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Abstract. The fast development of GPS equipped devices has aroused
widespread use of spatial keyword querying in location based services
nowadays. Existing spatial keyword indexing and querying methodolo-
gies mainly focus on the spatial and textual similarities, while leaving the
semantic understanding of keywords in spatial web objects and queries
to be ignored. To address this issue, this paper studies the problem of
semantic based spatial keyword querying. It seeks to return the k objects
most similar to the query, subject to not only their spatial and textual
properties, but also the coherence of their semantic meanings. To achieve
that, we propose a novel indexing structure called NIQ-tree, which inte-
grates spatial, textual and semantic information in a hierarchical manner,
so as to prune the search space effectively in query processing. Extensive
experiments are carried out to evaluate and compare it with other two
baseline algorithms.

Keywords: Spatial keyword query · Query optimization · Probabilistic
topic model · Semantic similarity

1 Introduction

Location based services (LBS) is widely used nowadays [3,20,23,25], and spatial
keyword query is known as an important technique for LBS systems. Exten-
sive efforts have been made so far to support effective spatial keyword indexing
and querying. Some pioneer work [5,6] mainly focuses on the Spatial Keyword
Boolean Query (SKBQ) that requires exact keywords match, and apparently,
they may lead too few or no results to be returned because of the diversified tex-
tual expressions. To overcome this issue, researchers proposed some novel index-
ing structures to support Spatial Keyword Approximate Query (SKAQ) more
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recently in [16,18,21], which are able to handle the spelling errors and conven-
tional spelling differences (e.g., ‘theater’ vs. ‘theatre’) that frequently appear in
real applications. But still, they cannot retrieve the objects that are synonym
but literally different to the keywords in query, such as ‘theater’ and ‘cinema’,
due to the lack of understanding of the semantics in objects and queries. This
gap motivates us to investigate other semantic-aware approaches that are able
to capture the semantic meanings of spatial keywords.

Fig. 1. An example of spatial keyword query

Example 1. Considering the example with eight spatial web objects in Fig. 1,
where each object can be seen as a place of interest that has a spatial location
and attached keywords. A user issues a query q to find a theatre close to the query
location. If the SKBQ approaches [5,6] are applied in the search engine, no result
can be returned to the user because of the none precise match to the keyword
‘theatre’ in query. Alternatively, by using the SKAQ techniques [16,18,21], the
search engine can return the object p6, which seems to be a relatively reasonable
object to recommend in terms of spatial and textual similarities. However if
checking those objects more carefully, we can easily observe that p3 is the best
match object should be returned, because it is not only closer to q in spatial,
but also more relevant to q in semantics, meaning that the user intention can be
satisfied as well. In order to make a more reasonable recommendation such as
p3, the key problem is how to interpret and represent the semantics of keywords,
and then take the semantic meanings into consideration of query processing.

To fulfill the gap mentioned above, we apply the probabilistic topic model
(e.g., LDA [1]), known as a powerful tool in the field of machine learning, to
convert the textual descriptions of objects into semantic representations (i.e.
distribution over topics, or called topic distribution). By applying the LDA model
on p1 in Fig. 1, we can obtain five latent topics, and its topic distribution (over
the five topics) is (0.72, 0.07, 0.07, 0.07, 0.07) (in Table 1). The topic distribution
of p1 indicates the semantic relevance between its textual description and each
topic, e.g., 0.72 for topic ‘exercise’, implying that p1 is very relevant to the this
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topic. Similarly, we can compute the topic distributions of the query and all other
objects (in Table 1). Note that, each topic distribution is a high dimensional
vector in essential. The semantic similarity between textual descriptions of a
query and a spatial object can be measured by their topic distributions (e.g.
cosine distance of the two vectors). From Table 1, we can thus infer that ‘theatre’
and ‘eve cinema’ have close semantic similarity.

Once the topic model is incorporated, spatial keyword querying becomes chal-
lenging and time-consuming in despite of more meaningful feedbacks can be found.
The reason can be summarized in three main aspects. Firstly, the topic distri-
bution based indexing method has much higher dimensions associating to each
object, which severely deteriorates the pruning efficiency (known as the ‘curse of
dimensionality’ [11]) of most multi-dimensional search algorithms. Secondly, com-
pared to the conventional SKBQ and SKAQ, it incurs more memory and I/O cost
because additional space is required to store the topic distribution based object
information, and I/O cost increases accordingly. Last but not the least, it is nec-
essary to integrate information of multiple dimensions in the indexing and query
processing, which makes the hybrid representation more difficult.

To address all above difficulties, we define a new type of spatial keyword
query that incorporates spatial, textual and semantic similarities into account.
To prune the search space effectively in query processing, we carefully design
a hierarchical indexing structure called NIQ-tree, which can integrate spatial,
textual and semantic information seamlessly in a hierarchical manner. Since
iDistance [14] is one of the best known high dimensional indexing methods, which
coincides to our topic distribution based representation of spatial web objects,
we incorporate iDistance into the NIQ-tree to avoid the large dead space when
indexing all objects in high dimensional space. To make efficient retrival, a novel
query processing mechanism on top of the NIQ-tree is proposed to prune the
search space effectively based on some theoretical bounds. To sum up, our main
contributions of this paper can be briefly summarized as follows:

– We introduce and formalize a new type of probabilistic topic model based
similarity measure between a query and a object.

– We propose a novel hierarchical indexing structure, namely NIQ-tree, to inte-
grate the spatial, semantic and textual information of the objects seamlessly
while avoiding large dead space.

– We further design an efficient search algorithm, which can greatly prune the
high dimensional search space in query processing based on some theoretical
bounds.

– We conduct an extensive experiment analysis based on spatial databases and
make the comparisons with two baseline algorithms, and then demonstrate
the efficiency of our method.

2 Preliminaries and Problem Definition

In this section, we introduce some preliminaries and formalize the problem of
this paper.
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2.1 Probabilistic Topic Model

In order to recommend spatial web objects that can fulfill user’s intention, it is
necessary not only to understand the semantic meanings of the textual descrip-
tions embedded in objects and queries [12], but also to measure their seman-
tic relevance accurately. Probabilistic topic model is a mature nature language
processing technique that has been proven to be successful on theme interpreta-
tion and document classification. Therefore in this paper, we apply the Latent
Dirichlet Allocation (LDA) model, i.e. one of the most frequently used proba-
bilistic topic models, to understand the semantic meanings of textual description
formed by words with respect to topics. Here, topics can be understood as pos-
sible semantic meaning of textual data defined as follows:

Definition 1 (Topic). A topic z represents a type of intended activity that a user
may be interested in, such as ‘Chinese restaurant’, ‘coffee shop’, ‘supermarket’
and so on. Z is a preprocessed topic set, which is the union of all topics used to
describe the meaningful semantics of textual descriptions.

By carrying out statistical analysis on the large amount of textual descriptions,
the LDA model derives the semantic relevance of a topic to all relevant words,
known as words distribution defined as follows:

Definition 2 (Words Distribution). Given the topic set Z and the set of all pos-
sible words V , the matrix M = Z × Vz (Vz ⊆ V ) is used to represent the words
distributions of all topics in Z, where V is the collection of all keywords that
may appear in textual descriptions, and Vz is the keywords collection belonging
to the topic z, apparently, Vz ⊆ V . Each Mz represents a distribution of a single
topic over all words which belong to this topic and Mz[w] is the topic proportion
satisfies

∑
w∈Vz

Mz[w] = 1, where z ∈ Z.

Definition 3 (Topic Distribution). Given a textual description W , the topic dis-
tribution of W , denoted as TDW , is the statistical proportion for each keyword
in W , where the topic proportion TDW [z] from W to topic z is calculated as

TDW [z] =
Nw∈(W

⋂
Wz) + α

|W | + |Z| × α
(1)

where Nw∈(W
⋂

Wz) is the number of keywords belongs to the given textual
description of W in Wz; α is the symmetric Dirichlet prior and generally set to
0.1. |W | and |Z| are the number of keywords in W and topics in Z respectively.

A topic distribution TDW is a |Z|-dimensional vector, which can be regarded
as a point in a high dimensional topic space. Therefore, the topic distance of two
textual descriptions can be calculated as the following definition.

Definition 4 (Topic Distance). Given two textual descriptions W and W ′, their
topic distance can be quantified by several similarity measures (e.g., Euclidean
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Table 1. Topic distributions of textual descriptions

textual descriptions
topics

exercise movie drink shop food

ymca club (in p1) 0.72 0.07 0.07 0.07 0.07

megafit gym (in p2) 0.88 0.03 0.03 0.03 0.03

eve cinema (in p3) 0.04 0.84 0.04 0.04 0.04

starbucks (in p4) 0.07 0.07 0.72 0.07 0.07

crystal mall (in p5) 0.07 0.07 0.07 0.72 0.07

ed. theater (in p6) 0.07 0.72 0.07 0.07 0.07

auchan supermarket (in p7) 0.07 0.07 0.07 0.72 0.07

KFC (in p8) 0.04 0.04 0.04 0.04 0.84

theatre (in q) 0.07 0.72 0.07 0.07 0.07

and Cosine Distance). Here, we adapt the cosine distance to measure their dis-
tance in high dimensional topic space. The topic distance DT (TDW , TDW ′) is
defined as

DT (TDW , TDW ′) =
∑

z∈Z(TDW [z] × TDW ′ [z])
||TDW || × ||TDW ′ || (2)

where ||TDW || is the modulus of TDW in |Z| dimensions. It is obvious that
the less topic distance of two arbitrary textual descriptions is, the more relevant
they are in semantics according to the LDA interpretation.

Example 2. Table 1 shows the LDA interpretation on all the objects in Fig. 1.
After running LDA, we derive the distribution of topic (e.g., ‘exercise’) over rele-
vant words (e.g., ‘club’, ‘gym’) based on statistical concurrence. Then we derive
the topic distribution of each textual description, where each number in the
table is a topic proportion (e.g., M′gym′ [exercise] = 0.88) that indicates their
semantic relevance. Therefore, the topic distance between the textual descrip-
tion W of query point (e.g., q.W = ‘theatre’) and textual description W ′ of
point in the database (e.g., p3.W

′ = ‘eve cinema’) can be further quantified as
DT (W,W ′) = 0.09.

2.2 Problem Definition

In this subsection, we give some basic definitions and then formalize the problem
of this paper.

Definition 5 (Spatial Web Object). A spatial web object can be a shop, a restau-
rant or other place of interest whose location and textual descriptive information
can be accessed through Internet. It is formalized as o = (o.λ, o.ϕ), where o.λ is
the position of o and o.ϕ is the textual description for describing o. We use the
term spatial object to represent it in short in the rest of this paper.
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Definition 6 (Spatial Keyword Query). Consider a query q = (q.λ, q.ϕ, τ), where
q.λ is the query location represented by a longitude and a latitude in the two
dimensional geographical space; q.ϕ is a group of words that describe user’s
intention, such as ‘Chinese restaurant’; τ is a user-specified threshold of textual
distance in case that strict textual similarity is required. The textual distance
between the query q and spatial object o is denoted as TD(q, o), which is mea-
sured by the Edit Distance [15] of their keywords.

Definition 7 (Candidate Object). Given a query q, a spatial object o is said to
be a candidate object, if and only if its textual distance to q is no more than the
threshold of q, i.e. TD(q, o) ≤ q.τ .

Note that, a spatial object can be returned to user only if it is a candidate object.
Among all candidate objects, we rank them by the distance function subject to
their spatial proximity and semantic coherence.

Definition 8 (Distance Function). Given a query q, a set of spatial object o, their
spatial distance are calculated by the Euclidean distance of their geographical
locations. We normalize it to range [0,1] by using the sigmoid function as shown
in Eq. 3.

DS(q, o) =
2

1 + e−dist(q.λ,o.λ)
− 1 (3)

By combining the spatial distance and the topic distance, we further define a
distance function of q and o, denoted as D(q, o) in Eq. 4.

D(q, o) = λ × DS(q, o) + (1 − λ) × DT (q, o) (4)

where λ is a user-specified parameter to balance the weight of the spatial and
semantic distance.

Problem Statement. Given a query q, a set of spatial objects D, and user-
specified integer k, this paper returns the k candidate objects that have the
minimum distance to q.

3 Baseline Algorithms

In this section, we propose two baseline algorithms which explore the possibility
of using existing techniques to solve the problem in this paper.

3.1 Quadtree Based Algorithm

The first baseline algorithm uses the Quadtree [7] to prune the search space in
spatial dimension. In the method, the Quadtree, which only utilizes the spatial
coordinates of the points, is used to index these points in two-dimensional space
directly. Given a query q, the first baseline traverses the index structure to
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find the spatial nearest object incrementally in terms of the spatial best match
distance which is computed as follows:

Dsbm(q, o) = λ × DS(q, o) (5)

It is easy to see that the spatial best match distance is always the lower bound
of the distance between q and o.

In the processing of the query, we keep finding the next nearest point o′ (based
on spatial best match distance) and computing its distance D(q, o′) to q. During
the process, we keep track of the k-th minimum distance as the upper bound of
final results Dub based on a priority queue. If the spatial best match distance of
next obtained object exceeds Dub already, the search algorithm terminates since
all remaining objects have no chance to be better than the current top-k results.

3.2 MHR-tree Based Algorithm

The basic idea of the second baseline algorithm is mainly motivated by some
early work for approximate string search in spatial database [5,6,21]. We use a
hybrid indexing structure called Min-wise signature with linear Hashing R-tree
(MHR-tree) [21], which combines R-tree [10] with signatures embedded in the
nodes, to prune the search space in both spatial and textual dimension.

The indexing structure of MHR-tree embeds the min-wise signature in a R-
tree node. For every leaf node u in the MHR-tree, we compute the n-grams Gp

and the corresponding min-wise signature S(Gp) of every point p in this node,
then store all (p, S(Gp)) pairs in node u. For every non-leaf node u in the MHR-
tree, with its child node entries c1, ..., cf and every child node wi pointed by ci,
we store the min-wise signature of the node pointed to by ci, i.e., s(Gwi

). Then
the signature of a non-leaf node u can be computed using s(Gwi

) as

s(Gu)[i] = min(s(Gwi
)[i], ..., s(Gwf

)[i]) (6)

where s(Gu)[i] is proportion of s(Gu). Finally, we store s(Gu) of the non-leaf
node in the index entry that points to u in u’s parent.

In processing a query q, we use a min-priority queue that orders objects in the
queue according to their distance to the query point. We search from the root of
the MHR-tree and prune the search space by spatial best match distance similar
to the search in the first baseline. Additionally, here we use some strategies to
avoid checking all points in the node of MHR-tree according to their textual
information. When we reach a leaf node, we traverse every point p in the node
and insert it into the queue according to Lemma 1 [8,19] if it satisfies:

|Gp ∩ Gq| ≥ max(|p|, |q|) − 1 − (τ − 1) × n (7)

where Gp and |p| are the set of n-grams and string length in p respectively, τ is
the user-specified threshold of textual distance (e.g., Jaccard distance [13] and
edit distance [15]) and n is 3 if we choose 3-gram.
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Lemma 1 (From [8]). For strings σ1 and σ2, if their edit distance is τ , then
|Gσ1 ∩ Gσ2 | ≥ max(|σ1|, |σ2|) − 1 − (τ − 1) × n.

However, when we reach a non-leaf node, its child wi will be added to the queue
according to Lemma 2 if it satisfies:

̂|Gwi
∩ Gq| ≥ |q| − 1 − (τ − 1) × n (8)

where ̂|Gwi
∩ Gq| is the estimation of |Gwi

∩ Gq|. Whenever a point is removed
from the head of the queue, it is added to the result set. The search terminates
when there are k points in the result or the priority queue becomes empty.

Lemma 2. Let Gu be the set for the union of n-grams of strings in the subtree
of node u in a MHR-tree. Given a query q, if |Gu ∩ Gq| ≥ |q| − 1 − (τ − 1) × n,
then the subtree of node u does not contain any point in the result.

Proof: Gu is a set, which contains distinct n-grams. The proof follows by the
definition of Gu and Lemma 1. ��

4 NIQ-tree Based Algorithm

In this section, we propose an improved hybrid indexing structure NIQ-tree
based on iDistance [14]. The iDistance is a well-known index scheme for high-
dimensional similarity search, with a basic idea to group all objects by clustering
(e.g., by k-means, k-medoids, etc.), which enables us to achieve superior pruning
effect in query processing. By utilizing iDistance to sketch the topic distributions,
the NIQ-tree is expected to support effective pruning on spatial, textual and
semantic dimensions simultaneously.

Indexing Structure. The NIQ-tree is a three layered hybrid indexing structure
shown as Fig. 2, where the spatial, semantic and textual layers are integrated in
a vertical way. In designing NIQ-tree, we adopt a spatial first method because
of the better pruning effect in spatial domains, which can be explained by its
two dimensional nature (v.s. high dimensions of topic and textual domains). The
basic form of a NIQ-tree node is N = (p, rect, o, r), where p is the pointer(s) to
its child node(s); rect is the minimum bounding rectangle (MBR) in spatial of
all objects contained by N ; o and r are the center point and radius of a topic
space hyper-sphere that covers the topic distributions of all objects contained by
N respectively. On top of all spatial objects, we use Quadtree to index them in
the spatial domain according to their spatial closeness first. For each leaf node
of Quadtree, all objects are further organized by iDistance index in the topic
layer, such that objects are grouped and managed by their topic coherence. For
each leaf nodes N of the topic layer, it is referenced to a set of n-gram based
inverted lists in the textual layer, and similar to MHR-tree, the n-gram inverted
lists functionally sketch out the textual descriptions of objects contained in N .
In this way, it is possible to filter irrelevant objects according to the q.ϕ and q.τ
specified in query.
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Fig. 2. NIQ-tree

Example 3. A three-layered NIQ-tree is shown in Fig. 2. Assuming that all POIs
in Fig. 1 are divided into the same leaf node L2 in spatial layer, these points
are partitioned into four clusters in topic layer, where C1 contains {p3, p6}, C2

contains {p5, p7, p8, p9}, C3 contains {p1, p2} and C4 contains {p4}. It is clear
that all points in the same cluster have high semantic similarity. At last, in
textual layer, we construct a n-gram based inverted list.

In constructing the NIQ-tree, we build up a Quadtree for all points in spatial
database first like the first baseline algorithm. Then for the points in every leaf
node of the Quadtree, we use iDistance to cluster these points based on their
topic distributions of all contained objects, and construct a B+-tree to organize
the nodes (each node represents a cluster) according to the key value computed
as follows:

key = i × c + DT (p, oi) (9)

where i is the identifier of the partition Pi, c is a constant to partition the single
dimension space into regions so that all points in Pi will be mapped to the range
[i× c, (i+1)× c), oi is a reference point to Pi and p is the point in this partition.
In this way, the high dimensional topic space is expressed by a transformed point
key in single dimension space, and B+-tree can thus be applied directly. Next,
we set the N.o and N.r for all spatial layer nodes of the NIQ-tree in an bottom
up fashion, such that they can cover the center point and radius of N ’s child
nodes in minimum topic space cost. Finally, we build the inverted lists for every
leaf node of the B+-tree by the n-gram method.

Query Processing. Algorithm 1 illustrates the query processing mechanism
over the NIQ-tree. Given a query q, the objects retrieval is carried out on the
spatial, topic and textual domains of the index alternately. Starting from the root
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of index, we traverse the spatial layer nodes in the ascending order of the best
match distance Dbm(q,N) with respect to q defined as the following formula:

Dbm(q,N) = λ × minp∈N.mbrDS(q, p) + (1 − λ) × minDT (q,N) (10)

where minp∈N.mbrDS(q, p) and minDT (q,N) denote the minimum possible spa-
tial and topic distance from q to any object contained in the node N . Let
||TDq.ϕ, N.o|| be the cosine distance between textual description q.ϕ and ref-
erence point o in topic layer, the minimum possible topic distance DT (q,N) can
be computed as follows:

minDT (q,N) =
{

0 ||TDq.ϕ, N.o|| ≤ N.r
||TDq.ϕ, N.o|| − N.r ||TDq.ϕ, N.o|| > N.r

(11)

It is noted that Dbm(q,N) is the lower bound distance Dlb to q for all unvis-
ited points according to its definition.

In the query processing, the node we fetch from the priority queue is a non-
leaf node, we add all its child nodes to the queue; otherwise, we access the topic
and textual layer indices subject to this node to access the candidate objects they
covers. During the search in topic layer, the leaf node in the B+-tree can be
identified according to key value. Similar to iDistanceKNN search [14], we browse
the space by expanding the radius R of the hyper-sphere centered at the query
point q. At each time, R is increased by ΔR (i.e., R = R+ΔR). If the leaf node of
this layer intersects with the searching sphere, we traverse the points in this node
according to its key value in the range of [i×c+dis(q, oi)−R, i×c+dist(q, oi)+R],
where dist(q, oi) is the distance between q and reference point oi. Then, by
checking its inverted list in textual layer, we find the spatial objects whose textual
distance to q is no more than q.τ . Especially, we dynamically maintain the top-k
minimum distance for all scanned points and keep the k-th minimum distance
as an upper bound Dub. The radius of search sphere R stops increasing when
the following condition holds for all unvisited topic layer leaf nodes:

λ × minp∈N.mbrDS(q, p) + (1 − λ) × R ≥ Dub (12)

where N.mbr is the MBR of a spatial layer leaf node N . Obviously, (λ ×
minp∈N.mbrDS(q, p) + (1 − λ) × R) is a lower bound distance from q to a topic
layer leaf node rooted in N according to Lemma 3. The whole search algorithm
terminates when Dlb is no less than Dub because the remaining unvisited points
have no opportunity to be better than the current top-k results.

Lemma 3. Given a query q and a NIQ-tree, if N is a spatial layer leaf node of
the NIQ-tree, then the search in topic layer with respect to N terminates when
(λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) ≥ Dub.

Proof: minp∈N.mbrDS(q, p) is the minimum spatial distance from q to a spa-
tial layer node N , which is the lower bound of spatial distance from q to any
unvisited point in this node. R is the minimum topic distance from q to any
unvisited point in the cluster, which is the lower bound of topic distance. So
(λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) is a lower bound distance from q to a
topic layer leaf node. Lemma 3 can be proven. ��
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Algorithm 1. NIQ-tree based Search Algorithm
Input: dataset D, query q and user-specified k and λ
Output: top-k result set V

1 Upper Bound Dub = +∞;
2 Lower Bound Dlb = 0;
3 Search radius R = 0.1;
4 Put NIQ-tree root into a priority queue U ;
5 while U �= ∅ do
6 Pop an element N from U ;
7 if N is a non-leaf node then
8 Add its children to U ;

9 else if N is a leaf node then
10 for every iDistance node N ′ in N intersecting with searching sphere do
11 for every object o in N ′ do
12 Check the n-gram inverted lists of N ′;
13 if o is a candidate object then
14 Compute D(q, o) using Eq. 4;
15 if D(q, o) < Dub then
16 Update V with o included;

17 Update Dlb and Dub;

18 if (λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) ≥ Dub then
19 break;

20 R = R + ΔR;

21 if Dlb ≥ Dub then
22 break;

23 return V ;

5 Experiment Study

In this section, we conduct extensive experiments on real datasets to evaluate
the performance of our proposed index and search algorithms.

5.1 Experiment Settings

We create the real object datasets by using the online check-in records of
Foursquare within the area of New York City. Each check-in record of Foursquare
contains the user ID, venue with geo-location (place of interest), time of check-in
and the tips written in plain English. We put the records belonging to the same
object to form textual descriptions of the objects. The topic distributions over
words are obtained by the textual descriptions in the tips associated with the
location, and then the textual descriptions for each place are interpreted into
a probabilistic topic distribution by LDA model. The number of objects in the
whole dataset is 422030 in sum.
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Table 2. default values of parameters

Parameter Default value Description

k 10 Top-k results

λ 0.5 Weight factor

τ 3 Threshold of edit distance

D 200 K No. of objects

c 4 K Capacity of quadtree leaf node

m 20 Number of clusters

We compare the query time cost and number of visited objects during the
search processing of the proposed method (NIQ-tree) with the two baseline algo-
rithms proposed in Sect. 3. The default values for parameters are given in Table 2.
In the experiments, we vary one parameter and keep the others constant to inves-
tigate the effect of this parameter. All algorithms are implemented in Java and
run on a PC with 2-core CPUs at 3.2 GHz and 8 GB memory.

5.2 Performance Evaluation

In this part, we vary the values of parameters in Table 2 to compare the NIQ-tree
with two baseline algorithms and investigate the effect of each parameter.

Effect of k. In the first set of experiments, we study the effect of the intended
number of results k by plotting the query time and visited objects (denoting I/O)
on the dataset. As shown in Fig. 3, our proposed indexing structure, NIQ-tree,
significantly outperforms all other two baseline indexing methods on the same
dataset. Particularly, the NIQ-tree based method is almost 2–3 times faster than
the MHR-tree with respect to query time. All algorithms incur high cost in both
number of visited objects and query time as k increases, which is not beyond
our expectation because the k-th match distance becomes greater, which leads
more candidates to be retrieved.

Effect of λ. Next we study the effect of different weight factors λ. As shown in
Fig. 4, all algorithms including Quadtree, MHR-tree and NIQ-tree based meth-
ods have ascending tendency of I/O and query time when the value of λ goes
up. In contrast, the NIQ-tree is superior than two other approaches because of
its superior pruning effect in spatial, semantic and textual domains.

Effect of τ . Then we investigate the query performance of these algorithms
when the threshold τ of the edit distance between object and query is varying.
Figure 5 shows the results of our experiment. With the increase of τ , all algo-
rithms incur more time cost and more visited objects because more candidate
objects are retrieved since their edit distance to query are less than the thresh-
old. Especially, the NIQ-tree still outperforms the other two baseline algorithms
with respect to query time and visited objects.
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Fig. 3. Effect of k Fig. 4. Effect of λ

Fig. 5. Effect of τ Fig. 6. Effect of D

Effect of D. In order to evaluate the scalability of all algorithms, we sample the
dataset of New York City to generate datasets with different number of objects
varying from 50 K to 250 K, and report the query time and visited points in
Fig. 6. Within our expectation, the query time and the number of visited objects
of all three methods increase linearly with respect to the size of dataset. But it
is worth to note that the NIQ-tree based method performs much more efficient
than the others.

In NIQ-tree, there are several parameters of iDistance index which may have
effects on the performance, including the size c of leaf node in spatial layer and
the number m of clusters in iDistance.

Fig. 7. Effect of c Fig. 8. Effect of m

Effect of c. As shown in Fig. 7, the capacity of leaf node in Quadtree affects the
performance of our proposed indexing structure. With the increase of node size
c, both visited objects and query time increase. That is to say that the query
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time and I/O increase with the size of c. From Fig. 7, it is noted that the increase
of data size D also makes more I/O and query time when c remains the same.

Effect of m. It is shown in Fig. 8 that the performance of our proposed index are
affected when the number of clusters m changes. On one hand, we can observe
that the visited objects remain almost constant with respect to m but increase
with the data size D from the left figure of Fig. 8. On the other hand, the query
time has a nearly linear increase with m and it also increases when the data size
D becomes larger.

6 Related Work

The related work to out study mainly include probabilistic topic model and
spatial keyword query.

Probabilistic Topic Model. Probabilistic topic model is a statistical method
to analyze the words in documents and to discover the themes that run through
the words, how those themes are connected to each other, with no prior anno-
tations or labeling of documents been required. Based on the topic models, it is
possible to measure the semantic relevance between a text to a theme, as well as
that between different texts (in semantic level). There are several classical topic
models including LDA [1], Dynamic Topic Model, Dynamic HDP, Sequential
Topic Models, etc. Above techniques have been widely used in applications like
document classification, user behavior understanding, functional region discov-
ery, etc. In this paper, we tend to integrate topic model and spatial objects for
efficient spatial keyword querying with semantics.

Spatial Keyword Query. With the prevalence of spatial objects associated
with textual information on the Internet, spatial keyword queries that exploit
both location and textual description are gaining in prominence. Some efforts
are made to support the SKBQ [5,6,17,22] that requires exact keywords match,
which may lead few or no results to be found. To overcome this problem, some
efforts are further made to support the SKAQ [16,18,21], so that the query
results are no longer sensitive to spelling errors and conventional spelling differ-
ences. Many novel indexing structures are proposed to support efficient process-
ing on SKBQ and SKAQ, such as IR-tree [5], IR2-tree [6], MHR-tree [21], S2I
[18], etc. Numerous work studies the problem of spatial keyword query on col-
lective querying [2], fuzzy querying [26], confidentiality support [4], continuous
querying [9], interactive querying [24], etc. But as far as we know, none of those
existing approaches can retrieve spatial objects that are semantically relevant
but morphologically different. Therefore, in this paper, we investigate the topic
model based spatial keyword querying to recommend users spatial objects that
have both high spatial and semantic similarities to query.

To the best of our knowledge, this is the only work to consider the fusion
of topic model and spatial keyword query, so that spatial objects can be recom-
mended more rationally by the interpretation of textual descriptions for objects
and user intentions.
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7 Conclusion

This paper studies the problem of searching spatial objects more effectively
by converting keywords matching to semantic interpretation. The probabilistic
topic model is utilized to interpret the textual descriptions attached to spatial
objects and user queries into topic distributions. To support the efficient top-
k spatial keyword query in spatial, topic and textual dimension, we propose a
novel hybrid index structure called NIQ-tree, and effective searching algorithm
to prune the high dimensional search space regarding to spatial, semantic and
textual similarities. Extensive experimental results on real datasets demonstrate
the efficiency of our proposed method.
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