model on real-world datasets
collected from DoubanEvent, which is the biggest event-based social network
in China. Experimental results demonstrate the superiority of our MF-EN
model compared to several alternatives.

The remainder of this paper is organized as follows. In Sect. 2, we give the
definition of the social influence prediction problem, and show our model frame-
work. In Sect. 3, the AID method is discussed in detail. We present our MF-EN
model for social influence prediction in Sect. 4, followed by experimental evalu-
ation in Sect. 5. We review the related work in Sect. 6. Finally, Sect. 7 concludes
the paper.
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2 Preliminaries

2.1 Event-Based Social Network

Users can establish, join and share events held offline in physical venues in event-
based social networks (EBSNs). Users, events and organizers are three essential
types of entities in EBSNs. As shown in Fig. 1, users in an EBSN denoted as
U1, U2, U3 and U4 are interconnected via social links to form an online network.
They are the participants of social events. Events denoted as E1, E2 and E3

contain textual content information and locations (i.e., L1 and L2) where they
are held offline. Organizers denoted as O1 and O2 are a special kind of users who
establish as well as attend social events. They are the owners of social events
and an organizer may hold more than one event.

Fig. 1. The description of EBSNs
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Fig. 2. Influence varies with users and
events in EBSNs

2.2 Social Influence in EBSNs

Users may influence others to attend events in EBSNs. Let us consider the fol-
lowing scenario. Bob discovers a drama in DoubanEvent. Since he is not quite
sure whether it is worth watching, Bob hesitates in making a decision to watch
it until his friend Alice broadcasts her participation information on this drama.
Given that Alice has broadcasted several wonderful social events before, Bob is
quite confident about her taste in dramas and finally attends the event together
with Alice.

We randomly select two active users in DoubanEvent, which is the largest
event-based social network in China. For each user, we calculate the proportion
of their influenced friends on each of his/her attending events and plot them
in Fig. 2. From Fig. 2, we can observe that: different users have different social
influences to their friends; users’ social influences are different on different events.

2.3 Problem Definition

In EBSNs, there is a set of users U = {u1, u2, ..., uM}, a set of events E =
{e1, e2, ..., eN} and a set of organizers O = {o1, o2, ..., oC}. For each user u ∈ U ,
it has a user profile (e.g., user id and username), friends (i.e., followers) collection
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F (u) and a set of past and upcoming events HEu ⊆ E that user u has expressed
RSVP (“yes”). For each event e ∈ E, it has an event id, content information, an
event organizer o(e), a set of users who have expressed RSVP (“yes”) (denoted
as HUe ⊆ U) and a physical location le = {lone, late} in terms of longitude and
latitude where event e is held. For each organizer o ∈ O, it has a set of events
Eo organized by him/her.

Xu et al. [26] have validated that mutual influences have effects on the event
participation between friends in EBSNs by using statistics analysis. Similar to
the definition of item-level social influence in conventional social networks [7],
we define user u’s social influence on event e as sue, which equals to pue

/
|F (u) |

(i.e., the proportion of u’s influenced friends on event e), where pue denotes the
number of u’s friends who are influenced by u to attend event e. The social influ-
ence prediction problem can be formally defined as estimating the unknown sue

according to the observed influence values. Notice that, we focus on predicting
the social influence of a user on an upcoming event, on which some users have
expressed RSVP (“yes”), and this user has already expressed RSVP (“yes”) on
some past or upcoming events before.

2.4 Model Framework

In this paper, focusing on the social influence prediction problem in EBSNs,
we present a combined collaborative filtering predicting model, namely, Matrix
Factorization with Event Neighborhood (MF-EN) model, which incorporates
neighborhood method into matrix factorization to improve the prediction accu-
racy. As shown in Fig. 3, the model is composed of three major components:
social influence matrix construction, additional information based neighborhood
discovery and MF-EN predicting model.

Social Influence Matrix Construction. Using each user’s attending events,
we construct the user-event social influence matrix S. Obviously, there are M×N
entries in S, and each entry is denoted as sue. Recall that sue is user u’s social
influence on event e. In practice, only some elements of S can be observed and

Social influence 
matrix construction

Additional information based 
neighborhood discovery

Matrix factorization

Predicting model  (MF-EN)

Event-specific 
Features

Event content 

Event location

Event organizer

Fig. 3. The framework of the MF-EN model
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the unobserved elements (of upcoming events) are represented by ŝue. The social
influence prediction problem is to predict ŝue by the observed sue.

Additional Information Based Neighborhood Discovery. We propose an
additional information based neighborhood discovery (AID) method which takes
event-specific features (i.e., event content, event location and event organizer)
into consideration for neighborhood discovery.

MF-EN Model. Our proposed MF-EN model incorporates event-based neigh-
borhood method into matrix factorization. Model parameters are learned by
solving the associated regularized squared error function through stochastic gra-
dient descent.

3 Additional Information Based Neighborhood Discovery

In EBSNs, since lots of new events are published every day and each user can only
attend a small proportion of events, the constructed social influence matrix S is
very sparse, and the overlap values in S are few. Therefore, it is challenging to
find reliable similar neighbors by using the widely adopted similarity measures
such as Pearson correlation and Cosine similarity. To address this challenge,
by leveraging three event-specific features in EBSNs, we propose an additional
information based neighborhood discovery (AID) method for event neighborhood
discovery.

Event content, event location and event organizer are the major components
of an event which affect users’ decisions in attending the event in EBSNs. There-
fore, we consider two events are similar events if they are similar on these three
aspects. To this end, our AID method captures three event-specific features (i.e.,
event content, event location and event organizer) to perform event neighbor-
hood discovery. Given a targeted ŝue in social influence matrix S, for each event
e′ in HEu, which is a set of past and upcoming events user u has expressed
RSVP (“yes”), we first compute the similarities of event content, event loca-
tion and event organizer between e and e′, denoted as ESc (e, e′), ESl (e, e′) and
ESo (e, e′), respectively. Then, we take the most similar events on each feature
as a neighborhood of e. Such that, we derive three neighborhood sets corre-
sponding to the three features. Finally, we utilize a neighborhood aggregation
strategy to find the final neighborhood. In particular, in this strategy, we take
events contained in at least two neighborhood sets as the final neighborhood
of e. We discuss how to determine the size of the neighborhood on each feature
in Sect. 5. In the following, we will introduce how to compute the similarities
between events on each event-specific feature in detail.

3.1 Event Content

Event content is the key component of an event, which plays a major role in
determining users’ decisions in attending the event. In order to derive the con-
tent similarity between events, we put the event content including event title,
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description and category as a document and obtain the event distribution on
latent topics by employing the Latent Dirichlet Allocation (LDA) model [3],
which is an unsupervised machine learning technique to identify latent topics
from a large document.

Based on the assumption that documents are mixtures of topics, LDA models
document d as a probability topic distribution, denoted as θd, and each topic z is
represented as a probability distribution over terms in the vocabulary, denoted
as φz. Like previous study [16], we first format content text of event e to docu-
ment de, by removing the stop words from each corpus. Then each event has a
corresponding document, which is taken as the input of the LDA model. Finally,
we can obtain all events’ document-topic distributions Θ and topic-word distri-
butions Φ, where the topic distribution represents the varieties of an event. We
suppose there are K latent topics. The generative process of LDA is as follows:

1. For each topic z ∈ {1, 2, ...K}, draw φz ∼ Dirichlet (β), which is a multino-
mial distribution over terms.

2. For each event document de

(a) Draw a topic distribution θde
∼ Dirichlet(α).

(b) For each word wde,n in document de,
(i) Draw a topic zde,n ∼ Mult(θde

),
(ii) Draw a word wde,n ∼ Mult(φzde,n

).

Given the hyperparameters α and β, the joint distribution of an event document
is specified as

p (wde
, zde

, θde
,Φ|α, β) =

Ne∏
n=1

p
(
wde,n|φzde,n

)
p (zde,n|θde

) p (θde
|α) p (Φ|β) , (1)

where Ne is the number of words of event e.
The complete likelihood of N event documents is derived based on the

assumption that all the documents are independent of each other:

p(W,Z,Θ,Φ|α, β) =
N∏

e=1

p(wde
, zde

, θde
,Φ|α, β). (2)

The model has two unknown parameters to be inferred: the document-topic
distributions Θ, and the topic-word distributions Φ. We utilize Gibbs sampling
[11] to estimate these parameters, which is a special sort of Markov-chain Monte
Carlo (MCMC) simulation.

Given the topic distributions θde
and θde′ of events e and e′, we can use

the Jensen-Shannon divergence [11] to compute the content similarity between
them. The Jensen-Shannon divergence is defined as follows:

DJS(θde
, θde′ ) =

1
2
[DKL(θde

,
θde

+ θde′

2
) + DKL(θde′ ,

θde
+ θde′

2
)], (3)
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where DKL(·) is the Kullback-Leibler divergence. In particular, the value Jenson-
Shannon divergence ranges from 0 to 1 and increases when the distinction
between θde

and θde′ becomes larger.
Finally, given two events e and e′, we define the content similarity ESc (e, e′)

(0 ≤ ESc (e, e′) ≤ 1) between them as:

ESc (e, e′) = 1 − DJS(θde
, θde′ ). (4)

3.2 Event Location

In EBSNs, event location specifies the physical place where the event is held.
Compared with conventional social networks, offline social interaction is a unique
characteristic of EBSNs. Therefore, event location is an important factor affect-
ing whether a user attends an event. To better understand the impact of event
location on users’ behaviours, we perform a data analysis on a real-world dataset
crawled from DoubanEvent. We calculate the distances between all pairs of
events with different locations which each user has attended and plot the prob-
ability density function of the distance in Fig. 4 in log-log scale. As shown, we
can observe that the distance probability distribution approximately follows a
power law, which means that most of the event pairs which a user has attended
are within a short distance. To this end, we take event location as an important
factor, and consider two events are similar if their locations are close.
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Fig. 4. Distance probability distribution

Let dis(le, le′) denote the Euclidean distance between event e and e′. We use
the Gauss formula which describes the exponential decay with the distance to
measure the location similarity ESl (e, e′) (0 < ESl (e, e′) ≤ 1) between event e
and e′, which is defined as:

ESl (e, e′) = exp{−dis(le, le′)2

2
}. (5)
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3.3 Event Organizer

In EBSNs, organizers are the owners of events. Whether a user attends an event
is also affected by the event organizer [8]. For example, if the organizer is a user’s
favorite singer, the user would be interested in attending the singer’s concerts.
Therefore, we consider, two events are similar if they are held by the same
organizer. In particular, we define the organizer similarity ESo (e, e′) between
event e and e′ as a binary value function,

ESo (e, e′) =

{
1 o(e) = o(e′)
0 others

, (6)

where o(e) denotes event e’s organizer and o(e) = o(e′) means that event e and
e′ are held by the same organizer.

4 MF-EN Predicting Model

To improve the accuracy of social influence prediction in EBSNs, we present a
combined collaborative filtering model, namely, Matrix Factorization with Event
Neighborhood (MF-EN) model. In this section, we first introduce the basis of
our model (i.e., matrix factorization), then show our MF-EN model.

4.1 Matrix Factorization

Matrix factorization is the basis of our combined model. It can be seen as the
baseline approach to solve our social influence prediction problem. For the user-
event social influence matrix S, matrix factorization maps both users and events
into a joint latent factor space of dimensionality d, such that the influence matrix
is modeled as inner products in that space [14]. User u is associated with a vector
pu ∈ R

d and event e is associated with a vector qe ∈ R
d. Both vectors pu and qe

are referred to as d-dimensional latent factors. The social influence ŝue of user u
on the upcoming event e can be predicted according to the following equation,

ŝue = pT
u
qe. (7)

Parameters pu and qe are generally learned by solving the following regularized
least squares problem:

min
p∗,q∗

∑
(u,e)∈κ

(
sue − pT

u qe

)2
+ λ

(‖ pu‖2+ ‖ qe‖2
)
, (8)

where κ is the collection of the whole observed values of the social influ-
ence matrix and the constant λ is a parameter determining the extent of
regularization.
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4.2 MF-EN: Matrix Factorization with Event Neighborhood Model

Similar to matrix factorization, neighborhood method [4,5] can also be used to
predict the unobserved values of the social influence matrix. These two types
of methods have their own advantages and disadvantages [13,22]. Neighborhood
method is effective at detecting localized relationships, which focus on comput-
ing the relationships between similar neighbors. They always ignore the vast
majority of values and predict values only dependent on a few significant neigh-
borhood. While matrix factorization is effective at estimating global information
and poor at detecting strong associations on closely related neighbors.

In this paper, we incorporate both event-based neighborhood method into
matrix factorization by a combined collaborative filtering model, namely, Matrix
Factorization with Event Neighborhood (MF-EN) model, which takes advantages
of both matrix factorization and neighborhood method to enrich each other. Let
s̄u denote the average social influence values of user u. The model is shown as
follows:

ŝue = pT
u qe + |N(u, e)|− 1

2
∑

f∈N(u,e)

wef (suf − s̄u), (9)

where N(u, e) is the neighbor set of event e among HEu, which is found by
the AID method. Moreover, wef is the parameter which denotes the influence
weights of event f to e.

Equation 9 provides a 2-tier model for social influence prediction: The first
tier pT

u qe considers the global interaction between users and events; The second
tier contributes the fine grained adjustments that the event neighborhood plays
roles in. All parameters in Eq. 9 can be determined by minimizing the associated
regularized squared error function through stochastic gradient descent:

min
p∗,q∗,w∗

∑

(u,e)∈κ

⎛

⎝sue − pT
u qe − |N(u, e)|− 1

2
∑

f∈N(u,e)

wef (suf − s̄u)

⎞

⎠
2

+ λ1

⎛

⎝‖pu‖2 + ‖qe‖2 +
∑

f∈N(u,e)

w2
ef

⎞

⎠ ,

(10)

where λ1 determines the extent of regularization.

5 Experiments

In this section, we evaluate the proposed model based on real-world EBSN
datasets. We first describe the experimental setup including the datasets, evalua-
tion metrics and comparison methods. Then, we evaluate the prediction accuracy
of our proposed model.

5.1 Experimental Setup

Datasets. The datasets used in our experiments are collected from the website of
DoubanEvent. We get the following data: (1) event information, including event
id, content information (category, title and textual description), organizer id,
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physical location (longitude, latitude) and the set of attendees who are recorded
in order of time when they express RSVP (“yes”); (2) user information, including
user id, username, city and followers IDs. To make data sufficient for evaluation,
we remove users who have attended fewer than 5 events (about 5 % of the total
users) and events whose participants are fewer than 8 (about 3 % of the total
events). After preprocessing, we get 11123 users, 29342 events, 153408 friend
links and 356052 user-event pairs. The sparsity of the resulting dataset is 99.9 %.

To capture the social influence in EBSNs, similar to previous social influence
studies [10,24], we consider that a user is influenced by a friend when he/she
attends an event after that friend’s attending. In particular, we assume that all
social influences are independent from each other, thus when a user gets multiple
broadcastings of an event information before he expresses RSVP (“yes”) on it,
we simplify the case as that the user is influenced by the latest one.

In our experiments, we randomly sample different number of users and select
events attended by these users to form datasets with different sizes, including
1000 users dataset, 5000 users dataset and 11123 users dataset. In particular,
we use the 5000 users dataset for parameters setting. We randomly select 50 %,
70 % and 90 % of the observed entries in social influence matrix S of different
sizes of datasets (i.e., 1000 users dataset, 5000 users dataset and 11123 users
dataset) for training, and the rest for testing.

Evaluation Metrics. To evaluate the accuracy of our proposed method, we
adopt two popular evaluation metrics, namely, Root Mean Square Error (RMSE )
and Mean Absolute Error (MAE ), which are defined as:

RMSE =

√
1

|S′|
∑

(u,e)∈S′
(sue − ŝue)

2, MAE =
1

|S′|
∑

(u,e)∈S′
|sue − ŝue|, (11)

where |S′| denotes the size of the testing set S′. The smaller RMSE or MAE
value indicates better accuracy.

Comparison Methods. We compare our MF-EN model with the following 7
methods.

– Logistic Regression (LR): If we regard the event-specific features as vari-
ables, and the values of social influences as the response, then the social
influence prediction on upcoming events can be formulated as the regression
problem. Thus, we use the LR model to combine the event-specific features
linearly and learn the regression coefficients of these features from the training
data.

– Event Influence Mean (EM): This method uses the mean influence value
of the corresponding event to predict the unobserved values:

ŝ.,e =
∑

u∈HUe

sue

/
|HUe|. (12)
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– User Influence Mean (UM): Similar to EM, this method uses the mean
influence value of the corresponding user to predict the unobserved values:

ŝu,. =
∑

e∈HEu

sue

/
|HEu|. (13)

– Classical Event-Based Neighborhood Method (P-EN): The unob-
served values are predicted based on the values of events’ neighbors discovered
by using Pearson correlation:

ŝue = |N(u, e)|− 1
2

∑
f∈N(u,e)

wef (suf − s̄u). (14)

Model parameters are determined by Eq. 15. Actually, we have also evalu-
ated Cosine similarity as the similarity measure which gives poorer results
compared with Pearson correlation.

min
w∗

∑
(u,e)∈κ

(sue − Aue)
2 + λ2 ·

∑
f∈N(u,e)

w2
ef . (15)

– Event-Based Neighborhood Method Using Additional Information
(AI-EN): Different from P-EN, events’ neighbors are discovered by using
our AID method.

– Matrix Factorization (MF): In this method, we predict the unobserved
values using matrix factorization (i.e., Eq. 7) and parameters are determined
by Eq. 8.

– HF-NMF: If we consider the event content as the content of the web post,
and the proportion of friends who are influenced by the user to attend the
event as the user’s social influence on the post, then the hybrid factor non-
negative matrix factorization (HF-NMF) approach proposed in [7] can be
used to predict the user’s social influence on an upcoming event.

5.2 Experimental Results

5.2.1 Parameters Setting
Parameters of LDA. In order to achieve the content similarity between events,
we select the optimal LDA parameters: α, β and the number of topics K. Accord-
ing to the setting in [15], we set α = 50

/
K and β=0.01. We evaluate RMSE and

MAE under different values of K from 10 to 100. The results plotted in Fig. 5
show that the performance of LDA increases with the growth of K and there
is little performance improvement after K = 70. However, the time consump-
tion increases sharply when K is larger than 70. To balance the accuracy and
computation complexity, we fix the value of K in LDA to 70 in our experiments.

Parameters of MF. We set λ = 0.01 for matrix factorization. How to set the
dimension number d is important for the prediction performance. If d is too
small, we cannot discriminate users and events in the latent space. If d is too
large, the computation complexity will be greatly increased. Thus, we evaluate
RMSE and MAE of MF by varying the number of latent dimensions d from
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Fig. 6. Prediction performance of MF with different latent dimensions

10 to 100. The performance results are plotted in Fig. 6. According to Fig. 6,
we set the dimension number as 20, where RMSE and MAE achieve the best
performance.

Parameters of Neighborhood Size. In our AID method, the size of the
event neighborhood set on each event-specific feature determines the final event
neighborhood size. For simplicity, the size of the event neighborhood on each
event-specific feature is set to be equal, which is denoted as k. Recall that, for
a given event e, its neighborhood on the feature of event organizer is consisted
of the events which have the same organizer with e. Therefore, the size of the
neighborhood on the event organizer feature is not restricted by k (i.e., it might
be smaller or larger than k). The prediction performance of our proposed meth-
ods under different neighborhood size k is shown in Fig. 7. We can observe that
the size affects the prediction performance and the optimal size of these methods
is different. To obtain the best performance, we set k of AI-EN and MF-EN to
100 and 70, respectively.

5.2.2 Advantages of the AID Method
In this section, we study the performance of the AID method. We compare
the performance of neighborhood methods whose neighbors are found by our
proposed AID approach (i.e., AI-EN) with methods whose neighbors are directly
obtained by using the Pearson correlation (i.e., P-EN).

Our proposed AID method considers three event-specific features for event
neighborhood discovery. In order to demonstrate the advantages of the combi-
nation of these features in the event neighborhood discovery, we also compare
the performance of AI-EN with methods whose neighbors are discovered only
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by a single feature (e.g., event content). The event-based neighborhood meth-
ods using the single feature of event content (C), event location (L) and event
organizer (O) for event neighborhood discovery are denoted as C-EN, L-EN and
O-EN, respectively.

In Fig. 8, we plot the performance of these event-based neighborhood method.
We can observe that AI-EN which discovers the event neighborhood by aggre-
gating the neighborhood sets on the event-specific features can obtain the best
performance. The reason lies in that: (1) The social influence matrix S is sparse,
and similar neighbors found by the Pearson correlation are unreliable; (2) Only
using the single feature of EBSNs (e.g. event content) cannot find reliable event
neighborhood.

5.2.3 Performance Comparison
The prediction errors measured by RMSE and MAE of the comparison meth-
ods on different datasets are shown in Table 1 with best results highlighted in
boldface. We make 4 observations from the results.

First, the proposed MF-EN model, which incorporates event-based neigh-
borhood method into matrix factorization by considering multiple event-specific
features in EBSNs, achieves the best performance measured by both RMSE and
MAE in our experiments. Notice that, similar to the work [7], the values of users’
event-level social influences are very small in our datasets (usually less than 0.2).
Therefore, a small decrease of the RMSE (or MAE) can give significant perfor-
mance improvements.

Second, the comparisons between MF-EN and MF reveal that the perfor-
mance improves when incorporating event-based neighborhood method into
matrix factorization. For example, MF-EN is better than MF and EN. This is
because the memory-based and model-based collaborative filtering approaches
have their own advantages and can enrich each other.

Third, in most of the experiments, HF-NMF performs better than MF, while
MF-EN perform better than HF-NMF. This is because HF-NMF incorporates
the event content information into matrix factorization. However, since MF-
EN integrates event-based neighborhood method with matrix factorization by
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Table 1. RMSE and MAE of all methods

Training% Metrics LR EM UM AI-EN MF HF-NMF MF-EN

1000 users

50% RMSE 0.352436 0.338952 0.325979 0.267345 0.261651 0.258213 0.255415

MAE 0.215672 0.19437 0.18908 0.135672 0.135824 0.135162 0.133524

70% RMSE 0.348563 0.336231 0.316227 0.255742 0.2495 0.249485 0.246755

MAE 0.210435 0.190721 0.170242 0.132275 0.129875 0.129716 0.127657

90% RMSE 0.334436 0.326821 0.309297 0.251824 0.245768 0.244702 0.241334

MAE 0.201534 0.189877 0.169782 0.131835 0.127337 0.126837 0.124007

5000 users

50% RMSE 0.360245 0.341215 0.332983 0.276524 0.272651 0.266536 0.259040

MAE 0.222875 0.198547 0.197218 0.137282 0.137211 0.135921 0.133142

70% RMSE 0.351895 0.324997 0.320721 0.262412 0.255582 0.255272 0.252169

MAE 0.218854 0.189451 0.189882 0.137410 0.136214 0.135415 0.132086

90% RMSE 0.346537 0.310115 0.318723 0.258927 0.253286 0.252438 0.249027

MAE 0.206981 0.172589 0.170071 0.135446 0.134275 0.133727 0.129224

11123 users

50% RMSE 0.369857 0.349987 0.349927 0.278562 0.275315 0.274423 0.270140

MAE 0.232471 0.205817 0.203802 0.138741 0.138634 0.137912 0.135934

70% RMSE 0.357635 0.329752 0.343552 0.264921 0.260089 0.259355 0.253261

MAE 0.226934 0.190168 0.198021 0.137486 0.136987 0.136581 0.134632

90% RMSE 0.351537 0.318853 0.338571 0.261374 0.254758 0.254527 0.251426

MAE 0.214325 0.178954 0.191872 0.135961 0.135364 0.135036 0.131236

considering some unique characteristics of EBSNs, such as event location and
event organizer, they obtain better results than HF-NMF.

Last, the percentage of the training data has a significant impact on the pre-
diction performance. In particular, the more training data, the lower prediction
errors (i.e., measured by RMSE and MAE) the method can achieve. The reason
lies in that the performance of matrix factorization is poor in the case where
there is very little training data. Moreover, the prediction performance of EM is
worse than all the collaborative filtering approaches.

6 Related Work

Event-Based Social Network. Liu et al. [18] firstly introduce and define the
EBSN, a new type of social network which connects the online and offline social
worlds. Some works study the event recommendation problem [19,31] in EBSNs.
Qiao et al. [19] present a Bayesian latent factor model for event recommenda-
tion by incorporating heterogenous social relationships, geographical features
and implicit ratings. Yu et al. [28] study the problem of identifying the most
influential and preferable set of invitees by extending the credit distribution
model. To predict the event attendance, Du et al. [8] propose a singular value
decomposition with multi-factor event-based neighborhood algorithm. Formu-
lating the group-oriented event participation problem as a novel discriminant
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framework, Xu et al. [26] exploit the impact of dynamic mutual influence for the
social event participation prediction. Different from these works, we attempt to
quantify the social influences of users in EBSNs.

Social Influence Analysis. Influence is a potential factor which affects users’
behaviors. Considerable works have been conducted to qualitatively validate the
existence of influence [2,20]. Anagnostopoulos et al. [2] apply the statistical test
(i.e., shuffle test) to identify whether influence is a source of social correlation
using the time factor in a social network system. Chin et al. [6] investigate the
user behaviour on attending offline events and find that social influences exist
in EBSNs and users choose to attend an event partly because their friends will
attend this event. Recently, some works have been proposed to quantify the social
influence in different social networks [1,10,25]. Zhang et al. [30] argue that the
influence is continuously dynamic and infer the continuous dynamic social influ-
ence for temporal behavior prediction. Goyal et al. [10] propose both static and
time-dependent model to capture influence probabilities from a log of past prop-
agations. They consider user u influences user v on an action if they are friends
and u performs this action before v. Zhang et al. [29] propose a unified metric
to quantify the mutual user influence between social relation and geographical
distance in location-based social networks (LBSNs). They evaluate the social
influence of each user-pair in the participant set from a random walk perspec-
tive. Different from this work, we attempt to estimate each user’s social influence
to their friends on an event whose potential participants are unknown. There are
also some studies focusing on the social influence in a more fine-grained level.
Tang et al. [17] analyze the topic-level social influence using the probabilistic
model, in which they state, individuals’ influences to others could vary greatly
across different topics. Weng et al. [25] measure the topic-sensitive influences of
users in Twitter by taking both the topical similarity between users and the link
structure into account. Embar et al. [9] present online, multi-dimensional app-
roach for topic-specific social influence analysis. Cui et al. [7] consider a user’s
social influences are different on different posts, thus they define the item-level
social influence and propose a hybrid factor non-negative matrix factorization
approach (HF-NMF) to solve the influence prediction problem in conventional
social network (e.g., Facebook and Twitter). Inspired by their work, we focus
on predicting the event-level social influence in EBSNs. Since the method pro-
posed in [7] does not consider the unique characteristics of EBSNs (e.g., event
location), it cannot satisfactorily solve our event-level social influence prediction
problem. To the best of our knowledge, this is the first attempt to quantify the
event-level social influence in EBSNs.

7 Conclusion

In this paper, we study the problem of predicting users’ social influences on
upcoming events in event-based social networks (EBSNs). In particular, we define
a user’s social influence on a given event as the proportion of his/her friends who
are influenced by the user to attend the event. To solve this problem, we present a
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combined collaborative filtering model, namely, Matrix Factorization with Event
Neighborhood (MF-EN) model, which takes advantages of both matrix factor-
ization and neighborhood method. In the MF-EN model, to find reliable similar
neighbors, we propose an additional information based neighborhood discovery
(AID) method, which takes three event-specific features (i.e., event content, event
location and event organizer) into consideration. We conduct extensive exper-
iments on real-world datasets collected from DoubanEvent. The experimental
results demonstrate that our proposed model outperforms several alternatives.
In our future work, we plan to incorporate the user-specific features into our
model.

Acknowledgement. The work was supported by National Natural Science Founda-
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