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Abstract. Location-aware publish/subscribe (pub/sub) has attracted
a lot of attentions with the booming of mobile Internet technologies
and the rising popularity of smart-phones. Subscribers subscribe their
interests with their locations as subscriptions, and publishers publish
geo-information as events. Many state-of-art applications with a massive
amount of geo-information, such as location-aware targeted advertising
systems, face this situation. Existing related work mainly focuses on
unstructured geo-textual information. However, many online-to-offline
applications have enormous geo-information with different structured
descriptions. To handle such structured information, a new type of
location-aware pub/sub approach is needed. In this paper, we handle
these subscriptions using boolean expressions. Since the number of pub-
lishers and subscribers can be enormous, it is extremely important to
improve the matching effectiveness and efficiency of top-k query process-
ing. In this paper, we develop a novel solution named RRt-trees. RRt-
trees integrates Rt-tree and a predicate index structure together to return
top-k best matched subscriptions from a great number of events. Our
experimental results on synthetic and real-world datasets show that RRt-
trees achieve better performance than baseline methods.

Keywords: Location-aware pub/sub · Top-k · Boolean expressions

1 Introduction

With the rapid progress of mobile Internet technologies and the growing pop-
ularity of smart phones, a great amount of geo-information is generated at an
unprecedented scale. In social network applications (e.g., Facebook or Twitter),
there are a great number of users. Their personal information can be described
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by a set of attribute-value pairs and their geo-locations revealed by GPS. In
a online-to-offline system, there are millions of users browsing products on the
system, such products can be described by a set of attribute-value pairs and
associated with geo-locations. In this paper, we refer to such data with both
attribute-value pairs and geo-location information as geo-tagged attribute-value
pair objects.

In a location-aware publish/subscribe system, subscribers subscribe their
interests and publishers publish events with geo-information. This kind of sys-
tems has many real-world applications. In a location-aware targeted advertis-
ing application system, advertisers are subscribers, who specify the proper-
ties of their interested users. For example, they can have a subscription like
(e.g.,“16� age�28,hobby∈{Tennis, basketball}”,“51.16145,0.14123”). The sys-
tem will display corresponding advertisements on users screens. This is a well-
known pushing advertising model. Users of social network systems (such as
Facebook, Twitter, etc.) act as publishers. Their personal information, such
as age, hobby and locations, becomes an event (e.g.,“age=20, sex=female,
hobby=tennis,school=Harvard”, “51.16515,0.14123”). Advertisements can be
displayed on these users screen if there is a high relevance between an event
and a subscription. This kind of information pushing model is useful for online-
to-offline commerce platforms, such as Groupon1, Sellers or service providers
in Groupon system are subscribers, who may want to accurately push their
advertisements to potential customers by specifying both users properties and a
series of their product information (e.g.,“hobby=smart-phone, item∈{Iphone6s,
Iphone6}, price�499$”, “51.25643, 0.14845”) as a subscription. Users of this
system are publishers. When a user click a product link, the information of this
product and the users properties can become an event(e.g.,“hobby=smart-phone,
item=Iphone6s, price=469”, “51.2612, 0.12545”). In such applications, only a
few advertisements can be displayed due to the limited screen size.

Existing unstructured location-aware publish/subscribe systems [1,3,5,8,19,
20] can support subscriptions with geo-textual descriptions very well. For exam-
ple, users of Twitter can register their interests with a geo-textual descrip-
tion (e.g.,“Cheapest iphone6s”, “31.4522,51.4451”). The system has to ensure a
timely delivery of relevant geo-textual objects to the user. However, this kind of
location-aware pub/sub systems cannot support geo-tagged attribute-value pair
objects, which need a structured description to capture attributes and values.
Existing structured location-aware pub/sub systems [5,13]use a boolean expres-
sion presenting a subscription. They can efficiently retrieve all matched informa-
tion. Therefore, a user may be overwhelmed. To address these issues, we propose
a new type of top-k subscriptions matching with boolean expressions, referred as
Location-aware Top-k Subscription Matching with Boolean Expressions(in short
TSMB-loc). The latest solution proposed for top-k subscription matching with
boolean expression [7] focused on fuzzy matches. We will develop a solution
ensuring strict boolean semantics of expressions.

1 http://www.Groupon.com.

http://www.Groupon.com
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There are two challenges on developing solutions for location-aware top-k
subscription matching with boolean expressions. First, how can we filter out the
candidates of top-k best subscriptions from millions of subscriptions with a large
amount of attributes, values and geo-locations. Second, it needs to retrieve the
top-k best subscriptions over tons of candidates. Thus, an efficient and effective
solution to cope with the TMSB-loc problem is necessary.

To efficiently and effectively process the TSMB-loc problem, we propose a
novel Rt-tree based index structure, ranked Rt-tree (called RRt-trees since then),
by integrating the Rt-tree [3] index structure with a predicate index structure
together and using a subscription partitioning scheme. When an event with loca-
tion information arrives, our method can quickly retrieve its top-k best matched
subscriptions. To summarize, we make the following contribution:

– We propose a new problem, location-aware top-k subscription matching with
boolean expressions(TSMB-loc).

– We propose a new index structure, called RRt-trees as the solution of TSMB-
loc, which can efficiently retrieve top-k best subscriptions from millions of
subscriptions.

– We conduct experiments on a synthetic dataset and a real-world dataset to
evaluate the performance of our proposed RRt-trees.

The remaining of this paper is organized as follows. In Sect. 2, we overview
related work. Then, we formalize the problem in Sect. 3. In Sect. 4, we propose
a baseline solution by extending a boolean expression index structure and a
state-of-the-art spatial index R-tree. In Sect. 5, we propose an advanced solution,
the RRt-trees index structure. In Sect. 6 we give the similarity upper bound of
RRt-trees. In Sect. 7, we present the matching algorithm of RRt-trees. Extensive
experimental results are reported in Sect. 8, and we conclude this paper in Sect. 9.

2 Related Work

This research topic is closely related to two main research branches: structured
pub/sub systems and location-aware unstructured pub/sub systems. We will
briefly review these two branches as follows.

Structured Pub/Sub. There are some researches on structured pub/sub with
boolean expressions [2,4,9,11,12,18,21]. Guo et al. [5] proposed a new location-
aware pub/sub system named Elaps. Elaps can continuously detect moving sub-
scriptions of users over event streams. Hu et al. [7] proposed a RI -tree for top-k
subscription matching over structured information. They are all different to our
problem since Elaps cannot maintain a top-k best matched subscriptions and
RI -tree is a partial matching in a boolean expression. To adapt to different work-
loads, Sadoghi and Jacobsen [10] presented BE*-tree index structure. BE*-tree
allows the values of attributes to be continuous. It combines a bi-directional
tree expansion mechanism with an overlap-free splitting strategy. D et al. [21]
proposed Op-index, which builds an inverted index over the pivot attributes
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of subscriptions and developed a two-level partitioning scheme to handle sub-
scriptions with high dimensional attributes. However, BE*-tree does not make
the location dimension into consideration and Op-index can not return top-k
subscriptions.

Location-Aware Unstructured Pub/Sub. There are many related
researches on unstructured location-aware pub/sub over geo-textual data. [1,5,
6,8,14–17,19,20,22–24]. To study the location-aware pub/sub problem for para-
meterized spatio-textual subscriptions, Hu et al. [6] presented a filter-verification
framework by integrating prefix filtering and spatial pruning techniques together.
To efficiently filter geo-textual data, Li et al. [8] proposed Rt-tree,which loads the
selected token from subscriptions into different R-tree nodes. To support ranking
semantics, Yu et al. [20] make an extension of Rt-tree. These three works [6,8,20]
only focus on geo-textual information, which cannot retrieve top-k subscription
matching. Note that pub/sub focusing on geo-textual cannot support geo-tagged
attribute-value pair objects. We propose RRt-trees, which has two distinguish-
ing features. First, RRt-trees allows user to specify their interests in form of
boolean expressions. A boolean expression is much more expressive than that
of a textual content. Second, RRt-trees focus on retrieving top-k best matched
subscriptions.

3 Problem Definition

In this section we formally define the problem of location-aware top-k subscrip-
tion matching with boolean expressions.

Subscription: Subscribers register their interests as subscriptions. A subscrip-
tion s is consisted by three elements: s.B, s.loc, α, where s.B is a boolean
expression to describe the interests of subscribers, s.loc is the spatial location of
a subscriber, and α is a parameter to balance the relative importance between
spatial similarity and boolean expression similarity (we call it BE similarity since
then). The boolean expression is a combination of predicates in conjunctive nor-
mal form. A predicate is a constraint specified by users to represent the relation-
ship between an attribute and its value. A predicate contains three elements: an
attribute A, an operator fop, and a value v. That is, p(A,fop,v) denotes a predi-
cate p. The operator can be a relational operator (<,>,�,�,=,�=), or a set (∈,/∈).
Each predicate has a weight ωs, where

∑n
i=1 ωsi = 1. Thus, the subscription can

be modeled as follows:

s : {[(p1, ωs1) ∧ (p2, ωs2) ∧ (pi, ωsi) ∧ ... ∧ (pn, ωsn)], loc, α}
Event: An event e contains a collection of attribute-value pairs denoted as e.V
and a geo-position denoted as e.loc. The attribute-value pairs e.V are represented
in the form of conjunction of predicates with equality operator. That is, ν(A, v)
denotes an attribute-value pair ν. Each attribute-value pair has a weight ωe,
where

∑n
i=1 ωei = 1. Thus, an event can be denoted as follows:

e : {[(ν1, ωe1) ∧ (ν2, ωe2) ∧ (ν3, ωe3) ∧ ... ∧ (νn, ωen)], loc}
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The weight ωs is given by subscribers and is used to represent users’ prefer-
ence among predicates in a subscription. The weight ωe signifies the relevance
between value-pair and its predicate. It is generated according to the appearing
frequency of the attribute-value pair in the whole dataset.

Definition 1. (Predicate Match) Given an attribute-value pair ν, for a predicate
p appears in a subscription, we said that there is a predicate match if p.A = ν.A
and pi(νi.v)=true.

Definition 2. (Boolean Expression Match) A boolean expression s.B is said to
match a collection of attribute-value pairs e.V if each of the predicates in s.B
has a match in e.V.

Definition 3. (Similarity Function φ) Given an event e=e:{[(ν1, ωe1)∧ (ν2,
ωe2)∧(ν3, ωe3)∧...∧(νn, ωen)], loc} and a subscription s=s: {[(p1, ωs1)∧ (p2,
ωs2)∧ (pi,ωsi)∧...∧ (pn,ωsn)], loc, α}, we define the similarity function φ(e, s)
as follows:

φ(e, s) = s.α · ϕBE(e, s) + (1 − s.α) · ϕs(e, s) (1)

where ϕBE is a BE similarity function and the ϕS is a spatial similarity function.

ϕBE(e, s) =
n=s.ς∑

pj∈s,νi∈e,pj .A=νi.A,pi(νi.v)=true

ωsj · ωei (2)

where s.ς is the size of subscription s(number of predicates in a subscription).
The spatial similarity is given by:

ϕs(e, s) = 1 − distance(e.loc, s.loc)
MaxDistance

(3)

where distance(e.loc,s.loc) is the Euclidian distance between s and e, and the
MaxDistance is the maximum distance among subscriptions.

As shown in Fig. 1 for the event e={A=3(0.1)∧ B=3(0.5)∧ C=4(0.2)∧
F=2(0.2),e.loc}, the boolean expression subscription S1 matches the attribute-
value pairs of e according to Definition 2. However, the subscription boolean
expression S4 does not match attribute-value pairs of e as there is no attribute-
value pair in e that matches the predicate G�4. Based on Definition 3, the spatial
similarity ϕS(e,s1) is 0.35, and the BE similarity ϕBE(e,s1) is 0.25. Therefore, the
balanced similarity φ(e,s1) is 0.30. Similarly, since the spatial similarity ϕS(e,s9)
is 0.15, and the BE similarity is ϕBE(e,s9) is 0.18, φ(e,s9) is 0.18. Thus, if we
want to retrieve top-1 best subscription for event e, the answer is S1.

Location-Aware Top-k Subscription Matching: Given a set of subscrip-
tions S, TSMB-loc aims to finds the top-k most relevant strict matched sub-
scriptions Sk ∈ S. For any subscription s∈ Sk and s∗ ∈(S-Sk), φ(e,s∗)<φ(e,s).
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Fig. 1. An example of subscriptions and events

4 A Baseline Solution

In this section, we extend two state-of-art index structures (Op-index and R-tree)
to cope with the TMSB-loc problem. These extensions will be used as baseline
solution to evaluate our advanced solutions proposed in Sect. 5.

Op-index is a well-known pub/sub index structure for boolean expressions,
which builds an inverted index structure over a pivot attribute2 and designs a two
level partitioning scheme to handle the pub/sub problem with high-dimensions
attribute. Based on op-index and a well-known spatial information index struc-
ture R-tree, we can integrate op-index with R-tree together (called OPR-tree
in short) to cope with the TSMB-loc problem. We first build an R-tree for all
the locations of subscriptions. When the subscriptions fall into leaf nodes of the
R-tree, we organize subscriptions inside each leaf node using the Op-index struc-
ture. The construction and the query processing of OPR-tree will be explained
in details.

OPR-Tree Construction: For each subscription s, we retrieve its leaf node n
in the R-tree using its spatial point information s.loc and then select its pivot
attribute δA. We partition subscriptions inside each leaf node into groups accord-
ing to their pivot attributes. We can present a list of subscriptions with the same
pivot attribute δA as a list denoted as L(n,δA). Each list (e.g., L(n,δA)) can be
further partitioned based on the operators (<,>,�,�,=,�=) of predicates. The
predicates with the same operator are organized into a sub-list. A sub-list of
L(n,δA) can be presented as L(n,δA,op), where op is a specific operator. For each
group of predicates L(n,δA,op), we use a signature segment to map the predi-
cates by a hash function. We compute the hash value of each predicate using
a hash function h(p.A) to select a bit from the signature segment and set this
bit to 1. Besides, there is a collection of counter arrays, corresponding with each
subscription list L(n,δA,op). The value of the counter array is initialed as the

2 The attribute with the least appearing frequency in the whole dataset becomes the
pivot attribute.
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size of the subscriptions. For each predicate in L(n,δA,op), there is a pointer to
point to its corresponding counter array value.

OPR-Tree Query Processing: For an event e, we search the R-tree using
the spatial point information e.loc to find a corresponding leaf node n. Then
we extract each candidate pivot attribute νi.A (νi∈ e.V) from the set of dis-
tinct attribute-value pairs e.V . If νi.A is indeed a pivot attribute, we extract
each attribute-value pair νi to search the predicate lists L(n,δA,op) in L(n,δA).
For each attribute-value pair νi, we first calculate the hash value of a candidate
attribute, i.e., h(νi.A). If the corresponding bit of the signature segment is 1,
we search the corresponding predicate list L(n,δA,op). Then, the BE similarity
ϕBE(e,s) is calculated if pj(νi.v=true), where pj∈ L(n,δA,op). If the correspond-
ing value of the counter array goes to 0, we calculate the spatial similarity
ϕS(e,s). The final balanced similarity φ(e,s) is calculated and added into the
temporary result set as a candidate top-k result. The upper bound of a given
leaf node n to a given event e is a balanced similarity between the minimum
Euclidian distance from e to n and the maximum weight of attribute-value in e.

OPR-tree partitions the subscriptions by the region of leaf nodes and orga-
nizes these subscriptions using Op-index. However, the region of a leaf node may
be very small, which results in a poor pruning ability in high spatial dimensions.
Therefore, OPR-tree is not very efficient. In order to avoid this problem, we
proposed RRt-trees method in the next section.

5 RRt-trees Solution

In this section, we present a framework that integrates Rt-tree and a predi-
cates index structure into a new index, named RRt-tree. Based on RRt-tree,
we develops a partitioning scheme to organize subscriptions into disjointed RRt-
trees. Finally, we introduce the upper bound of efficiently and effectively filtering
out top-k best subscriptions over this framework.

5.1 RRt-tree Index Structure

As we discussed in Sect. 4, OPR-tree is not very efficient to meet TSM-loc since
the poor pruning ability in spatial dimension.

Rt-tree [3] is an unstructured location-aware pub/sub index structure, which
integrates so-called high-quality representative tokens selected from subscrip-
tions into the nodes of R-tree. Based on Rt-tree, we propose a method, ranked
Rt-tree (RRt-tree) to cope with the TSMB-loc problem. The basic idea of RRt-
tree is to convert the tokens of Rt-tree into predicates of a subscription, which will
be loaded into the ancestor nodes of a leaf node in which a subscription locates.
Then, predicates in each node are indexed using a predicate index structure.

RRt-Tree Construction: We build an R-tree for all the locations of subscrip-
tions. For a given subscription s, we first extract the distinct predicate pi, con-
taining its weight, where pi ∈ s. Then, we load pi into different nodes at different
levels, which is determined by the spatial location s.loc of the subscription s.
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Considering a built R-tree, its height is H, the size of a given subscription s is
s.ς. If s.ς>H, we directly insert the last s.ς - H+1 predicates. If s.ς<H, only the
ancestors in the first s.ς level contain the corresponding predicates of s. Letting
s.pi denote the i-th predicate in s, then s.pi is loaded in an ancestor node at
i-th level. For each node n on i-th level, there is a set of predicates denoted as
P . We build inverted lists over the attributes of the predicates in P to organize
predicates with the same attribute. To track the number of matched predicates
of a subscription during an event query processing, we assign a hash map M for
each subscription and initial each hash value M [s] to be 0. When a predicate pi

matches an attribute-value pair, we increase its corresponding hash value by 1.
Based on the number of matched predicates M [s], we can efficiently filter the
subscription. To explain this, we have the following lemmas.

Lemma 1. Consider an event e and a node n at the i-th level. If M[s]<i, s
cannot be a candidate top-k result.

Proof. As s appears in the i-th level, it contains at least i predicates. For each
node on path from the root to node n, s.B must have a predicate which cannot
match all attribute-value pairs in event e. According Definition 2, s cannot be the
candidate top-k result of e.

Lemma 2. Consider an event e and a node n at the i-th level, if M[s]=s.ς, s
must be a candidate top-k result

Proof. If M[s]=s.ς, all the predicates of s.B are matched by e. According to
Definition 2, s must be a candidate top-k subscription of e.

Lemma 3. Consider an event e and a node n at the i-th level, if M[s]=i<s.ς,
and n is a leaf node, s cannot be a candidate top-k result of e.

Proof. Since n is a leaf node, we have M[s]=i=H<s.ς. That is, the rest s.ς- H+1
predicates are loaded in the node n, which cannot match all attribute-value pairs
in event e. According to Definition 2, s cannot be the candidate top-k result of e.

Lemma 4. Consider an event e and a node n at the i-th level. For any pi.A ∈
pi ∈ P ∈ n, if pi.A does not appear in e, we can directly pruning the node n.

Proof. If pi.A does not appear in e, according to Definition 1, no predicate in
node n matches any attribute-value pair. According to Definition 2, subscriptions
on node n cannot be candidate top-k results of e.

Predicate Index Structure: In each node on RRt-tree, there are a set of
predicates P , a weight of each predicate, the maximum alpha value αmax and
minimum alpha value αmin. To efficiently retrieve matched predicates in P , we
design an index structure for P . We index the predicates of P in two partitioning
steps. In the first step, predicates are partitioned into disjointed predicate lists
based on attributes as follows:

P = L(A1) ∪ L(A2) ∪ L(Ai) ∪ ... ∪ L(An) (4)

For each predicate in list L(Ai), there is a pointer to point to the number of
matched predicates M[s] of its corresponding subscription. In second step, the
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M[1]
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(b) The predicates index structure
of P3

Fig. 2. An RRt-tree index for the subscriptions shown in Fig. 1

predicates list L(Ai) is further partitioned by their operators (we only use stan-
dard operators, such as ≤,≥,=) into its corresponding value list L(Ai, op) as
follows:

L(Ai) = L(Ai,≤) ∪ L(Ai,=) ∪ L(Ai,≥) ∪ ... ∪ L(An, op) (5)

Figure 2(a) shows the RRt-tree index structure for the subscriptions shown
in Fig. 1. Figure 2(b) shows the predicate index structure for P3.

5.2 RRt-trees Index Structure

Since the number of subscriptions can be very large, it is necessary to improve
the efficiency of RRt-tree. To address this problem, we partition subscriptions
according to their pivot attributes (discussed in Sect. 4) into N3 subscription lists
and organize the subscription lists using disjointed RRt-trees. We simply name
this method RRt-trees since then. Given a set of subscriptions S, we partition
these subscriptions according to their pivot attributes δA and organize them
using RRt-trees as follows

S = RRt−trees = RRt−tree(δA1)∪RRt−tree(δA2)∪...∪RRt−tree(δAn) (6)

From Definitions 1 and 3, we can conclude that if an event e matches a
subscription s, then all the attributes in s must appear in e. Obviously, if there
is an attribute in s but not in e, e wont be matched by s. Thus, given an
event e, we only consider the subscriptions whose pivot attributes appear in
e. Attributes with a low frequency in a whole dataset has low probabilities to
appear in subscriptions. Thus, we choose the lowest frequency attribute in a
subscription as the pivot attribute.

The index structure of RR-trees for the subscriptions shown in Fig. 1 is shown
in Fig. 3. According to the rule of selecting pivot attributes mentioned above, A,
D, E and G are selected as a pivot attribute respectively. Given an event e in
Fig. 1, subscriptions in both L(E)and L(G) don’t match e definitely.
3 The number of distinct attributes in a whole dataset.
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A RRt-tree

D RRt-tree

E RRt-tree

G RRt-tree

      S1      A
      S2      D
      S3      E
      S4      G
      S5      G
      S6      E
      S7      E
      S8      A
      S9      E
      S10      A

Fig. 3. The index structure of RRt-trees

6 Similarity Upper Bound of RRt-tree and RRt-trees
Solution

After having described the RRt-tree and RRt-trees index structure, it is the
time to introduce the upper bound of similarity.

Definition 4. (UBBE(e, n)) For a given event e and a node n in RRt-tree,
the upper bound of the BE similarity UBBE(e, n) is defined as follows. The BE
similarity bound of a given event e to a node n is:

UBBE (e, n) = Max

{
s ∈ n.parent

[
i−1∑
1

ωsi · ωej + ω∗
emax ·

(
1 −

i−1∑
1

ωsi

)]}
(7)

where
∑i−1

1 ωsi · ωej is the total score of matched predicates of s appearing in
level 1 to level i-1 where i > 1, and ω∗

emax is the maximum weight of unmatched
attribute-value pairs in e for subscription s. And 1 − ∑i−1

1 ωsi is the remaining
total weights of unmatched predicates in subscription s.

Definition 5. (UBS(e, n)) For a given event e and a node n, the upper bound
of the spatial similarity UBS(e, n) is defined as follows:

UBS(e, n) = (1 − MinDistane(e.loc, n.MBR)

MaxDistance
) (8)

where MaxDistance is the maximum distance between subscriptions, n.MBR it
the minimum bounding rectangle of node n and MinDistance(e.loc, n.MBR) is
the minimum Euclidian distance between e.loc and any point on n.MBR.

Definition 6. (UB(e,n)) According to Eqs. 7 and 8, for a given event e and a
node n, the total upper bound UB(e,n) is defined as follows:

UB (e, n) = Max {∀α ∈ (αmin, αmax) min [1 − α, UBBE (e, n)] + α · UBS(e, n)} (9)

where αmin, αmax are the minimum and maximum α of subscriptions in node n.

According to Definition 6, we have the following lemma:
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Lemma 5. Given an event e and a node n whose MBR encloses a set of sub-
scriptions Sn. For any subscription s where s∈ Sn, there is:

φ(e, s) < UB (e, n) (10)

We omit the proof due to space constraints.

7 Matching Algorithm

How can we use RRt-tree to retrieve top-k best matched subscriptions with
boolean expressions? We show the processing of retrieving top-k best matched
subscriptions in Algorithm 1. We use a bound-queue to store the nodes that
have not been visited in the algorithm. The nodes in the bound-queue is ordered
by their UB(e, n) in a descending order, which is calculated according to Eq. 9
from its parent node. For the root node, the bound is 1. Given an event e, we
traverse all the RRt-tree(νi.A) in RRt-trees from the root node, where νi∈ e.
The algorithm will return candidate subscriptions for the top-k best matched
subscriptions. It will stop under two situations as follows.

– When k subscriptions are found and its minimum similarity is larger than the
maximum UB(e, n) in the bound-queue.

– When the bound-queue is empty.

8 Experiments

In this section, we will evaluate three indexes (OPR-tree, RRt-tree, RRt-trees)
on synthetic and real-world datasets. All the methods are implemented in java
(JDK7) and experiments are running on a machine with 3.2 GHz Intel(R) (TM)
Core i5-3470 CPU and 16 GB of RAM.

8.1 Experimental Setup

Two datasets are used in our experiments, one synthetic dataset and one real-
world dataset (eBay dataset), shown in Table 1. To generate the synthetic
dataset, we implement a data generator, which can generate attributes, oper-
ators and values. For the set operator ∈, /∈, we rewritten them into standard
operator =, ≥,≤. For the weights of attribute-value pairs in an event are gen-
erated base on this equation ωei = ν.f∑n

i=0 νi.f
, where νi.f is the frequency of an

attribute-value pair in the whole dataset. And n is the number of attribute-value
pairs in an event. We totally generate 5M synthetic subscriptions corresponding
with 10k events for event matching tests in the synthetic dataset. For the real-
world dataset (eBay), we generate 10M subscriptions and 10k events based on
10k product messages, and we extract the spatial information from Twitter to
generate final subscriptions and events.
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Algorithm 1. Matching(e,k)
Input An event e and the value k1

Output Top-k best matched subscriptions S2

Initialize :a bound-queue,a hash map M, a candidate top-k subscription list R3

and a temporary similarity storage of subscriptions Temp
Extract each attribute-value pair νj from e4

for each RRt-tree(δAi) do5

if (νj .A == δAi) then6

Search RRt-tree(δAi);7

for each node n in RRt-tree(δAi) do8

if (n is a root node) then9

bound-queue.Push(n, 1);10

Visit bound-queue.Pop();11

for each predicate pi(νj .v)==true do12

Temp[s] =Temp[s] + ωsi · ωej ;13

if (+ + M [s] == s.ς) then14

φ(e, s) = (1 − s.α) · Temp[s] + s.α · ϕS(e, s);15

if (R.size < k) then16

R.add(s);17

else18

if φ(e, s) > R.min then19

R.add(s);20

if (+ + M [s] < L) then21

/*L is the i-th level*/22

Temp.remove(s);23

if (n is visited and node n is not a leaf node) then24

bound-queue.Push(n.child,UB(e,n.child));25

if (n is a leaf node) then26

Visit bound-queue.Pop();27

if (bound-queue.Empty or (R.min> bound-queue.Pop().UB and28

R.size=k)) then
Return R;29

8.2 Experimental Results

In this section, we will evaluate three indexes on synthetic datasets and real-
world datasets. For synthetic datasets we evaluate the performance of three
indexes from different perspectives, a varied number of subscriptions and dis-
tinct attributes, varied average size of subscriptions,varied average size of events,
varied parameter k and α.

Matching Time under Various k: The value of k is an important parameter
for the TSMB-loc problem. Figure 4 shows the performance of the three methods
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Table 1. Parameters and settings

Parameters Synthetic dataset eBay

Number of subscription 1M, 2M, 3M, 4M, 5M 2M, 4M, 6M, 8M, 10M

Average subscription size 4∼20 2∼10

Average event size 5 25 8

Max value of α 0.2, 0.4, 0.6, 0.8, 1.0 0.2, 0.4, 0.6, 0.8, 1.0

Number of distinct attribute 5k, 10k, 15k, 20k, 25k 10k

Top-k parameter 1, 5, 10, 20 10, 20
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with the increment of k on ebay dataset. We can clearly see that the average
matching time of all the three methods increases with the increment of k. How-
ever, RRt-trees achieves the best performance because of its powerful pruning
ability. It is nearly 3 times faster than the next best method RRt-tree. OPR-tree
performs the worst, using the largest average matching time.

Matching Time under Various α: We also conduct several experiments to
investigate the impact of varying the maximum balance value α. Our experimen-
tal results are shown in Fig. 5. Figure 5 shows that the average matching time
of all the three methods grows slowly as the value of α increases. RRt-trees still
achieve the best performance over the real-world dataset.

Matching Time on Varying Number of Subscription: From Fig. 6, we
can see that all the three methods are sensitive to the number of subscriptions.
And RRt-trees achieves the lowest event matching time, followed by RRt-tree.
OPR-tree performs the worst, having the highest matching time. RRt-trees is
3.5 times faster than RRt-tree. This is because RRt-trees uses pivot attributes to
partition subscriptions. This causes that indexing the subscriptions using RRt-
trees much more efficient than that using a single RRt-tree. Furthermore, the
upper bounds over a small number of subscriptions are easier to calculate than
those over a larger scale of subscriptions, which causes the matching time of
RRt-trees grows much more smoothly than that of the other two methods.
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Matching Time under Different Sizes of Events: Again, since the size of
each event in the real-world dataset eBay is fixed, we couldnt conduct these
experiments on the dataset eBay. We conduct experiments over the synthetic
dataset. The experimental results are shown in Fig. 7. We can see that the aver-
age matching time of the three methods increases with the increment of the size
of events. This is because the number of candidate subscriptions increases when
the size of events increases. RRt-trees scales much better than the other two
methods (RRt-tree and OPR-tree). It is about 3 times faster than the next best
method RRt-tree.

Matching Time under Different Sizes of Subscriptions: The size of sub-
scriptions can affect the matching performance. The average event matching
time on different sizes of subscriptions of the three methods on ebay dataset is
reported in Fig. 8. From this figure, we can see that all the three methods are
sensitive to the size of subscriptions. But, both RRt-trees and RRt-tree scale
better than OPR-trees. It is because than both in RRt-trees and RRt-tree, sub-
scriptions are pruned by each predicate on the nodes of R-tree, as we described
in Sect. 5. RRt-trees scales better than RRt-tree because of its pruning ability
of pivot attributes. However, OPR-tree only prunes subscriptions by the spatial
bounds.

Matching Time under Different Numbers of Distinct Attributes: Since
the number of distinct attributes is fixed in the real-world dataset eBay, we con-
duct experiments with various numbers of distinct attributes on our synthetic
dataset. As Fig. 9 shows, when the number of attributes increases, the average
matching time of both RRt-trees and OPR-tree decreases. However, RRt-tree
performs oppositely. With the increment of number of attributes, its average
matching time increases a little. RRt − trees deceases gradually, because it gen-
erates many more narrowed partitions when the number of distinct attributes
increases during partitioning subscriptions according to pivot attributes.

9 Conclusion

In this paper, we tackled the problem of location-aware top-k subscription match-
ing, which is significant for location-aware publish/subscribe systems with a
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stream of geo-tagged attribute-value pair objects. Facing the challenge of effi-
ciently and effectively delivering events to the top-k subscribers, we proposed
a novel index structure called RRt-trees, which integrates Rt-tree and a pred-
icate index structure. In addition, we developed an efficient filtering strategy
to reduce the searching space. Extensive experiments conducted in both syn-
thetic and real-world datasets demonstrate the effectiveness and efficiency of
our algorithms.
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(61472263, 61402312, 61402311), and the US National Science Foundation (IIS-
1115417).
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