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Abstract. Data cubes are widely used as a powerful tool to provide
multi-dimensional views in data warehousing and On-Line Analytical
Processing (OLAP). However, with increasing data sizes, it is becom-
ing computationally expensive to perform data cube analysis. In this
paper, we introduce HaCube, an extension of MapReduce, designed for
efficient parallel data cube computation on large-scale data. We also pro-
vide a general data cube materialization solution which is able to facil-
itate the features in MapReduce-like systems towards an efficient data
cube computation. Furthermore, we demonstrate how HaCube supports
view maintenance through either incremental computation (e.g. used for
SUM or COUNT) or recomputation (e.g. used for MEDIAN or COR-
RELATION). We implement HaCube by extending Hadoop and evaluate
it based on the TPC-D benchmark over billions of tuples on a cluster
with over 320 cores. The experimental results demonstrate the efficiency,
scalability and practicality of HaCube for cube computation over a large
amount of data in a distributed environment.

1 Introduction

In many industries, such as sales, manufacturing and finance, there is a need
to make decisions based on aggregation of data over multiple dimensions. Data
cubes [9] are one such critical technology that has been widely used in data
warehousing and On-Line Analytical Processing (OLAP) for data analysis in
support of decision making.

In OLAP, the attributes are classified into dimensions (the grouping
attributes) and measures (the attributes which are aggregated) [9]. Given n
dimensions, there are a total of 2n cuboids, each of which captures the aggre-
gated data over one combination of dimensions. To speed up query processing,
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Fig. 1. A cube lattice with 4 dimen-
sions: A, B, C and D

Fig. 2. The numbered cube lattice with
execution batches

these cuboids are typically stored into a database as views. The problem of data
cube materialization is to efficiently compute all the views (V) based on the
data (D). Figure 1 shows all the cuboids represented as a cube lattice with 4
dimensions A, B, C and D.

In many append-only applications (no UPDATE and DELETE operations),
the new data (ΔD) will be incrementally INSERTed or APPENDed to the data
warehouse for view update. For instance, the logs in many applications (like the
social media or stocks) are incrementally generated/updated. There is a need to
update the views in a manner of one-batch-per-hour/day. The problem of view
maintenance is to efficiently calculate the latest views while ΔD are produced.

Both data cube materialization and view maintenance are computation-
ally expensive, and have received considerable attention in the literature
[12,16,20,23]. However, existing techniques can no longer meet the demands
of today’s workloads. On the one hand, the amount of data is increasing at a
rate that existing techniques (developed for a single server or a small number of
machines) are unable to offer acceptable performance. On the other hand, more
complex aggregate functions (like complex statistical operations) are required
to support complex data mining and statistical analysis tasks. Thus, this calls
for new scalable systems to efficiently support data cube analysis over a large
amount of data.

Meanwhile, MapReduce (MR) [7] has emerged as a powerful computation
paradigm for parallel data processing on large-scale clusters. Its high scalability
and append-only features have made it a potential target platform for data cube
analysis in append-only applications. Therefore, exploiting MR for data cube
computation has become an interesting research topic. However, deploying an
efficient data cube computation using MR is non-trivial. A naive implementa-
tion of cube materialization and view maintenance over MR can result in high
overheads.

Therefore, in this paper, we are motivated to explore the techniques of devel-
oping new scalable data cube analysis systems by leveraging the MR-like para-
digm, as well as to develop new techniques for efficient data cube computation to
broaden the application of data cubes primarily for append-only environments.
Our main contributions are as follows:



HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 115

1. New system design and implementation: We present HaCube, an extension
of MR, for large-scale data cube computation. HaCube tries to integrate the
good features from both MR and parallel DBMS. It extends MR to better
support data cube computation by integrating new features, e.g. a new local
store for data reuse among jobs, a layer with user-friendly interfaces and
a new computation paradigm MMRR (MAP-MERGE-REDUCE-REFRESH). HaCube
illustrates one way to develop a scalable and efficient decision making system,
such that cube computation can be utilized in more applications.

2. A General Cubing Algorithm: We provide a general and efficient data cubing
algorithm, CubeGen, which is able to complete the entire cube lattice using
one MR job. We show how cuboids can be batched together to minimize the
read/shuffle overhead and salvage partial work done. On the basis of batch
processing principle, CubeGen further leverages the ordering property of the
reducer input provided by the MR-like framework for an efficient material-
ization.

3. Efficient View Maintenance Mechanisms: We demonstrate how views can be
efficiently updated under HaCube through either recomputation (e.g. used for
MEDIAN or CORRELATION) or incremental computation (e.g. used for
SUM or COUNT).

4. Experimental Study: We evaluate HaCube based on the TPC-D benchmark
with more than two billions tuples. The experimental results show that
HaCube has significant performance improvement over MR.

The rest of the paper is organized as follows. In Sect. 2, we provide an
overview of HaCube. Sections 3 and 4 present our proposed cube materializa-
tion and view maintenance approaches. We report our experimental results in
Sect. 5. In Sects. 6 and 7, we review some related works and conclude the paper.

2 HaCube: The Big Picture

2.1 Architecture

Figure 3 gives an overview of the basic architecture of HaCube. We implement
HaCube by modifying Hadoop which is an open source equivalent implementation
of MR [1]. Similar to MR, all the nodes in the cluster are divided into two
different types of function nodes, including the master and processing nodes.
The master node is the controller of the whole system and the processing nodes
are used for storage and computation.

Master Node: The master node consists of two functional layers:

1. The cube converting layer contains two main components: Cube Analyzer
and Cube Planner. The cube analyzer is designed to accept the user request
of data cube analysis, analyze the cube, such as figuring out the cube id (the
identifier of the cube analysis application), analysis model (materialization
or view update), measure operators (aggregation function), and input and
output paths etc.
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Fig. 3. HaCube architecture

The cube planner is developed to convert the cube analysis request into an
execution job (either a materialization job or a view update job). The execu-
tion job is divided into multiple tasks each of which handles part of the cuboid
calculation. The cube planner consists of several functional components such
as the execution plan generator (combine the cuboids into batches to reduce
the overhead), and load balancer (assign the right number of computation
resources for each batch).

2. The execution layer is responsible for managing the execution of jobs
passed from the cube converting layer. It has three main components: job
scheduler, task scheduler and task scheduling factory. We use the
same job scheduler as in Hadoop which is used to schedule different jobs from
different users. In addition, we add a task scheduling factory which is used to
record the task scheduling information of a job which can be reused in other
jobs. Furthermore, we develop a new task scheduler to schedule the tasks in
terms of the scheduling history stored in the task scheduling factory rather
than the random scheduler used in MR.

Processing Node: A processing node is responsible for the task execution
assigned from the master node. Similar to MR, each processing node contains
one or more processing units each of which can either be a mapper or a reducer.
Each processing node has a TaskTracker which is in charge of communicating
with the master node through heartbeats, reporting its status, receiving the task,
reporting the task execution progress and so on. Unlike MR, there is a Local
Store built at each processing node running reducers. The local store is devel-
oped to cache useful data of a job in the local file system of the reducer node.
It is a persistent storage in the local file system and will not be deleted after a
job execution. In this way, tasks (possibly from other jobs) assigned to the same
reducer node can access the local store directly from the local file system.

2.2 Computation Paradigm

HaCube inherits some features from MR, such as data read/process/write format
of (key, value) pairs, sorting all the intermediate data and so on. However, it
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further enhances MR to support a new computational paradigm. HaCube adds
two optional phases - a Merge phase and a Refresh phase before and after the
Reduce phase - to support the MAP-MERGE-REDUCE-REFRESH (MMRR)
paradigm as shown in Fig. 3.

The Merge phase has two functionalities. First, it is used to cache the data
from the reduce input to the local store. Second, it is developed to sort and merge
the partitions from mappers with the cached data in the local store. The Refresh
phase is developed to perform further computations based on the reduce output
data. Its functionalities include caching the reduce output data to the local store
and refreshing the reduce output data with the cached data in the local store.
These two additional phases are intended to fit different application requirements
for efficient execution support.

As mentioned, these two phases are optional for the jobs. Users can choose
to use the original MR computation or MMRR computation. More details can
be found in Sect. 4 about how MMRR benefits the data cube view maintenance.

3 Cube Materialization

In this section, we provide our proposed data cubing algorithm, CubeGen, under
the MR-like systems. We first present some principles of sharing computation
through cuboid batching and a batch generator, then followed by the detail
implementation. For simplicity, we assume that we are materializing the com-
plete cube. Note that our techniques can be easily generalized to compute a
partial cube (compute only selective cuboids). We also omit the cuboid “all”
from the lattice. This special cuboid can be easily handled through an indepen-
dent processing unit.

3.1 Cuboid Computation Sharing

To build the cube, computing each cuboid independently is clearly inefficient. A
more efficient solution, which we advocate, is to combine cuboids into batches
so that intermediate data and computation can be shared and salvaged.

We have the following observation: Let A and B be a set of dimensions
such that A

⋂
B = ∅. In MR-like systems, given cuboids A and AB, A can

be combined and processed together with AB, once AB is set of the key and is
partitioned by A in one MR job. A is referred to as the ancestor of AB (denoted
as A ≺ AB). Meanwhile, AB is called the descendant of A. Note that the
ancestor and descendant require them share the same prefix. This observation
is the formal basis for combining and batching the cuboids computation under
the MR-like systems.

The above observation can be generalized using transitivity: Since we can
combine the processing of the pair of cuboids {A,AB} and the pair {AB,ABC},
we can also combine the processing of the three cuboids {A, AB, ABC}. Thus,
given one cuboid, all its ancestors can be calculated together as a batch. For
instance, in Fig. 1, as A ≺ AB ≺ ABC ≺ ABCD, the cuboids A, AB, ABC
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can be processed with ABCD. Note that BC cannot be processed with ABCD
because BC ⊀ ABCD.

Given a batch, the principle to calculate this batch is to set the sort dimen-
sions as the key and partition the (k,v) pairs based on the partition dimensions
in the key in the MR-like paradigm. We formally define these two dimension
classes below:

Definition 1 Sort Dimensions: The dimensions in cuboid A are called the
sort dimensions if A is the descendant of all other cuboids in one batch.

Definition 2 Partition Dimensions: The dimensions in cuboid A are called
the partition dimensions if A is the ancestors of all other cuboids in one batch.

For instance, given the batch {A,AB,ABC,ABCD}, ABCD and A can be
set as the sort and partition dimensions respectively.

The benefits of this approach are: (1) In the reduce phase, the group-by
dimensions are all in sorted order for every cuboid in the batch, since MR would
sort the data before supplying to the reduce function. This is an efficient way of
cube computation since it obtains sorting for free and no other extra sorting is
needed before aggregation. (2) All the ancestors do not need to shuffle their own
intermediate data but use their descendant’s. This would significantly reduce
the intermediate data size, and thus remove a lot of data sort/partition/shuffle
overheads.

3.2 Plan Generator

A plan generator is developed to generate the batches among the given cuboids.
Intuitively, the more cuboids can be combined, the more sharing operations
can be achieved. Therefore, the plan generator is responsible for generating the
minimum number of batches based on the aforementioned principles. Note that
each cuboid may have different permutations. For instance, the cuboid ABCD
can also be permutated as ABDC, ACBD, BCDA, CDAB, DABC and so
on. Thus, as the number of dimensions increases, it is no longer applicable to
enumerate all the possible plans exhaustively. As such, some heuristic algorithm
can be used to find a suboptimal execution plan.

Recall that one cuboid can be batched with all its ancestors. In this paper, we
adopt a greedy algorithm to combine one cuboid with as many of its ancestors as
possible. Intuitively, each batch construction starts from one unbatched cuboid
with the maximum number of dimensions. The chosen cuboid then searches
its different permutations with all its unbatched ancestors and the one with
the largest number of ancestors is used to form this batch. The construction
continues until all the cuboids are batched. In addition, we propose different
optimizations to further reduce the search space, such as how to choose the
right permutation and how to stop the permutation evaluation earlier. More
details and proof can be found in our technical report [18]. For instance, given
2n − 1 cuboids (excluding “all”) in Fig. 1, the algorithm generates 6 batches
marked using the dotted lines as shown in Fig. 2.
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Algorithm 1. CubeGen Algorithm

Function: Map(t)
# t is the tuple value from the raw data1

Let B (resp. Ii) be the batch set with B0, B1, ..., Bb−1 (resp. the identifier of2

batch Bi)
for each Bi in B do3

k (resp. v) ⇐ get sort dimensions (resp. the measure m) in Bi from t4

# If there are multiple measures (e.g. m1, m2), then v ⇐ (m1, m2)5

v.append(Ii); emit(k,v);6

Function: Partitioning(k, v)
Let Ri (resp. attr) be the number of reducers (resp. the partition dimensions)7

for Bi

Si ⇐ ∑i−1
j=0 Rj8

return Si + hash(attr, Ri);9

Function: Reduce/Combine (k, {v1, v2, ..., vm})
Let C (resp. M) be the cuboid set in the batch identifier (resp. the aggregate10

function)
for Ci in C do11

if Ci is ready then12

k′′ (resp. v′′)⇐ get the group-by dimensions in Ci (resp.13

M(v1, ..., vm, v
′
1, ..., v

′
k, ...))

# Perform multiple aggregate functions e.g. (M1, M2) here: v′′
1 ⇐14

M1(v1, ..., vm, v
′
1, ..., v

′
k, ...) and v′′

2 ⇐ M2(v1, ..., vm, v
′
1, ..., v

′
k, ...)

emit(k′′, v′′);15

else16

Buffer the measure for aggregation17

3.3 Implementation of CubeGen

Consider the batch plan B with b batches (B0, B1, ..., Bb−1) generated from
the plan generator. There is a need to determine the number of computation
resources (reducers) assigned to each batch. To achieve this, we also propose one
load balancing approach based on sampling to guarantee that the computation
task in each reducer can be balanced. Due to space constraint, we omit the
discussion; interested readers are referred to [18]. Suppose that the number of
reducers needed for each batch is R=(R0, R1, ..., Rb−1). Given B and R, the
proposed CubeGen algorithm materializes the entire cube in one job and its
pseudo-code is provided in Algorithm 1.

Map Phase: The base data is split into different chunks each of which is
processed by one mapper. CubeGen parses each tuple and emits multiple (k,v)
pairs each of which is for one batch (lines 3–6). The sort dimensions in the batch
are set as the key and the measure is set as the value.

To distinguish which (k,v) pair is for which batch with which cuboids, we
add a batch identifier appended after the value. The identifier is developed as
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one Bitmap with 2n bits where n is the number of dimensions and each bit
corresponds to one cuboid. First, we number all the 2n cuboids from 0 to 2n −1.
Second, if the cuboid is included in one batch, its corresponding bit is set as 1,
otherwise 0. For instance, Fig. 2 depicts an example of a numbered cube lattice.
Assume that B0 consists of cuboids {A,AB,ABC and ABCD}. The identifier
for B0 is set as ‘10001000 00100010’.

The partitioning function partitions the pairs to the appropriate partition
based on the identifier and the load balancing plan R. CubeGen first schedules
the data into the right range of reducers. Recall that the batch Bi is assigned
Ri reducers. Therefore, the assigned reducers for batch Bi are from

∑i−1
j=0 Rj

to
∑i−1

j=0 Rj+Ri-1. Then the (k,v) pairs are hash partitioned among these Ri

reducers according to the partition dimensions in the key (lines 7–9).

Reduce Phase: In the Reduce phase, the MR library sorts all the (k,v) pairs
based on the key and passes them to the reduce function. Each reducer obtains
its computation tasks (the cuboids in the batch) by parsing the batch identifier
in the value. The reduce function extracts the measure and projects the group-
by dimensions for each cuboid in the batch. For the descendant cuboid, the
aggregation can be performed directly based on input tuple, since each input
tuple is one complete group-by cell. For other cuboids, the measures of the
group-by cell are buffered until the cell receives all the measures it needs for
aggregation (lines 11–17). We develop multiple file emitters to write different
aggregated results to different destinations.

Note that if the (k,v) pairs can be pre-aggregated in the map phase, users can
specify a combine function to conduct a first round aggregation. The combine
function is normally similar to the reduce function as shown in lines 10–17, but
only aggregates the pairs with the same key. This pre-aggregation is able to
reduce the data shuffle size between mappers to reducers.

We emphasize that if there are muliple measures (e.g. m1, m2, ..., mn) and
multiple aggregate functions (M1, M2, .., Mm), they can be processed in the
same MR job as shown in the line 5 and 14 in Algorithm1. Compared to the
naive solution, CubeGen minimizes the cube materialization overheads by sharing
the data read/shuffle/computation to the maximum, which obtains significant
performance improvement as we shall see in Sect. 5.

4 View Maintenance

There are two different manners to update the views, namely recomputation and
incremental computation. Recomputation computes the latest views by recon-
structing the cube based on the entire base data D and ΔD. In append-only
applications, this manner is normally used for the holistic aggregate functions,
e.g. STDDEV, MEDIAN, CORRELATION and REGRESSION [9].

Incremental computation, on the other hand, updates the views using only
V and ΔD in two steps: (1.) In the propagate step, a delta view ΔV is calculated
based on the ΔD. (2.) In the refresh step, the latest view is obtained by merging
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Algorithm 2. A Refresh Job in MR
Function: Map(t)
# t is the tuple value from either V or ΔV1

k (resp. v) ⇐ get dimensions (resp. aggregate value) from t;2

emit(k,v)3

Function: Reduce(k, {v1, v2})
emit(k, M(v1, v2))4

V and ΔV without visiting D [14]. In append-only applications, this manner is
normally used for the distributive and algebraic aggregate functions, e.g. SUM,
COUNT, MIN, MAX and AVG [9]. Note that the update for these functions can
also be conducted through recomputation.

4.1 Supporting View Maintenance in MR

To support recomputation in MR, when ΔD is inserted, the latest views can be
calculated by issuing one MR job using our CubeGen algorithm to reconstruct
the cube over D ∪ ΔD. The key problem with such an MR-based recomputation
view updates is that reconstruction from scratch in MR is expensive. This is
because the base data (which is large and increases in size at each update) has
to be reloaded to the mappers from DFS and shuffled to the reducers for each
view update, which incur significant overheads.

To support incremental computation in MR, the latest views can be calcu-
lated by issuing two MR jobs. The first propagate job generates ΔV from ΔD

using our proposed CubeGen algorithm. The second refresh job merges V and
ΔV as shown in Algorithm 2. However, this would incur significant overheads.
For instance, the materialized ΔV from the propagate job has to be written back
to DFS, reloaded from DFS again and shuffled from mappers to reducers in the
refresh job. Likewise, V has to be reloaded and shuffled around in the refresh
job. Therefore, it is highly expensive to support view update operations directly
over the traditional MR.

4.2 HaCube Design Principles

HaCube avoids the aforementioned overheads through storing and reusing the
data between different jobs. We extend MR to add a local store in the reducer
node which is intended to store useful data of a job in the local file system. Thus,
the task shuffled to the same reducer is able to reuse the data already stored
there. In this way, the data can be read directly from the local store (and thus
significantly reducing the overhead that would have been incurred to read the
data from DFS and shuffle them from mappers).

We further extend MR to develop a new task scheduler to guarantee that
the same task is assigned to the same reducer node and thus the cached data
can be reused among different jobs. Specifically, the task scheduler records the
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Fig. 4. Recomputation for MEDIAN and incremental computation for SUM in HaCube

scheduling information by storing a mapping between the data partition number
(corresponds to the task) and the TaskTracker (corresponds to the reducer node)
and puts it to the task scheduling factory from one job. When a new job is
triggered to use the scheduling history from previous jobs, the task scheduler
fetches and adopts the scheduling information from the factory to distribute the
tasks. The scheduler automatically checks the situation of the over-loaded nodes
and re-assigns the task to a nearby processing node.

In addition, two computation phases (Merge and Refresh) are added to
conduct more computation with the cached data locally. The Merge phase is
added to either cache the intermediate reduce input data in one job or preprocess
the data between the newly arriving data and cached data before the Reduce
phase. The Refresh phase is added to either cache the reduce output data in
one job or postprocess the reduce output result with the cached data after the
Reduce phase.

4.3 Supporting View Maintenance in HaCube

Recomputation. The recomputation view update can be efficiently supported
in HaCube using a Map-Merge-Reduce (MMR) paradigm. We demonstrate this
procedure through one running example by introducing the cube materialization
and update jobs.

In the first cube materialization job, HaCube is triggered to cache the inter-
mediate reduce input data to the local store in the Merge phase, such that this
data can be reused during the view update job. For instance, Fig. 4(a) shows
an example of calculating the cuboid A for MEDIAN. Assume that reducer 0 is
assigned to process cuboid A. In this job, each mapper emits one sorted partition
for reducer 0, such as P0 0, P0 1 and P0 2. Here, each partition is a sequence of
(dimension-value, measure-value) pairs, e.g., (a1, 3), (a2, 4). Recall that once
these partitions are shuffled to the reducer 0, it first performs a merge-sort (the
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same as MR does) to sort all the partitions based on the key in the Merge
phase. The sorted data is further supplied to the reduce function to calculate
the MEDIAN for each group-by cell (e.g. < a1, 5 > and < a2, 5 >) where this
view will be written to DFS.

Different to MR (which deletes all the intermediate data after one job),
since recomputation requires the base data for update, HaCube caches the sorted
reduce input data in the Merge phase for subsequent reuse. This caching opera-
tion is conducted while the Reduce phase finishes, which guarantees the atomicity
of the operation - if the reduce task fails, the data will not be written to the
local store. Meanwhile, the scheduling information is recorded.

A view update job is launched when ΔD is added for view updates. Intu-
itively, this job conducts a cube materialization job using the CubeGen algorithm
based on ΔD. It differs from the first materialization job in the scheduling and
the Merge phase. For task scheduling, instead of randomly distributing the tasks
to reducer nodes, it distributes the tasks according to the scheduling history from
the first materialization job to guarantee that the same tasks are processed at the
same reducer. For instance, the partitions of cuboid A (ΔP0 0 and ΔP0 1) are
scheduled to the same node running reducer 0 as shown in Fig. 4(b). In the Merge
phase, since the base data is already cached in the local store, HaCube merges
the delta partitions with the cached base data from the local store. Recall that
the cached data is the sorted reduce input data from the previous job, and so
it has the same format as the delta partition. Thus, it can be treated as a local
partition and a global merge-sort is further performed. Then the sorted data will
be supplied to the reduce function for recalculation in the Reduce phase. When
the Reduce phase finishes, the local store is updated with both the base and
delta data (becoming an updated base dataset) for further view update use.

Compared to MR, HaCube does not need to reload the base data from DFS
and shuffle them from mappers to reducers for recomputation. This significantly
reduces the data read/shuffle overheads. Another implementation optimization
is proposed to minimize the data caching overhead. To cache the data to the
local store, it is expensive to push the data to the local store, as this would incur
much overhead of moving a large amount of data. Based on the observation that
the intermediate sorted data are maintained in temporary files in the local disk
in each reducer, HaCube simply registers the file locations to the local store rather
than moving them. Note that the traditional MR would delete these temporary
files once one job finishes. As we shall see, the experimental study shows that
there is almost no overhead added for caching the data with this optimization.

Incremental Computation. HaCube adopts a Map-Reduce-Refresh (MRR)
para- digm for incremental computation. Intuitively, different to MR in the first
materialization job, it triggers to invoke a Refresh phase after the Reduce phase,
to cache the view V to the local store for further reuse. For instance, Fig. 4(c)
shows an example of calculating cuboid A for SUM in reducer 0. In this job, V

(< a1, 17 > and < a2, 16 >) is cached to the local store in the Refresh phase,
and the scheduling information is also recorded.
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When ΔD is added for view updates, HaCube conducts both the propagate and
refresh steps in one view update job, as V is already cached in the reducer node.
This view update job in HaCube also executes in an MRR paradigm where MR
(Map-Reduce) phases obtain ΔV based on ΔD (propagate step) and the Refresh
phase merges ΔV with V locally (refresh step). Intuitively, this can be achieved
by running the CubeGen algorithm on ΔD using the same scheduling plan as the
previous materialization job. Meanwhile, the cached views in the local store will
be updated with the latest ones. For instance, in Fig. 4(d), the Reduce phase cal-
culates the ΔV (< a1, 6 > and < a2, 4 >) based on ΔD. In the Refresh phase,
the updated view (< a1, 23 > and < a2, 20 >) is obtained by merging ΔV with
V (< a1, 17 > and < a2, 16 >) cached in the local store.

Different to MR, HaCube is able to finish the incremental computation in one
job where there is no need to reload and shuffle the delta views and old views
among DFS and the cluster during the propagate and refresh steps. This provides
an efficient view update using the incremental computation by removing much
overheads.

5 Performance Evaluation

We evaluate HaCube on the Longhorn Hadoop cluster in TACC (Texas Advanced
Computing Center) [2]. Each node consists of 2 Intel Nehalem quad-core proces-
sors (8 cores) and 48 GB memory. By default, the number of nodes used is 35
(and 280 cores).

We perform our studies on the classical dataset generated by TPC-D bench-
mark generators [3]. The TPC-D benchmark offers a rich environment repre-
sentative of many decision support systems. We study the cube views on the
fact table, lineitem in the benchmark. The attributes l partkey, l orderkey,
l suppkey and l shipdate are used as the dimensions and the l quantity as the
measure. We choose MEDIAN and SUM as the representative functions for eval-
uation.

5.1 Cube Materialization Evaluation

Baseline Algorithms: To study the benefit of the optimizations adopted in
CubeGen, we design two corresponding baseline algorithms to study each of them
including MulR MulS (compute each cuboid using one MR job) and SingR MulS
(compute all the cuboids using one MR job without batching them), which are
widely used for cube computations in MR. MulR MulS (Resp. SingR MulS) is used
to study the benefit of removing multiple data read overheads (Resp. sharing
the shuffle and computation through batch processing).

In the following set of experiments, we vary the data size from 600M (Million)
to 2.4B (Billion) tuples.We study two versions of the CubeGen algorithm where
CubeGen Cache caches the data and CubeGen NoCache does not. This provides
insights into the overhead of caching the data to the local store.
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Fig. 5. CubeGen performance evaluation for cube materialization

Efficiency Evaluation. We first evaluate the performance improvement of
CubeGen for cube materialization. Figure 5(a) and (b) show the execution time
of all four algorithms for MEDIAN and SUM respectively. As expected, for both
MEDIAN and SUM, our CubeGen-based algorithms are 2.2X and 1.6X faster
than MulR MulS and SingR MulS on average respectively. This indicates that
computing the entire cube in one MR job reduces the overheads significantly
compared to the case where multiple MR jobs were issued which requires read-
ing data multiple times. In addition, it also demonstrates that batch processing
highly reduces the size of intermediate data which can consequently minimize
the overheads of data sorting, shuffling as well as computing.

Impact of Caching Data: Figure 5(a) and (b) also depict the impact of caching
data. For MEDIAN, the execution time of the CubeGen Cache is almost the same
as CubeGen NoCache as shown in Fig. 5(a). This confirms that our optimization
to cache the data through file registration instead of actual data movement does
not cause much overhead. For SUM, we observe that CubeGen Cache performs
worse than CubeGen NoCache. This is not surprising as the former needs to write
an extra view to the local file system. However, even though CubeGen Cache
incurs around 16 % overhead to cache the view, as we will see later, it is superior
to CubeGen NoCache when it comes to view updates.

5.2 View Maintenance Evaluation

Efficiency Evaluation: We next study the efficiency of performing the view
maintenance in HaCube compared with Hadoop. We fix D with 2.4B tuples in
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the first cube materialization job and vary the size of ΔD from 5 % to 100 % of
D for view updates.

Figure 5(c) shows the execution time for both the cube materialization
(Ini Cube) and the view updates (View Update) for MEDIAN. In this set of
experiments, we adopt recomputation for view updates of MEDIAN using MR
(Re MR) and HaCube (Re HC). The result shows that Re HC is 2X and 1.4X faster
than Re MR, when ΔD is 5 % and 100 % respectively. The gains come from avoid-
ing reloading and reshuffling D among the cluster. Thus, the larger D is, the
bigger the benefit will be.

Figure 5(f) depicts the result for SUM. As view updates for SUM can
either be done by incremental computation or recomputation, we evaluate both
approaches to update the view. In Fig. 5(f), In MR and Re MR (resp. In HC and
Re HC) are MR (resp. HaCube) -based methods using incremental computation
and recomputation respectively.

In MR and Re MR are implemented in the way described in Sect. 4.1. In In MR,
Delta Cube (in the figure) corresponds to the propagate job to generate the delta
view and View Update is the refresh job. The result shows that, for incremental
computation, In HC is 2.8X and 2.2X faster than In MR when ΔD is in 5 % and
100 % as shown in Fig. 5(f). For recomputation, Re HC is about 2.1X and 1.4X
faster than the Re MR when the ΔD is in 5 % and 100 % as shown in Fig. 5(f).
This indicates that HaCube has significant performance improvement compared
to MR for the view update for both recomputation and incremental computation.

We observe that incremental computation performs worse than recomputa-
tion in both MR and HaCube. While this seems counter-intuitive, our investiga-
tion reveals that DFS does not provide indexing support; as such, in incremental
computation, the entire view which is much larger than the base data (in our
experiments) has to be accessed. Another insight we gain is the smaller the ΔD

is, the more effective HaCube is. As future work, we will integrate more existing
techniques (e.g. indexing) in DBMS into HaCube, which will further improve the
view update performance.

Impact of Parallelism: We further analyze the impact of parallelism on HaCube
for both cube materialization and view update while varying the number of nodes
from 10 to 40. The experiments use D with 600M tuples and ΔD in 20 % of D .

Figures 5(d) and (e) report the execution time for MEDIAN and SUM. Note
that, in this experiment, incremental computation is used for SUM. We observe
that for both recomputation and incremental computation, HaCube scales lin-
early on the testing data set from 10 to 20 nodes, where the execution time
almost reduces to half when the resources are doubled. From 20 nodes to 40
nodes, the benefit of parallelism decreases a little bit. This is reasonable, since
the entire overheads include two parts, the setup of the framework and the cube
computation; the former one may reduce the benefits of increasing the compu-
tation resources while cube computation cost is not big enough.

Due to the space limitation, interested readers are referred to our technical
report [18] for more experimental evaluations (e.g. load balancing, impact of
dimensions) and other issues (e.g. fault tolerance mechanism, storage analysis).
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6 Related Work

Much research has been devoted to the problem of data cube analysis [9]. A lot
of studies have investigated efficient cube materialization [4,20,21,23] and view
maintenance [12,16]. Three classic cube computation approaches (Top-down [23],
Bottom-Up [4] and Hybrid [20]) have been well studied to share computation
among the lattice in a centralized system or a small cluster environment. Differ-
ent to these approaches, CubeGen adopts a new strategy to partition and batch
the cuboids according to their prefix order to tackle the new challenges brought
by MR. It utilizes the sorting feature better in MR-like systems such that no
extra sorting needed during materialization.

Existing works [17,22] have adopted MR to build closed cubes for algebraic
measures. However, both of these works do not provide a generic algorithm
that can balance the load to materialize the cube for different measures. Nandi
et al. [15] provided a solution to a special case during the cube computation
under MR where one reducer gets the “hot spot” group-by cell with a large
number of tuples. This complements our work and can be employed to handle
such a case in HaCube. We note that HaCube is able to support all these existing
cube materialization algorithms. More importantly, none of these aforementioned
works have developed any techniques for view maintenance. In addition, [13]
provided one OLAP system by extending HBase for real-time analysis and [19]
provides pagrol system for graph OLAP computation.

Our work is also related to the problem of incremental computations. Existing
works [5,10,11] have studied some techniques for incremental computations for
single operators in MR. HaLoop [6] is designed to support iterative operations
through a similar caching mechanism which is used for different purposes under
a different application context. Restore [8] also shares the similar spirit to keep
the intermediate results (either the output of one MR job or the data operated
within one job) to DFS in a workflow and reuse them in the future. For data
cube computation, as the size of intermediate results is large, HaCube adopts a
different data caching mechanism to guarantee the data locality that the cached
data can be directly used from local store. This avoids the overhead incurred by
Restore in reloading and reshuffling data from DFS. Furthermore, none of these
existing works provide explicit support and techniques for data cube analysis
under OLAP and data warehousing semantics.

7 Conclusion

It is of critical importance to develop new scalable and efficient data cube com-
putation systems on a big cluster with low-cost commodity machines to tackle
the challenges brought by the large-scale of data, to provide a better query
response and decision making support. In this paper, we made one step towards
developing such a system, HaCube an extension of MapReduce, by integrating
the good features from both MapReduce (e.g. Scalability) and parallel DBMS
(e.g. Local Store). We showed how to batch and share the computations to sal-
vage partial work done by facilitating the features in MapReduce-like systems
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towards an efficient cube materialization. We also demonstrated how HaCube
supports an efficient view maintenance by facilitating the extension leveraging a
new computation paradigm. The experimental results showed that our proposed
cube materialization approach is at least 1.6X to 2.2X faster than the naive
algorithms and HaCube performs at least 2.2X to 2.8X faster than Hadoop for
view maintenance. We expect HaCube to further improve the performance by
integrating more techniques from DBMS, such as indexing techniques.

Acknowledgements. Kian-Lee Tan is partially supported by the MOE/NUS grant
R-252-000-500-112. This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation grant num-
ber OCI-1053575.

References

1. Hadoop. http://hadoop.apache.org/
2. Tacc longhorn cluster. https://www.tacc.utexas.edu/
3. Tpc-h, ad-hoc, decision support benchmark. www.tpc.org/tpch/
4. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg

cubes. In: SIGMOD, pp. 359–370 (1999)
5. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: mapre-

duce for incremental computations. In: SOCC (2011)
6. Yingyi, B., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data

processing on large clusters. PVLDB 3(1), 285–296 (2010)
7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: OSDI, pp. 137–150 (2004)
8. Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs. PVLDB

5(6), 586–597 (2012)
9. Gray, J., Bosworth, A., Layman, A., Reichart, D.: Data cube: a relational aggrega-

tion operator generalizing group-by cross-tab and sub-totals. In: ICDE, pp. 152–159
(1996)

10. Jörg, T., Parvizi, R., Yong, H., Dessloch, S.: Incremental recomputations in mapre-
duce. In: CloudDB, pp. 7–14 (2011)
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