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Abstract. In this paper, we address the topic of location privacy preser-
vation of mobile users on road networks. Most existing techniques of
privacy preservation rely on structure-based spatial cloaking, but pay
little attention to location semantic information. Yet, location semantic
information may disclose sensitive information about mobile users. Thus,
we propose CloSed, a semantic-awareness privacy preservation model to
protect users’ privacy from violation. We design cloaked sets that should
cover different semantic regions of road networks as well as satisfy quality
of service (QoS). As the problem of calculating the optimal cloaked set
is NP-hard, we design a greedy algorithm that balances QoS and privacy
requirements. Extensive experiments evaluations demonstrate the effi-
ciency and effectiveness of our proposed algorithm in providing privacy
guarantees on large real-world datasets.

1 Introduction

Advances in positioning technologies along with the tremendous popularity of
mobile devices have resulted in the widespread adoption of location-based ser-
vices (LBS) on road networks. Examples of these applications include navigation
services, identification of points of interest (POIs), and receiving traffic alerts or
notifications. While enjoying the convenience of LBS, however, users also face
significant risks of privacy leakage [23]. Adversaries can exploit user location
information for such nefarious purposes as stalking, spamming, and inferring
political/religious affiliations or alternative lifestyles.

The state-of-the-art for protecting the positions of LBS users over road net-
works is based on the model of segment l-diversity [3,26]. In this model, the
actual user position is replaced by a set of segments, i.e., edges in a road net-
work, and the number of segments indicates the degree of diversity. Though this
solution can satisfy most privacy-preservation requirements, it cannot resist the
types of semantic homogeneity attacks illustrated by the following example.

Example 1. Consider a scenario in Fig. 1. A patient, named Bob, asks for services
through his GPS-enabled mobile phone from road e1. To prevent Bob’s location
from leakage, the approach based on segment l-diversity cloaks Bob’s walking
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(a) Simplified Road Network

Edge id S _ label  
e1 hospital
e2 bank

e3 school

e4 hospital

Edge id S _ label  Edge id S _ label  
e5 hospital e9 shop
e6 church e10 market

e7 police e11 church

e8 club ... ...

(b) Mapping Table

Fig. 1. Semantic road network

road with other nearby roads [3,26]. In our example, we assume that l = 3,
and then the cloaked set may be {e1, e4, e5}. Unfortunately, it is easy for an
adversary to infer that Bob is in the hospital, since all roads e1, e4, and e5 have
the homogeneous semantics, namely hospital. Hence, even though Bob’s location
is seemingly obfuscated, it can be inferred by a semantic homogeneity attack.

Although some techniques have been proposed to resist semantic homogene-
ity attacks [6,16,28] over road networks, they have different limitations. The
solutions proposed in [16] have a deterministic property for its cloaked areas, so
it is subject to reverse engineering attacks, e.g., a replay privacy attack [26]. The
offline approaches of [6,28] cannot support the privacy requirement update due
to their cloaked sets being generated a priori for a particular privacy require-
ment. Changes in mobile users’ privacy requirements are frequent, thus seriously
threatening the applicability of these approaches. The work [28] also presents an
online cloaking algorithm to protect sensitive semantic information. However,
the cloaking cost is expensive due to considering velocity-based linkage attacks
which is out of our scope.

To solve the problem highlighted in Example 1 and overcome the drawbacks of
methods above, we propose CloSed, a semantic-aware privacy-preserving model,
and design a new solution to protect the location privacy of mobile users on road
networks against semantic homogeneity attacks. We illustrate the model using
Example 1 as a running example throughout the paper. In our approach, instead
of cloaking Bob’s current road e1 with other nearby roads {e4, e5} of the hospital,
CloSed generates a cloaked road set consisting of Bob’s current semantic road
and other nearby semantic roads, e.g., the cloaked set is {e1, e2, e3}. In this
example, the semantic of Bob’s current road may be hospital, bank or school.
Therefore, the adversary can no longer infer the exact semantic of Bob’s location.

Our primary goal is to protect location privacy while guaranteeing the quality
of location-based services for snap-shot queries. Our strategy focuses on semantic
diversity, which guarantees that it would be difficult to associate a specific user
with a specific semantic with a high possibility. It also regards QoS as a critical
measure for designing privacy preservation solutions, and supports personalized
privacy requirements.

To achieve this goal, in CloSed, each mobile user can designate his loca-
tion privacy requirement as l-semantic diversity. That is, rather than l-segment
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diversity, we focus on the cloaked road set possessing at least l different seman-
tic types. Thus, mobile users can use location-based services without the need
to reveal their private location and location semantic information. To imple-
ment l-semantic diversity over road networks, our solution, named EIRank, con-
sists of two steps: pre-processing and online cloaking. The pre-processing phase
reduces the cloaked space by roughly grouping roads into different clusters, called
buckets, while the online cloaking phase generates the desirable cloaked set in
each bucket. In the pre-processing phase, to guarantee the efficient generation
of buckets, structure and semantic information should be integrated. The major
challenge lies in how to combine them together seamlessly. We propose the con-
cepts of edge interaction (EI) network and virtual nodes to embed structure and
semantic information together.

In designing our solution to the problem of privacy preservation for mobile
users on road networks, we thus make a number of contributions, as follows:

– CloSed’s semantic-aware model extends existing solutions by offering protec-
tion against semantic homogeneity attacks.

– CloSed’s approximation algorithm EIRank naturally balances privacy require-
ments with QoS.

– EIRank integrates structure and semantic information seamlessly by trans-
forming road networks into EI networks and leveraging the idea of virtual
nodes.

– EIRank’s evaluation over large real-world datasets demonstrate its efficiency
at cloaking the optimal road set and guaranteeing that exact location and
semantic information cannot be leaked.

The remainder of the paper is organized as follows. We introduce our road
network and privacy preservation model in Sect. 2. In Sects. 3 and 4, we describe
the technique and algorithm for location anonymization. In Sect. 5, we report
extensive experimental results. We briefly review the related work in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 Problem Definition

We begin this section by presenting the road network model. We then formally
define our privacy preservation model, and the goals of the associated techniques.
Finally, we present our algorithm framework.

2.1 Road Network

Definition 1 (Semantic Road Network). A road network is modeled as an
undirected graph G = (V,E, ξ) with a node set V and an edge set E, such that
(i) a node v ∈ V represents a road intersection or a location (e.g., hospital); (ii)
an edge e = (u, v) ∈ E, also called a segment, connects two nodes u and v;
and (iii) L represents a semantic function, i.e., for each edge e ∈ E, ξ(e) is the
sensitive semantic label of segment e.
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Example 2 (Semantic Road Network). Fig. 1(a) shows an example of a semantic
road network, in which each edge is associated with a semantic ID. Figure 1(b)
gives semantic labels corresponding to the IDs. Nodes v1, v4 and v5 in Fig. 1(a)
are different buildings within the same hospital. Edges e1, e4 and e5 connecting
these three nodes would then have the same sensitive semantic label “hospital”.
Thus, the area represented by the triangle (v1, v4 and v5) would indicate the
hospital.

2.2 Privacy Preservation Model

To resist against semantic homogeneity attacks as given in the introduction, we
propose the following privacy preservation model.

Definition 2 (Cloaked Set l-semantic diversity (CloSed)). A user’s pub-
lished cloaked segment set Sc={e1, e2, ..., ei, ...} is said to have l-semantic diver-
sity, if (i) Sc contains at least l different types of semantic labels, i.e., |ξ(Sc)| =
|⋃∀eεSc

ξ(e)| ≥ l, and (ii) the possibility of distinguishing a user’s semantic label
among other semantic labels in Sc does not exceed 1

l .

Returning to Example 1, to achieve CloSed, Bob’s published cloaked segment
set can be Sc = {e1, e2, e3} or Sc = {e1, e2, e6}. The cloaked segment set Sc =
{e1, e2, e3} indicates that Bob may be in a hospital, a bank or a school. The
cloaked segment set Sc = {e1, e2, e6} indicates that Bob may be in a hospital, a
bank or a church.

Architecture. Similar to existing works [2,4,10,13,20,26], we adopt the clas-
sical centralized privacy-preserving architecture. In this architecture, the loca-
tion anonymizer is a trusted entity that lies between mobile users and service
providers (SP), and performs location anonymization and result filtering oper-
ations. More specifically, the location anonymizer first removes identity labels
(e.g., id) and transforms the original query with an accurate location to another
query with a cloaked set, according to users’ privacy requirements. Next, SP com-
putes and forwards the produced candidate results to the location anonymizer.
At last, the location anonymizer extracts the exact answers from the candidate
results by adequately filtering false hit information.

Based on the processing framework, in the CloSed model, a mobile user
should specify his/her privacy profile (l, σt), where l indicates l-semantic diver-
sity and σt is the maximum temporal tolerance to guarantee QoS. To preserve
user privacy, we identify an important property that is sufficient for a cloaking
technique.

Definition 3 (Segment Oblivious). For a query user u in segment e, given
u’s profile (l,σt), his/her published cloaked segment set Sc satisfies the segment
oblivious property iff (i) Sc contains at least l semantic labels; (ii) e ∈ Sc; and
(iii) a query initiating in any segment of the cloaked set Sc will return the same
cloaked set Sc as the cloaked set for the given l.
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Fig. 2. Privacy-preserving architecture

Issue a query

...

e1  e 2      e n...

eq      e n...ep      e m...

Locate the segment Finish cloaking

ei      e j...

Fig. 3. Algorithmic framework

From Definition 3, it can be shown that any solution to Definition 2 satisfies
the following theorem.

Theorem 1. A cloaking technique for a road network Gr can achieve l-semantic
diversity, if every cloaked set Sc published in Gr satisfies the segment oblivious
property.

Proof. According to Definitions 2 and 3, it is obviously to reach Theorem1.

In addition to the preservation of cloaked set l-semantic diversity, the other
objectives of our cloaking technique are that: (1) The cloaked set should not
reveal the exact segment of any user; and (2) The cloaking technique should not
compromise the QoS.

2.3 Algorithmic Framework of Anonymization

To achieve privacy preservation, in the location anonymizer (Fig. 2), the tech-
nique employed needs to blur the exact active segment of each mobile user to
a cloaked set that satisfies user’s privacy profile. A segment is marked as active
segment if it is associated with at least one query.

To meet the requirement of privacy (i.e., Theorem 1) and achieve high QoS,
our anonymization algorithm consists of two stages: an offline pre-processing
phase and an online cloaking phase, as shown in Fig. 3. In the offline pre-
processing phase, we allocate all segments of a road network to different buck-
ets, so that we can perform anonymization in one bucket rather than search the
entire road network in the cloaking process. In the online cloaking phase, we
locate the buckets of active segments and anonymize segments based on user
privacy profiles.

3 Segment Allocation

This section presents the offline pre-processing phase as introduced in the algo-
rithmic framework. Specifically, the segments of a road network are allocated to
different buckets according to users’ privacy requirements. To achieve most user
privacy requirements, we make the following observation.
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Observation 1: The location semantic privacy requirements L of user privacy
profiles follow a Gaussian distribution L ∼ N(μ, σ2), i.e., most user privacy
requirements fall in the middle range, and fewer have higher privacy require-
ments. The parameter μ is the mean of the distribution, and the parameter σ is
its standard deviation.

It follows that we can leverage the 3σ rule, also known as the 68-95-99.7
empirical rule, which states that about 99.7 % of values drawn from a Gaussian
distribution are within three standard deviations from the mean. We accord-
ingly set the semantic number of a bucket to μ + 3σ to satisfy all user location
anonymization in one bucket. Definition 4 states the goal of segment allocation.

Definition 4 (Segment Allocation). The segments of a road network G =
(V,E, ξ) are allocated to p buckets, G1, G2, ...Gp, where p > 1 and Gi =
(Vi, Ei, ξi), such that V =

⋃
1≤i≤p Vi, E =

⋃
1≤i≤p Ei, ξ(E) =

⋃
1≤i≤p ξi(Ei),

and the following conditions are satisfied.
(i) The segments of all buckets are disjoint, i.e., ∀1 ≤ i, j ≤ p, Ei ∩ Ej = φ.
(ii) The semantic number of a bucket must exceed the threshold μ + 3σ, i.e.,
|ξ(Ei)| = |⋃∀eεEi

ξ(e)| ≥ μ + 3σ.

In addition to protecting the location privacy of mobile users, the cloaking
algorithm should not compromise QoS, which mainly depends on communication
cost. We use the number of candidate results to measure communication cost,
which is formulated in Definition 5. Without loss of generality, we focus our
attention on k-nearest neighbors (kNN ) queries.

Definition 5 (LBS Server Processing). [26] For a query q with associated
anonymous segment set Sc, the candidate results of q consists of two parts:
(1) the POIs on the segments of Sc, and (2) the results as q is issued on
the boundary nodes of the boundary set Sbn, where the boundary set is a
set of nodes whose some connected edges are not included in Sc. Formally,
CR(q, Sc) = (

⋃
s∈Sc

O(q, s))
⋃

(
⋃

v∈Sbn
O(q, v))

Based on this query processing model, it can be seen that the communi-
cation cost CR(q, Sc) is significantly influenced by parameters |Sc| and |Sbn|.
However, reducing |Sc| and |Sbn| imposes conflicting demands on CR(q, Sc).
This is explained by the fact that segments that are near each other tend to
possess similar semantic labels.

For a user privacy profile, our objective is to find the optimal cloaked set
which is minimized in terms of communication cost, while satisfying l-sematic
diversity. In summary, our problem is equivalent to the following optimization
problem:

Minimize CR(q, Sc), subject to |ξ(Sc)| = |⋃∀eεSc
ξ(e)| ≥ l.

According to the paper [27], the problem of computing an optimal cloaked
set is NP-hard.

Solution. Based on above analysis, we propose a greedy solution called EIRank.
Intuitively, cloaking adjacent segments with different semantic labels provides a
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compact structure and semantic preference simultaneously. In other words, we
prefer cloaking the segments exhibiting structure similarity and semantic label
dissimilarity. To measure the similarity of linkage structures and the dissim-
ilarity of semantic labels, we introduce two scoring functions: S(n1, n2) and
Diff (ep.ϕ, eq.ϕ), respectively.

In many applications, objects are considered similar if they are related to sim-
ilar objects. Based on this intuition, we adopt a general similarity metric called
SimRank to measure the similarity of linkage structures. SimRank is calculated
by Eq. 1.

S(n1, n2) =

{
1 n1 = n2

C
|In1 ||In2 |

∑

j∈In2

∑

i∈In1

S(i, j) n1 �= n2 (1)

where C refers to as a decay factor, is a constant between 0 and 1, and In

represents the set of neighbors of n. Note that Eq. 1 is defined to be 0 when
In1 = ∅ or In2 = ∅.

To evaluate the dissimilarity of semantic labels of segments, we use the
normalized edit distance. In this case, the dissimilarity of semantic labels
Diff (ep.ϕ, eq.ϕ) is measured by the edit distance between the semantic
labels with regard to the length of the semantic label. The edit distance,
Edit(ep.ϕ, eq.ϕ), between two semantic labels, ep.ϕ and eq.ϕ, is defined as the
minimum number of basic operations required to transform one semantic label
into the other. In this paper, the basic operations are defined as insertion, dele-
tion and substitution of symbols, which is formalized as follows.

Let Ts(b|a) represents the substitution of symbol a by symbol b (a �= b), Ti(a)
represents the insertion of symbol a, and Td(a) represents the deletion of symbol
a. Then,

Diff (ep.ϕ, eq.ϕ) =
Edit(ep.ϕ, eq.ϕ)

Max (|ep.ϕ|, |eq.ϕ|) (2)

where ep.ϕ denotes the label function of ep, and Max (|ep.ϕ|, |eq.ϕ|) represents a
function that computes the larger length of the two labels ep.ϕ and eq.ϕ.

To combine linkage structure and segment semantic information for segment
allocation, we propose a solution, called EIRank, for simultaneously represent-
ing link-based similarity and semantic-based dissimilarity. Our solution consists
of four steps: EI network construction, label clustering, Augmented EI Network
Construction and segment allocation. Next, we will discuss each step in details.

EI Network Construction. For simplicity, we assume that the semantic label
of each edge is unique. To integrate linkage structure and segment semantic,
the semantic road network is transformed into an edge interaction (EI) network.
An EI network node, called e-node, represents an edge in the original semantic
road network, and two e-nodes are adjacent if their corresponding edges share
a common node in the original semantic road network. The labels of e-nodes in
the EI network are given by the semantic labels of the corresponding edges in
the road network. For example, edges e1 and e2 share a common node v2 in the
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semantic road network (Fig. 4(a)), and thus e-nodes e1 and e2 are linked together
in the EI network (Fig. 4(b)). Since the segment id itself represents the semantic
label of the segment, we do not mark the labels of the e-nodes anymore in the
EI network.
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Fig. 4. Example of EIRank strategy

Label Clustering. The problem of computing the dissimilarity of two segment
labels is equivalently converted into the one of computing the dissimilarity of
two e-node labels in the EI network. We use the method mentioned above to
achieve this goal. Take the labels of the two e-nodes e1 and e4 in Fig. 4(b) as an
example. By performing four basic operation Ts(l|h), Ts(b|r), Td(c) and Td(h),
the label of e-node e1 is transformed to the label of e-node e4. Therefore, the
dissimilarity of the two e-node labels is Diff (e1.ϕ, e4.ϕ) = 2

3 .
Based on the dissimilarity of the labels of e-nodes in the EI network, we

perform a generalized k-medians clustering [19] for the labels of the e-nodes in the
EI network. The result of label clustering for Fig. 4(b) is {church, police, park}
and {bar, club}.

Augmented EI Network Construction. In this step, we create a virtual
node for each cluster and connect the e-nodes whose labels are in the same
cluster to the virtual node. This new generated network is called augmented EI
network. The original e-nodes in a label cluster have higher structure similari-
ties by adding the virtual nodes. For example, Fig. 4(c) shows the updated EI
network corresponding to Fig. 4(b). Two virtual e-nodes o1 and o2 are added to
represent the clusters {church, police, park} and {bar, club}, respectively. Then,
the e-nodes in the set {e1, e2, e3, e8, e9, e10} are connected to the virtual node
o1. In the same manner, virtual node o2 is connected to the e-nodes in the set
{e4, e5, e6, e7}.

Segment Allocation. As stated above, the segments of a cloaked set needs to
have the structure similarity and semantic label dissimilarity. Based on the above
steps, the dissimilarity of the original e-node labels has been transformed to the
similarity of the linkage structure. This is consistent with the similarity of the
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Algorithm 1. Baseline Algorithm

Input: Semantic road network G = (V, E, ξ), Bucket scale Nl

Output: Buckets G1, G2, ..., Gp

1 Transform the G into EI network;
2 Execute the label clustering for e-nodes;
3 Compute S(ep, eq) for all e-node pairs;
4 Allocate(ep, eq, GS);
5 Merge buckets Gi where |ξ(Gi)| < Nl;
6 return non-empty buckets G1,G2,...,Gp;

linkage structure. Next, we use the function S(ep, eq) to measure the similarity
for every pair of non-virtual e-nodes.

To compute SimRank efficiently, we adopt the method in [7]. In this case,
the similarity of e-nodes is measured by Eq. 3, which states that the similarity
of two e-nodes is the expectation of the total time which is the time taken by
two random walkers starting from two different nodes to finally meet.

S(ep, eq) = E(Cτ(ep,eq)) (3)

Once the similarity has been computed for all e-node pairs, we use the single-
linkage hierarchical clustering [24] to perform the segment allocation. The func-
tion Allocate (ep, eq, GS) is used to describe this process.

The complete description of our EIRank strategy is given in Algorithm1.

4 Online Cloaking Phase

In the previous section, we have described the pre-processing phase of our app-
roach. Once partitioned buckets have been obtained, the remaining work is to
generate a cloaked set according to a user’s online request. Before detailing our
cloaking algorithm, we present several index structures, namely Ordered Locat-
ing Index (OLI ), semantic-aware order preserving list (SOPlist), and cloaked
l-diverse segment set (Cloaked l-maplist), used in the online cloaking.

4.1 Index Structure

Ordered Locating Index. In order to quickly locate the position of a segment
in a segment allocation, we design a novel index structure called OLI based on
the hash table for organizing the segments in order. We keep a record of each
entry in the form of (Seg,Sid,Cid,Pointer) where Seg is the segment identifier,
Sid is the bucket identifier of the segment Seg, Cid is the position identifier of
segment Seg in bucket Sid, and Pointer is a pointer to the next entry. We use
Eq. 4 to compute the sequence of segment Seq(ei,j) in the ordered linked list to
obtain the Sid and Cid of ei,j . The first three entries of this equation are used
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to compute the number of segments before segment ei,j . Note that ei,j connects
the nodes i and j.

Seq(ei,j) =
i−1∑

k=1

degree(k) − |Soverlap|Soverlap={elt},t<i,l<i

+ |Sprior|Sprior={eip},i<p<j + 1

(4)

Set the segment e6,9 in Fig. 1 as an example. Using Eq. 4, we compute its
segment sequence Seq(e6,9) = degree(v1) + degree(v2) + degree(v3) + degree(v4)
+ degree(v5) - |{e1,2, e1,4, e1,5, e2,3, e4,5}|) + |{e6,7}| +1 = 3+3+2+3+4−5+
1 + 1 = 12. Then, searching for the 12th record in OLI which is shown in Fig. 5,
we get Sid = 1 and Cid = 2. We conclude that the segment e6,9 is in bucket 1,
at position 2.

SOPlist and Cloaked l-maplist. To facilitate the execution of the cloaking
algorithms, we also propose two other data structures. SOPlist is a 2-semantic
diversity index whose objective is to speed up the computation of the cloaked set.
Each record of SOPlist is represented as ((seman1, n1), (seman2, n2), Pointer),
where (seman1, n1) ((seman2,n2)) denotes n1 (n2) adjacent segments of semantic
label seman1 (seman2), while Pointer is a pointer to the next record.

The role of Cloaked l-maplist is to record the cloaked sets that have been
formed for distinct semantic requirements so far. This is achieved by re-using the
mapping between segments and cloaked sets. A basic cell of Cloaked l-maplist
is represented as(li, npointer, spointer) and li set, where li indicates li-semantic
diversity, npointer and spointer are pointers to the next basic cell and li set,
respectively, and li set records the last position of each cloaked set with regard
to semantic requirement li. li set is dynamically maintained to keep track of the
current maximum position of cloaked sets of semantic requirement li in a bucket.

Example 3 (SOPlist and Cloaked l-maplist). Suppose the content of a bucket is
{e23, e13, e22, e21, e17, e4, e1, e5, e18, e14, e19}. Then, Fig. 5 shows the SOPlist
and Cloaked l-maplist corresponding to the bucket.

4.2 The Cloaking Algorithm

We introduce our online cloaking algorithm, which is summarized in Algorithm2.
It mainly uses of the segment oblivious property which is stated in Definition 3.

The algorithm first initiates an empty cloaked set and computes the sequence
of specified segments to locate the position of the segment in the segment allo-
cation (lines 1–2). The algorithm then finds the maximum value lmax in Cloaked
l-maplist and compares the segment location Cid in the bucket with lmax (line
3). If the value lmax is larger than Cid, the algorithm simply searches for the
Cloaked l-maplist to find the range of the cloaked set (lines 4–5). In this case, it
means that the cloaked set has been computed. Otherwise, it is necessary to exe-
cute the operations of lines 6–12. Finally, the algorithm searches for the segments
in the bucket range from [x1, x2], and returns the corresponding cloaked set.
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Example 4 (Online Cloaking). Continuing with Example 3, we assume that
l3 set={3}, lmax = 3, and two users u1 and u2 with the same privacy profile
(3, 1) located in segment e13 and e17, respectively. Since e13.Cid=2< lmax = 3,
we can compute x1 = 0, x2 = 3 according to Cloaked l-maplist and return
Sc ={e23, e13, e22}. Since e17.Cid=5> lmax = 3, we cannot compute the interval
[x1, x2] directly. So we continue to cloak from lmax + 1 = 4 in the SOPlist, and
obtain lmax = 6. When we checks the item zoo(1), we stops traversing in the
SOPlist. Then,we can conclude that the residual semantic number exceeds 3. So
we can safely set lmax = 6. As the condition e17.Cid < lmax is satisfied, we set
x1 = 3, x2 = 6, and obtain Sc={e21, e17, e4}.

5 Experimental Evaluation

In this section, we evaluate the performance of our proposed location
anonymization algorithms through extensive experiments. Our methods are
implemented on a machine with CPU Inter(R) Core(TM)i7-2600, 8.00 GB mem-
ory, 3.40 GHz frequency, 500 GB hard disk. All programs are coded in C++.

5.1 Experimental Setup

(1) Datasets. We use two real road network datasets1: California and Old-
enburg road networks. These datasets contain POIs of various categories, e.g.,
church, hospital, airport, which we used as query objects in our experiment.
Table 1 gives the parameters of the two real road networks.

(2) Query Generator. For each real dataset, we randomly pick 2000 query
points from the positions of trajectories. To simulate different traffic condition,
these trajectories are derived from real trajectories and synthetic trajectories
which are generated by a traffic simulator2. The parameters of queries are listed
in Table 2. In each experiment, we run 2000 queries and report the average result.
1 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.
2 http://www.fh-oow.de/institute/iapg/personen/brinkhoff.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.fh-oow.de/institute/iapg/personen/brinkhoff
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Algorithm 2. Online Cloaking

Input: Location(x, y)εei, Privacy profile(l, σt), OLI OSI, Soplist SL, Cloaked
l-maplist CL

Output: Cloaked set Sc

1 Initialize Sc = Φ ;
2 Compute Seq(ei) to acquire Sid0,Cid0 in OSI ;
3 Compute maximum value lmax of li set where li=l ;
4 if lmax ≥ Cid0 then
5 compute interval(x1, x2) in Cloaked l-maplist CL ;

6 else
7 while lmax < Cid0 do
8 lold−max = lmax;
9 update lmax=cloak(lmax+1,l, SL);

10 if residualsemantic(lmax, SL) < l then
11 update lmax=end position of Soplist SL ;

12 insert x2 into CL ;

13 x1 = lold−max, x2 = lmax ;

14 Sc=
⋃{ek}x1<ek.Cid≤x2,Seq(ek).sid=Sid0 ;

15 return Sc ;

Table 1. Real dataset parameters

Name of dataset Vertex count Edge count Semantic types count POIs count

OLdenburg (OL) road network 6,105 7,035 10 600

California (CA) road network 21048 21693 62 104,771

(3) Algorithms. We evaluate the following algorithms. (a) EIRank: The algo-
rithm is our proposed solution for protecting location privacy on road networks.
(b) SA: This is an algorithm proposed in [17]. To compare with our approach,
we modify this solution. That is, we don’t consider identity protection (k-
anonymity), and are only interested in protecting location and location seman-
tic information. More specially, the algorithm first achieves a Voronoi-partition
graph from the road network. Then, it determines the initial vertex’s Voronic-
partition according to the query user’s location. Next, it gradually merges neigh-
boring vertex’s Voronic-partitions until the semantic requirement is satisfied.

Table 2. Parameters setting

Parameters Default values Range

l: semantic diversity 5 [2,10]

k: kNN query 5 [2,10]

t: semantic type count 62 [62,100]
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(4) Metrics. In our experiments, we evaluate the following metrics. (a) Cloaking
Size: this metric measures the size of a cloaked set. It is defined as the count
of the segment that contains in a cloaked set. (b) Relative Semantic level: this
metric measures the achieved semantic diversity l′ for the cloaking algorithm
normalized by the user specified sematic diversity level l, i.e., l′

l . (c) Cloaking
Time: the cloaking time is used to measure the runtime of the cloaking algorithm.

Besides, we also use the following two metrics to measure QoS. (c) Query
Time (PT): this metric is measured by the execution time of processing a query
at the server side. (d) Communication Cost (CC): we use the size of the candidate
results set to measure the communication cost.

5.2 Experimental Results

In the first three experiments, we examine the efficiency of our cloaking algo-
rithms. In the last two experiments, we examine PT and CC.

Cloaking Size. Figure 6(a) shows the effect of varying semantic diversity on
the cloaking size. From the results, we can observe that with the increase of
semantic diversity, the cloaking sizes all increase. In addition, the cloaking size
of SA is always larger than that of EIRank. The main reason is that the cloaking
strategies of the two algorithms are different. EIRank performs segment-based
perturbation, which stops just after obtaining user specified semantic require-
ment. In contrast, SA performs vertex Voronoi-based perturbation. Based on
this difference, a cloaked set of SA contains more segments than that of EIRank.

Fig. 6. The efficiency of the cloaking algorithms on the California road network

Relative Semantic Level. Figure 6(b) shows the relative semantic level with
regard to semantic diversity. It can be seen that as the semantic diversity
increases, the relative semantic level of SA remains unchanged and that of
EIRank increases. This is because the semantic number of a cloaked set exactly
equals to the user-defined semantic diversity for SA algorithm. To resist reverse
engineering attacks, the lastest cloaked set of each bucket contains more than l
semantics for EIRank.

Cloaking Time. Figure 6(c) shows the impact of varying semantic diversity on
the cloaking time for the two algorithms. From the figure, we observe that with
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the increase of semantic diversity, the time cost of EIRank drops significantly
and the time cost of SA increases dramatically. It also can be seen that the
cloaking time cost of EIRank is always less than that of SA.

A large semantic diversity l results in a relative large cloaked set. For the
other segments other than query segment, the cloaked sets are generated by
searching the Cloaked l-maplist directly. As we do not need to reconstruct the
cloaked sets, which greatly decreases the cloaking time. In contrast, each cloaked
set of SA is generated completely dependently. With the increase of semantic
diversity, SA needs to search more vertex’s Voronoi-partition to achieve the
cloaked set, which increases the cloaking time. As the cloaked set of SA is larger
than that of EIRank, EIRank runs faster than SA.

Fig. 7. The efficiency of the cloaking algorithms on the Oldenburg road network

Figure 7 shows the performance of the cloaking algorithms on the Oldenburg
road network. We observe that the trendy is the same as that of California
road network. Based on this fact, in the following experiments, we just show the
performance of the algorithms on the California road network.

Query Processing Cost. Figure 8(a) illustrates the query time of the two algo-
rithms with different values of semantic diversity. From the results, it is clear
that the query time all increases as the semantic diversity increases. Further-
more, the query processing of SA run quite slowly in comparison to EIRank as
expected. The results above are reasonable, the query time mainly depends on
cloaking size. For the same semantic diversity, cloaking size of EIRank is smaller
than that of SA. The cloaked set becomes large for a big semantic diversity, and
hence the query time increases.

Fig. 8. Query time vs parameters l, k and t.
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Fig. 9. Communication cost vs parameters l, k and t

Figure 8(b) shows the effect of varying k on the query time. It can be seen
that with the increase of k, the query costs of two algorithms increase. We also
observe that the algorithm EIRank outperforms SA in most cases. The reasons
are as follows. On the one hand, based on our query processing model, a larger k
needs to search more segments to acquire the k-nearest neighbors for boundary
nodes. On the other hand, the cloaked set size of EIRank is far smaller than that
of SA.

Figure 8(c) shows the effect of semantic type count t on query time. As
observed, with the semantic type count increases, the query time of two algo-
rithms degrades. We also notice that the parameter t has stronger influence on
SA algorithms than on EIRank algorithms.

These phenomena are explained by the following facts: (1) With the increase
of semantic types, a part of semantic types are replaced by smaller granular-
ity semantic types. As cloaking of SA algorithm is based on vertex’s Voronoi-
partition, the size of cloaked sets is smaller than before. and (2) The parameter
t has little impact on the cloaked set size of EIRank, and hence it almost have
no effect on query time of EIRank.

Communication Cost. Figure 9 shows the impact of different parameters on
communication cost. As mentioned above, we measure communication cost indi-
rectly in terms of the size of the candidate results sets, since each result set must
be transmitted from server to location annoymizer. From these graphs, we can
see that the trend is the same as for query processing cost, and can be explained
in a similar way.

6 Related Work

Our work relates to two main streams of research, concerning location privacy
and location semantics, respectively.

Location privacy. Location anonymization has attracted much interest as a
solution to protect user location privacy in LBS. It mainly makes use of location
obfuscation techniques to hide an user’s exact location. Examples include space
transformation [2,9,25], fake location [14,29], mix-zones [21], and spatial cloak-
ing [1,5,8,11–13,20]. Among various anonymization techniques, spatial cloaking
is the prominent. It enlarges an user’s exact location to a cloaked region until



Semantic-Aware Location Privacy Preservation on Road Networks 329

some privacy conditions are satisfied, such as k-anonymity [8]. Unfortunately,
most existing cloaking techniques are no longer applicable in road networks,
because the area granularity of measurement tends to fail.

Recently, there exists several research on location privacy over road net-
works [3,15,16,18,26]. The most famous technique is based on the model of
segment l-diversity [3,26]. As mentioned above, this solution cannot prevent the
location semantic information leakage.

Location Semantics. In generally, the sensitive information is disclosed using
two kinds of published information: query semantics [22,27] and location seman-
tics. In the first case, it means that the query contents issued from a cloaked set
are at least l different types. Our paper concentrates on protecting the sensitive
information using location semantics over road networks.

Location l-diversity is first introduced in [1], However, it doesnt distinguish
the place type. Lee et al. [16] proposes mining the place semantics using Earth
Mover’s Distance to avoid location semantic leakages, but it does not consider the
road networks environment. Yigitoglu et al. [28] extends the semantic location
cloaking model [6] to protect semantic location in urban settings. Due to the
cloaked sets being generated a priori for a particular privacy requirement, this
approach cannot support the privacy requirement updating. As the limitations
mentioned above, we don’t make comparison with them. Li et al. [17] solves
the location semantic leakages in road networks based on the vertex Voronoi-
partition. Unfortunately, this solution is subject to reverse engineering attacks.
Our solution overcomes these drawbacks.

7 Conclusion

In this paper, we propose a semantic-aware privacy preservation model named
CloSed to preserve user privacy on road networks. In our model, the cloaked set
provides semantic protection without compromising QoS. To achieve this goal,
we design an advanced algorithm to balance the privacy requirement and QoS.
Extensive experiment evaluations show the efficiency and effectiveness of our
proposed algorithms on large-scale real datasets.
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