
Shamkant B. Navathe · Weili Wu
Shashi Shekhar · Xiaoyong Du
X. Sean Wang · Hui Xiong (Eds.)

 123

LN
CS

 9
64

3

21st International Conference, DASFAA 2016
Dallas, TX, USA, April 16–19, 2016
Proceedings, Part II

Database Systems
for Advanced Applications

Lecture Notes in Computer Science 9643

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Shamkant B. Navathe • Weili Wu
Shashi Shekhar • Xiaoyong Du
X. Sean Wang • Hui Xiong (Eds.)

Database Systems
for Advanced Applications
21st International Conference, DASFAA 2016
Dallas, TX, USA, April 16–19, 2016
Proceedings, Part II

123

Editors
Shamkant B. Navathe
Georgia Institute of Technology
Atlanta, GA
USA

Weili Wu
University of Texas at Dallas
Richardson, TX
USA

Shashi Shekhar
University of Minnesota
Minneapolis, MN
USA

Xiaoyong Du
Renmin University
Beijing
China

X. Sean Wang
Fudan University
Shanghai
China

Hui Xiong
Rutgers, The State University of New Jersey
New Brunswick, NJ
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-32048-9 ISBN 978-3-319-32049-6 (eBook)
DOI 10.1007/978-3-319-32049-6

Library of Congress Control Number: 2016934671

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

Welcome to the proceedings of the 21st International Conference on Database Systems for
Advanced Applications (DASFAA)! The DASFAA conference is held in varying loca-
tions throughout the world, and the 2016 DASFAA conference was held in Dallas, Texas,
USA. DASFAA is an annual international database conference, which showcases state-of-
the-art R&D activities in database systems and their applications. It provides a forum for
technical presentations and discussions among database researchers, developers, and users
from academia, business, and industry.

The DASFAA conference is truly an international forum. During its 21-year history,
the conference has been held in more than 12 countries around the world. This year’s
conference continued this global trend: Our Organizing and Program Committee (PC)
members represent 10 countries, and authors submitted papers from 24 different
countries/regions.

This year’s conference was competitive. A total of 183 papers were submitted for
review. Each paper was reviewed by at least three PC members (except for a few
reviewed by two PC members) and the selection was made on the basis of discussion
among the reviewers and the program co-chairs. This year, 61 papers were accepted for
presentation, representing an acceptance rate of about 33 %. In keeping with the goal of
advancing the state of the art in databases, paper topics span numerous active and
emerging topic areas including big data, crowdsourcing, Web applications, cloud data
management, data archive and digital library, data mining, data model and query
language, data quality and credibility, data semantics and data integration, data streams
and time-series data, data warehouse and OLAP, databases for emerging hardware,
database usability and HCI, graph data management, index and storage systems,
information extraction and summarization, multimedia databases, parallel, distributed
and P2P systems, probabilistic and uncertain data, query processing and optimization,
real-time data management, recommendation systems, search and information retrieval,
security and privacy, Semantic Web and knowledge management, sensor data man-
agement, social network analytics, statistical and scientific databases, temporal and
spatial databases, transaction management, Web information systems, and XML and
semi-structured data.

Reviewing and selecting papers from such a large set of research groups required the
coordinated effort of many individuals. We want to thank all 83 members of the
Program Committee and 90 external reviewers, who provided insightful feedback to
the authors and helped with this selection process. In addition to the technical pre-
sentations, our program also included two invited speakers: Aidong Zhang, Jian Pei
and 10-year best paper “Probabilistic Similarity Join on Uncertain Data” which
appeared in DASFAA 2006 (written by Hans-Peter Kriegel, Peter Kunath, Martin
Pfeifle, Matthias Renz). In addition, a set of four workshops completed the program.

Organizing the DASFAA 2016 program required the time and expertise of
numerous contributors. We are grateful for the tremendous help of Hong Gao, Jinho
Kim, and Yasushi Sakurai, who organized the workshops, Shaojie Tang, who was this
year’s publication chair, Ming Wang and Jun Liang, who organized the indusrial/
practitioners track, Latifur Khan, Lidong Wu, and Dingzhu Du, who served as local
organization co-chairs, Sang Won Lee, Jin Soung Yoo, and Jiaofei Zhong, who served
as publicity co-chairs, Jing Yuan, who served as the registration chair, and Lei Cui and
Jing Yuan, who served as webmasters. In addition, the guidance of the Steering
Committee liaison, Xiaofang Zhou, was invaluable throughout each step of the con-
ference organization and we thank him for his tireless efforts as well.

Finally, we thank the DASFAA community for their support of this international
conference. We hope you enjoy the DASFAA conference and that you are inspired by
the ideas found in these papers.

January 2016 Shamkant B. Navathe
Weili Wu

Shashi Shekhar
Xiaoyong Du
X. Sean Wang

Hui Xiong

VI Preface

Organization

Organizing Committee

General Co-chairs

Shamkant B. Navathe Georgia Tech, USA
Weili Wu University of Texas at Dallas, USA
Shashi Shekhar University of Minnesota, USA

Program Committee Co-chairs

Xiaoyong Du Renmin University, China
X. Sean Wang Fudan University, China
Hui Xiong Rutgers, The State University of New Jersey, USA

Workshop Co-chairs

Hong Gao Harbin Institute of Technology, China
Jinho Kim Kangwon National University, South Korea
Yasushi Sakurai Kumamoto University, Japan

Industrial/Practitioners Track Co-chairs

Ming Wang Google, USA
Jun Liang SAP, USA

Publication Co-chair

Shaojie Tang University of Texas at Dallas, USA

Local Organization Co-chairs

Latifur Khan University of Texas at Dallas, USA
Lidong Wu University of Texas at Tyler, USA
Dingzhu Du University of Texas at Dallas, USA

Publicity Co-chairs

Sang Won Lee Sungkyunkwan University, Korea
Jin Soung Yoo Indiana University - Purdue University Fort Wayne, USA
Jiaofei Zhong California State University, USA

Registration Chair

Jing Yuan University of Texas at Dallas, USA

Webmasters

Lei Cui University of Texas at Dallas, USA
Jing Yuan University of Texas at Dallas, USA

Steering Committee Liaison

Xiaofang Zhou University of Queensland, Australia

Program Committee

Toshiyuki Amagasa University of Tsukuba, Japan
Spiridon Bakiras John Jay College, CUNY, USA
Zhifeng Bao RMIT University, Australia
Boualem Benatallah University of New South Wales, Australia
Zhipeng Cai Georgia State University, USA
K. Selcuk Candan Arizona State University, USA
Jianneng Cao Institute for Infocomm Research, A* Singapore
Varun Chandola State University of New York at Buffalo, USA
Lei Chen Hong Kong University of Science and Technology,

SAR China
Yi Chen New Jersey Institute of Technology, USA
James Cheng Chinese University of Hong Kong, SAR China
Reynold Cheng The University of Hong Kong, SAR China
Bin Cui Peking University, China
Ugur Demiryurek University of Southern California, USA
Prasad Deshpande IBM Research, India
Bowen Du Beihang University, China
Hong Gao Harbin Institute of Technology, China
Yunjun Gao College of Computer Science, Zhejiang University, China
Yong Ge The University of North Carolina at Charlotte, USA
Vikram Goyal IIIT-Delhi, India
Le Gruenwald The University of Oklahoma, USA
Ralf Hartmut Güting Fernuniversität Hagen, Germany
Takahiro Hara Graduate School of Information Science and Technology,

Osaka University, Japan

VIII Organization

Haibo Hu Hong Kong Baptist University, SAR China
Yan Huang University of North Texas, USA
Yoshiharu Ishikawa Nagoya University, Japan
Bo Jin Dalian University of Technology, China
Donghyun Kim North Carolina Central University, USA
Wang-Chien Lee The Pennsylvania State University, USA
Cuiping Li Renmin University of China
Guoliang Li Tsinghua University, China
Siming Li eBay, USA
Yingshu Li Georgia State University, USA
Zhanhuai Li Northwestern Polytechnical University, China
Zhongmou Li Rutgers University, USA
Lipyeow Lim University of Hawaii at Manoa, USA
Chuanren Liu Rutgers Business School, USA
Jiaheng Lu Renmin University of China
Zaixin Lu Marywood University, USA
Jun Luo Nanyang Technological University, Singapore
Qiong Luo Hong Kong University of Science and Technology,

SAR China
Jun Miyazaki Tokyo Institute of Technology, Japan
Yasuhiko Morimoto Hiroshima University, Japan
Shinsuke Nakajima Kyoto Sangyo University, Japan
Wilfred Ng Hong Kong University of Science and Technology,

SAR China
Sarana Nutanong City University of Hong Kong, SAR China
Makoto Onizuka Osaka University, Japan
Jian Pei Simon Fraser University, Canada
Zhiyong Peng State Key Lab. of Software Engineeering, China
Weining Qian East China Normal University, China
Zbigniew Ras University of North Carolina, USA
Kun Ren Yale University, USA
Chiara Renso KDDLAB, ISTI-CNR, Pisa, Italy
Markus Schneider University of Florida, USA
Shuo Shang China University of Petroleum, China
Xuequn Shang Northwestern Polytechnical University, China
Yan Shi University of Wisconsin-Platteville, USA
Kyuseok Shim Seoul National University, South Korea
Yu Suzuki Nara Institute of Science and Technology, Japan
Keishi Tajima Kyoto University, Japan
Nan Tang Qatar Computing Research Institute, Qatar
Yong Tang South China Normal University, China
Dimitri Theodoratos New Jersey Institute of Technology, USA
Goce Trajcevski Northwestern University, USA
Vincent S. Tseng National Chiao Tung University, Taiwan
Ranga Raju Vatsavai North Carolina State University, USA
Bin Wang North Eastern University of China

Organization IX

Hongzhi Wang Harbin Institute of Technology, China
Jianmin Wang Tsinghua University, China
Jie Wang Indiana University, USA
Li Wang Taiyuan University of Technology, China
Peng Wang Fudan University, China
Wei Wang University of New South Wales, Australia
Jia Wu University of Technology, Sydney, Australia
Keli Xiao Stony Brook University, USA
Yanghua Xiao Fudan University, China
Xike Xie Aalborg University, Denmark
Jianliang Xu Hong Kong Baptist University, Kowloon Tong,

SAR China
Jeffery Xu Yu Chinese University of Hong Kong, SAR China
Xiaochun Yang University of California, Irvine, USA
Jian Yin Sun Yat-sen University, China
Ge Yu Northeastern University, China
Dayu Yuan Google, USA
Zhongnan Zhang Xiamen University, China
Fay Zhong CSUEB, USA
Aoying Zhou East China Normal University, China
Yuanchun Zhou Computer Network Information Center, Chinese Academy

of Sciences, China
Yuqing Zhu California State University Los Angeles, USA
Roger Zimmermann National University of Singapore
Lei Zou Peking University, China

External Reviewers

Chunyu Ai
Ibrahim Almubark
Daichi Amagata
Moshe Chai Barukh
Favyen Bastani
Seyed-Mehdi-Reza

Beheshti
Hongzhi Chen
Jinchuan Chen
Lei Chen
Lu Chen
Xilun Chen
Yueguo Chen
Ji Cheng
Wenliang Chen
Lingyang Chu

Shumo Chu
Ananya Dass
Atreyee Dey
Aggeliki Dimitriou
Zhaoan Dong
Yixiang Fang
Xiaoyi Fu
Chuancong Gao
Li Gao
Yanjun Gao
Yash Garg
Kazuo Goda
Xiaotian Hao
Juhua Hu
Shengyu Huang
Xiangdong Huang

Zhipeng Huang
Hui-Ju Hung
Atsushi Keyaki
Huayu Li
Jinfeng Li
Mingda Li
Yafei Li
Xinsheng Li
Yusan Lin
Huan Liu
Sicong Liu
Yanchi Liu
Zhi Liu
Wei Lu
Siqiang Luo
Xiangbo Mao

X Organization

Xiaoye Miao
Vinicius Monteiro de Lira
Bin Mu
Phuc Nguyen
Jan Kristof Nidzwetzki
Konstantinos

Nikolopoulos
Kenta Oku
Silvestro Poccia
Bo Qin
Jianbin Qin
Raheem Sarwar
Yuya Sasaki
Caihua Shan
Yingxia Shao
Hiroaki Shiokawa
Masumi Shirakawa
Hong-Han Shuai

Jinhe Shi
Souvik Sinha
Shaoxu Song
Haiqi Sun
Jing Sun
Yifang Sun
Weitian Tong
Erald Troja
Fabio Valdés
Chiemi Watanabe
Huanhuan Wu
Liang Wu
Xiaoying Wu
Fan Xia
Chuan Xiao
Cheng Xu
Jianqiu Xu
Yong Xu

Yuto Yamaguchi
Fan Yang
Jingyuan Yang
Yu Yang
Yingjie Wang
Chenyun Yu
Jianwei Zhang
Qizhen Zhang
Zhipeng Zhang
Hongke Zhao
Jinwen Zhao
Shuai Zhao
Yunjian Zhao
Yudian Zheng
Huan Zhou
Hengshu Zhu
Huaijie Zhu
Tao Zhu

Organization XI

Contents – Part II

Social Networks

When Peculiarity Makes a Difference: Object Characterisation
in Heterogeneous Information Networks. 3

Wei Chen, Feida Zhu, Lei Zhao, and Xiaofang Zhou

STH-Bass: A Spatial-Temporal Heterogeneous Bass Model to Predict
Single-Tweet Popularity . 18

Yan Yan, Zhaowei Tan, Xiaofeng Gao, Shaojie Tang, and Guihai Chen

Closeness and Structure of Friends Help to Estimate User Locations 33
Zhi Liu and Yan Huang

Efficient Influence Maximization in Weighted Independent Cascade Model . . . 49
Yaxuan Wang, Hongzhi Wang, Jianzhong Li, and Hong Gao

Complex Queries

ListMerge: Accelerating Top-k Aggregation Queries Over Large Number
of Lists . 67

Shile Zhang, Chao Sun, and Zhenying He

Approximate Iceberg Cube on Heterogeneous Dimensions 82
Dan Yin, Hong Gao, Zhaonian Zou, Jianzhong Li, and Zhipeng Cai

Pre-computed Region Guardian Sets Based Reverse kNN Queries. 98
Wei Song, Jianbin Qin, Wei Wang, and Muhammad Aamir Cheema

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization
and View Maintenance . 113

Zhengkui Wang, Yan Chu, Kian-Lee Tan, Divyakant Agrawal,
and Amr EI Abbadi

Similarity Computing

TSCluWin: Trajectory Stream Clustering over Sliding Window 133
Jiali Mao, Qiuge Song, Cheqing Jin, Zhigang Zhang, and Aoying Zhou

On Efficient Spatial Keyword Querying with Semantics. 149
Zhihu Qian, Jiajie Xu, Kai Zheng, Wei Sun, Zhixu Li, and Haoming Guo

http://dx.doi.org/10.1007/978-3-319-32049-6_1
http://dx.doi.org/10.1007/978-3-319-32049-6_1
http://dx.doi.org/10.1007/978-3-319-32049-6_2
http://dx.doi.org/10.1007/978-3-319-32049-6_2
http://dx.doi.org/10.1007/978-3-319-32049-6_3
http://dx.doi.org/10.1007/978-3-319-32049-6_4
http://dx.doi.org/10.1007/978-3-319-32049-6_5
http://dx.doi.org/10.1007/978-3-319-32049-6_5
http://dx.doi.org/10.1007/978-3-319-32049-6_6
http://dx.doi.org/10.1007/978-3-319-32049-6_7
http://dx.doi.org/10.1007/978-3-319-32049-6_8
http://dx.doi.org/10.1007/978-3-319-32049-6_8
http://dx.doi.org/10.1007/978-3-319-32049-6_9
http://dx.doi.org/10.1007/978-3-319-32049-6_10

Approximation-Based Efficient Query Processing with the Earth
Mover’s Distance . 165

Merih Seran Uysal, Daniel Sabinasz, and Thomas Seidl

Effective Similarity Search on Indoor Moving-Object Trajectories 181
Peiquan Jin, Tong Cui, Qian Wang, and Christian S. Jensen

Graph Databases

Towards Neighborhood Window Analytics over Large-Scale Graphs 201
Qi Fan, Zhengkui Wang, Chee-Yong Chan, and Kian-Lee Tan

Bitruss Decomposition of Bipartite Graphs . 218
Zhaonian Zou

An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive
Graph Databases . 234

Ningnan Zhou, Xuan Zhou, Xiao Zhang, Shan Wang, and Ling Liu

Parallelizing Maximal Clique Enumeration Over Graph Data 249
Qun Chen, Chao Fang, Zhuo Wang, Bo Suo, Zhanhuai Li,
and Zachary G. Ives

Miscellaneous

Hyrise-NV: Instant Recovery for In-Memory Databases
Using Non-Volatile Memory . 267

David Schwalb, Girish Kumar B.K., Markus Dreseler,
Anusha S., Martin Faust, Adolf Hohl, Tim Berning, Gaurav Makkar,
Hasso Plattner, and Parag Deshmukh

Triangle-Based Representative Possible Worlds of Uncertain Graphs 283
Shaoying Song, Zhaonian Zou, and Kang Liu

Efficient Query Processing with Mutual Privacy Protection
for Location-Based Services . 299

Shushu Liu, An Liu, Lei Zhao, Guanfeng Liu, Zhixu Li, Pengpeng Zhao,
Kai Zheng, and Lu Qin

Semantic-Aware Location Privacy Preservation on Road Networks 314
Yanhui Li, Ye Yuan, Guoren Wang, Lei Chen, and Jiajia Li

Advanced Applications(2)

An Efficient Location-Aware Top-k Subscription Matching
for Publish/Subscribe with Boolean Expressions . 335

Hanhan Jiang, Pengpeng Zhao, Victor S. Sheng, Jiajie Xu, An Liu,
Jian Wu, and Zhiming Cui

XIV Contents – Part II

http://dx.doi.org/10.1007/978-3-319-32049-6_11
http://dx.doi.org/10.1007/978-3-319-32049-6_11
http://dx.doi.org/10.1007/978-3-319-32049-6_12
http://dx.doi.org/10.1007/978-3-319-32049-6_13
http://dx.doi.org/10.1007/978-3-319-32049-6_14
http://dx.doi.org/10.1007/978-3-319-32049-6_15
http://dx.doi.org/10.1007/978-3-319-32049-6_15
http://dx.doi.org/10.1007/978-3-319-32049-6_16
http://dx.doi.org/10.1007/978-3-319-32049-6_17
http://dx.doi.org/10.1007/978-3-319-32049-6_17
http://dx.doi.org/10.1007/978-3-319-32049-6_18
http://dx.doi.org/10.1007/978-3-319-32049-6_19
http://dx.doi.org/10.1007/978-3-319-32049-6_19
http://dx.doi.org/10.1007/978-3-319-32049-6_20
http://dx.doi.org/10.1007/978-3-319-32049-6_21
http://dx.doi.org/10.1007/978-3-319-32049-6_21

Predicting the Popularity of DanMu-enabled Videos: A Multi-factor View . . . 351
Ming He, Yong Ge, Le Wu, Enhong Chen, and Chang Tan

Integrating Human Mobility and Social Media for Adolescent
Psychological Stress Detection . 367

Li Jin, Yuanyuan Xue, Qi Li, and Ling Feng

Collaborative Learning Team Formation: A Cognitive
Modeling Perspective . 383

Yuping Liu, Qi Liu, Runze Wu, Enhong Chen, Yu Su, Zhigang Chen,
and Guoping Hu

Advanced Applications(1)

Popular Route Planning with Travel Cost Estimation 403
Huiping Liu, Cheqing Jin, and Aoying Zhou

ETCPS: An Effective and Scalable Traffic Condition Prediction System 419
Dong Wang, Wei Cao, Mengwen Xu, and Jian Li

Species Distribution Modeling via Spatial Bagging of Multiple Conditional
Random Fields . 437

Danhuai Guo, Yuanchun Zhou, Yingqiu Zhu, and Jianhui Li

Real-Time Personalized Taxi-Sharing . 451
Xiaoyi Duan, Cheqing Jin, Xiaoling Wang, Aoying Zhou, and Kun Yue

Erratum to: Database Systems for Advanced Applications E1
Shamkant B. Navathe, Weili Wu, Shashi Shekhar, Xiaoyong Du,
X. Sean Wang, and Hui Xiong

Author Index . 467

Contents – Part II XV

http://dx.doi.org/10.1007/978-3-319-32049-6_22
http://dx.doi.org/10.1007/978-3-319-32049-6_23
http://dx.doi.org/10.1007/978-3-319-32049-6_23
http://dx.doi.org/10.1007/978-3-319-32049-6_24
http://dx.doi.org/10.1007/978-3-319-32049-6_24
http://dx.doi.org/10.1007/978-3-319-32049-6_25
http://dx.doi.org/10.1007/978-3-319-32049-6_26
http://dx.doi.org/10.1007/978-3-319-32049-6_27
http://dx.doi.org/10.1007/978-3-319-32049-6_27
http://dx.doi.org/10.1007/978-3-319-32049-6_28

Contents – Part I

Crowdsourcing

Cost Minimization and Social Fairness for Spatial Crowdsourcing Tasks 3
Qing Liu, Talel Abdessalem, Huayu Wu, Zihong Yuan,
and Stéphane Bressan

Crowdsourced Query Processing on Microblogs . 18
Weikeng Chen, Zhou Zhao, Xinyu Wang, and Wilfred Ng

Effective Result Inference for Context-Sensitive Tasks in Crowdsourcing. . . . 33
Yili Fang, Hailong Sun, Guoliang Li, Richong Zhang, and Jinpeng Huai

Data Quality

CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method 51
Jian Zhou, Zhixu Li, Binbin Gu, Qing Xie, Jia Zhu, Xiangliang Zhang,
and Guoliang Li

Crowdsourcing-Enhanced Missing Values Imputation Based on Bayesian
Network. 67

Chen Ye, Hongzhi Wang, Jianzhong Li, Hong Gao, and Siyao Cheng

One-Pass Inconsistency Detection Algorithms for Big Data 82
Meifan Zhang, Hongzhi Wang, Jianzhong Li, and Hong Gao

Entity Identification

Domain-Specific Entity Linking via Fake Named Entity Detection 101
Jiangtao Zhang, Juanzi Li, Xiao-Li Li, Yao Shi, Junpeng Li,
and Zhigang Wang

CTextEM: Using Consolidated Textual Data for Entity Matching 117
Qiang Yang, Zhixu Li, Binbin Gu, An Liu, Guanfeng Liu,
Pengpeng Zhao, and Lei Zhao

Entity Matching Across Multiple Heterogeneous Data Sources 133
Chao Kong, Ming Gao, Chen Xu, Weining Qian, and Aoying Zhou

Data Mining and Machine Learning

Probabilistic Maximal Frequent Itemset Mining Over Uncertain Databases . . . 149
Haifeng Li and Ning Zhang

http://dx.doi.org/10.1007/978-3-319-32025-0_1
http://dx.doi.org/10.1007/978-3-319-32025-0_2
http://dx.doi.org/10.1007/978-3-319-32025-0_3
http://dx.doi.org/10.1007/978-3-319-32025-0_4
http://dx.doi.org/10.1007/978-3-319-32025-0_5
http://dx.doi.org/10.1007/978-3-319-32025-0_5
http://dx.doi.org/10.1007/978-3-319-32025-0_6
http://dx.doi.org/10.1007/978-3-319-32025-0_7
http://dx.doi.org/10.1007/978-3-319-32025-0_8
http://dx.doi.org/10.1007/978-3-319-32025-0_9
http://dx.doi.org/10.1007/978-3-319-32025-0_10

Anytime OPTICS: An Efficient Approach for Hierarchical Density-Based
Clustering . 164

Son T. Mai, Ira Assent, and Anh Le

Efficiently Mining Homomorphic Patterns from Large Data Trees 180
Xiaoying Wu, Dimitri Theodoratos, and Zhiyong Peng

CITPM: A Cluster-Based Iterative Topical Phrase Mining Framework 197
Bing Li, Bin Wang, Rui Zhou, Xiaochun Yang, and Chengfei Liu

Deep Convolutional Neural Network Based Regression Approach for
Estimation of Remaining Useful Life. 214

Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li

Multiple-Instance Learning with Evolutionary Instance Selection. 229
Yongshan Zhang, Jia Wu, Chuan Zhou, Peng Zhang, and Zhihua Cai

Exploiting Human Mobility Patterns for Gas Station Site Selection 242
Hongting Niu, Junming Liu, Yanjie Fu, Yanchi Liu, and Bo Lang

Exploring the Procrastination of College Students: A Data-Driven
Behavioral Perspective . 258

Yan Zhu, Hengshu Zhu, Qi Liu, Enhong Chen, Hong Li,
and Hongke Zhao

Recommendation

Joint User Attributes and Item Category in Factor Models for Rating
Prediction. 277

Jiang Wang, Yuqing Zhu, Deying Li, Wenping Chen, and Yongcai Wang

Expert Recommendation in Time-Sensitive Online Shopping 297
Ming Han and Ling Feng

Temporal Recommendation via Modeling Dynamic Interests
with Inverted-U-Curves . 313

Yang Xu, Xiaoguang Hong, Zhaohui Peng, Guang Yang,
and Philip S. Yu

Point-Of-Interest Recommendation Using Temporal Orientations of Users
and Locations . 330

Saeid Hosseini and Lei Thor Li

TGTM: Temporal-Geographical Topic Model for Point-of-Interest
Recommendation . 348

Cong Zheng, Haihong E, Meina Song, and Junde Song

XVIII Contents – Part I

http://dx.doi.org/10.1007/978-3-319-32025-0_11
http://dx.doi.org/10.1007/978-3-319-32025-0_11
http://dx.doi.org/10.1007/978-3-319-32025-0_12
http://dx.doi.org/10.1007/978-3-319-32025-0_13
http://dx.doi.org/10.1007/978-3-319-32025-0_14
http://dx.doi.org/10.1007/978-3-319-32025-0_14
http://dx.doi.org/10.1007/978-3-319-32025-0_15
http://dx.doi.org/10.1007/978-3-319-32025-0_16
http://dx.doi.org/10.1007/978-3-319-32025-0_17
http://dx.doi.org/10.1007/978-3-319-32025-0_17
http://dx.doi.org/10.1007/978-3-319-32025-0_18
http://dx.doi.org/10.1007/978-3-319-32025-0_18
http://dx.doi.org/10.1007/978-3-319-32025-0_19
http://dx.doi.org/10.1007/978-3-319-32025-0_20
http://dx.doi.org/10.1007/978-3-319-32025-0_20
http://dx.doi.org/10.1007/978-3-319-32025-0_21
http://dx.doi.org/10.1007/978-3-319-32025-0_21
http://dx.doi.org/10.1007/978-3-319-32025-0_22
http://dx.doi.org/10.1007/978-3-319-32025-0_22

Modeling User Mobility via User Psychological and Geographical
Behaviors Towards Point of-Interest Recommendation 364

Yan Chen, Xin Li, Lin Li, Guiquan Liu, and Guangdong Xu

Local Weighted Matrix Factorization for Implicit Feedback Datasets 381
Keqiang Wang, Xiaoyi Duan, Jiansong Ma, Chaofeng Sha,
Xiaoling Wang, and Aoying Zhou

Exploring the Choice Under Conflict for Social Event Participation. 396
Xiangyu Zhao, Tong Xu, Qi Liu, and Hao Guo

Semantics Computing and Knowledge Base

PBA: Partition and Blocking Based Alignment for Large Knowledge Bases . . . 415
Yan Zhuang, Guoliang Li, Zhuojian Zhong, and Jianhua Feng

Knowledge Graph Completion via Local Semantic Contexts. 432
Xiangling Zhang, Cuilan Du, Peishan Li, and Yangxi Li

Cross-Lingual Type Inference . 447
Bo Xu, Yi Zhang, Jiaqing Liang, Yanghua Xiao, Seung-won Hwang,
and Wei Wang

Benchmarking Semantic Capabilities of Analogy Querying Algorithms 463
Christoph Lofi, Athiq Ahamed, Pratima Kulkarni, and Ravi Thakkar

Textual Data

Deep Learning Based Topic Identification and Categorization: Mining
Diabetes-Related Topics on Chinese Health Websites 481

Xinhuan Chen, Yong Zhang, Jennifer Xu, Chunxiao Xing,
and Hsinchun Chen

An Adaptive Approach of Approximate Substring Matching. 501
Jiaying Wang, Xiaochun Yang, Bin Wang, and Chengfei Liu

Joint Probability Consistent Relation Analysis for Document
Representation . 517

Yang Wei, Jinmao Wei, Zhenglu Yang, and Yu Liu

Automated Table Understanding Using Stub Patterns. 533
Roya Rastan, Hye-young Paik, John Shepherd, and Armin Haller

Author Index . 549

Contents – Part I XIX

http://dx.doi.org/10.1007/978-3-319-32025-0_23
http://dx.doi.org/10.1007/978-3-319-32025-0_23
http://dx.doi.org/10.1007/978-3-319-32025-0_24
http://dx.doi.org/10.1007/978-3-319-32025-0_25
http://dx.doi.org/10.1007/978-3-319-32025-0_26
http://dx.doi.org/10.1007/978-3-319-32025-0_27
http://dx.doi.org/10.1007/978-3-319-32025-0_28
http://dx.doi.org/10.1007/978-3-319-32025-0_29
http://dx.doi.org/10.1007/978-3-319-32025-0_30
http://dx.doi.org/10.1007/978-3-319-32025-0_30
http://dx.doi.org/10.1007/978-3-319-32025-0_31
http://dx.doi.org/10.1007/978-3-319-32025-0_32
http://dx.doi.org/10.1007/978-3-319-32025-0_32
http://dx.doi.org/10.1007/978-3-319-32025-0_33

Social Networks

When Peculiarity Makes a Difference: Object
Characterisation in Heterogeneous Information

Networks

Wei Chen1,2(B), Feida Zhu1, Lei Zhao2, and Xiaofang Zhou2,3

1 School of Information Systems,
Singapore Management University, Singapore, Singapore

fdzhu@smu.edu.sg
2 School of Computer Science and Technology, Soochow University, Jiangsu, China

wchzhg@gmail.com, zhaol@suda.edu.cn, zxf@itee.uq.edu.au
3 School of ITEE, The University of Queensland, Brisbane, Australia

Abstract. A central task in heterogeneous information networks (HIN)
is how to characterise an entity, which underlies a wide range of applica-
tions such as similarity search, entity profiling and linkage. Most existing
work focus on using the main features common to all. While this app-
roach makes sense in settings where commonality is of primary interest,
there are many scenarios as important where uncommon and discrimi-
native features are more useful. To address the problem, a novel model
COHIN (Characterize Objects in Heterogeneous Information Networks) is
proposed, where each object is characterized as a set of feature paths that
contain both main and discriminative features. In addition, we develop an
effective pruning strategy to achieve greater query performance. Exten-
sive experiments on real datasets demonstrate that our proposed model
can achieve high performance.

1 Introduction

The recent boom of social network services of all kinds has brought excitement
to the research community with a wide range of interesting yet challenging top-
ics. Among them one area of particular research interest and practical value is
the characterisation, comparison and linkage of entities, especially user identity,
across different platforms. Recent advances along this line include [1–4] which
focus on connecting users across different social platforms with structural and
semantic information, [5–7] addressing entity resolution, and [4,8,9] investigating
similarity between objects of the same or different types. Despite their multiplic-
ity and diversity, one common task central to all these work is to decide how to
select and prioritise the features in consideration. The answers to these questions,
unfortunately, are hardly straightforward as they depend on the nature of the
application. One large class of applications look for the commonality among enti-
ties where entities are characterised with the most similar features among them.
Naturally, solutions to these tasks focus on frequent patterns, or the “main”

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 3–17, 2016.
DOI: 10.1007/978-3-319-32049-6 1

4 W. Chen et al.

features of the entities, and it is along this line that most existing approaches
have been identified with. However, it is crucial to notice that, there are also suf-
ficient, and equally important, application settings where “uncommon”, which
we refer to as discriminative, features actually play a more important role. In
these situations, we seek to identify what are unique about an entity, in order
to distinguish it from others in tasks of summarisation, comparison and linkage.
We further illustrate with the following examples.

Example 1: Entity Profiling. Profiling researchers from a heterogeneous infor-
mation network (HIN) such as DBLP is useful for academia. While it is impor-
tant to summarise the main features of a researcher, it is also valuable to identify
their unique aspects. This is because for many leading researchers, their profiles
would appear highly similar if we only focus on their main features. For exam-
ple, Philip S. Yu and Jiawei Han, both prominent researchers in data mining,
have published a great number of papers in the same venues, including KDD,
ICDM, SDM, etc., for many of which they are even co-authors. An informative
and insightful profiling algorithm should in this case be able to identify not only
what are similar between them but, perhaps more importantly, what are the
distinct research aspects of each as well, as further illustrated in the following
conceptual example.

Consider the example in Fig. 1, suppose Jim, Lee and Tom are researchers
who have published papers in several venues with different terms. As seen in
Table 1(c), while they share the same main features, they do exhibit their unique-
ness if we take the discriminative features into account — Jim connects SIGIR
which has accepted his paper with the term IR, ICDE has accepted Lee’s paper
with the term DB, and Tom has published a paper in AAAI. Yet, as shown
in Table 1(a), since the authors have the same main features, frequent-pattern-
based solutions [10] would not work. Similarily, meta-path-based methods [9]
hardly help from Table 1(b). It is clear that to comprehensively profile entities
in HINs, existing methods based on frequent patterns and meta-paths, such as
[8,9] would fall short by neglecting the discriminative features.

Fig. 1. An example of characterizing objects

Object Characterisation in Heterogeneous Information Networks 5

Table 1. Characterize authors with venue

(a) Frequent pattern

Author Venue

Jim KDD

Lee KDD

Tom KDD

(b) Meta path

Author Venue

Jim KDD

Lee KDD

Tom KDD

(c) Main and discrimi-
native features

Author Venue

Jim KDD, SIGIR

Lee KDD, ICDE

Tom KDD, AAAI

Example 2: User Identity Linkage. The problem of User Identity Linkage
(UIL), which aims to identify the accounts of the same user across different social
platforms, has recently been attracting an increasing amount of attention and
effort due to both the significant research challenges and the immense practical
value of the problem [4]. One popular concept widely applied as intuition in
this problem is that of “homophile”, which essentially states that similar people
share similar traits, e.g., friends. In this setting, it translates into the logic that,
if two accounts uA and uB on two social platforms A and B respectively, we can
use the number of their common friends to measure how likely uA and uB belong
to the same user. Correct as it may be, this observation does not provide the
most effective and efficient clue to the identity linkage problem due to the fact
that people from the same context (workplace, school, neighbourhood) would
naturally share many common friends, which means it is hard to distinguish
two such people by this observation. On the other hand, what could really help
quickly identify the linkage is to look for those unique and discriminative friends,
few there maybe, that uA and uB both have. Similarly we can take advantage
of users’ discriminative interests or behaviour patterns, the availability of which
are well supported by the long-tail observation for social platforms.

We propose in this paper a novel model COHIN to extract both the main
and discriminative features that can be applied to a wide range of applications
including user linkage, similarity search and entity profiling. Lying at the heart
of these applications is how to measure similarity between two objects and find
two objects with the minimum distance. We also propose a pruning strategy to
improve query performance instead of enumerating all candidates. We summarise
our major contributions as follows.

– We identify the importance of discriminative features in characterizing objects
in heterogeneous information networks, and propose the COHIN model.

– We develop novel algorithms to extract features for objects across different
platforms. Furthermore, a novel pruning strategy is proposed with the goal
of achieving better query performance.

– We conduct extensive experiments on real datasets, and the experimental
results demonstrate that the proposed model COHIN can achieve high effi-
ciency and accuracy.

The rest of paper is organized as follows. We briefly review existing work
related to our problem in Sect. 2 and formulate the problem in Sect. 3. In Sect. 4,

6 W. Chen et al.

we introduce the baseline approach, which is followed by the optimization in
Sect. 5. We develop a pruning strategy in Sect. 6. Experiment results are reported
in Sect. 7, followed by the conclusion in Sect. 8.

2 Related Work

2.1 Heterogeneous Information Networks Analysis

As the basic mining functions for heterogeneous information networks, clustering
and classification have received great attentions during the last decade [11–13].
Sun et al. [11] propose the RankClus to address the problem of generating clusters
with ranking information. The following work [12] develops a novel ranking-based
clustering method called NetClus, different from [11] that focuses on bi-typed
heterogeneous network, a start network schema is proposed for the clustering of
multi-typed heterogeneous network.

Meta path-based similarity search and mining also play an important role
in analyzing the heterogeneous information networks, and the existing studies
[8,9,14] have made significant contributions. The meta path-based similarity
measure called PathSim [8] is able to find peer objects with the same type,
however it is not applicable for measuring relatedness between different types of
objects. Followed by this work, a novel measure HeteSim [9] is proposed, with
the goal of measuring similarity between objects with the same type or different
types based on the given meta paths.

2.2 User Linkage and Entity Resolution

Connecting corresponding identities across communities is a challenging problem
in heterogeneous information networks, which is firstly introduced in [15]. In
the following work, [1,3,4] pay attentions to user linkage with more abundant
information. The purpose of [3] is to address the cross-media user identification
problem, where a behavioral model is proposed by considering the user names,
language and writing styles. The framework HYDRA [4] investigates the problem
of large-scale social identity linkage across different social networks by integrating
all social information associated with a user.

Entity resolution is another concern in social networks [6,16,17]. [16] focuses
on finding identifiers referring to the same real-world entities, where several
adaptive techniques are developed for clustering and matching. As it is rather
hard to automatically select appropriate similarity functions, [6] defines “how
similar is similar”, by which inappropriate similarity functions are pruned.

2.3 Mining of Discriminative Features

Recently people pay attentions to mine the discriminative features for graph pat-
tern recognition [18–20]. A mining framework, called LEAP, is proposed in [18]
to find the most discriminative subgraph. [19] studies the problem of supervised

Object Characterisation in Heterogeneous Information Networks 7

feature selection among frequent subgraphs, where an approach called CORK is
designed to optimize a submodular quality criterion for subgraph mining. [20]
develops a diversified discriminative feature selection method for graph classifi-
cation, where discriminative score is used to select frequent subgraph features,
and a new diversified discriminative score is introduced to select features that
have a higher diversity.

3 Problem Statement

In this section, we present several definitions and the notations used throughout
the paper, and formulate the problem.

Definition 1 Information Network [8]. Given a network schema S =
(A,R), where A = {A} is a set of object types and R = {R} is a set of relations,
a heterogeneous information network is defined as a directed graph G = (V,E)
with an object type mapping function φ : V → A and a link type mapping func-
tion ψ : E → R. For each object v ∈ V , it belongs to one particular object
type φ(v) ∈ A, and each link e ∈ E belongs to a particular relation ψ(e) ∈ R.
When the types of objects |A| > 1 or the types of relations |R| > 1, the net-
work is called heterogeneous information network; otherwise, it reduces to
a homogeneous information network.

FAPC
Jim = Jim

(1,0.03)−−−−−→ Paper
(0.308,0.03)−−−−−−−→ V enue

{
(0.25,0.67)−−−−−−−→ SIGIR
(0.75,0.042)−−−−−−−→ KDD

(1)

FAPC
Lee = Lee

(1,0.061)−−−−−→ Paper
(0.3,0.06)−−−−−−→ V enue

{
(0.33,0.67)−−−−−−−→ ICDE
(0.67,0.083)−−−−−−−→ KDD

(2)

Definition 2 Meta Path [8]. A meta path P is a path defined on a schema

S = (A,R), and is denoted in the form of A1
R1−−→ A1

A2−−→ · · · Rl−1−−−→ Al, which
defines a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl−1 between type A1 and Al,
where ◦ represents the composition operator on relations.

The well-known bibliographic information network DBLP is a typical hetero-
geneous information network. As presented in the Fig. 2(a), the network schema
of DBLP dataset contains objects from four types of entities: authors (A), papers
(P), venues (C) and terms (T). The types of links connecting two objects are
defined by the relations between them. For instance, the links between different
papers denote citing or cited-by relations. Given two types A1 and A2, we use
A1

R−→ A2 to denote the relation R from A1 to A2.
For each meta path P, the length of P is the number of relations in it.

Furthermore, the type names are used to represent the meta path if there exist no
multiple relations between the same pair of types: P = (A1A2 · · · Al). Seen from

Fig. 2(b), the length-2 meta path A
writes−−−−→ P

published−−−−−−→ C means authors publish

8 W. Chen et al.

Fig. 2. Bibliographic information network schema and a meta path

papers in conferences, short as APC. Given a concrete path p = (a1a2 · · · al)
between a1 and al in network G, the path is a instance of P(p ∈ P), if for each
ai we have φ(ai) = Ai and each link ei = 〈ai, ai+1〉 belongs to the relation Ri.

Definition 3 Relation Matrix. Given a meta path P = (A1A2 · · · Al), a
matrix MP = UA1A2 · · · UAl−1Al

is defined as the relation matrix of P, where
UAiAi+1 is the adjacency matrix between type Ai and type Ai+1, and each element
MP(i, j) denotes the number of concrete paths between node xi ∈ A1 and node
yj ∈ Al, and |MP(i, ·)| is used to represent the number of paths from xi ∈ A1 to
the last type Al following the meta path P.

As seen in Eq. (3), MAPC represents the relation matrix of the meta path
P = APC in Fig. 1. The element M(1, 3) = 3 denotes the first author Jim has
published 3 papers in the third conference KDD.

MAPC = UAP • UPC =

⎛
⎝1 0 3 0

0 1 2 0
0 0 3 1

⎞
⎠ (3)

Definition 4 Feature Path. Given a meta path P = (A1A2 · · · Al) and an

object vi, a path FP
vi

= vi
(ω,δ)−−−→ A2

(ω,δ)−−−→ · · · (ω,δ)−−−→ Al
(ω,δ)−−−→ θ is defined as

a feature path following the meta path P, where vi is an object of A1, ω and δ
denote the main and discrimination score of a link respectively, and θ is a set of
objects contained by the entity type Al.

For each feature path, the computation of ω and δ is threefold:
(1) Computing ω and δ base on the Eq. (4) for the first link vi → A2,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω(vi, A2) = |MA1A2 (i,·)|∑

Bk∈S
|MA1Bk

(i,·)|

δ(vi, A2) =
||MA1A2 (i,·)|−

1
m

m∑

j=1
|MA1A2 (j,·)||

m∑

j=1
|MA1A2 (j,·)|

(4)

Object Characterisation in Heterogeneous Information Networks 9

where ω(vi, A2) denotes the main score of the link vi → A2, δ(vi, A2) represents
the discriminative score of this link compared with other links vi → Ak, and S
is a set of types that link A1 directly.

(2) For any two adjacent types At−1 and At (3 ≤ t ≤ l), we use the following
equations to compute ω and δ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ω(At−1, At) = |MA1···At (i,·)|∑

Bk∈S
|MA1···At−1Bk(i,·)|

δ(At−1, At) =
||MA1···At (i,·)|−

1
m

m∑

j=1
|MA1···At (j,·)|

m∑

j=1
|MA1···At(j,·)|

(5)

where S is a set of types that link type At−1 directly, and
1
m

m∑
j=1

|MA1···At
(j, ·)|

is the average number of paths of all objects from A1 to At following the meta
path P = A1 · · · At.

(3) For the last type Al (Al
(ω,δ)−−−→ θ), Eq. (6) is used to compute ω(Al, vj)

and δ(Al, vj) between Al and each object vj ∈ Al.⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ω(Al, vj) = M(i,j)
m∑

k=1
M(i,k)

δ(Al, vj) =
|M(i,j)−

1
m

m∑

k=1
M(i,k)|

m∑

k=1
M(i,k)

(6)

Consider the example in Fig. 1, given the meta path P1 = APC for
author Jim, we get the feature path FP1

Jim presented in Eq. (1). Obviously,
the venue KDD is the main research domain of Jim due to the main score
ω(V enue,KDD) = 0.75. However, SIGIR is also a significant property, which
distinguishes Jim from other authors with discriminative score δ(V enue, IR) =
0.67. Compared with Jim, Lee has the same main research domain KDD.
However, we can distinguish them easily, due to the discriminative feature
δ(V enue, ICDE) = 0.67 of Lee. From the example we know the main and dis-
criminative features are necessary while characterizing objects in heterogeneous
information networks.

Problem Formalization. Given a heterogeneous information network G =
(V,E) with a schema S, each object v in V is characterized as a set of feature
paths DF

v = (FP1
v ,FP2

v , · · · ,FPm
v), where each feature path FPi

v follows a certain
meta path Pi.

4 Baseline Method of COHIN

4.1 Calculation of Feature Paths

In this section, we propose a baseline method to calculate feature paths for
objects in V , where each feature path is computed based on a given meta path.

10 W. Chen et al.

Note that, objects are often compared with the same properties in real appli-
cations. For example, in DBLP, we measure the similarity between two authors
in their research domain with the meta path APT , and the meta path APA is
used to compare their co-authors. Consequently, we characterize objects with
feature paths that follow the same meta paths. Given a set of meta paths
P = {P1,P2, · · · ,Pm}, we can obtain DF

v = (FP1
v ,FP2

v , · · · ,FPm
v) for each

object v based on Eqs. (4), (5) and (6).

4.2 Measure Similarity

The proposed model is applicable for many applications, such as entity match,
user linkage and similarity search. And the key element of these applications is
how to measure the similarity between any two objects with feature paths. Given
two objects v and v′, let DF

v = {FP1
v , · · · ,FPm

v } and DF
v′ = {FP1

v′ , · · · ,FPm

v′ }, we
use Dis(v, v′) to denote the distance between v and v′, which is given as follows:

Dis(v, v′) =
m∑

k=1

Dis(FPk
v ,FPk

v′) (7)

where Dis(FPk
v ,FPk

v′) denotes the distance between FPk
v and FPk

v′ , which is
discussed in the sequel.

Given a feature path FPk
v = v

(ω,δ)−−−→ A2
(ω,δ)−−−→ · · · (ω,δ)−−−→ Al

(ω,δ)−−−→ θ following

meta path Pk, and another feature path FPk

v′ = v′ (ω,δ)−−−→ A2
(ω,δ)−−−→ · · · (ω,δ)−−−→

Am
(ω,δ)−−−→ θ′ following the same meta path Pk, the distance between FPk

v and
FPk

v′ is defined as follows:

Dis(FPk
v ,FPk

v′) = |ω(v,A2) − ω(v′, A2)| + |δ(v,A2) − δ(v′, A2)| + Dis(θ, θ′)

+
l−1∑
k=2

|ωv(Ak, Ak+1) − ωv′(Ak, Ak+1)|

+
l−1∑
k=2

|δv(Ak, Ak+1) − δv′(Ak, Ak+1)| (8)

where the Dis(θ, θ′) denotes the distance between θ and θ′. Let θ = (v1, v2, · · · ,
vm) and θ′ = (v′

1, v
′
2, · · · , v′

n), Dis(θ, θ′) is given as follows:

Dis(θ, θ′) =
∑

vk∈θ∩θ′
(|ωv(Al, vk) − ωv′(Al, vk)| + |δv(Al, vk) − δv′(Al, vk)|) (9)

+
∑

vk∈θ−θ∩θ′
(ωv(Al, vk) + δv(Al, vk)) +

∑

vk∈θ′−θ∩θ′
(ωv′(Al, vk) + δv′(Al, vk))

Example 3: Given meta paths APC, APT and APA to calculate feature paths
for authors in Fig. 1, the distances between them are presented in Table 2. Based
on Eq. (7), we have Dis(Jim, Tom) = Dis(FAPC

Jim ,FAPC
Tom)+Dis(FAPT

Jim ,FAPT
Tom)

Object Characterisation in Heterogeneous Information Networks 11

Table 2. Distance between objects

(a) APC

Jim Lee Tom

Jim 0 2.104 1.834

Lee 2.104 0 2.104

Tom 1.834 2.104 0

(b) APT

Jim Lee Tom

Jim 0 2.092 1.834

Lee 2.092 0 2.092

Tom 1.834 2.092 0

(c) APA

Jim Lee Tom

Jim 0 1.253 1.4

Lee 1.253 0 1.253

Tom 1.4 1.253 0

+Dis(FAPA
Jim ,FAPA

Tom)=5.068. Similarily, we can obtain Dis(Jim,Lee)=5.449 and
Dis(Tom,Lee)=5.449. Obviously, Jim and Tom are the most similarity objects
with respect to research interest and co-authorship, since Dis(Jim, Tom) <
Dis(Jim,Lee) and Dis(Jim, Tom) < Dis(Lee, Tom).

5 Optimization

The baseline method discussed in Sect. 4 can achieve high performance while
characterizing objects with feature paths that follow the same meta paths. How-
ever, this method may become unuseful if we characterize objects across different
social platforms, due to the diversity of network schemas across different plat-
forms, and it is difficult to characterize objects with same meta paths. In order
to tackle the problem, we design more general approaches here.

Algorithm 1. Compute a Feature Path
Input: a network G with a schema S, an object v, λ
Output: a feature path FP

v

1: Ao ← v;
2: repeat

3: add link Ao
(ω,δ)−−−→ Ai into the feature path FP

v with the function choose (Ao);
4: Ao ← Ai;
5: until the length of FP

v is larger than λ;
6: for vj ∈ Al do
7: compute ω(Al, vj) and δ(Al, vj) based on Eq.(6); //Al is the last node of FP

v

8: end for
9: return the feature path FP

v

10: Procedure choose (Ao)
11: for each type Ai linked with Ao do
12: select Ai with the maximum ω(Ai, Ao) + δ(Ai, Ao);
13: end for

14: return the link Ao
(ω,δ)−−−→ Ai;

As presented in Algorithm 1, we develop a depth-first method to characterize
objects with main and discriminative features, where Ao denotes the node that

12 W. Chen et al.

Fig. 3. Characterizing objects with feature paths (Color figure online)

need to be visited next, the function choose (Ao) is designed for selecting a

proper link Ao
(ω,δ)−−−→ Ai for each process, and λ denotes a given threshold of the

length of feature path.

Example 4: Continue the example in Fig. 1, given λ = 3, we get results pre-
sented in Fig. 3, where each tree is composed of a set of feature paths. In Fig. 3(a),
the blue part is a feature path that follows the mate path APA and the red part
follows the meta path APT . Compared with the baseline method, the results
here contain more significant information.

Next, we develop novel approaches to measure similarity between different
objects. As discussed in [21,22], measuring similarity between two trees contains
two components. (1) Transform a tree to a string. We construct an inverted
labeled Prüfer sequence (IPS) for a tree, where the post-order is used to num-
ber tree nodes. By extending IPS, we construct FIPS (extended IPS), which is
composed of a sequence of tuples in the form of (type, ω, δ). Seen from Table 3,
we construct IPS and FIPS for Jim, Lee and Tom. As we just consider the tree
nodes with ω and δ, the root node is omitted for FIPS. (2) Compute the edit
distance between two strings.

Given two trees with corresponding strings FIPS=(α1, · · · , αm), FIPS′ =
(β1, · · · , βn), a matrix G is proposed such that its element G[i, j] denotes the dis-
tance between substrings FIPSi = (α1, · · · , αi)(1 ≤ i ≤ m) and FIPS′

j =
(β1, · · · , βj)(1 ≤ j ≤ n). The element G[i, j] is given as follows:

Table 3. IPS and FIPS

Author IPS and FIPS

Jim IPS: JimPaperPaperAuthorPaperTermPaperVenueAuthorTomAuthorLeeTer-

mDMTermIRVenueKDDVenueSIGIR

FIPS:

(Paper,1,0.03)(Paper,1,0.03)(Author,0.384,0.024)· · · (Venue,0.308,0.03)(SIGIR,0.25,0.667)

Lee IPS: LeePaperPaperAuthorPaperTermPaperVenueAuthorTomAuthorJimTer-

mDMTermDBVenueKDDConfICDE

FIPS: (Paper,1,0.061)(Paper,1,0.061)(Author,0.4,0.03)· · · (Venue,0.3,0.06)(ICDE,0.33,0.667)

Tom IPS: TomPaperPaperAuthorPaperTermPaperVenueAuthorLeeAuthorJimTer-

mAITermDMVenueAAAIConfKDD

FIPS:

(Paper,1,0.03)(Paper,1,0.03)(Author,0.384,0.024)· · · (Venue,0.308,0.03)(KDD,0.75,0.042)

Object Characterisation in Heterogeneous Information Networks 13

G[i, j] = min

⎧
⎪⎪⎨

⎪⎪⎩

G[i − 1, j] + αi.ω + αi.δ + 1
G[i, j − 1] + βj .ω + βj .δ + 1
G[i − 1, j − 1] + |αi.ω − βj .ω| + |αi.δ − βj .δ|, if αi.type = βj .type
G[i − 1, j − 1] + αi.ω + βj .ω + αi.δ + βj .δ + 1, if αi.type �= βj .type

(10)

Note that the element G[m,n] holds the distance between the given trees.
In Fig. 3, we can obtain Dis(Jim,Lee)=G[19, 19] = 5.46, Dis(Jim, Tom) =
G[19, 19] = 5.05, and Dis(Lee, Tom) = G[19, 19] = 5.37.

6 Feature Score Based Prune Strategy

Given an object v and a set of objects V , a straightforward way to find the
top-k objects with the minimum distance Dis(v, v′) is to calculate the distance
for each object v′ in V . However, this is very time consuming, especially for a
large |V |. With the goal of achieving high query performance, a feature score
based strategy is proposed to prune search space.

Firstly, we calculate the feature score for each object v′ in V based on
Eq. (11).

FSv′ =
∑

p∈FIPSv′

p.ω + p.δ (11)

Theorem 1. Given two objects v and v′ with FIPSv = (α1, · · · , αm) and
FIPSv′ = (β1, · · · , βn), it holds that Dis(v, v′) = G[m,n] ≥ |FSv − FSv′ |.
Proof. Let m ≤ n, Dis(v, v′) gets the minimum value when IPSv is a part
of IPSv′ after removing the first node, which means that ∀αk ∈ FIPSv, there
exists βt ∈ FIPSv′ such that αk.tpye = βt.type, then Dis(v, v′) = G[m,n] ≥=

m∑
αk.tpye=βt.type

(|αk.ω − βt.ω| + |αk.δ − βt.δ|)+
∑

(βj .ω + βj .δ) = |FSv − FSv′ |,
where

∑
(βj .ω +βj .δ) denotes the sum of ω and δ for all βj in remained FIPSv′ .

�
Secondly, we obtain a sorted set Vs by sorting objects in V according to

feature scores. Note that, we keep track of top-k objects with the minimum
distance Dis(v, v′), and the maximum value in current top-k results is denoted
as Dis(v, vk).

Theorem 2. Given an object v, for all unvisited objects v′ in Vs, they are pruned
if |FSv − FSv′ | ≥ Dis(v, vk).

Proof. According to Theorem 1, for all unvisited objects, it holds that
Dis(v, v′) ≥ |FSv − FSv′ |. If |FSv − FSv′ | ≥ Dis(v, vk), we have Dis(v, v′) ≥
Dis(v, vk). Consequently, these objects should be pruned.
�

During the process of finding object v′ with the minimum distance Dis(v, v′),
we calculate Dis(v, v′) based on Eq. (10) and update Dis(v, vk) if necessary. The
process is terminated if |FSv − FSv′ | ≥ Dis(v, vk), according to Theorem 2.

14 W. Chen et al.

7 Experiments

We conduct extensive experiments on real datasets to evaluate the performance
of the model through case studies, entity match and real-time query. All algo-
rithms are implemented on a Core i5-4570 3.2 GHz machine with 16 GB memory.

7.1 Datasets

We use the following three datasets: (1) DBLP: This dataset is collected from
DBLP website, which contains 1217512 authors with 2907314 papers. In order to
study the most powerful authors, we sort all authors with corresponding number
of papers and select the top 1015 authors with 742858 papers. (2) Renren:
Renren is an important social network for users to share comments, pictures,
videos, etc. The platform contains 240 million users in China. (3) Sina Weibo:
Sina is another popular social network of China with more than 200 million
registered users, and the number of active users is 89 million per month.

In order to study the performance of the proposed methods while collecting
objects from different platforms, we select 2679 users from Renren and Sina as the
ground truth. Note that we use the following algorithms to compare performance
and efficiency. (1) HeteSim: which is proposed in [9]. (2) The baseline method
MFP, details of which are presented in Sect. 4. (3) The second method is OFP,
details of which are discussed in Sect. 5. (4) The final approach PFP, which uses
the prune strategy to reduce the number of candidates.

7.2 Summary of Objects

We compare the performance of HeteSim, MFP and OFP, while characterizing
objects in DBLP. As venues and co-authors are of critical importance to authors
in DBLP, we use the meta paths APA and APC to characterize authors for
HeteSim and the results are presented in Table 4, where the top-5 most similar
authors and venues to author ”Jiawei Han” are returned. The same meta paths
are also used to calculate feature paths for MFP and the characterizations are
presented in Fig. 4. Different from HeteSim that only focuses on the main fea-
tures, MFP takes main and discriminative features into account and it contains
more significant information, where the main and discriminative scores are used
to denote the importance of a property. Note that OFP performs even better
than the baseline methods. As seen from Fig. 5, it contains the most abundant
information compared with the baseline methods. More importantly, there is no
need to give meta paths for OFP, as which characterizes objects automatically
with depth-first strategy. Obviously, OFP is the optimal approach to characterize
objects in heterogeneous information.

7.3 Performance on Entity Match

Entity match is an important application of the proposed model COHIN, we ran-
domly select 1K, 1.5K, 2K, 2.5K users from the ground truth to investigate the

Object Characterisation in Heterogeneous Information Networks 15

Table 4. Top-5 similar authors and top-5 related venues to “Jiawei Han” in DBLP

(a) Meta path: APA

Rank Author

1 Xifeng Yan

2 Philip S. Yu

3 Jing Gao

4 Yizhou Sun

5 Xin Jin

(b) Meta path: APC

Rank Venue

1 KDD

2 ICDM

3 SDM

4 TKDE

5 SIGMOD

Fig. 4. Characterize objects with MFP

Fig. 5. Characterize objects with OFP

performance of MFP and OFP on entity match, by comparing the corresponding
recall and precision. We conduct the experiments 30 times and report the average
result in Fig. 6(a) and (b). Without surprise, OFP outperforms MFP with higher
recall and precision, since it contains more significant information. As shown in
Figs. 4 and 5, OFP contains more main and discriminative features while charac-
terizing the same object. Consequently, OFP is more likely to have higher recall
and precision. Note that, the recall and precision of these two approaches do not
change obviously with the increase of the number of objects to be characterized,
which means that they have good scalability.

7.4 Query Efficiency

In order to investigate the efficiency of the proposed methods OFP and PFP,
we randomly select 1K, 1.5K, 2K, 2.5K users from Sina to find the most similar
objects in Renren. Each experiment is repeated 20 times and the average time
cost of OFP and PFP is presented in Fig. 6(c). Without surprise, PFP performs

16 W. Chen et al.

Fig. 6. Performance on entity match and efficiency (Color figure online)

better than OFP since many candidates are pruned during the process by the
proposed strategy, i.e., we can achieve higher query efficiency with the proposed
prune strategy.

8 Conclusion

We study a problem of characterizing objects in heterogeneous information net-
works. Different from traditional studies that focus on the main features of an
object, we have proposed a novel model COHIN to characterize objects with
main and discriminative features. The proposed model has many applications,
such as similarity search, entity resolution, user linkage, etc. In oder to achieve
higher query performance, we develop a prune strategy to reduce search space.
Experiment results demonstrate that COHIN can achieve high performance.

Acknowledgments. This work was partially supported by the Singapore National
Research Foundation under its International Research Centre @ Singapore Funding Ini-
tiative and administered by the IDM Programme Office, Media Development Authority
(MDA) and the Pinnacle Lab at Singapore Management University, Natural Science
Foundation of China (Grant No. 61572335), and Natural Science Foundation of Jiangsu
Province, China (Grant No. BK20151223).

References

1. Vosecky, J., Hong, D., Shen, V.Y.: User identification across multiple social
networks. In: First International Conference on Networked Digital Technologies
NDT2009, pp. 360–365 (2009)

2. Iofciu, T., Fankhauser, P., Abel, F., Bischoff, K.: Identifying users across social
tagging systems. In: ICWSM (2011)

3. Zafarani, R., Liu, H.: Connecting users across social media sites: a behavioral-
modeling approach. In: SIGKDD, pp. 41–49 (2013)

4. Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: Hydra: large-scale social iden-
tity linkage via heterogeneous behavior modeling. In: SIGMOD, pp. 51–62 (2014)

5. Zheng, R., Li, J., Chen, H., Huang, Z.: A framework for authorship identification
of online messages: writing-style features and classification techniques. JASIST
57(3), 378–393 (2006)

Object Characterisation in Heterogeneous Information Networks 17

6. Wang, J., Li, G., Yu, J.X., Feng, J.: Entity matching: how similar is similar. Proc.
VLDB Endow. 4(10), 622–633 (2011)

7. Peled, O., Fire, M., Rokach, L., Elovici, Y.: Entity matching in online social net-
works. In: Social Computing, pp. 339–344 (2013)

8. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: Pathsim: meta path-based top-k
similarity search in heterogeneous information networks. In: VLDB (2011)

9. Shi, C., Kong, X., Yu, P.S., Xie, S., Wu, B.: Relevance search in heterogeneous net-
works. In: Proceedings of the 15th International Conference on Extending Database
Technology, pp. 180–191 (2012)

10. Aggarwal, C.C., Han, J.: Frequent Pattern Mining. Springer, Heidelberg (2014)
11. Sun, Y., Han, J., Zhao, P., Yin, Z., Cheng, H., Wu, T.: Rankclus: integrating

clustering with ranking for heterogeneous information network analysis. In: Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology, pp. 565–576 (2009)

12. Sun, Y., Yu, Y., Han, J.: Ranking-based clustering of heterogeneous information
networks with star network schema. In: SIGKDD, pp. 797–806 (2009)

13. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-path
selection with user-guided object clustering in heterogeneous information networks.
In: SIGKDD, pp. 1348–1356 (2012)

14. Gao, M., Lim, E.-P., Lo, D., Zhu, F., Prasetyo, P.K., Zhou, A.: CNL: collective
network linkage across heterogeneous social platforms. In: ICDM, pp. 757–762
(2015)

15. Zafarani, R., Liu, H.: Connecting corresponding identities across communities. In:
ICWSM (2009)

16. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration, pp. 475–480 (2002)

17. Tejada, S., Knoblock, C.A., Minton, S.: Learning domain-independent string trans-
formation weights for high accuracy object identification. In: KDD, pp. 350–359
(2002)

18. Yan, X., Cheng, H., Han, J., Yu, P.S.: Mining significant graph patterns by leap
search. In: SIGMOD, pp. 433–444 (2008)

19. Thoma, M., Cheng, H., Gretton, A., Han, J., Kriegel, H.-P., Smola, A.J., Song, L.,
Philip, S.Y., Yan, X., Borgwardt, K.M.: Near-optimal supervised feature selection
among frequent subgraphs. In: SDM, pp. 1076–1087 (2009)

20. Zhu, Y., Yu, X.J., Cheng, H., Qin, L.: Graph classification: a diversified discrimi-
native feature selection approach. In: Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, pp. 205–214 (2012)

21. Yang, R., Kalnis, P., Tung, A.K.: Similarity evaluation on tree-structured data. In:
SIGMOD, pp. 754–765 (2005)

22. Li, G., Liu, X., Feng, J.-H., Zhou, L.: Efficient similarity search for tree-structured
data. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069, pp.
131–149. Springer, Heidelberg (2008)

STH-Bass: A Spatial-Temporal Heterogeneous
Bass Model to Predict Single-Tweet Popularity

Yan Yan1, Zhaowei Tan1, Xiaofeng Gao1(B), Shaojie Tang2, and Guihai Chen1

1 Shanghai Key Laboratory of Data Science, Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai, China

gao-xf@cs.sjtu.edu.cn
2 Department of Information Systems,

The University of Texas at Dallas, Richardson, USA

Abstract. Prediction in social networks attracts more and more atten-
tions since social networks have become an important part of people’s
lives. Although a few topic or event prediction models have been pro-
posed in the past few years, researches that focus on the single tweet
prediction just emerge recently. In this paper, we propose STH-Bass, a
Spatial and Temporal Heterogeneous Bass model derived from economic
field, to predict the popularity of a single tweet. Leveraging only the
first day’s information after a tweet is posted, STH-Bass can not only
predict the trend of a tweet with favorite count and retweet count, but
also classify whether the tweet will be popular in the future. We perform
extensive experiments to evaluate the efficiency and accuracy of STH-
Bass based on real-world Twitter data. The evaluation results show that
STH-Bass obtains much less APE than the baselines when predicting the
trend of a single tweet, and an average of 24% higher precision when
classifying the tweets popularity.

Keywords: The Bass model · Predicting popularity · Social network

1 Introduction

Twitter, which is centered by users and communications, is one of the best-known
social networks all over the world. What differs Twitter from other popular
social networks is the asymmetric friend relationship, where a user is able to see
tweets posted by his followings, while his tweets can be seen by his followers.
Because of this characteristic, Twitter is more suitable for users who want to
know celebrities’ lives compared to symmetric social network such as Facebook,

This work has been supported in part by the China 973 project (2012CB316200),
National Natural Science Foundation of China (Grant number 61202024, 61472252,
61133006, 61272443, 61473109), the Opening Project of Key Lab of Information
Network Security of Ministry of Public Security (The Third Research Institute of
Ministry of Public Security) Grant number C15602, and the Opening Project of
Baidu (Grant number 181515P005267).

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 18–32, 2016.
DOI: 10.1007/978-3-319-32049-6 2

STH-Bass Model to Predict Single-Tweet Popularity 19

WeChat, etc. In Twitter, users tweet not only to express their emotions, but
also to share their lives with followers. In other words, users tweet for what are
worth tweeting, usually things that can lead to people’s interest, attention or
discussion. Once users have posted these tweets, they will have an expectation
that these tweets will become popular, gaining a large number of retweets and
favorites.

In recent years, prediction in social networks attracts more and more atten-
tion from both academia and industry since social networks have become parts
of people’s lives. Foresight is always users’ favorite, and prediction satisfies the
demand. Plenty of contents in social networks are worth predicting, such as user’s
personality [1], top10 news [2], popular stories [3], and controversial events [4].
Even a film’s box office which seems to have nothing to do with social networks
can be predicted through contents posted by users [5]. Most of these predic-
tions use methods of machine learning such as Support Vector Machine, Naive
Bayesian, Neural Network, etc., plus statistical model to do classification or
regression.

Although researchers have done plenty of works on prediction, there are few
works about predicting the popularity of a single tweet. Single tweets are compo-
nents of topics and events. For users, from the perspective of psychology, posting
popular tweets will bring satisfaction, and drive them to post more tweets. For
Twitter and other official accounts, if they are capable of predicting which sin-
gle tweet will become popular in advance, then they get an opportunity to lead
the trend, and even come up with new hot topics or hashtags generating from
that popular tweet. For third-party companies other than Twitter, predicting
whether a single tweet will become popular and learning what makes a single
tweet popular are useful as well, in that they are likely to create a popular
tweet artificially, helping propagate their products and so on. Last but not least,
abnormal popular tweets can set alarm for disaster, criminal, or catastrophe.

However, adopting existing topic or event prediction models cannot obtain
satisfactory results. Topics or events usually consist of multiple tweets, but the
popularity of one topic or event cannot well represent a single tweet’s popularity.
Actually, predicting the popularity of a single tweet requires different models.
Compared with topics or events, which have more information generated from
all tweets that they are made up of for prediction, predicting a single tweet’s
popularity can only use its own textual information and user’s information with
time line. Besides, the lifespan of a single tweet is mush less than a topic or event.
Most of tweets are out of sight after posted for one week, which leaves us less
time to compare the prediction with real trend, let alone correct the prediction.
In addition, traditional machine learning methods with large training set does
not work for single tweets prediction, since each tweet is a unique new target
to predict. Information of those historical popular tweets helps little, in that we
cannot learn a new model with unique parameters for each new tweet.

When it comes to the prediction of online contents popularity, most of related
works focus on predicting the popularity of topics, events, or news. To the best
of our knowledge, few researches discuss the prediction of a single tweet [6,7].

20 Y. Yan et al.

Zhang et al. [6] only predicts whether a tweet will be retweeted, which is a 2-class
classification problem, leaving aside the prediction of the tweet’s trend, which
is a regression problem. The accuracy of regression is harder to ensure, in that
the trend of a tweet changes greatly everyday after it is posted, and an efficient
regression model have to predict as much as possible random changes of the
trend. On the other hand, the model in [7] is impractical, in that it requires too
many features that are difficult to obtain for predicting the trend of a tweet, such
as the post time of all retweets relative to the original tweet, and the number
of followers of each retweet user. Currently, there exists no reported study of
predicting contents in social network using models modified from economics
fields.

In this paper, we design STH-Bass, a Spatial and Temporal Heterogeneous
Bass Model to predict the future of a single tweet. The Bass model [8] is one of
the most widely applied models in management science, and the “Bass Model”
paper is one of the Top 10 Most Influential Papers published in the 50-year
history of Management Science [9]. The model is originally used in economic
field to model the sales of a newly put-on-market product. To make up for its
deficiency, we work more on spatial and temporal heterogeneity. We would like
to predict the trend of a single tweet. In specific, according to the information
observed after a single tweet posted for one day, we can use STH-Bass model
to predict its favorite count and retweet count later of its whole life cycle. We
further predict whether a single tweet will be popular using the results of trend
prediction. Our model does not need large training set like traditional machine
learning methods. In addition, there is no need of the topology of the social
network such as following and follower relationships. Our experiments using real-
world Twitter data validate the efficiency and accuracy of the trend prediction,
with less absolute percent error and better classification detection.

We summarize our contributions as follow:

– We predict the trend of a single tweet after it is posted for a day, and whether
the tweet will be hot in the end. Our model only needs attributes about the
tweet to predict and its poster. Large training set and the topology of the
network are not needed.

– We are the first to use the Bass model which is a famous statistical model from
management science, in social network content prediction. In addition, we
combine spatial and temporal heterogeneity into the Bass model, proposing
a practical model which can be used in predicting a single tweet’s popularity.

– Our heterogeneous Bass model is not only suitable for predicting a single
tweet’s popularity in Twitter, but also suitable for other social networks which
have an asymmetric following-follower relationship, such as Weibo and Digg.

– We use real-world Twitter data to examine the efficiency of STH-Bass model,
and the simulation results well exhibit the efficiency and accuracy of the trend
prediction, with less absolute percent error and better classification detection.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
related work in the field of social network prediction. In Sect. 3, we give some
preliminaries about our problem statement and data analysis, which is the basis

STH-Bass Model to Predict Single-Tweet Popularity 21

for parameters of our proposed model in Sect. 4. In Sect. 5, we illustrate our
experiments on Twitter data set with discussions. Finally, we conclude our work
in Sect. 6.

2 Related Work

As soon as social network was brought to people’s eyesight, researchers began
to explore it from different perspectives. They first analyzed social network,
discovered and found popular things [10,11] and influenced users [12]. Then,
they classified things [13,14], and finally they recommended things to users [15],
and predicted the future [5].

Prediction in social network goes to different directions as well. Social net-
work is consist of users and contents posted by users. Therefore, one direction of
prediction goes to people [1,16]. Another direction goes to contents, which can
be classified specifically into predicting events [4,17], topics [18], news [2,19,20]
or activities [21]. Most of contents prediction were at collective level. They paid
attention to predicting things that a group of people took part in, not things
that created by an individual.

Collective prediction such as the prediction of topic and event has grown
relatively mature recently. These predictions are mostly classification problems,
predicting whether a topic or event will be popular in future. Deng et al. [18] used
a probability method of Bayesian combined with generative learning method.
Furthermore, they divided time into continuous time intervals and predicted in
which interval a topic will be popular. Zhang et al. [17] firstly detected events
from burst word clustering, then used linear spread model to predict event pop-
ularity. All these topic or event models need extra tools to generate topics or
events at first step, then use self-designed model with machine learning methods
to reach their goals.

In each social network, there are special contents to predict, such as images
on Flickr [22], stories on Digg [3], or hashtags on Twitter [23–25]. Kong et al. [25]
is an representative example of predicting bursts and popularity of hashtags. It
is smart to classify the life cycle of a hashtag into different statuses. Hashtag is
a great innovation to help annotate topics in tweets. It helps predict popularity
of online contents. Chang [26] brought in Diffusion of Innovation (DOI) theory,
which was first applied in the researches in social network. It regarded hashtag as
a kind of innovation, and showed that the Bass model [8] is feasible to hashtag
prediction. Cui et al. [27] and Yang et al. [28] mentioned the DOI theory to
discover popular tweets, but did not apply any model of DOI to predict the
popularity of online contents.

For works related to ours most, predicting the popularity of a single story
on Digg [3] is the first relevant work we know that paid attention to contents
of individual level. It took into account individual behaviors to generate social
dynamic model to obtain good performance on Digg. When it comes to Twitter,
retweet behavior prediction [6] used a hierarchical Dirichlet process to predict
whether a tweet would gain retweets. It was a classification problem which cannot

22 Y. Yan et al.

provide a quantitative outcome of how many retweets a tweet will finally gain.
Hong et al. [29] predicted popular messages in Twitter using methods of binary
classification and multi-class classification. The newly published [7] is one of
the most relevant work that predicts the popularity of a single tweet. However,
besides the shortages mentioned in Sect. 1, their model had to obtain the specific
information of each user who retweeted, which is hard to track when generating
the data set.

3 Preliminary

3.1 Problem Statement

After a tweet w is posted by user u, the followers of u can favorite the tweet,
which increases its favorite count f(t), or retweet, which increases its retweet
count r(t). Once a follower retweets u, the tweet can be seen by the follower’s
followers. Therefore, f(t) and r(t) keep increasing until everyone who have seen
the tweet stopped favoriting it or retweeting it. The final count of favorite count
is denoted as fc, and the final count of retweet count is denoted as rc. In order
to state our task clearly, we give some definitions first.

Definition 1 (Stable Time). The time T that satisfies f(T) ≥ νfc and r(T) ≥
νrc is the stable time of a tweet. We set ν = 0.95 in our experiments.

We set parameter ν here because not all tweets can reach their final counts
given a fixed period of time. Some of the most popular tweets will continue to
be retweeted and favorited for over a month. Therefore, we use ν to ensure that
the favorite counts and retweet counts of tweets in our data set can finally reach
a stable state. This will be explained later in Sect. 3.2.

Definition 2 (Popularity Count). Both favorite count and retweet count rep-
resent a tweet’s popularity. We define the popularity count Y (t) as: Y (t) =
μf(t) + (1 − μ)r(t), where 0 < t ≤ T , and μ is a coefficient to maintain the
balance of favorite count and retweet count.

Therefore, predicting the trend of tweet w turns into predicting Y (t), given
0 < t ≤ T . At the same time, Y (T) is the approximate final popularity count
of a tweet. If Y (T) > γ, where γ is a threshold, then we regard the tweet as
popular.

3.2 Data Analysis

Our data set is collected through Twitter API1. In order to efficiently crawl as
many tweets as possible, and select the features we need, we first randomly crawl
a set of tweets (time from 16th July, 2015 to 23rd July, 2015; with a quantity of
102, 756 tweets), and do some data analysis (including Tables 1, 2, and Figs. 1,
2, 3, 4, 5 and 6). We find several characteristics of single tweet:
1 https://dev.twitter.com/.

https://dev.twitter.com/

STH-Bass Model to Predict Single-Tweet Popularity 23

Table 1. Tweets’ popular count distribution

Popular count 0 1–9 10–99 100–999 1000+

Potion (%) 74.60 % 24.06 % 1.20 % 0.12 % 0.02 %

– From Table 1 we can see that 74.6 % of original tweets receive no favorite count
or retweet count. This is because the users do not have enough followers, or the
contents of these tweets are not the type which can be favorited or retweeted,
e.g., something sad or meaningless. The rest 25 % non-zero tweets mostly gain
1–10 popular counts. Only 1.34 % tweets gain over 10 popular counts.

– The popular count of a single tweet increases rapidly during the first several
hours after it is posted. As we can see from Fig. 1, 75 % tweets’ favorite counts
and retweet counts remain unchanged since they were posted. Referring to
the characteristic above we know that nearly all of these tweets have no
favorite count or retweet count. It is also possible that 0.4 % of these tweets
gain several popular counts, and soon reach their stationary. There is a huge
increase at 100 h (4–5 days after posted). At this time, 90 % tweets reach their
final counts, and nearly 98 % tweets become stable after 240 h (10 days after
posted). The rest 1 % tweets are with high probability to become popular
tweets, which still receive favorites and retweets, although at a very slow
rate.

– We can also see from Fig. 1 that favorite count reaches its stationary much
faster than retweet count, which makes sense. It takes little time to click your
mouse to favorite a tweet you see. But retweet action includes something like
chatting. For example, user A retweets user B’s tweet, and B retweets back
with something A is interested in. Then A will retweet again, and B replies
back. Finally, the retweet count will keep increasing until their conversation
ends.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Time

popular_count
favorite_count
retweet_count

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 0.5 1 1.5 2 2.5 3

C
D

F

Time

Fig. 1. The CDF of tweets’ stable time
(Color figure online)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

00 02 04 06 08 10 12 14 16 18 20 22 00

Po
tio

n
of

 P
op

ul
ar

 T
w

ee
ts

(%
)

Time

trend
average

Fig. 2. When are popular tweets cre-
ated (Color figure online)

Based on the above characteristics, we use Twitter stream to stochastically
crawl tweets which has just been posted on Twitter, and record their favorite

24 Y. Yan et al.

counts and retweet counts at t = 0, 0.5 h, 1 h, 2 h, 3 h, 6 h. For tweets with
Y (t = 6h) > 10, we track down their favorite counts and retweet counts at
the following t = 12 h, 1 d, 2 d, ...10 d. For the rest tweets, we only record their
popularity count at t = 10 d as the final popularity count. Finally, our second
data set is from 24th July, 2015 to 24th August, 2015, with a quantity of 569,149
tweets. We just crawl information about original tweets (instead of retweets),
since the original tweets must be popular if some of its retweets are popular.
Besides, we crawl the features about tweets’ posters, including their number
of followings, followers, tweets they have posted and the favorites they have
obtained, etc.

According to our second data set, we dig deeper about the correlation
between features of tweets and popularity of tweets. Apart from semantic and
emotion features which need extra tools to generate, we study the effect of cre-
ating time and length of a tweet, which is simple but worthwhile.

Figure 2 shows the creating time of tweets and the number of popular tweets
during 24 hours in a day. The truth is, at what time a tweet is posted does
have an impact on its popularity. The dash line gives the average proportion of
popular tweets per hour. It is obvious that 1 a.m. – 2 a.m., 11 a.m. – 1 p.m. and
8 p.m. – 9 p.m. are best time periods during which there is a large proportion
of popular tweets. However, 7 a.m. – 10 a.m. in the morning is not a good time
for posting a tweet, so as 4 p.m. – 6 p.m. in the afternoon, because people are
busy going to work and going back home. This is a general analysis, because the
creating time of a tweet is not strongly related to its popularity: a popular tweet
is born to be popular according to its inner property. Nevertheless, without the
right posting time, a popular tweet may submerge under large quantities of tweet
streams. In a word, choosing an appropriate time to post helps accelerate the
speed of popularity.

Figure 3 shows the relationship between the length of a tweet and its final
popular count. Intuitively the length of a tweet is a useful feature for predic-
tion, for that popular tweets always come up with clearly declarative or logical

Fig. 3. Number of characters and pop-
ular counts of tweets

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250

Po
pu

la
r

C
ou

nt

Time(hours)

Example 1
Example 2

24 hours

Fig. 4. An example of two tweets which
had the same trend at the beginning,
but ended differently (Color figure
online)

STH-Bass Model to Predict Single-Tweet Popularity 25

Table 2. Popular tweet examples with different length

Content Length Favorite count Retweet count

I can not deal with people commenting on
my shit. I’m a human being, stop leaving
comments on my pictures like I don’t
have eyes to read it

138 814 3442

I can remember song lyrics from 2006 but
not whatever maths formula we were
learning yesterday

94 2112 3019

Her smile puts stars in my eyes 31 857 3212

GOODMORNING 11 73 334

statements, which are all in need of quite a few words. However, it turns out
that the contribution of the length to a popular tweet is not significant. Table 2
gives some examples of popular tweets with different length. However, whether
the length can be regarded as one of predicting features remains to be examined
in experiments later.

Tweets in Fig. 4 have similar trend in the observation period during the first
24 h after posted. However, one gets popular and another stays unpopular.

We also classify the trends of tweets mainly into four (Fig. 5): (1) gets high
popular count immediately after posted, and stays popular (Example 2); (2)
slowly increases and finally gets high popular count (Example 1); increases at
a high rate at beginning but are not popular in the end (Example 3); slowly
increases and stays slow in the end (Example 4). The threshold of being popular
is 100, meaning that a tweet with final popular count greater than 100 will
be classified as popular. Since Example 3 and Example 4 get small number of
popular count, their trends have been zoomed in in Fig. 6.

 0

 400

 800

 1200

 1600

 2000

 0 50 100 150 200 250

Po
pu

la
r

C
ou

nt

Time(hours)

Example 1
Example 2
Example 3
Example 4

Fig. 5. Different trends of tweets
(Color figure online)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

Po
pu

la
r

C
ou

nt

Time(hours)

Example 3
Example 4

Fig. 6. A clearer illustration of Exam-
ples 3 and 4 in Fig. 5 (Color figure
online)

26 Y. Yan et al.

4 The Heterogeneous Bass Model

The Bass model [8] is one of the most widely applied models in management
science. The model was proposed to predict the sales of a new product when
it is lunched on the market. The model is different from traditional machine
learning method in that it does not need large numbers of training set. Given
the first several days or months of sales of a new product, we can easily predict
the performance of the product later via only two parameters.

The standard formulation of a diffusion process is:

h(t) = (p + qH(t))(1 − H(t)) (1)

Where p is the coefficient of innovators (or the impact of factors outside the
population), q is the coefficient of imitators (or the impact of contacts within
the population). h(t) is the hazard rate of adoption, which is also known as the
likelihood of purchase at time t. 1 − H(t) is the probability that one has not yet
adopted at time t. Obviously, H(t) =

∫ t

0
h(x)dx. Here t is represented in hours.

Assuming the size of potential buyers is fixed as m, the number of purchase
at t is:

S(t) = mh(t) = pm + (q − p)Y (t) − q

m
[Y (t)]2 (2)

Where Y (t) =
∫ t

0
S(x)dx is the accumulative number of sales. Then Eq. (2)

is the formulation of standard Bass model.
Although the Bass model is an excellent model in economic fields, it has

many drawbacks as well. It only has two parameters, which gives little chance
to add feature of social network into the model. In addition, the standard Bass
model assumes spatial and temporal homogeneity, leading to no distinction of
individuals. Therefore, we can combine features of Twitter with the original
model, and relax it to individual-level heterogeneity. Due to the limitation of
Twitter features, we focus on incorporating spatial heterogeneity, which allows
everyone to have different possibilities to favorite or retweet a tweet. According
to [30], there are 3 kinds of terms to reflect spatial heterogeneity: the intrinsic
probability of adoption, the susceptibility to intra population linkages and the
infectiousness of adopters.

Endowing the features we can get from Twitter, we derive the model as
below:

S(t) = pm + (q − p)Y (t) − q

m
[Y (t)]2 + αx + βy (3)

Here x is a vector of variables representing user features, such as the number
of followings and followers of a user, the number of tweets a user posted since the
creation of his account, the number of favorites the users collected. y is a vector
of single tweet features including the creating time of a tweet, the number of
URLs appearing in a tweet, and the number of characters in the text. Although
the number of characters is not the main component contributing to popular

STH-Bass Model to Predict Single-Tweet Popularity 27

count based on our data analysis in Sect. 3.2, we still take it into consideration
here. It should be noted that not all of these features contribute to the final
result of our experiments. Those nonsignificant features will be ruled out by
PCA (Principal Component Analysis).

x =

⎡
⎢⎢⎣

log num Of Followings
log num Of Followers
log num Of Tweets
log num Of Favorites

⎤
⎥⎥⎦ (4)

y =

⎡
⎣ log num Of Creating Time

log num Of URLs
log num Of Characters

⎤
⎦ (5)

In order to find Y (t) we must solve the non-linear differential equation:

dY

dt
= pm + (q − p)Y (t) − q

m
[Y (t)]2 + αx + βy (6)

For simplicity, let V = pm + αx + βy. Then we have:

mdY

q[Y (t)]2 + m(p − q)Y (t) − mV
= −dt (7)

Factoring the denominator on the left of Eq. (7), we have:

mdY

(Y − y1)(Y − y2)
= −dt (8)

with y1 = m(q−p)+
√

Δ
2q , y2 = m(q−p)−√

Δ
2q , and Δ = m2(p − q)2 + 4mqV .

Change Eq. (8) into:

(
1

Y − y1
− 1

Y − y2
)

mdY

y1 − y2
= −dt (9)

Then we can do integration on both sides of the equation:∫ T

0

(
1

Y − y1
− 1

Y − y2
)

mdY

y1 − y2
=

∫ T

0

−dt (10)

The solution is:

Y (t) =
y2e

−
√

Δ
mq t+C + y1

1 + e−
√

Δ
mq t+C

(11)

Because Y (0) = 0, constant C generated by the integration can be solved:

C = ln(−y1
y2

) (12)

28 Y. Yan et al.

And:

Y (t) =
y2e

−
√

Δ
mq t+ln(− y1

y2
) + y1

1 + e−
√

Δ
mq t+ln(− y1

y2
)

(13)

Hence we get the spatial and temporal heterogeneous Bass model. Using
Least Square Method, which is one of the most recommending mathematical
methods to fit Eq. (13). Then we can predict the popular count of a tweet at any
time t, where 1d < t ≤ T .

5 Experiments

Our experiments are divided into two parts. The first part is the trend predicting,
and the second part is the popularity predicting. Due to the fact that the favorite
count and retweet count of a tweet varies a lot, some tweets gain large amount
of favorite count but much fewer retweet count, while some tweets are on the
contrary. Therefore, we set μ = 0.5 to treat the number of favorite count and
retweet count equally. In addition, we set ν = 10d and γ = 100 according to our
data analysis. Furthermore, we treat follower count and friend count as invariant
during the period of our experiments. As a matter of fact, these features do not
change much for a mature user who has already set up his relationship network.

5.1 Predicting Trends

Different from traditional machine learning methods, which usually have a train-
ing set to train parameters and a test set to evaluate trained models, our hetero-
geneous Bass model divides each tweet into training part and predicting part.
The training part includes the first 7 sample points at t = 0.5 h 1 h, 2 h, 3 h, 6 h,
12 h, 24 h after a tweet posted. We use Least Square Method on these sample
points of a single tweet, and the parameters in Eq. (13) are solved. Each tweet
has a set of unique parameters to predict its trend in the nearly future. To test
the efficiency of our model, we sample 9 time points at t = 48 h(2 d), 72 h(3 d),...
240 h(10 d). According to our data analysis in Sect. 3, most of popular counts of
tweets tend to be stable after posted for 240 h. Therefore, our sample points can
well test the whole life cycle of a tweet.

We give the comparison of the predicting final popular count and the real
final popular count, as illustrated in Fig. 7. The dash line shows the correlation
between the predicted value and the real value, with slope 1.3. Besides several
outliers which are far away from the dash line, most of our predicting values
are close to real values. When the final popular count is less than 200, our
model performs best. As the real popular count becomes larger, our prediction
emerges its conservative. There is a high probability that our predicting value is
smaller than the real ones. However, it does not affect the precision of predicting
popularity.

STH-Bass Model to Predict Single-Tweet Popularity 29

 0

 500

 1000

 1500

 2000

 2500

 0 400 800 1200 1600

R
ea

l F
in

al
 C

ou
nt

Predicting Final Count

Fig. 7. The predicting final count VS
the real final count

 0
 0.04
 0.08
 0.12
 0.16

 0.2
 0.24
 0.28
 0.32
 0.36

 0.4

 40 80 120 160 200 240

A
PE

Time(hour)

Mean APE of STH-Bass model
Median APE of STH-Bass model

Mean APE of Baseline 1
Median APE of Baseline 1

Mean APE of Baseline 2
Median APE of Baseline 2

Fig. 8. The APE of our model and
baselines (Color figure online)

Our STH-Bass model only need each tweet’s text information (favorite count,
retweet count, created time, length of the tweet, etc.) and it’s poster’s informa-
tion (friends count, followers count, etc.), which can be easily obtained from
Twitter API. For baselines, we initially intend to use the SEISMIC Model [7] as
one of our baselines, since it is the most relevant study compared to ours. How-
ever, the SEISMIC Model needs extra information (such as time and follower
counts) about user i who contributed to the ith retweet of a certain tweet. It is
difficult to crawl these extra features from Twitter. Without these extra infor-
mation, the SEISMIC model will lose its accuracy. Hence, we give up on the
SEISMIC model, and propose another two baselines, which need a few features
about each tweet and its author like our STH-Bass model:

– Naive Model (Baseline1). Since there are not many literature about pre-
dicting the trend of a single tweet, we come up with a naive model based
on the characteristic (analyzed in Sect. 3.2) of our data set. We only use the
popular count of t = 24 h to predict the trend of next 9 days. The Naive
Model performs rather competitive because 75 % of tweets in our data set
reach their final count after posted for one day.

– Log Linear Regression Model (Baseline2). Szabo and Huberman [31]
analyzed there are strong correlations between early and later times of the
logarithmical transformed popularity:

ln Y (tr) = ln r(ti, tr) + ln N(ti) + ξ(ti, tr) (14)

Therefore, Log Linear Regression Model can also predict well.

We calculate the Absolute Percentage Error (APE) for our evaluation.
For each tweet w at time t, the formulation of APE is as follows:

APE(t) =
|Y (t) − popularCount(t)|

popularCount(t)
(15)

Figure 8 shows the Mean APE and Median APE of our model and two baselines.
We test 9 time points from 48 h (2 days after posted) to 240 h (10 days after

30 Y. Yan et al.

posted). Both Mean and Median APE of our STH-Bass model change little
during the whole period. The Mean APE is around 4 %, and the Median APE
is around 1 %. Baseline 2 is far less accurate than STH-Bass in terms of Mean
APE and Media APE. Baseline 1 is competitive at first several time points with
STH-Bass, but tends to be less accurate later, indicating that there are still
plenty of increases of popular counts from 48 h to 240 h.

Table 3. The performances of different methods

Model Precision Recall F1-score

Our model 0.997 0.796 0.886

Baseline1 0.949 0.792 0.863

Baseline2 0.757 0.950 0.843

5.2 Predicting Popularity

According to Table 1, tweets which finally gain 0–9 popular count has a propor-
tion of over 98 %. It is easy for our model and two baselines to get accuracy rates
of over 95 %, because tweets receiving 0–9 popular count do not change much in
their trends, and most of them already have reached stable after posted for one
day. Therefore, we focus on the rest 2 % tweets, whose trends change relatively a
lot, and are hard to reach their final counts after posted for one day. Therefore,
we set γ = 100, which indicates that a tweet with Y (T) > 100 is popular.

Once we have predicted the final count of a tweet, we can immediately decide
whether a tweet is popular. Table 3 shows the performance of predicting whether
a tweet becomes popular by different methods. STH-Bass model gets the high-
est Precision and F1-score, while Baseline 2 gets the highest Recall. Compre-
hensively, STH-Bass model is 3 % better than Baseline 1 and 5 % better than
Baseline 2 in terms of F1-score. In addition, STH-Bass model is 5 % better than
Baseline 1 and 24 % better than Baseline 2 in terms of Precision, meaning that
unpopular tweets are seldom classified as popular ones. As a matter of fact, clas-
sification is easier than regression. Although the advantage of STH-Bass is not
as obvious as predicting trend in Sect. 5.1, STH-Bass ensures that those popular
tweets which the model has classified, will be popular in the end with a high
probability.

6 Conclusion

In this paper, we propose STH-Bass, a spatial and temporal heterogeneous Bass
model to predict the popularity of a single tweet. STH-Bass uses the data features
of a single tweet from the first day it has been posted, and can successfully predict
the whether this tweet can be popular in the future. More specifically, STH-Bass

STH-Bass Model to Predict Single-Tweet Popularity 31

can well depict the trend of a single tweet during its life cycle. Our model can
even distinguish the tweets which have similar beginning popular count in first
24 h, but gain extremely different popular count in the end. We also use real-
world Twitter data set to examine the performance of STH-Bass and compare
the results with several baseline strategies. The simulation results validate the
efficiency and accuracy of STH-Bass model with much less APE than baselines
when predicting trend of a single tweet, and higher Precision and F1-score than
one of our baselines when classifying the popularity.

References

1. Golbeck, J., Robles, C., Turner, K.: Predicting personality with social media. In:
ACM CHI Conference on Human Computer Interaction, pp. 253–262 (2011)

2. Kong, L., Jiang, S., Yan, R., Xu, S., Zhang, Y.: Ranking news events by influ-
ence decay and information fusion for media and users. In: ACM International
Conference on Information and Knowledge Management (CIKM), pp. 1849–1853
(2012)

3. Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity
of news. In: International Conference on World Wide Web (WWW), pp. 621–630
(2010)

4. Popescu, A.-M., Pennacchiotti, M.: Detecting controversial events from twitter.
In: ACM International Conference on Information and Knowledge Management
(CIKM), pp. 1873–1876 (2010)

5. Asur, S., Huberman, B.: Predicting the future with social media. In: IEEE Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT),
vol. 1, pp. 492–499 (2010)

6. Zhang, Q., Gong, Y., Guo, Y., Huang, X.: Retweet behavior prediction using hier-
archical dirichlet process. In: AAAI Conference on Artificial Intelligence (AAAI),
pp. 403–409 (2015)

7. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: Seismic: a self-
exciting point process model for predicting tweet popularity. In: ACM SIGKDD
International Conference on Knowledge Discovery andData Mining (SIGKDD),
pp. 1513–1522 (2015)

8. Bass, F.M.: A new product growth for model consumer durables. Manag. Sci.
15(5), 215–227 (1969)

9. Bass, F.M.: Comments on “a new product growth for model consumer durables
the Bass model”. Manag. Sci. 50(12), 1833–1840 (2004)

10. Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of
news on digg and twitter social networks. In: The International AAAI Conference
on Web and Social Media (ICWSM), vol. 10, pp. 90–97 (2010)

11. Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a
news media? In: ACM International Conference on World Wide Web (WWW),
pp. 591–600 (2010)

12. Weng, J., Lim, E.-P., Jiang, J., He, Q.: Twitterrank: finding topicsensitive inuential
twitterers. In: ACM International Conference on Web Searchand Data Mining
(WSDM), pp. 261–270 (2010)

13. Yang, S.-H., Kolcz, A., Schlaikjer, A., Gupta, P.: Large-scale high-precision topic
modeling on Twitter. In: ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 1907–1916 (2014)

32 Y. Yan et al.

14. Zhou, D., Chen, L., He, Y.: An unsupervised framework of exploring events on
Twitter: filtering, extraction and categorization. In: AAAI Conferenceon Artificial
Intelligence (AAAI), pp. 2468–2474 (2015)

15. de Macedo, A.Q., Marinho, L.B.: Event recommendation in eventbasedsocial net-
works. In: Hypertext, Social Personalization Workshop, pp. 3130–3131 (2014)

16. Akram, H.A.A.L., Mahmood, A.: Predicting personality traits, gender and psy-
chopath behavior of Twitter users. Int. J. Technol. Diffus. (IJTD) 5(2), 1–14 (2014)

17. Zhang, X., Chen, X., Chen, Y., Wang, S., Li, Z., Xia, J.: Event detection and
popularity prediction in microblogging. Neurocomputing 149, 1469–1480 (2015)

18. Deng, Z.-H., Gong, X., Jiang, F., Tsang, I.W.: Effectively predicting whether and
when a topic will become prevalent in a social network. In: AAAI Conference on
Artificial Intelligence (AAAI), pp. 210–216 (2015)

19. Castillo, C., El-Haddad, M., Pfeffer, J., Stempeck, M.: Characterizing the life cycle
of online news stories using social media reactions. In: ACM Conference on Com-
puter Supported Cooperative Work and Social Computing (CSCW), pp. 211–223
(2014)

20. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news insocial media: fore-
casting popularity. In: International AAAI Conference on Web and Social Media
(ICWSM), pp. 26–33 (2012)

21. Huang, S., Chen, M., Luo, B., Lee, D.: Predicting aggregate social activities using
continuous-time stochastic process. In: ACM international Conference on Informa-
tion and Knowledge Management (CIKM), pp. 982–991 (2012)

22. McParlane, P.J., Moshfeghi, Y., Jose, J.M.: Nobody comes here anymore, it’s too
crowded; predicting image popularity on flickr. In: ACM International Conference
on Multimedia Retrieval (ICMR), pp. 385–391 (2014)

23. Kamath, K.Y., Caverlee, J.: Spatio-temporal meme prediction: learning what hash-
tags will be popular where. In: ACM International Conference on Information
Knowledge Management (CIKM), pp. 1341–1350 (2013)

24. Zaman, T.R., Herbrich, R., Van Gael, J., Stern, D.: Predicting information spread-
ing in Twitter. In: Workshop on Computational Social Science and the Wisdom
of Crowds, Annual Conference on Neural Information Processing Systems (NIPS),
pp. 599–601. Citeseer (2010)

25. Kong, S., Mei, Q., Feng, L., Ye, F., Zhao, Z.: Predicting bursts and popularity of
hashtags in real-time. In: International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 927–930 (2014)

26. Chang, H.-C.: A new perspective on Twitter hashtag use: diffusion of innovation
theory. J. Am. Soc. Inf. Sci. Technol. 47(1), 1–4 (2010)

27. Cui, A., Zhang, M., Liu, Y., Ma, S., Zhang, K.: Discover breaking events with
popular hashtags in Twitter. In: ACM International Conference on Information
and Knowledge Management (CIKM), pp. 1794–1798 (2012)

28. Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual
role affect hashtag adoption? In: ACM International Conference on World Wide
Web (WWW), pp. 261–270 (2012)

29. Hong, L., Dan, O., Davison, B.D.: Predicting popular messages in Twitter. In:
ACM International Conference Companion on World Wide Web (WWW), pp.
57–58 (2011)

30. Strang, D., Tuma, N.B.: Spatial and temporal heterogeneity in diffusion. Am. J.
Soc. 99(3), 614–639 (1993)

31. Szaba, G., Huberman, B.A.: Predicting the popularity of online content. Commun.
ACM 53(8), 80–88 (2010)

Closeness and Structure of Friends
Help to Estimate User Locations

Zhi Liu(B) and Yan Huang

Computer Science and Engineering, University of North Texas, Denton, TX, USA
zhiliu@my.unt.edu, huangyan@unt.edu

Abstract. A tremendous amount of information is being shared every
day on social media sites such as Facebook, Twitter or Google+. How-
ever, only a small portion of users provide their location informa-
tion, which can be helpful in targeted advertising and many other ser-
vices.Current methods in location estimation using social relationships
consider social friendship as a simple binary relationship. However, social
closeness between users and structure of friends have strong implications
on geographic distances. In this paper, we introduce new measures to
evaluate the social closeness between users and structure of friends. We
propose models that use them for location estimation. Compared with
the models which take the friend relation as a binary feature, social
closeness can help identify which friend of a user is more important and
friend structure can help to determine significance level of locations, thus
improving the accuracy of the location estimation models. A confidence
iteration method is further introduced to improve estimation accuracy
and overcome the problem of scarce location information. We evaluate
our methods on two different datasets, Twitter and Gowalla. The results
show that our model can improve the estimation accuracy by 5%–20 %
compared with state-of-the-art friend-based models.

1 Introduction

A tremendous amount of information is being shared every day on social media
platforms such as Facebook, Twitter, or Google+. For example, more than 241
million active Twitter users have published 300 million tweets worldwide, and
this number continues to increase at a rate of 5,700 per second [17]. Often-
times these messages include geo-information that is valuable to others, such as
activities (e.g., art fairs, jazz festivals, and social gatherings), natural disaster
occurrences (e.g., tornadoes, earthquakes), or other incidents (e.g., traffic jams).
The goal of this paper is to develop effective algorithms to estimate user home
location. The results will help on the event detection from social media which
in turn can assist the assimilation of social media information of interest for
application domains such as smart transportation, disaster relief and recovery,
and national security.

In this paper, we develop several models to estimate home locations of users
on social media. Our goal is to locate users whose locations are unknown by
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 33–48, 2016.
DOI: 10.1007/978-3-319-32049-6 3

34 Z. Liu and Y. Huang

their social network and those located users. We face the following challenges: (1)
People can share their location information more easily nowadays. Paradoxically,
the problem of lacking location information still exists. Only 30 % of users provide
their location information to at least one social media account and 46 % of teen
app users have turned off the location tracking feature on their cell phone1; (2)
User behavior varies greatly between different social networking services. In the
datasets used in this paper, 27 % of friend pairs on Gowalla locate within 100 km
of each other. In Twitter, however, this ratio is only 12 %. This because Twitter
is not mainly a location-based social networking service and users tend to follow
various media sources that are far away; and (3) Social media information is
noisy and mixed with meaningless information. For example, 40 % tweets are
not associated with a particular subject [16]. Additionally, some users are global
travelers and have many friends from many cities from the world.

Previous methods use the social network, user location, and the content infor-
mation for location estimation. However, the content information is not always
available on different social media tools. In this paper, we focus on the analysis of
social network and how the user locations affect the social connections. Our study
shows that features such as friend structure of a user are important in improving
the accuracy of the location estimation. This paper makes the following contri-
butions: (1) We study the geographic features of social networks. We propose
measures of social closeness between friends and the tightness of the friend struc-
ture of a user. We study the relationship between the closeness/tightness and
the geographic distance. Existing algorithms consider friend relation as a binary
relationship. However, finer level features such as friend co-location can help
determine the social closeness of two friends. Friend co-location is an index mea-
suring how overlapped two users’ friend distributions are. Statistics shows that
the friend co-location has a significant influence on the probability of two friends
located close to each other. A user typically has a tight social structure among
his friends in his home location. Local social coefficient measures the tightness of
a user’s friends in an area and can be a good indicator to measure if the user is
located at that area. (2) We propose three user location estimation models which
take social closeness and tightness of friend structure into consideration. (3) To
deal with the challenge of location sparsity, we propose a confidence-based iter-
ation model in location estimation which significantly improved the estimation
accuracy. (4) We evaluate our models using two real world datasets. Extensive
experimental results show that our methods improve the estimation accuracy by
5 %–20 % compared with the state-of-the-art algorithm.

2 Related Work

Recent research on location estimation in social networks follows two directions
based on the data used: content-based and social-network-based. Content-based
prediction models extract location information, like venue signals, from content
provided by users. Cheng et al. [4] proposed and evaluated a city-level location
1 http://www.pewinternet.org/2013/09/12/location-based-services/.

http://www.pewinternet.org/2013/09/12/location-based-services/

Closeness and Structure of Friends Help to Estimate User Locations 35

estimation model of Twitter users purely by taking the location related words in
tweet content as features and applying a classification method. Chandra et al.
[3] improved the content based method by using user interactions and exploiting
the relationship between different tweet message types. They also provided the
estimation of the top-K probable cities for a user. Another similar method is
proposed in [8]. When a user declares a place, it will be checked in gazetteer to
see if it corresponds to a city name. Location information will then be applied
to infer the user location by the Twitter network. Content-based methods have
also been studied to solve the web page geotagging problem [1]. The authors
extract the toponyms from the web page to predict its location.

Our work is closely related to the work by Backstrom et al. [2]. By modeling
the relation between distance and probability of being a friend, the authors
proposed a general formula to calculate the probability of a user located at
a specific place. Places with the maximal probability will be estimated as the
location of the user. Both [15] and [5] aimed to build a user mobility model by
using the location of their friends. Cho et al. [5] used several factors in their
probability model, including check-in records, social network, friends’ location,
and time. Sadilek et al. [15] applied a machine learning method with similar
information. Li et al. [13] proposed the UDI (unified discriminative influence)
framework to combine content and friends’ location analysis in a unique model
to profile users’ home location. In [14], the authors extract features from users’
tweets content, social relation, and other behaviors like geotag to infer the home
location on different level. Based on the geotagged information, they also built
a classifier to predict whether a user is traveling. In [11], the author applied
the geometric median between users, Oja’s Simplex Median, and the transitivity
of social network in the method. The goal of the algorithm is to select the
nearest neighbor as the estimation result. In [7], the authors use the number
of @mentions to indicate the social ties and take it as the weight ωij between
users ui and uj . For all the connected users, they define the total variation as∑

ij ωijdij where dij is the geographic distance between them. When estimating
the users’ locations, they seek the solution that makes the sum as small as
possible. However, all of those models take the friend relation as a binary feature,
i.e., being friends or not. This premise does not allow those models to take
advantage of all the information from the social network. In our model, we take
the social relation as a continuous feature by introducing the concept of social
closeness. Network structure and locations are taken into consideration compared
with our previous work [12] to help to achieve better results. By studying and
using the relation between social closeness and geographic distance, our model:
(1) significantly improves the estimation accuracy, especially when people have
a small number of friends, (2) overcomes the problem that only a small number
of users provide their location information.

3 Network Structure and Geographic Features

In this section, we analyze how location affects user behaviors. We study the
geographic features of the social network from three aspects: the geographic

36 Z. Liu and Y. Huang

Table 1. Notations

ui, li User ui and his/her location

U All users in the social network

E Set of friend relation in the social network

Γi Friend set of user ui

Ak Set of users located in city k

Table 2. Features of the data sets. |U ′|: number of located users, |Γ |: average number
of friends, d: average distance between users, df : average distance between friend pairs.

Dataset |U ′| |Γ | d df

Twitter 148,860 29.4 2,207 1,124 km

Gowalla 99,563 4.8 1,361 536 km

distribution of friends of an individual, the friend co-location, and the social
structure of an individual’s friends in the same city. Table 1 lists the notions
used in this paper. In this paper, we use dij to refer to the geographic distance
between users ui and uj , and all the distance used in this paper means the
geographic distance.

3.1 Friend Distribution of an Individual

Data Preparation: We collected our data from two different social media plat-
forms, Gowalla and Twitter. Gowalla is a location-based social network, and
users are able to check in at “spots” in their local vicinity. The Gowalla dataset
[5] was collected from February 2009 to October 2010, which contains 196,591
users’ friendship network and 6,442,890 check-in records. We use 99,563 of those
users who have at least one check-in records in our experiment. Since there is
no user profile, we use the same method as that in [5] and take the center of the
25 km × 25 km area with the most number of check-ins as the home location.
We then collected user profiles from Twitter, an on-line social networking and
microblogging service which allows users to follow each other; as well as post
and read “tweets”. The user IDs and social network come from [19]. There are
660,000 distinct user IDs in total together with their social relations. We col-
lected the profiles of these users using Twitter API2. We obtained locations of
148,860 users by converting the address in their profiles into geographic coordi-
nates by the Google Maps Geocoding API3. The data was collected from April
14 to April 28, 2013. We define the friend relation in the same way as [10], i.e.,
users ui and uj have friend relation if they follow each other. Table 2 gives more
information about these two data sets.
2 https://dev.twitter.com/rest/public.
3 https://developers.google.com/maps/documentation/geocoding/intro.

https://dev.twitter.com/rest/public
https://developers.google.com/maps/documentation/geocoding/intro

Closeness and Structure of Friends Help to Estimate User Locations 37

Fig. 1. The distribution of number of cities a user has friends located at and the average
proportion of friends located in the same city.

Figure 1(a) and 1(b) show the city distribution of friends on Twitter and
Gowalla social networks. For most users with less than 70 located friends, their
friends will be located in no more than 10 cities. When a user has more than 100
located friends, his/her friends may be located in 10 to 20 cities. The rapidity and
ease of modem transportation and communication present a great opportunity of
meeting new friends in different places, leading to a wide distribution of friends,
which challenges social network based location estimation. Figure 1(c) shows the
average proportion of friends in the same city of a user with respect to the num-
ber of friends of a user. The result shows that with an increasing of the number of
friends, the probability of friends located in the same city decreases quickly.

Friend locality is the average distance to the friends of the user ui:

Fui
=

1
|Γ ′

i |
∑

uj∈Γ ′
i

dij (1)

Here we use Γ ′
i to denote the located friends of user ui. In Fig. 2, it not

surprising that friend locality increases with respect to the number of friends of
a user. On one hand, not having enough friends will make location estimation
difficult and on the other hand, having too many friends is not helping as well.

3.2 Friend Distribution of Connected Pairs

Friend-based methods were widely used in research literature [2,8,15]. By ana-
lyzing the distribution of friends’ location or mobility, probability models can be
built to predict locations of users. In these works, friend relation was taken as a
binary feature: being friend or not. However, in the real world, depending on the
social relation and other user behaviors, friends of a user can be very different.
In this section, we propose the friend co-location index (FCoI) to measure the
“closeness” of friends on the social network.

We represent the social network as an undirected graph G = (U,E), where
U represents the user set, and edges in E exist between two users if they have
a friend relation. There are two kinds of nodes in U . U ′ is the set of located

38 Z. Liu and Y. Huang

Fig. 2. The relationship between aver-
age distance and number of friends.

Fig. 3. Estimating location of user u1. Here
u2, u3, . . . , u8 are located friends, and u1, u9,
and u10’s locations are unknown

user and U− represents the others, so U = U ′ ∪U−. Before performing the loca-
tion estimation, we first cluster a user ui’s friends Γi by their location. Friends
in the same city will be put in the same set and we represent those sets as
A = {A1, A2...}. City is selected because of its natural definition of activity
concentration by human geography. An example is shown in Fig. 3, users u1 has
7 located friends. These friends distribute in three different cities and form three
sets of friends A1, A2 and A3.

To measure the closeness of two users on the social network, we propose the
Friend Co-location Index (FCoI) that takes both the social connection and the
location into account. The key idea is to measure the correlation of the friends’
geographic distribution of two users. For a pair of friends ui and uj , we firstly
generate two vectors for each of them to describe the friend distributions as:

vi
k = |Ai

k|/|Γ ′
i | (2)

The |Γ ′
i | is the total number of located friends of user ui and |Ai

k| is the
number of friends of user ui located in city Ak. For example, in Fig. 3, u3 has 4
located friends where three of them are in city A1, one is in A2, and none in city
A3. So the vector v3 is [0.75 0.25 0]. Similarly, v1 = [0.57 0.29 0.14]. After getting
the distribution vectors, we can define the friend co-location index between user
ui and uj as:

FCoI(ui, uj) =
∑m

k=1 min{vi
k, vj

k}∑m
k=1 max{vi

k, vj
k} (3)

Here m is the total number of the cities. When the friends of two users have
the same distribution, the distribution vectors of them will be also the same and
the result of FCoI is 1. On the other hand, if the distributions are completely
different, e.g., all the friends of ui are located in city A1 and friends of uj are
located in A2, the result will be 0. For example, in Fig. 3, the friend co-location
index between u1 and u3 will be: (0.57 + 0.25 + 0)/(0.75 + 0.29 + 0.14) = 0.69.
The reason we choose the index as the sum of min over the sum over max is
to give more priority to a few cities where both users have a large number of

Closeness and Structure of Friends Help to Estimate User Locations 39

friends over many cities where both users have a small number of friends. From
the observation of the dataset, we can see that many users tend to have a small
number of friends in many cities but only friends located in the same city tend
to have a large number of friends in a few cities.

Fig. 4. Statistics on friend co-location index

Then we study whether the friend co-location index can reflect the geographic
distance between two users effectively. We carry out these investigations on the
Twitter and Gowalla users located in the North America to avoid the effect of
oceans. Firstly, we calculate the proportion of friend pairs under different values
of FCoI in Fig. 4(a). The distributions of the two datasets are significantly
different. More friend pairs in Gowalla have friend co-location index under 0.4,
but the peak of the distribution of Twitter dataset is between 0.4 and 0.6.
Another observation is that only a few friend pairs have the FCoI more than
0.8 on both Twitter and Gowalla, which tells us that people have friends far
away nowadays, and the social connections of each individual are quite different.

In Fig. 4(b), we show the relationship between the average geographic dis-
tance and different value of friend co-location index between friend pairs.
Obviously when friends have higher FCoI, they tend to be geographic close.
The results of Twitter and Gowalla data sets are very similar to each other.
Figure 4(c) shows the relationship between FCoI and the probability of the
friend pairs located in the same city. When friend pairs have friend co-location
index higher than 0.9, the probability of they located in the same city can be
higher than 85%. The probability increases with the increasing of the value of
FCoI. From the investigations above, we can see that FCoI can be a good index
to reflect the geographic relationship between friends.

Friend Co-location Model: Our first model will be based on the investiga-
tions above. We firstly calculate the probability P (FCoI(ui, uj)). It denotes
the probability of users ui and uj located at the same city when the value of
friend co-location index between them is FCoI(ui, uj). We can get the value of
P (FCoI(ui, uj)) based on the statistics shown in Fig. 4(c). So for a user ui in
U−, we can calculate the probability of ui located at a city Ak as:

40 Z. Liu and Y. Huang

P (ui, A
i
k) = 1 −

∏
uj∈Ai

k,(ui,uj)∈E

(1 − P (FCoI(ui, uj))) (4)

The city Ak with the maximum value of the probability will be chosen as the
estimated location of user ui.

3.3 Structure of an Individual’s Friends in a City

Friend co-location index can help to identify more important friends in location
estimation. However, when user pairs which contain at least one user who has
more than 50 friends, the value of friend co-location index will be in a small range
(0 to 0.2) and the influence of friend co-location index on location distribution is
not distinct. In this case, the effectiveness of friend co-location index in finding
important friends is weakened. We introduce the concept of the local social
coefficient to deal with this problem.

Local Social Coefficient. The new measurement, local social coefficient, is
similar to modularity used in community detection [6], but incorporates location
information. The local social coefficient of a user ui in city Ak is defined as:

LSoC(Ai
k) =

∑
up,uq∈Ak∧(ui,up)∈E∧(ui,uq)∈E

[apq − |Γp||Γq|
2|E|] (5)

Here |E| is the total number of edges in the social network G and apq = 1 if
(up, uq) ∈ E and otherwise apq = 0. Intuitively, local social coefficient measures
how tight the friends of ui in city Ak are compared with expected number of

friend connections from a random friendship formation as measured by
|Γp||Γq|

2|E| .

One can choose the city with the highest value of the local social coefficient as
the estimated location. The method may work well when a user has many friends
and his/her friends can form structures in one or more cities. However, when a
user has a small number of friends and his/her friends do not form structures in
any cities, this method does not work well. Fortunately, this method performs
better when the friend co-location based method fails (when a user has too
many friends). In this paper, we propose a method to leverage the advantages
of these two approaches and achieve overall much better performance than the
state-of-the-art.

Local Social Coefficient Model: There are nearly 28 percent of users in
Twitter and 8 percent of users in Gowalla who have only less than 10 percent of
friends located within 100 km with them, and many of them have more friends
in another city. The friend co-location based method can be very helpful when
the estimated users don’t have enough friends, but when the number of friends
becomes larger, the effect of friend co-location index will be weakened. The local
social coefficient becomes more helpful when users have more than 30 friends.
In our investigation on Twitter and Gowalla data sets, the probabilities of two

Closeness and Structure of Friends Help to Estimate User Locations 41

friends u1 and u2 located within 100 km are 0.2 (Twitter) and 0.27 (Gowalla).
However, if there exists another user u3 who can form a size-3 clique with u1 and
u2 in the social network, the probability of u1 u2 located together can increase
to 0.32 (Twitter) and 0.37 (Gowalla). Moreover, if u1 and u2 are located within
100 km, the probability of u3 located close to them is 0.69 (Twitter) and 0.58
(Gowalla). In this method, we will calculate the local social coefficient of the
groups of friends in each city as formula 5 and use the city which has the largest
value of LSoC as the estimation result.

4 Social Closeness and Social Structure-Based Model
(SoSS)

We have introduced a friend co-location based model, in which we want to find
more important friends in location estimation, and the local coefficient based
model, which has better results when a user have many friends. Scale-free net-
work theory [18] states that in a social network, a large portion of users has
a small number of friends and the locations of these users are difficult to esti-
mate by the location of their friends. So we propose a confidence-based iteration
method to overcome the problem of sparsity of location information. In the
Social Closeness and Social Structure-Based Model (SoSS), we combine these
two models (friend co-location based and local social coefficient based models)
together to overcome the disadvantages of them. After getting the two results
from the two models above, we combine these two models by following the logis-
tic regression based method in [9] as in formula 6. The parameters α, β1, β2, and
β3 can be trained by methods based on maximum likelihood. Since the number
of friends have a great impact on the location estimation models, |Γi| is chosen
as a feature.

g(ui, Ak) =
exp(α + β1LSoC(Ak) + β2P (ui, Ak) + β3|Γi|)

1 + exp(α + β1LSoC(Ak) + β2P (ui, Ak) + β3|Γi|) (6)

4.1 Iteration with Confidence-Based Improvement

In location estimation, one of the main problem is the sparseness of location infor-
mation. By the investigation of [2], only 6% users provide their home address in
their Facebook profiles. Our experiment shows that there are two main challenges
in the location estimation: (1) some users only have a few number of friends. For
these users, the accuracy can be very low since we cannot get enough location
information from their friends, and (2) most of the users do not provide their
location information in profiles. So we try to apply an iteration method to use
the estimated locations. In the iteration steps, the estimated location will be
taken as a friend’s real location. However, there is a problem that the incor-
rect estimation results may lead to the decreasing of accuracy. So we propose a
confidence-based iteration method.

Confidence-based method means that when we use the estimated location,
we will judge the result with a confidence value and only use the results with

42 Z. Liu and Y. Huang

high reliability of being correct in the iteration. Our investigation shows that the
most helpful information is the aggregation of location distribution of friends.
So we use an entropy-like method to measure the friends aggregate:

Cui
= −

∑ |Ai
k|

|Γi| log
|Ai

k|
|Γi| (7)

Here, |Ai
k| is the number of friends of user ui in city Ak. So each time after

we finish estimating of a user, we will calculate this entropy of him/her. In our
model, we only use 66% estimated locations on Twitter dataset and 74% on
Gowalla dataset with lower Cui

in the iteration process. We get this ratio by
analyzing the estimating accuracy on the training data and with this ratio, the
iteration method can achieve the best accuracy. Over filtering will decrease the
estimation accuracy since it may delete many useful correct estimating locations.

4.2 Complexity

Assume there are totally n users in the social network and each user has m
friends on average. In the friend co-location based model, for each user ui, we
need to calculate the value of FCoI(ui, uj) and 1 − P (FCoI(ui, uj)) for every
friend uj . So the cost of this step is O(m2) and the complexity of the model
is O(nm2). For the local social coefficient based model, we need to calculate
the local social coefficient of each user at each city where he/she has friends
located at. The worst case is that all the friends located at the same city and the
complexity is O(m2). In the second step, we only need to choose the city with
the highest value of the local social coefficient as the estimated result, so the
complexity of this model is O(nm2). To combine the two models together, we
need to repeat the calculation above at first and the complexity is O(nm2). The
cost of the combination step depends on the number of cities and the cost will
be less than or equal to O(m). So the complexity of the SoSS model is O(nm2).

5 Experiments

In this section, we evaluate our user location estimation models in comparison
with existing state-of-the-art methods on two data sets, i.e., the Gowalla and the
Twitter data sets introduced before. We first show the estimation accuracy of
the Friend Co-location Model and Local Social Coefficient Model with respect
to the number of friends which illustrates why we combine these two models
into our Social Closeness and Social Structure-Based Model. Then we test the
effect of different parameters including the percentage of users who provide their
locations, the number of friends, and the number of iterations, and the error
distance.

Evaluation Metrics. We first define the error distance of the estimation of user
ui as Err(ui), which represents the distance between the estimated location and
the actual location of the user ui. We consider the estimated locations with error
distance less than 100 km as correct estimations. So the estimation accuracy can
be represented as |ui|ui∈U∧Err(ui)≤100km|

|U | .

Closeness and Structure of Friends Help to Estimate User Locations 43

5.1 Methods

The models, we tested in the experiment, are shown as follows:

– Friend-based method (FB): We take the friend-based method (FB) pro-
vided in [2] as the baseline method. In [2], the authors estimated a user
location by his friend locations based on the relationship between distance
and the probability of being friends. They proposed their estimation model
as:

∏
(ui,uj)∈E P (|li − lj |)

∏
(ui,uj)/∈E(1 − P (|li − lj |)). Here P (|li − lj |) repre-

sents the probability of user ui and uj located with the distance of |li − lj |
and E is the set of friend relation. Then they optimize the formula as:∏

(ui,uj)∈E
P (|li−lj |)

1−P (|li−lj |) .
– Social relation based model (SR): This method is proposed in [11]. The

authors apply three important methods to select the nearest friend: (1)
the geometric median; (2) the minimum area formed by users and two of
his friends (Oja’s Simplex Median); and (3) there exists friend relationship
between three users which is referred as the Triangle Heuristic.

– Friend Co-location Based Model: Our method.
– Local Social Coefficient Based Model: Our method.
– Social Closeness and Social Structure Based Model (SoSS): Our

method.

We also test the FB, SR, and SoSS methods combined with our confidence-
based iteration model, which are noted as FBI , SRI , and SoSSI . The default
value for the percentage of location withheld is 25 % for all experiments when
not specified. At each time, the parameters used in our algorithms, like the
probabilities P (FCoI(ui, uj)) in the Friend Co-location Model, will be retrained
on the other 75 % users. All accuracies reported is based on 3-time average on
random sampling.

5.2 The Results of Experiment

Friend Co-location Model vs. Local Coefficient Model. Firstly, we will
show the performance of friend co-location model and local coefficient model
separately and explain why we combine them together. Figure 5(a) and 5(b) show
the estimation accuracy of these two models on Twitter and Gowalla networks.
From the figure, we can see that when users have less than 20 friends, the friend
co-location based model can be much more useful than the local social coefficient
model. It can help us to find out more important friends by the analysis of
the relevance of friends distribution. The local social coefficient model performs
worse because when a user has less than 20 friends, it is likely that there is
no friend relation between his/her friends. With the increasing of the number of
friends, the local social coefficient based model will perform better. The accuracy
can be more than 60 percent on Twitter and 80 on Gowalla, which indicates that
the analysis of the local tightness can be helpful. Since these two models perform
quite differently, we combine them together to make sure that our model can
work in different cases.

44 Z. Liu and Y. Huang

Effect of Percentages of Unknown Locations. We then test those models
under different settings of the two datasets. We randomly withhold 0 %, 25 %,
50 %, and 75 % users’ location information of the two datasets and compare the
performances of different models. Table 3 shows the results of each method.

From these results, we can see that our models can improve the estimation
accuracy by 5 to 20 percent compared with the baseline methods. The SoSS
model combined with the confidence-based iteration achieves the best perfor-
mance among them. This phenomenon demonstrates that the friend co-location

Table 3. Effect of percentage of unknown locations

% locations withheld, by platform FB FBI SR SRI SoSS SoSSI

Twitter 75% 35.7 43.5 35.9 43.7 40.9 48.6

Twitter 50% 41.8 46.5 43.1 48.0 47.3 52.5

Twitter 25% 48.0 48.5 48.3 50.2 54.6 55.2

Twitter 0% 48.3 – 51.8 – 55.6 –

Gowalla 75% 47.1 62.7 44.9 60.8 50.1 70.8

Gowalla 50% 64.7 69.3 61.5 69.0 68.7 77.5

Gowalla 25% 73.0 73.5 71.2 73.1 79.6 80.3

Gowalla 0% 74.2 – 72.9 – 80.6 –

Fig. 5. The difference between the friend co-location method and the local social coef-
ficient method and the influence of confidence-based iteration process.

Closeness and Structure of Friends Help to Estimate User Locations 45

and the local social coefficient can help us to detect the more important friend
or group of friends effectively in the estimation.

Another observation is that the confidence-based iteration process con-
tributes greatly in the estimation accuracy, especially in the cases when only
a small portion of users have their location information known in the dataset.
From the estimation results, the iteration process can improve the accuracy by
1 to 3 percent when we withhold 25 % users’ location information. This ratio
increases to 5 to 22 percent when 75 % of users’ location are unknown. When
more users’ location information are unknown (from 25 % to 75 %), the estima-
tion accuracy of those models without iteration process (FB, SR, and SoSS) will
decrease by more than 15 percent on both Twitter and Gowalla datasets. How-
ever, at the same time, the decreasing of accuracy of the models with iteration
process is just about 7 percent on Twitter dataset and 10 percentage on Gowalla
dataset. This phenomenon tells that the confidence-based iteration model can
help us to overcome the problem of sparsity of user location.

The models work better on Gowalla dataset. We can explain this phenomenon
by analyzing the difference of user behavior on Gowalla and Twitter. Users who
use Gowalla tend to add friends who live close to their locations (27 % within
100 km), and Twitter users will add many users which may live far away from
them and only 12 % friend pairs are located within 100 km.

Effect of Confidence-Based Iteration. In this experiment, we investigate
how the iteration process improves the estimation accuracy and explain why we
introduce the confidence-based method. Here we withhold 75 % user location
information and estimate their locations. Figure 5(c) and 5(d) show the estima-
tion accuracy of the iteration method without the confidence based selection.
When the iteration number is 0, it is the accuracy of the basic models. The iter-
ation process can improve the estimation accuracy by nearly 20 percent on the
Gowalla dataset and 10 percent on the Twitter dataset. However, as the iteration
process continues, the estimation accuracy begins to decrease. Prominently, the
accuracy will decrease by nearly 10 percent in the experiment on the Twitter
dataset after the sixth iteration. So we introduce the confidence-based iteration
method as shown in Fig. 5(e) and 5(f). The confidence-based method can prevent
the estimation accuracy from decreasing and keep it to stable and higher values
of accuracy. In most cases, this process can achieve the best accuracy in three
times iteration.

Effect of Number of Friends. Then we investigate the influence of the number
of friends. Figure 6 gives the summary of the estimation accuracy of groups
of users with different number of friends. The estimation accuracies of all the
models without the iteration step are very low when the users have few number
of friends. That is because: (1) if a user only has a few friends, none of his/her
friends may have their location information known. So we cannot perform the
estimation by their friends’ location. (2) It is difficult to decide which friend may
locate closer to the user if his/her friends do not cluster. The performances of
SoSS model are better than the FB and SR models on both the datasets. This

46 Z. Liu and Y. Huang

Fig. 6. Influence of number of friends.

is because our SoSS model distinguishes friends based on friend co-location and
local coefficient indexes. Choosing socially close friends for location estimation
improves the results.

On the other hand, the confidence-based iteration method can help to
improve the estimation accuracy by more than 20 percent for the users who
have few number of friends. With the iteration process, more users who don’t
have location information in the social network will be given an estimated loca-
tion, and those estimated location can be used in estimating others’ location to
help to overcome the first problem above. So after we combine those models with
the confidence based iteration model, many of the users who have a few friends
can also be estimated correctly. When the users have more than 30 friends, the
confidence based iteration model cannot help much on the accuracy.

Influence of Error Distance. We test the estimation accuracy on different
values of error distance and show the results in Fig. 7. The accuracy of each
method will be close to 1 when the error distance is more than 3,000 km. Our
method performs better when we set a smaller error distance. When the error
distance is larger than 200 km, the accuracy of different models will get close.

Fig. 7. The estimation accuracy under different error distances.

Closeness and Structure of Friends Help to Estimate User Locations 47

6 Conclusion

In this paper, we investigate the relationship between social closeness/friend
structure and geographic distance. Based on these investigations, we develop
two user location estimation models, the friend co-location based model and a
local social coefficient model. We further combine these two models to avoid the
disadvantages of each. To improve the estimation accuracy, we also propose a
confidence-based iteration method. Finally, we test these models on two different
datasets and demonstrate how the models work under different situations. The
results of the experiment show that our method can improve the estimation
accuracy by 5 %–20 % compared with the baseline algorithms.

Acknowledgments. This work is supported in part by USDOD. We would like to
thank the scientists from USDOD, Dr. James Kang and Dr. Joshua Trampier, for their
insights and detailed feedback on this work.

References

1. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content.
In: SIGIR, pp. 273–280. ACM (2004)

2. Backstrom, L., Sun, E., Marlow, C.: Find me if you can: improving geographical
prediction with social and spatial proximity. In: WWW, pp. 61–70. ACM (2010)

3. Chandra, S., Khan, L., Muhaya, F.B.: Estimating twitter user location using social
interactions-a content based approach. In: SocialCom, pp. 838–843. IEEE (2011)

4. Cheng, Z., Caverlee, J., Lee, K.: You are where you tweet: a content-based approach
to geo-locating twitter users. In: CIKM, pp. 759–768. ACM (2010)

5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: SIGKDD, pp. 1082–1090. ACM (2011)

6. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70(6), 066111 (2004)

7. Compton, R., Jurgens, D., Allen, D.: Geotagging one hundred million twitter
accounts with total variation minimization (2014). arXiv preprint arxiv:1404.7152

8. Davis Jr., C.A., Papa, G.L., de Oliveira, D.R.R., de L Arcanjo, F.: Inferring the
location of twitter messages based on user relationships. Trans. GIS 15(6), 735–751
(2011)

9. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision combination in multiple classifier sys-
tems. IEEE Trans. Pattern Anal. Mach. Intell. 16(1), 66–75 (1994)

10. Huberman, B.A., Romero, D.M., Fang, W.: Social networks that matter: Twitter
under the microscope (2008). CoRR, abs/0812.1045

11. Jurgens, D.: That’s what friends are for: inferring location in online social media
platforms based on social relationships. ICWSM 13, 273–282 (2013)

12. Kong, L., Liu, Z., Huang, Y.: Spot: locating social media users based on social
network context. In: Proceedings of the VLDB Endowment, vol. 7, (13), pp. 1681–
1684 (2014)

13. Li, R., Wang, S., Deng, H., Wang, R., Chang, K.C.-C.: Towards social user pro-
filing: unified and discriminative influence model for inferring home locations. In:
SIGKDD, pp. 1023–1031. ACM (2012)

http://arxiv.org/abs/1404.7152

48 Z. Liu and Y. Huang

14. Mahmud, J., Nichols, J., Drews, C.: Home location identification of twitter users
(2014). CoRR, abs/1403.2345

15. Sadilek, A., Kautz, H., Bigham, J.P.: Finding your friends and following them to
where you are. In: WSDM, pp. 723–732. ACM (2012)

16. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.:
Twitterstand: news in tweets. In: ACM SIGSPATIAL, pp. 42–51. ACM (2009)

17. SocialMediaToday (2013). http://socialmediatoday.com/irfan-ahmad/1854311/
twitter-statistics-ipo-infographic

18. Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond.
IEEE Circuits Syst. Mag. 3(1), 6–20 (2003)

19. Wang, X., Liu, H., Zhang, P., Li, B.: Identifying information spreaders in twitter
follower networks. Technical report TR-12-001, School of Computing, Informatics,
and Decision Systems Engineering, Arizona State University (2012)

http://socialmediatoday.com/irfan-ahmad/1854311/twitter-statistics-ipo-infographic
http://socialmediatoday.com/irfan-ahmad/1854311/twitter-statistics-ipo-infographic

Efficient Influence Maximization in Weighted
Independent Cascade Model

Yaxuan Wang(B), Hongzhi Wang, Jianzhong Li, and Hong Gao

Harbin Institute of Technology, Harbin, China
{wangyaxuan,wangzh,lijzh,honggao}@hit.edu.cn

Abstract. Influence maximization (IM) problem which aims to find the
most influential seed set in a social network plays an important role in
viral marketing. However, previous solutions pay all attention to the
structure of network, which causes trouble in real-word applications.

D. Kempe et al. [8] presented that a non-negative weight can be
attached to each node to extend the applicability of traditional mod-
els. Although this idea is much applicable in practice, there is little
research based on this opinion. Thus, we develop substantial study about
this issue. We extend the Independent Cascade (IC) model and present
Weighted IC (WIC) model. The IM problem in WIC model is NP-hard.
To solve this problem, we present a basic greedy algorithm and Weight
Reset (WR) algorithm. Moreover, we propose Bounded WR (BWR) algo-
rithm, a Fully Polynomial-Time Approximation Scheme (FPTAS).

Experimentally, WIC model outperforms IC model in nearly 90 %
in weighted IM problem. Moreover, BWR achieves excellent approxima-
tion and efficiency which is faster than greedy algorithm more than four
orders of magnitude. Especially, BWR can handle huge networks with
millions of nodes in several tens of seconds while keeping high accuracy.
This result demonstrates the effectiveness and efficiency of BWR.

1 Introduction

Viral marketing requires to select the initial crowd to make most people, who are
interested in a specific topic, receive the product information and generate the
largest value [12]. Such requirement involves Influence Maximization (IM), one
of the most popular research topics in social network. The general IM problem
is to find k initial seeds in a network to achieve the greatest propagation.

Even though existing solutions could solve this problem in many scenarios,
they pay all attention to the connectivity of nodes and ignore other attributes of
nodes. This defect may cause distress in many practical applications. Consider
a usual scenario, an automobile manufacturing company wants to promote the
sale for its luxury cars by providing test drive chances to a small crowd. Our
target is maximizing the value of the propagation process (such as selling most
cars) instead of influencing the largest population. Thus, WIC model is more
preferable than IC model in such case. But little research on WIC model has
been developed. It is an arduous task to revise existing solutions to cater on the
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 49–64, 2016.
DOI: 10.1007/978-3-319-32049-6 4

50 Y. Wang et al.

extra node attributes since they neglect the properties of node itself. Motivated
by this idea, we attempt to present exclusive solutions to solve the IM problem
on WIC model by taking the node attributes into consideration.

The IM problem on WIC model is not trivial. It is an NP-hard problem. In
addition to connectivity estimating, designing a criterion which considers both
the networking structure and independent attributes of nodes is the main target
of this paper. By designing an elaborate mechanism, our solution can select the
most valuable nodes according to both independent attribute and connectivity.

1.1 Our Contribution

In this paper, we first start substantial research about the IM problem on WIC
model. We prove that the IM problem in this model is NP-hard. Then, we present
a basic greedy algorithm to solve the IM problem in our WIC model.

Considering that basic greedy algorithm may have intrinsic trouble to be
scalable in large graphs, we present WR algorithm to tackle the efficiency issue.
Our WR algorithm can return a (1 − 1/e)-approximation and its expected run-
ning time is O(knin · n). Moreover, we propose BWR algorithm, an FPTAS, to
make further effort to improve the efficiency. The experimental results show that
our BWR algorithm is effective and scalable in both IC and WIC model. More
importantly, our algorithm achieves both efficiency and effectiveness. It is scal-
able to handle large networks with millions of nodes in several tens of seconds
while its performance is close to the best outcomes in polynomial time.

In summary, our main contributions in this paper are as follows.

1. We first apply the idea of node weight and present WIC model to provide a
more applicable solution for IM problem, which could maximize the value of
influence instead of the amount of the influenced nodes.

2. We propose a basic greedy algorithm which can achieve a (1−1/e−ε) approx-
imation in polynomial time. For efficiency issues, we design WR algorithm
with a similar approximation ratio whereas the time complexity is narrowed
from O(knRm) to O(knin · n). To accelerate the algorithm further, we add a
branching strategy and present BWR algorithm.

3. We conduct extensive experiments on different real-world social networks to
prove that our WIC model outperforms IC model in terms of IM problem in
practice. Experimental results also show that BWR algorithm is better than
other existing algorithms. Its running time outperforms greedy about four
orders of magnitude with little sacrifice, which illustrates the high efficiency
of our BWR algorithm in gigantic networks.

1.2 Related Work

IM problem has been extensively studied. In [4], Domingos et al. defined the
basic problem and presented a fundamental algorithm for digging a network
from the data. Kempe et al.[8] believed that the issue of choosing influential

Efficient Influence Maximization 51

sets was a discrete optimization problem. He proved that this problem is NP-
hard and designed three kinds of cascade models: IC model, WC model and LT
model. He proposed a greedy algorithm framework which can guarantee a 63%
accuracy bound in three models. More models which are integrated with other
factors such as time [11,17] or location [7] are explored.

Moreover, Leskovec et al. [10] optimized basic greedy algorithm by avoid-
ing evaluating the expected spreads. This approach was enhanced in [5] with
50% additional improvements in efficiency. Recently, TIM algorithm whose node
selection phase is similar to RIS [5], was presented [16]. Chen et al. [2] proposed
PMIA and Wang et al. [18] identified influential nodes from different small com-
munities individually. However, the lack of considering extra attributes of nodes
makes them ineffective under some practical circumstances.

Paper Organization. Section 2 introduces WIC model, its hardness and a basic
greedy algorithm. Section 3 proposes our WR algorithm as well as its extended
version, BWR algorithm. In Sect. 4, we show our experimental results. We draw
conclusions and discuss future directions for our topic in Sect. 5.

2 WIC Model and Its Greedy Algorithm

In this section, we formally define our WIC model and present a basic greedy
algorithm with the best performance accuracy in WIC model.

2.1 Problem Definition

Definition 1. (WIC model) Given a directed graph G = (V,E), let each edge
e ∈ E have a propagation probability pu,v ∈ [0, 1]. For each node v ∈ V , there is
a non-negative weight wv which is independent of the network structure.

For node u, the predecessors of u are the nodes which can arrive u in finite
steps and the nodes which u can arrive are the successors of u. Any social network
can be modeled as WIC model. For each node v, wv shows its uniform weight.
In WIC model, the steps of a time-stamped influence process are as follows.

1. At timestamp 0, all nodes in G = (V,E) are inactive.
2. At timestamp 1, we activate a set of nodes called Seed Set S1 while other

nodes are still inactive.
3. At timestamp i (i > 1), we assume the nodes in Si−1 are activated in step

i − 1. For each node u in Si−1 and edge eu,v ∈ E with v as an inactive node,
v is activated with probability puv. If v is activated in this step, v is added
to Si. For any j < i, Si ∩ Sj = ∅.

4. The process halts when in some step t, St = ∅.

WIC model provides an attribute-based node selection mechanism to maximize
the profit of the influence. The profit is defined as the values of all nodes which
are activated by seed set S, denoted by VS . Given a seed set S1, σ(S1) denotes
the expectation of influence value generated by S1. That is,

52 Y. Wang et al.

Algorithm 1. BasicGreedy(G, k)
1: Initialize a set S = φ
2: for i = 1 to k do
3: for each node v ∈ V \S do
4: sumv = 0
5: for j = 1 to R do
6: sumv + = |RanCas(S ∪ v)|
7: sumv = sumv /R
8: S = {S ∪ arg maxv∈V \S{ sv}}
9: return S

σ(S) =
∑
u∈S

(
∑
v∈V

wv · pr(u, v) + wu) (1)

pr(u, v) is the comprehensive probability of reachability from u to v including all
reachable paths. Obviously, the target of weighted IM(WIM) is to select the seed
set S1 to maximize σ(S1). Therefore, the WIM problem is defined as follows:

Problem 1. Given a non-negative integer k and graph G = (V,E), the WIM
problem is to find a node set S∗ = arg maxS⊆V {σ(S) | |S| = k} where S∗ ⊆ V .

Theorem 1. The weighted influence maximization problem (WIM) is NP-hard.

The WIM problem is more general than IM problem [8]. According to [3], the
WIM can be also reduced from a classic NP-hard problem, Set Cover problem [6].
For the interest of space, we omit the detail of the proof. If we set the value of
every node equally, the WIC model can be simplified into IC model. Therefore,
WIM is a generalization of IM and solutions of WIC can be adopted in IC model.

2.2 The Basic Greedy Algorithm

In this section, we propose the greedy algorithm and its accuracy guarantees.
The strategy of our greedy algorithm is to choose the node which can make

maximal marginal gain for σ. Algorithm 1 shows the general basic algorithm
based on hill-climbing strategy. In each round, the algorithm computes the addi-
tional influence spread of each node v if node v /∈ S is activated. The function
RanCas(S ∪ {v}) is a random process and repeated R times (Line 6) to simu-
late the process of real propagation. Then the node with max marginal gain is
added to the selected set S (Line 8). Thus the time complexity of Algorithm 1
is O(knRm), where n and m are the total number of the nodes and edges. The
following lemma explores the property of the value function σ(.).

Lemma 1. The value function σ(S) is submodular and monotone.

Proof. For all v ∈ V and all subsets of V where S ⊆ T ⊆ V , we define the
successors of a node v (v /∈ T) as R(v). The probability of reachability from

Efficient Influence Maximization 53

set S and T to v1 is pS,v1 and pT,v1 . Then, according to (1), we can obtain
σ(S ∪ v) − σ(S) =

∑
v1∈R(v) wvi

· pvv1(1 − pS,v1).
Similarly, for T , the relation is σ(T ∪v)−σ(T)=

∑
v1∈R(v) wvi

·pvv1(1−pT,v1).
The only difference between these two equations is pS,v1 and pT,v1 . Since

S ⊆ T , pS,v1 ≤ pT,v1 , σ(S∪v)−σ(S) ≥ σ(T ∪v)−σ(T) holds. Thus, non-negative
real valued function σ is submodular. Moreover, since σ(S) is the expectation of
influence value generated by S, σ(∅) = 0 and the marginal increase of σ always
> 0. If S ⊆ T , σ(S) ≤ σ(T). Therefore, the value function σ(S) is monotone. 	

Since σ is a submodular and monotone function, maximizing σ(S) can be
approximated by maximizing the marginal gain [6]. In Algorithm 1, R is large
enough to eliminate deviations from random processes.

Theorem 2. Algorithm 1 yields (1 − 1/e − ε)-approximate solutions where e is
the base number of the natural logarithm and ε is any real number which ε ≥ 0.

Proof. According to Lemma 1, the objective function σ(.) is submodular and
monotone. Let S be the outcome of Algorithm 1 and S∗ be an optimal set that
maximizes the value of σ(.). According to [13], σ(S) ≥ (1−1/e)·σ(S∗). Therefore,
Algorithm 1 achieves a (1 − 1/e − ε)-approximation. 	

3 Weight Reset Algorithm

The time complexity of Greedy prevents it from scaling to large graph, we design
a novel algorithm to reduce time expenditure. In this section, we present WR
algorithm to estimate the influence spread by resetting the weights of nodes. For
ease of understanding, Table 1 summarizes the notations used.

At a high level, WR contains following two phases.

1. Pre-treatment. This phase computes pr(u, v) for each pair of reachable
nodes and organizes proper data structures to facilitate node selection.

2. Node Selection. This phase selects k nodes with the largest marginal value
of σ(.) iteratively. Once a node is selected, its weight is reset and the value
of relevant nodes are updated.

3.1 Pre-treatment

Given a WIC model, the reachability from node u to v is pr(u, v) = 1−∏ruv

i=1(1−
pi(u, v)). Intuitively, pr(u, v) is the probability that u activates v through all
possible paths from u to v. Since each node has weight as an additional attribute,
we need to develop a particular mechanism to estimate Vu. Moreover, we should
estimate the influence of u on its predecessors and successors if u is selected.

For a node u, the estimations of both Vu and Wu require to access all suc-
cessors and predecessors of u, respectively. Firstly, to estimate Vu, we organize
all successors of u into a tree. By Breadth-First-Search(BFS) with u as the root,

54 Y. Wang et al.

Table 1. Frequently used notations.

Notation Description

puv The probability of edge eu,v

pr(u, v) The probability that u and v are reachable

pi(u, v) The ith path from u to v

ruv The sum of the paths from u to v

wu The weight of node u

IV T (u) The influence value tree of u

WDT (u) The weight discount tree of u

Vu The value of node u

Wu The total value created by u if u’s neighbors activate u

Ou The set of successors of u

Iu The set of predecessors of u

θ Bound parameter of BWR algorithm

α Steps which influence can propagate

β Performance bound of BWR

if there is an edge eu,v, v is added into this tree as one child of u. If a node is
visited multiple times during the traversal due to multiple paths between a pair
of nodes, we only update pr(u, v) rather than add another edge to prevent rings
in this tree. According to discussion above, we define such tree as follows.

Definition 2. Influence Value Tree(IVT) For a node u ∈ V , the IV T (u), is a
weighted tree (Ou, Eu, w), where Ou is the set of all successors of u, Eu is the
set of all edges from u to v if v ∈ Ou, and w is the weight set of all v. The
expected value of a node Vu, is E[Vu] =

∑|Ou|
i=1 pr(u, vi) · wvi

.

Correspondingly, We organize u’s predecessors WDT (u). To build WDT for
each node, we add the node v where pr(v, u) > 0 with u as the root and ignoring
rings. However, different from IVT, if there is an edge ev,u, v is added into the
WDT as a child of u. Thus, in WDT (u), a child node points to its father node
to represent the direction of ev,u.

Definition 3. Weight Discount Tree(WDT) For a node u ∈ V , WDT (u) is a
weighted tree (Iu, Eu, w), where Iu is the set of all predecessors of u, Eu is
the set of all edges from v to u if v ∈ Iu, and w is the weight set of all v. The
expected Wu is E[Wu] =

∑|Iu|
i=1 pr(vi, u) · wu.

The pseudo code of computing pr(v, u) is shown in Algorithm 2, which is a
recursive algorithm. u is the initial node and v is the neighbor of u. PathList is
a list of nodes between u and v. If v is not in current IV T (u), v is added into
IV T (u) (Line 3). For each new path from u to v, we update pr(u, v) (Line 6). We
do not have to keep IVT and WDT for each node since they can be built rapidly

Efficient Influence Maximization 55

Algorithm 2. genPr(u, v, pathList)
1: if v ∈ pathList then
2: return
3: add v into pathList
4: if v /∈ IV T (u) then
5: add v into IV T (u)

6: pr(u, v) = 1 − (1 − pr(u, v))(1 − pr(u, v
′
) · pv

′
v)

7: /* where v
′

is the previous node of v on pathList*/
8: for each out-neighbor w of v do
9: genPr(u, w, pathList)

Algorithm 3. NodeSelection(G, k)
1: Initialize S = φ
2: for i = 1 to k do
3: select u = arg maxv∈V \S Vv; add u into S; wu = 0;
4: /* update the value of others nodes*/
5: for each node v ∈ WDT (u) do
6: recompute the Vv

7: for v
′ ∈ IV T (u) do

8: wv
′ = (1 − pr(u, v

′
)) · wv

′

9: update value V for each node
10: return S

according to pr(u, v). So we just build IVT and WDT on demand to save space.
In our implementations, we keep pr(u, v) as key-value pair where pr(u, v) > 0.
Given that most nodes are not reachable, more space is saved.

3.2 Node Selection

Node selection process chooses the node to make maximal marginal increase
of σ(·). Algorithm 3 presents WR’s node selection algorithm which contains k
iterations (Line 2–10). In each iteration, the algorithm selects a node u with the
largest IVT value. After k round iterations, S is returned as the final result. The
IVT value updating is the core of this algorithm.

Updating WDT and IVT. Once u is added into S, we should estimate the
expected influence generated by u on WDT(u) and IVT(u).

To update WDT(u), once a node u is selected, wu is reset into 0 (Line 3). Then
we calculate all Vv if v ∈ WDT (u) again (Line 5–6). This solution can perfectly
reduce all the value increment on Vv caused by u where v is a predecessor of u.

Approximation Ratio Bound. The WIM problem can be reduced into Set
Cover problem (Theorem 1). Moreover, WR algorithm is based on hill-climbing
strategy. Thus, we can conclude the approximation ratio bound of WR algorithm.

Theorem 3. WR achieves (1 − 1/e)-approximate ratio for WIM problem.

56 Y. Wang et al.

For the interests of space, we omit the proof, which is similar to Theorem 2.

Time and Space Complexity. Assuming that nin = maxu∈V {|WDT (u)|},
building IVT and WDT can be viewed as BFS from each node. So, average
running time of building IVT and WDT for a node(Algorithm 2) is far less
than O(knin · n). We keep pr(u, v) for all pairs of reachable nodes since the
computation of IVT and WDT need pr(u, v) all the time. It costs O(n) to keep
Vu of each node u. Thus, the space complexity in pre-treatment is O(n2).

In each round of node selection, it costs O(n) to select a node with maximal
value in Vu and O(2nin) to update IVT and WDT, and O(n2

in) to update Vv

whose IV T (v) has changed. Thus, the running time of Node Selection is O(k(n+
2nin+n2

in)). This phase requires no extra space since it just updates the outdated
node value. Therefore, the total time complexity of WR algorithm is O(knin ·n).

nin is related to structure of networks. If a network is dense, the IVTs and
WDTs could be very large which means WR will be inefficient. To handle high-
density networks within tiny loss in accuracy, we present bounded WR algorithm.

3.3 Bounded Weighted Reset Algorithm

In this subsection, we improve the practical performance of WR algorithm.
According to Sect. 3.2, Pre-treatment process is costly. Since n is fixed, we
reduce nin to increase the efficiency. Moreover, after several steps in each itera-
tion in Algorithm 2, pr(u, v) may get too small to influence the node selection
order. Based on this observation, we use a threshold θ to bound the volume of
IVT and WDT to achieve a high performance even in dense networks.

Definition 4. (Bounded IVT and WDT) For a node u ∈ V , the bounded IVT
of u is BIV T (u, θ) = {v|v ∈ V, pr(u, v) > θ} and BWDT (u, θ) = {v|v ∈
V, pr(v, u) > θ}.

The pre-treatment of BWR is shown in Algorithm 4. After computing pr(u, v),
we anticipate the pr(u,w) for the next node (Line 8–10). If pr(u,w) < θ, we
assume that u and w are not reachable and stop the iteration. This is because
pr(v, w) gets too small to influence the node selection order. Furthermore, the esti-
mation of these tiny differences is extremely costly since the number of reachable
neighbors grows exponentially. In each iteration, we pre-compute the pr(u,w) of
the next iteration (Line 9) to decide whether we start the next iteration, which
can further save more unnecessary calculations. With θ, we can bound IVT and
WDT in a small size since the nodes with low pr(u, v) in original IVT and WDT
are cut out. By keeping nin small, we save much running time.

BWR is shown as Algorithm 5. In initialization step, we set each node as the
initial node u (see Algorithm 4) to obtain all pr(u, v) where pr(u, v) > θ (Line
3–4). Then, node selection process (Line 6–15) starts. In each round, Algorithm 5
selects a node u with maximal Vu. For each node v in BWDT (u), the expectation
value of activating u is eliminated (Line 9–10). For each node v

′
in BIV T (u),

their weights are reset (Line 11–12). Furthermore, it resets the value of u to 0
(Line 13). The values of nodes in BIV T (u) are recomputed (Line 14–15).

Efficient Influence Maximization 57

Algorithm 4. genPr(u, v, pathList, θ)
1: if v ∈ pathList then
2: return
3: add v into pathList
4: if v /∈ IV T (u) then
5: add v into IV T (u)

6: pr(u, v) = 1 − (1 − pr(u, v))(1 − pr(u, v
′
) · pv

′
v)

7: for each neighbor w of v do
8: if pr(u, v) · pv,w > θ then
9: genPr(u, w, pathList, θ)

10: else
11: return

Algorithm 5. BWR(G, k, θ)
1: /*Initialization*/
2: set S = φ; set each pr(u, v) = 0;
3: for each node v ∈ V do
4: genPr(v, new pathList, v, θ)
5: /*main loop*/
6: for i = 1 to k do
7: select u = arg maxv∈V \S Vv; add u into S;
8: /* update the value of others nodes*/
9: for each node v ∈ BWDT (u) do

10: Vv = Vv − (wu · pr(v, u)); /* remove the expectation value of u*/

11: for v
′ ∈ BIV T (u) do

12: wv
′ = (1 − pr(u, v

′
)) · wv

′

13: wu = 0
14: for each node v

′
where BIV T (v

′
) has changed do

15: Vv
′ =
∑O

v
′

i=1 pr(v
′
, vi) · wvi ; /*update value V for each node*/

16: return S

Considering the WIC model, Vv is a random quantity. pe is the probability of
edge e, di is the out-degree of node vi and wi is the weight of node vi. In order
to simplify this expression, we set vij

as the j hops neighbor of vi; pij
as the

possibility of edge evij−1 ,vij
; dij

as the out-degree of vij
and wij

as the weight
of vij

. Assuming the probability pe, di and wi are independent to each other,
we can estimate the expectation of Vv as E[Vv] =

∑dv

i1=1 E[pvi1
]E[wi1] + · · · +∑diα−1

iα=1 E[pi1] · E[pi2] · · · E[piα
] · E[wiα

].
Supposing nodes are independent, by treating pi, di and wi as random vari-

ables, all nodes share same E[pi], E[di] and E[wi], which are denoted by p, d
and w, respectively. Thus, the expectation of Vv is E[Vv] = (p · d + p2 · d2 +
· · · + pα · dα) · w. Since we bound the value Vv by θ, there exists α

′
such that

E[α
′
] = E[logpi

θ] = logpθ. Similarly, the expectation of bounded value V
′
v is

E[V
′
v] = (p · d + p2 · d2 + · · · + plogpθ · dlogpθ) · w.

58 Y. Wang et al.

Lemma 2. The excepted solution of WR, y∗, and the excepted solution of BWR,

z∗, satisfy
y∗

z∗ ≤ 1 − (pd)α

1 − (pd)α′ .

Proof. According to the analysis above, z∗ is E[
∑

v∈S∗ Vv] and y∗ is E[
∑

v∈S Vv]
with S denoting the result set of WR and S∗ denoting the result set of BWR.
We have E[

∑
v∈S Vv] ≥ E[

∑
v∈S∗ V

′
v] ≥ E[

∑
v∈S V

′
v]. Comparing z∗ and y∗, we

can get:

y∗

z∗ =
E[

∑
v∈S Vv]

E[
∑

v∈S∗ Vv]
≤ E[

∑
v∈S Vv]

E[
∑

v∈S V ′
v]

=
∑

v∈S E[Vv]∑
v∈S E[V ′

v]
≤ Vv

V ′
v

=
1 − (pd)α

1 − (pd)α′ (2)

	

Theorem 4. BWR algorithm is a fully polynomial-time approximation scheme
for the influence maximization problem in WIC model.

Proof. We set the parameter θ of BWR as follows,

θ ≤ (1 − 1 − (pd)α

(1 − 1/e)(1 + ε)
)

1
1 + 1

logd p , (3)

where e is the base number of the natural logarithm. Thus, θ is only relevant to
ε since other symbols in (3) are constants. Then by transforming (3), we can get
x∗

z∗ ≤ 1

(1−
1
e
)

· 1 − (pd)α

1−(pd)α

(1−1/e)(1+ε)

= 1 + ε.

Now, we complete the analysis of the approximation ratio. In WR algorithm,
the time complexity is O(knin · n). In BWR algorithm, the size of BIVT and
BWDT is limited by θ. We can estimate n

′
in as O(dα

′
). Thus, the time complexity

is O(kdα
′ · n). According to (3), we get: α

′
= (1 + 1

logd p) · logp (1 − 1−(pd)α

1+ε). To

simplify this expression, we denote A = 1 − 1
e
,B = 1 − (pd)α, C = 1

1+ 1
logd p

.

Thus, the expression of dα′
is:

dα
′
= (dlogp 1− B

A(1+ε))1+
1

logd p = (1 − B

A(1 + ε)
)

1
C·logd p (4)

This bound is polynomial in the input, which is in turn polynomial in d, p, α

and in 1/ε. Since the running time of BWR is polynomial in n, k and dα
′
, BWR

is a fully polynomial-time approximation scheme. 	

Since dα
′
is much smaller than O(|V |+|E|), the space complexity is decreased

as well. Considering that many pairs of nodes with low pr(u, v) are ignored, the
space complexity is O(n + n · dα

′
). Therefore, we provide a free space for users

to make a trade-off between cost and accuracy.

Efficient Influence Maximization 59

4 Experiments

4.1 Experimental Settings

The experiments are performed on a PC with an Intel Core i5-3470 CPU and
8 GB memory, running 64 bit Ubuntu 12.04. The TIM+ algorithm is imple-
mented in C++ while others are implemented in JAVA 8.

Datasets. We use three real-world networks [9] from various areas shown as
Table 2. The Gnutella is a sequence of snapshots of the Gnutella peer-to-peer
file sharing network from August 2002. The second is the Amazon product co-
purchasing network. The last is a road network of California. By evaluating the
experiment results, we attempt to show the broad application areas of BWR.

Table 2. Dataset characteristics.

Dataset Gnutella Amazon RoadNet-CA

#Nodes 6K 262 K 2.0 M

#Edges 21K 1.2 M 2.8 M

Average degree 6.6 9.4 2.8

Largest component size 6299 262 K 2.0 M

Diameter 9 32 849

Propagation Models. We use TRIVALENCY model in [2]. That is, on each
edge eu,v, we select a probability from the set {0.001, 0.01, 0.1} randomly to
represent weak, medium and strong connection. We generate a random integer
weight w where w ∈ [1, 10] for each node to represent the weight of each node.

Algorithms. We compare our BWR algorithm with basic greedy algorithm
(Sect. 2.2) and other related algorithms. For these comparisons, we have two
main targets. One is to compare the applicability of IC and WIC model. The
other is to test the performance of BWR in WIC model. The setup and imple-
mentation details of these algorithms are as follows.

– BWR(θ): We implement BWR algorithm on both IC and WIC model.
– TIM+: It is a near-optimal time complexity algorithm [16] which can achieve

almost best performance in IC model. Due to the limitation of the memory
of our computer, we set ε = 0.1 in first graph whereas as small as possible to
ensure its accuracy in larger graphs.

– Greedy Algorithm [8] for IC model: The influence simulations are
repeated 20, 000 times to obtain an optimal seed set S.

– Greedy Algorithm for WIC model: We implement Algorithm 1 in
Sect. 2.2 and the simulation times R is also 20, 000.

60 Y. Wang et al.

– PageRank for IC model: We implement PageRank [1] as a baseline. Along
edge eu,v, the transition probability is p(u, v)/

∑Ou

i=1 p(u, vi). The damping
factor d is 0.85. By power iteration1, it stops when the iterations are more
than 10, 000 times or the outcome between two iterations is less than 0.001.

– PageRank for WIC model: Nodes with high weights own more votes.
Thus, the node which can activate valuable nodes will obtain more votes.

– Random: As a baseline, we randomly select k nodes.

4.2 Comparison Between IC and WIC

We compare the performance of IC and WIC model by comparing the expecta-
tion of influence spread. The seed set size k is 50. We only implement Greedy in
first graph since other graphs are too large for Greedy algorithm.

The experimental results are shown in Table 3. All algorithms can produce
better solutions in WIC except TIM+ and Random. More precisely, Greedy
in WIC performs 89.87% better than in IC. BWR in WIC also performs
23.8%, 53.75% and 60.68% better than IC. Considering the significant differ-
ence between two models, WIC model is more effective than IC model in WIM
problem.

Table 3. Influence spread of two models.

Graph and model Greedy BWR TIM+ PageRank Random

Gnutella IC 420.11 508.47 502.55 371.73 291.84

WIC 797.67 629.49 502.55 375.08 291.84

Amazon IC N/A 400.95 402.06 272.15 338.61

WIC N/A 616.45 402.06 282.40 338.61

RoadNet IC N/A 369.88 348.90 310.45 289.60

WIC N/A 594.31 348.90 315.50 289.60

Fig. 1. Influence spread results on WIC model

1 In mathematics, the power iteration is an eigenvalue algorithm: given a matrix A,
the algorithm will produce a number λ(the eigenvalue) and a nonzero vector v(the
eigenvector), such that Av = λv. This algorithm is also known as the Von Mises
iteration [15].

Efficient Influence Maximization 61

4.3 Comparison of Algorithms

We run these algorithms on both IC and WIC model. The range of seed set size
k are 1, 2, 5, 10, 20, 30, 40, 50 and θ = 1/104.

Figure 1 shows the experimental results in WIC model while Fig. 2 shows the
results in IC model. In Fig. 2, we add the number of influenced nodes of BWR
in WIC model to compare the outcomes of BWR between two models. Figure 3
shows the running time of three graphs for k = 50.

Gnutella. In Fig. 1(a), Greedy achieves the best result. BWR outperforms other
algorithms except Greedy. BWR is 37.8% and 40.4% better than TIM+ and
PageRank. In Fig. 2(a), Greedy, BWR and TIM+ produce same results in IC
model. Although nodes activated by BWR on WIC model are less than TIM+,
BWR produces more influence spread value. Such result indicates that previous
algorithms are not suitable for WIC model whereas BWR solve the WIC problem
effectively in both models. The efficiency results are similar in both models.
Greedy is the slowest, taking more than 8, 000 s while BWR is faster than Greedy
four orders of magnitude. PageRank and Random are faster than BWR whereas
their accuracy are not comparable with other three algorithms.

Amazon. In WIC model, BWR has a great winning margin over other algo-
rithms: it outperforms TIM+ 53.2% and any other algorithms. In IC model,
BWR also performs well. BWR is only 5.7% less than TIM+ but better than
PageRank and Random. For running time, even though BWR loses 5.7% accu-
racy, it is 6 times faster than TIM+. The results of PageRank and Random are

Fig. 2. Influence spread results on general IC model

Fig. 3. Running time of different algorithms

62 Y. Wang et al.

Fig. 4. Relation between θ and maximal influence and running time

similar. This is because there is a giant component2 and influential nodes gather
together [14]. So, it is probably to activate numerous nodes by random selection.

Road-CA. According to Figs. 1(c) and 2(c), BWR produces undoubtedly the
best results (at least 70.7% stronger than others) contrasts with any other algo-
rithms in WIC. In IC model, TIM+ is slightly better than BWR whereas its
running time is 30 times more than BWR. BWR is much better than PageRank
and Random in terms of the accuracy.

4.4 The Impact of θ

To investigate the impact of threshold θ, we explore the relationship between
running time and influence spread in Gnutella graph with all puv = 0.1 and all
Vu = 1. In Fig. 4(a), when θ gets less than 1/104, the influence spread grows
slowly. This tendency of accuracy coincides with Lemma 2. According to (2),
when p · d < 1, the denominator of (2) grows slower and slower. Thus, the
additional performance bound decreases tardily with the growth of α

′
, which

is linear with (logp 1/θ). Moreover, with the decrease of θ, the running time
increases almost linearly with lg 1/θ. With the decrease of θ, the sizes of BIVT
and BWDT grow quadratically. However, since different graphs have different
densities, the running time is not always linear with (lg 1/θ).

In Fig. 4(b), there is an inflection on the result curve of BWR. As the influence
spread increases, the running time grows immediately where θ = 1/105. On
the inflection, we can obtain a proper trade-off of accuracy and efficiency. When
θ = 1/104 or 1/105, the performance is very well whereas the running time is
extremely smaller than Greedy algorithm. With the increase of θ, the influence
spread hardly changes whereas the running time grows quadratically. Hence for
this graph, θ = 1/104 is ideal. We observe similar situations in other datasets.

Furthermore, we give a bottom line of the accuracy with particular θ. Accord-
ing to (2), we can estimate y∗/x∗ ≥ 0.7125. According to experiment settings,
θ = 1/104 and all pr(u, v) = 0.1 and α

′
= 3. The approximation ratio of BWR is

87.88% ·(1−1/e). It is better than the ratio bound calculated by (2) significantly,

2 In network theory, a giant component is a connected component, of a large scale
connected graph, which contains most of the nodes in the network.

Efficient Influence Maximization 63

since we assume the numerator of (2) equals 1. That means all nodes are reachable
which is impossible in fact.

5 Conclusion

In this paper, we present WIC model which is more practical in various applica-
tion scenarios. Then we present a basic greedy algorithm which is 89.87% more
accurate than previous greedy algorithm in IC model. To improve the efficiency,
we design BWR algorithm to make a free trade-off between accuracy and effi-
ciency. Extensive experimental results show that BWR can handle a million-node
graph on a usual PC within tens of seconds. Such brilliant performance make
BWR to be an excellent solution for practical applications.

A potential research direction based on this paper is integrating IM and social
relationships. Data mining of social relations from real online social network is
a valuable aspect. Combining influence maximization and social influence rela-
tionship together could achieve better prevalent viral marketing effectiveness and
mine latent and invisible information.

Acknowledgement. This paper was supported by NGFR 973 grant 2012CB316200,
NSFC grant U1509216,61472099,61133002 and National Sci-Tech Support Plan
2015BAH10F01.

References

1. Brin, S., Page, L.: Reprint of: the anatomy of a large-scale hypertextual web search
engine. Comput. Netw. 56(18), 3825–3833 (2012)

2. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks. In: KDD, pp. 1029–1038. ACM (2010)

3. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: ACM SIGKDD, pp. 199–208. ACM (2009)

4. Domingos, P., Richardson, M.: Mining the network value of customers. In: KDD,
pp. 57–66. ACM (2001)

5. Goyal, A., Lu, W., Lakshmanan, L.V.: Celf++: optimizing the greedy algorithm
for influence maximization in social networks. In: WWW, pp. 47–48. ACM (2011)

6. Hochba, D.S.: Approximation algorithms for NP-hard problems. ACM SIGACT
News 28(2), 40–52 (1997)

7. Cai, J.L.Z., Yan, M., Li, Y.: Using crowdsourced data in location-based social net-
works to explore influence maximization. In: The 35th Annual IEEE International
Conference on Computer Communications (INFOCOM 2016) (2016)

8. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146. ACM (2003)

9. Leskovec, J.: Stanford large network dataset collection. http://snap.stanford.edu/
data

10. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: ACM SIGKDD, pp. 420–429.
ACM (2007)

http://snap.stanford.edu/data
http://snap.stanford.edu/data

64 Y. Wang et al.

11. Han, M., Yan, M., Cai, Z., Li, Y.: An exploration of broader influence maximization
in timeliness networks with opportunistic selection. J. Netw. Comput. Appl. (2016,
in press)

12. Nail, J.: The consumer advertising backlash, Forrester Research and Intelliseek
Market Research Report, 137, May 2004

13. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions–I. Math. Program. 14(1), 265–294 (1978)

14. Newman, M.E.: The structure of scientific collaboration networks. Proc. Nat. Acad.
Sci. 98(2), 404–409 (2001)

15. Siegmund-Schultze, R.: Richard von mises (1883–1953): a pioneer of applied math-
ematics in four countries. Newslett. Eur. Math. Soc. 73, 31–34 (2009)

16. Tang, Y., Xiao, X., Shi, Y.: Influence maximization: near-optimal time complexity
meets practical efficiency. In: SIGMOD, pp. 75–86. ACM (2014)

17. Shi, T., Wan, J., Cheng, S., Cai, Z., Li, Y., Li, J.: Time-bounded positive influence
in social networks. In: International Conference on Identification, Information and
Knowledge in the Internet of Things (2015)

18. Wang, Y., Cong, G., Song, G., Xie, K.: Community-based greedy algorithm for
mining top-k influential nodes in mobile social networks. In: ACM SIGKDD, pp.
1039–1048. ACM (2010)

Complex Queries

ListMerge: Accelerating Top-k Aggregation
Queries Over Large Number of Lists

Shile Zhang1,3, Chao Sun2,3, and Zhenying He2,3(B)

1 School of Software Engineering, Fudan University, Shanghai, China
shilezhang14@fudan.edu.cn

2 School of Computer Science, Fudan University, Shanghai, China
{chaosun14,zhenying}@fudan.edu.cn

3 Shanghai Key Laboratory of Data Science, Fudan University, Shanghai, China

Abstract. Sorted list is widely used to feature indexing in a variety
of applications, such as multimedia database and information retrieval.
Answering top-k aggregation queries on a set of lists plays an increasingly
important role in these domains. Unfortunately the existing solutions,
such as threshold-style (TA-style) algorithms, do not guarantee superior
performance on a large number of lists. In this paper, we introduce a
merge-based strategy, called ListMerge, to accelerating TA-style algo-
rithms. ListMerge exploits a critical observation to TA-style algorithms:
if aggregation functions are monotone and distributive, it is much more
efficient that merging several lists together, then applying a TA-style algo-
rithm. This observation also inspires the development of our cost model,
which can evaluate the best number of merged lists. Experimental results
show that ListMerge could outperform the baseline algorithms up to 4–20
times in synthetic datasets generated by various distributions.

1 Introduction

Top-k aggregation queries, as a means of retrieving a ranked set of the k most
interesting objects based on the uniform aggregation function, have attracted
considerable attention in many analytic applications. Threshold-style (TA-style)
algorithms are widely used because they can guarantee superior performance on
a small number of lists. These algorithms benefit from reducing the number of
objects accessed.

Take text analysis for example, a typical scenario is to find top k word count
in a set of documents satisfying certain query criteria. Each document can be
viewed as a list of 〈word, count〉 pairs sorted in descending order. TA-style algo-
rithms need to fetch words in every sorted list. However, when the number of
queried documents is large, TA-style algorithms may fetch considerable number
of objects in each round. As a result, execution cost would still be expensive.

The work was partially supported by the National Natural Science Foundation of
China (No. 61370080, No. 61170007) and Science and Technology Commission of
Shanghai Municipality (No. 14511106802).

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 67–81, 2016.
DOI: 10.1007/978-3-319-32049-6 5

68 S. Zhang et al.

In this paper, we study the problem of answering top-k aggregation queries
on a large number of lists, which is motivated by the fact that high dimensional
data is usually stored as a number of lists. We propose a merge strategy, called
ListMerge, by exploiting dimension-reduction for high dimensional data so that
much less objects are accessed in each round. Furthermore, as lists are merged,
objects with high aggregation score are more likely to rank higher in merged lists,
and thus the algorithm can stop much sooner. We also propose an execution cost
model to determine the number of lists to be merged so that execution cost can
be minimized. The contributions of this paper are described as follows:

– This paper studies the problem of answering top-k aggregation queries over
a large number of lists. To the best of our knowledge, this problem is not
discussed by existing TA-style algorithms.

– We propose a merge-based strategy – ListMerge, which is applicable to a class
of top-k aggregation query algorithms, i.e. TA-style. The execution cost of
ListMerge can be greatly reduced.

– An uniform cost model is developed to estimate best merge strategy for TA-
style algorithms.

– ListMerge can be integrated into existing TA-style algorithms easily.

The rest of this paper is organized as follows: Sect. 2 introduces related works
and clarifies the applicable boundary of our strategy. In Sect. 3, we define some
common concepts and terminology that will be used in this paper. Sections 4
and 5 present the merge strategy and cost model respectively. In Sect. 6, we give
a performance evaluation of our merge strategy. Finally we conclude this paper
in Sect. 7.

2 Related Works

Top-k query processing has always been receiving constant attention from dif-
ferent fields, such as multimedia retrieval [4,9,14,22], P2P networks [1,3,5] and
relational database management systems [17,19,20].

Most of the algorithms require pre-processing steps to construct a material-
ized data structure. These data structures can be roughly categorized into three
classes: layer-based, view-based and list-based. Our method targets at list-based
data structure algorithms in high dimension situation. To clarify our applicable
scope, we give a rough description to each category.

Layer-based structure views data objects in a hierarchical way. Each data
object belongs to a specific layer. The layer in which data objects belongs to
is determined by the probability of certain rank that object may be in. The
final effect this structure guarantees is that top-k objects exists in the first k
layers. Convex hull [8,10,15] and skyline [18,24,25,27] are often used to realize
layer-based structure.

View-based structure materializes historical query results. For a given new
top-k query under a score function f, [11,16,23,26] tries to answer the query

Accelerating Top-k Aggregation Queries Over Large Number of Lists 69

by utilizing previous query results whose score function is similar to f, with the
purpose of accessing less data objects.

List-based structure views data as lists. First important paper proposed
using this structure is [12], called Fagin’s Algorithm (FA). Later, Several groups
[13,14,22] discover TA independently, which is much efficient than FA under all
circumstances. Fagin et al. [13] also proved that TA is instance optimal. To guar-
antee bounded memory consumption, TA does not remember position it has seen
under random access, thus one object may be accessed many times during execu-
tion. With the help of position information, Best Position Algorithm (BPA) [2] is
proposed. In the distributed environment, data is vertically divided over nodes.
Three-Phase Uniform Threshold (TPUT) algorithm [7] improves distributed TA
by ensuring finding top k objects in three phase of communication. Later, KLEE
[21] is proposed to give approximate top-k results instead of exact ones. With
only small penalties in result quality, this algorithm can enjoy significant perfor-
mance benefits.

However, none of these type of algorithms considers performance issues in
high dimension situation. Although TPUT does an experiment on high dimen-
sion web data, it doesn’t give detailed study of effects different data distribution
has on performance, nor does it optimize this case.

3 Preliminaries

In this section, we present the data model and basic related concepts that will
be used in this paper. TA is also introduced to show how this algorithm utilize
the data model. The symbols used in this paper are described in Table 1.

ListMerge is applicable for TA-style algorithms under the same precondition
except that aggregation function should be both monotone and distributive.

Definition 1 (Monotone Function). An aggregation function f() is monotone
if f(x1, . . . , xl) ≤ f(x′

1, . . . , x
′
l) whenever xi ≤ x′

i, for every i.

Definition 2 (Distributive Function). Aggregation function f() is distribu-
tive if there is a function g() such that f(x1, . . . , xl) = g({f({xi|i ∈ Sj})|j =
1, 2, . . . , J}) where Sm ∩ Sn = ∅ for ∀m 	= n ∧ m,n ∈ {1, . . . , J} and
∪J

m=1Sm = {1, . . . , l}.

3.1 Data Model

We adopt the notion in [13] to depict sorted list data model used by TA-style
algorithms. Data set consists of N data objects. Each data object O has l fields
(or attributes) x1,. . . , xl where xi ∈ IR ∀i ∈ [1, l], and we refer the value of
xi as the grade of the object. List data model views above data set as l sorted
lists L1,. . . , Ll, each of which has N data items. For any list i, the data items
are in the form of 〈O, xi〉 and sorted in descending order by xi value. Each list
corresponds to a field (attribute), so we will use field, attribute or dimension to
refer to list interchangeably.

70 S. Zhang et al.

There are two forms of data access. The first is sorted (sequential) access,
which obtains the grade of an object in one of the sorted lists by proceeding
through the list sequentially from the top. The other form is random access.
Given an object O, we can retrieve the list entry 〈O, xi〉 from list i in one random
access.

We denote the cost of sorted and random access as α and β respectively and
execution cost is defined as α ∗ns +β ∗nr (called middleware cost in [13]) where
ns and nr is the number of sorted and random access performed respectively.

Table 1. Definition of symbols

Symbol Description

α Sorted access cost

β Random access cost

γ Sort cost

l Number of lists

m Number of lists to merge

ns Number of sorted access

nr Number of random access

f Aggregation function that is monotone and distributive

Li List i

Oi Object i

N Number of objects

k Number of retrieved objects

Y Ordered set to contain top-k 〈object, score〉 pair

3.2 Threshold Algorithm

TA works as follows:

1. Do sorted access in parallel to each of the l sorted lists Li. As an object O
is seen under sorted access in some list, do random access to the other lists
to find the grade xi of object O in every list Li. Then compute overall score
using monotone aggregation function f(O) = f(x1, . . . , xl) of object O. If this
score is one of the k highest overall score seen so far, add object O and its
score to ordered set Y .

2. For each list Li, let xi be the attribute of the last object seen under sorted
access. Define the threshold value δ = f(x1, . . . , xl). If Y has k data items
whose overall scores are higher than or equal to δ, then halt. Otherwise go to
step 1.

3. Return Y .

Accelerating Top-k Aggregation Queries Over Large Number of Lists 71

4 Merge Strategy for TA-style Algorithms

Suppose there are l lists and we are going to merge per m lists, the aggregation
function f() is distributive and monotone. A TA-style algorithm adopting our
merge strategy can first perform merge per m lists. For the merged l/m lists,
we can then apply the original algorithm to them. Our merge strategy works as
follows:

1. Do sorted access in parallel to list j where j ∈ { i | i mod m = 1, i ∈ L, L =
1, 2, . . . , l}, we denote this set of lists as M and call them merge root lists.
For each list j in M, as an object O is seen under sorted access, do random
access to list (j + 1), . . . , (j + m − 1) to find the corresponding grade of O.
Then compute merged grade f(O) = f(xj , . . . , xj+m−1) and update grade of
list j with merged grade.

2. Sort each list j in M according to the merged grade.
3. Running a TA-style algorithm on sorted lists in M.

Let’s illustrate merge strategy using the example in Fig. 1. We assume l = 6,
m = 3 and aggregation function is sum, which satisfies distributive and monotone
property. Original lists are present in Fig. 1(a). Now sorted access are run in
parallel to L1 and L4. In the first round, object O3 is seen under sorted access
in L1, so we retrieve grade 52 and 95 of O3 from L2 and L3 respectively. Merged
grade of O3 is computed as f(O3) = 98 + 52 + 95 = 245. Then merged grade for
O2 in L4 is computed from L5 and L6. In the second round, merged grade of O5

in L1 and L4 are calculated. After all objects in L1 and L4 are updated by their
merged grade, we sort those two lists by scores and the resulting lists is shown
in Fig. 1(b).

L1

<O3,98>

<O5,75>

<O1,70>

<O8,65>

<O7,62>

<O2,57>

<O10,43>

<O4,40>

<O6,35>

<O9,17>

L2

<O7,88>

<O1,74>

<O2,63>

<O5,55>

<O3,52>

<O4,45>

<O10,35>

<O9,31>

<O6,22>

<O8,15>

L3

<O3,95>

<O8,85>

<O4,77>

<O5,68>

<O2,55>

<O1,45>

<O10,35>

<O7,24>

<O6,19>

<O9,8>

L4

<O2,99>

<O5,88>

<O1,83>

<O4,73>

<O6,65>

<O9,54>

<O7,43>

<O10,35>

<O3,29>

<O8,11>

L5

<O1,92>

<O2,88>

<O3,73>

<O4,67>

<O5,55>

<O6,41>

<O7,31>

<O8,23>

<O9,15>

<O10,5>

L6

<O8,96>

<O4,86>

<O2,73>

<O1,61>

<O9,59>

<O3,43>

<O7,37>

<O5,25>

<O6,16>

<O10,7>

(a) Sorted lists before merge

L1

<O3,245>

<O5,198>

<O1,189>

<O2,175>

<O7,174>

<O8,165>

<O4,162>

<O10,113>

<O9,56>

<O6,26>

L2

<O7,88>

<O1,74>

<O2,63>

<O5,55>

<O3,52>

<O4,45>

<O10,35>

<O9,31>

<O6,22>

<O8,15>

L3

<O3,95>

<O8,85>

<O4,77>

<O5,68>

<O2,55>

<O1,45>

<O10,35>

<O7,24>

<O6,19>

<O9,8>

L4

<O2,260>

<O1,236>

<O4,226>

<O5,168>

<O3,145>

<O8,130>

<O9,128>

<O6,122>

<O7,111>

<O10,47>

L5

<O1,92>

<O2,88>

<O3,73>

<O4,67>

<O5,55>

<O6,41>

<O7,31>

<O8,23>

<O9,15>

<O10,5>

L6

<O8,96>

<O4,86>

<O2,73>

<O1,61>

<O9,59>

<O3,43>

<O7,37>

<O5,25>

<O6,16>

<O10,7>

(b) Sorted lists after merge

Fig. 1. Example illustrate how merge works.

5 Cost Model

In this section, a cost model is proposed to estimate the best merge number
so that the execution cost can be minimized. Section 5.1 defines a uniform cost

72 S. Zhang et al.

model that is composed of merge execution cost and algorithm execution cost for
a TA-style algorithm. While merge cost is the same for all algorithms, parame-
ters of algorithm execution cost require estimation for different algorithms case
by case. In Subsect. 5.2, we present merge cost. Subsection 5.3 uses TA as a rep-
resentative of TA-style algorithms to show how to refine parameters of examine
algorithm execution.

5.1 Cost Model for TA-style Algorithms Using Merge Strategy

As with [13] and [2], we take the grade of objects as precomputed, so that
we are taking only access cost into account and ignoring internal computation
cost. Total execution cost for a TA-style algorithm is estimated as TotalCost =
MergeExecutionCost+AlgoExecutionCost. Since merge strategy is applicable
for TA-style algorithms, merge execution cost model can be expressed using a
uniform formula (See Eq. 2). Algorithm execution cost model can be expressed
as α ∗ ns est + β ∗ nr est, where ns est and nr est denote the estimated number of
sorted and random access which have algorithm-specific indicators for different
TA-style algorithms. We formulate our cost model as follows:

TotalCost =
l

m
[αn + (m − 1) βn + γn log n] + αns est + βnr est . (1)

We use TA as a representative of TA-style algorithms to give a rough under-
standing of how execution cost changes under different number of merged lists.
For centralized TA, execution cost can be measured using response time because
each access is executed sequentially. We generate 20 lists using independent uni-
form distribution. Each list has 1000 objects, and the range of grade of these
objects is [0, 3000]. Our aggregation function is sum(). To accurately estimate
the cost, we eliminate the effect of cache miss and the JIT1 optimization of Java.

As shown in Fig. 2, we can see that when dimension is high and no merge is
performed (merged list number is 20), TA takes about 1541 ms to run. However,
execution cost can drop 86.6 % percent to 195 ms if we merge to 3 lists. Merge
execution time decreases and TA execution time increases as merged list number
(l/m) increases, i.e. merge number m decreases. The trade-off lies in that cost
incurred by merging can be covered by the cost declined because of dimension
reduction for a TA-style algorithm.

5.2 Merge Cost

Since merge cost is composed of three parts: sorted access cost, random access
cost and sort cost. Adding three parts together, we formulate merge cost as
follows:

MergeCost =
l

m
[αn + (m − 1) βn + γn log n] . (2)

1 Just-in-time (JIT) compilation, also known as dynamic translation, is compilation
done during execution of a program.

Accelerating Top-k Aggregation Queries Over Large Number of Lists 73

Fig. 2. Total cost under different number of merged lists.

where n denotes number of objects and γ represents the cost of one sort step.
Let’s consider merge root list i. Using our merge strategy in Sect. 4, we need

to do n sorted access to merge root i, and for each object seen under sorted
access, (m − 1) random access is performed to list i + 1, . . . , i + m − 1. So sorted
access cost and random access cost are αn and (m − 1) βn respectively. Number
of sort steps to perform is estimated as n log n when there are n objects in a
list, which is typical for sort algorithms. There are in total l/m merge root to
consider, so merge execution cost is l

m [αn + (m − 1) βn + γn log n].
Equation 2 can be easily transformed to (γ log n + α − β)nl/m + βln. Since

γ, n, α, β and l are all constant, we can view it as a liner function with respect
to variable l/m, i.e. number of merged lists. If β ≥ (γ log n + a), merge cost
decreases as the number of merged lists gets larger, and vice versa. If we consider
the execution cost of sorted access, random access and sort separately, they are
linear to l/m with slope αn,−βn and γn log n respectively.

To prove the correctness of our merge cost model, we plot total execution
cost, sorted access cost, random access cost and sort cost against merged list
number l/m in Fig. 3. As our R2 statistics suggest, experimental data is highly
in accord with the cost model analysis in previous paragraph. Values of α, β and
γ can be estimated using least square method.

5.3 Algorithm Execution Cost

When it comes to TA, ns est and nr est in algorithm execution cost can be esti-
mated using access depth d, which denotes the depth reached in lists under sorted
access. So TA execution cost is estimated as follows:

TAExecutionCost = αd
l

m
+ βd

l

m
(

l

m
− 1). (3)

74 S. Zhang et al.

Fig. 3. Composition of merge execution cost

Suppose we have l/m sorted merged lists and have correctly estimated access
depth d for those merged lists. Recall how TA works in Subsect. 3.2, for each
sorted access, we need to perform l/m − 1 random access to other merged lists
to retrieve the same object seen under sorted access. Each round requires l/m
sorted access to merged lists, so we need to perform l/m ∗ (l/m − 1) random
access in the same round. Since an estimated d rounds are necessary to finish
TA processing, our estimated sorted and random access cost are αdl/m and
βdl/m(l/m − 1) respectively.

Estimating Access Depth. The next question is: how do we estimate access
depth? Let Si denotes the random variable representing the grade of the object
in list i. Recall that the grade of the object in a list is uniformly generated
and scores in each list are independent and obeys the same distribution. So we
can view Si as a uniform distribution variable with mean value μ and standard
deviation δ. Total score of object can be represented as S =

∑l
i=1 Si. We also

define merged grade random variable Mi =
∑m−1

j=0 = Si+j where i ∈ M , the
merge root lists set as is described in Sect. 4. We now present the central limit
theorem and discuss in detail how to estimate access depth d.

Theorem 1 (The Central Limit Theorem). If random variable X is defined
as the sum of n independent and identically distributed (i.i.d.) random vari-
ables, X1,X2, . . . , Xn; with mean μ, and standard deviation δ. Then, for large

Accelerating Top-k Aggregation Queries Over Large Number of Lists 75

enough n, X is approximately normally distributed with parameters: μX = nμ
and δX =

√
nδ.

According to Theorem1, S1, S2, . . . , Sl are i.i.d random variables, so S obeys
normal distribution with mean value nμ and standard deviation

√
nδ, namely

S − nμ√
nδ

∼ N (0, 1). (4)

For the same reason, we have

Mi − mμ√
mδ

∼ N (0, 1). (5)

Suppose a database contains n objects, these n objects can be considered as
n samples taken from S. Now we need two steps to approximate d. (1) Estimate
the total score sk of k′th largest object. (2) Estimate the depth d at which
threshold value of merged lists can drop below sk. For the first step, we can use
cumulative distribution function (cdf) to estimate sk as:

φ

(
xk − nμ√

nδ

)
= 1 − k

n
. (6)

n, μ, δ and k are known constant, so we can look up the standard normal distri-
bution table for the value of xk−nμ√

nδ
corresponding to 1 − k

n . And then compute
sk. In the second step, each Mi follows identical independent normal distribu-
tion with mean value mμ and standard deviation

√
mδ. So on average, threshold

value τmi
of each merged list should be xk/(l/m) = mxk/l. The percentage that

objects with a merged grade higher than τmi
can be formulated as:

Pr (Mi ≤ τmi
) = Pr

(
Mi − mμ√

mδ
≤ τmi

− mμ√
mδ

)
= φ

(
τmi

− mμ√
mδ

)
. (7)

So estimated depth d = nφ
(

τmi
−mμ√
mδ

)
.

If Si is not i.i.d, different methods should be applied to estimate sk and d.
Adopting the idea in [6], we can use sampling to estimate sk and histogram to
approximate threshold value of certain depth d.

6 Performance Evaluation

We next report an extensive evaluation of our merge strategy over various con-
ditions. The rest of this section is organized as follows. We first describe our
experimental setup. Then, we evaluate our result from three aspects, the accu-
racy of our cost model, the accelerating effect on TA-style algorithms under
diverse distribution and performance gain for high dimensional data. Finally, we
summarize the performance result.

76 S. Zhang et al.

6.1 Experimental Setup

Environment. All experiments in this paper are implemented by Java. In cen-
tralized environment, i.e. TA and ListMerge+TA, experiments are conducted
on a computer running Windows 10 with an Intel i7 3.4 GHz and 8 GB RAM.
Experiments in distributed environment are deployed on a 10-machine cluster,
each machine has a twelve 2.1 GHz Intel Xeon processor running 64-bit Ubuntu
server 14.04 with 16 GB RAM. We turn off the JIT features of JVM and elimi-
nate the cache miss impact to make our experiments universally applicable.

Queries. We consider queries retrieving top-10 highest score objects (k = 10),
and we test the aggregation function of sum() since it is widely used.

Data Sets. To evaluate the performance of merge strategy over common cases,
we generate data sets covering independent and correlated situation under vari-
ous distributions. Table 2 summarizes the synthetic data sets used in our exper-
iments. Lists of unif1000 data set are uniformly generated with grade from 1
to 1000, and object values between lists are independent. For corr0.01, first list
is generated the same way as unif1000, values of other lists are produced by
randomly adding a integer from range [−5, 5] to objects in the first list. As for
gaus(500, 167) and zipf5, object values in each list obey Gaussian distribution
with μ = 500, δ = 167 and Zipfian distribution with λ = 5 respectively.

Table 2. Data distributions used in experiment

Distribution Description

unif1000 Random(1,1000)

corr0.01 unif1000 + Random(-5,5)

gaus(500, 167) Gaussian distribution with μ = 500 and δ = 167

zipf5 Zipfian distribution with λ = 5

Metrics. To compare the performance of algorithms before and after applying
our merge strategy, we measure the following metrics:

– Execution cost. As is introduced in Subsect. 3.1, execution cost is calculated
as α∗ns +β∗nr where ns and nr are the number of sorted and random access.
α is the cost of a sorted access and β is the cost of a random access. α and
β are measured by time consumed per access. Execution cost can be viewed
as an indicator of total CPU time consumption. For centralized algorithm,
execution cost can be used interchangeably with response time because each
access is performed sequentially. For distributed systems, object accesses may
run in parallel so response time can be much shorter than execution cost.
A more common metric for distributed algorithms is the next one.

Accelerating Top-k Aggregation Queries Over Large Number of Lists 77

– Number of object transmission. This metric measures the total number of
objects transferred. In the distributed environment where message size is
small, transmission number between nodes is the dominating factor to measure
communication cost.

– response time. This is the total time an algorithm takes to find the top-k
data items. For centralized algorithms, this metric is the same as execution
cost. However, in distributed settings, response time can be much shorter than
execution cost due to parallel accesses.

6.2 Performance Study

Evaluating Cost Model. Adopting the initial experiment setup in
Subsect. 5.1, we carry out a more comprehensive and in-depth study to evaluate
the accuracy of our proposed cost model. Still, data in each list is generated
independently, object value in each list follow the same uniform distribution in
range [1, 3n], where n denotes the number of objects in data set.

We first estimate α and β with l = 60 and n = 1000. Based on the estimated
α and β, we then estimate execution cost for different n and l value and compare
estimated cost with actual running results in Table 3. Columns of “Actual Best”
indicate the results of actual best execution cost can be achieved using ListMerge.
Results exploiting the estimated cost model are described in the columns of
“Estimated Best”. In most case, i.e. when l = 40, 60, 80, the estimated merge
number is just the actual best case. When l = 20, although the estimated best
merge number is 3 while the actual one is 2, the running cost (118.1) is close to
the best (117.6).

Table 3. Actual best cost v.s. estimated best cost

List number Actual best Estimated best

Cost (ms) Merged # Estimated (ms) Actual (ms) Merged #

20 117.6 2 114.4 118.1 3

40 241.8 3 239.8 241.8 3

60 369.2 3 365.1 369.2 3

80 495.9 3 490.5 495.9 3

Results on Various Distributions. For distributed algorithms, execution
cost is not of much importance so we only consider the accelerating effect on
response time and total number of object transmission. We run distributed TA
and TPUT on data sets generated with l = 200 and n = 5000 using distribution
in Table 2. The result is presented in Tables 4 and 5. For each algorithm, we
compare the cost (response time or number of object transmission) without
applying our merge strategy (the origin column) with the best cost that can be
achieved using different merge number (the best run column), we also record the

78 S. Zhang et al.

number of merged list (the merged number column) at which best cost is reached.
For each best run, we keep track of the transmission number in that run. We
also record the best transmission number and origin transmission number for
comparison.

For distributed TA, response time using merge is much shorter than that
without merge, giving at least 10 times performance improvements (525 times
improvements for unif1000 data set). The corresponding object transmission
number of best run usually reduces two orders of magnitude, though not optimal
but close to minimal transfer amount, with respect to origin except for corr0.01
data distribution. The reason why transmission amount of corr0.01 is two times
that of origin is that data are so correlated that we only need about 10 rounds to
stop in original lists, merge incurs too many data transfer that can’t be balanced
out in TA.

As for TPUT, response time sees on average 5 times performance gain.
Although transmission amount is higher compared with origin, we think it is
worthy to sacrifice such little bandwidth in exchange for such huge running time
reduction. Just like distributed TA, TPUT transfers twice as much objects under
minimal response time over corr0.01 distribution because highly correlated data
can filter out many unnecessary objects in the first phase even without merge.

Table 4. Response time (ms) for different distribution

Data set TA Distributed TA TPUT

Origin Best run Origin Best run Origin Best run

(merged #) (merged #) (merged #)

unif1000 598548 6230(4) 1126505 2144(4) 10706 2524(5)

corr0.01 4364 4364(200) 23160 1772(6) 6559 2276(5)

gaus(500, 167) 565616 6215(4) 1266102 2691(2) 11827 2340(5)

zipf5 408628 6318(30) 766509 2432(4) 9747 2314(5)

Results for Large Number of Lists. We now present the accelerating effect of
the merge strategy in various high dimension situation with respect to response
time in Table 6. The number of words per list is fixed to 5000 and data distribu-
tion is uniform. For each algorithm, we list the response time without merge and
best possible response time under different merge number (along with at which
merged number response time reaches its minimal).

Response time can be much shorter compared with no merge condition. As
number of lists grows, acceleration ratio increases from 21 times to 97 times
for TA and from 132 times to 525 times for distributed TA. TPUT sees on
average 4 times improvement in response time, with a small increase from 3.99
to 4.24 times.

Results When Varying n and l . From Table 7 we can see that the execution
cost using ListMerge is much better than that of using orginal TA for different

Accelerating Top-k Aggregation Queries Over Large Number of Lists 79

Table 5. Object transmission number

Data Set Distributed TA TPUT

Origin Trans # Best Origin trans # Best

of BR trans # of BR trans #

unif1000 71799200 980360 964144 990156 1000070 990156

corr0.01 517400 990240 517400 506387 985300 506387

gaus(500, 167) 83341200 990190 975000 1002489 1000115 995041

zipf5 49033600 980504 968176 878367 1000049 878367

Table 6. Response time (ms) for different dimension

List number TA Distributed TA TPUT

Origin Best run Origin Best run Origin Best run

(merged #) (merged #) (merged #)

50 32791 1532 (3) 166875 1257 (2) 4410 1103 (2)

100 142584 3124 (2) 488954 1761 (4) 6437 1969 (1)

150 333168 4693 (3) 745417 2127 (3) 9031 2183 (3)

200 606544 6279 (3) 1126505 2144 (4) 10706 2524 (5)

Table 7. Response time (ms) when varying n and l

List number n = 1000 n= 2000 n = 4000

Origin Best Origin Best Origin Best

20 964.8 117.6 1828.1 232.6 3634.9 463.1

40 4277.8 241.8 8279.5 480.9 15810.8 968.3

60 10002.9 369.2 19652.9 728.7 38330.6 1459.0

80 18291.5 495.9 36530.3 1003.8 71332.8 1971.9

n and l. The running costs for both TA and ListMerge grow almost linearly as
n or l increasing. Furthermore, the slope of ListMerge is much smaller than that
of original TA.

7 Conclusion

To answer top-k aggregation queries, TA-style algorithms running on sorted lists
have been well-studied recently. However, when the number of lists is large (the
dimension is high), there is still performance issues regarding response time. In
this paper, we propose a merge strategy that is applicable to list-based data
model to perform dimensionality reduction for high dimensional data so that
execution cost can be greatly reduced. We also propose a cost model to help

80 S. Zhang et al.

determine the best number to merge lists to get the minimal response time. We
have done extensive experiment under different list settings. The results of the
experiments show considerable improvements in response time.

References

1. Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured
p2p systems using top-k queries. Distrib. Parallel Databases 19(2–3), 67–86 (2006)

2. Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries.
In: Proceedings of the 33rd International Conference on Very Large Data Bases,
pp. 495–506. VLDB Endowment (2007)

3. Akbarinia, R., Pacitti, E., Valduriez, P.: Processing top-k queries in distributed
hash tables. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS,
vol. 4641, pp. 489–502. Springer, Heidelberg (2007)

4. Balke, W.T., Kießling, W.: Optimizing multi-feature queries for image databases.
In: VLDB, pp. 10–14, September 2000

5. Balke, W.T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top-
k retrieval in peer-to-peer networks. In: 21st International Conference on Data
Engineering, 2005, ICDE 2005, Proceedings, pp. 174–185. IEEE (2005)

6. Bruno, N., Wang, H.: The threshold algorithm: from middleware systems to the
relational engine. IEEE Trans. Knowl. Data Eng. 19(4), 523–537 (2007)

7. Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In:
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 206–215. ACM (2004)

8. Chang, Y.C., Bergman, L., Castelli, V., Li, C.S., Lo, M.L., Smith, J.R.: The onion
technique: indexing for linear optimization queries. In: ACM SIGMOD Record,
vol. 29, pp. 391–402. ACM (2000)

9. Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over
multimedia repositories. IEEE Trans. Knowl. Data Eng. 16(8), 992–1009 (2004)

10. Cheema, M.A., Shen, Z., Lin, X., Zhang, W.: A unified framework for efficiently
processing ranking related queries. In: EDBT, pp. 427–438 (2014)

11. Das, G., Gunopulos, D., Koudas, N., Tsirogiannis, D.: Answering top-k queries
using views. In: Proceedings of the 32nd International Conference on Very Large
Data Bases, pp. 451–462. VLDB Endowment (2006)

12. Fagin, R.: Combining fuzzy information from multiple systems. In: Proceedings
of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pp. 216–226. ACM (1996)

13. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.
J. Comput. Syst. Sci. 66(4), 614–656 (2003)

14. Güntzer, U., Balke, W.T., Kießling, W.: Towards efficient multi-feature queries in
heterogeneous environments. In: International Conference on Information Technol-
ogy: Coding and Computing, 2001, Proceedings, pp. 622–628. IEEE (2001)

15. Heo, J.S., Cho, J., Whang, K.Y.: The hybrid-layer index: A synergic approach to
answering top-k queries in arbitrary subspaces. In: 2010 IEEE 26th International
Conference on Data Engineering (ICDE), pp. 445–448. IEEE (2010)

16. Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the efficient
execution of multi-parametric ranked queries. In: ACM SIGMOD Record, vol. 30,
pp. 259–270. ACM (2001)

Accelerating Top-k Aggregation Queries Over Large Number of Lists 81

17. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Joining ranked inputs in practice.
In: Proceedings of the 28th International Conference on Very Large Data Bases,
pp. 950–961. VLDB Endowment (2002)

18. Lee, J., Cho, H., Hwang, S.W.: Efficient dual-resolution layer indexing for top-k
queries. In: 2012 IEEE 28th International Conference on Data Engineering (ICDE),
pp. 1084–1095. IEEE (2012)

19. Li, C., Chang, K.C.C., Ilyas, I.F., Song, S.: RankSQL: query algebra and opti-
mization for relational top-k queries. In: Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, pp. 131–142. ACM (2005)

20. Li, C., Chen-Chuan Chang, K., Ilyas, I.F.: Supporting ad-hoc ranking aggregates.
In: Proceedings of the 2006 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 61–72. ACM(2006)

21. Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k
query algorithms. In: Proceedings of the 31st International Conference on Very
Large Data Bases, pp. 637–648. VLDB Endowment (2005)

22. Nepal, S., Ramakrishna, M.: Query processing issues in image (multimedia) data-
bases. In: 15th International Conference on Data Engineering, 1999, Proceedings,
pp. 22–29. IEEE (1999)

23. Ryeng, N.H., Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Efficient distributed top-k
query processing with caching. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA
2011, Part II. LNCS, vol. 6588, pp. 280–295. Springer, Heidelberg (2011)

24. Vlachou, A., Doulkeridis, C., Nørv̊ag, K.: Distributed top-k query processing by
exploiting skyline summaries. Distrib. Parallel Databases 30(3–4), 239–271 (2012)

25. Vlachou, A., Doulkeridis, C., Nørv̊ag, K., Vazirgiannis, M.: On efficient top-k query
processing in highly distributed environments. In: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, pp. 753–764. ACM
(2008)

26. Xie, M., Lakshmanan, L.V., Wood, P.T.: Efficient top-k query answering using
cached views. In: Proceedings of the 16th International Conference on Extending
Database Technology, pp. 489–500. ACM (2013)

27. Zou, L., Chen, L.: Pareto-based dominant graph: an efficient indexing structure to
answer top-k queries. IEEE Trans. Knowl. Data Eng. 23(5), 727–741 (2011)

Approximate Iceberg Cube
on Heterogeneous Dimensions

Dan Yin1(B), Hong Gao1, Zhaonian Zou1, Jianzhong Li1, and Zhipeng Cai2

1 Harbin Institute of Technology, Harbin, China
{yindan,honggao,znzou,lijzh}@hit.edu.cn

2 Georgia State University, Atlanta, USA
zcai@gsu.edu

Abstract. Heterogeneous information networks contain heterogeneous
types of nodes and edges, e.g., social networks and knowledge graphs.
A meta-path is a path connecting nodes through a sequence of hetero-
geneous edges, representing different kinds of semantic relations among
nodes. Meta-paths are good mechanisms to improve the quality of graph
analysis on heterogeneous information networks. This paper presents an
iceberg cube framework for heterogeneous information networks based
on meta-paths. To the best of our knowledge, there is no such proposal
in the past. (1) We use meta-paths to measure the similarities of nodes,
and prove the problem is NP-hard. (2) An optimal solution is proposed
for the strict case. We develop the variant of slice tree to aggregate
networks hierarchically. (3) To improve the scalability, a general approx-
imate algorithm is provided for fast aggregation, where random walk
on meta-paths is employed to measure the similarities. (4) Two prun-
ing strategies are designed for reducing search space when the aggregate
function is monotonic. (5) Experiments on both real-world and synthetic
networks demonstrate the effectiveness and efficiency of the algorithms.

1 Introduction

With the rapid development of social media networks and knowledge graphs,
graphs have become increasingly popular and content-rich. Heterogeneous infor-
mation networks are such graphs which contain multiple types of nodes and
edges, and each type of nodes has a set of attributes.

In heterogeneous information networks, a meta-path is a path connecting
nodes through a sequence of heterogeneous edges, representing different kinds of
semantic relations among nodes. We give a real world example to illustrate the
heterogeneous information networks and meta-paths.

Figure 1 is an IMDb network1. It contains four types of nodes: Movie (M),
Actor (A), Director (D) and Movie Studio (S). Edges exist between actors and
actors by the Relation Coorperate, between actors and movies by Play, between
movies and directors by Direct, between movies and studios by Publish.

1 http://www.imdb.com/.

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 82–97, 2016.
DOI: 10.1007/978-3-319-32049-6 6

http://www.imdb.com/

Approximate Iceberg Cube on Heterogeneous Dimensions 83

In IMDb network, A − M − D is a meta-path denoting the relation between
an actor and a director who directs the movie he plays, and A − M − S is
a meta-path denoting the relation between an actor and a movie studio which
produces the movie the actor plays. Meta-paths are good mechanisms to improve
the quality of graph analysis on heterogeneous information networks. The meta-
path framework provides a powerful mechanism to select close nodes.

Fig. 1. IMDb network Fig. 2. Example cuboids of IMDb network

Figure 2 shows two cuboids of IMDb network, where nodes are aggregated
according to a meta-path. Figure 2(a) gives a cuboid on actors, which are aggre-
gated based on meta-path A − M − A, e.g., Leonardo and Kate are aggregated
because they are connected by path Leonardo-Titanic-Kate. In the same way,
Fig. 2(b) is a cuboid on movie studios, which are aggregated based on the edge
sequence of studios, movies and directors, which can be represented by meta-
path S − M − D − M − S.

The meta-paths of a knowledge graphs are numerous, for the types of nodes
and edges are complicated. For example, a single knowledge graph could have
more than 10K types of nodes. The aggregate graphs based on different meta-
paths represent various semantics. For example, the cuboid based on meta-path
A − M − D − M − A represents the actors who play the movies directed by
the same directors, and the cuboid based on meta-path A − M − S − M − A
represents the actors who play the movies produced by the same studios. Due
to the large size of meta-paths, the number of cuboids is explosive. We need an
approach to discover the interesting cuboids.

In IMDb network, if user wants to find the cuboids which aggregates more
nodes together. The threshold of iceberg cube is set to θ = 3. Figure 2(a) is not
an iceberg cuboid, since the maximum number of actors aggregated together is
2 (nodes 1, 2), smaller than θ. Figure 2(b) is an iceberg cuboid, since 3 movie
studios aggregated (nodes 9, 10, 11), which is equal to θ.

The research work on iceberg cube in large graphs is a new topic. The tradi-
tional multi-dimensional iceberg cube analysis can’t be directly applied to graph
data due to the lack of dimensionality of graphs. The only existing study on ice-
berg cube analysis in graphs is [7], which focuses on the iceberg nodes for which

84 D. Yin et al.

the aggregation of an attribute in their vicinities as above a given threshold.
However, it cannot handle the problem of finding iceberg aggregate graphs in
heterogeneous information networks.

To overcome the challenges, we propose an iceberg cube model for heteroge-
neous information networks. We use meta-paths to measure the similarities of
nodes. The variant of slice tree [10] is designed to aggregate networks hierarchi-
cally. An optimal solution is proposed for the strict case. To relax the restriction
on node similarities, we develop an approximate algorithm, where random walk
on meta-path is employed. We propose two novel approaches to effectively prune
the search space when the aggregate function is monotonic. The main contribu-
tions of this paper are summarized as follows:

1. The iceberg cube problem based on meta-paths in heterogeneous information
networks is first investigated, where meta-paths are employed to measure the
similarities among nodes. The problem is proved to be NP-hard.

2. An optimal model is introduced for the strict case. The variant of slice tree
is employed for hierarchical aggregation.

3. A general approximate algorithm is proposed for fast aggregation, which
devises random walk on meta-paths to estimate the similarities.

4. Two effectively pruning strategies are designed for limiting the search space
of candidate iceberg cuboids, when the aggregate function is monotonic.

5. Experiments over real world and synthetic networks demonstrate the pro-
posed algorithms effective and efficient.

2 Preliminaries

2.1 Heterogeneous Information Networks

Definition 1 (Heterogeneous information network). A heterogeneous
information network is defined as a graph G = (V,E, T,R,A, φV , φE , φA), where
V is the node set, E is the edge set, T is the set of node types, R is the set of edge
types and A is the attribute set of nodes. φV : V → T is the node type mapping
function, φE : E → R is the edge type mapping function and φA : T → A is the
mapping function from nodes types to attributes.

Definition 2 (Graph partition). Given a network G and Ti ∈ T , the graph
partition GTi

={G1,G2,· · · ,Gp} of G on Ti is a family of disjoint subgraphs, where
Gj = (Vj , Ej) and p = |GTi

|, iff it satisfies

1. ∀Gj ∈ GTi
, VTi

= ∪p
j=1Vj, where VTi

= {v|v ∈ V, φV (v) = Ti};
2. ∀Gj ∈ GTi

, Vj ⊆ VTi
, Ej = {(u, v)|u, v ∈ Vj , (u, v) ∈ E};

3. ∀Gj , Gk ∈ GTi
, j �=k, Vj ∩ Vk = ∅.

Approximate Iceberg Cube on Heterogeneous Dimensions 85

2.2 Meta-path

Definition 3 (Meta-path). A meta-path P is denoted in the form of T1−T2−
. . . − Tl+1, which defines a composite relation between types T1 and Tl+1.

We say a path p = (a1a2 . . . al+1) between a1 and al+1 follows meta-path
P , if ∀i, φV (ai) = Ti. We call these paths as path instances of P . Further, we
say a meta-path is symmetric if the relation R defined by it is symmetric. For
example, A − M − D − M − A is a length-4 symmetric meta-path denoting the
actors who play in the movies directed by the same directors. In this paper, we
employs the symmetric meta-paths to aggregate close nodes.

Definition 4 (Similarity). Given a symmetric meta-path P , the similarity
between the same type of nodes v and u is,

sim(v, u) =
2 × |{pv�u : pv�u ∈ P}|

|{pv�v : pv�v ∈ P}| + |{pu�u : pu�u ∈ P}|
Where pv�u is a path instance between v and u following P , pv�v is that

between v and v following P , and pu�u is that between u and u following P .

Given a meta-path P , sim(v, u) is defined in terms of two parts: (1) their
connectivity defined by the number of path instances between them following P ;
and (2) the balance of their visibility, where the visibility is defined as the number
of path instances between themselves. From the view of structures, the more
similar two nodes are, the more likely they are connected by a meta-path.

The similarity properties are:

1. Symmetric. s(v, u) = s(u, v), when G is an undirected graph;
2. Self-maximum. s(v, u) ∈ [0, 1], and s(v, v) = 1. (Proof omitted)

2.3 Cuboid

Definition 5 (Cuboid). Given a network G, a symmetric meta-path T1 −T2 −
. . . − T2 − T1, The cuboid Gc of G on P satisfies:

1. Gc = {G1, G2, . . . , Gk} is a graph partition of T1;
2. For ∀u, v ∈ Gi, sim(u, v) ≥ τ ;
3. The aggregate value of Gc is Ψ(ϕ(G1), ϕ(G2), . . . , ϕ(Gk)), where ϕ is the

aggregate function of subgraphs and Ψ is the aggregate function of cuboid.

We give some explanations for cuboid as follows:

(1) The aggregate function ϕ on subgraphs can be average degree, centrality,
diameter, containment and so on, besides the traditional functions.

(2) The aggregate function Ψ is a function on {ϕ(G1), ϕ(G2), . . . , ϕ(Gk)}. Ψ(ϕ)
constructs the composite aggregate function on cuboid.

(3) τ ∈ (0, 1], the larger τ is, the more similar the nodes are. When τ = 1, nodes
in the same groups have the exact path instances.

86 D. Yin et al.

2.4 Iceberg Cube

For a cuboid Gc, if its aggregate function is above a certain threshold θ, Gc is
called an iceberg cuboid, and all the iceberg cuboids are called iceberg cube.

Problem 1 (IceCubeH). Given a network G and the iceberg threshold θ, the
goal is to find the iceberg cube w.r.t θ.

Theorem 1. The hardness of IceCubeH is NP-hard.

Proof. We consider a special case of the problem. We set the aggregate functions
to ψ = MAX and ϕ = COUNT (V). Specifically, the problem is the maximal
clique problem and decide if the size of maximal clique is larger than θ, which
is NP-hard. Thus the hardness of the problem is NP-hard. ��

The greatest challenges in solving IceCubeH are: (1) The problem is NP-
hard, which is difficult to solve in a short time; (2) The meta-paths are numer-
ous, since different types of nodes have different referenced meta-paths; (3) The
large search space causes explosive computation. For challenge 1, we propose an
approximate algorithm to tackle the problem in Sect. 4. For challenge 2 and 3,
we propose two pruning strategies to address the challenges in Sect. 5.

3 Optimal Model for Strict Case

We introduce the optimal algorithm for the strict case when τ = 1. We make
the nodes in the same groups have the same structures correspondence with
specific meta-paths. Motivated by the Slice Tree, which is a hierarchical decom-
position of the network, we propose a network aggregation strategy to compute
the cuboid based on meta-paths. A slice partitions a set of nodes into two parts:
one composed of nodes with the same path instances following meta-path P and
the other containing the remaining nodes.

Definition 6 (Slice). Given a network G, nodes X ⊆ V , ∀u, v ∈ X, φu =
φv, meta-path P , a slice s(v,X, P) partitions X into B = {u ∈ X|∀u, v ∈
X, sim(u, v) = 1} and X\B.

The Slice function is given in Algorithm1, which partitions the node set X
into two parts and guarantees the node set B be maximum. We outline a greedy
procedure which select the largest size of B, such that the partition of X can
stop earlier. Optimal-Slice first computes the pv�v for each v (Line 3). Then finds
the other nodes in X which has the same structures with v (Line 4–7). Finally
select the slice which leads to the maximum |B| (Line 8–9).

Next, we propose a cuboid computation algorithm based on the slice function.
A greedy optimal algorithm, which aggregates the network by selecting consecu-
tive the best slices is designed. At beginning, the node set of T1 is considered as
the node set X. Call the Optimal-Slice function to partition X into two groups
B and X \ B. B is the first subgraph in Gc, and X \ B is the second subgraph

Approximate Iceberg Cube on Heterogeneous Dimensions 87

Algorithm 1. Optimal-Slice

Input: A network G, meta-path P , a set of nodes X
Output: Best slice t

1: Initialize num = 0, max = 0
2: for each v ∈ X do
3: Compute pv�v

4: for each u ∈ X do
5: Compute pv�u

6: if sim(v, u) = 1 then
7: num++
8: if num > max then
9: t ← s(v, X, B), max = num
10: return t

which is to be partitioned in next iteration. Then the iterative partitions don’t
stop until X \ B = ∅.

The pseudo-code of the algorithm for computing cuboid is described in Algo-
rithm 2. The algorithm consider the being partitioned group as X. Initialize the
node set of T1 as the first partitioned node set X (Line 2–3). Then for each par-
titioned subgraph Gi, call Optimal-Slice to slice Gi into two parts: B and X\B.
Delete the node set X\B from Gi and construct a new subgraph Gi+1 whose
node set is X\B. Gi+1 is the next partitioned subgraph (Line 4–10). Finally
construct cuboid (Line 11).

Algorithm 2. Greedy-Optimal-Cuboid

Input: A network G, meta-path P , τ = 1
Output: Cuboid Gc = {G1, G2, . . .}

1: Initialize hash table ξ for mapping from nodes to groups
2: Initialize V1 = {v|φV (v) = T1}, E1 = {(u, v)|u, v ∈ V1, (u, v) ∈ E}
3: Initialize Gc = {G1}, i = 1
4: repeat
5: X ← Vi

6: Let B and X\B be the partitions produced by Optimal-Slice(G, P, X)
7: if X\P �= ∅ then
8: Construct a new subgraph Gi+1 into ξ
9: Vi ← B, Vi+1 = X\B, i++
10: until X\P = ∅
11: Construct Gc = (G1, G2, . . .)
12: return Gc

Theorem 2. The time complexity of Greedy-Optimal-Cuboid algorithm is:
O(|VGP

|2|EGP
|), where GP is the induced subgraph of G by P , VGP

is the node
set and EGP

is the edge set.

Proof. A slice s over X produces subgraphs B and X \ B. s applies |X| BFSs
on GP , which costs O(|X||EGP

|) time. In the worst case, s generates P and
X \ P such that |P | = 1 and |X \ P | = |X| − 1, resulting in a complexity:
O(Σ

|VGP
|

i=0 (||VGP
− i|)(O(|EGP

| − 1))) = O(|VGP
|2|EGP

|). ��

88 D. Yin et al.

Algorithm 3. IceCube
Input: A network G, τ = 1, threshold of iceberg cube θ, a set of meta-paths S
Output:Iceberg cube

1: Initialize queue Q for iceberg cube
2: for each P ∈ S do
3: GP

c ←Greedy-Optimal-Cuboid(G, P)

4: Compute aggregate value ψ(GP
c)

5: if ψ(GP
c) ≥ θ then

6: Insert GP
c into Q

7: return Q

3.1 Iceberg Cube

The iceberg cube algorithm is displayed in Algorithm 3. For each meta-path P ,
call Greedy-Optimal-Cuboid function to compute the cuboid GP

c and compute the
aggregate value (Line 3–4). If the aggregate value isn’t smaller than θ, then GP

c

is an iceberg cuboid (Line 5–6).

Theorem 3. The time complexity of IceCube is O(
∑

P∈S |VGP
|2|EGP

|
ComAgg(GP

c)), where S is the set of meta-paths, GP is the induced subgraph
of G by P , VGP

is the node set, EGP
is the edge set GP

c is the cuboid w.r.t P
and ComAgg(GP

c) is the cost of computing the aggregate value of cuboid GP
c .

Proof. For ∀P ∈ S, it will call the Greedy-Optimal-Cuboid algorithm to compute
the cuboid, which consumes O(|VGP

|2|EGP
|) time (Theorem 2). The aggregate

value of the cuboid needs to be computed in ComAgg(GP
c). Thus the time

complexity of IceCube is O(
∑

P∈S |VGP
|2|EGP

|ComAgg(GP
c)). ��

4 A General Approximate Algorithm

Generally, nodes rarely have exactly the same path instances. Similarities of
nodes should be relaxed. To tackle the hard problem, we propose a general
approximate algorithm for iceberg cube query when τ ∈ (0, 1]. A random walk is
a mathematical formalization of a path that consists of a succession of random
steps. We use random walk to obtain the number of path instances p between v
and u following P . To modify the previous random walk to make it applicable to
heterogeneous information networks, we restrict the random walk implemented
on meta-paths. The transition matrix is dependent on meta-paths. For P =
Ti − Tj− . . . −Tk, the transition exists from Ti to Tj , and finally arrives at Tk.

Definition 7 (Transition probability on meta-path). Given a meta-path
P = Ti − Tj− . . . −Tk, for ∀v, φV (v) = Ti, the transition probability from nodes
of Ti to nodes of Tj is: Mij(v) = 1

dTj
, where dTj

is the number of vi’s neighbors
whose type is Ti+1.

The length of each walk is related to the length of meta-paths. For example,
the length of random walk following meta-path A−M −D is 2. We use random

Approximate Iceberg Cube on Heterogeneous Dimensions 89

walk to compute the similarities of nodes. For a meta-path P = T1−T2− . . . −Tl,
random walk starts from a node v whose type is T1, the transition probability
of the random walk following meta-path P is given in Definition 7.

Based on the random walk on meta-paths, we propose an approximate slice
to guarantee the nodes in B are similar with each other within τ . Random
walk is used to estimate the number of path instances pv�u between v and u.
Then use the estimate value pv�u to compute sim(v, u). The pseudo-code for

Algorithm 4. Appro-Slice
Input: A network G, similarity threshold τ , meta-path P , a set of nodes X
Output: Best slice t

1: Initialize num = 0, max = 0, R
2: for each v ∈ X do
3: repeat
4: Random walk starts from v following P
5: if Random walk ends with v then
6: pv�v++
7: until Random walk times reach R
8: for each v ∈ X do
9: for each u ∈ X do
10: repeat
11: Random walk starts from v following P
12: if Random walk ends with u then
13: pv�u++
14: until Random walk times reach R
15: if ∀w ∈ B, sim(u, w) ≥ τ then
16: Insert u into B, num++
17: if num > max then
18: t ← s(v, X, P), max = num
19: return t

approximate slice is given in Algorithm4. For each node v in X, start a random
walk following meta-path P from v. If the random walk stops at v, the number
of path instances pv�v increases by one. Repeat random walk R times (Line
2–7). For each node v in X, compute the similarities between v and other nodes
in X by random walk (Line 8–14). If the similarities between u and the other
nodes in B are not smaller than τ , insert u into B (Line 15–16). Finally, select
the slice which produces the maximum size of B (Line 17–18).

Theorem 4. The time complexity of Appro-Slice is O(|X|2(|X| + R|P |)).
Proof. For each v ∈ X, the random walks starting from v and following meta-
path P cost O(R|P |) time. Then for each v ∈ X and u ∈ X, the random walks
starting from v and following meta-path P execute, which cost O(R|X||P |) time,
for ∀w ∈ B, compute sim(w, u) and decide if u can be added into B cost O(|B|).
The time complexity if O(|X|2(|X| + R|P |)). ��

Based on the approximate slice, we propose an algorithm called Greedy-Appro-
Cuboid that computes the cuboids approximately. To save space, the pseudo-code
of the algorithm is omitted here, which is the same with Algorithm2 except
replacing the Optimal-Slice with Appro-Slice.

90 D. Yin et al.

5 Pruning Strategy

5.1 Prune 1

As defined in cuboid, the aggregate value of Gc is Ψ(ϕ(G1), ϕ(G2), . . . , ϕ(Gk)),
where Ψ(·) is the aggregate function of cuboid. If the aggregate functions ϕ and
ψ are monotonic, the searching space can terminate in advance.

Theorem 5. For a meta-path P , if the composite function ψ(ϕ) is monotoni-
cally increasing with continuous calling Algorithm Optimal-Slice or Appro-Slice,
the call procedure can be terminated when ψ(GP

c) ≥ θ, and the cuboid w.r.t P
is an iceberg cuboid. Otherwise, if ψ(ϕ) is monotonically decreasing, the call
procedure can be terminated when ψ(GP

c) < θ, and the cuboid w.r.t P can be
pruned.

Example 1. We set ψ = MIN and ϕ = COUNT, then for a cuboid Gc = {G1, G2,
. . . , Gk}, ψ(Gc) = MIN(COUNT(VG1), COUNT(VG2),. . . , COUNT(VGk

)). The
composite function ψ(ϕ) is monotonically decreasing with slices. For example,
when G

′
c = {G1, G2, G3}, in next slice, we will slice the subgraph G3 into B

and G3 \B. COUNT(VG3) >MIN(COUNT(B), COUNT(VG3 \B)). Thus, when
ψ(G

′
c) < θ, the slices can be stopped and the cuboid is not an iceberg cuboid.��

Example 2. If we set ψ = MAX and ϕ = COUNT, ψ(Gc) = MAX(COUNT(G1),
COUNT(G2),. . . , COUNT(Gk)). The composite function ψ(ϕ) is monotonically
increasing with slices. when ψ(G

′
c) ≥ θ, the slices can be stopped and the cuboid

is an iceberg cuboid. ��

5.2 Prune 2

For meta-paths in DBLP, P1 = Author − Paper − Author and P2 = Author −
Paper − V enue − Paper − Author, the similarities of authors based on P1 is
smaller than P2. P1 captures the coauthor relationship, whereas the P2 represents
the relationship between a pair of authors through their papers published on the
common venues. More authors are aggregated by P2 than P1. For the meta-path
pairs like P1 and P2, we define P1 ≺ P2. We give the following pruning strategy:

Theorem 6. If the composite function ψ(ϕ) is monotonically increasing with
the sizes of subgraphs in cuboids and P1 ≺ P2, there exists ψ(GP1

c) < ψ(GP2
c). If

ψ(GP2
c) isn’t an iceberg cuboid, then ψ(GP1

c) can be pruned.

Example 3. The aggregate functions are set as the same with Example 1. We
have ψ(GP1

c) < ψ(GP2
c), since the number of authors who have published papers

in the same venues is larger than the number of co-authors. ��

6 Experiments

All the experiments are implemented on a Microsoft Windows 7 machine with
an Intel(R) Core i5-2400 CPU 3.1 GHz and 8 GB main memory. Programs are
compiled by Microsoft Visual Studio 2010 with C language.

Approximate Iceberg Cube on Heterogeneous Dimensions 91

Fig. 3. Synthetic network
structure

Table 1. Statistics of synthetic networks

Network Node type Edge type Node size/type

1 50 80 10K

2 50 80 15K

3 50 80 20K

4 50 80 25K

5 50 80 30K

6.1 Datasets

DBLP Network. The network [13] includes fours types of nodes, Paper, Author,
Conference and Term. Four types of edges exist, i.e., Write relation between
authors and papers, Publish relation between papers and conferences and Belong
relation between papers and terms representing the papers have the terms as key
contents. It contains 8,340 authors, 5,000 papers, 4,729 terms and 37 venues.
There are 13,351 edges of Write, 5,000 edges of Publish, and 32,540 edges of
Belong.

Synthetic Networks. To study the scalability of our solutions, we generate
a collection of synthetic networks with size varying from 500 K to 1.5 M. The
Densities of networks are set to |E|

|V | = 2. The statistics of synthetic networks
are shown in Table 1. The synthetic networks are generated in two steps. First,
we generate k types of nodes, and each type of nodes have m nodes. Second, we
randomly select a node type Ti from Q and another node type Tj from T \ Q,
then construct an edge type between Ti and Tj . Insert Tj into Q. Repeat this
process until |Q| = n. For each type of edges, randomly select Density · km

n pairs
of nodes to insert edges. The structure of networks is shown in Fig. 3, where a
node represents a node type and an edge represents an edge type.

6.2 Experiments on DBLP Dataset

Parameters. We evaluate the optimal algorithm by τ = 1, and the approximate
algorithms by τ = 0.8, 0.9. Aggregate functions are set to ψ = MAX and ϕ =
COUNT (V). Three case studies are conducted, given (a) an iceberg threshold
θ; (b) a set of meta-paths. The three queries are shown as follows:
Query 1. (a) θ = 15; (b) meta-paths:
(1) P1 = A − P − A; (2) P2 = V − P − V ; (3) P3 = T − P − T ;
(4) P4 = P − A − P ; (5) P5 = P − V − P ; (6) P6 = P − T − P .
Query 2. (a) θ = 100; (b) meta-paths:
(7) P7 = A − P − V − P − A; (8) P8 = A − P − T − P − A;
(9) P9 = V − P − A − P − V ; (10) P10 = T − P − A − P − T ;
(11) P11 = T − P − V − P − T ; (12) P12 = V − P − T − P − V .
Query 3. (a) θ = 100; (b) meta-paths: meta-paths (1)∼(12).

92 D. Yin et al.

Fig. 4. Optimal iceberg cube of on DBLP network.

Effectiveness Evaluation. x-axis represents the iceberg cube including: type
of aggregate nodes and meta-path. y-axis shows the aggregate values(AGG).

Optimal Algorithm. Figure 4(a) shows the iceberg cube of query 1. There are
five cuboids above threshold θ. Three of them are paper nodes, for the papers are
the central core of the networks. The paper cuboid based on meta-path P −V −P
has the highest AGG 700, followed with AGG 648 by P −T −P . The meta-path
P − A − P has small AGG on papers. Papers are more similar on their venues
and terms than authors. Every venue publishes hundreds of papers every year.
Plenty of papers on similar topics are published.

Optimal Algorithm. Figure 4(b) shows the optimal iceberg cube of query 2.
The AGG of top-3 cuboids are all beyond 1200. Followed by two cuboids with
2-length meta-path, whose AGG decrease sharply. The top 2 AGG illustrates
that the number of authors who published papers with similar topics in the
same venues is huge. Meanwhile, the top 3th AGG states that papers in the
same venues have similar terms. The authors correspond with T −P −A−P −T
means that there are 113 terms at most, which are used in the papers of the
same authors.

Figure 4(c) gives the optimal iceberg cube of query 3. It is obvious that the
cuboids with longer meta-path have higher AGG. When the path length is 1, for
example P −A−P , two papers are partitioned into one group when they must be
written by the same authors. When the path length is more than 1, for example
A − P − V − P − A which represents the authors of the papers published in the
same venues are similar. More path instances are found by longer meta-paths.

Approximate Algorithm. We set the round of random walk to 20. Figures 5
and 6 display the iceberg cube by approximate algorithm with τ = 0.9 and 0.8,
respectively. Approximate algorithm with smaller τ could get iceberg cube with
higher AGG. The algorithm with larger τ could produce more accurate results.

Figures 5(a) and 6(a) give the iceberg cube of query 1. Compared with opti-
mal algorithm, the approximate algorithm could get iceberg cube with larger
AGG, for the similarities based on meta-paths are relaxed by τ . The smaller τ
is, the more similar of nodes. Figures 5(b) and 6(b) exhibit the iceberg cube of
query 2. When τ = 0.8, cuboid V enue, P (12) is output as an iceberg cuboid.
This is because approximate algorithm with smaller τ makes more nodes aggre-
gated together. Figures 5(c) and 6(c) show the approximate results of query 3.

Approximate Iceberg Cube on Heterogeneous Dimensions 93

Fig. 5. Approximate iceberg cube of τ = 0.9 on DBLP network.

Fig. 6. Approximate iceberg cube of τ = 0.8 on DBLP network.

The algorithms could get more iceberg cube when the number meta-paths
become larger. At the same time, the AGGs of iceberg cube increase greatly,
for the relaxed constrain in similarity. The sizes of groups in cuboids become
larger. Figure 6(c) shows the approximate algorithm with τ = 0.8 gets 1 more
iceberg cube.

Recall. Recall is defined as |Gc
Exp−p|

|Gc
Opt| , where Gc

Exp−p is the positive iceberg cube

produced by algorithms and Gc
Opt is the iceberg cube produce by optimal algo-

rithm. Figure 7 gives the recall of the optimal algorithms and the approximate
algorithms. In approximate algorithms, τ is set to 0.8 and 0.9. We can see the
three algorithms could find the whole iceberg cube in three queries.

Accuracy. Accuracy is defined as |Gc
Exp−p|

|Gc
Exp| , where Gc

Exp−true is the positive

iceberg cube produced by algorithms and Gc
Exp is the iceberg cube found by

algorithms. Figure 8 shows the accuracy of the optimal and approximate algo-
rithms. We can see the optimal algorithm and the approximate algorithm τ have
100 percent accuracy. The approximate algorithm τ = 0.8 produces negative ice-
berg cuboids in query 2 and 3.

Efficiency Evaluation. Runtime. The comparisons of runtime by optimal and
approximate algorithms are shown in Fig. 9. Both the optimal and approximate
algorithms take more time on query 3 than query 1 and 2. The approximate
algorithms cost much more time than the optimal one, since the approximate
algorithm computes the similarities by multiple random walks. Long meta-paths

94 D. Yin et al.

Fig. 7. Recall Fig. 8. Accuracy Fig. 9. Runtime

Fig. 10. Efficiency of pruning strategies on DBLP network

need long random walk. The approximate algorithm with smaller τ costs more
time, because more nodes are partitioned into the same groups when τ is small.
This will lead to more time consumption on approximate slice function.

Prune Efficiency. We demonstrate the runtime improvement of the pruning
strategy over optimal and approximate algorithms. Four partial versions of prun-
ing algorithms are evaluated respectively: (1) Optimal/Appro (τ = 0.8/0.9)
without pruning; (2) Optimal/Appro (τ = 0.8/0.9) with Prune 1; (3) Opti-
mal/Appro (τ = 0.8/0.9) with Prune 2; (4) Optimal/Appro (τ = 0.8/0.9) with
Prune 1 + 2.

Figure 10 shows the improvement of pruning strategy on optimal and approx-
imate algorithms. The original algorithms without any pruning cost the most
time. The pruning methods outperform significantly when approximate algo-
rithm with τ = 0.8 than τ = 0.9 and the optimal algorithm. By including
Prune 1 + 2, the approximate algorithm with τ = 0.8 costs about 40 s less
than with pruning, achieving 2 times faster. It implies the pruning methods
can indeed avoid some unnecessary computation. From Fig. 10(a) and (b) we
can see, Prune 2 has no effect on query 1 and 2, since there are no meta-paths
overlapped in query 1 and 2. The runtime of query 1 and 2 can further be reduced
by employing Prune 1. Prune 2 shows a clear advantage on runtime improve-
ment on query 3. For example, P2 = V − P − V can be pruned after eliminating
P9 = V − P − A − P − V from iceberg cube.

Approximate Iceberg Cube on Heterogeneous Dimensions 95

Fig. 11. Runtime of approximate algorithms on synthetic networks.

6.3 Scalable Experiments on Synthetic Networks

Parameters. We test the scalability of approximate algorithms. We set iceberg
threshold θ = 100 in the scalability tests. All the meta-paths on synthetic net-
works are generated automatically and as input. We repeat each query 10 times
and report the average runtime. The round of random walk is Nodesize/type

500 .

Experimental Results. Figure 11 compares the runtime with varying the size
of network. The run time of approximate algorithms increases with the size
of network enlarging. Pruning strategies perform better when τ is smaller. As
shown in Fig. 11(a), the approximate algorithm runs 2 times faster with Prune
1 + 2 than without any pruning. While in Fig. 11(b), the approximate algorithm
runs about 1.8 times faster. When the size of network increases to 30K×50, the
time costs reach up to 3000 s and 2500 s when τ = 0.8 and τ = 0.9, respectively.

7 Related Work

Iceberg Cube and Graph OLAP. Data cube has been widely researched in
data warehouse and OLAP [4]. Many researchers have contributed to developing
efficient cube materialization and iceberg query algorithms for traditional data-
bases [1,2,5]. Iceberg analysis on graphs has been under-explored due to the
absence of dimensionality in graph data. The iceberg cube query in large graphs
is first proposed by [7], which focuses on the iceberg nodes for which the aggrega-
tion of an attribute in their vicinities as above a given threshold. The first work
to place graphs in a rigid multidimensional and multi-level framework is [3]. The
aggregate dimension is the attributes of nodes. [19] follows [3] to study graph
cube in homogeneous networks. [16] proposes parallel graph cube over homo-
geneous networks. With a distinct focus, we defined the concept of aggregate
graphs on the heterogeneous dimensions and propose scalable solutions.

Graph Clustering. [20] proposes a method that summarizes the graphs based
on different partitioned regions. SNAP operations were introduced in [15,18].
All the nodes are homogeneous in terms of both attributes and relationships.
[11] proposes a model-based method for clustering heterogeneous information

96 D. Yin et al.

networks with different edge types and different attribute types. [17] displays a
cluster algorithm on multiple meta-paths over heterogeneous information net-
works. The above two papers focus on the clustering of networks, ignoring finding
the iceberg cube with higher aggregate values.

Heterogeneous Information Networks. [6] constructs the multi-type net-
works into star schema to rank nodes. [13] searches the top-k similar nodes by
meta-paths. [12] proposes a link prediction method. [9] measures the related-
ness between nodes with different types. [14] utilizes user guidance as seeds to
automatically learn the best meta-path for clustering. [8] investigates the entity
identification problem.

8 Conclusions

This paper introduces a novel concept, iceberg cube query in heterogeneous infor-
mation networks. Random walk is used to aggregate the nodes in heterogeneous
information networks for approximate computation. Efficient pruning strategies
are introduced for reducing search space. Experiments on real world and syn-
thetic data sets demonstrate the algorithms effective and efficient. Iceberg cube
can help users discover interesting results from networks.

Acknowledgement. This work is supported by National Grand Fundamental
Research 973 Program of China under grant 2012CB316200, National Natural Science
Foundation of China under Grant 61190115, 61173023 and 61532015.

References

1. Agarwal, S., Agrawal, R., Deshpande, P.: On the computation of multidimensional
aggregates. In: Proceedings of Very Large Database Conference, pp. 506–521. ACM
(1996)

2. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg
cubes. In: Proceedings of ACM SIGMOD International Conference on Management
of Data, pp. 359–370. ACM (1999)

3. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: towards online ana-
lytical processing on graphs. In: Proceedings of International Conference on Data
Mining, pp. 103–112. IEEE (2008)

4. Gray, J., Bosworth, A., Reichart, D.: Data cube: a relational aggregation operator
generalizing group-by, cross-tab, and sub-totals. In: Proceeding of IEEE Interna-
tional Conference on Data Engineering. IEEE (1996)

5. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing data cube efficiently.
In: Proceedings of ACM SIGMOD International Conference on Management of
Data, pp. 205–216. ACM (1996)

6. Ji, M., Han, J., Danilevsky, M.: Ranking-based classification of heterogeneous infor-
mation networks. In: Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1298–1306. ACM (2011)

Approximate Iceberg Cube on Heterogeneous Dimensions 97

7. Li, N., Guan, Z., Ren, L., Wu, J., Han, J., Yan, X.: gIceberg: Towards iceberg
analysis in large graphs. In: Proceedings of IEEE International Conference on Data
Engineering, pp. 1021–1032. IEEE (2013)

8. Shen, W., Han, J., Wang, J.: A probabilistic model for linking named entities
in web text with heterogeneous information networks. In: Proceedings of ACM
SIGMOD International Conference on Management of Data. ACM (2014)

9. Shi, C., Kong, X., Yu, P.S.: Relevance search in heterogeneous networks. In:
Proceedings of International Conference on Extending Database Technology,
pp. 180–191. ACM (2012)

10. Silva, A., Bogdanov, P., Singh, A.K.: Hierarchical in-network attribute compres-
sion via importance sampling. In: International Conference on Data Engineering,
pp. 951–962. IEEE (2014)

11. Sun, Y., Aggarwal, C.C., Han, J.: Relation strength-aware clustering of heteroge-
neous information networks with incomplete attributes. Proc. Very Large Data-
Bases Endowment 5(5), 394–405 (2012)

12. Sun, Y., Barber, R., Gupta, M.: Co-author relationship prediction in heteroge-
neous bibliographic networks. In: International Conference on Advances in Social
Networks Analysis and Mining, pp. 121–128. IEEE (2011)

13. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-k sim-
ilarity search in heterogeneous information networks. Proc. Very Large Databases
Endowment 4(11), 992–1003 (2011). ACM

14. Sun, Y., Norick, B., Han, J., Yan, X., Yu, P.S., Yu, X.: Integrating meta-path selec-
tion with user-guided object clustering in heterogeneous information networks. In:
Proceedings of ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1348–1356. ACM (2012)

15. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summariza-
tion. In: Proceedings of ACM SIGMOD International Conference on Management
of Data, pp. 567–580. ACM (2008)

16. Wang, Z., Fan, Q., Wang, H., Tan, K.-L., Agrawal, D., Abbadi, A.E., Pagrol:
parallel graph olap over large-scale attributed graphs. In: Proceeding of IEEE
International Conference on Data Engineering, pp. 496–507. IEEE (2014)

17. Yang, Z., Ling, L., David, B.: Integrating vertex-centric clustering with edge-centric
clustering for meta path graph analysis. In: Proceedings of ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining, pp. 1563–1572. ACM (2015)

18. Zhang, N., Tian, Y., Patel, J.M.: Discovery-driven graph summarization. In:
Proceeding of IEEE International Conference on Data Engineering, pp. 880–891.
IEEE, Piscataway (2010)

19. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and olap multidi-
mensional networks. In: Proceedings of ACM SIGMOD International Conference
on Management of Data, pp. 853–864. ACM (2011)

20. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. Very Large Database Endowment 2(1), 718–729 (2009)

Pre-computed Region Guardian Sets Based
Reverse kNN Queries

Wei Song1(B), Jianbin Qin1, Wei Wang1, and Muhammad Aamir Cheema2

1 The University of New South Wales, Sydney, Australia
{wsong,jqin,weiw}@cse.unsw.edu.au

2 Monash University, Melbourne, Australia
aamir.cheema@monash.edu

Abstract. Given a set of objects and a query q, a point p is q’s reverse
k nearest neighbour (RkNN) if q is one of p’s k-closest objects. RkNN
queries have received significant research attention in the past few years.
However, we realise that the state-of-the-art algorithm, SLICE, accesses
many objects that do not contribute to its RkNN results when run-
ning the filtering phase, which deteriorates the query performance. In
this paper, we propose a novel RkNN algorithm with pre-computation
by partitioning the data space into disjoint rectangular regions and con-
structing the guardian set for each region R. We guarantee that, for
each q that lies in R, its Rk′NN results are only affected by the objects
in R’s guardian set, where k′ ≤ k. The advantage of this approach is
that the results of a query q ∈ R can be computed by using SLICE on
only the objects in its guardian set instead of using the whole dataset.
Our comprehensive experimental study on synthetic and real datasets
demonstrates the proposed approach is the most efficient algorithm for
RkNN.

Keywords: RkNN · Pre-computation · Guardian Set · SLICE

1 Introduction

Reverse k nearest neighbour queries (RkNN) are classified into bichromatic
RkNN and monochromatic RkNN .

Bichromatic RkNN. Given a set of facilities F , a set of users U and a query
q ∈ F , the Bichromatic RkNN (denoted as biRkNN) returns every user u ∈ U
for which q is one of its k-closest facilities.

Example : For a given McDonald’s q, the people for which q is one of their
k-closest McDonald’s restaurants are its biRkNN . These people are its potential
customers and can be attracted by targeted marketing. In this paper, the objects
providing some service (e.g., McDonald’s, supermarkets) are called facilities and
the objects that use the facilities (e.g., residents, customers) are called users.

Monochromatic RkNN. Given a set of facilities F and a query q ∈ F , the
Monochromatic RkNN (denoted as monoRkNN) returns every facility f for
which q is one of its k-closest facilities.
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 98–112, 2016.
DOI: 10.1007/978-3-319-32049-6 7

Pre-computed Region Guardian Sets Based Reverse kNN Queries 99

Example : Consider the example of hospitals. Given a hospital q, its monoRkNN
are the ones for which q is one of their k nearest hospitals. Such hospitals may
seek assistance (e.g., blood, staff) from q in case of emergencies.

Like most of the existing work on RkNN , we address the problem in a
Euclidean space. Our proposed algorithm can by applied to both monoRkNN
and biRkNN . For clear presentation, we focus on the biRkNN unless mentioned
specifically.

As shown in a recent experimental study [14], SLICE is the state-of-the-
art RkNN algorithm. Like most other RkNN algorithms, SLICE consists of two
phases namely filtering phase and verification phase. SLICE’s filtering phase
dominates the total query processing cost [3]. We observe that SLICE needs to
access many unnecessary facilities in its filtering phase and this adversely affects
the query performance.

Motivated by the above observation, in this paper, we propose a solution
based on pre-computation that divides the whole data space into a set of disjoint
rectangular regions. Given a value k, for each rectangular region R, we compute
a set of objects Fg ⊆ F such that the results of every Rk′NN query q that lies
in R (and k′ ≤ k) can be computed using only the facilities in Fg. The set of
objects Fg is called the guardian set of R and a facility f ∈ Fg is called a guardian
facility of R. During the query processing time, we determine the region R that
contains q and then use SLICE on its guardian set instead of the whole dataset
to compute the results. Since the size of guardian set is significantly smaller
than the whole dataset, this approach significantly improves the performance as
demonstrated in our experimental study.

We remark that although there exists other pre-computation based
approaches, our approach is unique in that its pre-computation does not depend
on the set of users. For example, the technique proposed in [7] pre-computes,
for each user ui, its k-th closest facility fk and creates a circle Ci centred at ui

with radius dist(ui, fk). All such circles are indexed by an R-tree and a Rk′NN
query q for which k′ ≤ k is answered using the circles that contain q. A dis-
advantage of such approach is that any change in the set of users U requires
updating or reconstructing the index. On the other hand, our guardian sets do
not depend on the set of users U and do not require update with the change in U .
This is a desirable property especially because in many real world applications
the updates in the locations of facilities (e.g., restaurants, fuel stations) is less
common as compared to the locations of users (e.g., people, cars).

Next, we summarise our contributions.

– To the best of our knowledge, we are the first to propose a pre-computation
based approach that does not depend on the set of users. Our pre-computation
significantly reduces the number of facilities to be accessed for SLICE and
improves the query processing cost. The proposed index can be used to answer
any Rk′NN query for which k′ ≤ k.

– Our comprehensive experimental study on real and synthetic datasets demon-
strates that our algorithm significantly improves SLICE in query processing
cost and outperforms all existing RkNN algorithms.

100 W. Song et al.

The rest of the paper is organized as follows. We introduce related works in
Sect. 2. Section 3 presents our techniques constructing rectangular region based
guardian set Fg. We also present our method partitioning universe to many small
regions and prove each region’s guardian set Fg can be used flexibly for any k′ s.t.
k′ ≤ k. Section 4 briefly recalls SLICE to do the experimental study in Sect. 5.
We conclude this paper in Sect. 6.

2 Related Works

Six-Regions [2] is a region-based technique proposed for RkNN . It consists
of two phases, namely Filtering phase and Verification phase. In filtering
phase, Six-Regions centres at query q partitioning universe into six regions, each
of which has a subtending angle of 60◦. In each region, it computes q’s k-th
nearest neighbour NNk and construct an arc by centering at q with a radius of
dist(q,NNk). In verification phase, each u locates above the arc in its region as
shown u in P2 (Fig. 1(a)) cannot be a result and only users lie under the arc of
its region can be returned as candidates to be verified.

Influence Zone [1] is a half-space based technique proposed for RkNN ,
denotes InfZone. It keeps constructing perpendicular bisector between each
facility fi and q and halving the universe to two parts. The half where fi locates
is pruned by fi as any u in this area must have closer distance to fi than to q.
For areas pruned by at least k facilities (shaded area in Fig. 1(b)) cannot return
any result. InfZone guarantees every u in the unpruned area is a result. Such
unpruned area is called Influence Zone.

SLICE [3] is the most efficient algorithm before our work for RkNN , which is
integrated in our query processing algorithm in this paper. We introduce SLICE
in detail in Sect. 4.

(a) Six regions (b) Influence zone

Fig. 1. Related works

3 Techniques

As motivated by [1] that given a query q and a k, we may compute a set of
facilities that q’s RkNN is only affected by such facilities. Similarly, given a

Pre-computed Region Guardian Sets Based Reverse kNN Queries 101

rectangular region R and k, we compute such a set Fg of facilities that for any
q ∈ R, all facilities affecting q’s RkNN are contained in Fg and the rest facilities
f /∈ Fg cannot affect any q’s RkNN . As for any q ∈ R, whose RkNN results
are only guarded by R’s Fg. We define Fg guardian set and fg ∈ Fg guardian
facility w.r.t. rectangular region R.

Therefore, by partitioning U into many small rectangular regions R s.t for
any two Ri, Rj(i�=j) ∈ U , we have Ri ∩ Rj = ∅ and

⋃
Ri=1...n = U , we can

compute and obtain every guardian set Fgi of Ri.
Next, we present our techniques to compute R’s guardian set Fg w.r.t.the

value of k.

3.1 Computing Guardian Set of a Rectangular Region

First, we give some definitions and Lemmas.

Definition 1. Given a set F of facility f , a rectangular region R and k, the
guardian set Fg of R consists of a few facilities that for any q ∈ R, q’s RkNN
results are only affected by f ∈ Fg. For any facility f /∈ Fg, it does not affect q’s
RkNN result. Such f ∈ Fg is guardian facility, denote fg.

Definition 2. For any f locates outside R, we draw the line segment with min-
imum distance from f to R joining R at v. We define f is owned by its nearest
side L of R and f is in the range of L if v lies on L. If v is a vertex of R, we
define f is owned by R’s two sides intersecting at v and f is out of range of any
R’s side. As shown f1, f2 in Fig. 2(a).

(a) Facility ownership (b) Lemma1 proof1 (c) Lemma1 proof2

Fig. 2. Definition 2 and Lemma 1 proof

Lemma 1. For any f locates outside R and owned by only one side L of R, we
construct a combined curve C consists of: (i) sub-curve1: A partial parabola
in the range of L constructed by f as the focus and L as the directrix; (ii) sub-
curve2: Two radials that are parts of perpendicular bisectors between f and two
vertices of L respectively toward directions that are out of L’s range. C divides
universe into two parts, for any user locates in the same area A with f , it has a
closer distance to f than to any point in R and we define: f prunes A.

102 W. Song et al.

Proof (Lemma 1). We prove Lemma 1 by considering two cases:
Case 1: For any p lies on L, any u locates in the same area A with f has

smaller distance to f than to p:
Case 1.1: For any u lies in A within the range of L (as shown in Fig. 2(b)), we

set the min distance mindist(u,L) = |up|, where up is the line segment passing
c2 at i and p is the intersection between up and L. According to the property of
parabola, |pi| = |if |, then |up| = |ui| + |if |. By triangle inequality, |up| > |uf | .

Case 1.2: For u lies in A but is out of L’s range (shown in Fig. 2(c)), the
minimum distance from u to L is |uv1|, where v1 is the vertex of L locates at the
same side with u w.r.t.f . As u is in the half dominated by f , |uf | < |uv1| ≤ |up|.

Case 2: For any p lies in R or on R’s sides (exclude L), any u locates in A
has smaller distance to f than to p:

Case 2.1: It is easy to show for any u lies in A within the range of L the triangle
inequality still holds by changing |pi| = |if | to |pi| > |if |, then |up| > |uf |.

Case 2.2: For u in A locates out of range of L (in Fig. 2(c)), as mindist(u,R) =
|v1u| < |up|, and |uf | < |v1u|, we have |up| > |uf |.
Lemma 2. For any f locates outside R and owned by R’s two sides L1, L2,
we construct its combined curve C consists of: (i) Sub-curve1: Two partial
parabolas in the range of L1 and L2 constructed by f as the focus and L1,L2 as
directrixes, respectively; (ii) Sub-curve2: Three partial perpendicular bisectors
between f and three vertices of L1,L2 respectively toward directions that are out
of range of L1,L2. C divides universe into two parts, for any u lies in the same
area A with f , u has a closer distance to f than to any point p in R and we
define: f prunes A (Fig. 3(a)). (note that two perpendicular bisector radials at
the two ends of C do not necessary both exist due to location between R and f .)

(a) Lemma2 (b) Pruning rule 1

Fig. 3. Lemma 2 and Pruning Rule 1

With Lemmas 1 and 2, we compute R’s guardian set Fg by traversing all
f ∈ F and keep fg whose pruning area is pruned by other facilities at most k−1
times as a guardian facility.

Apparently, this algorithm is costly that every accessed facility f will be
checked by every existed facility, costing a time complexity of O(|N |2), where
|N | is the total number of facilities. To avoid such problem, we propose two
pruning rules to improve the efficiency.

Pre-computed Region Guardian Sets Based Reverse kNN Queries 103

Pruning Rule 1. For any f ∈ F owned by only one side L of R and locates
outside R, we find the vertex vg on the combined curve Cfgi of current guardian
facility fgi s.t. vg

– is an intersection between other guardian facility’s combined curve and Cfgi

or between Cfgi and universe boundary;
– lies at the same side with f w.r.t. L;
– is pruned exactly k-1 times and has the farthest distance to L or L’s extension

if vg is out of L’s range;
if dist(L, f) > 2dist(vg, L), f has no influence on constructing R’s guardian
set and can be pruned.

Proof. As Fig. 3(b) shows, with f1 and f2 existed, the shaded area has been
pruned by f1 and f2 jointly and v2 is the vertex described in Pruning Rule 1. As
dist(L, f3) > 2dist(v2, L), it guarantees the area pruned by f3 is pruned by f1
and f2 jointly, therefore, f3 is pruned.

Pruning Rule 2. For facility f fails meeting Pruning Rule 1, we compute its
combined curve Cf and keep each intersection on Cf that is:

– intersection between Cf and combined curves of other guardian facilities;
– intersection between Cf and universe boundaries;
– intersection that is joint point between different sub-curves of Cf .

If all such intersections on the Cf have been pruned by other facilities for at least
k times, f has no effect on constructing R’s guardian set and can be pruned.

Proof. We prove it by contradiction. Assume f and its combined curve Cf meet
statement of Pruning Rule 2 but cannot be pruned, it has at least a part Ci on
Cf cannot be pruned and at least existing two intersections that are two vertices
of Ci pruned by other facilities for at most k-1 times, which contradicts with the
statement of Pruning Rule 2. Therefore, Pruning Rule 2 holds.

Algorithm. We compute R’s guardian set by indexing all facilities in a R-tree
and accessing each node in an ascending order of its minimum distance to R. For
each f that is not pruned by Pruning Rule 1, its combined curve Cf is created.
Then we compute intersections between Cf and existed combined curves and
apply Pruning Rule 2 to prune more existed guardian facilities. We update the
temporary guardian set by removing facilities that meet Pruning Rule 2 and
adding f if it is not pruned. The algorithm finishes when all nodes are accessed.

3.2 Partition Universe

Before the computation in Sect. 3.1, we partition the universe U to small rec-
tangular regions R. It is not avoidable that each R contains facilities. However,
with more facilities contained inside, more guardian facilities locate outside of R
are likely to be pruned when q is given. Therefore, we set a threshold Tf as the

104 W. Song et al.

Algorithm 1. ConstructGuardianSet(R,F, k)
Input: Rectangular region R, a set F of facilities, value k
Output: R’s Guardian set
initialise Fg as ∅;1

insert root of R-tree in a min-heap h; /* we access f in an ascending order2

of mindist(R,f) */;
while h is not empty do3

deheap an entry e;4

if e is not a facility then5

Put e’s child entry in h;6

else7

if f cannot be pruned by pruning 1 then8

Compute Cf w.r.t. R;9

UpdateExistedGuardianSet(Fg,f ,k,Cf);10

Return Fg;11

maximum number of facilities each R contains when partitioning to reduce the
number of such guardian facilities that are possibly pruned in query process.

We partition U in a kd-tree [6] liked manner. Specifically, a big region Ru is
split into four disjoint child regions Rl if Ru contains more than Tf facilities. For
each region partitioned, we first find the median x-coordinate of all facilities in
Ru and partition Ru into two smaller intermediate regions by the median. Then
we partition two intermediate regions into four smallest ones following the same
way by focusing on their y coordinates instead. Such procedure is conducted
recursively until every region meets the threshold.

As we do not consider those facilities locate inside R when computing Fg of
R in Sect. 3.1 and they are likely to affect q’s RkNN . Therefore, we add all of
them to R’s guardian set after computing guardian facilities of R in case missing
facilities that may affect q’s RkNN results. Such facilities are also guardian
facilities w.r.t.R.

Theoretical Analysis: [How many regions to be computed for
guardian sets] As each time a region Ru is split into four smaller regions Rl if
it contains at least |Tf | + 1 facilities. Therefore the whole universe has at most
log4(

|N |
|Tf |+1) + 1 level, where |N | is the total number of facilities. At the lowest

level that is level log4(
|N |

|Tf |+1)+1, there is no more region to be split. As a result,

the total number of regions to be computed for guardian sets is 4
log4(

|N|
|Tf |+1)+1

,
which is 4 |N |

|Tf |+1 .

3.3 Region R’s Guardian Set w.r.t k is Compatible for k′ s.t.
k′ ≤ K

Next, we prove R’s guardian set of k can be used flexibly on any Rk′NN s.t.
k′ < k.

Pre-computed Region Guardian Sets Based Reverse kNN Queries 105

Algorithm 2. UpdateExistedGuardianSet(Fg, f, k, Cf)
Input: Existing Guardian Set Fg, new facility f , value k, combined curve Cf

Output: Updated Guardian Set Fg

for each fg ∈ Fg do1

compute and keep intersections between Cf and Cfg ;2

for each fg ∈ Fg do3

update pruned times of intersections on Cf and Cfg;4

if fg can be pruned by Pruning Rule 2 then5

remove fg from Fg;6

if f is not pruned by Pruning Rule 2 then7

Put f in Fg;8

Return Fg;9

Lemma 3. Given a rectangle region R, R’s guardian set Fgk′ of k′ is a subset
of its guardian set Fgk of k, where k′ < k.

Proof. We prove Lemma 3 by contradiction. Assume there is at least one facility
foutside excluded from Fg that is R’s guardian facility of k′, where k′ < k.
Therefore, the area pruned by foutside (denote Afoutside) holds:

((
⋃

Afgk) ∩ Afoutside) ⊂ Afoutside (1)

where fgk is the guardian facility of R and whose partial combined curve con-
tributes to the boundary of unpruned area of R w.r.t.k. However, as foutside is
excluded from Fg of R, according to Lemmas 1 and 2, ((

⋃
Afgk) ∩ Afoutside) =

Afoutside, which contradicts with Eq. 1, then Lemma 3 holds.

By Lemma 3, we mark facilities to each R’s Rk′NN guardian set they are
included. When given q, we retrieve R’s guardian set w.r.t. k′ (k′ ≤ k) to avoid
accessing more facilities that have no influence on R, then start processing query
by SLICE.

4 Query Processing

With guardian sets, given a query q and k, we locate the region R where q locates
and retrieve its guardian set w.r.t. k. Then SLICE starts processing query.

Filtering Phase. Given a query q and k, SLICE partitions the universe U
into several regions, each of which has same subtending angle. In [3], the best
partition number is 12 but it is 9 in our algorithm according to our preliminary
experimental study.

Figure 4 shows an example where the space is divided into 9 regions. Consider
the perpendicular bisector between f1 and q in region P , f1 contributes two arcs
in P , namely upper arc U1(with radius rU) and lower arc L1 (with radius rL).

106 W. Song et al.

Normally, every f constructs at least a lower arc to each region that its perpen-
dicular bisector Lfq passes and it will contribute an upper arc for each region
that Lfq passes and the max subtending angle between Lfq and such region is
smaller than 90◦.

In filtering phase, each partitioned region maintains a k-th lower arc and a
k-th upper arc dynamically, for each f whose lower arcs are lower than k-th
upper arcs in corresponding regions will be kept as a significant facility of such
regions to verify users, otherwise it is discarded (like f2 is discarded in P in
Fig. 4). After all facilities are accessed, the filtering phase finishes.

Fig. 4. SLICE filtering

Verification Phase. All users u are indexed in a R-tree and accessed in the
ascending order of their distances to q. For u lies above the k-th upper arc of
its region is discarded and every u lies under the k-th lower arc is returned. The
remain users will be checked by significant facilities of this region.

Algorithm 3. RkNN(IndexFile, q, k)
Input: IndexFile, query point q,value k
Output: RkNN results
locate q’s region R;1

retrieve R’s guardian set Fgw.r.t. k;2

invoke SLICE with Fg;3

return RkNN results;4

5 Experimental Study

5.1 Experimental Setup

We compare our algorithm with InfZone [1] and SLICE [3] which are the latest
algorithms for RkNN and SLICE is also the most efficient algorithm before our
pre-computed one. All algorithms are implemented in C++ and the experiments
are run on a 64-bit PC with Intel Xeon 2.66 GHz quad CPU and 4 GB memory
running Linux.

Pre-computed Region Guardian Sets Based Reverse kNN Queries 107

We use the synthetic and real datasets in experiments. The real dataset
consists of 175,812 points in North America and we randomly divide it into
two sets of equal size. One of them is facility set, the other one is user set. For
synthetic datasets, each dataset consists of 50,000, 100,000, 150,000, 200,000
points following either Uniform or Normal distribution and the facility sets, user
sets are obtained like real dataset. The default synthetic dataset contains 100,000
points following Normal distribution unless mentioned otherwise. For k, we set
it from 1 to 25 and make 10 at the default value. The page size for R-tree used
in our experiment is 4096 bytes.

As big indices are kept in disk practically, I/O cost cannot be avoided when
processing query. Therefore a penalty of I/O will be charged for each communi-
cation between disk and CPU. In our study, we estimate the I/O cost [15], [16]
by 0.1ms which is the lowest time cost at the moment. We calculate the total
time cost of each query in experiments by:

T = CostI/O ∗ PI/O + CostCPU (2)

where CostI/O, CostCPU are I/O cost, CPU time cost and PI/O is the I/O
penalty. Through experimental study, our algorithm runs times faster than Inf-
Zone and improves SLICE performance significantly. Although [14] claims the
I/O cost is highly system specific, we will prove our algorithm is the most effi-
cient whatever I/O penalty charged and our algorithm outperforms others much
more largely when higher I/O cost charged.

5.2 Evaluating Query Performance

In this section, we compare performance of three algorithms on both monoRkNN
and biRkNN . Three algorithms InfZone, SLICE and our pre-computed one
are shown as INF,SLICE and PRE respectively. The number of partition for
SLICE and PRE are 12 and 9 based on [3] and our preliminary experiments (see
Fig. 11(a)). The experimental results shown in this sub-section is an average cost
for one query in terms of total time (in millisecond) and I/O.

Effect of Data Size: In Figs. 5 and 6, we study the effect of data size for both
monoRkNN and biRkNN . For monoRkNN , Fig. 5(a) and (b) show the average
total time and I/O cost. In biRkNN , Fig. 6(a) and (b) show average total time
and I/O cost for both filtering and verification phases.

 0

 2

 4

 6

 8

 10

 12

50000 100000 150000 200000

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

To
tal

 Ti
me

 / m
se

c Total Time

(a) Number of facilities

 0

 2

 4

 6

 8

 10

50000 100000 150000 200000

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

I
O

Total I/O

(b) Number of facilities

Fig. 5. Monochromatic Queries: Effect of data set size (Normal Distribution)

108 W. Song et al.

In Fig. 5(a), PRE performs best as only guardian facilities fg of the region R
where query locates are accessed. SLICE starts with considering all facilities in
filtering phase, costing more time. InfZone costs the most time as every facility
to be pruned needs to compute with every vertex of Influence Zone, which is
time-consuming.

Figure 5(b) demonstrates PRE costs least I/O as all guardian facilities of a
region can be indexed in one disk page and can be located by a small constant
number of I/Os. As expected, the I/O cost of SLICE is slightly larger than
InfZone’s as InfZone prunes a larger area.

 0

 2

 4

 6

 8

 10

50000 100000 150000 200000

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

T
o

ta
l T

im
e

/ m
se

c
 Verification

Pruning

(a) Number of facilities and users

 0

 5

 10

 15

 20

50000 100000 150000 200000

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

IO

Verification
Pruning

(b) Number of facilities and users

Fig. 6. Bichromatic Queries: Effect of data set size (Normal Distribution)

Figure 6 shows results for biRkNN . For INF and SLICE, the major cost in
Fig. 6(a) is filtering phase whereas PRE which improves the filtering phase by
one time faster by pre-computing guardian sets narrows the difference between
two phases.

 0
 10
 20
 30
 40
 50
 60
 70

1 5 10 15 20 25

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

T
o

ta
l T

im
e

 /
m

se
c

 Total Time

6 7

8

9

10

10

6 7 9 10 11 124 4 4 4 4 4

(a) Varying k (Real Data)

 0
 10
 20
 30
 40
 50
 60
 70

1 5 10 15 20 25

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

T
o

ta
l T

im
e

/ m
se

c
 Total Time

6 6

7

8

9

10

6 7 8 9 10 114 4 4 4 4 4

(b) Varying k (Normal Distribution)

Fig. 7. Monochromatic Queries: Effect of k

Due to space limitations, in the rest part, we focus on the total time cost
(I/O cost included) of algorithms. The numbers displayed above the bars
correspond to the number of I/Os unless mentioned otherwise.

Effect of k. In Figs. 7 and 8, we study the effect of k on monoRkNN and
biRkNN . The performance of InfZone deteriorates rapidly with the increasing
k as time complexity is O(km2) and m increases as k increases, where m is the
number of influence zone’s vertices. PRE still performs best with least cost on
both total time and I/O.

Figure 8(b) shows results for normal distribution using lines to demonstrate
clearly how algorithms scale with the increasing k. Under our experimental set-
ting, with accessing less facilities in filtering phase, PRE absolutely outperforms
other algorithms.

Pre-computed Region Guardian Sets Based Reverse kNN Queries 109

 0
 10
 20
 30
 40
 50
 60
 70
 80

1 5 10 15 20 25

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

INFSLICE
PRE

To
tal

 Ti
me

 / m
se

c Verification
Pruning

10 12 13

14

16

17

10 12 14 16 17 199 9 10 10 11 11

(a) Varying k (Real Data)

 0

 2

 4

 6

 8

 10

1 5 10 15 20 25

To
tal

 Ti
me

 / m
se

c INF
SLICE

PRE

(b) Varying k (Normal Distribution)

Fig. 8. Bichromatic Queries: Effect of k

 0

 2

 4

 6

 8

 10

(U,U) (R,U) (N,U) (U,R) (R,R) (N,R) (U,N) (R,N) (N,N)

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

INF SLICE
PRE

Tot
al T

ime
 / m

sec

Verification
Pruning

12 13 12 11 13 13 11 13 12

13 14 13 12 14 14 12 14 14

10 10 10 9 10 10 9 10 10

Fig. 9. Effect of Data Distribution

Effect of Data Distribution: In Fig. 9, we study the effect of data distribu-
tion on algorithms. Distribution of the facilities and users is shown as (Df ,Du)
where Df and Du correspond to distributions of facilities and users. U, R and N
correspond to Uniform, Real and Normal distribution respectively. In this exper-
iment, the synthetic datasets contain the same number of points as real dataset.
Figure 9 demonstrates our algorithm outperforms others whatever combination
of data distributions used.

 0

 2

 4

 6

 8

 10

 12

25% 50% 100% 200% 400%

INF SLICE
PRE INF SLICE

PRE INF SLICE
PRE INF SLICE

PRE INF SLICE
PRE

Tot
al T

ime
 / m

sec
 Verification

Pruning

11 11 12 13 15

12 12 13 14 17

8 9 9 11 14

Fig. 10. users = x%facilities

Effect of Number of Users Relative to Number of Facilities: In this
experiment, we fix the number of facilities to 100,000 and change the number
of users to see the effect of change in the relative size of the two data sets.
Figure 10 shows that all three algorithms’ verification phases cost more with
increasing number of users. PRE’s filtering phase is much efficient making its
total time cost dominated by verification phase. For the rest two, filtering phase
dominates the total time cost as it is still costly. Overall, PRE cost least I/O
and runs much faster than InfZone and SLICE.

Total Time Cost and I/Os. To clearly demonstrate our pre-computation
algorithm change under different partitions, we process 500 queries and collect
the total I/O and total time cost. Figure 11(a) shows the total I/O cost for
500 queries and the number above each bar is the total time cost in second.

110 W. Song et al.

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000

6 9 12 15 18

I
O

Experimental

0.9
9

0.8
8

1.0
5

0.9
8

1.0
7

(a) Number of partitions

 0

 50000

 100000

 150000

 200000

 250000

25000 50000 75000 100000

#In
de

x r
eg

ion
s

Experimental
Theoretical

62
/49 64

/78 62
/11

4

65
/19

7

(b) Number of facilities

Fig. 11. Evaluation on Pre-computation

We conclude that when partition number is 9, our algorithm reaches a best
performance as when partition number is smaller than 9, verification phase takes
much time due to only a small area pruned by filtering phase. Although its
pruning power becomes stronger with larger partition number, the filtering phase
is still costly and affects the performance.

 0

 10000

 20000

 30000

 40000

 50000

1 5 10 15 20 25

INFSLICE
INFSLICE

INFSLICE
INFSLICE

INFSLICE
INFSLICECP

U
Tim

e d
iff

(ot
he

r -
 P

RE
) /

ms
ec

 CPU differnece

11
8.5

7

66
6.3

2

31
14

.44 83
44

.94 17
69

5.8
1 33

13
0.6

4

39
6.0

6

47
3.7

7

56
8.1

2

64
3.9

3

73
1.6

3

81
0.5

7

(a) k

 0

 1000

 2000

 3000

 4000

 5000

1 5 10 15 20 25

INFSLICE
INFSLICE

INFSLICE
INFSLICE

INFSLICE
INFSLICE

I/O
 di

ffe
re

nc
e /

 ot
he

r -
 P

RE
 I/O differnece

23
4 72

6 11
29 14

47 17
49 20

45

42
3 11

00 17
08 21

67 26
76 30

70

(b) k

Fig. 12. CPU and I/O difference

5.3 Evaluating Pre-computation Algorithm

Number of Pre-computed Rectangular Regions. Figure 11(b) shows the
number of regions computed practically. Experimental results are under our
theoretical analysis in Sect. 3.2, demonstrating the number of regions computed
practically is bounded by our theoretical analysis. The number inside each bar
is the average number of guardian facilities in the guardian set followed by the
size of index file in MB.

5.4 PRE is Efficient Whatever I/O Penalty Charged

Following Eq. 2, let total time of PRE : TPRE = CostPRE.I/O ∗ PI/O +
CostPRE.CPU . T ′ denotes total time cost of any other algorithm: T ′ = Cost′I/O ∗
PI/O + Cost′CPU . The total time difference between other algorithm and PRE
is δ = T ′ − TPRE :

δ = (Cost′I/O − CostPRE.I/O) ∗ PI/O + (Cost′CPU − CostPRE.CPU) (3)

Then we prove PRE is the most efficient algorithm processing RkNN whatever
I/O penalty charged.

Proof: Proving PRE is the most efficient is equivalent to prove δ > 0, i.e.

PI/O >
CostPRE.CPU − Cost′CPU

Cost′I/O − CostPRE.I/O
(4)

Pre-computed Region Guardian Sets Based Reverse kNN Queries 111

Fig. 12(a) shows CPU time cost difference and Fig. 12(b) shows I/O difference by
using corresponding cost of other algorithm minus ours. To clearly show results,
we collect data by processing 500 queries.

As shown in Fig. 12(a) and (b), PRE cost least I/O and CPU time, which
makes right part of inequality 4 become small than 0, as the I/O penalty is
positive, the inequality always holds whatever is the I/O cost. As a result, PRE
outperforms other RkNN algorithms no matter what I/O penalty charged.

Total Time Difference with Larger PI/O. As Eq. 3 is a δ’s function of PI/O,
which increases monotonically with the increasing I/O penalty. Thus, PRE will
outperform other algorithm by a larger margin with larger I/O penalty charged.

According to [14]’s claim that SLICE is the most efficient RkNN algorithm
before us, we conclude that PRE outperforms all existed RkNN algorithms.

6 Conclusion

In this paper, we propose a novel pre-computed RkNN algorithm by computing
guardian set for each disjoint rectangular region R in universe and guarantee that
for each possible query q in R, all its Rk′NN results are only affected by those
facilities in guardian set, where k′ ≤ k. Through pre-computation, we reduce the
number of facilities to be accessed from the whole facility set to only tens before
processing query by SLICE. The extensive experimental study demonstrates our
algorithm outperforms all existed algorithms on both total time and I/O cost.

Acknowledgements. Research of Wei Wang is supported by ARC DP130103401 and
DP130103405. Muhammad Aamir Cheema is supported by ARC DE130101002 and
DP130103405.

References

1. Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: efficiently processing
reverse k nearest neighbors queries. In: 27th International Conference on Data
Engineering (ICDE), pp. 577–588. IEEE (2011)

2. Wu, W., Yang, F., Chan, C.Y., Tan, K.L.: Finch: evaluating reverse k-nearest-
neighbor queries on location data. Proc. VLDB Endow. 1(1), 1056–1067 (2008)

3. Yang, S., Cheema, M.A., Lin, X., Zhang, Y.: Slice: reviving regions-based pruning
for reverse k nearest neighbors queries. In: 30th International Conference on Data
Engineering (ICDE), pp. 760–771. IEEE (2014)

4. Tao, Y., Papadias, D., Lian, X.: Reverse kNN search in arbitrary dimensionality. In:
Proceedings of the Thirtieth International Conference on Very Large Data Bases.
vol. 30, pp. 744–755. VLDB Endowment (2004)

5. Stanoi, I., Agrawal, D., El Abbadi, A.: Reverse nearest neighbor queries for
dynamic databases. In: ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pp. 44–53 (2000)

6. Güting, R.H.: An introduction to spatial database systems. Int. J. Very Large Data
Bases 3(4), 357–399 (1994)

112 W. Song et al.

7. Korn, F., Muthukrishnan, S.: Influence sets based on reverse nearest neighbor
queries. ACM SIGMOD Rec. 29(2), 201–212 (2000). ACM

8. Yang, C., Lin, K.I.: An index structure for efficient reverse nearest neighbour
queries. In: 17th International Conference on Data Engineering Proceedings, pp.
485–492. IEEE (2001)

9. Tao, Y., Papadias, D., Lian, X., Xiao, X.: Multidimensional reverse kNN search.
VLDB J. 16(3), 293–316 (2007)

10. Cao, X., Chen, L., Cong, G., Jensen, C.S., Qu, Q., Skovsgaard, A., Wu, D., Yiu,
M.L.: Spatial keyword querying. In: Atzeni, P., Cheung, D., Ram, S. (eds.) ER 2012
Main Conference 2012. LNCS, vol. 7532, pp. 16–29. Springer, Heidelberg (2012)

11. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In:
Proceedings of the 2011 ACM SIGMOD International Conference on Management
of data, pp. 373–384. ACM (2011)

12. Cheema, M.A., Brankovic, L., Lin, X., Zhang, W., Wang, W.: Multi-guarded safe
zone: an effective technique to monitor moving circular range queries. In: IEEE
26th International Conference on Data Engineering (ICDE), pp. 189–200. IEEE
(2010)

13. Cheema, M.A., Zhang, W., Lin, X., Zhang, Y.: Efficiently processing snapshot and
continuous reverse k nearest neighbors queries. VLDB J. 21(5), 703–728 (2012)

14. Yang, S., Cheema, M.A., Lin, X., Wang, W.: Reverse k nearest neighbors query
processing: experiments and analysis. Proc. VLDB Endow. 8(5), 605–616 (2015)

15. Ruemmler, C., Wilkes, J.: UNIX disk access patterns. In: USENIX Winter, vol.
93, pp. 405–420 (1993)

16. Tsirogiannis, D., Harizopoulos, S., Shah, M.A., Wiener, J.L., Graefe, G.: Query
processing techniques for solid state drives. In: Proceedings of the 2009 ACM SIG-
MOD International Conference on Management of data, pp. 59–72. ACM (2009)

HaCube: Extending MapReduce for Efficient
OLAP Cube Materialization and View

Maintenance

Zhengkui Wang1(B), Yan Chu2(B), Kian-Lee Tan3, Divyakant Agrawal4,
and Amr EI Abbadi4

1 Singapore Institute of Technology, Singapore, Singapore
zhengkui.wang@singaporetech.edu.sg

2 Harbin Engineering University, Harbin, China
chuyan@hrbeu.edu.cn

3 National University of Singapore, Singapore, Singapore
tankl@comp.nus.edu.sg

4 University of California, Santa Barbara, USA
{agrawal,amr}@cs.ucsb.edu

Abstract. Data cubes are widely used as a powerful tool to provide
multi-dimensional views in data warehousing and On-Line Analytical
Processing (OLAP). However, with increasing data sizes, it is becom-
ing computationally expensive to perform data cube analysis. In this
paper, we introduce HaCube, an extension of MapReduce, designed for
efficient parallel data cube computation on large-scale data. We also pro-
vide a general data cube materialization solution which is able to facil-
itate the features in MapReduce-like systems towards an efficient data
cube computation. Furthermore, we demonstrate how HaCube supports
view maintenance through either incremental computation (e.g. used for
SUM or COUNT) or recomputation (e.g. used for MEDIAN or COR-
RELATION). We implement HaCube by extending Hadoop and evaluate
it based on the TPC-D benchmark over billions of tuples on a cluster
with over 320 cores. The experimental results demonstrate the efficiency,
scalability and practicality of HaCube for cube computation over a large
amount of data in a distributed environment.

1 Introduction

In many industries, such as sales, manufacturing and finance, there is a need
to make decisions based on aggregation of data over multiple dimensions. Data
cubes [9] are one such critical technology that has been widely used in data
warehousing and On-Line Analytical Processing (OLAP) for data analysis in
support of decision making.

In OLAP, the attributes are classified into dimensions (the grouping
attributes) and measures (the attributes which are aggregated) [9]. Given n
dimensions, there are a total of 2n cuboids, each of which captures the aggre-
gated data over one combination of dimensions. To speed up query processing,
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 113–129, 2016.
DOI: 10.1007/978-3-319-32049-6 8

114 Z. Wang et al.

Fig. 1. A cube lattice with 4 dimen-
sions: A, B, C and D

Fig. 2. The numbered cube lattice with
execution batches

these cuboids are typically stored into a database as views. The problem of data
cube materialization is to efficiently compute all the views (V) based on the
data (D). Figure 1 shows all the cuboids represented as a cube lattice with 4
dimensions A, B, C and D.

In many append-only applications (no UPDATE and DELETE operations),
the new data (ΔD) will be incrementally INSERTed or APPENDed to the data
warehouse for view update. For instance, the logs in many applications (like the
social media or stocks) are incrementally generated/updated. There is a need to
update the views in a manner of one-batch-per-hour/day. The problem of view
maintenance is to efficiently calculate the latest views while ΔD are produced.

Both data cube materialization and view maintenance are computation-
ally expensive, and have received considerable attention in the literature
[12,16,20,23]. However, existing techniques can no longer meet the demands
of today’s workloads. On the one hand, the amount of data is increasing at a
rate that existing techniques (developed for a single server or a small number of
machines) are unable to offer acceptable performance. On the other hand, more
complex aggregate functions (like complex statistical operations) are required
to support complex data mining and statistical analysis tasks. Thus, this calls
for new scalable systems to efficiently support data cube analysis over a large
amount of data.

Meanwhile, MapReduce (MR) [7] has emerged as a powerful computation
paradigm for parallel data processing on large-scale clusters. Its high scalability
and append-only features have made it a potential target platform for data cube
analysis in append-only applications. Therefore, exploiting MR for data cube
computation has become an interesting research topic. However, deploying an
efficient data cube computation using MR is non-trivial. A naive implementa-
tion of cube materialization and view maintenance over MR can result in high
overheads.

Therefore, in this paper, we are motivated to explore the techniques of devel-
oping new scalable data cube analysis systems by leveraging the MR-like para-
digm, as well as to develop new techniques for efficient data cube computation to
broaden the application of data cubes primarily for append-only environments.
Our main contributions are as follows:

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 115

1. New system design and implementation: We present HaCube, an extension
of MR, for large-scale data cube computation. HaCube tries to integrate the
good features from both MR and parallel DBMS. It extends MR to better
support data cube computation by integrating new features, e.g. a new local
store for data reuse among jobs, a layer with user-friendly interfaces and
a new computation paradigm MMRR (MAP-MERGE-REDUCE-REFRESH). HaCube
illustrates one way to develop a scalable and efficient decision making system,
such that cube computation can be utilized in more applications.

2. A General Cubing Algorithm: We provide a general and efficient data cubing
algorithm, CubeGen, which is able to complete the entire cube lattice using
one MR job. We show how cuboids can be batched together to minimize the
read/shuffle overhead and salvage partial work done. On the basis of batch
processing principle, CubeGen further leverages the ordering property of the
reducer input provided by the MR-like framework for an efficient material-
ization.

3. Efficient View Maintenance Mechanisms: We demonstrate how views can be
efficiently updated under HaCube through either recomputation (e.g. used for
MEDIAN or CORRELATION) or incremental computation (e.g. used for
SUM or COUNT).

4. Experimental Study: We evaluate HaCube based on the TPC-D benchmark
with more than two billions tuples. The experimental results show that
HaCube has significant performance improvement over MR.

The rest of the paper is organized as follows. In Sect. 2, we provide an
overview of HaCube. Sections 3 and 4 present our proposed cube materializa-
tion and view maintenance approaches. We report our experimental results in
Sect. 5. In Sects. 6 and 7, we review some related works and conclude the paper.

2 HaCube: The Big Picture

2.1 Architecture

Figure 3 gives an overview of the basic architecture of HaCube. We implement
HaCube by modifying Hadoop which is an open source equivalent implementation
of MR [1]. Similar to MR, all the nodes in the cluster are divided into two
different types of function nodes, including the master and processing nodes.
The master node is the controller of the whole system and the processing nodes
are used for storage and computation.

Master Node: The master node consists of two functional layers:

1. The cube converting layer contains two main components: Cube Analyzer
and Cube Planner. The cube analyzer is designed to accept the user request
of data cube analysis, analyze the cube, such as figuring out the cube id (the
identifier of the cube analysis application), analysis model (materialization
or view update), measure operators (aggregation function), and input and
output paths etc.

116 Z. Wang et al.

Fig. 3. HaCube architecture

The cube planner is developed to convert the cube analysis request into an
execution job (either a materialization job or a view update job). The execu-
tion job is divided into multiple tasks each of which handles part of the cuboid
calculation. The cube planner consists of several functional components such
as the execution plan generator (combine the cuboids into batches to reduce
the overhead), and load balancer (assign the right number of computation
resources for each batch).

2. The execution layer is responsible for managing the execution of jobs
passed from the cube converting layer. It has three main components: job
scheduler, task scheduler and task scheduling factory. We use the
same job scheduler as in Hadoop which is used to schedule different jobs from
different users. In addition, we add a task scheduling factory which is used to
record the task scheduling information of a job which can be reused in other
jobs. Furthermore, we develop a new task scheduler to schedule the tasks in
terms of the scheduling history stored in the task scheduling factory rather
than the random scheduler used in MR.

Processing Node: A processing node is responsible for the task execution
assigned from the master node. Similar to MR, each processing node contains
one or more processing units each of which can either be a mapper or a reducer.
Each processing node has a TaskTracker which is in charge of communicating
with the master node through heartbeats, reporting its status, receiving the task,
reporting the task execution progress and so on. Unlike MR, there is a Local
Store built at each processing node running reducers. The local store is devel-
oped to cache useful data of a job in the local file system of the reducer node.
It is a persistent storage in the local file system and will not be deleted after a
job execution. In this way, tasks (possibly from other jobs) assigned to the same
reducer node can access the local store directly from the local file system.

2.2 Computation Paradigm

HaCube inherits some features from MR, such as data read/process/write format
of (key, value) pairs, sorting all the intermediate data and so on. However, it

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 117

further enhances MR to support a new computational paradigm. HaCube adds
two optional phases - a Merge phase and a Refresh phase before and after the
Reduce phase - to support the MAP-MERGE-REDUCE-REFRESH (MMRR)
paradigm as shown in Fig. 3.

The Merge phase has two functionalities. First, it is used to cache the data
from the reduce input to the local store. Second, it is developed to sort and merge
the partitions from mappers with the cached data in the local store. The Refresh
phase is developed to perform further computations based on the reduce output
data. Its functionalities include caching the reduce output data to the local store
and refreshing the reduce output data with the cached data in the local store.
These two additional phases are intended to fit different application requirements
for efficient execution support.

As mentioned, these two phases are optional for the jobs. Users can choose
to use the original MR computation or MMRR computation. More details can
be found in Sect. 4 about how MMRR benefits the data cube view maintenance.

3 Cube Materialization

In this section, we provide our proposed data cubing algorithm, CubeGen, under
the MR-like systems. We first present some principles of sharing computation
through cuboid batching and a batch generator, then followed by the detail
implementation. For simplicity, we assume that we are materializing the com-
plete cube. Note that our techniques can be easily generalized to compute a
partial cube (compute only selective cuboids). We also omit the cuboid “all”
from the lattice. This special cuboid can be easily handled through an indepen-
dent processing unit.

3.1 Cuboid Computation Sharing

To build the cube, computing each cuboid independently is clearly inefficient. A
more efficient solution, which we advocate, is to combine cuboids into batches
so that intermediate data and computation can be shared and salvaged.

We have the following observation: Let A and B be a set of dimensions
such that A

⋂
B = ∅. In MR-like systems, given cuboids A and AB, A can

be combined and processed together with AB, once AB is set of the key and is
partitioned by A in one MR job. A is referred to as the ancestor of AB (denoted
as A ≺ AB). Meanwhile, AB is called the descendant of A. Note that the
ancestor and descendant require them share the same prefix. This observation
is the formal basis for combining and batching the cuboids computation under
the MR-like systems.

The above observation can be generalized using transitivity: Since we can
combine the processing of the pair of cuboids {A,AB} and the pair {AB,ABC},
we can also combine the processing of the three cuboids {A, AB, ABC}. Thus,
given one cuboid, all its ancestors can be calculated together as a batch. For
instance, in Fig. 1, as A ≺ AB ≺ ABC ≺ ABCD, the cuboids A, AB, ABC

118 Z. Wang et al.

can be processed with ABCD. Note that BC cannot be processed with ABCD
because BC ⊀ ABCD.

Given a batch, the principle to calculate this batch is to set the sort dimen-
sions as the key and partition the (k,v) pairs based on the partition dimensions
in the key in the MR-like paradigm. We formally define these two dimension
classes below:

Definition 1 Sort Dimensions: The dimensions in cuboid A are called the
sort dimensions if A is the descendant of all other cuboids in one batch.

Definition 2 Partition Dimensions: The dimensions in cuboid A are called
the partition dimensions if A is the ancestors of all other cuboids in one batch.

For instance, given the batch {A,AB,ABC,ABCD}, ABCD and A can be
set as the sort and partition dimensions respectively.

The benefits of this approach are: (1) In the reduce phase, the group-by
dimensions are all in sorted order for every cuboid in the batch, since MR would
sort the data before supplying to the reduce function. This is an efficient way of
cube computation since it obtains sorting for free and no other extra sorting is
needed before aggregation. (2) All the ancestors do not need to shuffle their own
intermediate data but use their descendant’s. This would significantly reduce
the intermediate data size, and thus remove a lot of data sort/partition/shuffle
overheads.

3.2 Plan Generator

A plan generator is developed to generate the batches among the given cuboids.
Intuitively, the more cuboids can be combined, the more sharing operations
can be achieved. Therefore, the plan generator is responsible for generating the
minimum number of batches based on the aforementioned principles. Note that
each cuboid may have different permutations. For instance, the cuboid ABCD
can also be permutated as ABDC, ACBD, BCDA, CDAB, DABC and so
on. Thus, as the number of dimensions increases, it is no longer applicable to
enumerate all the possible plans exhaustively. As such, some heuristic algorithm
can be used to find a suboptimal execution plan.

Recall that one cuboid can be batched with all its ancestors. In this paper, we
adopt a greedy algorithm to combine one cuboid with as many of its ancestors as
possible. Intuitively, each batch construction starts from one unbatched cuboid
with the maximum number of dimensions. The chosen cuboid then searches
its different permutations with all its unbatched ancestors and the one with
the largest number of ancestors is used to form this batch. The construction
continues until all the cuboids are batched. In addition, we propose different
optimizations to further reduce the search space, such as how to choose the
right permutation and how to stop the permutation evaluation earlier. More
details and proof can be found in our technical report [18]. For instance, given
2n − 1 cuboids (excluding “all”) in Fig. 1, the algorithm generates 6 batches
marked using the dotted lines as shown in Fig. 2.

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 119

Algorithm 1. CubeGen Algorithm

Function: Map(t)
t is the tuple value from the raw data1

Let B (resp. Ii) be the batch set with B0, B1, ..., Bb−1 (resp. the identifier of2

batch Bi)
for each Bi in B do3

k (resp. v) ⇐ get sort dimensions (resp. the measure m) in Bi from t4

If there are multiple measures (e.g. m1, m2), then v ⇐ (m1, m2)5

v.append(Ii); emit(k,v);6

Function: Partitioning(k, v)
Let Ri (resp. attr) be the number of reducers (resp. the partition dimensions)7

for Bi

Si ⇐ ∑i−1
j=0 Rj8

return Si + hash(attr, Ri);9

Function: Reduce/Combine (k, {v1, v2, ..., vm})
Let C (resp. M) be the cuboid set in the batch identifier (resp. the aggregate10

function)
for Ci in C do11

if Ci is ready then12

k′′ (resp. v′′)⇐ get the group-by dimensions in Ci (resp.13

M(v1, ..., vm, v
′
1, ..., v

′
k, ...))

Perform multiple aggregate functions e.g. (M1, M2) here: v′′
1 ⇐14

M1(v1, ..., vm, v
′
1, ..., v

′
k, ...) and v′′

2 ⇐ M2(v1, ..., vm, v
′
1, ..., v

′
k, ...)

emit(k′′, v′′);15

else16

Buffer the measure for aggregation17

3.3 Implementation of CubeGen

Consider the batch plan B with b batches (B0, B1, ..., Bb−1) generated from
the plan generator. There is a need to determine the number of computation
resources (reducers) assigned to each batch. To achieve this, we also propose one
load balancing approach based on sampling to guarantee that the computation
task in each reducer can be balanced. Due to space constraint, we omit the
discussion; interested readers are referred to [18]. Suppose that the number of
reducers needed for each batch is R=(R0, R1, ..., Rb−1). Given B and R, the
proposed CubeGen algorithm materializes the entire cube in one job and its
pseudo-code is provided in Algorithm 1.

Map Phase: The base data is split into different chunks each of which is
processed by one mapper. CubeGen parses each tuple and emits multiple (k,v)
pairs each of which is for one batch (lines 3–6). The sort dimensions in the batch
are set as the key and the measure is set as the value.

To distinguish which (k,v) pair is for which batch with which cuboids, we
add a batch identifier appended after the value. The identifier is developed as

120 Z. Wang et al.

one Bitmap with 2n bits where n is the number of dimensions and each bit
corresponds to one cuboid. First, we number all the 2n cuboids from 0 to 2n −1.
Second, if the cuboid is included in one batch, its corresponding bit is set as 1,
otherwise 0. For instance, Fig. 2 depicts an example of a numbered cube lattice.
Assume that B0 consists of cuboids {A,AB,ABC and ABCD}. The identifier
for B0 is set as ‘10001000 00100010’.

The partitioning function partitions the pairs to the appropriate partition
based on the identifier and the load balancing plan R. CubeGen first schedules
the data into the right range of reducers. Recall that the batch Bi is assigned
Ri reducers. Therefore, the assigned reducers for batch Bi are from

∑i−1
j=0 Rj

to
∑i−1

j=0 Rj+Ri-1. Then the (k,v) pairs are hash partitioned among these Ri

reducers according to the partition dimensions in the key (lines 7–9).

Reduce Phase: In the Reduce phase, the MR library sorts all the (k,v) pairs
based on the key and passes them to the reduce function. Each reducer obtains
its computation tasks (the cuboids in the batch) by parsing the batch identifier
in the value. The reduce function extracts the measure and projects the group-
by dimensions for each cuboid in the batch. For the descendant cuboid, the
aggregation can be performed directly based on input tuple, since each input
tuple is one complete group-by cell. For other cuboids, the measures of the
group-by cell are buffered until the cell receives all the measures it needs for
aggregation (lines 11–17). We develop multiple file emitters to write different
aggregated results to different destinations.

Note that if the (k,v) pairs can be pre-aggregated in the map phase, users can
specify a combine function to conduct a first round aggregation. The combine
function is normally similar to the reduce function as shown in lines 10–17, but
only aggregates the pairs with the same key. This pre-aggregation is able to
reduce the data shuffle size between mappers to reducers.

We emphasize that if there are muliple measures (e.g. m1, m2, ..., mn) and
multiple aggregate functions (M1, M2, .., Mm), they can be processed in the
same MR job as shown in the line 5 and 14 in Algorithm1. Compared to the
naive solution, CubeGen minimizes the cube materialization overheads by sharing
the data read/shuffle/computation to the maximum, which obtains significant
performance improvement as we shall see in Sect. 5.

4 View Maintenance

There are two different manners to update the views, namely recomputation and
incremental computation. Recomputation computes the latest views by recon-
structing the cube based on the entire base data D and ΔD. In append-only
applications, this manner is normally used for the holistic aggregate functions,
e.g. STDDEV, MEDIAN, CORRELATION and REGRESSION [9].

Incremental computation, on the other hand, updates the views using only
V and ΔD in two steps: (1.) In the propagate step, a delta view ΔV is calculated
based on the ΔD. (2.) In the refresh step, the latest view is obtained by merging

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 121

Algorithm 2. A Refresh Job in MR
Function: Map(t)
t is the tuple value from either V or ΔV1

k (resp. v) ⇐ get dimensions (resp. aggregate value) from t;2

emit(k,v)3

Function: Reduce(k, {v1, v2})
emit(k, M(v1, v2))4

V and ΔV without visiting D [14]. In append-only applications, this manner is
normally used for the distributive and algebraic aggregate functions, e.g. SUM,
COUNT, MIN, MAX and AVG [9]. Note that the update for these functions can
also be conducted through recomputation.

4.1 Supporting View Maintenance in MR

To support recomputation in MR, when ΔD is inserted, the latest views can be
calculated by issuing one MR job using our CubeGen algorithm to reconstruct
the cube over D ∪ ΔD. The key problem with such an MR-based recomputation
view updates is that reconstruction from scratch in MR is expensive. This is
because the base data (which is large and increases in size at each update) has
to be reloaded to the mappers from DFS and shuffled to the reducers for each
view update, which incur significant overheads.

To support incremental computation in MR, the latest views can be calcu-
lated by issuing two MR jobs. The first propagate job generates ΔV from ΔD

using our proposed CubeGen algorithm. The second refresh job merges V and
ΔV as shown in Algorithm 2. However, this would incur significant overheads.
For instance, the materialized ΔV from the propagate job has to be written back
to DFS, reloaded from DFS again and shuffled from mappers to reducers in the
refresh job. Likewise, V has to be reloaded and shuffled around in the refresh
job. Therefore, it is highly expensive to support view update operations directly
over the traditional MR.

4.2 HaCube Design Principles

HaCube avoids the aforementioned overheads through storing and reusing the
data between different jobs. We extend MR to add a local store in the reducer
node which is intended to store useful data of a job in the local file system. Thus,
the task shuffled to the same reducer is able to reuse the data already stored
there. In this way, the data can be read directly from the local store (and thus
significantly reducing the overhead that would have been incurred to read the
data from DFS and shuffle them from mappers).

We further extend MR to develop a new task scheduler to guarantee that
the same task is assigned to the same reducer node and thus the cached data
can be reused among different jobs. Specifically, the task scheduler records the

122 Z. Wang et al.

Fig. 4. Recomputation for MEDIAN and incremental computation for SUM in HaCube

scheduling information by storing a mapping between the data partition number
(corresponds to the task) and the TaskTracker (corresponds to the reducer node)
and puts it to the task scheduling factory from one job. When a new job is
triggered to use the scheduling history from previous jobs, the task scheduler
fetches and adopts the scheduling information from the factory to distribute the
tasks. The scheduler automatically checks the situation of the over-loaded nodes
and re-assigns the task to a nearby processing node.

In addition, two computation phases (Merge and Refresh) are added to
conduct more computation with the cached data locally. The Merge phase is
added to either cache the intermediate reduce input data in one job or preprocess
the data between the newly arriving data and cached data before the Reduce
phase. The Refresh phase is added to either cache the reduce output data in
one job or postprocess the reduce output result with the cached data after the
Reduce phase.

4.3 Supporting View Maintenance in HaCube

Recomputation. The recomputation view update can be efficiently supported
in HaCube using a Map-Merge-Reduce (MMR) paradigm. We demonstrate this
procedure through one running example by introducing the cube materialization
and update jobs.

In the first cube materialization job, HaCube is triggered to cache the inter-
mediate reduce input data to the local store in the Merge phase, such that this
data can be reused during the view update job. For instance, Fig. 4(a) shows
an example of calculating the cuboid A for MEDIAN. Assume that reducer 0 is
assigned to process cuboid A. In this job, each mapper emits one sorted partition
for reducer 0, such as P0 0, P0 1 and P0 2. Here, each partition is a sequence of
(dimension-value, measure-value) pairs, e.g., (a1, 3), (a2, 4). Recall that once
these partitions are shuffled to the reducer 0, it first performs a merge-sort (the

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 123

same as MR does) to sort all the partitions based on the key in the Merge
phase. The sorted data is further supplied to the reduce function to calculate
the MEDIAN for each group-by cell (e.g. < a1, 5 > and < a2, 5 >) where this
view will be written to DFS.

Different to MR (which deletes all the intermediate data after one job),
since recomputation requires the base data for update, HaCube caches the sorted
reduce input data in the Merge phase for subsequent reuse. This caching opera-
tion is conducted while the Reduce phase finishes, which guarantees the atomicity
of the operation - if the reduce task fails, the data will not be written to the
local store. Meanwhile, the scheduling information is recorded.

A view update job is launched when ΔD is added for view updates. Intu-
itively, this job conducts a cube materialization job using the CubeGen algorithm
based on ΔD. It differs from the first materialization job in the scheduling and
the Merge phase. For task scheduling, instead of randomly distributing the tasks
to reducer nodes, it distributes the tasks according to the scheduling history from
the first materialization job to guarantee that the same tasks are processed at the
same reducer. For instance, the partitions of cuboid A (ΔP0 0 and ΔP0 1) are
scheduled to the same node running reducer 0 as shown in Fig. 4(b). In the Merge
phase, since the base data is already cached in the local store, HaCube merges
the delta partitions with the cached base data from the local store. Recall that
the cached data is the sorted reduce input data from the previous job, and so
it has the same format as the delta partition. Thus, it can be treated as a local
partition and a global merge-sort is further performed. Then the sorted data will
be supplied to the reduce function for recalculation in the Reduce phase. When
the Reduce phase finishes, the local store is updated with both the base and
delta data (becoming an updated base dataset) for further view update use.

Compared to MR, HaCube does not need to reload the base data from DFS
and shuffle them from mappers to reducers for recomputation. This significantly
reduces the data read/shuffle overheads. Another implementation optimization
is proposed to minimize the data caching overhead. To cache the data to the
local store, it is expensive to push the data to the local store, as this would incur
much overhead of moving a large amount of data. Based on the observation that
the intermediate sorted data are maintained in temporary files in the local disk
in each reducer, HaCube simply registers the file locations to the local store rather
than moving them. Note that the traditional MR would delete these temporary
files once one job finishes. As we shall see, the experimental study shows that
there is almost no overhead added for caching the data with this optimization.

Incremental Computation. HaCube adopts a Map-Reduce-Refresh (MRR)
para- digm for incremental computation. Intuitively, different to MR in the first
materialization job, it triggers to invoke a Refresh phase after the Reduce phase,
to cache the view V to the local store for further reuse. For instance, Fig. 4(c)
shows an example of calculating cuboid A for SUM in reducer 0. In this job, V

(< a1, 17 > and < a2, 16 >) is cached to the local store in the Refresh phase,
and the scheduling information is also recorded.

124 Z. Wang et al.

When ΔD is added for view updates, HaCube conducts both the propagate and
refresh steps in one view update job, as V is already cached in the reducer node.
This view update job in HaCube also executes in an MRR paradigm where MR
(Map-Reduce) phases obtain ΔV based on ΔD (propagate step) and the Refresh
phase merges ΔV with V locally (refresh step). Intuitively, this can be achieved
by running the CubeGen algorithm on ΔD using the same scheduling plan as the
previous materialization job. Meanwhile, the cached views in the local store will
be updated with the latest ones. For instance, in Fig. 4(d), the Reduce phase cal-
culates the ΔV (< a1, 6 > and < a2, 4 >) based on ΔD. In the Refresh phase,
the updated view (< a1, 23 > and < a2, 20 >) is obtained by merging ΔV with
V (< a1, 17 > and < a2, 16 >) cached in the local store.

Different to MR, HaCube is able to finish the incremental computation in one
job where there is no need to reload and shuffle the delta views and old views
among DFS and the cluster during the propagate and refresh steps. This provides
an efficient view update using the incremental computation by removing much
overheads.

5 Performance Evaluation

We evaluate HaCube on the Longhorn Hadoop cluster in TACC (Texas Advanced
Computing Center) [2]. Each node consists of 2 Intel Nehalem quad-core proces-
sors (8 cores) and 48 GB memory. By default, the number of nodes used is 35
(and 280 cores).

We perform our studies on the classical dataset generated by TPC-D bench-
mark generators [3]. The TPC-D benchmark offers a rich environment repre-
sentative of many decision support systems. We study the cube views on the
fact table, lineitem in the benchmark. The attributes l partkey, l orderkey,
l suppkey and l shipdate are used as the dimensions and the l quantity as the
measure. We choose MEDIAN and SUM as the representative functions for eval-
uation.

5.1 Cube Materialization Evaluation

Baseline Algorithms: To study the benefit of the optimizations adopted in
CubeGen, we design two corresponding baseline algorithms to study each of them
including MulR MulS (compute each cuboid using one MR job) and SingR MulS
(compute all the cuboids using one MR job without batching them), which are
widely used for cube computations in MR. MulR MulS (Resp. SingR MulS) is used
to study the benefit of removing multiple data read overheads (Resp. sharing
the shuffle and computation through batch processing).

In the following set of experiments, we vary the data size from 600M (Million)
to 2.4B (Billion) tuples.We study two versions of the CubeGen algorithm where
CubeGen Cache caches the data and CubeGen NoCache does not. This provides
insights into the overhead of caching the data to the local store.

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 125

Fig. 5. CubeGen performance evaluation for cube materialization

Efficiency Evaluation. We first evaluate the performance improvement of
CubeGen for cube materialization. Figure 5(a) and (b) show the execution time
of all four algorithms for MEDIAN and SUM respectively. As expected, for both
MEDIAN and SUM, our CubeGen-based algorithms are 2.2X and 1.6X faster
than MulR MulS and SingR MulS on average respectively. This indicates that
computing the entire cube in one MR job reduces the overheads significantly
compared to the case where multiple MR jobs were issued which requires read-
ing data multiple times. In addition, it also demonstrates that batch processing
highly reduces the size of intermediate data which can consequently minimize
the overheads of data sorting, shuffling as well as computing.

Impact of Caching Data: Figure 5(a) and (b) also depict the impact of caching
data. For MEDIAN, the execution time of the CubeGen Cache is almost the same
as CubeGen NoCache as shown in Fig. 5(a). This confirms that our optimization
to cache the data through file registration instead of actual data movement does
not cause much overhead. For SUM, we observe that CubeGen Cache performs
worse than CubeGen NoCache. This is not surprising as the former needs to write
an extra view to the local file system. However, even though CubeGen Cache
incurs around 16 % overhead to cache the view, as we will see later, it is superior
to CubeGen NoCache when it comes to view updates.

5.2 View Maintenance Evaluation

Efficiency Evaluation: We next study the efficiency of performing the view
maintenance in HaCube compared with Hadoop. We fix D with 2.4B tuples in

126 Z. Wang et al.

the first cube materialization job and vary the size of ΔD from 5 % to 100 % of
D for view updates.

Figure 5(c) shows the execution time for both the cube materialization
(Ini Cube) and the view updates (View Update) for MEDIAN. In this set of
experiments, we adopt recomputation for view updates of MEDIAN using MR
(Re MR) and HaCube (Re HC). The result shows that Re HC is 2X and 1.4X faster
than Re MR, when ΔD is 5 % and 100 % respectively. The gains come from avoid-
ing reloading and reshuffling D among the cluster. Thus, the larger D is, the
bigger the benefit will be.

Figure 5(f) depicts the result for SUM. As view updates for SUM can
either be done by incremental computation or recomputation, we evaluate both
approaches to update the view. In Fig. 5(f), In MR and Re MR (resp. In HC and
Re HC) are MR (resp. HaCube) -based methods using incremental computation
and recomputation respectively.

In MR and Re MR are implemented in the way described in Sect. 4.1. In In MR,
Delta Cube (in the figure) corresponds to the propagate job to generate the delta
view and View Update is the refresh job. The result shows that, for incremental
computation, In HC is 2.8X and 2.2X faster than In MR when ΔD is in 5 % and
100 % as shown in Fig. 5(f). For recomputation, Re HC is about 2.1X and 1.4X
faster than the Re MR when the ΔD is in 5 % and 100 % as shown in Fig. 5(f).
This indicates that HaCube has significant performance improvement compared
to MR for the view update for both recomputation and incremental computation.

We observe that incremental computation performs worse than recomputa-
tion in both MR and HaCube. While this seems counter-intuitive, our investiga-
tion reveals that DFS does not provide indexing support; as such, in incremental
computation, the entire view which is much larger than the base data (in our
experiments) has to be accessed. Another insight we gain is the smaller the ΔD

is, the more effective HaCube is. As future work, we will integrate more existing
techniques (e.g. indexing) in DBMS into HaCube, which will further improve the
view update performance.

Impact of Parallelism: We further analyze the impact of parallelism on HaCube
for both cube materialization and view update while varying the number of nodes
from 10 to 40. The experiments use D with 600M tuples and ΔD in 20 % of D .

Figures 5(d) and (e) report the execution time for MEDIAN and SUM. Note
that, in this experiment, incremental computation is used for SUM. We observe
that for both recomputation and incremental computation, HaCube scales lin-
early on the testing data set from 10 to 20 nodes, where the execution time
almost reduces to half when the resources are doubled. From 20 nodes to 40
nodes, the benefit of parallelism decreases a little bit. This is reasonable, since
the entire overheads include two parts, the setup of the framework and the cube
computation; the former one may reduce the benefits of increasing the compu-
tation resources while cube computation cost is not big enough.

Due to the space limitation, interested readers are referred to our technical
report [18] for more experimental evaluations (e.g. load balancing, impact of
dimensions) and other issues (e.g. fault tolerance mechanism, storage analysis).

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 127

6 Related Work

Much research has been devoted to the problem of data cube analysis [9]. A lot
of studies have investigated efficient cube materialization [4,20,21,23] and view
maintenance [12,16]. Three classic cube computation approaches (Top-down [23],
Bottom-Up [4] and Hybrid [20]) have been well studied to share computation
among the lattice in a centralized system or a small cluster environment. Differ-
ent to these approaches, CubeGen adopts a new strategy to partition and batch
the cuboids according to their prefix order to tackle the new challenges brought
by MR. It utilizes the sorting feature better in MR-like systems such that no
extra sorting needed during materialization.

Existing works [17,22] have adopted MR to build closed cubes for algebraic
measures. However, both of these works do not provide a generic algorithm
that can balance the load to materialize the cube for different measures. Nandi
et al. [15] provided a solution to a special case during the cube computation
under MR where one reducer gets the “hot spot” group-by cell with a large
number of tuples. This complements our work and can be employed to handle
such a case in HaCube. We note that HaCube is able to support all these existing
cube materialization algorithms. More importantly, none of these aforementioned
works have developed any techniques for view maintenance. In addition, [13]
provided one OLAP system by extending HBase for real-time analysis and [19]
provides pagrol system for graph OLAP computation.

Our work is also related to the problem of incremental computations. Existing
works [5,10,11] have studied some techniques for incremental computations for
single operators in MR. HaLoop [6] is designed to support iterative operations
through a similar caching mechanism which is used for different purposes under
a different application context. Restore [8] also shares the similar spirit to keep
the intermediate results (either the output of one MR job or the data operated
within one job) to DFS in a workflow and reuse them in the future. For data
cube computation, as the size of intermediate results is large, HaCube adopts a
different data caching mechanism to guarantee the data locality that the cached
data can be directly used from local store. This avoids the overhead incurred by
Restore in reloading and reshuffling data from DFS. Furthermore, none of these
existing works provide explicit support and techniques for data cube analysis
under OLAP and data warehousing semantics.

7 Conclusion

It is of critical importance to develop new scalable and efficient data cube com-
putation systems on a big cluster with low-cost commodity machines to tackle
the challenges brought by the large-scale of data, to provide a better query
response and decision making support. In this paper, we made one step towards
developing such a system, HaCube an extension of MapReduce, by integrating
the good features from both MapReduce (e.g. Scalability) and parallel DBMS
(e.g. Local Store). We showed how to batch and share the computations to sal-
vage partial work done by facilitating the features in MapReduce-like systems

128 Z. Wang et al.

towards an efficient cube materialization. We also demonstrated how HaCube
supports an efficient view maintenance by facilitating the extension leveraging a
new computation paradigm. The experimental results showed that our proposed
cube materialization approach is at least 1.6X to 2.2X faster than the naive
algorithms and HaCube performs at least 2.2X to 2.8X faster than Hadoop for
view maintenance. We expect HaCube to further improve the performance by
integrating more techniques from DBMS, such as indexing techniques.

Acknowledgements. Kian-Lee Tan is partially supported by the MOE/NUS grant
R-252-000-500-112. This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation grant num-
ber OCI-1053575.

References

1. Hadoop. http://hadoop.apache.org/
2. Tacc longhorn cluster. https://www.tacc.utexas.edu/
3. Tpc-h, ad-hoc, decision support benchmark. www.tpc.org/tpch/
4. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg

cubes. In: SIGMOD, pp. 359–370 (1999)
5. Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U.A., Pasquini, R.: Incoop: mapre-

duce for incremental computations. In: SOCC (2011)
6. Yingyi, B., Howe, B., Balazinska, M., Ernst, M.D.: Haloop: efficient iterative data

processing on large clusters. PVLDB 3(1), 285–296 (2010)
7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.

In: OSDI, pp. 137–150 (2004)
8. Elghandour, I., Aboulnaga, A.: Restore: reusing results of mapreduce jobs. PVLDB

5(6), 586–597 (2012)
9. Gray, J., Bosworth, A., Layman, A., Reichart, D.: Data cube: a relational aggrega-

tion operator generalizing group-by cross-tab and sub-totals. In: ICDE, pp. 152–159
(1996)

10. Jörg, T., Parvizi, R., Yong, H., Dessloch, S.: Incremental recomputations in mapre-
duce. In: CloudDB, pp. 7–14 (2011)

11. Lämmel, R., Saile, D.: Mapreduce with deltas. In PDPTA, (2011)
12. Lee, K.Y., Kim, M.H.: Efficient incremental maintenance of data cubes. In: VLDB,

pp. 823–833 (2006)
13. Feng Li, M., Ozsu, T., Chen, G., Ooi, B.C.: R-store: a scalable distributed system

for supporting real-time analytics. In: ICDE, pp. 40–51 (2014)
14. Mumick, I.S., Quass, D., Mumick, B.S.: Maintenace of data cubes and summary

tables in a warehouse. In: SIGMOD, pp. 100–111 (1997)
15. Nandi, A., Cong, Y., Bohannon, P., Ramakrishnan, R.: Distributed cube materi-

alization on holistic measures. In: ICDE, pp. 183–194 (2011)
16. Palpanas, T., Sidle, R., Cochrane, R., Pirahesh, H.: Incremental maintenance for

non-distributive aggregate functions. In: VLDB, pp. 802–813 (2002)
17. Sergey, K., Yury, K.: Applying map-reduce paradigm for parallel closed cube com-

putation. In: DBKDA, pp. 62–67 (2009)
18. Wang, Z., Chu, Y., Tan, K.-L., Agrawal, D., Abbadi, A.E., Xiaolong, X.: Scalable

data cube analysis over big data. In: CORR (2013). arxiv:1311.5663

http://hadoop.apache.org/
https://www.tacc.utexas.edu/
www.tpc.org/tpch/
http://arxiv.org/abs/1311.5663

HaCube: Extending MapReduce for Efficient OLAP Cube Materialization 129

19. Wang, Z., Fan, Q., Wang, H., Tan, K.-L., Agrawal, D., El Abbadi, A.: Pagrol:
parallel graph olap over large-scale attributed graphs. In: ICDE, pp. 496–507 (2014)

20. Xin, D., Han, J., Li, X., Wah, B.W.: Computing iceberg cubes by top-down and
bottom-up integration: the starcubing approach. TKDE 19(1), 111–126 (2007)

21. Xin, D., Han, J., Wah, B.W.: Star-cubing: Computing iceberg cubes by top-down
and bottom-up integration. In VLDB, pp. 476–487 (2003)

22. You, J., Xi, J., Zhang, P., Chen, H.: A parallel algorithm for closed cube compu-
tation. In ACIS-ICIS, pp. 95–99, (2008)

23. Zhao, Y., Deshpande, P.M., Naughton, J.F.: An array-based algorithm for simul-
taneous multidimensional aggregates. In: SIGMOD, pp. 159–170 (1997)

Similarity Computing

TSCluWin: Trajectory Stream Clustering
over Sliding Window

Jiali Mao, Qiuge Song, Cheqing Jin(B), Zhigang Zhang, and Aoying Zhou

Institute for Data Science and Engineering,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
maojl1231@163.com, {sugar song,zzg22936}@sina.com,

{cqjin,ayzhou}@sei.ecnu.edu.cn

Abstract. The popularity of GPS-embedded devices facilitates online
monitoring of moving objects and analyzing movement behaviors in a
real-time manner. Trajectory clustering acts as one of the most impor-
tant trajectory analysis tasks, and the researches in this area have been
studied extensively in the recent decade. Due to the rapid arrival rate and
evolving feature of stream data, little effort has been devoted to online
clustering trajectory data streams. In this paper, we propose a framework
that consists of two phases, including a micro-clustering phase where a
number of micro-clusters represented by compact synopsis data struc-
tures are incrementally maintained, and a macro-clustering phase where
a small number of macro-clusters are generated based on micro-clusters.
Experimental results show that our proposal is both effective and efficient
to handle streaming trajectories without compromising the quality.

1 Introduction

With the vigorous development of modern mobile devices and location acquisi-
tion technologies, the positions of moving objects are collected continuously in
a streaming fashion. For instance, the taxis embedded with GPS sensors trans-
mit their current location information to a data center frequently, so that the
taxi-company is capable of processing taxi-hailing requests efficiently. Effective
analyzing trajectory data stream fosters a broad range of critical applications,
such as location-based social network, route recommendation [16], intelligent
transportation management [5], road infrastructure optimization, etc.

As an important trajectory analysis task, clustering attempts to group a large
amount of trajectories into a few comparatively homogeneous clusters to find the
representative paths or common moving trend shared by different objects [6–8,
12,14,15,21]. While trajectory data keep updating rapidly in stream scenarios, it
is intrinsically quite difficult to track the cluster changing. For example, Fig. 1(a)
illustrates a small example of five taxis’ trajectories from 9:00 to 9:30 a.m. There
exist two clusters, the left three taxis have the similar driving itinerary, while
the rest two behave similarly. But in the next period (from 9:30 to 10:00 a.m.),
as shown in Fig. 1(b), the left three trajectories are no longer in one cluster.
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 133–148, 2016.
DOI: 10.1007/978-3-319-32049-6 9

134 J. Mao et al.

(a) During (9:00, 9:30) (b) During (9:30, 10:00)

Fig. 1. Movement distribution

Hence, it is imperative to consider a model that focuses on the evolving feature
of stream data. The sliding-window model that eliminates the obsolete data and
only keeps most recent W tuples in the stream can satisfy this demand.

However, it is challenging to cluster trajectory data streams due to the fol-
lowing reasons. First, a trajectory in the stream may evolve as time progresses.
Second, a suitable processing algorithm must be with strict time- and space- com-
plexities since the stream volume is huge and the arrival rate of data is rapid.
Finally, as the old tuples progressively expire, the algorithm must be capable of
updating the synopsis data structure dynamically. So far, although there exists
abundant work on incremental clustering for trajectories, or on data stream clus-
tering over the sliding-window model, to the best of our knowledge, the issue
of online clustering trajectory data stream over the sliding-window model has
not been addressed yet. This issue is non-trivial since the existing work cannot
be adopted to tackle it in a straightforward way. For the work on trajectory
incremental clustering [8,14,15], the expired records cannot be discarded swiftly
upon the arbitrary arrival of new ones, which influence the quality of clustering
result. The work on the data stream clustering over the sliding-window model
is upon the scenario where each tuple must be a “full”entry [1], whereas each
tuple in the trajectory data stream is only a “part” of an entry.

We propose a two-phase framework to tackle this issue, including the micro-
clustering phase and the macro-clustering phase. During the micro-clustering
phase, a number of micro-clusters, represented by a novel synopsis data structure,
are maintained incrementally. During the macro-clustering phase, a handful of
macro-clusters are built upon the micro-clusters according to a clustering request
over the given time horizon. One major novelty of this paper is the construction
of two synopsis data structures, called Temporal Trajectory Cluster Feature
(TF) and Exponential Histogram of Temporal Trajectory Cluster Feature (EF).
The contributions of this paper are summarized below.

– We study the issue of online trajectory data stream clustering over the sliding-
window model. To the best of our knowledge, there exists no prior work on
this topic. Moreover, neither trajectory clustering algorithm nor data stream
clustering algorithm upon the sliding-window model can be adopted to tackle
this issue directly.

TSCluWin: Trajectory Stream Clustering over Sliding Window 135

– We propose a two-phase scheme to tackle this issue, with the usage of two novel
synopsis data structures (TF and EF) to summarize a cluster of trajectories,
and to process the expired tuples.

– We conduct a comprehensive series of experiments on a real dataset to mani-
fest the efficiency and the effectiveness of our proposal, as well as the superi-
ority to other congeneric approach.

The remainder of this paper is organized as follows. In Sect. 2, we review the
latest work related to our research. In Sect. 3, the problem is defined formally. In
Sect. 4, we outline and analytically study TSCluWin scheme. In Sect. 5, a series
of experiments are conducted on a real dataset to evaluate our proposal. Finally,
we conclude this article in brief in Sect. 6.

2 Related Work

In this section, we briefly conduct a systematic review over the related work in
two relevant areas: data stream clustering and trajectory stream clustering.

Data Stream Clustering. The existing work on data stream clustering are
classified into two kinds: one-pass approach and evolving approach. The former
constructs clusters by scanning the data stream only once, while the latter can
also view the evolving process over time [24]. The work upon the sliding-window
model belongs to the latter.

Babcock et al. studied the clustering issue over the sliding-window model
with the focus on theoretical bound analysis [3]. Aggarwal et al. developed
CluStream algorithm to cluster large evolving data streams based on the pyra-
mid model [1]. Aggarwal et al. further proposed UMicro algorithm to deal with
uncertain data streams [2]. Although [1,2] cannot deal with the sliding-window
model directly, they can view the evolving process of the data stream. Zhou et
al. [24] presented SWClustering algorithm to track the evolution of clusters over
the sliding-window model by using a novel synopsis data structure, called EHCF,
which combines the exponential histogram with the temporal cluster features to
handle the in-cluster evolution and capture the distribution of recent records.
Jin et al. proposed the cluUS algorithm to incrementally maintain uncertain
tuples based on Uncertain Feature (UF) structure with the combination of the
sliding-window model [10]. However, none of the above methods can deal with
trajectory data straightforwardly due to different scenarios. In such scenario,
each tuple in the data stream is an entry, while each tuple in the trajectory data
stream is only a part of an entry.

Trajectory Stream Clustering. A few research work has been conducted for
incremental trajectory clustering [8,14,15] in the static trajectory data set. Li
et al. proposed the concept of Moving Micro-Cluster to catch the regularities of
moving objects, which can accommodate the updates of moving objects and be

136 J. Mao et al.

well suited for handling large datasets [14]. Jensen et al. proposed a scheme for
continuously clustering of moving objects, which employs an object dissimilarity
across a period of time, and exploits an incrementally maintained clustering
feature CF [8]. Li et al. proposed an incremental trajectory clustering framework,
called TCMM, which includes micro-clusters maintenance based on the process
of simplifying new trajectories into directed line segments, and macro-clusters
generating by clustering the micro-clusters [15]. However, during the course of
micro-clustering, TCMM has to accumulate a certain amount of new trajectory
point data to obtain the simplified sub-trajectory by using MDL method. In
addition, due to the effect of obsolete data, after continuously absorbing more
records and merging the most similar pair of micro-clusters, the centers of micro-
clusters will shift gradually, which more or less degrades the effectiveness of
resulting clusters. More specifically, incremental clustering approaches barely
consider the temporal aspects of the trajectories and cannot scale up to mine
massive trajectory streams. Yu et al. [22] proposed CTraStream for clustering
trajectory data stream to extract some patterns similar to convoy pattern [9]. It
includes online line segment stream clustering and the update process of closed
trajectory clusters based on TC-Tree index.

There also exists some approaches that are to some degree orthogonal to our
work but deserve to be mentioned. Various techniques about trajectory simplifi-
cation and compression have been studied in real-time trajectory tracking [11],
but they refer to the problem of minimizing the amount of the position data that
are communicated and stored. Due to high computational overhead to attain
optimal line simplification, they are not fit to online cluster the rapidly changing
stream data in the limited memory. More recent achievements have been reported
for continuous query processing over trajectory stream [13,17,19,20,23], but they
are unsuitable for identifying the clusters in streaming trajectories. Different
from the aforementioned approaches, we focus on online capturing the cluster-
ing change in a certain temporal window, and eliminating the effect of obsolete
data, which fit the feature of continuous trajectory stream.

3 Problem Statement

We define some notations in this section. Let S denote a stream that contains a
totally ordered infinite records of the moving objects in the form of (o(i), p(i)),
where p(i) is the location of an object o(i) at the time stamp i in 2-D space
(i.e., p(i) = (xi, yi)). In general, the stream S contains multiple objects. The
trajectory of one object is defined below.

Definition 1 (Trajectory). The trajectory for an object o, denoted as Tro, is
a sub-sequence of S affiliated to o, denoted as {(p1, t1), (p2, t2), . . .}. Such records
arrive in chronological order, i.e., ∀i < j, ti < tj. A line segment Li refers to
a line connecting two temporal adjacent points, i.e., Li is denoted as (pi, pi+1).
Correspondingly, the trajectory is also denoted as {(L1, t1), (L2, t2), . . .}.

The goal of trajectory clustering is to divide all trajectories into clus-
ters in terms of their pair-wise distances. Although the Euclidian distance

TSCluWin: Trajectory Stream Clustering over Sliding Window 137

is commonly used in the spacial data management field, it is inappropri-
ate to measure spatial proximity in the scenario with bi-directional prop-
erty. Hence, we employ the distance measure based on adapted Haus-
dorff distance [18]. The distance between two trajectories is regarded as
the longest path from each line segment to the closest line segment of
another trajectory, i.e., dist(Tra, T rb) = max(D(Tra, T rb),D(Trb, T ra)),
where D(Tra, T rb) = maxL′∈Tra

minL′′∈Trb
(DL(L′, L′′)). Note that DL(L′, L′′)

returns the maximal distance between two line segments after align-
ment, i.e., DL(L′, L′′) = max(dl(L′, L′′), dl(L′′, L′)), where dl(L′, L′′) =
max(min(||p′

s, p
′′
s ||, ||p′

s, p
′′
e ||),min(||p′

e, p
′′
s ||, ||p′

e, p
′′
e ||)). Here, p′

s and p′
e denote the

starting and ending positions of L′, p′′
s and p′′

e denote the starting and ending
positions of L′′, and ||p′

s, p
′′
s || denotes the length of the shortest path between p′

s

and p′′
s .

We study the sliding-window model in this paper, where only the most recent
W records in S are considered. Due to the infeasibility to keep all trajectories
in memory, it is necessary to summarize original data in memory by using a
compact synopsis data structure. Our first synopsis data structure, Temporal
Trajectory Cluster Feature (TF), summarizes the features of sets of incoming
line segments at different intervals.

Definition 2 (Temporal trajectory cluster Feature, (TF)). Given a set of
consecutive line segments {L1, L2, . . . , Ln}, which is a sub-sequence of a stream
S. TF is of the form (SC, SA,BL, TR, n, t).

– SC: the linear sum of the line segments’ center points;
– SA: the linear sum of the line segments’ angles;
– BL: the bottom left corner of the MBR (Minimal Bounding Rectangle);
– TR: the top right corner of the MBR;
– n: the number of line segments;
– t: the timestamp of the most recent line segment;

Note that MBR is the minimal bounding rectangle of all line segments con-
tained in a TF. Figure 2(a) illustrates an example of the MBR for two black
polyline, we can draw a line segment to represent the moving pattern of all the
line segments in TF. Firstly, we obtain the central point (denoted as TF.cen)
and the angle (denoted as θ) of that line segment by calculating them with SC

n

and SA
n respectively. Then, we plot a line across the central point, along that

angle, and finally extend it to reach the borders of MBR. The intersection points
are treated as the starting and ending points of the representative line segment.
For example, the blue line segment with the starting point (denoted as TF.rps)
and the ending point (denoted as TF.rpe) is regarded as the representative line
segment in Fig. 2(a).

Property 1 (Additive property). Let TF (C1) and TF (C2) denote two TF struc-
tures for two sets C1 and C2 separately, C1 ∩ C2 = ∅. We can construct
TF (C1 ∪ C2) based on TF (C1) and TF (C2). The new entries SC, SA and
n are equal to the sum of the corresponding entries in TF (C1) and TF (C2).

138 J. Mao et al.

(a) TF.rp (b) EF.rp

Fig. 2. Representative line segment

The new entry t is computed as max(TF (C1).t, TF (C2).t). Moreover, the corners
of the new TF can be computed based on two original corners straightforwardly.

As a TF may consist of multiple line segments, and they will go out of the
window one by one in the future, which necessitates a structure to deal with the
expired line segments. Exponential Histogram (EH) is well-known to deal with
the sliding-window model, where all the tuples in the data stream are divided
into a number of buckets according to the arrival time [4]. Inspired by EH, we
devise a novel structure, called Exponential Histogram of Temporal Trajectory
Cluster Feature (EF) below.

Definition 3 (Exponential Histogram of Temporal Trajectory Cluster
Feature (EF)). Given a user-defined parameter ε, EF is a collection of TFs
on some sets of line segments C1, C2, . . . with the following constraints:

1. ∀i, j, i < j, any line segment in Ci arrives earlier than that in Cj;
2. |C1| = 1. ∀i > 1, |Ci| = |Ci−1| or |Ci| = 2 · |Ci−1|;
3. At most � 1

ε � + 1 TFs are placed in each level.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L1 3

L1 L2 L3 L4

trajectory stream

absorbing L5

0-level TFs

L1 L2 L4L3 L6
absorbing L7

0-level TFs

L5

1-level TF

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12
absorbing L13

1-level TFs 0-level TFs

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

2-level TF 1-level TFs

L11 L12 L13

0-level TFs

Fig. 3. Process of incorporating line segments into an EF

TSCluWin: Trajectory Stream Clustering over Sliding Window 139

Theorem 1. Given an EF that contains ni tuples, and a user-defined parameter
ε, the amount of obsolete tuples is within [0, εni], and the number of TFs is at
most (1ε + 1)(log(εni + 1) + 1).

Proof. Given an EF of ni tuples, the parameter ε, and the oldest TF of ns

tuples, then 1
ε (1 + 2 + 4 + . . . + ns) ≤ ni. Hence, ns ≤ εni holds. In addition, an

EH structure with the window size ni and the parameter ε can be constructed.
Each TF maps to a bucket in EH structure. Since EH Structure computes an
ε-deficient synopsis using at most (1ε +1)(log(εW +1)+1) buckets [4], where W
represents the window size, there are at most (1ε + 1)(log(εni + 1) + 1) TFs in
an EF.

EF is maintained in the following way. When a new line segment is incor-
porated into the existing EF, a new 0-level TF will be generated for it at first.
Once the number of 0-level TFs in EF exceeds the threshold (� 1

ε � + 1), the two
oldest 0-level TFs are merged to generate a 1-level TF. Note that such merging
operation may repeat several times for higher levels. Figure 3 gives an example
about how to maintain an EF with ε = 1

3 . It means at most four TFs are kept at
each level. When L5 arrives, a new 0-level TF is generated, which adds to five 0-
level TFs. Then, a 1-level TF is generated by merging TF({L1}) and TF({L2}).
Similar operation occurs when L7 arrives. Moreover, the arrival of L13 triggers
the merging of TF({L9}) and TF({L10}), and further triggers the merging of
TF({L1, L2}) and TF({L3, L4}).

Likewise, we obtain a representative line segment for an EF. The central
point (denoted as EF.cen) and the angle (denoted as θ) of the representative
line segment are the weighted mean of all TFs respectively, i.e., (

∑
i TFi.cen ×

TFi.n)/(
∑

i TFi.n) and (
∑

i TFi.θ ×TFi.n)/(
∑

i TFi.n). The corners of EF can
also be computed based on the corners of all TFs involved directly. Figure 2(b)
illustrates an example about the MBRs for a group of TFs contained in an EF,
and the generated blue representative line segment (EF.rps, EF.rpe).

TF and EF synopsis structure allows us to accurately extract and incremen-
tally maintain the feature of micro-clusters at the different intervals. Meanwhile,
such synopsis structures with the combination of sliding-window model can safely
eliminate the expired records.

4 General Framework of TSCluWin

In this section, we propose a scheme to cluster trajectory streams over the sliding-
window model, called Trajectory Streams Clustering based on sliding Window
(TSCluWin). TSCluWin is comprised of two components, including a micro-
clustering phase and a macro-clustering phase. During the first phase, appro-
priate statistical information of the micro-clusters are extracted and maintained
incrementally, as shown in Algorithm 1. Note that each micro-cluster is repre-
sented by an EF structure (Definition 3), and each bucket in an EF is a TF (Def-
inition 2) that represents the summary statistics of a set of trajectory segments
at each interval. During the second phase, a small number of macro-clusters are

140 J. Mao et al.

Algorithm 1. EFs Generating and Maintenance (abbr.EFGM) (ε, γ, δ, k, S,W)
1: Z ← ∅;
2: Initialize Z;
3: for each line segment Lx in S do
4: Find the most similar EF h for Lx;
5: Let d1 and d2 denote the length of h.rp and Lx respectively;
6: if (∃h, dist(Lx, h.rp)/(d1 + d2) ≤ γ ∧ (h.t − Lx.t < δW)) then
7: Insert(Lx, h, ε);
8: else
9: if (|Z| = k) then

10: Let τ denote the average participating records of all EFs in current window;
11: if (∃he, (he.t expires) ∨ ((|tcurrent − he.t| ≥ W

2
) ∧ (he.n ≤ τ))) then

12: Z ← Z − {he};
13: else
14: if ((find the most similar EF pair (hi, hj)) ∧ (hi.t − hj .t < δW)) then
15: Merge(h1, h2, ε);
16: end if
17: end if
18: end if
19: Create a new EF hn for Lx;
20: Z ← Z ∪ {hn};
21: end if
22: end for
23: return Z;

generated based on EFs maintained in memory by invoking traditional weighted
clustering techniques.

4.1 Maintenance of EFs

The goal of micro-clustering phase is to handle new tuples in the stream and
discard expired ones. Given the window size W , at any time stamp tc, only the
records in [tc −W +1, tc] are active, while the records arriving before tc −W +1
are expired. Algorithm 1 shows the main framework to generate and maintain
EFs. Let Z represent the set of all generated EFs. Initially, Z is emptied, and
subsequently k EFs are generated one after another when continuously receiving
k line segments, i.e., we create an EF respectively for each line segment through
an initialization process, and regard the line segment itself as the representative
line segment of such EF (line 2 in Algorithm 1). At most k EFs can be kept in
memory at any time, not the trajectory data per se.

When a new line segment Lx arrives, we attempt to find its nearest EF h in
terms of the spatial proximity and temporal closeness. Hence, we set a time tol-
erance threshold δ (0 < δ ≤ 1

2) to assess the temporal closeness between Lx and
the existing EFs. Only EF with the greatest spatial proximity over recent time
period (time span within δW) is regarded as the appropriate EF to absorb Lx.

TSCluWin: Trajectory Stream Clustering over Sliding Window 141

Algorithm 2. Insert(Lx, h, ε)
1: Generate TF0({Lx}) for h;
2: h.t ← Lx.t;
3: for l = 0 to L do
4: if (|TFl| <
 1

ε
� + 2) then

5: break;
6: else
7: Merge two oldest l-level TFs into one (l + 1)-level TF;
8: end if
9: end for

10: if (the oldest L-level TF(TFlst) of h expires) then
11: Drop TFlst from h;
12: end if
13: return h;

Also, we use a distance threshold γ (γ ≤ 1) to assess the spatial proximity
between Lx and it’s nearest EF. Let dist(Lx, h.rp) denote the distance between
Lx and h’s representative line segment, d1 and d2 denote the length of h.rp
and Lx separately. If dist(Lx, h.rp)/(d1 + d2) ≤ γ, Lx is absorbed by h and the
entries of h are adjusted accordingly based on Lx, the detail procedure as shown
in Algorithm 2. Otherwise, a new EF hn that only contain single line segment
Lx will be created on condition that the number of EFs is less than k. When the
number of EFs exceeds k, we need to take into account eliminating the expired
EFs or merging EFs to make room for the new created EF.

4.2 Elimination of Expired Records and Merging of EFs

To eliminate the adverse effect of expired records, when a line segment Lx is
incorporated into its nearest EF h, h must be checked to discard obsolete TFs
(line 10 in Algorithm 2). Moreover, when the number of EFs exceeds the given
threshold k, we not only remove the expired EFs, but also filter out EFs with
the earlier updated time and fewer participating trajectory line segments, which
no longer contribute to subsequent clustering. We set τ equal to the average
participating records of all EFs in current window, and the least recent updated
EFs that participating records are smaller than τ will be discarded (line 11 in
Algorithm 1).

If none of the aforementioned eliminating criteria are met, we try to find
the most similar EFs pair to merge until the number of EFs meets the space
constraints, as shown in Algorithm 3. Similarly, only the nearest EF pair within
the time span δW will be merged into a new EF. This is rational since two EFs
with the greatest spatial proximity in the most recent period, are more similar in
actual situation than that only take spatial proximity into account. The merging
process is akin to the process of incorporating line segments into an EF. Once
the number of corresponding l− level TFs in two EFs exceeds � 1

ε �+1, the oldest
l − level TFs need to be merged into a (l + 1) − level TF. Such operation will
cascade to level l = 0, 1, 2, . . . , until all TFs of two EFs are handled.

142 J. Mao et al.

Algorithm 3. Merge(hi, hj , ε)
1: for l = 0 to L do
2: if (|hi.TFl| + |hj .TFl| >
 1

ε
� + 1) then

3: Merge two oldest l − level TFs of hi and hj into a new (l + 1) − level TF of
hnew;

4: else
5: hnew.TFl is comprised of hi.TFl and hj .TFl;
6: end if
7: end for
8: Z ← Z − {{hi} ∪ {hj}} ∪ {hnew};
9: return Z;

However, the computation overhead of finding the closest EF pair is costly,
as a nested loop to calculate and compare the distance between all pairs of EFs
is inevitable. The cost of such step is O(k2). Due to the evolving feature of data
and the high update cost, Tree-based indexes cannot be adapted to trajectory
streams. We opt for a strategy to speed up this process. For each EF hi, we
maintain its closest EF hci and the minimal distance ds between hi and hci .
When receiving a new line segment Lx, we attempt to search the closest EF
hn1 and the second closest EF hn2 for it. Meanwhile, the distance between hn1

and hn2 (denoted as dist(hn1 .rp, hn2 .rp)) is computed and compared with ds of
hn1 , if dist(hn1 .rp, hn2 .rp) ≤ ds, hn1 ’s original closest EF is replaced with hn2 .
If the closest EF (hn1) of Lx cannot satisfy the defined spatial proximity and
temporal closeness, a new EF hn that only containing Lx will be created, and
hn1 is intuitively regarded as the closest EF for hn. Only when the closest EF
hci of an EF hi is eliminated or merged into the other EF, we need to search the
nearest EF for hi by the distance calculation between EFs. In this way, when
searching the closest EF pair to merge, we simply need to traverse the closest
EF hci of all EF hi, to find the EF pair with the shortest distance. As a result,
the cost of searching the closest EF pair to merge is reduced to O(k).

4.3 Macro-Cluster Creation

Given a time horizon of length len and the current time tc, we can draw curves
to reveal the relation between the amount of trajectory segments that have been
absorbed in micro-clusters and the interval from current time tc to tc − len.
Through curve graph, the analysts can better differentiate the micro-clusters to
further discover the meaningful characteristic of micro-cluster.

Additionally, given the clustering request over specific time horizon, we can
further explore macro-clusters based on the previously generated micro-clusters.
As mentioned above, the micro-clusters are represented by the representative
trajectory line segments of EFs. All EFs in the user-specific time interval [tc −
len, tc] are treated as pseudo line segments, and re-clustered to produce macro-
clusters by using a variant of DBScan algorithm [12,15]. If the user-defined time
horizon exceeds the current window size, we will find the most recent EFs that

TSCluWin: Trajectory Stream Clustering over Sliding Window 143

Fig. 4. Movement distri-
bution of taxis (Color
figure online)

Fig. 5. Micro-clustering
results (Color figure
online)

Fig. 6. Macro-clustering
results (Color figure
online)

maintained in main memory, and the historical EFs that stored on disk within
the given time horizon. Subsequently, the representative trajectory line segments
of such EFs can be offline re-clustered to generate the macro-clusters by using
DBScan algorithm.

4.4 Performance Analysis

The space complexity of TSCluWin is as follows. Given the error parameter ε, the
maximal number of EF k, the window size W , and the number of line segments
absorbed in the i-th micro-cluster ni, then

∑k
i=1 ni = W , and the number of

obsolete records is within [0, εW]. There are at most (1ε +1)(log(εni +1)+1) TFs
in an EF. The total number of TFs in k EFs is at most k(1ε +1)(log(εni +1)+1).
In addition, the number of TFs required by merging two EFs is (1ε +1)(log(ε(ni+
nj))+1). As a consequence, the total required memory (the total number of TFs)
is O(k

ε log(ε�W
k �)).

Concerning time complexity, the cost of incorporating a new line segment Lx

into the nearest EF involves lines 4, 11 and 14 in Algorithm 1. The cost of line
4 (finding the closest EF for Lx) is simply O(k). At line 11, when the number
of EF exceeds k, the cost of removing obsolete EF is O(k). At line 14, the cost
of computing the shortest distance between EFs and merging a pair of EFs is
O(k) (as illustrated in Sect. 4.2). Consequently, the per-record processing cost is
O(k), the total processing cost of dealing with W records is O(kW).

5 Experiments

In this section, we conduct extensive experiments to evaluate the clustering
performance and efficiency of our proposed method by comparing against TCMM
algorithm (the work most similar to our proposal) on a real life dataset. Though
TCMM employs the micro- and macro-clustering framework to cluster trajectory
data incrementally, it doesn’t take the temporal aspects of the trajectories into
account and cannot fit for clustering trajectory stream. All codes written in Java,
are conducted on a PC with Intel Core CPU 3.1 GHz and 8.00 GB RAM. The
operating system is Windows 8.1. In the experiments, TSCluWin maintains the

144 J. Mao et al.

same number of micro-clusters as that of TCMM. Unless mentioned otherwise,
the parameters are set below, ε = 0.5, γ = 0.75, δ = 1

2 , and dmax = 800.

5.1 Dataset

We use a real-life dataset about the trajectories of the taxis in Shanghai, China.
This dataset contains the GPS logs of about 30000 taxis during three months
(October, November, December) in 2013, covering 93 % main road network of
Shanghai. Figure 4 shows the movement distribution of partial taxis (in green) dur-
ing the interval (from 10:30 to 11:00 a.m.) on October 7th. After micro-clustering
phase, 33 micro-clusters are extracted (in blue). As shown in Fig. 5, they capture
most traffic flows in Fig. 4. Given the interval (from 10:40 to 11:00 a.m.) on Octo-
ber 7th, 33 micro-clusters are grouped into 3 macro-clusters (in red, green, blue
respectively) after clustering by DBScan algorithm, as shown in Fig. 6.

5.2 Effectiveness

We quantify the clustering effect according to the sum of square distance
(SSQ). For each cluster Ci, we compute the sum of square distance between
any two line segments’ center points (denoted as Li

j .cen, 0 < j ≤ ni) in
Ci and the centroid (denoted as Ceni) of Ci. Therefore, SSQ is calculated
with

∑K
i=1 dist2(Li

j .cen,Ceni), where K denotes the number of clusters (micro-
clusters or macro-clusters). Generally, a small SSQ value means the high-quality
clustering result.

At first, we report the performance upon different window sizes. To improve
credibility, both algorithms are executed for ten times and the average SSQs
are reported. Figure 7 shows the average SSQ obtained by both algorithms as
time progresses. We observe that TSCluWin (the left bar) always behaves better
than TCMM (the right bar) when the window size is set to 160,000 and 330,000
respectively. Since the obsolete records are promptly eliminated by TSCluWin,
the micro-clusters are maintained relatively compact with fewer records when-
ever the cluster center drifts. Conversely, since TCMM does not consider elim-
inating the influence of the expired records, a micro-cluster may continuously

1x105 2x105 3x105 4x105
0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

A
ve

ra
ge

 S
SQ

Number of line segments

TSCluWin
TCMM

(a) W = 160, 000

1x105 2x105 3x105 4x105
0.0

2.0x106

4.0x106

6.0x106

8.0x106

1.0x107

A
ve

ra
ge

 S
SQ

Number of line segments

TSCluWin
TCMM

(b) W = 330, 000

Fig. 7. Quality comparison

TSCluWin: Trajectory Stream Clustering over Sliding Window 145

2 3 4 5 6 7 8
0.0

2.0x107

4.0x107

6.0x107

8.0x107

A
ve

ra
ge

 S
SQ

MinLns

TSCluWin
TCMM

Fig. 8. Average SSQ versus MinLns

3000 4000 5000 6000 7000 8000 9000
0.0

3.0x107

6.0x107

9.0x107

1.2x108

1.5x108

A
ve

ra
ge

 S
SQ

d

TSCluWin
TCMM

Fig. 9. Average SSQ versus d

0 1x105 2x105 3x105
0.0000

0.0003

0.0006

0.0009

0.0012

Pe
r-

re
co

rd
 p

ro
ce

ss
in

g
tim

e
(in

 s
ec

on
ds

)

Length of stream

TSCluWin
TCMM

Fig. 10. Execution time versus length
of stream

100 200 300 400 500
0.000

0.001

0.002

0.003

0.004

Pe
r-

re
co

rd
 p

ro
ce

ss
in

g
tim

e
(in

 s
ec

on
ds

)

Number of EFs

TSCluWin
TCMM

Fig. 11. Execution time versus number
of EFs

increase on the boundary rather than be split into multiple small micro-clusters.
Additionally, the gap of SSQ between two algorithms varies since the underlying
distribution of the positional stream data is always changing.

In order to verify the robustness of TSCluWin in the presence of uncertainty,
we proceed to study the effect of input parameters (MinLns, d) on the macro-
clustering results. Figures 8 and 9 show the average SSQ obtained by TSCluWin
and TCMM when varying the values of MinLns and d respectively. Note that the
same parameters MinLns and d are used by TSCluWin and TCMM. According
to Figs. 8 and 9, TSCluWin is superior to TCMM in all situations, and both
algorithms attain the best quality when MinLns = 4 and d = 5, 000.

5.3 Execution Time

Figure 10 shows the execution time of TSCluWin and TCMM. The per-record
processing time of TSCluWin fluctuates smoothly, and keeps superior to that
processed by TCMM with the progression of trajectory stream. The quicker
implementation of TSCluWin is due to that micro-clustering is executed on the
original trajectory data (without disregard any trajectory point). While TCMM
needs to partition trajectories by using MDL method before micro-clustering
phase, which consumes additional waiting time of partitioning accumulated tra-
jectory data into sub-trajectories. Figure 11 shows the per-record processing time
when varying the amount of micro-clusters. Both approaches scale linearly with
the amount of micro-clusters, since the distance computation cost of finding

146 J. Mao et al.

1.4x105 2.1x105 2.8x105 3.5x105 4.2x105
0.0

0.2

0.4

0.6

W=330000
W=160000

M
em

or
y

U
sa

ge
 (M

B
)

Length of Stream

Fig. 12. Memory usage versus length
of stream

0.02 0.04 0.06 0.08 0.10
0.00

0.15

0.30

0.45

M
em

or
y

U
sa

ge
 (M

B
)

Error Parameter

W=330000
W=160000

Fig. 13. Memory usage versus parame-
ter ε

the most similar micro-cluster for incoming line segment keeps growing as the
number of micro-clusters increases.

5.4 Memory Usage

Figure 12 shows the memory footprint (in MBytes) of TSCluWin when the win-
dow size W is set to 160,000 and 330,000 respectively. We can see that the
memory usage fluctuates with the progression of the trajectory stream. For
W = 330, 000, when the number of incoming records exceed 160,000, the mem-
ory usage of TSCluWin approach decreases at first and then gradually rises with
the new records. The same change trend happens when the number of incom-
ing records exceed 330,000. The main reason is that the number of TFs drops
along with eliminating of the expired records in terms of two erasure criteria (as
illustrated in Sect. 4.2). Similarly, when W = 160, 000, the same finding can be
observed when the amount of incoming records exceeds 160,000.

Figure 13 shows the memory usage of TSCluWin by tuning the value of para-
meter ε. We can observe that a larger window size enables more TFs stored in
memory and thus leads to the larger memory footprint. In addition, when the
value of ε increases from 0.02 to 0.1, the memory usage decreases significantly.
It is due to that ε decides the amount of expired records within the sliding win-
dow. In the current window, with the increase of ε, more obsolete records are
eliminated, and fewer TFs are stored in memory.

6 Conclusion

In this paper, we propose an efficient method to cluster evolving trajectory
streams over the sliding-window model, called TSCluWin. It consists of two
components, a micro-clustering component that extracts the summary of trajec-
tory stream in the window, and a macro-clustering component that re-clusters
the previously extracted summaries according to user’s request. Specifically, We
define two synopsis data structures (EF and TF) to maintain the most recent
cluster changes of trajectory stream in memory. We validate our proposal against

TSCluWin: Trajectory Stream Clustering over Sliding Window 147

TCMM algorithm for effectiveness and efficiency by conducting extensive exper-
iments on a real dataset, and show that our proposal is efficient in coping with
trajectory stream and outperforms the baseline approach.

Acknowledgement. Our research is supported by the 973 program of China
(No. 2012CB316203), NSFC (U1501252, U1401256, 61370101 and 61402180), Shang-
hai Knowledge Service Platform Project (No. ZF1213), Innovation Program of
Shanghai Municipal Education Commission(14ZZ045), and Natural Science Founda-
tion of ShanghaiNo. 14ZR1412600).

References

1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB, pp. 81–92 (2003)

2. Aggarwal, C.C., Yu, P.S.: A framework for clustering uncertain data streams. In:
ICDE, pp. 150–159 (2008)

3. Babcock, B., Datar, M., Motwani, R., Callaghan, L.: Maintaining variance and
k-medians over data stream windows. In: PODS, pp. 234–243 (2003)

4. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. In: SODA, pp. 635–644 (2002)

5. Duan, X., Jin, C., Wang, X., Zhou, A., Yue, K.: Real-time personalized taxi-
sharing. In: DASFAA (2016)

6. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

7. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models.
In: ACM SIGKDD, pp. 63–72. ACM (1999)

8. Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE
TKDE 19(9), 1161–1174 (2007)

9. Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in
trajectory databases. PVLDB 1(1), 1068–1080 (2008)

10. Jin, C., Yu, J.X., Zhou, A., Cao, F.: Efficient clustering of uncertain data streams.
Knowl. Inf. Syst. 40(3), 509–539 (2014)

11. Lange, R., Dürr, F., Rothermel, K.: Efficient real-time trajectory tracking. VLDB
J. 20(5), 671–694 (2011)

12. Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group frame-
work. In: ACM SIGMOD, pp. 593–604. ACM (2007)

13. Li, X., Ceikute, V., Jensen, C.S., Tan, K.: Effective online group discovery in
trajectory databases. IEEE TKDE 25(12), 2752–2766 (2013)

14. Li, Y., Han, J., Yang, J.: Clustering moving objects. In: ACM SIGKDD, pp. 617–
622 (2004)

15. Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In:
Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS,
vol. 5982, pp. 32–46. Springer, Heidelberg (2010)

16. Liu, H., Jin, C., Zhou, A.: Popular route planning with travel cost estimation. In:
DASFAA (2016)

17. Nehme, R.V., Rundensteiner, E.A.: SCUBA: scalable cluster-based algorithm for
evaluating continuous spatio-temporal queries on moving objects. In: Ioannidis, Y.,
Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A.,
Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 1001–1019. Springer,
Heidelberg (2006)

148 J. Mao et al.

18. Roh, G.-P., Hwang, S.: NNCluster: an efficient clustering algorithm for road net-
work trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DAS-
FAA 2010. LNCS, vol. 5982, pp. 47–61. Springer, Heidelberg (2010)

19. Sacharidis, D., Patroumpas, K., Terrovitis, M., Kantere, V., Potamias, M.,
Mouratidis, K., Sellis, T.K.: On-line discovery of hot motion paths. In: EDBT,
pp. 392–403(2008)

20. Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Hung, C., Peng, W.: On
discovery of traveling companions from streaming trajectories. In: ICDE, pp. 186–
197 (2012)

21. Wang, W., Yang, J., Muntz, R.R.: STING: a statistical information grid approach
to spatial data mining. VLDB 97, 186–195 (1997)

22. Yu, Y., Wang, Q., Wang, X., Wang, H., He, J.: Online clustering for trajectory
data stream of moving objects. Comput. Sci. Inf. Syst. 10(3), 1293–1317 (2013)

23. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S.: On discovery of gathering patterns
from trajectories. In: ICDE, pp. 242–253 (2013)

24. Zhou, A., Cao, F., Qian, W., Jin, C.: Tracking clusters in evolving data streams
over sliding windows. Knowl. Inf. Syst. 15(2), 181–214 (2008)

On Efficient Spatial Keyword Querying
with Semantics

Zhihu Qian1, Jiajie Xu1,2(B), Kai Zheng1,2, Wei Sun1, Zhixu Li1,2,
and Haoming Guo3

1 School of Computer Science and Technology, Soochow University,
Suzhou, China

{xujj,kevinz,zhixuli}@suda.edu.cn
2 School of ITEE, The University of Queensland, Brisbane, QLD, Australia

kevinz@itee.uq.edu.au
3 Institute of Software, Chinese Academy of Sciences,

Beijing, China
haoming@nfs.iscas.ac.cn

Abstract. The fast development of GPS equipped devices has aroused
widespread use of spatial keyword querying in location based services
nowadays. Existing spatial keyword indexing and querying methodolo-
gies mainly focus on the spatial and textual similarities, while leaving the
semantic understanding of keywords in spatial web objects and queries
to be ignored. To address this issue, this paper studies the problem of
semantic based spatial keyword querying. It seeks to return the k objects
most similar to the query, subject to not only their spatial and textual
properties, but also the coherence of their semantic meanings. To achieve
that, we propose a novel indexing structure called NIQ-tree, which inte-
grates spatial, textual and semantic information in a hierarchical manner,
so as to prune the search space effectively in query processing. Extensive
experiments are carried out to evaluate and compare it with other two
baseline algorithms.

Keywords: Spatial keyword query · Query optimization · Probabilistic
topic model · Semantic similarity

1 Introduction

Location based services (LBS) is widely used nowadays [3,20,23,25], and spatial
keyword query is known as an important technique for LBS systems. Exten-
sive efforts have been made so far to support effective spatial keyword indexing
and querying. Some pioneer work [5,6] mainly focuses on the Spatial Keyword
Boolean Query (SKBQ) that requires exact keywords match, and apparently,
they may lead too few or no results to be returned because of the diversified tex-
tual expressions. To overcome this issue, researchers proposed some novel index-
ing structures to support Spatial Keyword Approximate Query (SKAQ) more

The original version of this chapter was revised: The authors’ affiliations were
incorrect. This has been corrected. An erratum to this chapter can be found at
10.1007/978-3-319-32049-6 29

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 149–164, 2016.
DOI: 10.1007/978-3-319-32049-6 10

150 Z. Qian et al.

recently in [16,18,21], which are able to handle the spelling errors and conven-
tional spelling differences (e.g., ‘theater’ vs. ‘theatre’) that frequently appear in
real applications. But still, they cannot retrieve the objects that are synonym
but literally different to the keywords in query, such as ‘theater’ and ‘cinema’,
due to the lack of understanding of the semantics in objects and queries. This
gap motivates us to investigate other semantic-aware approaches that are able
to capture the semantic meanings of spatial keywords.

Fig. 1. An example of spatial keyword query

Example 1. Considering the example with eight spatial web objects in Fig. 1,
where each object can be seen as a place of interest that has a spatial location
and attached keywords. A user issues a query q to find a theatre close to the query
location. If the SKBQ approaches [5,6] are applied in the search engine, no result
can be returned to the user because of the none precise match to the keyword
‘theatre’ in query. Alternatively, by using the SKAQ techniques [16,18,21], the
search engine can return the object p6, which seems to be a relatively reasonable
object to recommend in terms of spatial and textual similarities. However if
checking those objects more carefully, we can easily observe that p3 is the best
match object should be returned, because it is not only closer to q in spatial,
but also more relevant to q in semantics, meaning that the user intention can be
satisfied as well. In order to make a more reasonable recommendation such as
p3, the key problem is how to interpret and represent the semantics of keywords,
and then take the semantic meanings into consideration of query processing.

To fulfill the gap mentioned above, we apply the probabilistic topic model
(e.g., LDA [1]), known as a powerful tool in the field of machine learning, to
convert the textual descriptions of objects into semantic representations (i.e.
distribution over topics, or called topic distribution). By applying the LDA model
on p1 in Fig. 1, we can obtain five latent topics, and its topic distribution (over
the five topics) is (0.72, 0.07, 0.07, 0.07, 0.07) (in Table 1). The topic distribution
of p1 indicates the semantic relevance between its textual description and each
topic, e.g., 0.72 for topic ‘exercise’, implying that p1 is very relevant to the this

On Efficient Spatial Keyword Querying with Semantics 151

topic. Similarly, we can compute the topic distributions of the query and all other
objects (in Table 1). Note that, each topic distribution is a high dimensional
vector in essential. The semantic similarity between textual descriptions of a
query and a spatial object can be measured by their topic distributions (e.g.
cosine distance of the two vectors). From Table 1, we can thus infer that ‘theatre’
and ‘eve cinema’ have close semantic similarity.

Once the topic model is incorporated, spatial keyword querying becomes chal-
lenging and time-consuming in despite of more meaningful feedbacks can be found.
The reason can be summarized in three main aspects. Firstly, the topic distri-
bution based indexing method has much higher dimensions associating to each
object, which severely deteriorates the pruning efficiency (known as the ‘curse of
dimensionality’ [11]) of most multi-dimensional search algorithms. Secondly, com-
pared to the conventional SKBQ and SKAQ, it incurs more memory and I/O cost
because additional space is required to store the topic distribution based object
information, and I/O cost increases accordingly. Last but not the least, it is nec-
essary to integrate information of multiple dimensions in the indexing and query
processing, which makes the hybrid representation more difficult.

To address all above difficulties, we define a new type of spatial keyword
query that incorporates spatial, textual and semantic similarities into account.
To prune the search space effectively in query processing, we carefully design
a hierarchical indexing structure called NIQ-tree, which can integrate spatial,
textual and semantic information seamlessly in a hierarchical manner. Since
iDistance [14] is one of the best known high dimensional indexing methods, which
coincides to our topic distribution based representation of spatial web objects,
we incorporate iDistance into the NIQ-tree to avoid the large dead space when
indexing all objects in high dimensional space. To make efficient retrival, a novel
query processing mechanism on top of the NIQ-tree is proposed to prune the
search space effectively based on some theoretical bounds. To sum up, our main
contributions of this paper can be briefly summarized as follows:

– We introduce and formalize a new type of probabilistic topic model based
similarity measure between a query and a object.

– We propose a novel hierarchical indexing structure, namely NIQ-tree, to inte-
grate the spatial, semantic and textual information of the objects seamlessly
while avoiding large dead space.

– We further design an efficient search algorithm, which can greatly prune the
high dimensional search space in query processing based on some theoretical
bounds.

– We conduct an extensive experiment analysis based on spatial databases and
make the comparisons with two baseline algorithms, and then demonstrate
the efficiency of our method.

2 Preliminaries and Problem Definition

In this section, we introduce some preliminaries and formalize the problem of
this paper.

152 Z. Qian et al.

2.1 Probabilistic Topic Model

In order to recommend spatial web objects that can fulfill user’s intention, it is
necessary not only to understand the semantic meanings of the textual descrip-
tions embedded in objects and queries [12], but also to measure their seman-
tic relevance accurately. Probabilistic topic model is a mature nature language
processing technique that has been proven to be successful on theme interpreta-
tion and document classification. Therefore in this paper, we apply the Latent
Dirichlet Allocation (LDA) model, i.e. one of the most frequently used proba-
bilistic topic models, to understand the semantic meanings of textual description
formed by words with respect to topics. Here, topics can be understood as pos-
sible semantic meaning of textual data defined as follows:

Definition 1 (Topic). A topic z represents a type of intended activity that a user
may be interested in, such as ‘Chinese restaurant’, ‘coffee shop’, ‘supermarket’
and so on. Z is a preprocessed topic set, which is the union of all topics used to
describe the meaningful semantics of textual descriptions.

By carrying out statistical analysis on the large amount of textual descriptions,
the LDA model derives the semantic relevance of a topic to all relevant words,
known as words distribution defined as follows:

Definition 2 (Words Distribution). Given the topic set Z and the set of all pos-
sible words V , the matrix M = Z × Vz (Vz ⊆ V) is used to represent the words
distributions of all topics in Z, where V is the collection of all keywords that
may appear in textual descriptions, and Vz is the keywords collection belonging
to the topic z, apparently, Vz ⊆ V . Each Mz represents a distribution of a single
topic over all words which belong to this topic and Mz[w] is the topic proportion
satisfies

∑
w∈Vz

Mz[w] = 1, where z ∈ Z.

Definition 3 (Topic Distribution). Given a textual description W , the topic dis-
tribution of W , denoted as TDW , is the statistical proportion for each keyword
in W , where the topic proportion TDW [z] from W to topic z is calculated as

TDW [z] =
Nw∈(W

⋂
Wz) + α

|W | + |Z| × α
(1)

where Nw∈(W
⋂

Wz) is the number of keywords belongs to the given textual
description of W in Wz; α is the symmetric Dirichlet prior and generally set to
0.1. |W | and |Z| are the number of keywords in W and topics in Z respectively.

A topic distribution TDW is a |Z|-dimensional vector, which can be regarded
as a point in a high dimensional topic space. Therefore, the topic distance of two
textual descriptions can be calculated as the following definition.

Definition 4 (Topic Distance). Given two textual descriptions W and W ′, their
topic distance can be quantified by several similarity measures (e.g., Euclidean

On Efficient Spatial Keyword Querying with Semantics 153

Table 1. Topic distributions of textual descriptions

textual descriptions
topics

exercise movie drink shop food

ymca club (in p1) 0.72 0.07 0.07 0.07 0.07

megafit gym (in p2) 0.88 0.03 0.03 0.03 0.03

eve cinema (in p3) 0.04 0.84 0.04 0.04 0.04

starbucks (in p4) 0.07 0.07 0.72 0.07 0.07

crystal mall (in p5) 0.07 0.07 0.07 0.72 0.07

ed. theater (in p6) 0.07 0.72 0.07 0.07 0.07

auchan supermarket (in p7) 0.07 0.07 0.07 0.72 0.07

KFC (in p8) 0.04 0.04 0.04 0.04 0.84

theatre (in q) 0.07 0.72 0.07 0.07 0.07

and Cosine Distance). Here, we adapt the cosine distance to measure their dis-
tance in high dimensional topic space. The topic distance DT (TDW , TDW ′) is
defined as

DT (TDW , TDW ′) =
∑

z∈Z(TDW [z] × TDW ′ [z])
||TDW || × ||TDW ′ || (2)

where ||TDW || is the modulus of TDW in |Z| dimensions. It is obvious that
the less topic distance of two arbitrary textual descriptions is, the more relevant
they are in semantics according to the LDA interpretation.

Example 2. Table 1 shows the LDA interpretation on all the objects in Fig. 1.
After running LDA, we derive the distribution of topic (e.g., ‘exercise’) over rele-
vant words (e.g., ‘club’, ‘gym’) based on statistical concurrence. Then we derive
the topic distribution of each textual description, where each number in the
table is a topic proportion (e.g., M′gym′ [exercise] = 0.88) that indicates their
semantic relevance. Therefore, the topic distance between the textual descrip-
tion W of query point (e.g., q.W = ‘theatre’) and textual description W ′ of
point in the database (e.g., p3.W

′ = ‘eve cinema’) can be further quantified as
DT (W,W ′) = 0.09.

2.2 Problem Definition

In this subsection, we give some basic definitions and then formalize the problem
of this paper.

Definition 5 (Spatial Web Object). A spatial web object can be a shop, a restau-
rant or other place of interest whose location and textual descriptive information
can be accessed through Internet. It is formalized as o = (o.λ, o.ϕ), where o.λ is
the position of o and o.ϕ is the textual description for describing o. We use the
term spatial object to represent it in short in the rest of this paper.

154 Z. Qian et al.

Definition 6 (Spatial Keyword Query). Consider a query q = (q.λ, q.ϕ, τ), where
q.λ is the query location represented by a longitude and a latitude in the two
dimensional geographical space; q.ϕ is a group of words that describe user’s
intention, such as ‘Chinese restaurant’; τ is a user-specified threshold of textual
distance in case that strict textual similarity is required. The textual distance
between the query q and spatial object o is denoted as TD(q, o), which is mea-
sured by the Edit Distance [15] of their keywords.

Definition 7 (Candidate Object). Given a query q, a spatial object o is said to
be a candidate object, if and only if its textual distance to q is no more than the
threshold of q, i.e. TD(q, o) ≤ q.τ .

Note that, a spatial object can be returned to user only if it is a candidate object.
Among all candidate objects, we rank them by the distance function subject to
their spatial proximity and semantic coherence.

Definition 8 (Distance Function). Given a query q, a set of spatial object o, their
spatial distance are calculated by the Euclidean distance of their geographical
locations. We normalize it to range [0,1] by using the sigmoid function as shown
in Eq. 3.

DS(q, o) =
2

1 + e−dist(q.λ,o.λ)
− 1 (3)

By combining the spatial distance and the topic distance, we further define a
distance function of q and o, denoted as D(q, o) in Eq. 4.

D(q, o) = λ × DS(q, o) + (1 − λ) × DT (q, o) (4)

where λ is a user-specified parameter to balance the weight of the spatial and
semantic distance.

Problem Statement. Given a query q, a set of spatial objects D, and user-
specified integer k, this paper returns the k candidate objects that have the
minimum distance to q.

3 Baseline Algorithms

In this section, we propose two baseline algorithms which explore the possibility
of using existing techniques to solve the problem in this paper.

3.1 Quadtree Based Algorithm

The first baseline algorithm uses the Quadtree [7] to prune the search space in
spatial dimension. In the method, the Quadtree, which only utilizes the spatial
coordinates of the points, is used to index these points in two-dimensional space
directly. Given a query q, the first baseline traverses the index structure to

On Efficient Spatial Keyword Querying with Semantics 155

find the spatial nearest object incrementally in terms of the spatial best match
distance which is computed as follows:

Dsbm(q, o) = λ × DS(q, o) (5)

It is easy to see that the spatial best match distance is always the lower bound
of the distance between q and o.

In the processing of the query, we keep finding the next nearest point o′ (based
on spatial best match distance) and computing its distance D(q, o′) to q. During
the process, we keep track of the k-th minimum distance as the upper bound of
final results Dub based on a priority queue. If the spatial best match distance of
next obtained object exceeds Dub already, the search algorithm terminates since
all remaining objects have no chance to be better than the current top-k results.

3.2 MHR-tree Based Algorithm

The basic idea of the second baseline algorithm is mainly motivated by some
early work for approximate string search in spatial database [5,6,21]. We use a
hybrid indexing structure called Min-wise signature with linear Hashing R-tree
(MHR-tree) [21], which combines R-tree [10] with signatures embedded in the
nodes, to prune the search space in both spatial and textual dimension.

The indexing structure of MHR-tree embeds the min-wise signature in a R-
tree node. For every leaf node u in the MHR-tree, we compute the n-grams Gp

and the corresponding min-wise signature S(Gp) of every point p in this node,
then store all (p, S(Gp)) pairs in node u. For every non-leaf node u in the MHR-
tree, with its child node entries c1, ..., cf and every child node wi pointed by ci,
we store the min-wise signature of the node pointed to by ci, i.e., s(Gwi

). Then
the signature of a non-leaf node u can be computed using s(Gwi

) as

s(Gu)[i] = min(s(Gwi
)[i], ..., s(Gwf

)[i]) (6)

where s(Gu)[i] is proportion of s(Gu). Finally, we store s(Gu) of the non-leaf
node in the index entry that points to u in u’s parent.

In processing a query q, we use a min-priority queue that orders objects in the
queue according to their distance to the query point. We search from the root of
the MHR-tree and prune the search space by spatial best match distance similar
to the search in the first baseline. Additionally, here we use some strategies to
avoid checking all points in the node of MHR-tree according to their textual
information. When we reach a leaf node, we traverse every point p in the node
and insert it into the queue according to Lemma1 [8,19] if it satisfies:

|Gp ∩ Gq| ≥ max(|p|, |q|) − 1 − (τ − 1) × n (7)

where Gp and |p| are the set of n-grams and string length in p respectively, τ is
the user-specified threshold of textual distance (e.g., Jaccard distance [13] and
edit distance [15]) and n is 3 if we choose 3-gram.

156 Z. Qian et al.

Lemma 1 (From [8]). For strings σ1 and σ2, if their edit distance is τ , then
|Gσ1 ∩ Gσ2 | ≥ max(|σ1|, |σ2|) − 1 − (τ − 1) × n.

However, when we reach a non-leaf node, its child wi will be added to the queue
according to Lemma 2 if it satisfies:

̂|Gwi
∩ Gq| ≥ |q| − 1 − (τ − 1) × n (8)

where ̂|Gwi
∩ Gq| is the estimation of |Gwi

∩ Gq|. Whenever a point is removed
from the head of the queue, it is added to the result set. The search terminates
when there are k points in the result or the priority queue becomes empty.

Lemma 2. Let Gu be the set for the union of n-grams of strings in the subtree
of node u in a MHR-tree. Given a query q, if |Gu ∩ Gq| ≥ |q| − 1 − (τ − 1) × n,
then the subtree of node u does not contain any point in the result.

Proof: Gu is a set, which contains distinct n-grams. The proof follows by the
definition of Gu and Lemma 1. ��

4 NIQ-tree Based Algorithm

In this section, we propose an improved hybrid indexing structure NIQ-tree
based on iDistance [14]. The iDistance is a well-known index scheme for high-
dimensional similarity search, with a basic idea to group all objects by clustering
(e.g., by k-means, k-medoids, etc.), which enables us to achieve superior pruning
effect in query processing. By utilizing iDistance to sketch the topic distributions,
the NIQ-tree is expected to support effective pruning on spatial, textual and
semantic dimensions simultaneously.

Indexing Structure. The NIQ-tree is a three layered hybrid indexing structure
shown as Fig. 2, where the spatial, semantic and textual layers are integrated in
a vertical way. In designing NIQ-tree, we adopt a spatial first method because
of the better pruning effect in spatial domains, which can be explained by its
two dimensional nature (v.s. high dimensions of topic and textual domains). The
basic form of a NIQ-tree node is N = (p, rect, o, r), where p is the pointer(s) to
its child node(s); rect is the minimum bounding rectangle (MBR) in spatial of
all objects contained by N ; o and r are the center point and radius of a topic
space hyper-sphere that covers the topic distributions of all objects contained by
N respectively. On top of all spatial objects, we use Quadtree to index them in
the spatial domain according to their spatial closeness first. For each leaf node
of Quadtree, all objects are further organized by iDistance index in the topic
layer, such that objects are grouped and managed by their topic coherence. For
each leaf nodes N of the topic layer, it is referenced to a set of n-gram based
inverted lists in the textual layer, and similar to MHR-tree, the n-gram inverted
lists functionally sketch out the textual descriptions of objects contained in N .
In this way, it is possible to filter irrelevant objects according to the q.ϕ and q.τ
specified in query.

On Efficient Spatial Keyword Querying with Semantics 157

Fig. 2. NIQ-tree

Example 3. A three-layered NIQ-tree is shown in Fig. 2. Assuming that all POIs
in Fig. 1 are divided into the same leaf node L2 in spatial layer, these points
are partitioned into four clusters in topic layer, where C1 contains {p3, p6}, C2

contains {p5, p7, p8, p9}, C3 contains {p1, p2} and C4 contains {p4}. It is clear
that all points in the same cluster have high semantic similarity. At last, in
textual layer, we construct a n-gram based inverted list.

In constructing the NIQ-tree, we build up a Quadtree for all points in spatial
database first like the first baseline algorithm. Then for the points in every leaf
node of the Quadtree, we use iDistance to cluster these points based on their
topic distributions of all contained objects, and construct a B+-tree to organize
the nodes (each node represents a cluster) according to the key value computed
as follows:

key = i × c + DT (p, oi) (9)

where i is the identifier of the partition Pi, c is a constant to partition the single
dimension space into regions so that all points in Pi will be mapped to the range
[i× c, (i+1)× c), oi is a reference point to Pi and p is the point in this partition.
In this way, the high dimensional topic space is expressed by a transformed point
key in single dimension space, and B+-tree can thus be applied directly. Next,
we set the N.o and N.r for all spatial layer nodes of the NIQ-tree in an bottom
up fashion, such that they can cover the center point and radius of N ’s child
nodes in minimum topic space cost. Finally, we build the inverted lists for every
leaf node of the B+-tree by the n-gram method.

Query Processing. Algorithm 1 illustrates the query processing mechanism
over the NIQ-tree. Given a query q, the objects retrieval is carried out on the
spatial, topic and textual domains of the index alternately. Starting from the root

158 Z. Qian et al.

of index, we traverse the spatial layer nodes in the ascending order of the best
match distance Dbm(q,N) with respect to q defined as the following formula:

Dbm(q,N) = λ × minp∈N.mbrDS(q, p) + (1 − λ) × minDT (q, N) (10)

where minp∈N.mbrDS(q, p) and minDT (q,N) denote the minimum possible spa-
tial and topic distance from q to any object contained in the node N . Let
||TDq.ϕ, N.o|| be the cosine distance between textual description q.ϕ and ref-
erence point o in topic layer, the minimum possible topic distance DT (q, N) can
be computed as follows:

minDT (q,N) =
{

0 ||TDq.ϕ, N.o|| ≤ N.r
||TDq.ϕ, N.o|| − N.r ||TDq.ϕ, N.o|| > N.r

(11)

It is noted that Dbm(q,N) is the lower bound distance Dlb to q for all unvis-
ited points according to its definition.

In the query processing, the node we fetch from the priority queue is a non-
leaf node, we add all its child nodes to the queue; otherwise, we access the topic
and textual layer indices subject to this node to access the candidate objects they
covers. During the search in topic layer, the leaf node in the B+-tree can be
identified according to key value. Similar to iDistanceKNN search [14], we browse
the space by expanding the radius R of the hyper-sphere centered at the query
point q. At each time, R is increased by ΔR (i.e., R = R+ΔR). If the leaf node of
this layer intersects with the searching sphere, we traverse the points in this node
according to its key value in the range of [i×c+dis(q, oi)−R, i×c+dist(q, oi)+R],
where dist(q, oi) is the distance between q and reference point oi. Then, by
checking its inverted list in textual layer, we find the spatial objects whose textual
distance to q is no more than q.τ . Especially, we dynamically maintain the top-k
minimum distance for all scanned points and keep the k-th minimum distance
as an upper bound Dub. The radius of search sphere R stops increasing when
the following condition holds for all unvisited topic layer leaf nodes:

λ × minp∈N.mbrDS(q, p) + (1 − λ) × R ≥ Dub (12)

where N.mbr is the MBR of a spatial layer leaf node N . Obviously, (λ ×
minp∈N.mbrDS(q, p) + (1 − λ) × R) is a lower bound distance from q to a topic
layer leaf node rooted in N according to Lemma 3. The whole search algorithm
terminates when Dlb is no less than Dub because the remaining unvisited points
have no opportunity to be better than the current top-k results.

Lemma 3. Given a query q and a NIQ-tree, if N is a spatial layer leaf node of
the NIQ-tree, then the search in topic layer with respect to N terminates when
(λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) ≥ Dub.

Proof: minp∈N.mbrDS(q, p) is the minimum spatial distance from q to a spa-
tial layer node N , which is the lower bound of spatial distance from q to any
unvisited point in this node. R is the minimum topic distance from q to any
unvisited point in the cluster, which is the lower bound of topic distance. So
(λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) is a lower bound distance from q to a
topic layer leaf node. Lemma 3 can be proven. ��

On Efficient Spatial Keyword Querying with Semantics 159

Algorithm 1. NIQ-tree based Search Algorithm
Input: dataset D, query q and user-specified k and λ
Output: top-k result set V

1 Upper Bound Dub = +∞;
2 Lower Bound Dlb = 0;
3 Search radius R = 0.1;
4 Put NIQ-tree root into a priority queue U ;
5 while U �= ∅ do
6 Pop an element N from U ;
7 if N is a non-leaf node then
8 Add its children to U ;

9 else if N is a leaf node then
10 for every iDistance node N ′ in N intersecting with searching sphere do
11 for every object o in N ′ do
12 Check the n-gram inverted lists of N ′;
13 if o is a candidate object then
14 Compute D(q, o) using Eq. 4;
15 if D(q, o) < Dub then
16 Update V with o included;

17 Update Dlb and Dub;

18 if (λ × minp∈N.mbrDS(q, p) + (1 − λ) × R) ≥ Dub then
19 break;

20 R = R + ΔR;

21 if Dlb ≥ Dub then
22 break;

23 return V ;

5 Experiment Study

In this section, we conduct extensive experiments on real datasets to evaluate
the performance of our proposed index and search algorithms.

5.1 Experiment Settings

We create the real object datasets by using the online check-in records of
Foursquare within the area of New York City. Each check-in record of Foursquare
contains the user ID, venue with geo-location (place of interest), time of check-in
and the tips written in plain English. We put the records belonging to the same
object to form textual descriptions of the objects. The topic distributions over
words are obtained by the textual descriptions in the tips associated with the
location, and then the textual descriptions for each place are interpreted into
a probabilistic topic distribution by LDA model. The number of objects in the
whole dataset is 422030 in sum.

160 Z. Qian et al.

Table 2. default values of parameters

Parameter Default value Description

k 10 Top-k results

λ 0.5 Weight factor

τ 3 Threshold of edit distance

D 200K No. of objects

c 4K Capacity of quadtree leaf node

m 20 Number of clusters

We compare the query time cost and number of visited objects during the
search processing of the proposed method (NIQ-tree) with the two baseline algo-
rithms proposed in Sect. 3. The default values for parameters are given in Table 2.
In the experiments, we vary one parameter and keep the others constant to inves-
tigate the effect of this parameter. All algorithms are implemented in Java and
run on a PC with 2-core CPUs at 3.2 GHz and 8 GB memory.

5.2 Performance Evaluation

In this part, we vary the values of parameters in Table 2 to compare the NIQ-tree
with two baseline algorithms and investigate the effect of each parameter.

Effect of k. In the first set of experiments, we study the effect of the intended
number of results k by plotting the query time and visited objects (denoting I/O)
on the dataset. As shown in Fig. 3, our proposed indexing structure, NIQ-tree,
significantly outperforms all other two baseline indexing methods on the same
dataset. Particularly, the NIQ-tree based method is almost 2–3 times faster than
the MHR-tree with respect to query time. All algorithms incur high cost in both
number of visited objects and query time as k increases, which is not beyond
our expectation because the k-th match distance becomes greater, which leads
more candidates to be retrieved.

Effect of λ. Next we study the effect of different weight factors λ. As shown in
Fig. 4, all algorithms including Quadtree, MHR-tree and NIQ-tree based meth-
ods have ascending tendency of I/O and query time when the value of λ goes
up. In contrast, the NIQ-tree is superior than two other approaches because of
its superior pruning effect in spatial, semantic and textual domains.

Effect of τ . Then we investigate the query performance of these algorithms
when the threshold τ of the edit distance between object and query is varying.
Figure 5 shows the results of our experiment. With the increase of τ , all algo-
rithms incur more time cost and more visited objects because more candidate
objects are retrieved since their edit distance to query are less than the thresh-
old. Especially, the NIQ-tree still outperforms the other two baseline algorithms
with respect to query time and visited objects.

On Efficient Spatial Keyword Querying with Semantics 161

Fig. 3. Effect of k Fig. 4. Effect of λ

Fig. 5. Effect of τ Fig. 6. Effect of D

Effect of D. In order to evaluate the scalability of all algorithms, we sample the
dataset of New York City to generate datasets with different number of objects
varying from 50 K to 250 K, and report the query time and visited points in
Fig. 6. Within our expectation, the query time and the number of visited objects
of all three methods increase linearly with respect to the size of dataset. But it
is worth to note that the NIQ-tree based method performs much more efficient
than the others.

In NIQ-tree, there are several parameters of iDistance index which may have
effects on the performance, including the size c of leaf node in spatial layer and
the number m of clusters in iDistance.

Fig. 7. Effect of c Fig. 8. Effect of m

Effect of c. As shown in Fig. 7, the capacity of leaf node in Quadtree affects the
performance of our proposed indexing structure. With the increase of node size
c, both visited objects and query time increase. That is to say that the query

162 Z. Qian et al.

time and I/O increase with the size of c. From Fig. 7, it is noted that the increase
of data size D also makes more I/O and query time when c remains the same.

Effect of m. It is shown in Fig. 8 that the performance of our proposed index are
affected when the number of clusters m changes. On one hand, we can observe
that the visited objects remain almost constant with respect to m but increase
with the data size D from the left figure of Fig. 8. On the other hand, the query
time has a nearly linear increase with m and it also increases when the data size
D becomes larger.

6 Related Work

The related work to out study mainly include probabilistic topic model and
spatial keyword query.

Probabilistic Topic Model. Probabilistic topic model is a statistical method
to analyze the words in documents and to discover the themes that run through
the words, how those themes are connected to each other, with no prior anno-
tations or labeling of documents been required. Based on the topic models, it is
possible to measure the semantic relevance between a text to a theme, as well as
that between different texts (in semantic level). There are several classical topic
models including LDA [1], Dynamic Topic Model, Dynamic HDP, Sequential
Topic Models, etc. Above techniques have been widely used in applications like
document classification, user behavior understanding, functional region discov-
ery, etc. In this paper, we tend to integrate topic model and spatial objects for
efficient spatial keyword querying with semantics.

Spatial Keyword Query. With the prevalence of spatial objects associated
with textual information on the Internet, spatial keyword queries that exploit
both location and textual description are gaining in prominence. Some efforts
are made to support the SKBQ [5,6,17,22] that requires exact keywords match,
which may lead few or no results to be found. To overcome this problem, some
efforts are further made to support the SKAQ [16,18,21], so that the query
results are no longer sensitive to spelling errors and conventional spelling differ-
ences. Many novel indexing structures are proposed to support efficient process-
ing on SKBQ and SKAQ, such as IR-tree [5], IR2-tree [6], MHR-tree [21], S2I
[18], etc. Numerous work studies the problem of spatial keyword query on col-
lective querying [2], fuzzy querying [26], confidentiality support [4], continuous
querying [9], interactive querying [24], etc. But as far as we know, none of those
existing approaches can retrieve spatial objects that are semantically relevant
but morphologically different. Therefore, in this paper, we investigate the topic
model based spatial keyword querying to recommend users spatial objects that
have both high spatial and semantic similarities to query.

To the best of our knowledge, this is the only work to consider the fusion
of topic model and spatial keyword query, so that spatial objects can be recom-
mended more rationally by the interpretation of textual descriptions for objects
and user intentions.

On Efficient Spatial Keyword Querying with Semantics 163

7 Conclusion

This paper studies the problem of searching spatial objects more effectively
by converting keywords matching to semantic interpretation. The probabilistic
topic model is utilized to interpret the textual descriptions attached to spatial
objects and user queries into topic distributions. To support the efficient top-
k spatial keyword query in spatial, topic and textual dimension, we propose a
novel hybrid index structure called NIQ-tree, and effective searching algorithm
to prune the high dimensional search space regarding to spatial, semantic and
textual similarities. Extensive experimental results on real datasets demonstrate
the efficiency of our proposed method.

Acknowledgement. This work was partially supported by Chinese NSFC project
under grant numbers 61402312, 61402313, 61572335, 61232006, the Key Research Pro-
gram of the Chinese Academy of Sciences under grant number KGZD-EW-102-3-3, and
Collaborative Innovation Center of Novel Software Technology and Industrialization.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Cao, X., Cong, G., Jensen, C.S.: Collective spatial keyword querying. In: SIGMOD
(2011)

3. Chen, L., Cong, G., Jensen, C.S.: Spatial keyword query processing: An experi-
mental evaluation. PVLDB 6(3), 217–228 (2013)

4. Chen, Q., Hu, H., Xu, J.: Authenticating top-k queries in location-based services
with confidentiality. PVLDB 7(1), 49–60 (2013)

5. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial
web objects. PVLDB 2(1), 337–348 (2009)

6. De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In:
ICDE (2008)

7. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite
keys. Acta informatica 4(1), 1–9 (1974)

8. Gravano, L., Ipeirotis, P.G.: Approximate string joins in a database (almost) for
free. In: ICDE (2001)

9. Guo, L., Shao, J., Aung, H.H., Tan, K.-L.: Efficient continuous top-k spatial key-
word queries on road networks. Geoinformatica 19(1), 29–60 (2015)

10. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: SIG-
MOD (1984)

11. Har-Peled, S., Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards
removing the curse of dimensionality. In: ACM symposium on Theory of computing
(1998)

12. Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Short text understanding
through lexical-semantic analysis. In: ICDE (2015)

13. Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes
et du jura. Impr. Corbaz (1901)

14. Jagadish, H.V., Ooi, B.C., Tan, K.-L.: idistance: An adaptive b+-tree based index-
ing method for nearest neighbor search. ACM TODS 30(2), 364–397 (2005)

164 Z. Qian et al.

15. Levenshtein, V.I.: Binary codes with correction for deletions and insertions of the
symbol 1. Problemy Peredachi Informatsii 1(1), 12–25 (1965)

16. Li, F., Yao, B., Tang, M.: Spatial approximate string search. TKDE 25(6), 1394–
1409 (2013)

17. Li, G., Feng, J., Xu, J.: Desks: Direction-aware spatial keyword query. In: ICDE
(2012)

18. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørv̊ag, K.: Efficient processing of
top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento,
M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp.
205–222. Springer, Heidelberg (2011)

19. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92, 191–211 (1992)

20. Wang, H., Zheng, K.: Sharkdb: An in-memory column-oriented trajectory storage.
In: CIKM (2014)

21. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate string search in spatial
databases. In: ICDE (2010)

22. Zhang, C., Zhang, Y., Zhang, W., Lin, X.: Inverted linear quadtree: Efficient top
k spatial keyword search. In: ICDE (2013)

23. Zheng, K., Huang, Z., Zhou, A.: Discovering the most influential sites over uncer-
tain data: A rank based approach. TKDE 24(12), 2156–2169 (2012)

24. Zheng, K., Su, H.: Interactive top-k spatial keyword queries. In: ICDE (2015)
25. Zheng, K., Zheng, Y.: Online discovery of gathering patterns over trajectories.

TKDE 26(8), 1974–1988 (2014)
26. Zheng, K., Zhou, X.: Spatial query processing for fuzzy objects. VLDB 21(5),

729–751 (2012)

Approximation-Based Efficient Query Processing
with the Earth Mover’s Distance

Merih Seran Uysal1(B), Daniel Sabinasz1, and Thomas Seidl2

1 Data Management and Exploration Group,
RWTH Aachen University, Aachen, Germany

{uysal,sabinasz}@cs.rwth-aachen.de
2 Database Systems Group,

Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
seidl@dbs.ifi.lmu.de

Abstract. The Earth Mover’s Distance (EMD) is an effective distance-
based similarity measure which determines the dissimilarity between
data objects by the minimum amount of work required to transform
one signature into another one. Although the EMD has been proven to
reflect the human perceptual similarity very well in prevalent applica-
tions and domains, its high computational time complexity hinders its
application to large-scale datasets where the user is rather interested
in receiving an answer from the underlying application within a short
period of time than requesting an exact and complete query result set.
To this end, we propose to improve the efficiency of the query processing
with the EMD on signature databases by utilizing signature compres-
sion approximations. We introduce an efficient signature compression
algorithm to alleviate query computation cost. Furthermore, we theo-
retically explicate and analyze the approximation-based EMD and the
relationship between the proposal and the original EMD. Moreover, our
extensive experiments on 4 real world datasets point out the accuracy
and efficiency of our approach.

Keywords: Earth mover’s distance · Similarity search · Approximate
query processing · Signature databases

1 Introduction

The rapid generation and dissemination of data in numerous applications and
the high usage of data-sharing web sites on the Internet have resulted in an
explosion in collection of various kinds of data recently. One of the most crucial
tasks in large data collections is the similarity search where the user specifies a
query object to which the most similar objects are output within a result set.

Initially introduced in the computer vision domain as an effective distance-
based similarity measure [14], the Earth Mover’s Distance (EMD) determines
the dissimilarity between any two data objects by the minimum amount of
work required to transform one feature distribution (signature) into another one.
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 165–180, 2016.
DOI: 10.1007/978-3-319-32049-6 11

166 M.S. Uysal et al.

The EMD is known to be robust against outliers, which allows for effective sim-
ilarity search, when compared to other approaches [14]. Furthermore, the EMD
can be utilized for partial similarity search and can be applied to signatures
with arbitrary number of representatives. For these reasons, it has attracted
many researchers from a wide range of domains, such as multimedia retrieval
[2,20,24], computer vision [17], and data analysis [17].

The incorporation of signatures (also referred to as adaptive binning) into
the similarity search process has been witnessed in prevalent domains and appli-
cations. As will be presented in Sect. 2, signatures are utilized to model various
kinds of data, such as probabilistic data [25], multimedia data [14,19–21], and
text documents [4]. The key advantage of the signatures is the high quality
of content approximation utilized for similarity search and query processing in
various types of databases.

The EMD can be solved by using transportation simplex algorithms [6] with
some appropriate initial basic feasible solutions. Hence, although the theoretical
time complexity of the EMD is exponential regarding the number of represen-
tatives (features), it can be empirically computed in at least super-cubic time
with respect to the number of representatives. Therefore, the database commu-
nity has attempted to develop EMD-based efficiency improvement techniques
[3,14,15,20,21,24]. All such approaches mainly focus on answering the queries
with a complete k-nearest-neighbor (k-nn) result set without any false drops.
However, in numerous applications dealing with large-scale databases today, it is
appropriate for the user to receive approximate answers where an exact answer is
not required. This comes up in various applications where, for instance, the query
processing time cost is higher than that the user expects. Interestingly, there is
little previous work dealing with approximate EMD-based query processing in
signature databases. To this end, we propose to improve the query processing
with the EMD in signature databases by utilizing signature compression approx-
imations. Our main contributions are listed as follows:

– We introduce an efficient signature compression algorithm to alleviate query
computation cost.

– We theoretically explicate the approximation-based EMD and the relation-
ship between the proposal and the EMD.

– The extensive experiments on 4 real world databases point out the accuracy
and efficiency of our approach.

The paper is structured as follows: Section 2 presents data representation and
the EMD. Then, Sect. 3 gives the related work, followed by Sect. 4 introducing
the approximation-based EMD. After Sect. 5 presents our extensive experimental
evaluation, the paper is concluded by Sect. 6.

2 Preliminaries

Data Representation. In order to represent a data object by a signature, first
the features are extracted from that corresponding object and then aggregated by

Approximation-Based Efficient Query Processing with EMD 167

(a) image (b) signature

Fig. 1. An image and visualization of its signature with 1000 representatives [23].

utilizing various methods, such as k-means clustering algorithm directly applied
to the features. A feature space can be denoted by (F, δ), including a set of
features, where a ground distance function δ : F×F → R is utilized to determine
the distance between any two features. Hence, any data object can be represented
via using features x1, . . . , xn ∈ F each of which is assigned a real number denoting
the number of features assigned to it. In the literature these features are also
found as representatives.

A signature X : F → R includes a finite set of representatives, where each
representative denotes a real number corresponding to the weight of that rep-
resentative in the feature space. The remainder of the features in the feature
space exhibit a zero weight, i.e. they do not play a role with respect to the
determination of the signature of the corresponding data object.

An example image and its corresponding signature are depicted in Fig. 1.
The signature comprises 1000 representatives, which are visualized by circles,
and are based on position, color, and texture information. As illustrated on
this example, signatures are able to visually approximate the contents of the
images by utilizing individual representatives of contributing features. In the
remainder of the paper, for the sake of simplicity we assume that signatures
belong to a class of positive signatures S

+ comprising signatures which consist
of representatives with only positive weights, and the notation RX refers to the
set of representatives of the signature X. Furthermore, the definitions are based
on a feature space (F, δ) and a ground distance function δ.

Earth Mover’s Distance. The Earth Mover’s Distance is a well-known
transformation-based similarity measure which determines the cost of trans-
forming one signature into another one. The formal definition is given below.

Definition 1. Given two signatures X,Y ∈ S
+, the Earth Mover’s Distance

EMD : S+ × S
+ → R between X and Y is defined as a minimization over all

possible flows F = {f |f : F × F → R} = R
F×F as follows:

EMD(X,Y) = min
F

⎧⎪⎨
⎪⎩

∑
x∈F

∑
y∈F

f(x, y) · δ(x, y)

min{ ∑
x∈F

X(x),
∑
y∈F

Y (y)}

⎫⎪⎬
⎪⎭ ,

168 M.S. Uysal et al.

subject to the following constraints:

– Non-negativity: ∀x, y ∈ F : f(x, y) ≥ 0
– Source: ∀x ∈ F :

∑
y∈F

f(x, y) ≤ X(x)

– Target: ∀y ∈ F :
∑
x∈F

f(x, y) ≤ Y (y)

– Total Flow:
∑
x∈F

∑
y∈F

f(x, y) = min{ ∑
x∈F

X(x),
∑
y∈F

Y (y)}

The EMD is defined as a linear optimization problem where the constraints
guarantee a feasible solution, i.e. all flows are positive and do not exceed the
corresponding limitations given by the weights of the representatives of both
signatures. As mentioned before, the EMD can be solved by the utilization of
simplex algorithms [6] where the empirical computational time complexity is
super-cubic with respect to the number of the representatives of the correspond-
ing signatures, denoting a real bottleneck.

In order to alleviate the computational cost, the EMD has been utilized
within multi-step filter-and-refine architectures where k-nearest-neighbor (k-nn)
queries can be performed more efficiently [1,5,7–9,16]. As Fig. 2 depicts, k-
nearest-neighbor queries are processed in multiple steps generating candidate
objects which are subsequently refined to gather the final results. This approach
yields complete result sets, since the exact distance function d is approximated
by a lower-bounding distance function LBd which is utilized in the filter step. In
other words, for all objects x, y it holds that LBd(x, y) ≤ d(x, y).

In this paper, for our approximation-based approach we utilize the multi-
step algorithm proposed in [16] which is proven to be optimal in the number of
candidates, i.e. the algorithm is optimal in the number of distance computations
for exact k-nn queries. The algorithm first generates a ranking by means of the
lower bound, and then the ranking is processed as long as the lower bound does
not exceed the distance of the kth-nearest neighbor. The algorithm updates the
result set as long as data objects with smaller distances have been found.

After presenting the EMD and the efficient query processing, we below give
the related work with respect to the filter distance functions utilized to improve
the efficiency of the EMD-based query processing.

3 Related Work

There have been numerous attempts to speed up the EMD-based query process-
ing towards similarity search on fixed-binned signatures. The authors in [3] aimed
at proposing to lower-bound the EMD via Lp-based distances and constraint
relaxation. Furthermore, dimensionality reduction techniques were developed for
the EMD where reduced cost matrices are utilized relying on the original cost
matrix [24]. The approach in [25] derived a lower bound of the EMD by utiliz-
ing the primal-dual theory in linear programming on top of B+-trees. Another
further method proposed to lower-bound the EMD by projecting histograms
on a vector and approximating their distance by a normal distribution [15].

Approximation-Based Efficient Query Processing with EMD 169

Fig. 2. Multi-step filter-and-refine architecture

In [18], it is proposed to optimize the refinement phase of EMD-based similarity
search by presenting a dynamic distance bound. The limitation of the aforemen-
tioned approaches is that they are mainly applicable to fixed-binned signatures,
i.e. signatures sharing the same representatives.

In contrast, approaches applicable to signatures (irrespective of shared rep-
resentatives) expose a high flexibility and comprehensive solution. Although
adaptive-binned signatures generate more effective results than those with fixed-
binned signatures [14], there is unfortunately insufficient research into this field:
Rubner and IM-Sig filter distances are currently the state of the art.

Given two signatures X,Y with an equal total weight of m over a feature
space (F, δ) with a norm-based distance function δ, the Rubner lower bound
between X and Y is defined as δ

(
(
∑

x∈RX
X(x) · x)/m, (

∑
y∈RY

Y (y) · y)/m
)
,

where the filter distance simply computes the ground distance between the mean
features of both signatures, and it holds Rubner(X,Y) ≤ EMD(X,Y) [14]. The
computation time complexity of Rubner lies in O(|RX |) provided that |RX | ≥
|RY |, however, according to [20] and the results in [22], Rubner filter shows a
relatively low selectivity and very high query time on image and video databases.

The authors in [20] devised research towards developing new efficient query
processing and indexing techniques for the EMD on signatures. The aim is to
reduce the computational time complexity of the k-nn query processing by uti-
lizing constraint relaxation at the level of linear programming examined on
signatures. The Independent Minimization for Signatures (IM-Sig) is a lower-
bounding technique which is based on the relaxation of the target constraint of
the EMD via local examination of each feature independently. Regarding the
IM-Sig, the target constraint of the EMD is replaced by another constraint stat-
ing that each flow from a source feature may not exceed the destination feature
capacity. The basic notion lies in the restriction of the number of earth flows
locally for each representative related with outgoing flows. To this end, for each
representative x ∈ RX the smallest set S can be defined which comprises the
nearest neighbors of x in RY whose total capacity is sufficient to receive all
amount of earth from x. Below, the formal definition of the IM-Sig is presented.

Definition 2 (IM-Sig Filter). Given signatures X,Y with m =
∑
x∈F

X(x) =∑
y∈F

Y (y), IM-Sig between X and Y is a minimization over all possible flows i.e.

IM − Sig(X,Y) = min
f∈F

{ ∑
x∈F

∑
y∈F

δ(x,y)
m f(x, y)

}
, subject to non-negativity con-

straint ∀x, y ∈ F : f(x, y) ≥ 0, source constraint ∀x ∈ F :
∑
y∈F

f(x, y) ≤ X(x),

170 M.S. Uysal et al.

IM-Sig target constraint ∀x, y ∈ F : f(x, y) ≤ Y (y), and flow constr.∑
x∈F

∑
y∈F

f(x, y) = m.

The IM-Sig target constraint states that for any feature no incoming flow
may exceed the weight of that corresponding feature in the feature space, while
the other three constraints remain the same as for the EMD. In other words,
each flow f(x, y) ∈ F from any feature x ∈ F to y ∈ F may possess the value
of at most Y (y), which provides a greater search space than the original space
including the result set of the EMD. It is worth noting that the authors in
[20,22] report that Rubner filter yields much lower selectivity and significantly
higher query time on image and video databases than for the IM-Sig within a
filter-and-refine algorithm.

4 Approximations for the EMD-based Query Processing

As mentioned in Sect. 1, in numerous applications dealing with large-scale data-
bases today, it is appropriate for the user to receive approximate answers where
the precise answer is not required. For this reason, we propose to improve the
query processing with the EMD on signature databases by utilizing signature
compression approximations. First, we introduce an efficient signature compres-
sion algorithm to alleviate query computation cost. Then, we theoretically expli-
cate the approximation-based EMD and the relationship between the proposal
and the EMD.

The time complexity of the query processing increases with the number of
representatives of the signatures. The time complexity of the distance compu-
tation between any two signatures can be reduced by decreasing the number of
representatives. A simple and straightforward way to achieve it would be to arbi-
trarily leave out some representatives so that the representative set cardinalities
are smaller. However, such a method would lead to low accurate approximate dis-
tance results due to the arbitrarily chosen representatives which are neglected
for the signature representation. Thus, below we propose to approximate the
signatures by merging representatives.

Definition 3. Given a signature X and two representatives x, y ∈ RX , the
merged representative of x and y is defined as:

M(x, y) =
X(x) · x + X(y) · y

X(x) + X(y)
.

Definition 4. Given a signature X and two representatives x, y ∈ RX , the
merged weight of x, y is defined as:

MW (x, y) = X(x) + X(y).

Approximation-Based Efficient Query Processing with EMD 171

For any two clusters Cx and Cy of features whose centroids (i.e. representa-
tives) are denoted by x and y (i.e. x = 1

|Cx|
∑

z∈Cx
z, y = 1

|Cy|
∑

z∈Cy
z), M(x, y)

denotes the centroid of Cx ∪ Cy: M(x, y) = 1
|Cx|+|Cy|

∑
z∈Cx∪Cy

z.
Given a set C of representative pairs, the compressed signature of the under-

lying signature is defined by merging the representative pairs as follows.

Definition 5. Given a signature X and a set C ⊂ {{x, y} |x, y ∈ RX} of repre-
sentative pairs such that for all {x, y}, {x′, y′} ∈ C, the representatives x, y, x′, y′
are pairwise distinct, the compressed signature CompC(X) : F → R with respect
to X and the set C of merged pairs of representatives is defined as:

CompC(X)(x) =

⎧
⎨

⎩

0 if ∃x ′, x ′′ ∈ RX . {x ′, x ′′} ∈ C ∧ (x = x ′ ∨ x = x ′′)
MW (x′, x′′) if ∃x ′, x ′′ ∈ RX . {x ′, x ′′} ∈ C ∧ x = M (x ′, x ′′)

X(x) else

Note that the following statement denotes that x, y, x′, y′ are pairwise dis-
tinct: ∀x, y ∈ RX . {x, y} ∈ C ⇒ (x
= y ∧ ∀{x′, y′} ∈ C − {x, y}. x
= x′ ∧ x
=
y′ ∧y
= x′ ∧y
= y′). Definition 5 states that every representative may be merged
with at most one representative other than itself. The compression of any sig-
nature involves in some information loss which directly depends on the set C
of the pairs of merged representatives. A threshold distance value ε is utilized
which affects the compression process: Using a small value for ε leads to less
information loss than using a greater value. We first compute the distance val-
ues among all representatives, and then sort the pairs {x, y} in ascending order
of the distances. If the distance of the considered pair does not exceed ε and
both representatives of that pair are not utilized in C yet, then they are merged
and their corresponding pair is added to the set. The algorithm is presented in
Algorithm 1.

Fig. 3. An example signature (left) and its compressed signature (right) (Color figure
online)

An example signature and its compressed signature are presented in Fig. 3
which depicts a 5-dimensional feature space with 2 positional and 3 color dimen-
sions. Each representative is denoted by a circle whose diameter corresponds to
the weight of that representative. The green and the orange representatives are
merged, respectively, since the distance between them does not exceed the pre-
defined threshold value. The blue and the rose-colored representatives are not

172 M.S. Uysal et al.

Algorithm 1. Signature Compression Algorithm
input : signature X : F → R

≥0 with RX = {x1, ..., xn},
ground distance function δ : F × F → R

≥0,
distance threshold ε ∈ R

≥0

output: the set C of merged representatives

1 Create an empty distance matrix D ∈ R
n×n

2 for 1 ≤ i ≤ n do
3 for 1 ≤ j < i do
4 Di,j ← δ(xi, xj)
5 end

6 end
7 Sort the values of D in ascending order, and let {ik, jk} be the pair of

representatives with the k-th distance value in this order
8 C ← ∅
9 for 1 ≤ k ≤ n2−n

2
do

10 if Dik,jk > ε then
11 break
12 end
13 C ← C ∪ {{xik , xjk}}
14 end
15 return C

merged with any other ones due to their high distance values. The computational
time complexity of Algorithm 1 lies in O(n2 log n) due to the sorting phase (line
8). Below, we analyze the relationship between the approximate EMD and the
original EMD, and show that the approximate EMD value has an upper bound
of EMD(X,Y)+1.5 ε for any 1-normalized signatures X,Y , i.e. signatures with
the total weight of 1, which we assume for the sake of simplicity:

Theorem 1. Given signatures X,Y with a total weight of 1, a metric ground
distance δ : F×F → R, and a set C of merged representatives satisfying δ(x, y) ≤
ε ∈ R

≥0 for all {x, y} ∈ C, it holds:

EMD(CompC(X), Y) ≤ EMD(X,Y) + 1.5 ε

Proof. Let f be a minimum-cost flow from X to Y . Let us define a flow f ′ from
CompC(X) to Y and show the feasibility of this flow:

f ′(x, y) =

⎧⎨
⎩

f(x′, y) + f(x′′, y) if ∃x′, x′′ ∈ RX . {x′, x′′} ∈ C ∧ x = M(x′, x′′)

f(x, y) else

– Non-negativity constraint: It follows by the non-negativity of f .

Approximation-Based Efficient Query Processing with EMD 173

– Source constraint: For any given x ∈ RCompC(X), if x = M(x′, x′′) holds for
some {x′, x′′} ∈ C, then the following statement holds:∑

y∈RY

f ′(x, y) =
∑

y∈RY

(f(x′, y) + f(x′′, y)) ≤ X(x′) + X(x′′)

= MW (x′, x′′) = CompC(X)(x)

For any other case it holds:∑
y∈RY

f ′(x, y) =
∑

y∈RY

f(x, y) ≤ X(x) = CompC(X)(x)

– Target constraint: For any y ∈ RY , it holds:∑
x∈RCompC(X)

f ′(x, y)

(1)
=

∑
x∈RX∩RCompC(X)

f(x, y) +
∑

{x′,x′′}∈C

[
(f ′(M(x′, x′′), y)

]
(2)
=

∑
x∈RX∩RCompC(X)

f(x, y) +
∑

{x′,x′′}∈C

[
f(x′, y) + f(x′′, y)

]

(3)
=

∑
x∈RX

f(x, y)
(4)

≤ Y (y)

(1) follows by the fact that any representative x ∈ RCompC(X) is either a
representative which is not merged with any representative in RX or it is an
already merged representative. (3) holds by the following statement: RX =
(RX ∩ RCompC(X)) ∪ {x′, x′′ ∈ F | {x′, x′′} ∈ C}.

– Total flow constraint:∑
x∈RCompC(X)

∑
y∈RY

f ′(x, y)

(5)
=

∑
x∈RCompC(X)∩RX

∑
y∈RY

f(x, y) +
∑

{x′,x′′}∈C

∑
y∈RY

[
f ′(M(x′, x′′), y)

]
(6)
=

∑
x∈RCompC(X)∩RX

∑
y∈RY

f(x, y) +
∑

{x′,x′′}∈C

∑
y∈RY

[
f(x′, y) + f(x′′, y)

]
(7)
=

∑
x∈RX

∑
y∈RY

f(x, y)
(8)
= min{

∑
x∈RX

X(x),
∑

y∈RY

Y (y)}

(9)
= min{

∑
x∈RCompC(X)

CompC(X)(x),
∑

y∈RY

Y (y)}

The equations of (5) and (7) hold by the same reasons given for (1) and (3),
respectively. In addition, the Eq. (8) follows from the total flow constraint of
f , and (9) follows directly by Definition 5.

174 M.S. Uysal et al.

So far, we have seen that f ′ is a feasible flow between the compressed signature
CompC(X) and Y . Now, we can derive an upper bound to the overall cost which
is gathered by the utilization of the flow f ′:∑

x∈RCompC(X)

∑
y∈RY

f ′(x, y) · δ(x, y)

(10)
=

∑
x∈RX

∑
y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C

∑
y∈RY

[
(f ′(M(x′, x′′), y)

· δ(M(x′, x′′), y) − f(x′, y) · δ(x′, y) − f(x′′, y) · δ(x′′, y)
]

(11)

≤
∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C

∑

y∈RY

[
(f ′(M(x′, x′′), y) · (δ(x′, y)

+ δ(x′, x′′)) − f(x′, y) · δ(x′, y) − f(x′′, y) · (δ(x′, y) − δ(x′, x′′))
]

(12)
=

∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C

∑

y∈RY

[
(f ′(M(x′, x′′), y) + f(x′′, y))

· δ(x′, x′′) + (f ′(M(x′, x′′), y) − f(x′, y) − f(x′′, y)) · δ(x′, y)
]

(13)
=

∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C

∑

y∈RY

(f(x′, y) + 2 · f(x′′, y)) · δ(x′, x′′)

(14)

≤
∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C
(X(x′) + 2 · X(x′′)) · δ(x′, x′′)

(15)

≤
∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) +
∑

{x′,x′′}∈C
(X(x′) + 2 · X(x′′)) · ε

(16)

≤
∑

x∈RX

∑

y∈RY

f(x, y) · δ(x, y) + 1.5 ε
(17)
= EMD(X, Y) + 1.5 ε

The Eq. (10) holds for the same reason given for (1), and (11) holds by the
triangle inequality. After reordering terms, (12) is acquired and (13) holds by
the definition of f ′. (14) holds by the source constraint of f , and (15) is gathered
by applying δ(x′, x′′) ≤ ε. The normalization of X, and w.l.o.g. the assumption
X(x′′) ≤ X(x′) yield (16). As f ′ is a feasible flow from CompC(X) to Y , the
min-cost flow results in an overall cost which does not exceed the cost determined
by f ′, hence EMD(CompC(X), Y) ≤ EMD(X,Y) + 1.5 ε holds. ��

It is worth noting that the approximation error coming up in real world data
experiments may differ from the approximation error given in Theorem1. The
empirical approximation error is observed to be much smaller, which we omit due
to space limitations. By using the information of merging representatives in C, it
is possible to estimate an a-posteriori error bound more accurately by utilizing
the following term in (14):

∑
{x′,x′′}∈C(X(x′)+2·X(x′′))·δ(x′, x′′). Furthermore,

it is of particular importance to point out that the distance threshold ε is a

Approximation-Based Efficient Query Processing with EMD 175

trade-off parameter between accuracy and efficiency: The higher the parameter
ε, the smaller the cardinality of the compressed signature, resulting in speeded
up distance computation at the expense of a lower accuracy.

So far, we have seen how to define and perform approximate k-nn search
utilizing compressed signatures. In the following section we present our extensive
experimental results on 4 real world databases.

5 Experiments

In this section, we conduct experimental evaluation of approximate k-nn retrieval
using signature compression with respect to accuracy and efficiency.

Experimental Setup. We perform k-nn queries on 4 real world image and
video signature databases. We generated a video database named PUBVID con-
sisting of 250,000 videos downloaded from vine.co, while NDVINE consists of
350,000 near-duplicate videos generated out of 3636 original videos from [13]
by altering brightness, contrast, playback speed, resolution, frame order, adding
overlay text, borders, and modifying content by frame deletion. The third data-
base is the well-known medical image database IRMA [10,11] consisting of 12,675
anonymous radiographs. UKBench [12] is another database comprising 10,200
images, which we use as the last database in our experiments.

Each signature is generated by extracting features by sampling of 10,000 pix-
els of an image (or video) and then clustering them with k-means algorithm. Each
representative comprises the dimensions of the relative spatial information of the
corresponding pixel (x and y positional values), CIELAB color values, coarseness
and contrast values. Thus, each feature is represented by a 7-dimensional feature
vector for the image databases, and 8-dimensional feature vector for the video
databases, which additionally includes the temporal dimension.

In order to achieve reliable experimental evaluation, we present the results
denoting the averages over a query workload of 100. The experiments were con-
ducted on a single-core 2.2 GHz machine equipped with Windows Server 2008
OS and 6 GB of main memory. Note that no parallelization of the implemen-
tations was performed. As ground distance between the features, we utilize the
Manhattan distance, but our approach can be coupled with other distance func-
tions, too. In addition, due to space limitation we choose k as 100 and we utilize
our approach within the multi-step k-nn filter and refinement algorithm.

We evaluate the percentage of reduced representatives (centroids), the accu-
racy and the query processing time for different values of the distance threshold ε.
The accuracy of the approximate k-nn retrieval for a query q is defined as:

accuracy(q) =
|knnapprox(q) ∩ knnexact(q)|

|knnexact(q)|
As mentioned before and as reported in [20,22], it is worth noting that Rub-

ner filter yields much lower selectivity and significantly higher computational
query time on signature databases than for the IM-Sig within a filter-and-refine

176 M.S. Uysal et al.

Fig. 4. Percentage of reduced centroids, average accuracy, and query processing time
vs. ε for video databases PUBVID and NDVINE.

algorithm. Considering these verified results in the literature, we below investi-
gate the efficiency and accuracy performance of our proposal by comparing with
the results of the IM-Sig utilized in a filter-and-refine algorithm. The results cor-
responding to ε = 0 denote the complete results which are gathered by applying
the IM-Sig in filter step and the EMD in the refinement step of the optimal
multi-step algorithm, i.e. no signature compression occurs. For the case ε > 0,
the database signatures are compressed by the corresponding percentage of the
centroids given in the figures within a precomputation step.

Experimental Results. Figure 4 depicts the results for the video databases
PUBVID and NDVINE, and Fig. 5 shows the results for the image databases
IRMA and UKBench. For ε = 0, no compression occurs, yielding an accurate
retrieval with no false drops. Hence, the number of reduced centroids remains
as 0 and the accuracy is observed as 1. Obviously, the higher we choose ε, the
higher the number of reduced centroids are. For high values of ε, the percentage
of reduced centroids approaches 50 %, since each centroid is merged with another
centroid in its ε-neighborhood, halving the number of centroids.

Approximation-Based Efficient Query Processing with EMD 177

Fig. 5. Percentage of reduced centroids, average accuracy, and query processing time
vs. ε for image databases IRMA and UKBench.

The number of reduced centroids for the same values of ε differ between
the databases, suggesting that the databases have a different distribution of
the centroids and different inter-centroid distances. The percentage of reduced
centroids is reflected in the accuracy: The less centroids we have, the worse the
accuracy becomes, since a smaller number of centroids yields a less expressive
representation of the underlying video, impairing the discriminability between
the videos. For smaller signature sizes, the accuracy suffers more than for higher
signature sizes, since the information loss induced by a reduction of the centroids
through compression is higher when the signature size is small.

The accuracy for NDVINE is observed to remain above the accuracy of 0.7
for the signature dimensions 20-50. This can be explained by the fact that PUB-
VID consists of a random collection of videos where for a given query the most
similar videos are not significantly more similar than the other videos. Hence,
the distances to the nearest neighbors do not differ substantially from the dis-
tances to other videos. Thus, the set of nearest neighbors is unrobust to the
approximation error in the EMD resulting from the compression, causing the

178 M.S. Uysal et al.

nearest neighbors with respect to the EMD to be quite different from the near-
est neighbors regarding the approximate EMD. In NDVINE, on the other hand,
the nearest neighbors of a query mostly comprise near-duplicate versions of the
query. Here, the distances to the nearest neighbors are significantly smaller than
the distances to other videos. As a result, the set of nearest neighbors is more
robust to the approximation error induced by the compression, resulting in a
comparatively high accuracy.

A similar observation can be made for IRMA and UKBench: IRMA consists
of a random collection of images, resulting in the same kind of unrobustness to
compression as PUBVID, deteriorating the accuracy. However, UKBench con-
tains categories of images, each category comprising an image of the same object
from four different perspectives. Hence, the nearest neighbors are most likely to
contain these similar images, causing the distances to the nearest neighbors to
be significantly smaller than the distances to other images, again making the
set of nearest neighbors more robust to the approximation error induced by the
compression, resulting in high accuracy lying above 0.8. In addition, UKBench
is a small database, which also improves the robustness of the nearest neighbors
to approximation errors.

For all databases, the query processing time for ε = 0 corresponds to the
elapsed query time for accurate retrieval. As expected, a higher ε causes the query
time to decrease, which can be attributed to the reduced number of centroids,
which alleviates the query time required for a single distance computation. For
higher signature sizes, this effect is stronger than for smaller signature sizes, since
the relative number of reduced centroids corresponds to a higher absolute number
of reduced centroids, which has an amplified effect on the query processing time
due to the super-cubic time complexity of the EMD.

Summary of Experiments. The results yielded by our experiments show that
approximate k-nn search through signature compression is a reasonable method
for speeding up the query processing time while ensuring accurate results, espe-
cially for high signature sizes. The choice of the parameter ε enables us to control
the trade-off between accuracy and efficiency, allowing us to ensure a certain
expected accuracy while reducing the query processing time cost.

6 Conclusion

The high computational time complexity of the well-known Earth Mover’s Dis-
tance (EMD) hinders its application in large-scale datasets where the user is
rather interested in receiving an answer from the underlying application within
a short period of time than requesting an exact and complete query result set.
To overcome this limitation, in this paper, we propose to improve the efficiency
of the query processing with the EMD on signature databases by utilizing sig-
nature compression approximations. To this end, we introduce an efficient sig-
nature compression algorithm to alleviate query computation cost, and theoreti-
cally analyze the approximation-based EMD. On top of this, the comprehensive
experiments show that our approach can be successfully applied to 4 different

Approximation-Based Efficient Query Processing with EMD 179

kinds of real world datasets, pointing out the accuracy and efficiency of the
proposal and sheding light on the applicability of our approach to signature
databases.

Acknowledgments. This work is funded by DFG grant SE 1039/7-1.

References

1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence data-
bases. In: Lomet, David B. (ed.) FODO 1993. LNCS, vol. 730. Springer, Heidelberg
(1993)

2. Assent, I., Kremer, H., Seidl, T.: Speeding up complex video copy detection queries.
In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS,
vol. 5981, pp. 307–321. Springer, Heidelberg (2010)

3. Assent, I., Wenning, A., Seidl, T.: Approximation techniques for indexing the earth
mover’s distance in multimedia databases. In: ICDE, p. 11 (2006)

4. Barrio, P., Gravano, L., Develder, C.: Ranking deep web text collections for scalable
information extraction. In: CIKM, pp. 153–162 (2015)

5. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: SIGMOD, vol. 23, no. 2, pp. 419–429 (1994)

6. Hillier, F., Lieberman, G.: Introduction to Linear Programming. McGraw-Hill,
New York (1990)

7. Houle, M.E., Ma, X., Nett, M., Oria, V.: Dimensional testing for multi-step simi-
larity search. In: ICDM, pp. 299–308 (2012)

8. Korn, F., Sidiropoulos, N., Faloutsos, C., Siegel, E.L., Protopapas, Z.: Fast nearest
neighbor search in medical image databases. In: VLDB, pp. 215–226 (1996)

9. Kriegel, H.-P., Kröger, P., Kunath, P., Renz, M.: Generalizing the optimality of
multi-step k-nearest neighbor query processing. In: Papadias, D., Zhang, D., Kol-
lios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 75–92. Springer, Heidelberg (2007)

10. Lehmann, T., et al.: Content-based image retrieval in medical applications. Meth-
ods Inf. Med. 43(4), 354–361 (2004)

11. Lehmann, T., et al.: IRMA project site (2009). http://www.irma-project.org/
datasets

12. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: CVPR,
pp. 2161–2168 (2006)

13. Redi, M., OHare, N., Schifanella, R., Trevisiol, M., Jaimes, A.: 6 seconds of sound
and vision: Creativity in micro-videos. In: CVPR, pp. 4272–4279 (2014)

14. Rubner, Y., Tomasi, C., Guibas, L.: A metric for distributions with applications
to image databases. In: ICCV, pp. 59–66 (1998)

15. Ruttenberg, B.E., Singh, A.K.: Indexing the earth mover’s distance using normal
distributions. PVLDB 5(3), 205–216 (2011)

16. Seidl, T., Kriegel, H.: Optimal multi-step k-nearest neighbor search. In: SIGMOD,
pp. 154–165 (1998)

17. Solomon, J., Rustamov, R., Guibas, L., Butscher, A.: Earth mover’s distances on
discrete surfaces. ACM Trans. Graph. 33(4), 67:1–67:12 (2014)

18. Tang, Y., Cai, L.H., Mamoulis, N., Cheng, R.: Earth mover’s distance based simi-
larity search at scale. PVLDB 7(4), 313–324 (2013)

http://www.irma-project.org/datasets
http://www.irma-project.org/datasets

180 M.S. Uysal et al.

19. Uysal, M.S., Beecks, C., Sabinasz, D., Seidl, T.: FELICITY: A flexible video simi-
larity search framework using the earth mover’s distance. In: Amato, G., Connor,
R., Falchi, F., Gennaro, C. (eds.) Similarity Search and Applications. LNCS, vol.
9371, pp. 347–350. Springer, Heidelberg (2015)

20. Uysal, M.S., Beecks, C., Schmücking, J., Seidl, T.: Efficient filter approximation
using the Earth Mover’s Distance in very large multimedia databases with feature
signatures. In: CIKM, pp. 979–988 (2014)

21. Uysal, M.S., Beecks, C., Schmücking, J., Seidl, T.: Efficient similarity search in
scientific databases with feature signatures. In: SSDBM, pp. 30:1–30:12 (2015)

22. Uysal, M.S., Beecks, C., Seidl, T.: On efficient content-based near-duplicate video
detection. In: CBMI, pp. 1–6 (2015)

23. Uysal, M.S., et al.: Large-scale efficient and effective video similarity search. In:
LSDS-IR@CIKM, pp. 3–8 (2015)

24. Wichterich, M., Assent, I., et al.: Efficient emd-based similarity search in multi-
media databases via flexible dimensionality reduction. In: SIGMOD, pp. 199–212
(2008)

25. Xu, J., Zhang, Z., et al.: Efficient and effective similarity search over probabilistic
data based on earth mover’s distance. PVLDB 3(1), 758–769 (2010)

Effective Similarity Search on Indoor
Moving-Object Trajectories

Peiquan Jin1(&), Tong Cui1, Qian Wang1, and Christian S. Jensen2

1 University of Science and Technology of China, Hefei, China
jpq@ustc.edu.cn

2 Department of Computer Science, Aalborg University, Aalborg, Denmark

Abstract. In this paper, we propose a new approach to measuring the similarity
among indoor moving-object trajectories. Particularly, we propose to measure
indoor trajectory similarity based on spatial similarity and semantic pattern
similarity. For spatial similarity, we propose to detect the critical points in
trajectories and then use them to determine spatial similarity. This approach can
lower the computational costs of similarity search. Moreover, it helps achieve a
more effective measure of spatial similarity because it removes noisy points. For
semantic pattern similarity, we propose to construct a hierarchical semantic
pattern to capture the semantics of trajectories. This method makes it possible to
capture the implicit semantic similarity among different semantic labels of
locations, and enables more meaningful measures of semantic similarity among
indoor trajectories. We conduct experiments on indoor trajectories, comparing
our proposal with several popular methods. The results suggest that our proposal
is effective and represents an improvement over existing methods.

Keywords: Indoor space � Similarity search � Trajectory

1 Introduction

Most people spend most of their time in indoor spaces, such as in homes, office
buildings, shopping malls, and airports. The increasingly deployment of indoor posi-
tioning technologies offers the possibility to obtain the locations and trajectories of
people in indoor spaces [4]. Therefore, there are increasing needs for analyzing the
trajectories of indoor moving objects. For instance, it is helpful to find potential
shopping patterns by identifying similar paths of customers in a shopping mall [15].
This development calls for the research on similarity search in indoor spaces.

Similarity search is an important issue in many applications. A key objective is to
define efficient methods to measure the trajectory similarity for indoor moving objects.
Previous efforts on trajectory similarity search focus on outdoor spaces, e.g., Euclidean
and road-network spaces [7–10]. However, indoor spaces have unique features com-
pared with outdoor spaces. First, in indoor spaces, we cannot use GPS for positioning.
Instead, indoor locations have to be determined through a deployment graph of readers
like RFID readers or Wi-Fi adapters [4]. Due to the small-area property of indoor
spaces, indoor positions reported by readers are much closer than outdoor locations,
yielding a polyline with dense points and introducing many noisy points in trajectory

© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 181–197, 2016.
DOI: 10.1007/978-3-319-32049-6_12

similarity measurement. Second, a typical indoor space consists of different floors and
many indoor elements like rooms, doors, hallways, stairs, and elevators. Thus, indoor
spaces are actually constrained three-dimensional spaces. Therefore, we need new
techniques to compute indoor distances when measuring trajectory similarity.

In this paper, we propose a new approach to measuring trajectory similarity for
indoor moving objects. We consider both spatial and semantic similarity between
trajectories, and we make the following contributions:

(1) We propose to detect critical points in a trajectory and then define spatial simi-
larity based on critical points (Sect. 3.1).

(2) We propose to use a hierarchical categorization of indoor locations to capture the
semantic patterns of trajectories, and we define hierarchical semantic similarity for
indoor moving objects (Sect. 3.2).

(3) We compare our proposal with the LCSS-based and Edit-Distance-based methods
using synthetic indoor trajectory data. The results suggest that our proposal is
effective and improves on existing proposals (Sect. 4).

2 Problem Statement

2.1 Indoor Space

Many models of indoor space have been proposed [1–4]. In this paper, we define
indoor space by the following symbolic model

Definition 1 (Indoor Space). An indoor space is represented as a triple:

IndoorSpace ¼ Cell; Sensor; Deploymentð Þ

Here, Cell is a set of cells in the indoor space. According to previous researches, an
indoor space can be partitioned into cells [3]. Sensor is a set of positioning sensors
deployed in the indoor space. Typical sensors are RFID readers, Bluetooth detectors,
and Wi-Fi signal receivers. Deployment records the placement information of the
sensors in the indoor space. □

In real applications, rooms can be regarded as cells and sensors are usually used to
identify cells in indoor space, e.g., to identify shops in a shopping mall. Thus, the
Deployment information of sensors can be pre-determined and maintained in a
database.

In order to introduce semantics into the model, we assign semantic labels to each
sensor. As a result, the set Sensor can be represented as follows.

Sensor ¼ sjs ¼ sensorID; location; labelð Þf g

The label of a sensor provides descriptions on thematic attributes of the location
identified by sensorID. For instance, we can use labels like “elevator” and “stair” to
indicate the functions of the cell identified by a sensor. We can also use other labels like
“Starbucks” and “Burger King” to annotate semantic features of the cell. The location

182 P. Jin et al.

of a sensor is a three-dimensional coordinate (x, y, z), which reflects the relative
position of the sensor inside the indoor space where the sensor is deployed. In real
applications, indoor maps are usually designed by AutoCAD [22]. Thus, if we import
an indoor map into a database system, we can simply use the coordinates and floors in
the map to represent the locations of sensors.

2.2 Similarity Search in Indoor Spaces

In outdoor spaces, a trajectory is a series of GPS locations, while a trajectory in indoor
spaces is typically a series of sensor identifiers. Thus, we first define the indoor location
of a moving object as follows:

Definition 2 (Indoor Location). An indoor location LOC of a moving object mo is
defined as LOCmo:

LOCmo ¼ fpjp ¼ s; ts; te½ �ð Þ ^ ts\teð Þ ^ s 2 Sensorg;

Here, s is a sensor, mo is the object identifier, ts is the instant that the object enters
the sensor’s range and te is the instant that the object leaves the sensor range. □

Due to the special properties of some kinds of sensors, an indoor moving object
may be detected by two or more sensors simultaneously. Thus, we need to find out the
most exact location from a set of sensors’ signals. This is an important issue in indoor
location-based applications, which has been studied in many previous works on indoor
localization [23, 24]. We assume that an indoor moving object has only one indoor
location at each time instant. Then, we define the indoor trajectory for a moving object.

Definition 3 (Indoor Trajectory). An indoor trajectory TR of a moving object mo is
defined as a sequence of indoor locations of mo:

TRmo ¼ hp1; p2; . . .pn; i j ð8piÞ pi 2 LOCmo ^ ðpi:te\piþ 1:tsÞð Þf g

□

Definition 4 (Indoor Trajectory Similarity Search). Given a set of indoor trajec-
tories T, a query trajectory q, and an integer k, an indoor trajectory similarity search
retrieves a set S � T that consists of k trajectories, such that:

8x 2 S ^ 8y 2 T � S; SimTra x; qð Þ� SimTra y; qð Þ

□
Here, SimTra(x, q) returns the similarity between x and q.

Effective Similarity Search on Indoor Moving-Object Trajectories 183

3 Indoor Trajectory Similarity

Given two indoor trajectories x and y, their similarity is defined as follows.

Sim x; yð Þ ¼ a � spaSim x; yð Þþ 1� að Þ � semSim x; yð Þ ð3:1Þ

Here, a is the weight reflecting the importance of the spatial similarity. Next, we
give the details of measuring spatial similarity and semantic similarity.

3.1 Critical Point Based Spatial Similarity

We propose a critical-point-based solution for the measurement of spatial similarity for
indoor trajectories. The idea of critical points can be illustrated by Fig. 1. As different
points in a trajectory usually have different impacts in describing the most important
features of the trajectory, e.g., direction, we can detect those important points, called
critical points, and remove other non-critical points to make the original trajectory
more simple and clear. As shown in Fig. 1(b), after constructing the critical-point-based
trajectory for the original one in Fig. 1(a), the trajectory contains fewer points (original
23 points, only 8 critical points after transformation).

The benefits of critical points are two-fold. First, the computation time of similarity
search can be reduced. Second, this design can be more effective than traditional
methods like Longest Common Sub-sequence (LCSS) [15] and Edit Distance [9]. For
example, the two trajectories shown in Fig. 1 will be regarded as dissimilar according
to either the LCSS or Edit Distance approach. Note that the LCSS approach uses the
longest common points to measure similarity (in this example, there are only 4 longest
common points between the trajectories.), and the Edit Distance approach uses the
count of edits transforming Fig. 1(a) to (b) to measure the similarity (in this example,
fifteen edits have to be performed.). However, we can see from Fig. 1 that these two
trajectories have very similar shapes and moving patterns (e.g., crossing through the
hallway on a floor).

One previous approach similar to the critical-point-based trajectory reduction is the
Douglas-Peucker (DP) algorithm [25]. However, the DP algorithm is not effective in
reducing complex indoor trajectories. For example, in Fig. 2, the trajectory from A to H
will be reduced into A-E-H according to the DP algorithm, which omits some critical

(a) The original trajectory (b) The critical-point-based trajectory

Fig. 1. The idea of critical points

184 P. Jin et al.

points such as D and F. On the other hand, the trajectory of Fig. 2 is very common in
indoor space, where each point can represent one room in a floor.

3.1.1 Critical Point

Definition 5 (Position Distance). Let p, pc, and p1 be indoor locations. The Euclidean
distance from p to the line segment pcp1��! is called the position distance from p to pc,
denoted as PDp!pc . □

Definition 6 (Position Angle). Let p1, p2, and p3 be indoor locations. The angle
between the line segment p1p2��! and p2p3

��! is called the position angle of p2, denoted as
PAp2 □

Figure 3 shows an example of position distance (PD) and position angle (PA).
Generally, we can find that a large position distance or a large position angle implies a
substantial change on the moving direction (in Fig. 3 the referenced direction is pcp1��!).
Thus we can utilize the position distance (PD) and position angle (PA) to detect critical
points in an indoor trajectory.

Definition 7 (Critical Point). Given an indoor trajectory x, an angle threshold θ and a
distance threshold d, an indoor location p in x is called a critical point of x such that
p satisfies one of the following criteria:

(1) p is the start or end point of x.
(2) p is an inter-connection location, e.g., an “elevator” room or a “stair” room,

which can be identified through the labels in p.

BC
D

E

F G

The DP trajectory

A

H

Fig. 2. The ineffectiveness of the DP algorithm in reducing indoor trajectories

Fig. 3. An example of position distance (PD) and position angle (PA)

Effective Similarity Search on Indoor Moving-Object Trajectories 185

(3) PAp [h

(4) PDp!pc [d, where pc is the most-recently critical point preceding p in x:

□
The third condition is introduced to detect those points that lead to a substantial

change on the movement direction. The last condition is used to find those points that
gradually change the moving direction. We also identify inter-connection locations as
critical points, e.g., elevator rooms and stair rooms, because those locations typically
indicate dramatic changes on the moving direction. The initial critical point needed for
computing position distance (PD) is the starting point of the trajectory.

Figure 4 shows the algorithm for detecting critical points of indoor trajectories.

3.1.2 Indoor Distance
We now define the indoor distance. For each trajectory x, we can acquire its critical
points using the algorithm in Fig. 4. Each two adjacent points form a line segment; then
the trajectory can be represented as a sequence of three-dimensional line segments
composed with these critical points.

Given two line segment Li and Lj, in an indoor space (x, y, z), we suppose that Lj is
on the (x, y) plane and L

0
i denote the projection of Li on the (x, y) plane. Then, we adapt

the distance function defined in [18], which is proposed for two-dimensional Euclidean
space, for three-dimensional indoor spaces. As illustrated in Fig. 5, the indoor distance
between two line segments Li and Lj is composed of four distances, namely the per-
pendicular distance, horizontal distance, projection distance, and shifting distance,
which are defined as follows and based on the symbols shown in Fig. 5.

Fig. 4. The algorithm to detect critical points

186 P. Jin et al.

(1) The perpendicular distance: d? ¼ L2?1 þ L2?2
L?1 þ L?2

(2) The horizontal distance: dk ¼ min Lk1; Lk2
� �

(3) The shifting distance: dθ = | Lj | × sin(θ)
(4) The projection distance: dh ¼ h

Then we can compute the distance between Li and Lj by (3.2):

distðLi; LjÞ ¼ w? � d? þwjj � djj þwh � dh þwh � dh ð3:2Þ

This distance function can accurately reflect the differences between the two seg-
ments, because they both consider the lengths and the directions of the segments. We
can adjust the four weighting parameters, namely w?,wk, wh, and wh, according to real
applications. In our experiment, we simply set these parameters to the same value.

Then, given two indoor trajectories x and y, whose number of locations are m and n,
respectively, we can compute the indoor distance between x and y by (3.3).

distTR x; yð Þ ¼ dist x:L1; y:L1ð Þþmin distf x� x:L1f g; y� fy:L1gð Þ;
dist x� x:L1f g; yð Þ; dist x; y� y:L1f gð Þ ð3:3Þ

Finally, we define the spatial similarity between two trajectories x and y by (3.4).
The 1

1þ distTR x;yð Þ part is used to reflect the effect of indoor distance, where a farther

distance means less similarity. The min xj j;jyjð Þ
max xj j;jyjð Þ part is used to reflect the influence of the

length of trajectories, which is based on the assumption that if the lengths of two
trajectories are much different they are less similar.

spaSim x; yð Þ ¼ 1
1þ distTR x; yð Þ �

min xj j; jyjð Þ
max xj j; jyjð Þ ð3:4Þ

3.2 Hierarchical Semantic Similarity

We present the semantic classification tree, and then propose a new method to compute
the hierarchical semantic similarity between trajectories.

Fig. 5. Illustration of the indoor distance between two line segments

Effective Similarity Search on Indoor Moving-Object Trajectories 187

3.2.1 Semantic Classification Tree
Generally, each indoor location has some descriptions, such as restaurant, movie the-
ater, KTV, etc. These descriptions can have different granularities and levels. For
example, the coarse-grained description by the label “restaurant” can be further
explained using some fine-grained descriptions like “Chinese restaurant”, “Western
restaurant”, etc. Therefore, we build a semantic classification tree to represent the
hierarchical semantic relationship between the descriptions with different granularities.
We denote such a tree as SC_Tree. Figure 6 shows an example of SC_Tree. In this tree,
location classifications of different levels means different granularity of partition. Each
non-leaf node in SC_Tree represents a category of locations, and each leaf node rep-
resents a semantic label of a location.

Given a trajectory, we can find its corresponding leaf nodes in SC_Tree. For
example, suppose that we have the following indoor trajectory (here each pi represents
a sensorID and a geographical coordinate, and for simplicity we omit the time infor-
mation), the corresponding leaf nodes in SC_Tree in Fig. 6 are p1, p2, …, p6.

TRS ¼ h p1;Nikeð Þ; p2;Adidasð Þ; p3; LI � NINGð Þ; p4;KFCð Þ; p5; Starbucksð Þ; p6; Lancomeð Þi

3.2.2 Hierarchical Semantic Patterns

Definition 8 (Hierarchical Semantic Pattern). Assume that labelS represents the
labels of the leaf nodes in SC_Tree, classS is the set of labels of the non-leaf nodes, and
H is the height of SC_Tree, the hierarchical semantic pattern MP of an indoor tra-
jectory x is defined as MP xð Þ, which is a set of MPk xð Þ;where 0 � k�H. MPk xð Þ
represents the semantic pattern of x at the k-th level in SC_Tree, which is defined as
follows:

MPkðxÞ ¼ ha1; a2; . . .ajxjij8i 2 1; jxj½ �; ai ¼ x:pi:label
� �

; k ¼ H
ha1; a2; . . .ajMPkðxÞjij8i 2 1; jMPkðxÞj½ �; ai 2 ðlabelS[classSÞ� �

; k\H

�

□

Fig. 6. An example of SC_Tree

188 P. Jin et al.

For example, consider our trajectory TRS, its hierarchical semantic pattern is shown
in Fig. 7. The lowest level of semantic pattern, i.e., MP3ðTRSÞ; is the sequence of
semantic labels in TRS, while MP0ðTRSÞ;MP1ðTRSÞ;MP2ðTRSÞ are sequences of
non-leaf level labels.

3.2.3 Semantic Similarity
Given two indoor trajectory x and y, we first construct their hierarchical semantic
patterns. Next, for the semantic pattern at each level of SC_Tree, we use the LCSS
method [8] to calculate the similarity between the semantic patterns.

simMP MPi xð Þ;MPi yð Þð Þ ¼ LCSS MPi xð Þ;MPi yð Þð Þj j
min MPi xð Þj j; MPi yð Þj jð Þ ð3:5Þ

Then, the semantic similarity of two trajectories T and R is defined.

semSim ¼
XH

i¼0
simMP MPi xð Þ;MPi yð Þð Þ � wi ð3:6Þ

Here, wi is the importance of the similarity of ith semantic pattern to the total
semantic similarity. This allows us to decrease the users’ interests gradually from the
leaf nodes up to the root, so that upper patterns contribute less to the users’ interests.
The following definition of wi reflects this observation.

wi ¼ 1PH
k¼0 2

k
� 2i ð3:7Þ

4 Experiment

We explain the experimental settings and then discuss the detailed results, including
comparisons with several existing methods with respect to time performance and
effectiveness.

Fig. 7. An example for hierarchical moving patterns

Effective Similarity Search on Indoor Moving-Object Trajectories 189

4.1 Experimental Setup

Data Set. We simulate a shopping mall with two floors and generate indoor trajectory
data using the indoor data generator IndoorSTG [20]. IndoorSTG can simulate different
indoor spaces consisting of elements such as rooms, doors, corridors, stairs, elevators,
and virtual positioning devices like RFID and Bluetooth readers. Besides, it can gen-
erate semantic-based trajectories for indoor moving objects. The simulated shopping
mall has 94 indoor locations that represent different types of indoor elements such as
rooms, elevators, corridors, and stairs. We simulate moving objects in such an indoor
space during a time period of 20 days to generate different sets of trajectory data. The
number of moving objects is set to 250, 500, 1,000, and 2,000, respectively, which
yields 5,000, 10,000, 20,000, and 40,000 trajectories when the number of moving
objects is varied from 250 to 2,000. We manually add the semantic label to each of the
94 indoor locations to represent the semantics. In the experiments, we use 20,000
trajectories as the default data set and randomly select 100 trajectories to serve as
queries.

Metrics. We focus mainly on the time performance and effectiveness of similarity
search. For time performance, we record the overall run time for processing queries
when varying the number of trajectories. In order to evaluate the effectiveness, we use
two metrics. The first is the average distance between the query trajectories and the
results. The second is the precision of similarity search. Since we are using simulated
data, it is not feasible to evaluate the precision from users’ perspective. Instead, we
utilize the idea of Cumulative Gain (CG) [21] to define precision. CG is well-known in
information retrieval as part of the commonly-used metric Normalized Discounted
Cumulative Gain (NDCG), which is used to evaluate the relevance of search results.

Let q be a query trajectory and let R be the set of returned trajectories for q. We
define the semantic relevance between q and a returned trajectory r2R as follows.

rel r; qð Þ ¼
Xminðjrj;jqjÞ

i¼1

1
dðri; qiÞ ð4:1Þ

Here, 1
dðri;qiÞ returns the relevance between two locations from q and r. And these

two locations have the same sequence in q and r. When computing rel r; qð Þ, we first get
the sum of the relevance between each location pair from q and r, and then map the
sum into a value in the unit interval [0, 1]. We denote this normalized rel r; qð Þ as
normalized rel r; qð Þ. Considering that q and r may contain different number of loca-
tions, we use the shorter trajectory between q and r as the basic referential trajectory.

Given two locations r1 and q1, d r1; q1ð Þ returns the distance between the labels of
the two locations in SC_Tree. As SC_Tree is constructed according to the semantics of
locations, the distance between two nodes in SC_Tree is able to represent the semantic
difference between the two locations.

If r1 and q1 have the same label then d r1; q1ð Þ ¼ 1. Otherwise, dðr1; q1Þ is the
number of nodes in the path from r1 to q1 in SC_Tree (including r1 and q1). For
instance, in the SC_Tree shown in Fig. 6, d p1; p3ð Þ ¼ 3, while d p1; p4ð Þ ¼ 7.

190 P. Jin et al.

As SC_Tree is organized in terms of the hierarchy of semantic classification, the closer
two nodes are in SC_Tree the more similar their semantics are.

As a result, assume that q is a query trajectory and R ¼ r1; r2; � � � ; rnf g is the set of
returned trajectories for q, we give the computation of average distance and precision as
follows:

average distance q;Rð Þ ¼

P
0� i� Rj j distTR ri; qð Þ

Rj j ð4:2Þ

precision q;Rð Þ ¼

P
0� i� Rj j normalized rel ri; qð Þ

Rj j ð4:3Þ

Here, distTR ri; qð Þ is defined in Formula (3.3), and normalizde rel ri; qð Þ is the
normalized value of Formula (4.1) in the unit interval [0, 1]. In the experiments, we
compute the mean average distances and precisions of 100 query trajectories as the
final results.

Comparative Methods. We implement two classical algorithms as the baseline
methods for measuring spatial similarity, LCSS (Longest Common Subsequence) [15]
and Edit Distance [9]. They are denoted LCSS_Indoor and ED_Indoor in the fol-
lowing. Regarding semantic similarity, we use the Cosine Similarity [21] as the
baseline method, which is one of the most popular methods of evaluating document
similarity in information retrieval.

We call our method SIT (Similarity of Indoor Trajectories), and we consider four
variations of SIT in the experiments:

(1) SIT_S only considers spatial similarity and without introducing critical points.
(2) SIT_SCP only considers spatial similarity, but uses critical points.
(3) SIT_SS considers both spatial and hierarchical semantic similarities, but does not

use critical points.
(4) SIT_SSCP considers both spatial and semantic similarities and uses critical points.

For semantic similarity, it considers all the points in the trajectories.

4.2 Results

In the following, we present the results of the evaluation. For each experiment, we
choose 100 trajectories as query trajectories from the dataset trajectories generated by
IndoorSTG, and the results shown in the following are average results.

4.2.1 Precision
Figure 8 shows the precision on semantic similarity of all the methods. In this experi-
ment, we set the parameter a to 0.5 and vary k from 5 to 30. Obviously, our methods
SIT_SS and SIT_SSCP have much higher precision than LCSS_indoor and ED_indoor,

Effective Similarity Search on Indoor Moving-Object Trajectories 191

which suggest that our proposal is effective. SIT_S and SIT_SCP perform poorly
because they do not consider the influence of semantics.

In summary, SIT_SSCP and SIT_SS are effective for indoor trajectory similarity
search as they consider both spatial and semantic similarities.

4.2.2 Average Distance
In this section, we evaluate the effectiveness of our proposal for spatial similarity search
by calculating the average distance between the query trajectory and the trajectories
returned.

As shown in Fig. 9, SIT_S has the smallest average distance, while LCSS_indoor
and ED_indoor get the worst performance. This is mainly because SIT_S considers the
features of indoor spaces and uses indoor distance. When considering critical points,
SIT_SCP slightly larger the average distance compared with SIT_S. In fact, SIT_SCP
can be regarded as an approximation of SIT_S, because it only considers the critical
points of trajectories.

We can adjust the parameter a in Formula (3.1) to adapt special similarity-search
needs of applications. For example, for user behavior analysis in shopping malls,
semantic similarity may be important; thus, we can use a small value for parameter a. On
the other hand, for public emergency monitoring in metro stations, spatial similarity
could be more important, and we can use a high value for parameter a.

We can also see in Fig. 9 that SIT_SSCP and SIT_SS have higher average distances
than SIT_S and SIT_SCP, which do not consider semantic similarity. Note that the
returned set of top-k trajectories is influenced when we add semantic similarity into the
computation of relevance. Therefore, the semantic similarity of the results will increase,
but the spatial similarity (average distance) will decrease.

4.2.3 Time Performance
Figure 10 compares the running times of all the methods when executing 100 similarity
searches on various number of trajectories. We vary the number of trajectories from
5,000 to 40,000, and calculate the time between issuing the queries and returning the
ranked results.

Fig. 8. Precision

192 P. Jin et al.

As Fig. 10 shows, the critical-point-based methods, including SIT_SSCP and
SIT_SCP, performs faster than the methods that consider all points, namely SIT_SS and
SIT_S. In particular, when increasing the number of trajectories, the benefit of critical
points becomes more notable. On average, the critical-point-based methods are able to
reduce the running times to about 50 % percent of run time compared with the methods
without using critical points.

Both LCSS_indoor and ED_indoor get good time performance in the experiment,
owing to their simple computation on distances and similarity measurement. However,
as we have shown, they are not suitable for practical applications because of their poor
effectiveness on both spatial similarity and semantic similarity.

4.2.4 Impact of Parameter a
Figure 11 shows the influence of parameter a on similarity measurement. Here, the
fundamental algorithm is SIT_SSCP, and k is set to 20. This parameter is used to
balance the impact of spatial and semantic similarity in the similarity evaluation. As
shown in the figure, with the increase of a, the average spatial similarity decreases
while the precision increases. This is simply because a large a means we give spatial
similarity more weights in the computation of similarity. In real applications, we can
tune this parameter to make it suit for the needs.

Fig. 9. Average distance Fig. 10. Run Time

Fig. 11. Effect of parameter a

Effective Similarity Search on Indoor Moving-Object Trajectories 193

4.2.5 Comparison with Cosine Similarity
Cosine Similarity [21] is commonly used in information retrieval to evaluate document
similarity. In this section, we aim to compare the performance of Cosine Similarity and
our hierarchical semantic similarity. For this purpose, we modify SIT_SSCP by
replacing the part of semantic similarity with Cosine Similarity. We denote this Cosine
Similarity based method as Cosine_SS.

In order to computer Cosine Similarity, we perform the following procedure. First,
each trajectory as well as the query trajectory is transformed into a vector representing
the Term Frequencies (TF) of each semantic label in the trajectory. Next, we compute
the Cosine value of the angle θ between vector A and vector B to measure the similarity
between A and B. Here, A and B are vectors representing the term frequencies of the
semantic labels in the trajectories.

For example, given the following two trajectories:

x ¼ h p1;Nikeð Þ; p2; LI � NINGð Þ; p3;Adidasð Þ; p4;KFCð Þi

y ¼ h p1;Nikeð Þ; p2;Adidasð Þ; p3;KFCð Þ; p4;Adidasð Þ; p5; Starbucksð Þi

We first get the vectors of labels.

x
0 ¼ hNike; LI � NING; Adidas; KFCi; y

0 ¼ hNike; Adidas; KFC; Adidas; Starbucksi

Then, we compute the term frequency for each semantic label, and get the vectors
of term frequencies.

A ¼ h1; 1; 1; 1; 0i; B ¼ h1; 0; 2; 1; 1i

Figures 12 and 13 compare precision and average distance, where parameter a is set
to 0.5. Both figures show that SIT_SSCP performs better than Cosine_SS. Particularly,
the precision of SIT_SSCP is about 1.1 times higher than that of Cosine_SS, and the
average distance of Cosine_SS is over 4 times that of SIT_SSCP.

Fig. 12. Average distances of SIT_SSCP and
Cosine Similarity (Cosine_SS)

Fig. 13. Precisions of SIT_SSCP and Cosine
Similarity (Cosine_SS)

194 P. Jin et al.

5 Related Work

Previous efforts on moving-object trajectories mainly focus on outdoor space such as
Euclidean space and road network space. Many approaches for measuring outdoor
trajectory similarity have been proposed, including Dynamic Time Warping (DTW) [5],
One Way Distance [6], Longest Common Subsequence (LCSS) [7, 8], Edit Distance
based approaches [9, 10]. Although these approaches can also be used for indoor
trajectory similarity search, they are not effective in indoor spaces because of the major
difference between the computation of indoor distance and that of outdoor distance.
Recently, some researchers begin to study the semantic similarity among trajectories
[12–14].

However, trajectories in indoor spaces and outdoor spaces are different and most
outdoor similarity measures have to be re-considered for indoor scenarios. Currently,
there have been few studies for indoor trajectory similarity analysis. The only one that
exactly focuses on indoor settings is called CVTI (Common Visit Time Interval) [15],
which is actually based on the LCSS approach. As the LCSS approach has been pro-
posed to analyze the similarity between strings or sequences, they make each character
in strings corresponds to a cell id. It aims to find common time interval at the same
location between two trajectories, and then use the common time intervals to define the
similarity. If two trajectories stay at the same cell during the same time interval, they
will be considered more similar than the case where there is no common time interval.
However, this approach only concerns the common time intervals among trajectories,
but neglects many other important factors such as closeness between trajectories as well
as the semantics of trajectories.

Semantics of trajectories have attracted much attention in trajectory analysis [16–
19]. Josh et al. [16] take into account the semantics of trajectories and propose a novel
approach for recommending potential friends based on users’ labels on trajectories in
location-based social networks. They mine users’ similarity from GPS trajectory data
by considering semantic meanings of trajectories. Since the semantic labels of trajec-
tories can reflect the preference and interests of users, many researchers propose to
integrate semantics into trajectory analysis and further provide personalized location
services or recommendations [17, 18]. For example, in [18], Haibo et al. propose to
take users’ preferences into consideration to provide personalized location searching.

In a trajectory, there are some points that can describe the spatial characteristics of
the trajectory, such as turning points or others. These points are similar to the critical
points proposed in this paper. Our proposal of critical points is inspired by [19], where
they find that critical points are useful for region partitioning and location clustering.
The major differences of our proposal and the work in [19] are two folds. First, we
develop new algorithms suitable for indoor spaces to detect critical points in indoor
moving trajectories. Second, we first use critical points in similarity search on indoor
moving trajectories.

Effective Similarity Search on Indoor Moving-Object Trajectories 195

6 Conclusions

Similarity trajectory search is mostly based on Euclidean space or road network space
before. They are not suitable for indoor spaces. In this paper, we present a new similarity
measure considering both spatial and semantic similarities between indoor trajectories.
We propose a critical-point-based method for spatial similarity as well as a hierarchical
semantic pattern based method for semantic similarity. Comparative experiments sug-
gest that our proposal is effective for indoor trajectory similarity search.

Our future work will focus on taking into account the time dimension [11] into
indoor trajectory similarity search. Specifically, we will concentrate on users’ stay
times in indoor locations.

Acknowledgement. This work is supported by the National Science Foundation of China under
the grant number 61379037.

References

1. Dudas, P., Ghafourian, M., Karimi, H.: ONALIN: ontology and algorithm for indoor
routing. In: Proceedings of MDM, pp. 720–725 (2009)

2. Jin, P., Zhang, L., Zhao, J., Zhao, L., Yue, L.: Semantics and modeling of indoor moving
objects. Int. J. Multimedia Ubiquit. Eng. 7(2), 153–158 (2012)

3. Li, D., Lee, D.: A topology-based semantic location model for indoor applications. In:
Proceedings of ACM GIS, pp. 1–10 (2008)

4. Jensen, C.S., Lu, H., Yang, B.: Graph model based indoor tracking. Mobile data
management. In: Proceedings of MDM, pp. 17–24 (2008)

5. Berndt, D.J., Clifford, J.: Finding patterns in time series: a dynamic programming approach.
In: Advances in Knowledge Discovery and Data Mining, pp. 229–248. AAAI/MIT Press
(1996)

6. Lin, B., Su, J.: One way distance: for shape based similarity search of moving object
trajectories. GeoInformatica 12(2), 117–142 (2008)

7. Boreczky, J.S., Rowe, L.A.: Comparison of video shot boundary detection techniques.
J. Electron. Imaging 5(2), 122–128 (1996)

8. Vlachos, M., Kollios, G., Gunopulos, D.: Discovering similar multidimensional trajectories.
In: Proceedings of ICDE, pp. 673–684 (2002)

9. Chen, L., Ozsu, M.T., Oria, V.: Robust and efficient similarity search for moving object
trajectories. In: Proceedings of SIGMOD, pp. 491–502 (2005)

10. Wang, Y., Yu, G., Gu, Y., Yue, D., Zhang, T.: Efficient similarity query in RFID trajectory
databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184,
pp. 620–631. Springer, Heidelberg (2010)

11. Yuan, Y., Raubal, M.: Measuring similarity of mobile phone user trajectories- a
Spatio-temporal Edit Distance method. Int. J. Geogr. Inf. Sci. 28(3), 496–520 (2014)

12. Pelekis, N., Kopanakis, I., Marketos, G.: Similarity search in trajectory databases. In:
Proceedings of TIME, pp. 129–140 (2007)

13. Frentzos, E., Gratsias, K., Theodoridis, Y.: Index-based most similar trajectory search. In:
Proceedings of ICDE, pp. 816–825 (2007)

196 P. Jin et al.

14. Dodge, S., Weibel, R., Laube, P.: Exploring movement-similarity analysis of moving
objects. SIGSPATIAL Special (SIGSPATIAL) 1(3), 11–16 (2009)

15. Kang, H.-Y., Kim, J.-S., Li, K.-J., Hwang, J.-R.: Similarity measures for trajectory of
moving objects in cellular space. In: Proceedings of ACM SAC, pp. 1325–1330 (2009)

16. Ying, J.J., Lu, E.H., Lee, W.-C., Weng, T.-C., Tseng, V.S.: Mining user similarity from
semantic trajectories. In: Proc. of GIS-LBSN, pp. 19–26 (2010)

17. Ma, C., Lu, H., Shou, L., Chen, G.: KSQ: Top-k similarity query on uncertain trajectories.
IEEE Trans. Knowl. Data Eng. 25(9), 2049–2062 (2013)

18. Wang, H., Liu, K.: User oriented trajectory similarity search. In: Proceedings of UrbComp,
pp. 103–110 (2012)

19. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group framework.
In: Proceedings of SIGMOD, pp. 593–604 (2007)

20. Huang, C., Jin, P., Wang, H., Wang, N., Wan, S., Yue, L.: IndoorSTG: a flexible tool to
generate trajectory data for indoor moving objects. In: Proceedings of MDM, pp. 341–343
(2013)

21. Manning, C.D., Raghavanm, P., Schütze, H.: An Introduction to Information Retrieval.
Cambridge University Press, Cambridge (2008)

22. Schafer, M., Knapp, C., Chakraborty, S.: Automatic generation of topological indoor maps
for real-time map-based localization and tracking. In: Proceedings of International
Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1–8. IEEE CS (2011)

23. Zhang, D., Yang, L.T., Chen, M., Zhao, S., Guo, M., Zhang, Y.: Real-time locating systems
using active RFID for internet of things. IEEE Syst. J. PP(99), 1–10 (2014)

24. Stojanović, D., Stojanović, N.: Indoor localization and tracking: methods, technologies and
research challenges. Autom. Control Robot. 13(1), 57–72 (2014)

25. Douglas, D., Peucker, T.: Algorithms for the reduction of the number of points required to
represent a line or its caricature. Can. Cartographer 10(2), 112–122 (1973)

Effective Similarity Search on Indoor Moving-Object Trajectories 197

Graph Databases

Towards Neighborhood Window Analytics
over Large-Scale Graphs

Qi Fan1(B), Zhengkui Wang2, Chee-Yong Chan3, and Kian-Lee Tan1,3

1 NUS Graduate School for Integrative Science and Engineering,
Singapore, Singapore
fan.qi@nus.edu.sg

2 Singapore Institute of Technology, Singapore, Singapore
zhengkui.wang@singaporetech.edu.sg

3 School of Computing, National University of Singapore, Singapore, Singapore
{chancy,tankl}@comp.nus.edu.sg

Abstract. Information networks are often modeled as graphs, where the
vertices are associated with attributes. In this paper, we study neigh-
borhood window analytics, namely k-hop window query, that aims to
capture the properties of a local community involving the k-hop neigh-
bors (defined on the graph structures) of each vertex. We develop a novel
index, Dense Block Index (DBIndex), to facilitate efficient processing of
k-hop window queries. Extensive experimental studies conducted over
both real and synthetic datasets with hundreds of millions of vertices
and edges show that our proposed solutions are four orders of magni-
tude faster in query performance than the non-index algorithm, and are
superior over the state-of-the-art solution in terms of both scalability
and efficiency.

Keywords: Graph analytics · Graph window · Neighborhood
aggregation

1 Introduction

Information networks such as social networks, biological networks and phone-
call networks are typically modeled as graphs [4] where the vertices correspond
to objects and the edges capture the relationships between these objects. For
instance, in social networks, every user is represented by a vertex and the friend-
ship between two users is reflected by an edge between the vertices. In addition,
a user’s profile can be maintained as the vertex’s attributes. Such graphs contain
a wealth of valuable information which can be analyzed to discover interesting
patterns. For example, we can find the top-k influential users who can reach
the most number of friends within 2 hops. With increasingly larger network
sizes, there is an urgent need to develop effective and efficient mechanisms over
large-scale graph data.

Recent research on graph analytics focuses on discovering the global graph
properties and characteristics. To name a few, graph summarization [14] aims
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 201–217, 2016.
DOI: 10.1007/978-3-319-32049-6 13

202 Q. Fan et al.

to provide a compressed representation of a given graph based on its structure
and vertex/edge attributes, while graph aggregation [4,17,19] focuses on aggre-
gating the graph based on its vertex/edge attributes to discover the underlying
characteristics of large graphs.

In this paper, we study a new type of query that analyzes each vertex’s
local community (e.g., neighborhoods) in a graph. To each vertex, these local
communities (also referred to as windows in this paper) carry the most important
information that captures the vertex’s social influence and relations in the graph.
Unlike graph summarization and aggregation that discover the entire graph’s
property, graph window queries (GWQs) explore the underlying characteristics
of a small window related to each individual vertex. We identify one instantiation
of graph “windows”, namely k-hop window. We first demonstrate the k-hop
window semantics with the following example.

Example 1 (K-hop window). In social network scenario, it is of great interest
to summarize the most relevant connections to each user such as the neighbors
within 2-hops. Some analytic queries such as summarizing the related connec-
tions’ distribution among different companies, and computing age distribution
of the related friends can be useful. In order to answer these queries, collecting
data from every user’s neighborhoods within 2-hop is necessary.

A k-hop window forms a window for one vertex by using its k-hop neighbors.
In the Example 1, every user needs to gather data from his/her friends and
friends-of-friends. k-hop neighbors are important to one vertex, as these are the
vertices showing structural closeness as in Example 1.

To the best of our knowledge, existing graph databases or graph query
languages do not directly support our proposed GWQ. There are two major
challenges in processing GWQ. First, we need an efficient scheme to calculate
the neighborhood window of each vertex. Second, we need efficient solutions
to process the aggregation over a large number of windows that may overlap.
However, it is nontrivial to address these two challenges. The state-of-the-art
algorithm for k-hop like query is EAGR [12]. EAGR builds an overlay graph to
leverage the shared components of different windows through multiple iterations.
However, EAGR requires all vertices’ k-hop neighbors to be pre-computed and
resides in memory during every iteration. This heavily limits the efficiency and
scalability of EAGR.For instance, a LiveJournal social network graph1 (4.8 M
vertices, 69M edges) generates over 100GB neighborhood information for k =
2 in adjacency list representation. In addition, the overlay graph construction
is not a one-time task, but is periodically performed after a certain number of
structural updates in order to maintain the overlay quality. The high memory
requirement renders EAGR impractical when k and the graph size increase.

In this paper, we propose Dense Block Index (DBIndex), which enables an
efficient query processing by integrating the optimized query execution plan for
shared aggregation computation. Additionally, for index construction, we apply
a hash-based technique to cluster the vertices based on the window similarity,
1 Available at http://snap.stanford.edu/data/index.html, which is used in [12].

http://snap.stanford.edu/data/index.html

Towards Neighborhood Window Analytics over Large-Scale Graphs 203

which ensures memory efficiency. On the basis of the clusters, we further develop
different optimizations to extract the shared components efficiently.

Our contributions are summarized as follows:

– We introduce a new type of graph analytic query, Graph Window Query and
formally define the k-hop window.We illustrate how thesewindowquerieswould
help users better query and understand the graphs under different semantics.

– We propose Dense Block Index (DBIndex) to support the proposed k-hop
window queries. The index integrates the window aggregation sharing tech-
niques to salvage partial work done to enable efficient query processing over
large-scale graphs.

– We perform extensive experiments over both real and synthetic datasets with
hundreds of millions of vertices and edges on a single machine. Our exper-
iments indicate that our proposed index-based algorithms outperform the
naive non-index algorithm by up to four orders of magnitude. In addition,
our experiments also show that DBIndex is superior over EAGR in terms of
both scalability and efficiency.

The rest of the paper is organized as follows: Sect. 2 formulates the GWQ.
In Sect. 3, we introduce the DBIndex for k-hop window query. Section 4 presents
the experimental evaluations. In Sects. 5 and 6, we provide the related works and
the conclusion respectively.

2 Problem Formulation

In this section, we provide the formal definition of graph window query. We use
G = (V,E) to denote a directed/undirected data graph, where V is its vertex
set and E is its edge set. Each vertex/edge is associated with a (possibly empty)
set of attributes.

Figure 1 shows an undirected graph representing a social network that we will
use as our running example. The table shows the values of the five attributes
(User, Age, Gender, Industry, and Number of posts) associated with each vertex.
For convenience, each vertex is labeled with its user attribute value; and there
is one edge between a user X and another user Y if X and Y are connected in
the social network.

Fig. 1. Example of Social Graph. (a) Graph
structure; (b) Attributes associated with
the vertices in (a).

Given a data graph G = (V,E), a
Graph Window Function (GWF) over
G can be expressed as a quadruple
(G,W,Σ,A), where W (v) denotes a
window specification (or window for
short) for a vertex v ∈ V that deter-
mines the set of vertices (refer to as
nodes) in some subgraph of G, Σ
denotes an aggregate function, and A
denotes a vertex attribute. The eval-
uation of a GWF (G,W,Σ,A) on G

204 Q. Fan et al.

computes for each vertex v in G, the aggregation Σ on the values of attribute A
over all the vertices in W (v), which is denoted by Σv′∈W (v)v

′.A. We consider all
common aggregate functions (e.g., sum, count, average, max, min etc.) in this
paper.

Definition 1 (k-hop Window). Given a vertex v in a graph G, the k-hop
window of v, denoted by Wkh(v) (or W (v) when there is no ambiguity), is the
set of neighbors of v in G which can be reached within k hops. For an undirected
graph G, a vertex u is in Wkh(v) iff there is a α-hop path between u and v where
α � k. For a directed graph G, a vertex u is in Wkh(v) iff there is a α-hop
directed path from v to u2 where α � k.

Intuitively, a k-hop window selects the neighboring vertices of a vertex within
a k-hop distance. These neighboring vertices typically represent the most impor-
tant vertices to a vertex wrt their structural relationship in a graph. Thus, k-hop
windows provide meaningful specifications for many applications, such as cus-
tomer behavior analysis [1,6] and digital marketing [10]. As an example, in Fig. 1,
the 1-hop window of vertex E is {A,C,E} and the 2-hop window of vertex E is
{A,B,C,D,E, F}.

We emphasize that there are different types of windows which can be for-
malized under different application scenarios. For instance, we have identified
another useful window, namely the topological window, which captures the set
of ancestor vertices of each vertex in a directed acyclic graph (DAG). There
are many DAGs in real-world applications (such as biological networks, cita-
tion networks and dependency networks) where topological windows represent
meaningful relationships that are of interest. For example, in a citation network
where (X,Y) is an edge iff paper X cites paper Y , the topological window of a
paper represents the citation impact of that paper [3,11]. Based on the topo-
logical window, we have proposed another index, inheritance index as in our
technical report [8] to facilitate an efficient topological window query processing
and systematically evaluated the index. In general, a graph window query is
defined as:

Definition 2 (Graph Window Query). A graph window query on a data
graph G is of the form GWQ(G,W1, Σ1, A1, · · · , Wm, Σm, Am), where m ≥ 1
and each quadruple (G,Wi, Σi, Ai) is a graph window function on G.

In this paper, we focus on efficiently processing k-hop window queries with
indexes. Due to space constraint, we only present the static solution for illus-
tration, and the strategy for handling updates are described in our technical
report [8].

2 Other variants of k-hop window for directed graphs are possible; e.g., a vertex u is
in Wkh(v) iff there is a α-hop directed path from u to v where α � k.

Towards Neighborhood Window Analytics over Large-Scale Graphs 205

3 Dense Block Index

A straightforward approach to process a graph window query Q = (G,W,Σ,A),
where G = (V,E), is to dynamically compute the window W (v) for each vertex
v ∈ V and its aggregation Σv′∈W (v)v

′. A independently from other vertices. We
refer to this approach as Non-Indexed method. Given that many of the windows
would share many common nodes (e.g., the k-hop windows of two adjacent ver-
tices), such a simple approach would be very inefficient due to the lack of sharing
of the aggregation computations.

To efficiently evaluate graph window queries, we propose an indexing tech-
nique named Dense Block Index (DBIndex), which is both space and query
efficient. The main idea of DBIndex is to try to reduce the aggregation com-
putation cost by identifying subsets of nodes that are shared by more than one
window so that the aggregation for the shared nodes could be computed only
once instead of multiple times.

For example, consider a graph window query on the social graph in Fig. 1
using the 1-hop window. We have W (B) = {A,B,D, F} and W (C) =
{A,C,D,E, F} sharing three common nodes A, D, and F . By identifying the
set of common nodes S = {A,D,F}, its aggregation Σv∈Sv.A can be computed
only once and then reuse to compute Σv∈W (B)v.A and Σv∈W (C)v.A.

Given a window W and a graph G = (V,E), we refer to a non-empty subset
B ⊆ V as a block. Moreover, if B contains at least two nodes and B is contained
by at least two different windows (i.e., if |B| ≥ 2, and ∃v1 �= v2 ∈ V , B ⊆ W (v1),
and B ⊆ W (v2)), then B is a dense block. Thus, in the last example, {A,D,F}
is a dense block.

We say that a window W (X) is covered by a collection of disjoint blocks
{B1, · · · , Bn} if the set of nodes in the window W (X) equals to the union of all
nodes in the collection of disjoint blocks; i.e., W (X) =

⋃n
i=1 Bi and Bi ∩ Bj = ∅

if i �= j.
To maximize the sharing of aggregation computations for a graph window

query, the objective of DBIndex is to identify a small set of blocks B such that
for each v ∈ V , W (v) is covered by a small subset of disjoint blocks in B. Clearly,
the cardinality of B is minimized if B contains a few large dense blocks.

Thus, given a window W and a graph G = (V,E), a DBIndex to evaluate
W on G consists of three components in the form of a bipartite graph. The first
component is a collection of vertex (i.e., V); the second component is a collection
of blocks B = {B1, · · · , Bn} where each Bi ⊆ V ; and the third component is a
collection of links from blocks to vertices such that if a set of blocks B(v) ⊆ B
is linked to a vertex v ∈ V , then W (v) is covered by B(v). Note that a DBIndex
is independent of both the aggregate function (i.e., Σ) and the attribute to be
aggregated (i.e., A). Figure 2(d) shows an example of a DBIndex wrt the social
graph in Fig. 1 and the 1-hop window. There are three dense blocks detected
which are {A,F,D}, {C,E}, and {A,C}.

206 Q. Fan et al.

3.1 Query Processing Using DBIndex

Given a DBIndex wrt a graph G and a window W , a graph window query
Q = (G,W,Σ,A) is processed by the following two steps. First, for each block
Bi in the index, we compute the aggregation (denoted by Ti) over all the nodes
in Bi; i.e., Ti = Σv∈Bi

v.A. Thus, each Ti is a partial aggregate value. Next,
for each window W (v), v ∈ V , the aggregation for the window is computed by
aggregating over all the partial aggregates associated with the blocks linked to
W (v); i.e., if B(v) is the collection of blocks linked to W (v), then the aggregation
for W (v) is given by ΣBi∈B(v)Ti.

3.2 DBIndex Construction

In this section, we discuss the construction of the DBIndex (wrt a graph G =
(V,E) and window W) which has two key challenges.

The first challenge is the time complexity of the index construction. From
our discussion of query processing using DBIndex, we note that the number of
aggregation computations is determined by both the number of blocks as well
as the number of links in the index; the former determines the number of partial
aggregates to compute while the latter determines the number of aggregations
of the partial aggregate values. Thus, to maximize the shared aggregation com-
putations using DBIndex, both the number of blocks in the index as well as the
number of blocks covering each window should be minimized. However, finding
the optimal DBIndex to minimize this objective is NP-hard3. Therefore, efficient
heuristics are needed to construct the DBIndex.

The second challenge is the space complexity of the index construction. In
order to identify large dense blocks to optimize for query efficiency, a straight-
forward approach is to first derive the window W (v) for each vertex v ∈ V and
then use this derived information to identify large dense blocks. However, this
direct approach incurs a high space complexity of O(|V |2). Therefore, a more
space-efficient approach is needed in order to scale to large graphs.

MinHash-based Index Construction (MC). To reduce both the time and
space complexities for the index construction, instead of trying to identify large
dense blocks among a large collection of windows, MC first partitions all the
windows into a number of smaller clusters of similar windows and then identifies
large dense blocks from each of the smaller clusters. Intuitively, two windows are
considered to be highly similar if they share a larger subset of nodes. We apply
the well-known MinHash based Clustering algorithm [2] to partition the windows
into clusters of similar windows. The MinHash clustering algorithm uses Jaccard
Coefficient to measure the similarity of two sets. Given two windows W (v) and
W (u), u, v ∈ V , their Jaccard Coefficient is given by J(u, v) = |W (u)∩W (v)|

|W (u)∪W (v)| .
The Jaccard Coefficient ranges from 0 to 1, where a larger value means that the
windows are more similar.
3 Note that a simpler variation of our optimization problem has been proven to be

NP-hard [16].

Towards Neighborhood Window Analytics over Large-Scale Graphs 207

Our heuristic approach to construct DBIndex I operates as in Algorithms 1
and 2. Let vertices(I), blocks(I), and links(I) denote the collection of vertices,
blocks, and links in I. Initially, we have vertices(I) = V , blocks(I) = ∅, and
links(I) = ∅.

Algorithm 1. CreateDBIndex
Require: Graph G = (V, E), window

W
Ensure: DBIndex I
1: Initialize DBIndex I: vertices(I) =

V , blocks(I) = ∅, links(I) = ∅
2: for all v ∈ V do
3: Traverse G to determine W (v)
4: Compute the hash signature

H(v) for W (v)
5: end for
6: Partition V into clusters C =

{C1, C2, · · · } based on hash signa-
tures H(v)

7: for all Ci ∈ C do
8: for all v ∈ Ci do
9: Traverse G to determine W (v)

10: end for
11: IdentifyDenseBlocks

(I, W, Ci)
12: end for
13: return I
14:

Algorithm 2. IdentifyDenseBlocks
Require: DBIndex I, window W , a cluster

Ci ⊆ V
1: Return if Ci is empty.
2: Partition V into blocks wrt to Ci,

DenseNodes = ∅
3: for all dense block B do
4: Insert B into blocks(I) if B �∈

blocks(I)
5: Insert (B, v) into links(I) for each

v ∈ Ci where B ⊆ W (v)
6: DenseNodes = DenseNodes ∪ B
7: end for
8: Cn ← ∅, Wn ← ∅
9: for all vi ∈ Ci do

10: if (W (vi)−DenseNodes �= ∅) then
11: Insert vi to Cn

12: Insert (W (vi) − DenseNodes) to
Wn

13: end if
14: end for
15: IdentifyDenseBlocks (I, Wn, Cn)
16: return

The first step (Lines 1–6 Algorithm 1) is to partition the vertices in V into
clusters using MinHash algorithm such that vertices with similar windows belong
to the same cluster. For each vertex v ∈ V , we first derive its window W (v) by an
appropriate traversal (e.g., k-hop BFS) of the graph G. Next, we compute hash
signatures (denoted by H(v)) for each v by applying MinHash on W (v). Vertices
with identical hash signatures are considered to have highly similar windows and
are grouped into the same cluster. To ensure that our approach is scalable, we
do not retain W (v) in memory after its hash signature H(v) has been computed
and used to cluster v; i.e., our approach does not materialize all the windows in
the memory to avoid high space complexity. Let C = {C1, C2, · · · } denotes the
collection of clusters obtained from the first step, where each Ci is a subset of
vertices.

The second step (Lines 7–12 Algorithm 1) is to identify dense blocks from
each of the clusters computed in the first step. The identification of dense blocks
in each cluster Ci is based on the notion of node equivalence defined as follows.
Two distinct nodes u, v ∈ V are defined to be equivalent (denoted by u ≡ v)
wrt Ci iff u and v are both contained in the same set of windows wrt Ci; i.e.,
for every window W (x), x ∈ Ci, u ∈ W (x) iff v ∈ W (x). Based on this notion of
node equivalence, V is partitioned into blocks of equivalent nodes. To perform

208 Q. Fan et al.

this partitioning, we need to again traverse the graph for each vertex v ∈ Ci to
determine its window W (v)4.

However, since Ci is now a smaller cluster of vertices, we can now materialize
all the windows for the vertices in Ci in memory without exceeding the memory
space. In the event that a cluster Ci is still too large for all its windows to
be materialized in main memory, we can further partition Ci into equal sized
sub-clusters. This re-partition process can be recursively performed until the
sub-clusters created are small enough such that the windows for all vertices in
the sub-cluster fit in memory.

Recall that a block B is a dense block if B contains at least two nodes and
B is contained in at least two windows. Thus, we can classify nodes in V as
either dense or non-dense nodes: a node v ∈ V is classified as a dense node if v
is contained in a dense block; otherwise, v is a non-dense node.

For each dense block B in Ci, we update the blocks and links in the DBIndex I
recursively as follows: If the current cluster or window only contains one element,
then algorithm stops. Otherwise, we insert dense block B into block(I); and
we insert (B, v) into links(I) for each v ∈ Ci where B ⊆ W (v) (Lines 3–7
Algorithm 2). For each vertex v in Ci, we remove dense nodes from its window
W (v). This forms the refined window Wn(v). If Wn(v) is not empty, we then add
v to a refined cluster Cn. Cn and Wn are then processed recursively (Lines 8–15
Algorithm 2).

Figure 2 illustrates the construction of the DBIndex wrt the social graph in
Fig. 1(a) and 1-hop window using the MC algorithm. First, the set of graph
vertices are partitioned into clusters using MinHash clustering; Fig. 2(a) shows
that the set of vertices V = {A,B,C,D,E, F} are partitioned into two clusters
C1 = {A,B,C} and C2 = {D,E, F}. Table 1 in Fig. 2(b) shows the node-vertex
mapping in C1, i.e. for each node u ∈ V , the corresponding row is the set {v ∈
C1|u ∈ W (v)}. Similarly, Table 2 in Fig. 2(b) shows the node-vertex mapping
in C2.

Consider the identification of dense blocks in cluster C1. As shown in
Fig. 2(c), based on the notion of equivalence nodes, cluster C1 is partitioned into
three blocks of equivalent nodes: B1 = {A,D,F}, B2 = {B}, and B3{C,E}.
Among these three blocks, only B1 and B3 are dense blocks. The MC algo-
rithm then tries to repartition the window A,B,C using non-dense nodes
in C1, (i.e., B) as next window. Since B is the only node, it directly out-
puts. At the end of processing cluster C1, the DBIndex I is updated as fol-
lows: blocks(I) = {B1, B2, B3} and links(I) = {(B1, {A,B,C}), (B2, {A,B}),
(B3, {A,C})}. The identification of dense blocks in cluster C2 is of similar
process.

4 Note that although we could have avoided deriving W (v) a second time if we had
materialized all the derived windows the first time, our approach is designed to
avoid the space complexity of materializing all the windows in memory at the cost
of computing each W (v) twice. We present an optimization later in this section to
avoid the recomputation cost on k-hop window query.

Towards Neighborhood Window Analytics over Large-Scale Graphs 209

Fig. 2. DBIndex Construction over Social Graph in
Fig. 1. (a) Two clusters after MinHash clustering;
(b) Window information of involved vertices within
each cluster; (c) Dense blocks within each cluster;
(d) Final DBIndex.

Assume that, the aver-
age neighborhood size of each
vertex is w. The MinHash
cost is thus w|V |. The cost
of traversal for all vertex
is w|E|. In Algorithm 1,
Lines 1–10 have the cost of
w(|V |+2|E|); In Algorithm 2,
since we can simply parti-
tion nodes using hashing, the
time cost is thus w|Ci|. The
recursive procedure runs at
most log(|Ci|) times, and the
total cost for Algorithm 2
is Σ(w|Ci|log(|Ci|)). Since
Σ(|Ci|) = |V |, the total cost
for Algorithm 2 is less than
w|V |log(|V |). Therefore, the
total cost for Algorithm 1 and
Algorithm 2 is w(|V | + 2|E| + |V |log(|V |)), thus the complexity is O(w(|E| +
|V |log(|V |))).

Next, we provide two specific optimizations for constructing DB-Index for
k-hop window queries.

Estimation Optimization. For k-hop window query with a large value of k,
the cost of graph traversals to compute the k-hop windows is high. Moreover,
the cost of initial MinHash in MC approach equals to the initial number of
vertex-window mappings, which is of the same order as graph traversal.

To address the high computation issue, we make an observation that if the
m-hop windows for two vertices are similar, the n-hop windows for them are
also similar, where m < n. The intuition is that the shared component becomes
larger via hop expansion. This observation is formally described as follows:

Theorem 1. Let 〈u, v〉 be a randomly chosen vertex pair from a graph, let
Jk(u, v) be their Jaccard similarity wrt k-hop window. Then with high proba-
bility Jm(u, v) ≤ Jn(u, v), where m < n.

We omit the theoretic proof here. Interested readers are referred to [8] for
details. Based on Theorem 1, one optimization to improve the efficiency of
Algorithm 1 with the tradeoff of a possible lower “quality” dense blocks (in
terms of their sizes) is to use the m-hop window as an estimation for a n-hop
index construction during the clustering, where m < n. In particular, for the
first round of window computation (Lines 3–4 in Algorithm 1), we can use the
hash signatures of the lower hop windows cluster the vertices in V to approxi-
mate k-hop windows. This approximation has the advantage of improved time-
efficiency as traversal and MinHash clustering on lower-hop window is signifi-
cantly faster. In particular, if the average number of neighbors for each vertex

210 Q. Fan et al.

in a n-hop window is denoted by wn, then the optimization reduces the index
construction cost by (|V | + |E|)(wn − wm) from (|V | + 2|E| + |V |log(|V |))wn to
(|V | + |E|)wm + (|E| + |V |(log|V |))wn. This improvement is significant as wn

is exponentially greater than wm, where m < n, in k-hop windows. Our experi-
mental results show with this optimization, the reduction in the quality of dense
blocks is actually only marginal which makes this optimization a good tradeoff.

Batching Optimization. When multiple k-hop indexes are required, one
applicable optimization is to batch the index constructions to share the graph
traversal and clustering. Suppose there is a need to compute the DBIndex for
1-hop, 2-hop, ..., k-hop windows. Constructing each index independently would
incur high overhead on both clustering and graph traversal which can be allevi-
ated by batching their computations. The overall idea of the batching construc-
tion is to utilize the lower hop (e.g., 1-hop) traversal information to build the
clustering and reuse it for all the h-higher hops. In addition, the second time
graph traversal after obtaining the clustering can also be shared. Intuitively,
while we expand the k-hop window, we can calculate the i-hop window as well.
This can be achieved as the BFS is adopted where the (i + 1)-hop window can
be directly derived based on the i-hop windows, thus the traversal overhead can
be shared.

4 Experimental Evaluation

In this section, we present the results of our experiments on both real-world
networks and synthetic graphs. Due to space limitations, we can only present
partial experimental results here and more results can be found in our technical
report [8].

Name Type # of Vertices # of Edges
LiveJournal undirected 3,997,962 34,681,189
Pokec directed 1,632,803 30,622,564
Orkut undirected 3,072,441 117,185,083
DBLP undirected 317,080 1,049,866
YouTube undirected 1,134,890 2,987,624
Google directed 875,713 5,105,039
Amazon undirected 334,863 925,872
Stanford-web directed 281,903 2,312,497

Fig. 3. Large-scale Real Datasets

All experiments are conduc-
ted on an Amazon EC2 r3.2xlarge
machine5, with an 8-core 2.5 GHz
CPU, 60 GB memory and 320 GB
hard drive running with 64-bit
Ubuntu 12.04. We implement
EAGR algorithm as a reference in
our comparative study. All algo-
rithms are implemented in Java
and run under JRE 1.6.

Datasets. For real datasets, we
use 8 information networks which
are available at the Stanford
SNAP website6: The detail description of these datasets is provided in Fig. 3. For
synthetic datasets, we use SNAP graph generator to create graphs with various
sizes.
5 http://aws.amazon.com/ec2/pricing/.
6 http://snap.stanford.edu/snap/index.html.

http://aws.amazon.com/ec2/pricing/
http://snap.stanford.edu/snap/index.html

Towards Neighborhood Window Analytics over Large-Scale Graphs 211

Query. In all the experiments, the window query is conducted by using SUM()
as the aggregate function.

4.1 Index Construction Optimization

To study the performance of index construction, we compare two indexing meth-
ods, namely MC and MC++. MC method uses the MinHash clustering as
described in Algorithm 1 while MC++ adapted the estimation optimization
as in Theorem 1. We then present the results on the Amazon and Stanford-web
graphs for a series of k-hop queries.

Index Construction. Figure 4(a) and (c) compare the index construction time
between MC and MC++ when we vary the windows from 1-hop to 4-hop under
Amazon and Stanford-web datasets. To better understand the time difference,
the construction time is split into two parts: the MinHash cost (MC++-hash or
MC-hash) and the BFS traversal (to compute the k-hop window) cost (MC++-
bfs or MC-bfs). The results show the same trend for the two datasets. We made
several observations. First, as the number of hops increases, the indexing time
increases as well. This is expected as a larger hop count results in a larger window
size and the BFS and MinHash computation time increase correspondingly. Sec-
ond, as the hop count increases, the difference between the index time of MC++
and that of MC widens. For instance, as shown in Fig. 4(a), for the 4-hop win-
dow queries, compared to MC, MC++ can save 62% construction time. MC++
benefits from both the low MinHash cost and low BFS cost. From Fig. 4(a), we
can see that the MinHash cost of MC increases as the number of hops increases,
while that for MC++ remains almost the same as the 1-hop case. The similar
pattern can be found in Fig. 4(c) as well. These show that the cost of MinHash
becomes more significant for larger windows. Thus, using 1-hop clustering for
larger hop counts reduces the MinHash cost in MC++. Similarly, as MC++
saves on BFS cost for k-hop queries where k > 1, the BFS cost of MC++ is
much smaller than that of MC as well.

Query Performance. Figure 4(b) and (d) present the query time of MC and
MC++ on Amazon and Stanford-web datasets as we vary the number of hops
from 1 to 4. To appreciate the benefits of an index-based scheme, we also imple-
mented a Non-indexed algorithm which computes window aggregate by per-
forming k-hop breadth first search for each vertex individually in real time. In
Fig. 4(b), the execution time shown on the y-axis is in log scale. The results show
that the index-based schemes outperform the non-index approach by four orders
of magnitude. For instance, for the 4-hop query, our algorithm is 13,000 times
faster than the non-index approach. This confirms that it is necessary to have
well-designed index support for efficient window query processing. By utilizing
DBIndex, for these graphs with millions of edges, every aggregation query can
be processed in just between 30 ms to 100 ms. In addition, we can see that as
the number of hops increases, the query time decreases. This is the case because
a larger hop count eventually results in a larger number of dense blocks where
more (shared) computation can be salvaged. Furthermore, we can see that the

212 Q. Fan et al.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

hop=1 hop=2 hop=3 hop=4

T
im

e
(s

)
Index Construction on Amazon

MC++-hash
MC++-bfs
MC-hash

MC-bfs

(a) Amazon Index

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

hop=1 hop=2 hop=3 hop=4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Query Performance on Amazon

MC++
MC

Non index

(b) Amazon Query

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

hop=1 hop=2 hop=3 hop=4

T
im

e
(s

)

Index Construction on Stanford-Web

EMC-hash
EMC-bfs
MC-hash

MC-bfs

(c) Stanford-web Index

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

hop=1 hop=2 hop=3 hop=4

R
un

ni
ng

 T
im

e(
m

s)
 in

 lo
g

sc
al

e

Query Performance on Stanford-Web

EMC
MC

Non Index

(d) Stanford-web Query

Fig. 4. The evaluation of the index construction optimization.

query time of MC++ is slightly longer than that of MC when the number of
hops is large. This is expected as MC++ does not cluster based on the complete
window information; instead, it uses only partial information derived from the
1-hop windows. However, the performance difference is quite small even for 4-
hop queries - the difference is only 20 ms. For small number of hops, the time
difference is even smaller. This performance penalty is acceptable as tens of
milliseconds time difference will not affect user’s experience. As MC++ is sig-
nificantly more efficient than MC in index construction, MC++ may still be a
promising solution for many applications. In addition, we also observe the same
pattern in Fig. 4(d). As such, in the following sections, we adopt MC++ for
DBIndex in our experimental evaluations.

4.2 Comparison Between DBIndex and EAGR

We then compare DBIndex and EAGR [12]7 using both real and synthetic
datasets.

Real Datasets. We first study the index construction and query time per-
formance of DBIndex and EAGR for 1-hop and 2-hop windows using 6 real
7 As in [12], for each dataset, EAGR is run for 10 iterations in the index construction.

Towards Neighborhood Window Analytics over Large-Scale Graphs 213

datasets: DBLP, YouTube, Livejournal, Google, Pokec and Orkut. The results
for 1-hop window and 2-hop window are presented in Fig. 5(a)-(d). As shown
in Fig. 5(a) and (c) both DBIndex and EAGR can build the index for all the
real datasets for 1-hop but EAGR ran out of the memory for 2-hop window
queries on LiveJournal and Orkut datasets. This further confirms that EAGR
incurs high memory usage as it needs to maintain the vertex-window mapping
information. We also observe that DBIndex is significantly faster than EAGR
in index creation. For instance, for Orkut dataset, EAGR takes 4 hours to build
the index while DBIndex only takes 33 min.

Fig. 5. DBIndex VS. EAGR (a)(b) are for 1-hop queries;(c)(d) are for 2-hop queries

Figure 5(b) and (d) show the query performance for 1-hop and 2-hop queries
respectively. The results indicate that the query performance is comparable. For
most of the datasets, DBIndex is faster than EAGR. In some datasets (e.g.,
Orkut and Pokec), DBIndex performs 30 % faster than EAGR. We see that,
for 1-hop queries on YouTube and LiveJournal datasets and 2-hop queries on
YouTube dataset, DBIndex is slightly slower than EAGR. We observe that these
datasets are very sparse graphs where the intersections among windows are nat-
urally small. For very sparse graphs, both DBIndex and EAGR are unable to
find much computation sharing. In this case, the performance of DBIndex and
EAGR is very close. For instance, in the worst case, as in the livejournal dataset,

214 Q. Fan et al.

DBIndex is 9 % slower than EAGR where the actual time difference remains tens
of milliseconds.

We also observe that, both algorithms process 2-hop queries faster than 1-
hop queries. This is because there is more computation sharing for 2-hop window
query. In summary, DBIndex takes much shorter time to build but offers com-
parable, if not much faster, query performance than EAGR.

Synthetic Datasets. We generated synthetic datasets using the SNAP gener-
ator to study the scalability of DBIndex.

Impact of Number of Vertices. First, we study how the performance changes
when we fix the degree 8 at 10 and vary the number of vertices from 2 M to 10 M.
Figure 6(a) and (b) show the execution time for index construction and query
performance respectively. From the results, we can see that DBIndex outper-
forms EAGR in both index construction and query performance. For the graph
with 10 M vertices and 100 M edges, the DBIndex query time is less than 450
milliseconds. Moreover, when the number of vertices changes from 2M to 10M,
the query performance only increases 3 times. This shows that DBIndex is not
only scalable, but offers acceptable performance.

Fig. 6. Impact of number of vertices

Impact of Degree. Our proposed DBIndex is effective when there are signifi-
cant overlaps between windows of neighboring vertices. As such, it is interesting
to study how it performs under various graph degrees. Here, we report the results
from dense graphs. More results of sparse graphs can be found in the technical
report [8]. We fix the number of vertices in a graph to be 200k. and then vary the
degree from 80 to 200. Figure 7(a) shows the index construction and query time
for 1-hop query. We can see that DBIndex outperforms EAGR significantly. As
the degree increases, EAGR’s performance degrades much faster than DBIndex.
8 Degree means average degree of the graph. The generated graph is of Erdos-Renyi

model .

Towards Neighborhood Window Analytics over Large-Scale Graphs 215

Fig. 7. Impact of Degree on Dense Graphs

It is notable that DBIndex indexing time almost matches EAGR’s query time.
Figure 7(b) shows the comparison under 2-hop queries. EAGR is only able to
work on the dataset with degree 80 due to the memory issue. This is because
the number of edges is large (e.g., 40 M edges for a graph of degree 200).

In summary, the insight we obtain is that the scalability of EAGR is highly
limited by two factors: the graph size and the number of hops. DBIndex achieves
better scalability as it does not need to create a large amount of intermediate
data in memory.

5 Related Work

GWFs are different from graph aggregation [4,17,19] in graph OLAP. In graph
OLAP, information in a graph are summarized by partitioning the graph’s ver-
tices/edges (based on some attribute values) and computing aggregate values
for each partition. GWFs, on the other hand, compute aggregate values for each
graph vertex wrt the subgraph associated with the vertex. Indeed, such differ-
ences also arise in the relational context, where different techniques are developed
to evaluate OLAP and window function queries.

In [18], the authors investigated the problem of finding the vertices that
have top-k highest aggregate values over their h-hop neighbors. They proposed
mechanisms to prune the computation by using two properties: First, the locality
between vertices is used to propagate the upper bound of aggregation; Second,
the upper bound of aggregates can be estimated from the distribution of attribute
values. However, all these pruning techniques are not applicable in our work,
as we need to compute the aggregation for every vertex. In such a scenario,
techniques in [18] degrade to the non-indexed approach as described in Sect. 4.

Indexing techniques have been proposed to efficiently determine whether a
pair of vertices is within a distance of k-hops (e.g., k-reach index [5]). However,
such techniques are not suitable for k-hop window queries due to the time com-
plexity of O(n2) in determining each vertex’s window. Moreover, such techniques
do not leverage shared components among windows to boost query processing.

216 Q. Fan et al.

In distributed databases community, some works considered utilizing partial
aggregates to facilitate efficient aggregate computation (e.g., [9,15]). However,
their primary goal is to optimize the communication cost between sites, hence
the optimization problem is fundamentally different from ours.

In network science community, egocentric analysis is emerging in recent years.
However, their main focus is on structural analyses of a vertex’s k-hop neighbor-
hood. For example, Everett et al. [7] looked at finding the betweenness centrality
among vertices’ k-hop neighbors; and Moustafa et al. [13] developed techniques
for matching specialized patterns among k-hop neighborhoods. These works are
different from ours as they do not consider attribute aggregation.

The work that is most related to ours is [12] - referred to as EAGR which
examined the evaluation of egocentric (similar to our k-hop window) aggregation
queries. EAGR and our DBIndex share the similar spirit in terms of discovering
the shared components among different windows to speed up the query process-
ing. However, as elaborated in Sect. 1, our techniques are more memory-efficient,
as well as more scalable than those in EAGR.

6 Conclusion

In this paper, we have proposed Graph Window Query to facilitate analytics
over a local community of each graph vertex, and studied one instantiations,
namely k-hop window in detail. We proposed the Dense Block Index (DBIndex)
to facilitate efficient processing of k-hop window query. DBIndex integrates win-
dow aggregation sharing techniques to salvage partial work done, which is both
space and query efficient. Results of an extensive experimental study on both
large-scale real and synthetic datasets showed the efficiency and scalability of
our proposed index.

Acknowledgment. Qi Fan is supported by NGS Scholarship. This work is supported
by the MOE/NUS grant R-252-000-500-112 and AWS in Education Grant award.

References

1. Briscoe, E.J., Appling, D.S., Mappus IV, R.L., Hayes, H.: Determining credibility
from social network structure. In: ICASNAM 2013, pp. 1418–1424. ACM (2013)

2. Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of
the web. Comput. Netw. ISDN Syst. 29(8), 1157–1166 (1997)

3. Campanario, J.M.: Empirical study of journal impact factors obtained using the
classical two-year citation window versus a five-year citation window. Scientomet-
rics 87(1), 189–204 (2011)

4. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: towards online ana-
lytical processing on graphs. In: ICDM 2008, pp. 103–112 (2008)

5. Cheng, J., Shang, Z., Cheng, H., Wang, H., Yu, J.X.: K-reach: who is in your small
world. VLDB 5(11), 1292–1303 (2012)

6. Dai, L., Luo, J.-D., Fu, X., Li, Z.: Predicting offline behaviors from online features:
an ego-centric dynamical network approach. In: HotSocial 2012, pp. 17–24 (2012)

Towards Neighborhood Window Analytics over Large-Scale Graphs 217

7. Everett, M., Borgatti, S.P.: Ego network betweenness. Soc. Netw. 27(1), 31–38
(2005)

8. Fan, Q., Wang, Z., Chan, C.Y., Tan, K.L.: Supporting window analytics over large-
scale dynamic graphs, CORR (2015). arxiv:1510.07104

9. Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing aggregate com-
putation for distributed queries. In: SIGMOD 2007, pp. 485–496 (2007)

10. Ma, H.H., Gustafson, S., Moitra, A., Bracewell, D.: Ego-centric network sampling
in viral marketing applications. In: Ting, I.-H., Wu, H.-J., Ho, T.-H. (eds.) Mining
and Analyzing Social Networks. SCI, vol. 288, pp. 35–51. Springer, Heidelberg
(2010)

11. Ma, N., Guan, J., Zhao, Y.: Bringing pagerank to the citation analysis. Inf. Process.
Manage. 44(2), 800–810 (2008)

12. Mondal, J., Deshpande, A.: Eagr: supporting continuous ego-centric aggregate
queries over large dynamic graphs. In: SIGMOD 2014, pp. 1335–1346 (2014)

13. Moustafa, W.E., Deshpande, A., Getoor, L.: Ego-centric graph pattern census. In:
ICDE 2012, pp. 234–245 (2012)

14. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded
error. In: SIGMOD 2008, pp. 419–432 (2008)

15. Trigoni, N., Yao, Y., Demers, A., Gehrke, J., Rajaraman, R.: Multi-query optimiza-
tion for sensor networks. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh,
M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 307–321. Springer, Heidelberg (2005)

16. Vassilevska, V., Pinar, A.: Finding nonoverlapping dense blocks of a sparse matrix.
Lawrence Berkeley National Laboratory, Livermore (2004)

17. Wang, Z., Fan, Q., Wang, H., Tan, K.-L., Agrawal, D., El Abbadi, A.: Pagrol:
parallel graph OLAP over large-scale attributed graphs. In: ICDE 2014, pp. 496–
507 (2014)

18. Yan, X., He, B., Zhu, F., Han, J.: Top-k aggregation queries over large networks.
In: ICDE 2010, pp. 377–380 (2010)

19. Zhao, P., Li, X., Xin, D., Han, J.: Graph cube: on warehousing and OLAP multi-
dimensional networks. In: SIGMOD 2011, pp. 853–864 (2011)

http://arxiv.org/abs/1510.07104

Bitruss Decomposition of Bipartite Graphs

Zhaonian Zou(B)

School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

znzou@hit.edu.cn

Abstract. In this paper, we propose bitruss, a new notion of a dense
subgraph of a bipartite graph. Specifically, the k-bitruss of a bipartite
graph is the largest edge-induced subgraph H such that every edge of H
is contained in at least k rectangles within H. The bitruss decomposition
of a bipartite graph is the set of all nonempty k-bitrusses of the bipartite
graph for k ≥ 0. In this paper, we show that the bitruss decomposition
of a bipartite graph have three important properties. First, the bitruss
decomposition is unique. Second, the bitruss decomposition is hierarchi-
cal, that is, the (k+1)-bitruss is a subgraph of the k-bitruss for all k ≥ 0.
Third, the bitruss decomposition can be computed in polynomial time.
These three interesting properties make bitruss a promising notion of
dense bipartite subgraphs.

Keywords: Bipartite graph · Dense subgraph · Bitruss · Bitruss
decomposition

1 Introduction

A graph is a bipartite graph if its vertices can be partitioned into two disjoint sets
L and R such that every edge connects a vertex in L to a vertex in R. A bipar-
tite graph is a general data structure for representing complicated relationships
between two disjoint sets of entities. For example, in an online recommender sys-
tem, the ratings on items by users can be represented by a bipartite graph, where
users and items are two disjoint vertex sets, and there is an edge connecting a
user to an item if the user posts a rating on that item. So far, vast amounts
of data represented by bipartite graphs has been accumulated in a variety of
applications, including online recommender systems, online social networks, and
bookmarking systems [13].

Discovering dense subgraphs of a bipartite graph is of great significance in
graph mining that encompasses many diverse applications. Examples include
identifying similar users and similar items based on the ratings on items posted
by the users of an online recommender system, and building taxonomy of book-
marks based on tags assigned to bookmarked URL’s.

Z. Zou—was partially supported by the NSF of China (No. 61532015 and
No. 61173023) and the 973 Program of China (No. 2011CB036202).

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 218–233, 2016.
DOI: 10.1007/978-3-319-32049-6 14

Bitruss Decomposition of Bipartite Graphs 219

Various notions of dense bipartite subgraphs have been used in the literature,
including maximum bicliques [1,8,16], maximum average-degree subgraphs [6,7],
maximum density subgraphs [11], (i, j)-cores [12], and dense k-subgraphs [5,10].
Section 2 provides a brief description of these notions. Although each of these
notions has its own strengths, it has one or more limitations described below.

– The dense subgraphs in terms of these definitions are generally very small,
compared with the size of the underlying bipartite graph. Hence, they cannot
capture the global density characteristics of the underlying bipartite graph.

– The dense subgraphs in terms of these definitions are generally scattered in
the underlying bipartite graph and may be overlapped or disjoint.

– It is generally computationally expensive to find the optimal answers under
most of these definitions.

To overcome these drawbacks, we propose “bitruss”, a new notion of a dense
bipartite subgraph, in this paper. This notion is inspired by the concept of trusses
[3] defined exclusively for non-bipartite graphs. The definition of a truss is based
on triangles, that is, cycles with three vertices. Specifically, the k-truss in a non-
bipartite graph is the maximal edge-induced subgraph H such that every edge
of H is contained in at least k triangles within H. The truss decomposition of
a non-bipartite graph is composed by all nontrivial k-trusses in the graph for
k ≥ 0. The truss decomposition of a non-bipartite graph possesses two important
properties. First, the truss decomposition is unique. Second, the (k + 1)-truss
is a subgraph of the k-truss for all k ≥ 0. Therefore, the truss decomposition
provides a hierarchical organization of subgraphs of different granularities and
densities. Furthermore, the truss decomposition of a non-bipartite graph can be
computed in O(m1.5) time [17], where m is the number of edges of the graph.

Unfortunately, the notion of a truss cannot be applied to a bipartite graph
because there is definitely no triangles in a bipartite graph. Li et al. [14] attempt
to apply the concept of a truss to a bipartite graph by augmenting the bipartite
graph to a general non-bipartite graph. In particular, they add an auxiliary
edge between a pair of vertices if they share a common neighbor vertex in the
bipartite graph. Then, they compute the truss decomposition of the augmented
non-bipartite graph and remove the auxiliary edges from the discovered trusses.
Although simple, this approach has two main drawbacks.

– This approach cannot distinguish bipartite graphs with significantly different
densities. To illustrate, consider the complete bipartite graphs G1, G2 and
G3 shown in Fig. 1. All of them consist of 8 vertices, while the numbers of
left vertices are 1, 2 and 4, respectively. Intuitively, G2 is denser than G1,
and G3 is even denser than G2. However, after augmenting all these graphs
into non-bipartite graphs, we obtain the same one—the complete graph with
8 vertices, which is in turn a 6-truss. After removing the auxiliary edges, we
obtain G1, G2 and G3 again. Hence, this approach regards G1, G2 and G3 to
be at the same level of cohesiveness, which contradicts with our intuition.

– Since a large number of auxiliary edges are added to the bipartite graph,
computing the truss decomposition of the augmented graph tends to be more

220 Z. Zou

L

R R R R R R R

(a) G

L L

R R R R R R

(b)

L L L L

R R R R

(c)1 G2 G3

Fig. 1. Three bipartite graphs with the same number of vertices but different densities.
Vertices labeled by L are left vertices, and vertices labeled by R are right vertices.

expensive. In the worst case,
(
l
2

)
+

(
r
2

)
auxiliary edges can be added to a

bipartite graph with l left vertices and r right vertices.

In this paper, we propose a new notion of a dense bipartite graph, called
bitruss. The definition of a bitruss is based on rectangles, where a rectangle refers
to a complete bipartite graph with two left vertices and two right vertices [18]. In
particular, the k-bitruss in a bipartite graph is the maximal edge-induced sub-
graph H such that every edge of H is contained in at least k rectangles within H.
The bitruss decomposition of a bipartite graph is the set of all nontrivial
k-bitrusses in the bipartite graph for all k ≥ 0.

The rationale behind the definition of a bitruss is that a rectangle is a com-
monly observed motif, that is, a subgraph that repeats itself more frequently in
a real graph than in a randomly linked graph [15]. A rectangle represents the
homogeneity between its left vertices as well as the homogeneity between its
right vertices. For example, in a user-item bipartite graph, two users and two
items such that both users post high ratings on both items constitute a rectan-
gle, which indicates that the users are likely to have common interests and the
items are likely to be similar.

The bitruss decomposition of a bipartite graph provides a hierarchical orga-
nization of bipartite subgraphs with increasing sizes and decreasing densities. To
better illustrate this, we investigate the properties of the bitruss decomposition
of a bipartite graph, which are described below.

– Uniqueness Property: The bitruss decomposition of a bipartite graph is
unique.

– Nestedness Property: The (k +1)-bitruss is a subgraph of the k-bitruss for all
k ≥ 0.

Because of the nestedness property, the larger k is, the smaller and denser the
k-bitruss is. Hence, the hierarchical organization of bitrusses enables us to
explore subgraphs of different density levels by adjusting the parameter k.

Another advantage of the bitruss notion is that the bitruss decomposition of a
bipartite graph can be computed in polynomial time. Specifically, we propose an
algorithm, called Peel, that computes the bitruss decomposition of a bipartite
graph in O(m2) time and in O(l + r + m) space, where l, r and m are the
number of left vertices, the number of right vertices and the number of edges in
the bipartite graph, respectively.

Bitruss Decomposition of Bipartite Graphs 221

We performed an extensive set of experiments to evaluate the effectiveness of
the bitruss notion as well as the efficiency of the Peel algorithm. The experimen-
tal results verify the theoretical results given above. Furthermore, the density
of the k-bitruss of a bipartite graph generally increases as k becomes larger,
and hence, the bitruss notion is generally consistent with the classical notions of
dense bipartite subgraphs.

2 Related Work

A bipartite graph is said to be a biclique or a complete bipartite graph if there is
an edge between every left vertex and every right vertex. The maximum biclique
is a classic notion of a dense bipartite subgraph, which has two specific defini-
tions. The maximum vertex biclique is the biclique with the maximum number of
vertices, and the maximum edge biclique is the biclique with the maximum num-
ber of edges [1,16]. The maximum vertex biclique can be found in polynomial
time, while finding the maximum edge biclique is a NP-complete problem [16].

In [7], the density of a graph is defined by the ratio of the number of edges
to the number of vertices, which is half of the average degree of all vertices. This
definition is applicable to both bipartite graphs and non-bipartite graphs. Gold-
berg [7] proposed a max-flow-based algorithm to find a subgraph of the maximum
average degree. Gallo et al. [6] improves the running time to O(nm log(n2/m))
by using the parametric max-flow algorithms, where n and m are the number of
vertices and the number of edges of the input graph, respectively.

Khuller and Saha [11] defines the density of a bipartite graph by |E|/√|L||R|,
where E is the set of edges, L is the set of left vertices, and R is the set of
right vertices. Without any size constraints, a subgraph of the maximum density
can be found in polynomial time. When a constraint on the minimum size is
specified, the problem is NP-complete, and fast algorithms have been proposed
to find subgraphs within a factor 2 of the maximum density [11].

The (i, j)-core of a bipartite graph is the maximal subgraph such that every
vertex on the left side has degree at least i and that every vertex on the right
side has degree at least j [12]. In order to enumerate all nontrivial (i, j)-cores,
Kumar et al. [12] proposed an algorithm based on frequent itemset mining.

Although each of the notions above has its own strengths, it has one or more
limitations as described in Sect. 1. The notion of a bitruss proposed in this paper
is inspired by the concept of a truss [3] defined for a non-bipartite graph. Cohen
[3] proposed the first algorithm for computing the truss decomposition of a non-
bipartite graph. Wang and Cheng [17] improved Cohen’s algorithm by reducing
random access to adjacency lists of vertices of high degrees. The improved algo-
rithm runs in O(m1.5) time, where m is the number of edges of the graph.
Cohen [2] proposed the first parallel algorithm. Wang and Cheng [17] argued
that the iterative triangle listing process in the MapReduce algorithm hinders
parallelization and proposed two I/O-efficient algorithms [17] for handling large
non-bipartite graphs that cannot fit in main memory. Huang et al. [9] proposed
the first distributed algorithm for this problem. Unfortunately, the concept of a

222 Z. Zou

truss cannot be applied to a bipartite graphs because there is no triangles in a
bipartite graph. Moreover, as we discussed in Sect. 1, the attempt to apply the
notion of trusses to bipartite graphs [14] has several drawbacks.

3 Bitruss Decomposition Problem

Preliminaries. In this paper we consider undirected graphs, that is, (u, v) and
(v, u) refer to the same edge. A bipartite graph is a graph whose vertices can
be partitioned into two disjoint sets L and R such that each edge connects a
vertex in L to one in R. The sets L and R are called partite sets. One often uses
(L,R,E) to denote a bipartite graph with partite sets L and R and edges E.
A complete bipartite graph is a bipartite graph (L,R,E) such that each vertex
in L is adjacent to all vertices in R. One often denote a complete bipartite graph
(L,R,E) with |L| = l and |R| = r by Kl,r. Clearly, K2,2 is a cycle of length 4,
which is called a rectangle figuratively.

In the paper we denote the partite sets of a bipartite graph G by L(G) and
R(G), respectively, and the edge set of G by E(G). Let NG(v) denote the set
of vertices adjacent to a vertex v in G. The cardinality of NG(v) is called the
degree of v, denoted by dG(v). In the paper, when G is explicit in context, we
simplify NG(v) and dG(v) into N(v) and d(v), respectively.

Problem Statement. We now define some new concepts and give a formal
statement of the bitruss decomposition problem.

Definition 1. Given a bipartite graph G and an integer k ≥ 0, the k-bitruss of
G, denoted by Tk(G) is the largest edge-induced subgraph H of G such that every
edge of H is contained in at least k rectangles within H.

Definition 2. The bitruss decomposition of a bipartite graph G is a set {Tk(G)|
0 ≤ k ≤ K}, where K is the largest integer such that TK(G) is nontrivial.

Definition 3. The bitruss number of an edge e of a bipartite graph G, denoted
by tG(e), is the largest integer k such that Tk(G) contained e. Let τ(G) denote
the maximum bitruss number of edges of G.

The bitruss decomposition problem is therefore computing the bitruss decom-
position of a bipartite graph. Figure 2 illustrates a bipartite graph G. The
0-bitruss of G is G itself. The k-bitrusses of G for k = 1, 2, 3 are shown in
Fig. 2(b)–(d), respectively. The maximum bitruss number τ(G) is 3.

Next, we study the properties of a bitruss decomposition.

Theorem 1. The k-bitruss of a bipartite graph is unique for all k ≥ 0.

Proof. Let H and H ′ be two different k-bitrusses. Let H+H ′ denote the bipartite
graph obtained by merging H and H ′, that is, L(H + H ′) = L(H) ∪ L(H ′),
R(H + H ′) = R(H) ∪ R(H ′), and E(H + H ′) = E(H) ∪ E(H ′). Clearly, each
edge of H is contained in at k rectangles in H, which are certainly rectangles in

Bitruss Decomposition of Bipartite Graphs 223

1 6

2 7

3 8

4 9

5 0

(a)

1 6

2 7

3 8

4 9

5

(b)

1 6

2 7

3 8

4

(c)

1 6

2 7

3

4

(d)

Fig. 2. An example of bitruss decomposition of a bipartite graph. (a) a bipartite graph
G; (b) the 1-bitruss of G; (c) the 2-bitruss of G; (d) the 3-bitruss of G.

H +H ′. Similarly, each edge of H ′ is also contained in at k rectangles in H +H ′.
Thus, every edge of H + H ′ is contained in at least k rectangles in H + H ′. By
Definition 1, neither H nor H ′ is a k-bitruss of G, which is a contradiction. Thus,
the theorem holds. ��
Corollary 1. The bitruss decomposition of a bipartite graph is unique.

The next theorem shows the hierarchy property of a bitruss decomposition.

Theorem 2. For all bipartite graphs G and all integers k ≥ 0, Tk+1(G) is a
subgraph of Tk(G).

Proof. Suppose Tk+1(G) is not a subgraph of Tk(G). Let H = Tk+1(G)+Tk(G).
Each edge of Tk(G) is contained in at least k rectangles in Tk(G), which are
certainly rectangles in H. Similarly, each edge of Tk+1(G) is contained in at
least k +1 rectangles in H. By Definition 1, Tk(G) cannot be the k-bitruss of G,
which is a contradiction. This completes the proof. ��

4 Bitruss Decomposition Algorithm

In this section we propose a simple yet effective algorithm for the Bitruss Decom-
position Problem. We are given as input a bipartite graph G with |L(G)| = l,
|R(G)| = r, and |E(G)| = m. Rather than outputting the bitruss decomposi-
tion of G, the algorithm outputs the bitruss numbers of all edges in G since the
bitruss decomposition of G can be reconstructed by sorting all edges E(G) in
decreasing order of bitruss numbers in O(m log m) time and then by scanning
the sorted E(G) in O(m) time. The algorithm removes (peels off) k-bitrusses in
increasing order of k, which runs in the following steps.

1. Set a variable k to 0. Initialize a variable t[e] to keep the bitruss number of
each edge e of G. Count the number of rectangles in G containing each edge
e and keep the rectangle count in c[e].

2. If there is no edge in G, output t and terminate; otherwise goto next step.

224 Z. Zou

Algorithm. Peel
Input: a bipartite graph G
Output: the bitruss numbers of all edges of G
1: k ← 0
2: c ← CountRectangles(G) //c[e] keeps the number of rectangles in G containing e
3: while E(G) �= ∅ do
4: if there is an edge e of G such that c[e] ≤ k then
5: for all v′ ∈ N(u) do
6: for all u′ ∈ N(v) do
7: if (u′, v′) ∈ E(G) then
8: c[(u, v′)] ← c[(u, v′)] − 1; c[(u′, v)] ← c[(u′, v)] − 1

c[(u′, v′)] ← c[(u′, v′)] − 1
9: t[e] ← k

10: E(G) ← E(G) \ {e}
11: else
12: k ← k + 1
13: return t

3. If there is no edge e such that c[e] ≤ k, increase k by 1 and goto Step 2;
otherwise carry out the following steps.
3a. For each rectangle containing e, decrease c[e′] by 1 for all edges e′ in the

rectangle other than e.
3b. Set t[e] to k, remove e from G, and goto Step 2.

The pseudocode of the algorithm is given in Algorithm Peel1. At line 2, we
count the number of rectangles containing each edge of G. The main loop at lines
3–12 repeats Step 3 (lines 4–12) until there is no edge in G. In each iteration of
the main loop, if there exists an edge e ∈ E(G) such that c[e] ≤ k, we carry out
Step 3a at lines 5–8, followed by Step 3b at lines 9–10. In particular, for each
vertex v′ in N(u) and each u′ in N(v), if u′ is adjacent to v′, vertices u, v, u′, v′

induce a rectangle. The removal of e must eliminate the rectangle containing
u, v, u′, v′, so we decrease all of c[(u, v′)], c[(u′, v)] and c[(u′, v′)] by 1. In each
iteration of the main loop, if there is no edge e ∈ E(G) such that c[e] ≤ k, we
increase k by 1 at line 12. Once G becomes empty, the bitruss numbers of all
edges stored in t are outputted at line 13, then the algorithm terminates.

Next, we discuss some issues related to the implementation of Peel.

– We can use the in-memory algorithm proposed in [18] to count the rectangles
containing each edge of G. The algorithm runs in O(

∑
u∈L(G) d2(u)) time and

O(l+r+m) space [18]. Since
∑

u∈L(G) d2(u) = O((
∑

u∈L(G) d(u))2) = O(m2),
the algorithm runs in O(m2) time.

– To enable fast adjacency test, we use a hash table to store N(v) for all vertices
v. Thus, the condition at line 7 can be tested by accessing the hash table of
N(u′) (or N(v′)) with key v′ (or u′) in O(1) time. If |N(u′)| < |N(v′)|, we
access N(u′) with key v′; otherwise, we access N(v′) with key u′.

1 The Peel algorithm mimics the process of peeling an onion, so is named Peel.

Bitruss Decomposition of Bipartite Graphs 225

Correctness. We now prove the correctness of Peel. Note that the input graph
G is constantly changed during the execution of Peel, so we use G∗ to denote
G when inputted to Peel. The following lemma gives a loop invariance of Peel.

Lemma 1. Every time when line 4 is executed, Tk+1(G∗) ⊆ G ⊆ Tk(G∗).

Proof. We prove the lemma by induction. Base Case: When line 4 is executed for
the first time, we have k = 0 and G = G∗. Clearly, T1(G∗) ⊆ G∗ = G = T0(G∗).

Induction: Assume that Tk+1(G∗) ⊆ G ⊆ Tk(G∗) when line 4 is executed
for the ith time. If Peel continues to execute line 5 after executing line 4, we
have that e is contained in at most k rectangles in G. By the assumption that
Tk+1(G∗) ⊆ G, e is contained in at most k rectangles in Tk+1(G∗)+e, so e cannot
be an edge of Tk+1(G∗). Thus, we have Tk+1(G∗) ⊆ G − e ⊆ Tk(G∗). At line 10,
Peel removes e from G and goes to line 3. Therefore, Tk+1(G∗) ⊆ G ⊆ Tk(G∗)
when line 4 is executed for the (i + 1)th time.

If Peel continues to execute line 12 after executing line 4, all edges of G are
contained in at least k +1 rectangles, so G ⊆ Tk+1(G∗). By the assumption that
Tk+1(G∗) ⊆ G, we have Tk+1(G∗) = G. Moreover, it follows from Theorem2
that Tk+2(G∗) ⊆ Tk+1(G∗) = G. At line 12, Peel increases k by 1 and goes to
line 3. Hence, Tk+1(G∗) ⊆ G ⊆ Tk(G∗) when line 4 is executed for the (i + 1)th
time. By induction the lemma holds. ��

Based on the loop invariance, we have the following sufficient and necessary
condition of bitruss numbers.

Theorem 3. The bitruss number of an edge e is l if and only if k = l when e
is deleted from G.

Proof. We first prove the sufficiency. If k = l when e is deleted from G, it follows
from Lemma 1 that Tl+1(G∗) ⊆ G ⊆ Tl(G∗) just before e is removed from G.
According to the proof of Lemma1, e is not an edge of Tl+1(G∗). Thus, the
bitruss number of e is l.

Next, we prove the necessity. We first prove that k ≤ l when e is deleted from
G. Suppose k > l. By Theorem 2, we have Tk(G∗) ⊆ Tl+1(G∗). By Lemma 1, we
have G ⊆ Tk(G∗) just before e is deleted from G. Thus, G ⊆ Tl+1(G∗), so the
bitruss number of e is greater than l, which is a contradiction. Next, we prove
that k ≥ l when e is deleted from G. Suppose k < l, so edge e is contained in less
than l rectangles in G. By Theorem 2, we have Tl(G∗) ⊆ Tk+1(G∗). By Lemma 1,
we have Tk+1(G∗) ⊆ G just before e is deleted from G. Thus, Tl(G∗) ⊆ G, so e
is contained in at least l rectangles in G, which is a contradiction. Hence, k = l
when e is deleted from G. The theorem thus holds. ��

By Theorem 3, the Peel algorithm is correct.

Complexity. We now analyze the complexity of Peel. For each edge e = (u, v)
selected at line 4, the loop at lines 5–8 runs in O(d(u)d(v)) time. Thus, the loop
totally runs in O(

∑
(u,v)∈E(G) d(u)d(v)) time. Note that∑

(u,v)∈E(G)

d(u)d(v) ≤
∑

u∈L(G)

∑
v∈R(G)

d(u)d(v) ≤
∑

u∈L(G)

d(u)
∑

v∈R(G)

d(v) = m2 ,

226 Z. Zou

where the last equality follows from the fact that every edge connects a vertex in
L(G) to one in R(G), so

∑
u∈R(G) d(u) =

∑
v∈R(G) d(v) = m. Thus, Peel runs in

O(m2) time, which is optimal since counting all rectangles in G requires Θ(m2)
in the worst case. The Peel algorithm requires O(l + r + m) space to store the
input graph G and O(m) space to store c[e] and t[e] for all e ∈ E(G). Hence,
the space complexity of Peel is O(l + r + m).

5 Experimental Evaluation

5.1 Experimental Setting

We implemented the Peel algorithm in C++ and compiled it using g++ with
option -O3. All experiments were performed on a computer powered by a 2.8GHz
Intel Core i7 CPU and 16GB of RAM, running Mac OS X 10.10.1.

Evaluation Metrics. We evaluated the Peel algorithm by the metrics below.

– Size. The size of the k-bitruss of a bipartite graph is evaluated by the number
of vertices and the number of edges of the k-bitruss.

– Density. For a sufficiently large integer k, the k-bitruss of a bipartite graph
is expected to be a dense subgraph. Moreover, the k-bitruss is expected to
be denser as k becomes larger. The density of a bipartite graph (L,R,E)
is evaluated by |E|/(|L||R|). In this sense, a bipartite graph is dense if its
density is close to 1.

– Execution time. The time efficiency of the Peel algorithm is measured by its
execution time.

Datasets. Our experiments were performed on the following bipartite graphs.
The structural statistics of these bipartite graphs are summarized in Fig. 3.

Bipartite graph L R E dL dR d dmax
L dmax

R

Delicious 68755 14346 487131 7.1 34.0 5.9 10 9435
IMDB 303617 896302 3782463 12.5 4.2 3.2 1334 1590
MovieLens-1M-4-5 6038 3533 575281 95.3 162.8 60.0 1435 2853
Netflix 998 280406 1134613 1136.9 4.0 4.0 57537 457
NotreDame 383640 127823 1470404 3.8 11.5 2.9 646 294
Sandi 314 360 613 2.0 1.7 0.9 26 6
WikiElec 2043 5504 81862 40.1 14.9 10.9 323 766

Fig. 3. Summary of bipartite graphs used in experiments. L: the number of left vertices;
R: the number of right vertices; E: the number of edges; dL: the average degree of left
vertices; dR: the average degree of right vertices; d: the average degree of all vertices;
dmax
L : the maximum degree of left vertices; dmax

R : the maximum degree of right vertices.

Bitruss Decomposition of Bipartite Graphs 227

– Delicious. This bipartite graph contains the bookmarking and tagging infor-
mation from 2000 users of the social bookmarking system Delicious.com.
This graph was released in HetRec’11 (http://ir.ii.uam.es/hetrec2011). In this
graph, a left vertex represents a user, a right vertex represents a bookmark,
and an edge connects a user vertex to a bookmark vertex if the user assigns
a tag to the bookmark.

– IMDB. This bipartite graph was obtained from the University of Florida
sparse matrix collection [4]. It represents the relationships between movies
and actors. In particular, there is an edge connecting a movie vertex to a
actor vertex if the actor played in the movie.

– MovieLens. This dataset contains 10000054 ratings applied to 10681 movies
by 71567 users of the online movie recommender service MovieLens. It is
publicly available at the GroupLens Datasets. We extracted a set of bipartite
graphs from this dataset, where left vertices represent users, right vertices
represent movies, and an edge connects a user vertex to a movie vertex if the
user’s rating on the movie is within a specified interval [l, u]. In our experi-
ments, we use MovieLens-m-l-u to denote the bipartite graph constructed
based on the ratings within score interval [l, u] among the first m ratings,
where l, u ∈ {1, 2, . . . , 5} and m ≤ 10000054.

– Netflix. The Netflix dataset contains over 100 million ratings from 480
thousand randomly-chosen, anonymous Netflix customers over 17 thousand
movie titles. We extracted a bipartite graph that contains 998 movie vertices,
280406 user vertices and 1470404 edges.

– NotreDame. This bipartite graph was obtained from the University of Florida
sparse matrix collection [4]. It consists of 1470404 edges connecting 383640
vertices on the left partite to 127823 vertices on the right partite.

– Sandi. This is a small bipartite graph obtained from the University of Florida
sparse matrix collection [4]. This bipartite graph is used to show the charac-
teristics of bitruss decomposition in details.

– WikiElect. This bipartite graph is the voting network of Wikipedia [13],
where a link indicates a positive vote by one user on the promotion to admin
status of a candidate.

5.2 Experimental Results

Bitruss Sizes and the Hierarchy Property. In this experiment, we examine
the sizes of k-bitrusses with respect to k and verify the hierarchy property of a
bitruss decomposition stated in Theorem2.

Figure 4 shows the experimental results obtained on bipartite graph Sandi.
Specifically, for every k-bitruss of Sandi, Fig. 4 reports the number L of left ver-
tices, the number R of right vertices and the number E of edges, respectively.
We observe that all of L, R and E monotonically decrease with respect to k.
Our experimental results also show that the (k + 1)-bitruss of Sandi is a proper
subgraph of the k-bitruss of Sandi for k = 0, 1, . . . , 5. Thus, the bitruss decom-
position of Sandi satisfies the hierarchy property stated in Theorem 2. Because
of this, all of L, R and E decrease as k becomes larger.

http://ir.ii.uam.es/hetrec2011

228 Z. Zou

k L R E Avg. deg. Density

0 314 360 613 0.909 0.005
1 55 80 184 1.363 0.042
2 33 50 118 1.422 0.072
3 9 26 55 1.571 0.235

k L R E Avg. deg. Density

4 5 18 39 1.696 0.433
5 4 13 26 1.529 0.500
6 2 7 14 1.556 1.000

Fig. 4. Structural properties of the k-bitruss of Sandi. L: the number L of left vertices,
R: the number of right vertices, E: the number of edges.

Figure 5 illustrates the sizes of the k-bitrusses of bipartite graphs Delicious,
IMDB, MovieLens, Netflix, NotreDame and WikiElec, particularly, the number
of vertices and edges. For each bipartite graph, the number of vertices and edges
of the k-bitruss all monotonically decrease as k becomes larger. Furthermore, the
experimental results verify that, for all these bipartite graphs, the (k+1)-bitruss
is a subgraph of the k-bitruss for all k ≥ 0.

 0

 1

 2

 3

 4

 5

 0 500 1000 1500 2000 2500 3000

C
ou

nt
 (×

10
5)

k

Number of edges
Number of vertices

(a) Delicious

1e2

1e3

1e4

1e5

1e6

1e7

 0 100 200 300 400

C
ou

nt

k

Number of edges
Number of vertices

(b) IMDB

 0

 1

 2

 3

 4

 5

 6

 0 2000 4000 6000 8000 10000

C
ou

nt
 (×

10
5)

k

Number of edges
Number of vertices

(c) MovieLens-1M-4-5

 0

 2

 4

 6

 8

 10

 12

 0 5000 10000 15000

C
ou

nt
 (×

10
5)

k

Number of edges
Number of vertices

(d) Netflix

1e2

1e3

1e4

1e5

1e6

1e7

 0 50 100 150 200

C
ou

nt

k

Number of edges
Number of vertices

(e) NotreDame

 0

 2

 4

 6

 8

 10

 0 200 400 600

C
ou

nt
 (×

10
4)

k

Number of edges
Number of vertices

(f) WikiElec

Fig. 5. The number of vertices and the number of edges of the k-bitrusses of bipartite
graphs Delicious, IMDB, MovieLens, Netflix, NotreDame and WikiElec.

Density of Bitrusses. In this experiment, we examine the density of bitrusses
of a bipartite graph to show that the notion of a bitruss is consistent with the
notion of a dense subgraph.

Figure 4 shows the experimental results obtained on bipartite graph Sandi.
Specifically, for every k-bitruss of Sandi, Fig. 4 reports the average degree of
vertices evaluated by E/(L + R) and the density of the k-bitruss evaluated by
E/(LR), where L, R and E refer to the number of left vertices, right vertices and

Bitruss Decomposition of Bipartite Graphs 229

0.0

0.2

0.4

0.6

0.8

1.0

 0 500 1000 1500 2000 2500 3000

D
en

si
ty

k

(a) Delicious

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400

D
en

si
ty

k

(b) IMDB

0.0

0.2

0.4

0.6

0.8

1.0

 0 2000 4000 6000 8000 10000

D
en

si
ty

k

(c) MovieLens-1M-4-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 5000 10000 15000

D
en

si
ty

k

(d) Netflix

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200

D
en

si
ty

k

(e) NotreDame

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600

D
en

si
ty

k

(f) WikiElec

Fig. 6. Density of k-bitrusses of bipartite graphs Delicious, IMDB, MovieLens, Netflix,
NotreDame and WikiElec.

edges of the k-bitruss, respectively. The maximum bitruss number of the edges in
Sandi is 6. The 6-bitruss of Sandi is a complete bipartite graph with 2 left ver-
tices and 7 right vertices, so the average degree of its vertices is 14/(2+7) = 1.556,
and its density is 14/(2 × 7) = 1. Interestingly, the 6-bitruss of Sandi is iden-
tical to the maximum edge biclique in Sandi. From Fig. 4, we also observe
that the k-bitruss of Sandi becomes denser as k increases. Specifically, the
6-bitruss is the densest (density = 1). This observation verifies that the notion of
a bitruss is consistent with the notion of a dense subgraph, that is, the k-bitruss
for larger k captures denser region of a bipartite graph.

Figure 4 also shows that the average degree of vertices in the k-bitruss of
Sandi generally becomes larger as k increases except that the 3-bitruss and the
4-bitruss have slightly higher average degrees than the 6-bitruss. This is because
average degree is not a stable density metric, which may yield counterintuitive
results. For instance, consider two bipartite graphs G1 = (L1, R1, E1) and G2 =
(L2, R2, E2) with |L1| = 2|L2|, |R1| = 2|R2|, and |E1| = 2|E2|. The average
degrees of G1 and G2 are equal; however, the density of G1 is only half of the
density of G2. Hence, we do not use average degree as a density metric.

Figure 6 shows the density of the k-bitrusses of bipartite graphs Delicious,
IMDB, MovieLens, Netflix, NotreDame and WikiElec. For each bipartite graph,
the density of the k-bitruss is generally increasing with respect to k except
very few values of k in IMDB. Note that, for larger k, the number of rectangles
containing each edge of the k-bitruss becomes larger. Therefore, the notion of a
bitruss is consistent with the notion of a dense subgraph.

230 Z. Zou

Distributions of Bitruss Numbers. In this experiment, we study the dis-
tribution of bitruss numbers of edges in a bipartite graph. Figure 7 shows the
minimum and the maximum bitruss numbers of the edges in bipartite graphs
Delicious, IMDB, MovieLens, Netflix, NotreDame and WikiElec. The mini-
mum bitruss numbers are all 0, indicating that all these bipartite graphs consist
of edges that are not involved in any rectangles. Figure 7 also shows the propor-
tion of edges with bitruss number of 0.

Bipartite graph Min (proportion) Max

Delicious 0 (3.6%) 3388
IMDB 0 (31.8%) 477
MovieLens-1M-4-5 0 (0.02%) 11321

Bipartite graph Min (proportion) Max

Netflix 0 (8.3%) 15584
NotreDame 0 (40.0%) 224
WikiElec 0 (3.0%) 749

Fig. 7. The minimum and the maximum bitruss numbers of edges of bipartite graphs
Delicious, IMDB, MovieLens, Netflix, NotreDame and WikiElec. The numbers in
brackets indicate the proportion of edges that have bitruss number of 0.

Notably, the maximum bitruss number varies significantly from hundreds to
tens of thousands for different bipartite graphs. Although there is no closed-form
equations for the maximum bitruss number, the maximum bitruss number of a
bipartite graph is greatly affected by the size and the density of the bipartite
graph. As shown in Fig. 3, Netflix consists of more than one million edges, and
the average degree of left vertices is as high as 1136.9, so the maximum bitruss

0.0

2.0

4.0

6.0

8.0

1.0

1.2

1.4

1.6

 0 500 1000 1500 2000 2500 3000

Pr
op

or
tio

n
(%

)

k

(a) Delicious

0.0

2.0

4.0

6.0

8.0

1.0

1.2

 0 100 200 300 400

Pr
op

or
tio

n
(%

)

k

(b) IMDB

0.0
2.0
4.0
6.0
8.0
1.0
1.2
1.4
1.6
1.8

 0 2000 4000 6000 8000 10000

Pr
op

or
tio

n
(%

)

k

(c) MovieLens-1M-4-5

0.0

5.0

1.0

1.5

2.0

2.5

3.0

 0 5000 10000 15000

Pr
op

or
tio

n
(%

)

k

(d) Netflix

0.0

2.0

4.0

6.0

8.0

1.0

1.2

1.4

1.6

 0 50 100 150 200

Pr
op

or
tio

n
(%

)

k

(e) NotreDame

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
1.0

 0 200 400 600

Pr
op

or
tio

n
(%

)

k

(f) WikiElec

Fig. 8. Distribution of nonzero bitruss numbers of bipartite graphs Delicious, IMDB,
MovieLens, Netflix, NotreDame, and WikiElec.

Bitruss Decomposition of Bipartite Graphs 231

number of Netflix is also very large (15584). Similarly, MovieLens-1M-4-5 is
also very dense, and its maximum bitruss number is 11321. Delicious contains
hundreds of thousands of edges, and the average degree of the right vertices of
Delicious is 34.0, so its maximum bitruss number is also large (3388).

The distributions of nonzero bitruss numbers of bipartite graphs Delicious,
IMDB, MovieLens, Netflix, NotreDame and WikiElec are illustrated in Fig. 8.
We observe that the distributions depends on specific bipartite graphs. In par-
ticular, the distributions for IMDB and NotreDame have long tails, that is, there
are a large number of edges with very low bitruss numbers; while the edges with
large bitruss numbers are very few. For other bipartite graphs, the distributions
do not exhibit long tails.

Execution Time. In this experiment, we evaluate the execution time of Peel.
As shown in Fig. 9, the execution time of Peel on bipartite graphs Delicious,
IMDB, MovieLens, Netflix, NotreDame and WikiElec vary significantly.

Bipartite graph Time Memory

Delicious 464 17.29
IMDB 2455 107.50
MovieLens-1M-4-5 6496 30.23

Bipartite graph Time Memory

Netflix 576 53.02
NotreDame 4534 55.15
WikiElec 20 3.20

Fig. 9. Execution time and memory usage of Peel on bipartite graphs Delicious, IMDB,
MovieLens, Netflix, NotreDame and WikiElec. The unit of execution time is second.
The unit of memory usage is MB.

To study the effect of the input graph size on the execution time of Peel, we
executed Peel on a collection of bipartite graphs generated based on the bipar-
tite graph MovieLens, namely, MovieLens-100K-1-5, MovieLens-100K-2-5,

 0

 50

 100

 150

 200

 250

 300

 350

 20000 40000 60000 80000 100000

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Number of edges

Execution time
Fitting curve

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 0 20000 40000 60000 80000 100000

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Number of edges

Execution time
Fitting curve

(b)

Fig. 10. Execution time of Peel with respect to the number of edges. (a) execution
time of Peel on MovieLens-100K-l-5 for l = 1, 2, . . . , 5. The fitting curve is y = 6 ×
10−8x2 − 0.0031x + 41.471. (b) execution time of Peel on MovieLens-m-1-5 for m =
10K, 20K, . . . , 100K. The fitting curve is y = 6 × 10−8x2 − 0.0031x + 41.471.

232 Z. Zou

MovieLens-100K-3-5, MovieLens-100K-4-5 and MovieLens-100K-5-5. For l =
1, 2, . . . , 5, the bipartite graphs MovieLens-100K-l-5 consist of 100000, 93890,
82520, 55357 and 21201 edges, respectively. As shown in Fig. 10(a), the execution
time of Peel increases quadratically with respect to the number of edges of the
input bipartite graph.

Furthermore, we produced a series of bipartite graphs MovieLens-m-1-5 for
m = 10K, 20K, . . . , 100K. Clearly, the number of edges of these bipartite graphs
are 10000, 20000, . . . , 100000, respectively. We executed Peel on these bipar-
tite graphs. Figure 10(b) shows that the execution time of Peel also increases
quadratically with respect to the number of edges.

6 Conclusions

In this paper, we propose the concept of bitruss, a new notion of dense subgraphs
of bipartite graphs. The bitruss decomposition of a bipartite graph satisfies two
important properties. First, the bitruss decomposition of a bipartite graph is
unique. Second, the (k+1)-bitruss is a subgraph of the k-bitruss for all k ≥ 0. We
also show that the bitruss decomposition of a bipartite graph can be computed
in O(m2) time and O(l + r + m) space, where l, m and n are the number of left
vertices, right vertices and edges of the bipartite graph, respectively.

References

1. Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for maximum
edge biclique, minimum linear arrangement, and sparsest cut. SIAM J. Comput.
40(2), 567–596 (2011)

2. Cohen, J.: Graph twiddling in a MapReduce world. Comput. Sci. Eng. 11(4), 29–41
(2009)

3. Cohen, J.: Trusses: cohesive subgraphs for social network analysis. Technical report,
National Security Agency Technical Report (2008)

4. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
Trans. Math. Softw. 38(1), 1 (2011)

5. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica
29(3), 410–421 (2001)

6. Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

7. Goldberg, A.V.: Finding a maximum density subgraph. University of California
Berkeley, CA (1984)

8. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms
29(1), 174–200 (1998)

9. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD, pp. 1311–1322 (2014)

10. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

11. Khuller, S., Saha, B.: On finding dense subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

Bitruss Decomposition of Bipartite Graphs 233

12. Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: Trawling the web for
emerging cyber-communities. Comput. Netw. 31(11–16), 1481–1493 (1999)

13. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network datasetcollection
(2014). http://snap.stanford.edu/data

14. Li, Y., Kuboyama, T., Sakamoto, H.: Truss decomposition for extracting commu-
nities in bipartite graph. In: IMMM, pp. 76–80 (2013)

15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

16. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.
Math. 131(3), 651–654 (2003)

17. Wang, J., Cheng, J.: Truss decomposition in massive networks. PVLDB 5(9), 812–
823 (2012)

18. Wang, J., Fu, A.W., Cheng, J.: Rectangle counting in large bipartite graphs. In:
BigData, pp. 17–24 (2014)

http://snap.stanford.edu/data

An I/O-Efficient Buffer Batch Replacement
Policy for Update-Intensive Graph Databases

Ningnan Zhou1,2, Xuan Zhou1,2(B), Xiao Zhang1,2,
Shan Wang1,2, and Ling Liu3

1 MOE Key Laboratory of DEKE, Renmin University of China, Beijing, China
zhou.xuan@outlook.com

2 School of Information, Renmin University of China, Beijing 100872, China
3 College of Computing, Georgia Institute of Technology, Atlanta, China

Abstract. With the proliferation of graph based applications, such as
social network management and Web structure mining, update-intensive
graph databases have become an important component of today’s data
management platforms. Several techniques have been recently proposed
to exploit locality on both data organization and computational model
in graph databases. However, little investigation has been conducted
on buffer management of graph databases. To the best of our knowl-
edge, current buffer managers of graph databases suffer performance loss
caused by unnecessary random I/O access. To solve this problem, we
develop a novel batch replacement policy for buffer management. This
policy enables us to maximally exploit sequential I/O to improve the per-
formance of graph database. To enable the policy, we devise a segment
tree based buffer manager to efficiently maintains optimal replacement
plan. Extensive experiments on real-world and synthetic datasets demon-
strate the superiority of our method.

Keywords: Batch replacement · Buffer manager · Graph database ·
Data manipulation · Graph algorithm

1 Introduction

The rapid growth of graph data fosters a market of specialized graph databases
such as Neo4j [9], Titan [10] and DEX [19]. To meet the needs of various graph
based applications [11,12,14,26–28,34], these disk-based graph databases offer
both database functionality such as insert/delete/update and analytical graph
algorithms such as PageRank computation [6]. The evolving social network and
the nature of some graph algorithms require graph databases to be update-
friendly and update-efficient. For instance, to maintain a social network, each
time a new friendship/connection establishes, a link connecting the pair of users
should be inserted into the graph to reflect the change. In PageRank computa-
tion, the ranking score of every vertex needs to be updated in each iteration.
This paper focuses on such update-intensive applications.

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 234–248, 2016.
DOI: 10.1007/978-3-319-32049-6 15

An I/O-Efficient Buffer Batch Replacement Policy 235

To support large scale graph databases, existing research work has mainly
investigated the data organization and computational models. To achieve effi-
cient data organization, the associated edges of each vertex are normal stored
together. For example, in social networks, the friends of a user are usually stored
in continuous data pages [9]. As a result, frequent requests such as “return the
friends of a specific user” in Facebook or Twitter [15] can benefit from low latency
of sequential I/O. As to computational model, the dominant vertex-centric [18]
or edge-centric [24] processing models partition a graph based on vertices or
edges, and treat each partition as a unit of computation. They can also benefit
from sequential I/O.

Although existing graph databases widely adopt I/O efficient data organiza-
tion and computational models, they rarely consider buffer replacement policies.
In fact, they still adopt variants of Least Recently Used (LRU) or Least Fre-
quently Used (LFU) policies [7,20], which evict one buffer page at a time and
thus to some degree cancel out the effects of the specialized data organization
and computational models. Figure 1 illustrates such a scenario. After the inser-
tion of some new friends of user u, the data pages containing u’s information,
bu1 , bu2 and bu3 , will be cached in the buffer. Note that bu1 , bu2 and bu3 should
be continuously located on disk. When a query such as “return the friend list of
user v” is issued, the buffer manager requires to read in a new set of continuously
located data pages, v1, v2 and v3, which contain the friends of the user v. As
the buffer is currently full, the buffer manager decides to evict bu1 , bu2 and bu3

to make room for the incoming data pages. Following the existing replacement
policy, the system will first seek to the position of u1 to evict bu1 and then seek
to the position of v1 to read in a new page. Iteratively, the system will perform
6 random I/Os according to the order marked by the arrows in Fig. 1. This is
inefficient. If we can evict bu1 , bu2 and bu3 in a batch, and read in v1, v2 and v3
in a batch, we only need to perform two random disk seeks, and the other I/Os
can be performed sequentially. Thus, such batch replacement can save 4 out of
6 random I/Os.

In this paper, we propose a batch replacement buffer manager for update-
intensive graph databases. To the best of our knowledge, it is the first buffer
replacement policy that exploits sequential I/O to speed up graph databases.
Our design considers the following aspects: (1) the buffer manager should provide
an unchanged interface to other layers of the graph database; (2) it should figure
out the optimal replacement plan each time it needs to replace buffered pages;
(3) it should minimize computational and memory overhead. To address these
challenges, we first define the optimal replacement plan as the criteria to evict
pages via sequential I/O. Then, we propose a segment tree based structure to
organize buffered pages and to efficiently generate the optimal replacement plan.
To evaluate the performance of our batch replacement buffer manager, we tried
it on both real-world and synthetic datasets using typical workloads of database
manipulation and graph algorithms. The experiment results show that (1) the
batch replacement policy is able to achieve significant performance improvement
by exploiting sequential I/O and (2) it is practical for graph databases.

236 N. Zhou et al.

bu1 bu2 bu3 ...

u1 u2 u3 ... v1 v2 v3
Disk-based Graph

Database

Buffer Manager

231 4 65

Fig. 1. An illustrative example for the effect of existing buffer manager and batch
replacement in terms of random access, where the dashed arrow indicates the additional
random access performed by existing buffer managers.

The contributions of this paper are threefold:

– We show the importance of exploiting sequential I/O in buffer management
of graph databases.

– We propose a batch buffer replacement policy. Based on it, we define the
optimal replacement plan and devise a segment tree based structure to manage
buffered data pages and efficiently maintain the optimal plan.

– We conduct extensive experiments on real-world and synthetic datasets to
verify the effectiveness of the batch replacement policy.

2 Related Work

Our work builds upon the existing techniques of graph databases, especially their
data organization and computational models.

2.1 Data Organization

Conventionally, graph organization is built on top of the relational (a.k.a., SQL)
storage and graphs are stored as triplets [5,25]. In other words, each edge e
directed from a vertex u to a vertex v in the graph is transformed into a triplet
〈u, e, v〉. However, it is known that RDBMS organization is not good at answering
traversal types of graph queries [30]. Considering the locality of data manipula-
tion, such as queries like “return the friends of a specific user”, it is more efficient
to pack in-edges and out-edges of the same vertex in two lists and store them
together [22,32]. This has been adopted by most disk-based graph databases
such as Neo4j. Therefore, we also assume such graph specific data organization.

2.2 Computational Model

Recently, a general iterative framework is adopted to process various graph
algorithms such as PageRank and Shortest Path Computation. In the frame-
work, every vertex and edge in the graph is associated with a value and at

An I/O-Efficient Buffer Batch Replacement Policy 237

each iteration, the value on a vertex or an edge is updated in vertex-centric or
edge-centric model.

Vertex-Centric Model. Vertex-centric model is explored by initial works such
as GraphLab [16] and Pregel [18]. In vertex-centric model, each vertex and its
associated edges are regarded as a unit of computation so that if the main
memory can hold any single vertex and its associated edges, only sequential I/O
for loading data and updating results is required for each computation unit.
To improve scalability, MOCgraph further reduces the memory footprint using
message online computing [33].

Edge-Centric Model. Because a single vertex in real-world graph data, such
as a celebrity, may be associated with so many edges that they cannot fit in main
memory, edge-centric model is proposed [14,24]. Edge-centric model partitions
edges into disjoint sets and each set and its associated vertices form the unit of
computation. In this way, each set can be hold in main memory to avoid random
I/O access [13,34,35].

There is a significant body of work on distributed graph databases [8,23,29].
As our work focuses on speeding up a disk-based graph database on a single
machine, our research is orthogonal and complementary to them.

2.3 Buffer Manager on Database

Existing buffer managers in graph databases usually adopt the variants of the
LRU/LFU policy to reduce disk I/O. Neo4j adopts the LRU policy [9] while
TurboGraph [13] maintains frequently used pages in memory. These works follow
the same paradigm – when the buffer manager requires to read in a new page
and the buffer gets overflow, only one buffered data page is evicted at a time.
As a result, it introduces unnecessary random I/Os. To deal with this drawback,
one recent work has proposed to remove buffer managers [17]. Besides, there are
also alternative approaches which utilize index structures such as log structured
merge tree [21] or fractal tree [3] to handle update-intensive workload. Both
index structures process updates in a key range in a batch. However, as the
physical pages of a key range may not be located consecutively on disk, random
I/O still cannot be avoided completely.

In this paper, we aim to leverage sequential I/O by evicting buffered pages
in a batch way rather following the existing paradigm which repeats evicting
and reading one page at a time. Thus, our approach can benefit from the data
organization and computational models for graph databases.

3 Batch Replacement Buffer Manager

In this section, we first present the problem definition for our batch replacement
buffer manager. Then, we present the structure and algorithms of the proposed
buffer manager.

238 N. Zhou et al.

3.1 Problem Formulation

As we have shown in Fig. 1 in Sect. 1, it is inefficient to follow the existing
paradigm of buffer manager, which evicts only one buffered data page at a time.
In this paper, we extend the single page based replacement plan to the one that
considers a set of pages. Thus, the new definition of replacement plan subsumes
that of the existing buffer managers.

Definition 1. Replacement Plan. When the buffer manager gets overflow, a
replacement plan is a set of buffered data pages that will be evicted before the
buffer manager performs any subsequent read operation.

For example, the ideal replacement plan in Fig. 1 is {bu1 , bu2 , bu3}.
Observing that evicting continuous buffered dirty data pages can maximize

sequential I/O, the ideal batch replacement plan is to evict the longest sequence
of such data pages.

Definition 2. Optimal Batch Replacement Plan. Given a set of buffered pages
with positions on the disk as S = {p1, p2, ..., pn}, the optimal batch replacement
plan is a subset P ⊆ S satisfying the following two conditions:

(1) pages in P are continuous in disk, namely, there are n − 1 pairs of pi
and pj in P, such that pi → pj or pj → pi, where pi → pj means that pj is the
successor data block in disk to pi.

(2) any other subset P ′ ⊆ S satisfying Condition 1 contains less data pages
than P, namely, |P ′| < |P|.

For example, in Fig. 1, the optimal batch replacement plan is {pb1 , pb2 , pb3}.
Although its subset such as {pb1 , pb2} satisfy the first condition, they violate the
second condition and are not the optimal batch replacement plan.

3.2 Overview

We would like a buffer manager to change its replacement policy to the optimal
batch replacement plan. However, we also prefer the change is transparent to
other components of a graph database. We identify three properties the batch
replacement buffer manager should possess: (1) transparency requires to export
the same interface to other layers in a graph database; (2) effectiveness requires
to identify the exact optimal replacement plan and (3) efficiency requires to
minimize the computation and space cost of buffer manager.

When a data page is being updated, if it is surrounded by a number of
continuous buffered dirty pages, batch replacement may evict such an active
page and cause thrashing. Therefore, we use a “using” component to keep track
of such active data pages to avoid them from being evicted. Although our batch
replacement buffer manager is designed for update-intensive applications, we also
need to ensure transparency for mixed workloads of read and write. Therefore,
we use a “clear” component to keep track of unchanged data pages.

Besides the above-mentioned two components, the core component for our
batch replacement buffer manager store all dirty data pages that can be evicted.

An I/O-Efficient Buffer Batch Replacement Policy 239

Figure 2 shows the transitions of a data page among the three components.
Whenever the buffer manager reads a data page, it is inserted into the “using”
component and only when the data page is unpinned and all queries referring to
it terminate, it will be moved to the “clear” component or the core component,
depending on if it has been updated. When the buffer overflows, the buffered
data pages in the “clear” component will be evicted first. When the “clear”
component is empty, the batch replacement plans will be used.

Fig. 2. The three components for Batch Replacement Buffer Manager.

To obtain an optimal replacement plan, the most straightforward approach is
to sort all buffered data pages based on their positions in disk and then scan the
sorted page list to find the longest continuous sequence. As shown in Algorithm 1,
once we meet a continuous data page, we increase the length of the continuous
page list (Lines 7–10) and once the continuous data pages terminate, we update
the replacement plan (Line 11–13). Although simple, this baseline algorithm is
expensive, as it needs to sort and scan all buffered data pages.

Algorithm 1. Trivial Algorithm

Require: S = {p1, p2, ..., pn}, the set of all buffered pages free to evict
Ensure: P, the optimal replacement plan
1: Compute the list L by sorting pages in S in increasing order of positions in disk
2: P = ∅
3: lenP = 0
4: P ′ = {L[0]}
5: lenP′ = 1
6: for i = 1 to n − 1 do
7: if L[i − 1] → L[i] then
8: lenP′ + +
9: P ′ = P ′ ∪ {L[i]}

10: else
11: if lenP′ > lenP then
12: P = P ′

13: lenP = lenP′

14: Return P ′

240 N. Zhou et al.

3.3 Segment Tree Based Buffer Manager

To avoid sorting and scanning, we adopt a segment tree based structure that
maintains the buffered data pages that are continuous in disk1. In this way, each
insertion routine actually amortizes the time for sorting and scanning.

To amortize the overhead of sorting, we represent each set of continuous
data pages as an interval [a, b], which indicates that these data pages start at
the position a and end at the position b on disk. Note that such an interval
represents individual data pages and continuous data pages in a unified way
– the interval of an individual data page at position a on disk will be [a, a].
To avoid the overhead of scanning, we associate each interval with its interval
length, on which the priority of eviction is based. In other words, the interval
with the largest interval length will be chosen as the optimal replacement plan.

As Fig. 3 illustrates, a segment tree is a balanced binary tree of height
O(log n), using O(n) space. It can support indexing of intervals with logarith-
mic computational complexity for insertion, deletion and querying [4]. Such a
segment tree has the following 2 properties: (1) a key value is associated with
each internal node. The intervals in its left branch end with positions no more
than the key value and the intervals in its right branch start with positions
larger than the key value; (2) an interval is associated with each internal node;
it records the longest interval among all the intervals of its descendants.

For example, given the root node associated with the key value 14 and the
interval [5, 11], we know that: the interval [17, 19] must be in its right branch
because it starts at 17 which is larger than 14 (Property 1); the associated
interval [5, 11] is the longest interval in the buffer and its length is 7 (Property
2). In the figure, the interval [14, 14] actually represents an individual data page
at the position 14 on disk.

7 continuous
buffered pages

Individual
Buffered page

2 continuous
buffered pages

3 continuous
buffered pages

Fig. 3. An example segment tree, where
leaf node represents intervals and internal
node is associated with a key value and the
longest interval among its descendants.

8 continuous
buffered pages

Individual
Buffered page

2 continuous
buffered pages

3 continuous
buffered pages

Fig. 4. The example segment tree after the
page with position 12 at disk is inserted,
where the updated nodes are marked in red
(Color figure online).

The original segment tree is unable to maintain continuous data pages or
the longest interval. It is our proposed insertion algorithm that utilizes the seg-
ment tree to maintain continuous data pages and the optimal replacement plan.
1 For continence, the term “buffer manager” refers to the core component in the rest

of the paper.

An I/O-Efficient Buffer Batch Replacement Policy 241

Algorithm 2. Buffer Insert Algorithm

Require: d, the page to be inserted into the buffer
tree, the segment tree organizing buffered pages in the batch replacement

buffer manager
1: New Interval new = [d.pos, d.pos]
2: Predecessor interval p = tree.search(d.pos − 1)
3: Successor interval s = tree.search(d.pos + 1)
4: if p exists then
5: new = [p.start, d.pos]
6: tree.delete(p)
7: update longest intervals along the path from root to p
8: if s exists then
9: new = [new.start, s.end]

10: tree.delete(s)
11: update longest intervals along the path from root to s
12: tree.insert(new)
13: update longest intervals along the path from root to new

The main idea is twofold: (1) whenever a buffered data page is inserted into the
buffer manager, if its predecessor interval or successor interval exists, the inserted
data page will extend the interval to a new longer interval and (2) whenever an
interval is updated, the longest intervals on the path percolated from the root
down to the interval itself will be updated. As Algorithm 2 illustrates, if the
inserted data page d is at position d.pos on disk, its predecessor interval should
end with d.pos− 1 and its successor interval should start with d.pos+1 (Lines 2
and 3). If any one of the two intervals is found, it will be removed from the seg-
ment tree, and the intervals maintained by each internal node on the path from
the root percolating to the interval will be updated (Lines 7 and 11). Then, a
new interval combining the predecessor/successor interval and the inserted data
page will be inserted into the segment tree, and the longest intervals on the path
from the root to the new interval will also be updated (Lines 12 and 13). In this
way, an insertion involves at most two queries, two deletions and one insertion
on the segment tree. Thus its time complexity is O(log n), where n denotes the
number of intervals and is normally less than the number of buffered data pages.

For example, given the segment tree in Fig. 3, if we want to insert a page with
position 12, we first find its predecessor interval [5, 11], and combine it with the
inserted page to form the new interval [5, 12]. Since no successor interval starting
with 12+1 = 13 is found in the segment tree, only the interval [5, 11] is removed
from the tree and the new interval is inserted. The longest intervals are updated
correspondingly as marked in red in Fig. 4.

Since the segment tree maintains the longest interval at the root node, when-
ever the buffer overflows, we simply pick up the data pages corresponding to the
longest interval as the optimal replacement plan. After the eviction, we can
remove the corresponding interval and update the segment tree with amortized
and worst case time complexity of O(log n). This procedure is efficient.

242 N. Zhou et al.

Table 1. Statistics of our datasets.

Dataset # Vertex # Edges Raw size

Live Journal 4, 847, 571 68, 993, 773 2.3 GB

Friendster 65, 608, 366 1, 806, 067, 135 150 GB

LinkBench 106 ∼ 107 108 ∼ 109 5 ∼ 60 GB

4 Experiment

In this section, we report experiment results on real-world and synthetic datasets.
We demonstrate the effectiveness of our method on both database manipulation
and graph algorithm execution. We also analyze the properties of the proposed
batch replacement method.

4.1 Experimental Setting

Dataset. Two public real-world graph datasets were used, namely Live
Journal [2] and Friendster [31]. Both datasets follow power-law distribution
with parameter α ≈ 1.4, while the Friendster dataset is much larger than the
Live Journal dataset. The parameter α controls the skewness of the power-law
distribution, that is, with a small α such as 0.5, all vertices have similar num-
ber of edges, while with a large α such as 1.5, a small number of vertices have
much more edges than others. The synthetic dataset is generated by LinkBench,
the graph database benchmark published by Facebook [1]. It is able to generate
graphs with power-law distribution under varying α. The detailed statistics are
shown in Table 1.

Workload. The workloads included typical graph algorithms and database
manipulation. Following [14,17,23,35], we ran typical graph algorithms includ-
ing PageRank (PR), Single-Source Shortest Paths (SSSP), Weakly Connected
Components (WCC) and Sparse Matrix Multiplication (SMM). LinkBench also
provides a mix of insert/delete/update operations on vertices and edges as basic
graph database manipulation.

All experiments were conducted on a machine with 2.5 Ghz Intel Core 2
CPU, 8 GB of RAM and 10 TB, 15, 000 rpm hard drive. We implemented the pro-
posed batch replacement buffer manager on Neo4j2 (Neo4j-BR) and GraphChi-
DB3 (ChiDB-BR). Neo4j is a leading industry-standard graph database that
adopts LRU-based buffer manager and vertex-centric programming model, while
GraphChi-DB (ChiDB) is a research prototype that discards buffer manager
and adopts edge-centric programming model. For database manipulation, we
also report the performance of a relational database MySQL, only for the pur-
pose of reference. ChiDB also has an option to adopt log-structured merge tree

2 http://neo4j.com/.
3 https://github.com/graphchi/graphchiDB-scala.

http://neo4j.com/
https://github.com/graphchi/graphchiDB-scala

An I/O-Efficient Buffer Batch Replacement Policy 243

(ChiDB-LSM) for write-optimized database manipulation. We explicitly created
appropriate indexes for all databases during the experimental study.

4.2 Performance Comparison

In this section, we first show the effectiveness of our batch replacement buffer
manager for data manipulation and graph algorithms. Then, we show that our
approach is robust for various buffer sizes and workloads.

Figure 5 shows the average execution time for the typical graph algorithms.
The buffer size BS is set to 5% of the dataset size. We have three observations:
(1) for all graph algorithms on all datasets, the batch replacement variants of
the two graph databases outperform their original versions. This shows that our
batch replacement policy is superior to the LRU-based policy and the approach
that does not use buffer manager; (2) on both real-world datasets, ChiDB-BR
and ChiDB outperforms Neo4j-BR and Neo4j. This shows edge-centric program-
ming model is more suitable for graph algorithms on real-world datasets. The
high value of α ≈ 1.4 indicates that a few vertices may contain a huge num-
ber of edges so that data pages involved in these vertices are read and evicted
repeatedly in Neo4j and Neo4j-BR. Even though, our batch replacement policy
exhibits better performance than the LRU-based policy; (3) on the synthetic
dataset, Neo4j-BR outperforms ChiDB. This is because under α = 0.5 edges
are distributed more uniformly on vertices and thus Neo4j-BR benefit from less
buffered page eviction.

Table 2 shows the average execution time for various manipulation workload
on a small dataset (5 GB) and a large dataset (50 GB) respectively. We have the
following observations: (1) on both datasets, both Neo4j-BR and ChiDB-BR out-
perform the original databases equipped with LRU-based buffer manager or log
structure merge tree or no buffer manager; This indicates that batch replace-
ment buffer manager is more suitable for graph databases; (2) Neo4j-BR and
ChiDB-BR outperform MySQL, which shows the superiority of specialized graph
database; (3) Neo4j outperforms ChiDB on small dataset while ChiDB outper-
forms Neo4j on large dataset, revealing that LRU-based buffer management is
sensitive to the scale of dataset, while batch replacement buffer management is
more robust.

Both batch replacement buffer manager and log structured merge tree are
designed for update-intensive applications by leveraging sequential I/O. How-
ever, ChiDB-BR outperforms ChiDB-LSM in most cases. This is because LSM-
tree does not consider the optimal replacement plan. Sometimes LSM-tree’s data
accesses will be scattered across a wide range on disk, which incurs numerous
random I/Os.

Figure 6 validates the robustness of our approach on various ratios of buffer
size to data size. On Live Journal dataset, we continuously increased the buffer
size until the whole dataset was hold in main memory. The execution time
of the PageRank algorithm keeps dropping. We can see: (1) until the buffer
holds half the dataset, graph databases employing the batch replacement policy

244 N. Zhou et al.

Fig. 5. Execution Time for Graph Algorithms on Three Datasets, where the synthetic
dataset contains 106 vertices and 108 edges with α = 0.5. BS = 5 % of dataset size.

always outperform their counterparts; therefore, our approach can exploit avail-
able main memory efficiently; (2) when the buffer holds the whole dataset and
buffer replacement is no longer needed, our approach consumes 1% less execu-
tion time than their counterparts; this shows that our method for identifying
optimal replacement plans is efficient.

Figure 7 shows the query performance on the Friendster dataset for typical
read-only workloads, including retrieval of a specific vertex/edge and a traversal-
heavy Friends-of-Friends (FoF) query. The FoF query is defined to find all vertices
which can reach a specific vertex via any proxy vertex. We can see that although
maintaining intervals of continuous buffered pages is of no use since there is no
replacement for dirty pages, the overhead is still low. Therefore, although our batch
replacement buffer manager is designed for update-intensive applications, its per-
formance is acceptable for read-only applications as well.

4.3 Property of Batch Replacement

In this section, we evaluate the effectiveness of our batch replacement policy in
terms of I/O and the computational overhead.

Figure 8 plots the ratios of random I/O to all disk I/O for the workloads of
PageRank, node insertion and FoF query respectively, which represent typical
workloads of graph algorithm, database manipulation and read-only query. We
can observe that both Neo4j-BR and ChiDB-BR used the least random I/O

An I/O-Efficient Buffer Batch Replacement Policy 245

Table 2. Execution Time (ms) for Graph Database Manipulation on Synthetic Dataset
with α = 1.5 and BS = 5 GB.

Data size Operation ChiDB-BR ChiDB ChiDB-LSM Neo4j-BR Neo4j MySQL

106 vertices, 108 edges node insert 0.09 12.9 0.10 0.08 0.13 0.11

node delete 0.10 16.7 0.14 0.07 0.12 0.17

node update 0.12 19.1 0.16 0.09 0.13 0.21

edge insert 0.15 24.6 0.17 0.09 0.19 0.25

edge delete 0.15 26.3 0.19 0.12 0.19 0.34

edge update 0.19 29.5 0.22 0.14 0.22 0.41

107 vertices, 109 edges node insert 31 94 37 36 259 42

node delete 33 105 41 39 268 45

node update 34 116 46 41 280 49

edge insert 42 136 55 47 295 64

edge delete 48 152 63 57 323 69

edge update 51 159 67 62 344 73

Fig. 6. Effect of RAM size
on Live Journal.

Fig. 7. Query Time on
Friendst., BS=2GB.

Fig. 8. Ratio of Random
I/O access on Friendster
dataset.

access. Therefore, it is not surprising their execution time is the shortest in
aforementioned experiments. Figure 9 depicts the distribution of buffered inter-
val lengths when running the PageRank Algorithm on the Friendster dataset.
We can see that on most datasets there are sufficient segments of continuous
buffered data pages. Therefore, it is always possible for our batch replacement
buffer manager to exploit sequential I/Os. The distribution of random I/O and
interval lengths for other graph algorithms and data manipulation are similar to
Figs. 8 and 9.

Fig. 9. Interval Length
Distribution for Page
Rank.

Fig. 10. CPU Time for
Replacement Plan.

Fig. 11. Memory Over-
head.

246 N. Zhou et al.

Figure 10 shows the average execution time for each batch replacement using
our segment tree based solution (Tree) and the trivial sort-based algorithm (Sort,
Algorithm 1) on the Friendster dataset for the PageRank Algorithm. We can see
that as the buffer size increases, our segment tree based solution outperforms
the trivial sort-based solution significantly. Figure 11 shows the additional mem-
ory consumption for maintaining the segment tree of continuous pages on the
Friendster dataset for the PageRank Algorithm. We can see that the segment
tree only consumes less than 1% of the buffer size. Note that the computational
and memory overhead are normally only influenced by buffer size, rather than
the variation of workloads and datasets.

5 Conclusion

In this paper, we propose a novel approach to batch replacement buffer man-
agement for graph databases. Taking the specific data organization and vertex-
centric or edge-centric programming models into consideration, the proposed
method enables graph databases to make the best of sequential I/O. In addition
to a sort-based trivial solution to find optimal replacement plan, we propose a
segment tree based buffer structure to efficiently maintain optimal replacement
plans. Extensive experiments on real-world and synthetic datasets show that
our approach significantly improve the performance of existing graph databases
and outperforms the LRU-based approaches and a recently proposed no-buffer
approach. The experiment results also show that our approach incurs minimum
computational and memory overhead and therefore is practical for real-world
applications.

Acknowledgement. This work is partially funded by China Scholarship Council.
Xuan Zhou’s research is supported by the National High-tech R&D Program (863
Program) (2015AA015307) and the NSFC Porject (No. 61272138). Ling Liu’s research
is partially supported by the National Science Foundation under Grants IIS-0905493,
CNS-1115375, IIP-1230740 and a grant from Intel ISTC on Cloud Computing.

References

1. Armstrong, T.G., Ponnekanti, V., Borthakur, D., Callaghan, M.: Linkbench: a
database benchmark based on the facebook social graph. In: SIGMOD 2013, pp.
1185–1196

2. Backstrom, L., Huttenlocher, D., Kleinberg, J., Lan, X.: Group formation in large
social networks: membership, growth, and evolution. In: KDD 2006, pp. 44–54

3. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious b-trees. SIAM
J. Comput. 35(2), 341–358 (2005)

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer-Verlag TELOS, Heidelberg
(2008)

An I/O-Efficient Buffer Batch Replacement Policy 247

5. Bornea, M.A., Dolby, J., Kementsietsidis, A., Srinivas, K., Dantressangle, P.,
Udrea, O., Bhattacharjee, V.: Buildingan efficient RDF store over a relational
database. In: SIGMOD 2013, pp. 121–132

6. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Comput. Netw. 30(1–7), 107–117 (1998)

7. Effelsberg, W., Haerder, T.: Principles of database buffer management. ACM
Trans. Database Syst. 9(4), 560–595 (1984)

8. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: graph processing in a distributed dataflow framework. In: OSDI 2014, pp.
599–613

9. Neo4j graph database. http://neo4j.com/
10. Titan graph database. http://thinkaurelius.github.io/titan/
11. Han, J., Wen, J.-R.: Mining frequent neighborhood patterns in a large labeled

graph. In: CIKM 2013, pp. 259–268
12. Han, J., Wen, J.-R., Pei, J.: Within-network classification using radius-constrained

neighborhood patterns. In: CIKM 2014, pp. 1539–1548
13. Han, W.-S., Lee, S., Park, K., Lee, J.-H., Kim, M.-S., Kim, J., Yu, V.: Turbograph:

a fast parallel graph engine handlingbillion-scale graphs in a single PC. In: KDD
2013, pp. 77–85

14. Kyrola, A., Blelloch, G., Guestrin, C.: Graphchi: large-scale graphcomputation on
just a PC. In: Proceedings of the 10th USENIX Conference on Operating Systems
Design and Implementation, OSDI 2012, pp. 31–46

15. Twitter Developer: Get Friends List. https://dev.twitter.com/rest/reference/get/
friends/list

16. Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A., Hellerstein, J.M.:
Distributed graphlab: a framework for machine learning and data mining in the
cloud. In: PVLDB 2012

17. Macko, P., Marathe, V.J., Margo, D.W., Seltzer, M.I.: LLAMA: efficient graph
analytics using large multiversioned arrays. In: ICDE 2015, pp. 363–374

18. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N.,
Czajkowski, G.: Pregel: a system for large-scalegraph processing. In: SIGMOD
2010, pp. 135–146

19. Mart́ınez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Nin, J., Sánchez-
Mart́ınez, M.-A., Larriba-Pey, J.-L.: Dex: high-performance exploration on large
graphs for information retrieval. In: CIKM 2007, pp. 573–582

20. O’Neil, E.J., O’Neil, P.E., Weikum, G.: An optimality proof of the LRU-K page
replacement algorithm. J. ACM 46(1), 92–112 (1999)

21. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured merge-tree (LSM-
tree). Acta Inf. 33(4), 351–385 (1996)

22. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc.,
Sebastopol (2013)

23. Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel, W.: Chaos: scale-out graph
processing from secondary storage. In: SOSP 2015, pp. 472–488

24. Roy, A., Mihailovic, I., Zwaenepoel, W.: X-stream: edge-centricgraph processing
using streaming partitions. In: SOSP 2013, pp. 472–488

25. Rudolf, M., Paradies, M., Bornhövd, C., Lehner, W.: The graph story of the SAP
HANA database. In: BTW 2013, pp. 403–420

26. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajec-
tory search for trip recommendation. In: EDBT 2012, pp. 156–167

27. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized
trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

http://neo4j.com/
http://thinkaurelius.github.io/titan/
https://dev.twitter.com/rest/reference/get/friends/list
https://dev.twitter.com/rest/reference/get/friends/list

248 N. Zhou et al.

28. Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: Pnn query processing
on compressed trajectories. Geoinformatica 16(3), 467–496 (2012)

29. Shao, B., Wang, H., Xiao, Y.: Managing and mining large graphs: systems and
implementations. In: SIGMOD 2012, pp. 589–592

30. Xia, Y., Tanase, I.G., Nai, L., Tan, W., Liu, Y., Crawford, J., Lin, C.-Y.: Graph
analytics and storage. In: IEEE Big Data 2014, pp. 942–951

31. Peters, J.F.: In: Peters, J.F. (ed.). ISRL, vol. 63, pp. 1–76. Springer, Heidelberg
(2014)

32. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for
web scale RDF data. In: PVLDB 2013, pp. 265–276

33. Zhou, C., Gao, J., Sun, B., Yu, J.X.: MOCgraph: scalable distributed graph
processing using message online computing, pp. 377–388

34. Zhou, Y., Liu, L., Lee, K., Zhang, Q.: GraphTwist: fast iterative graph computation
with two-tier optimizations. In: PVLDB 2015, pp. 1262–1273

35. Zhu, X., Han, W., Chen, W.: Gridgraph: large-scale graph processing on a single
machine using 2-level hierarchical partitioning. In: USENIXATC 2015, pp. 375–386

Parallelizing Maximal Clique Enumeration
Over Graph Data

Qun Chen1(B), Chao Fang1, Zhuo Wang1, Bo Suo1,
Zhanhuai Li1, and Zachary G. Ives2

1 School of Computing, Northwestern Polytechnical University, Xi’an, China
{chenbenben,cfang.mail,zuow.mail,bsuo.mail,lizhh}@nwpu.edu.cn

2 Department of Computer and Information Systems, University of Pennsylvania,
Philadelphia, PA, USA
zives@cis.upenn.edu

Abstract. In a wide variety of emerging data-intensive applications,
such as social network analysis, Web document clustering, entity resolu-
tion, and detection of consistently co-expressed genes in systems biology,
the detection of dense subgraphs (cliques) is an essential component.
Unfortunately, this problem is NP-Complete and thus computationally
intensive at scale — hence there is a need to come up with techniques
for distributing the computation across multiple machines such that the
computation, which is too time-consuming on a single machine, can be
efficiently performed on a machine cluster given that it is large enough.

In this paper, we first propose a new approach for maximal clique enu-
meration, which identifies cliques by recursive graph partitioning. Given
a connected graph G = (V,E), it has a space complexity of O(|E|) and a
time complexity of O(|E|µ(G)), where µ(G) represents the number of dif-
ferent cliques existing in G. It recursively divides a graph until each task
is sufficiently small to be processed in parallel. We then develop parallel
solutions anddemonstrate howgraphpartitioning can enable effective load
balancing. Finally, we evaluate the performance of the proposed approach
on real and synthetic graph data and show that it performs considerably
better than existing approaches in both centralized and parallel settings.
Our parallel algorithms are implemented and evaluated on MapReduce,
a popular shared-nothing parallel framework, but can easily generalize to
other shared-nothing or shared-memory parallel frameworks.

Keywords: Maximal clique enumeration · Parallel graph processing ·
Mapreduce

1 Introduction

A variety of emerging applications are focused on computations over data mod-
eled as a graph: examples include finding groups of actors or communities
in social networks [21,30], Web mining [24], entity resolution [4], graph min-
ing [19,35], and detection of consistently co-expressed gene groups in systems
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 249–264, 2016.
DOI: 10.1007/978-3-319-32049-6 16

250 Q. Chen et al.

biology [13]. For the problems just cited, as well as a number of others, a critical
component of the analysis is the detection of cliques (fully connected compo-
nents) in the structure of the network graph. For instance, for entity resolution,
each clique may represent a block of entities that might be merged.

Maximal clique enumeration is NP-Complete. Hence a great deal of effort has
been spent on efficient search algorithms [5,9–12,32]. Most of existing algorithms
for maximal clique enumeration are based on the classical algorithm proposed
by Bron and Kerbosch (BK) [5], which uses a backtracking technique to explore
search space and limits the size of its search space by remembering the search
paths it has already visited. A variant [11] of the BK algorithm also provides
a worst-case-optimal solution. In practice, the BK algorithm has been widely
reported as being faster than its alternatives [8,13].

Data-intensive applications usually require clique detection to be operated over
large graphs, hence there is a need to parallelize it on a sufficiently large machine
cluster. There have been a variety of proposals that divide the graph into smaller
subcomponents and exploit parallelism to improve performance [15,22,23,33,34].
Theyhavebeenempirically shownto speedcomputation inmassivenetworks.How-
ever, built on classical sequential algorithms, the performance of existing parallel
approaches is limited by how evenly the graph is partitioned. (In fact, as we show in
Sect. 5.2, their performance is quite sensitive to particular graph characteristics.)

This paper presents a new approach for maximal clique enumeration. It com-
putes maximal cliques by recursive graph partitioning. Versus prior work in this
area, its key insight is to exploit iterative decomposition during the computation.
It recursively divides a graph until each task is sufficiently small to be processed
in parallel. As a result, its computation can be effectively parallelized across a
machine cluster such that the computation, which may be too time-consuming
on a single machine, can be efficiently performed in parallel.

Two common parallel frameworks for graph data processing are the MapRe-
duce model [1] and the Bulk Synchronous Parallel (BSP) model [14]. The under-
lying computation models of MapReduce and BSP are essentially isomorphic.
Our proposed approach is based on iterative data processing and can work with
both MapReduce and BSP platforms. In this paper, we choose MapReduce for
parallel evaluation due to the maturity and wide availability of its implementa-
tions. However, the implementation can easily generalize to other shared-nothing
or shared-memory parallel architectures, such as BSP and MPI. The major con-
tributions of this paper are summarized as follows:

1. We propose a novel and efficient approach for maximal clique enumeration.
Given a connected graph G = (V,E), it has a space complexity of O(|E|)
and a time complexity of O(|E|µ(G)), where µ(G) represents the number of
different cliques existing in G.

2. We develop a parallel solution to maximal clique enumeration by parallelizing
the proposed algorithms and implementing the corresponding parallel algo-
rithms based on MapReduce. By using graph partitioning to divide the tasks,
the proposed solution can effectively parallelize maximal clique computation
with improved load balancing.

Parallelizing Maximal Clique Enumeration Over Graph Data 251

3. We experimentally evaluate the performance of our proposed approach over
a wide variety of graph data available in open-source. Our extensive exper-
iments demonstrate that it performs considerably better than existing tech-
niques in both centralized and parallel settings.

The rest of this paper is organized as follows: Sect. 2 provides the background
information and the description of the existing techniques. Section 3 presents our
new sequential algorithm for maximal clique enumeration. Section 4 presents our
parallel solution to maximal clique enumeration and its MapReduce implementa-
tion. Section 5 empirically evaluates the performance of our approach on real and
synthetic datasets. Section 6 discusses related work. Finally, Sect. 7 concludes this
paper.

2 Preliminaries

2.1 Definition: Clique and Maximal Clique

A clique is a subgraph in which every pair of vertices is connected by an edge.
The definition of a maximal clique is as follows:

Definition 1. A maximal clique in a graph G is a clique not contained by any
other clique in G.

The problem of maximal clique enumeration refers to identifying all the max-
imal cliques in a given graph G. Since each connected component in G can be
processed independently, we assume that G is a connected graph in this paper.

2.2 Background: MapReduce

The MapReduce model processes distributed data across many nodes via three
basic phases. In the Map phase, it takes an input and produces a list of interme-
diate key/value pairs without communication between nodes. Next, the Shuffle
phase repartitions these intermediate pairs according to their keys across nodes.
Finally, the Reduce phase aggregates the intermediate pairs it receives to pro-
duce final results. This process can be repeated by invoking an arbitrary number
of additional Map-Shuffle-Reduce cycles as necessary.

In this paper, we use Hadoop for parallel evaluation and develop a MapRe-
duce implementation for our approach, in which recursive graph partitioning is
programmed in a Reduce phase. If implemented on BSP platforms, it can be
similarly programmed in a superstep. Detailed implementation of our approach
on BSP platforms is however beyond the scope of this paper.

2.3 Existing Parallel Solutions

The typical parallel approaches [22,23,33] enumerate maximal cliques for different
vertices in a graph in parallel. In this subsection, we describe the idea behind the
typical parallel approach for maximal clique enumeration based on MapReduce.

252 Q. Chen et al.

Given a graph G and a vertex v in G, the maximal cliques of the vertex v
refer to the maximal cliques containing v in G. Note that a vertex v’s maximal
cliques are the induced subgraphs consisting of v and its neighboring vertices
in G. The parallel search consists of two steps. In the first one, the parallel
approach retrieves each vertex’s neighboring information relevant to its clique
computation. In the second step, it searches for each vertex’s maximal cliques
in parallel. For the computation on an individual vertex, it simply adopts the
classical sequential algorithms (e.g., the BK algorithm).

In the typical approach, enumerating the maximal cliques of a vertex is sup-
posed to be performed on a single machine. In case that the computation on an
individual vertex is extremely time-consuming due to the large number of max-
imal cliques (as we will show in Sect. 5), it may become a parallel performance
bottleneck. The method proposed in [23] can parallelize maximal clique enumera-
tion on an individual vertex. It uses candidate path data structures to record the
search progress such that any search subtree can be traversed independently. It
achieves better load balancing by allowing a computing node to steal some tasks
from others when becoming almost idle. The proposed load balancing technique
was implemented by MPI, but can easily generalize to other shared-nothing par-
allel frameworks such as MapReduce. However, as we will show in Sect. 5, its
parallel efficiency may still be limited by unevenness of search subtree sizes.

3 Sequential Solution

3.1 Idea: Graph Partitioning

We illustrate the idea behind the new sequential algorithm by an example as
shown in Fig. 1. As usual, we search for maximal cliques in a graph G by itera-
tively computing v’s maximal cliques for every vertex v in G. Therefore, we focus
on the general problem of identifying the maximal cliques containing a specific
vertex v in G.

Suppose that Gv represents the induced subgraph of G consisting of v and its
neighboring vertices. Obviously, the maximal cliques of the vertex v are contained
by Gv. The challenge is how to identify maximal cliques in Gv if Gv is not a
clique. We illustrate the underlying idea by the induced example subgraph G4

shown in Fig. 1(a), which consists of Vertex 4 and its neighboring vertices (i.e.,

Fig. 1. A Graph Partitioning Example

Parallelizing Maximal Clique Enumeration Over Graph Data 253

the vertices {4,3,5,6,7,8}). We randomly choose another vertex in G4, e.g., Vertex
7, as the partitioning anchor and partition G4 into two parts G+

7 and G−
7 . G+

7

denotes the induced subgraph consisting of Vertex 7 and its neighboring vertices
in G4, {4,6,7,8}. G−

7 denotes the induced subgraph of G4 consisting of all the
vertices not in G+

7 , {3,5}, and their neighboring vertices in G4, {4,6,8}). The
subgraphs G+

7 and G−
7 are shown in Fig. 1(b) and (c) respectively. We observe

that any maximal clique of G4 is an induced subgraph of either G+
7 or G−

7 .
Generally, we have the following theorem:

Theorem 1. Given a graph Gv consisting of vertex v and its neighboring ver-
tices and a vertex u in Gv, we partition Gv into two subgraphs, G+

u and G−
u ,

in which G+
u is the induced subgraph consisting of vertex u and its neighboring

vertices and G−
u is the induced subgraph consisting of all the vertices not in Gu

and their neighboring vertices. Then, any maximal clique of Gv is an induced
subgraph of either G+

u or G−
u .

Proof. If a maximal clique contains the vertex u, it should be an induced sub-
graph of G+

u . Otherwise, it should contain at least one vertex not in G+
u . Suppose

that it is the vertex w. As a result, the maximal clique is an induced subgraph
of Gw, which consists of vertex w and its neighboring vertices. According to the
definition of G−

u , Gw is obviously an induced subgraph of G−
u . Therefore, the

maximal clique is an induced subgraph of G−
u .

According to Theorem 1, maximal clique detection in Gv can be performed by
searching for the maximal cliques in G+

u and G−
u independently. The partitioning

operation can be recursively invoked until all the resulting subgraphs become
cliques. Obviously, all the maximal cliques in the original graph Gv are contained
in the set of the resulting cliques. Unfortunately, a resulting clique generated by
the above process cannot be guaranteed to be maximal. Therefore, enumeration
algorithms should filter out those which are not maximal.

3.2 Sequential Algorithm

The algorithm, as shown in Algorithm1, enumerates maximal cliques by recur-
sively partitioning a graph. The function employs three sets of vertices to record
the partitioning progress and prune the subtrees that can not generate maximal
cliques:

– (anchor set) A set of vertices that have been selected as partitioning anchors
and should be contained by the resulting cliques;

– (cand set) A set of candidate vertices that can serve as partitioning anchors
in the following operations;

– (not set) A set of vertices that are connected to every vertex in the anchor set
but could not produce new maximal cliques if combined with the vertices in
the anchor set.

254 Q. Chen et al.

Algorithm 1. enumerateClique(anchor,cand,not)
1: if (G(cand) is a clique) then
2: Output the clique G(anchor∪cand);
3: else
4: while (G(cand) is NOT a clique) do
5: Choose a vertex v with the smallest degree in G(cand);
6: anchor+=anchor ∪ {v};
7: cand+=cand ∩ N(v);
8: not+=not ∩ N(v);
9: if (�u ∈ not+:u is connected to all the vertices in cand+) then

10: enumerateClique(anchor+,cand+,not+);
11: end if
12: cand=cand − {v};
13: not=not ∪ {v};
14: end while
15: if (�u ∈ not:u is connected to all the vertices in cand) then
16: Output the clique G(anchor∪cand);
17: end if
18: end if

Given a connected graph G=(V,E), initially, anchor=∅, cand=V , and
not=∅. We denote the induced subgraph consisting of a set of vertices Vi in
G by G(Vi). The recursive function first checks whether the resulting subgraph
is a clique (Line 1). If yes, it simply outputs the subgraph. Otherwise, it chooses
a vertex v with the smallest degree in cand as the partitioning anchor and par-
titions G(cand) into G(cand+) and G(cand−). G(cand+) consists of v and its
neighboring vertices in G(cand) (Line 6–8). G(cand−) consists of all the vertices
in G(cand) except v (Line 12–13). The algorithm recursively processes the sub-
graph G(cand+) (Line 9–11). Note that before the recursive function is invoked,
the algorithm prunes the search space by inspecting whether there exists a vertex
in the current not+ set that is connected to all the vertices in the current cand+

set (Line 9). Updating G(cand) with G(cand−) (Line 12–13), it then iteratively
invokes the partition operation to search for the maximal cliques in G(cand−)
until G(cand−) becomes a clique (Lines 4–14). After G(cand−) becomes a clique,
the algorithm checks whether it is maximal (Line 15–17).

Note that Algorithm 1 always chooses the vertex v with the smallest degree
in G(cand) as the partitioning anchor. It can be observed that this strategy
would result in a relatively small graph G(cand+) and a large one G(cand−).
Generally, G(cand+) would be partitioned into cliques after only a few iterations
because of its small size. At the same time, the size of the other graph G(cand−)
would be effectively reduced as a result of iterative partitioning.

We have Theorems 2 and 3, whose proof can be found in our technical report
[28] due to space limit. Note that in Theorem3, different cliques include both the
maximal cliques and the non-maximal cliques contained by the maximal cliques.

Theorem 2. Algorithm1 exactly returns all the maximal cliques in G.

Parallelizing Maximal Clique Enumeration Over Graph Data 255

Theorem 3. Given a connected graph G=(V,E), Algorithm1 has the space
complexity of O(|E|) and the time complexity of O(|E|µ(G)), in which µ(G)
represents the number of different cliques in G.

4 Parallel Solution

In this section, we first present the parallel solution for maximal clique enu-
meration based on recursive graph partitioning and then briefly describe its
MapReduce implementation.

4.1 Parallel Algorithm

The parallel algorithm consists of two phases. In the first phase, for every vertex
v in the graph G, it retrieves an induced subgraph of G whose vertices are
relevant to the computation of v’s maximal cliques. In the second phase, it
performs recursive graph partitioning on every vertex. Both subgraph retrieval
and clique computation on individual vertices are distributed across multiple
computing nodes.

The algorithm performs the computation on every vertex by Algorithm1.
Unfortunately, computational cost on individual vertices may be unbalanced.
The computations on some vertices may be more expensive than on others
because they have larger partitioning traversal trees. In case that the compu-
tation on a vertex is too time-consuming, it becomes a parallel performance
bottleneck. A good property of our proposed approach is that it enables easy
and effective load balancing. Since the resulting subgraphs G+

u and G−
u after

partitioning Gv are independent, the computation on the vertex v can be easily
parallelized. In practice, recursive functions usually take only a few iterations
(no more than 5–6 iterations in our experiments in Sect. 5.2) to transform a big
Gv into many sufficiently small subgraphs. With sufficiently small tasks, effective
load balancing can be achieved by sending some tasks on the computing nodes
with heavy workload to others with lighter one.

Generally, workload can be balanced across computing nodes by repeatedly
invoking the compute-shuffle cycle. In the compute phase, every computing node
performs partitioning operations on the graphs it has received; in the shuffle
phase, all the non-clique graphs on the nodes are reshuffled so that every node
receives roughly the same number of unfinished graphs. The workload limit of
each compute phase can be quantified by the number of partitioning operations
executed or CPU time consumed.

In summary, the parallel algorithm for maximal clique enumeration with load
balancing consists of the following two phases:

1. Subgraph Retrieval: For every vertex v in the graph G, retrieve the induced
graph Gv whose vertices are relevant to v’s maximal clique computations in
parallel;

256 Q. Chen et al.

2. Iterative Computation:
– compute phase: For each computing node, compute maximal cliques of

the graphs assigned to it by recursive graph partitioning;
– shuffle phase: Evenly reshuffle all the unfinished graphs across the nodes;

4.2 MapReduce Implementation

Based on the observation that non-trivial cliques consist of triangles, we propose
to use the technique of triangle enumeration proposed in [12], which is more
efficient than 2-hop retrieval, to implement the process of subgraph retrieval.
In the rest of this subsection, we briefly describe the implementation details of
iterative clique computation performed by reducers.

Suppose that the initial induced Gvi
subgraphs (for each vi in G) are main-

tained by a queue Qc. The process of maximal clique computation in the Reduce
phase is sketched in Algorithm 2. It dequeues a Gu subgraph from Qc and itera-
tively partitions it in a depth-first manner. If the resulting G+

w has a small size,
which means that its maximal clique computation can be finished in short time,
it is recursively partitioned to the end (Lines 6–8). Otherwise, it is temporarily
enqueued into Qc if it is not a clique (Line 13). It then continues to partition G−

w

in the same manner as Gu (Line 17). Each subgraph in the queue is represented
by its anchor, cand and not sets. A Reducer iteratively dequeues a subgraph
from Qc and processes it until Qc becomes empty or it reaches the predefined
workload limit. Finally, it writes all the left subgraphs in Qc (if any) to disk.
A new MapReduce cycle is then iteratively triggered to process the unfinished
subgraphs. For more details on the MapReduce implementation, please refer to
our technical report [28].

5 Experimental Evaluation

We empirically evaluate the performance of our new approach, denoted by GP,
by a comparative study. We compare our approach with a variant of the BK
algorithm proposed in [11], which employs the same pruning methods as BK
but has been reported to be faster than BK. The typical parallel BK approach
confines the computation on an individual vertex to a computing node. We
also compare the GP approach with the parallel BK approach enhanced with
the dynamic load balancing technique (denoted by BK-L), which was proposed
in [23]. It was implemented by MPI in [23]. We have instead implemented a
MapReduce version. Each reducer is set to have a predefined workload limit.
After every reducer reaches its workload limit, the unfinished subgraphs are
evenly redistributed across computing nodes.

Our experiments are conducted on both real and synthetic graph datasets.
The details of the real and synthetic graph datasets are summarized in Table 1.
The evaluation on real datasets can show the efficiency of the proposed algo-
rithms in real applications while the evaluation on synthetic datasets can clearly
demonstrate their sensitivity to varying graph characteristics. The real graph

Parallelizing Maximal Clique Enumeration Over Graph Data 257

Algorithm 2. Maximal Clique Computation in Reducer
Input: A queue of unfinished subgraphs Qc;
1: while (Qc is not empty) and (workload limit is not reached) do
2: Dequeue a subgraph Gu from Qc;
3: while (Gu is not a clique) and (workload limit is not reached) do
4: Choose the vertex w with the minimal degree in Gu as the anchor;
5: Partition Gu into G+

w and G−
w ;

6: if |cand(G+
w)| ≤ k then

7: Recursively partition G+
w using Algorithm 1 to the end;

8: else
9: if G+

w can not be pruned then
10: if G+

w is a clique then
11: Output G+

w;
12: else
13: Enqueue G+

w into Qc;
14: end if
15: end if
16: end if
17: Gu=G−

w ;
18: end while
19: if Gu can not be pruned then
20: if Gu is a clique then
21: Output Gu;
22: else
23: Enqueue Gu into Qc;
24: end if
25: end if
26: end while

data are selected from [2], which are in various domains including email com-
munication networks, social networks, web graphs and Wiki communication
networks. The synthetic datasets are generated by the SSCA#2 generator
and the power-law generator R-MAT from the popular graph generator suite
GTgraph [7]. A SSCA#2 graph is directed, and made up of random-sized cliques,
with a hierarchical inter-clique distribution of edges based on a distance met-
ric. We vary the values of the TotVertices and MaxCliqueSize parameters, which
specify the number of vertices and the size of the maximum clique respectively.
The R-MAT generator applies the Recursive Matrix (R-MAT) graph model to
produce the graphs with power-law degree distributions and small-world char-
acteristics, which are common in many real life graphs. We vary two parameter
values, the number of vertices and the number of edges.

The experiments are executed on a ten-machine cluster. Each machine runs
the Ubuntu Linux (version 10.04), has a memory size of 16 G, disk storage of
160 G and four Intel Xeon E5502 CPUs with the frequency of 1.87 GHz. The eval-
uation of sequential algorithms is conducted on a JVM (Java Virtual Machine)
running on a machine. In case that processing the entire graphs listed in Table 1

258 Q. Chen et al.

Table 1. Details of the Real and Synthetic Graph Datasets

Dataset Data Description Number of Vertexes Number of Edges

D1 Email Network from a EU
Research Institution

265,214 364,481

D2 Web graph from Google 875,713 4,322,051

D3 Web graph of Berkeley and
Stanford

685,230 7,600,595

D4 Wikipedia communication
network

1,928,669 3,494,674

D5 Pokec online social network 1,632,803 30,622,564

D6 Social circles from Twitter 11,316,811 85,331,846

R-MAT Synthetic graphs with
power-law degree
distributions and
small-world characteristics

Two parameters used: the number of
vertices and the ratio of edges to
vertices

SSCA#2 Synthetic graphs with a
hierarchical inter-clique
distribution of edges based
on a distance metric

Two parameters used: the number of
vertices and the size of maximum
clique

is beyond the capability of a single machine or even the ten-machine cluster (e.g.,
maximal clique enumeration over the Twitter dataset), we randomly select some
vertices [18] and compute their maximal cliques over the entire graphs.

5.1 Evaluation of Sequential Algorithms

In this subsection, we evaluate the performance of the sequential algorithm on
both real and synthetic graphs. The performance is evaluated on two metrics,
the size of search tree and the runtime. For fair comparison, in the BK algo-
rithm, search tree size corresponds to the total number of extracted subgraphs,
whose set of vertices should be computed; it corresponds to the total number of
extracted G+

u subgraphs and G−
u cliques in the GP algorithm. While the runtime

of an algorithm depends on its implementation details, search tree size accurately
measures search space and is independent of algorithmic implementations.

The evaluation results on the real graphs (D1-D5) are presented in Fig. 2(a)
and (b). Note that running the dataset D6 is beyond the capability of a single
computing node. Therefore, they will be used later for parallel evaluation. It can
be observed that on search tree size, the GP algorithm consistently outperforms
the BK algorithm by big margins. Compared with BK, GP uses a more aggres-
sive strategy to filter out unnecessary trees. However, the filtering operation
by the not set consumes extra time. Additionally, GP has to update G(cand)
and transform it into G(cand−). As a result, GP usually takes more time per

Parallelizing Maximal Clique Enumeration Over Graph Data 259

D1 D2 D3 D4 D5
0
5

10
15
20
25
30
35

Se
ar
ch

Tr
ee

Si
ze

(M
illi
on

s) BK
GP

(a) Real Graphs

D1 D2 D3 D4 D5
0

1000

2000

3000

4000

5000

R
un

tim
e
(s
)

BK
GP

(b) Real Graphs

10 20 30 40 50

0

5

10

15

20

Se
ra
ch

Tr
ee

Si
ze

(M
illi
on

s)

Edge/Vertext Ratio

BK
GP

(c) R-MAT Graphs

10 20 30 40 50
0

10
20
30
40
50
60
70
80

R
un

tim
e
(1
00

s)

Edge/Vertex Ratio

BK
GP

(d) R-MAT Graphs

20 40 60 80 100
0

4

8

12

16

20

24

Se
ar
ch

Tr
ee

Si
ze

(M
illi
on

s)

MaxCliqueSize

BK
GP

(e) SSCA Graphs

20 40 60 80 100

0

100

200

300

400

500

600

R
un

tim
e
(1
0s

)

MaxCliqueSize

BK
GP

(f) SSCA Graphs

Fig. 2. Evaluation of sequential algorithms for maximal clique enumeration: GP per-
forms considerably better than BK.

traversal than BK. Correspondingly, GP still performs better than BK but the
margins tend to become smaller.

We also evaluate their performance on synthetic graphs to investigate how
their performance vary with different graph characteristics and densities. For R-
MAT graphs, the number of vertices is set to be 1 million and the edge-to-vertex
ratio varies from 10 to 50. The results are shown in Fig. 2(c) and (d). Similar to
what were observed on real graphs, GP outperforms BK on both search space
size and runtime. It is interesting to observe that the performance gap between

260 Q. Chen et al.

BK and GP steadily increases with graph density. The evaluation results on the
SSCA graphs are also shown in Fig. 2(e) and (f). We set the number of vertices to
be 220 and vary the size of the maximum clique from 20 to 100. It can be observed
that compared with the results on real and R-MAT graphs, GP outperforms BK
by the largest margins on the SSCA graphs. The SSCA graphs have larger-
sized maximal cliques. As a result, GP is able to achieve bigger save on search
space size. Similar to what were observed on R-MAT graphs, the performance
advantage of GP steadily increases with the sizes of maximal cliques.

Our experiments show that the sequential GP algorithm performs consid-
erably better than the BK algorithm and its performance advantage tends to
increase with graph density and the sizes of maximal cliques.

5.2 Evaluation of Parallel Solution

In this subsection, we compare the GP approach against the BK and BK-L
approaches. Since all the parallel approaches use the same method of subgraph
retrieval, we exclude its cost from performance evaluation in our comparative
study. We use triangle enumeration to implement subgraph retrieval. We specify
the parameter k in Algorithm 2 by the number of vertices contained by a graph.
It is set to be 50. The maximal execution time per Reduce phase is set to be
300 s. The parameter k and the workload limit of execution time per Reduce
phase are similarly set for the BK-L approach.

Since the real graphs (D1-D5) in Table 1 can be efficiently processed on a
single worker, we do not evaluate the performance of parallel approaches on
them. On SSCA graphs, even the BK approach manages to evenly distribute the
workload across workers. As a result, the parallel evaluation results on SSCA
graphs are similar to what were observed in sequential evaluation. We do not
present their results here either. Also note that processing the entire graph of the
Twitter dataset (D6) takes too long on our ten-machine cluster. We therefore
generate 5 random test tasks, denoted by D1

6,. . .,D
5
6, by randomly choosing 1 %

of the vertices in the graph and enumerating their maximal cliques over the
entire graph. The tested sets include both the vertices with large degrees and
the vertices with small degrees. The observations coming from the experiments
can be applied to the entire graphs.

The comparative results on the Twitter and R-MAT graphs are presented in
Fig. 3(a)-(d). On the Twitter graph, Fig. 3(a) shows that the typical BK app-
roach performs very poorly in some cases (e.g., D2

6 and D3
6). It can not finish

computation within the 3-hour runtime limit. Closer scrutiny reveals that there
exist some vertices heavily connected to other vertices in these graphs. The
maximal clique computation on these vertices are extremely expensive and thus
become parallel performance bottleneck if without dynamic load balancing. The
experiments show that both the BK-L and GP approaches can effectively break
the performance bottleneck by redistributing the computation on an individ-
ual vertex across multiple computing nodes. For instance on D2

6, both of them
reduce the runtime to less than 1 hour. However, it can be observed that the

Parallelizing Maximal Clique Enumeration Over Graph Data 261

0

25

50

75

100

D5
6D4

6D3
6D2

6

R
un

tim
e
(1
00

s)

BK
BK-L
GP

>3h >3h

D1
6

(a) Clique on D6: Runtime

0

2

4

6

8

10

12

D5
6D4

6
D2

6 D3
6

D1
6

C
yc

le
s

BK-L
GP

(b) Clique on D6: Cycles

100 110 120 130 140
0

5

10

15

20

25

30

R
un

tim
e
(1
00

s)

BK
BK-L
GP

(c) Clique on R-MAT: Runtime

100 110 120 130 140
0

1

2

3

4

C
yc

le
s

BK-L
GP

(d) Clique onD6: Cycles

Fig. 3. Parallel evaluation: (1) the BK approach w/o dynamic load balancing may
perform very poorly; (2) the GP approach can perform considerably better than the
BK-L approach.

GP approach achieves overall better parallel performance than the BK-L app-
roach. Compared with BK-L, GP usually generates much smaller traversal trees
and is able to partition big graphs into sufficiently small subgraphs with less
iterations. With more effective load balancing mechanism, GP achieves better
performance than BK-L in terms of number of required MapReduce cycles, as
shown in Fig. 3(b). The evaluation results on the R-MAT graphs, as shown in
Fig. 3(c) and (d), are similar except that the performance difference among the
three approaches appears less significant. Compared with the Twitter graph,
a R-MAT graph has more balanced edge distribution among its vertices. As a
result, the effect of dynamic load balancing becomes less dramatic. On the denser
graphs (e.g., when the edge/vertex ratio is equal to 140), GP still outperforms
BK-L by considerable margins (more than 30 %) in terms of runtime. It is also
worthy to point out that similar to what was observed in sequential evalua-
tion, the performance advantage of GP over BK-L increases with the density of
R-MAT graphs.

262 Q. Chen et al.

6 Related Work

Maximal clique enumeration have been studied extensively in the literature [6,
11,16,27,32]. Focusing on centralized search algorithms, they usually rely on
global state and cannot be easily implemented in the parallel setting. Besides
the classical BK algorithms, another category of algorithms [20,25,31] use a
reverse search strategy. One key feature of these reverse search algorithms is
that it is possible to define an upper bound on their runtime as a polynomial
with respect to the number of maximal cliques in a graph. There are also some
work [3,29] studying the closely related problem of detecting maximum clique.
They used variants of the existing algorithms for maximal clique enumeration.

Existing parallel approaches [15,22,23,26,33] for maximal clique enumer-
ation were based on either MPI or MapReduce. They distribute the vertices
across computing nodes and compute every vertex’s dense subgraphs in parallel.
They used the BK algorithm or its variants to compute maximal cliques con-
taining an individual vertex in a graph. The dynamic load balancing technique
of redistributing subtree searches was first proposed in [23]. [17] also proposed a
scalable and fault-tolerant parallel solution for maximum clique detection using
MapReduce.

7 Conclusion

In this paper, we have proposed a novel approach based on recursive graph par-
titioning to address the problem of maximal clique enumeration over graph data.
Compared with previous approaches, it achieves smaller search space and is also
inherently more parallelizable. Its better parallelizability enables more effective
load balancing and ultimately results in more efficient parallel performance. Our
extensive experiments have validated its efficacy.

References

1. Mapreduce. http://en.wikipedia.org/wiki/MapReduce
2. Real graph datasets. http://snap.stanford.edu/data/
3. McClosky, B., Hicks, I.V.: Combinatorial algorithms for the maximum k-plex prob-

lem. J. Comb. Optim. 23, 29–49 (2012)
4. On, B.W., Elmacioglu, E., et al.: Improving grouped-entity resolution using quasi-

cliques. In: ICDM (2006)
5. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph.

Commun. ACM 16(9), 575–577 (1973)
6. Cheng, J., Ke, Y., et al.: Finding maximal cliques in massive networksby H*-graph.

In: SIGMOD (2010)
7. Bader, D.A., Madduri, K.: GTgraph: a synthetic graph generator suite (2006).

http://www.cse.psu.edu/madduri/software/GTgraph/
8. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world

graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
364–375. Springer, Heidelberg (2011)

http://en.wikipedia.org/wiki/MapReduce
http://snap.stanford.edu/data/
http://www.cse.psu.edu/madduri/software/GTgraph/

Parallelizing Maximal Clique Enumeration Over Graph Data 263

9. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs
in near-optimal time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010,
Part I. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)

10. Akkoyunlu, E.A.: The enumeration of maximal cliques of large graphs. SIAM J.
Comput. 2(1), 1–6 (1973)

11. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for gen-
erating all maximal cliques and computational experiments. Theor. Comput. Sci.
363(1), 28–42 (2006)

12. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques.
Theor. Comput. Sci. 407(1–3), 564–568 (2008)

13. Pavlopoulos, G.A., Secrier, M., et al.: Using graph theory to analyze biological
networks. BioData Min. 4(10), 1–10 (2011)

14. Malewicz, G., Austern, M.H., et al.: Pregel: a system for large-scale graphprocess-
ing. In: SIGMOD (2010)

15. Cheng, J., Zhu, L.H., et al.: Fast algorithms for maximal clique enumeration with
limited memory. In: KDD (2012)

16. Cheng, J., Ke, Y.P., et al.: Finding maximal cliques in massive networks. TODS
36(4), Article No. 21, 1–34 (2011)

17. Xiang, J.G., Guo, C., Aboulnaga, A.: Scalable maximum clique computation using
mapreduce. In: ICDE (2013)

18. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: SIGKDD (2006)
19. Wang, J.Y., Zeng, Z.P., Zhou, L.Z.: CLAN: an algorithm for mining closed cliques

from large dense graph databases. In: ICDE (2006)
20. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:

Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

21. Leskovec, J., Lang, K.J., et al.: Statistical properties of community structure in
large social and information networks. In: WWW, pp. 695–704 (2008)

22. Lu, L., Gu, Y., et al.: dMaximalCliques: a distributed algorithm for enumerat-
ing all maximal cliques and maximal clique distribution. In: IEEE International
Conference on Data Mining Workshops, pp. 1320–1327 (2010)

23. Schmidt, M.C., Samatova, N.F., et al.: A scalable, parallel algorithm for maximal
clique enumeration. J. Parallel Distrib. Comput. 69, 417–428 (2009)

24. Haraguchi, M., Okubo, Y.: A method for pinpoint clustering of web pages with
pseudo-clique search. In: Jantke, K.P., Lunzer, A., Spyratos, N., Tanaka, Y. (eds.)
Federation over the Web. LNCS (LNAI), vol. 3847, pp. 59–78. Springer, Heidelberg
(2006)

25. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J.
Comput. 14(1), 210–223 (1985)

26. Du, N., Wu, B., et al.: A parallel algorithm for enumerating all maximal cliques in
complex network. In: ICDM Workshops (2006)

27. Modani, N., Dey, K.: Large maximal cliques enumeration in sparse graphs. In:
CIKM, pp. 1377–1378 (2008)

28. Chen, Q., Fang, C., et al.: Parallelizing clique and quasi-clique detection over graph
data. Technical report, Northwestern Polytechnical University, (2014). http://
wowbigdata.cn/paper/clique.pdf

29. Rossi, R.A., Gleich, D.F., et al.: Fast maximum clique algorithms for large graphs.
In: WWW (2014)

30. Hanneman, R.: Introduction to social network methods, Chap. 11:cliques (2005).
http://faculty.ucr.edu/∼hanneman/nettext/

http://wowbigdata.cn/paper/clique.pdf
http://wowbigdata.cn/paper/clique.pdf
http://faculty.ucr.edu/~hanneman/nettext/

264 Q. Chen et al.

31. Tsukiyama, S., Ide, M., Shirakawa, I.: A new algorithm for generating all the
maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

32. Stix, V.: Finding all maximal cliques in dynamic graphs. Comput. Optim. Appl.
27, 173–186 (2004)

33. Wu, B., Yang, S., et al.: A distributed algorithm to enumerate all maximal cliques
in mapreduce. In: International Conference on Frontier of Computer Science and
Technology, pp. 45–51 (2009)

34. Yang, S., Wang, B., et al.: Efficient dense structure mining using mapreduce. In:
IEEE International Conference on Data Mining Workshops, pp. 332–337 (2009)

35. Zhang, Y., Abu-Khzam, F.N., et al.: Genome-scale computational approaches to
memory-intensive applications in systems biology. In: ACM/IEEE Supercomputing
(2005)

Miscellaneous

Hyrise-NV: Instant Recovery for In-Memory
Databases Using Non-Volatile Memory

David Schwalb1(B), Girish Kumar B.K.2, Markus Dreseler1, Anusha S.2,
Martin Faust1, Adolf Hohl2, Tim Berning1, Gaurav Makkar2, Hasso Plattner1,

and Parag Deshmukh2

1 Hasso Plattner Institute, Potsdam, Germany
david.schwalb@hpi.de

2 NetApp, Sunnyvale, USA
girishkumar.bk@netapp.com

Abstract. Emerging non-volatile memory technologies (NVM) offer
fast and byte-addressable access, allowing to rethink the durability mech-
anisms of in-memory databases. In this paper, we present Hyrise-NV, a
database storage engine that maintains table and index structures on
NVM. Our architecture updates the database state and index structures
transactionally consistent on NVM using multi-version data structures,
allowing to instantly recover databases independent of their size. For
index structures, we present nvBTree using multi-versioning to provide
failure-atomic tree updates on NVM. We evaluate Hyrise-NV both on
DRAM and with hardware-based emulation of NVM using the TPC-
C benchmark. Hyrise-NV recovers databases independent of their size,
allowing the recovery of a table with 10 million rows in less than 100 ms.

1 Introduction

In-memory database systems [10,12,13,21,22] use main memory as their primary
location of data, but require the use of write-ahead logging and checkpointing
on storage for durability and recovery [8,15,16,23,28]. Startup and recovery
times are proportional to the database size as the dataset needs to be loaded
from storage into memory. Additionally, recovery requires log files to be replayed
and index structures to be recreated, resulting in typical load times of multiple
hours for large enterprise systems. Lazy data loading shifts the load cost to
query processing, but makes response times unpredictable. Long recoveries are
problematic even in replicated setups as the critical time until reestablishing
redundancy after system updates and restarts should be minimized.

Recent announcements by hardware vendors indicate that byte-addressable
and non-volatile memory technologies (NVM) will soon be available on the mem-
ory bus. These systems will offer fast and fine-grained access to durable memory
and blur the boundary between storage and memory.
Contributions. (1) We present the NVM-based storage engine Hyrise-NV that
persists all table data and index structures directly on NVM and enables failure-
atomic and durable updates on NVM using multi-version data structures and the
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 267–282, 2016.
DOI: 10.1007/978-3-319-32049-6 17

268 D. Schwalb et al.

Fig. 1. Overview of the Hyrise-NV architecture. The highlighted parts in green are
stored on NVM, the dashed index structures are optional. Dictionary and delta index
are a nvBTree (shown in light green) (Color figure online).

persistent index structure called nvBTree, see Sect. 3. (2) We evaluate our system
and the tree using two methods of hardware-based emulation, see Sect. 4. Hyrise-
NV allows instant recovery independent of the database size in less than 100 ms.
Maximum transactional throughput is currently 20 % lower than with a log-based
approach. However, we show that future systems with the clwb instruction will
likely reduce the cost to ≈10 %.

2 HYRISE Architecture

Hyrise1 is an in-memory storage engine specifically targeted at mixed workload
scenarios [10]. It features a balanced execution of both analytical and transac-
tional workloads using task-based scheduling, optimized for the set-processing
nature of business applications. We present our extension Hyrise-NV, see Sect. 3,
that persists all table data and index structures directly on NVM. We distinguish
it from Hyrise-Log, which uses a write-ahead log, and Hyrise-None without any
durability guarantees.

Figure 1 gives a high level overview of the Hyrise system architecture. Each
column consists of two partitions: main and delta partition. The main parti-
tion is dictionary-compressed using an ordered dictionary, replacing tuple values
with encoded values from the dictionary. In order to minimize the overhead of
maintaining the dictionary’s sort order in the case of new values, updates are
accumulated in the write-optimized delta partition [14,26]. In contrast to the
main partition, data in the delta partition is stored using an unsorted dictionary.
To ensure a small size of the delta partition, Hyrise executes a periodic merge
process to combine all data from the main partition as well as the delta partition
into a new main partition which then serves as the primary data store [14].

1 Source available at https://github.com/hyrise/hyrise.

https://github.com/hyrise/hyrise

Hyrise-NV: Instant Recovery for In-Memory Databases 269

Data modifications follow the insert-only approach [10] using Multi-Version
Concurrency Control (MVCC). Hyrise maintains separate index structures for
the main and delta partition. While the main index uses group-key indices [9],
the delta index is implemented as a tree-based multi-map of values and posi-
tions. This efficiently supports range queries and the insertion of new values as
commonly required in enterprise workloads [23].

Hyrise-Log implements logging, checkpointing and recovery mechanisms. We
discuss it as a baseline to compare Hyrise-NV against. The logging mecha-
nism [33] leverages the applied dictionary compression and only writes redo
information to the log. Undo information is not required due to the lack of in-
place updates. New log entries are buffered in a ring-buffer and written to disk
using a group commit mechanism [16,23]. Checkpoints create a consistent snap-
shot of the database as a binary dump on disk in order to speed up recovery,
allowing to directly load the checkpoint from disk without the need of expensive
delta log replays. In contrast to disk-based database systems where a buffer man-
ager can flush all dirty pages in order to create a snapshot, Hyrise-Log supports
checkpoints by persisting the complete delta partitions of all tables plus begin
and end timestamps for main and delta to disk.

3 Hyrise-NV: Adding NVM-support to Hyrise

This section presents Hyrise-NV and focuses on changes required to the archi-
tecture of Hyrise in order to leverage NVM as the primary persistence domain.
Hyrise-NV stores the complete database on NVM, including all table data and
index data structures, to allow for instant restarts. We show how using NVM as
the primary persistence domain does not interfere with the ACID criteria and
how to ensure that changes reach NVM in an atomic and durable way.

We envision systems to support hybrid combinations of volatile DRAM and
persistent NVM at the same level in the memory hierarchy with byte-level load
and store access. Using NVM comes with the following challenges: (i) When
executing stores to NVM, applications typically require one set of writes to be
durable before another set of writes [5]. To guarantee durability and ordering,
applications currently need to explicitly trigger the flush of modified cache lines
and enforce their completion using memory fences, e.g. using clflush and sfence
instructions. (ii) Dynamic memory management on NVM must provide means
to safely allocate durable memory. In contrast to allocators for volatile memory,
NVM allocators must be failure-atomic to avoid inconsistent states in allocator
metadata. Hyrise-NV uses a custom memory allocator for NVM that allows to
differentiate between volatile and non-volatile memory regions and to implement
application specific recovery strategies to find and restore objects from NVM [25].

3.1 Modifications to Transaction Handling

In order to keep the database state directly on NVM and to recover based on the
NVM data, Hyrise-NV stores the following data structures on NVM as outlined

270 D. Schwalb et al.

in Fig. 1: (i) the table data including main and delta partitions with attribute
vectors, dictionaries and MVCC vectors (ii) the state of the transaction manager
including the global last visible commit id, and (iii) table metadata. For instant
recovery, without expensive recreations of index structures, the system also per-
sists (iv) all index structures and (v) metadata for each running transaction.

To guarantee the consistency of these data structures during updates, a care-
ful system design is necessary, with explicit barriers in the system that guarantee
the write order on NVM, as well as mechanisms to provide atomicity and dura-
bility for transaction management on NVM. Columns, dictionaries and indices
are designed to be append-only and do not execute in-place updates of values.
Indices are stored using the nvBTree. Managing consistent updates of the nvB-
Tree structures is outlined in Sect. 3.2. Alternatively, NVM-aware hashmaps [24]
can be used. The insert-only approach avoids complications coming from in-place
updates of rows and ensures atomicity of transactions using MVCC visibility
mechanisms. Building on this, a transaction can work on its private data space
on NVM until it has finished and all changes are made visible atomically by
incrementing the last visible commit id on NVM.

Figure 2 shows the steps during transaction processing in our system and the
needed explicit barriers that guarantee consistency on NVM. A barrier consists
of clflush instructions that writes all modified cache lines to NVM and a sfence
instruction that waits for their completion.

As an example, let us assume a transaction T with id tidT and the last visible
commit id lcidT that updates a single row, resulting in one invalidation and one
insert. During active processing, T invalidates one row and inserts the updated
version. The row to be updated is marked as invalid in the context of T by setting
the MVCC end timestamp vend of the row (1) and is added to the local list of
T ’s deleted rows (2). After invalidating the old version, the updated version is

Fig. 2. Additional barriers are required during transaction processing on NVM to
explicitly flush data from caches and to guarantee write ordering.

Hyrise-NV: Instant Recovery for In-Memory Databases 271

inserted as a new row, see steps (3) to (7). For this, an isolated write space owned
by T is reserved in the delta by atomically incrementing the delta size (3). In
case the allocated memory of the delta is exhausted, a more complex mechanism
guarantees the atomic resize. For every column, the value is encoded as a value
id using the delta dictionary (4). If no entry exists in the delta dictionary for
the new value, it is inserted into a persistent, unordered dictionary as described
in Sect. 3.2. Next, all new value ids are written into the attribute vectors (5)
and existing index structures are updated to reflect the newly inserted row (6).
Finally, the newly inserted row is added to the local list of inserted rows from
T (7). T commits by finalizing all modified rows and setting the commit id (8)
and incrementing the global last visible commit id lcid (9).

To ensure the consistency on NVM, Hyrise-NV requires four barriers A, B, C
and D during the processing of transactions: Barrier A ensures that the size of
the delta partition is flushed to NVM before the transaction proceeds to populate
the reserved rows. The barrier is required to avoid index structures referencing
rows that do not yet exist. When T enters the commit phase, Barrier B ensures
that the transaction context is persisted on NVM, containing a list of all inserted
and updated rows. This is required in order to repair in-flight transactions in
case of failures. Barrier C persists all table data and flushes all dirty changes
on attribute vectors and vbeg and vend. Therefore, it is guaranteed that all
transaction changes are persisted before incrementing the lcid. Incrementing lcid
makes all changes of T visible for subsequent transactions. The final Barrier D
ensures that the lcid is written to NVM before returning T as committed to the
client. The combination of append-only updates, explicit barriers and consistent
tree structures guarantees a consistent state on NVM at any time.

Fig. 3. Example of a multi-versioned nvBTree on NVM, outlining a split operation of
node A. Steps 1–3 are ordered by explicit barriers.

272 D. Schwalb et al.

3.2 nvBTree: An Index Structure for NVM

Hyrise-NV stores and persists all index structures directly on NVM to allow for
instant database restarts and recovery. nvBTree is designed to be stored on NVM
and implements a multi-map of values and positions used in the delta partition.
It extends the existing tree implementation2 by adding multi-versioning to make
consistent and atomic updates on NVM, requiring no additional logs [29]. The
tree allows for parallel read operations, but requires exclusive write locking. It
is designed to support failure-atomic inserts directly on NVM by enforcing a
consistent write order and using multi-versioning.

The multi-versioning mechanism uses a monotonically increasing version
number to mark the most recent consistent version of a nvBTree, called the
last consistent version LCV . This version number is used by any thread that
reads from the data structure to evaluate the visibility of entries. Additionally,
each tree maintains a current update version CUV that is written before updates
are started. Each node, both inner tree nodes and data leaf nodes, has n slots
with an assigned start and end version that determines the validity of the respec-
tive key-value pair. Writes to the data structures never perform in-place updates
and every update results in the creation of a new version. Therefore, updates are
effectively executed in a sandbox and are made visible by atomically increment-
ing the consistent version number. After all the modifications for an update have
been made persistent, the LCV is atomically incremented, making the changes
visible to subsequent read operations. Nodes are internally sorted by keys and
multiple values for the same key are sorted by version. This allows optimized
insertions to detect duplicates and efficiently validate primary key constraints.
The involved right shifts generate additional clflush operations leading to write
amplification on the memory bus [3]. However, multiple values for a single key
are sorted by version to avoid costly right-shift operations.

For brevity, we define the keys K as the set K={k1,....km} where ki > k(i−1)

and the value set V as V={A,....,Z}. Assume a nvBTree with n = 4 and the
keys k1 to k5 to be inserted in a sorted order, as outlined in Fig. 3. The insertion
of k5 leads to a split operation of node A. First, the CUV is incremented and
persisted using an explicit barrier. Then, step 1 allocates and populates two new
nodes B and C. All keys greater than k2 are copied to node B and k5 is inserted
into B. Additionally, node C is prepared to be the new root node, linking the
split nodes A and B with k2 as an inner value. All newly inserted and copied
key-value pairs are assigned the version number 5. Additionally, Step 2 updates
node A, invalidating the old versions of k3 and k4 by setting the end version 5.
Then, node C is installed as the new root node of the tree. Finally, step 3
atomically increments the LCV. After each step, an explicit barrier, consisting of
a clflush instruction followed by an sfence instructions, ensures that all changes
are flushed to NVM and the ordering of the steps. Now consider the case where
k3, k4 and k5 are inserted in order before a second value for k3 is inserted.
Figure 4 shows the required right shift operation, first shifting k5 and then k4

2 STX B+-Tree: http://idlebox.net/2007/stx-btree/.

http://idlebox.net/2007/stx-btree/

Hyrise-NV: Instant Recovery for In-Memory Databases 273

Fig. 4. Example outlining an insert into a sorted nvBTree node and the resulting right
shift operation and its associated write amplification. Steps 1–4 are ordered by explicit
barriers.

to the right in order to insert k3 into the second slot. Individual shifts for each
key-value pair are required in order to avoid overwriting values in between. Each
value shift is internally a copy operation followed by an explicit barrier and the
version numbers of copied values are maintained.

During recovery, tree structures potentially have to be verified and repaired
before transaction processing can be continued. Verification is required in case a
partial update has left the tree in an inconsistent version and LCV < CUV . For
verification, the tree is scanned in order to identify and garbage collect entries
with invalid versioning information. Partial right shift operations are identified
as to subsequent identical key-value pairs within a node. Although verifying
the tree on recovery requires a full scan, typically only a very small subset of
database indices are required to be verified and delta indices are limited in size.

3.3 Recovery from NVM

Having the complete database state persisted on NVM, Hyrise-NV is able to
recover from this information in case of failures without requiring write-ahead
logs. The recovery process works by (i) re-initializing the system with persisted
data structures, (ii) rolling back in-flight transactions and (iii) recovering index
structures. The state of the transaction manager, metadata and table data are
reinitialized in the first step. The system might crash while a transaction T has
already written its commit id to vbeg or vend, but before it incremented lcid.
In that case, T needs to be reverted during recovery in order to allow further
increments of lcid without making the partial changes form T visible. To avoid
scanning the complete vectors vbeg and vend of all tables during recovery to
find changes of in-flight transactions that have to be reverted, the transaction
context of committing transactions is persisted when entering the commit phase.
Based on this, the recovery can easily traverse all in-flight transactions and revert
potential changes by iterating through the lists of inserted and deleted rows.

274 D. Schwalb et al.

Technically, our recovery mechanism depends on the number of tables and
their columns, the number of index structures with partial updates and their size,
and the number of in-flight transactions in the system. Practically, the recovery
mechanism minimizes the necessary work during recovery and system restarts,
allowing to recover databases virtually independent of their number of rows.

4 Experimental Evaluation

This section presents the experimental evaluation of Hyrise-NV. We evaluate
the (i) recovery time, (ii) influence of NVM latency and processor operations on
runtime performance and (iii) micro-benchmarks of the presented nvBTree on
NVM. We compare Hyrise-NV with the traditional log-based version Hyrise-Log,
and with Hyrise-None without any durability mechanisms.

All benchmarks, unless stated otherwise, were executed on a server with four
Intel Xeon E7-8870 processors with 10 cores running at 2.4 GHz and 1.5 TB of
DDR3 1067 MHz RAM. Benchmarks used a single NUMA node to avoid any
NUMA effects. Hyrise-Log uses a PCIe flash drive, with a theoretical read band-
width of 1.5 GB/s and a read latency of 68µs.

4.1 Recovery Time

The main design goal of Hyrise-NV is an instant system restart. This is why
all data structures are directly stored and manipulated on NVM. Hyrise-NV
achieves instant recovery times of ∼100 ms, independent of the table’s main and
delta sizes. As data is directly persisted on NVM, a system restart only requires
re-mapping the respective data structures and potentially rolling back in-flight
transactions as outlined in Sect. 3.3. Figure 5 shows the recovery times in seconds
for different delta sizes and varying sizes of the TPC-C stock table.

We differentiate between the two log-based recovery cases with a delta check-
point and without. The delta checkpoint is created directly before initiating a

Fig. 5. Recovery times from NVM vs. logs with and without checkpoints.

Hyrise-NV: Instant Recovery for In-Memory Databases 275

Fig. 6. TPC-C Evaluation: (a) throughput for varying number of users, using clflush
and (b) throughput with hardware emulated NVM and both clflush and the upcoming
clwb.

database failure leading to the recovery. In this optimal case, it contains the
latest snapshot of the delta and no log-replay is required.

If no delta checkpoint exists, recovery takes up to 150 s with 5 million rows in
the main and 5 million rows in the delta, as the required data structures for the
main partition need to be loaded and the complete delta log needs to be replayed.
Recovering from an existing delta checkpoint does not require to replay a delta
log, since the delta checkpoint reflects the complete state of the delta as a binary
dump on SSD. This reduces the recovery time to ∼50 s for loading the checkpoint,
still depending linearly on the total table size. Although the delta checkpoint
reduces the number of transactions that are replayed from the delta log, the delta
size still influences recovery times by adding up to 23 % for a 50 % delta, as index
structures for the delta need to be recreated. With an empty delta, the checkpoint
has no effect and the “Log” and “Log+CP” lines overlap. In summary, Hyrise-
NV allows to instantly recover data-bases independent of their number of rows in
contrast to log-based approached that depend linearly on the database size and
the available bandwidth. The shown performance improvements are significant
both after crashes and in the case of system reboots. While physically rebooting
the machine might take several minutes, the dominating factor of reloading the
data is eliminated.

4.2 Runtime Performance

In order to evaluate the runtime performance of Hyrise-NV, we compare it to
Hyrise-Log (which uses a traditional log-based approach) and differentiate the
identified overhead for system throughput into architectural and hardware over-
head. Architectural overhead describes the additional complexity of ensuring
the required write atomicity and ordering to support the described NVM-only
architecture. We quantify the architectural overhead by comparing Hyrise-NV
to Hyrise-Log using normal DRAM without any increased latencies. In con-
trast, hardware overhead describes the respective overhead that is introduced by
increased memory latencies of future NVM hardware. Additionally, we compare
the results to Hyrise-None without any persistence mechanisms.

276 D. Schwalb et al.

We use TPC-C with 20 warehouses, executed in burst mode without any
think-times. Throughput is reported as the total number of completed trans-
actions per minute. Each user reflects one database connection and executes a
stream of transactions by triggering a transaction and waiting for its commit.
Clients and server are running on the same machine and queries are transmitted
via HTTP using a modified Apache ab tool.

Figure 6a reports the total number of successfully completed TPC-C transac-
tions per minute for 5, 60 and 300 parallel users. The used group-commit window
was tuned to perform best with the given number of parallel users, resulting in
a 10 ms window for 300 users, whereas the window size was reduced to 4 ms for
60 users and 1 ms for one and five users. With 300 users, Hyrise-None achieves a
maximum of 600 K transactions per minute, whereas Hyrise-Log and Hyrise-NV
reach 500 K and 400K transactions per minute, respectively. For 300 parallel
users, Hyrise-NV achieves a 20 % lower throughput than Hyrise-Log.

In contrast, if the number of parallel users in the system is low, the overhead
of the log-based approach increases as the efficiency of batching transactions
is limited by the small number of parallel users. For 5 users, this results in
a relative throughput that is 70 % of the throughput with Hyrise-None, and
decreased further to 60 % for a single user. Comparing Hyrise-NV and Hyrise-
Log, Hyrise-NV has a 14 % and 18 % higher throughput for 5 and 1 user(s)
respectively.

4.3 Hardware Emulation

The results of the previous benchmarks were obtained using regular DRAM to
simulate NVM and thus do not reflect differences in hardware. Further evalu-
ation showed that most of the experienced overhead is caused by the clflushes
that unnecessarily invalidate cache lines, causing avoidable cache misses. Future
processors will use optimized instructions like clwb3 that write the data to mem-
ory without invalidating the cache line, thus allowing future accesses to be served
from cache. Using Intel’s Persistent Memory Evaluation Platform (PMEP), we
can estimate the performance gains foreseeable with clwb. Furthermore, it allows
us to simulate the higher latencies of NVM and measure the impact of this on
our performance. For comparison, we also evaluate Hyrise-NV on a second eval-
uation platform (as used in [11]), which can emulate slower NVM, but not clwb.
In this second, evaluation system, the latency is changed by modifying the Serial
Presence Detect (SPD) of the memory DIMMs using a proprietary method. This
results in an increased real memory latency tM as shown in Fig. 7.

As two different systems were used in the benchmarks, Fig. 6b shows results
relative to Hyrise-None. The benchmark without flushes uses the modifications
needed for NVM, such as a custom allocator, mmapped data regions on PMFS
(Persistent Memory File System, [7]), and additional methods in the transac-
tion manager, but does not explicitly flush to NVM. This helps distinguishing
between the cost of the adaptions and the cost of clflush/clwb. Two learnings can

3 https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf.

https://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf

Hyrise-NV: Instant Recovery for In-Memory Databases 277

DCBAnoitarugfinoC

Total Latency tT [ns] 188.5 234.7 250.2 256.6
Memory Latency tM [ns] 36.0 82.2 97.7 113.1
System Overhead tS [ns] 152.5 152.5 152.5 143.5
Total Latency Factor 1.0X 1.2X 1.3X 1.4X
Memory Latency Factor 1.0X 2.3X 2.7X 3.1X

Fig. 7. Modified latencies and their different configurations. This emulator only sup-
ports the four mentioned configurations. The real hardware latency tM was modified
whereas the system overhead tS for requesting and transferring the data was unchanged,
resulting in an observable total latency tT .

be taken from this. First, as expected, the experienced performance drop can be
largely explained with by the delicacies of clflush. By replacing it with clwb, the
costs of flushing are reduced from to 8 %. Second, for the given workload, the
impact of higher-latency NVM is fairly low, costing only 13 % even with NVM
that has a 100 ns higher hardware latency than current DRAM.

4.4 Index Micro Benchmarks

This section presents the evaluation of nvBTree as described in Sect. 3.2. We
present micro-benchmark results of the index performance to evaluate the impact
of explicit flushes and memory fences that are required to achieve consistent
updates on NVM. All nvBTree micro-benchmarks were executed on a machine
with six Intel(R) Xeon(R) E5-2440 processors running at 2.40 GHz with 128 GB
of memory, using PMFS to emulate 80 GB of NVM.

Figure 8a shows the insert latency for varied value size from 32 bytes to 4 K
bytes. The values are inserted into a generated tree with 10 million key-value
pairs and a constant key size of 4 bytes. In a second dimension, the number

Fig. 8. (a) Latency of inserts into a nvBTree with 10 million entries for varying value
sizes and varying number of duplicate values per key. (b) Memory bandwidth usage
and clflush operations/s for inserting 64B values into an nvBTree.

278 D. Schwalb et al.

of duplicate values per key in the tree is varied from 10 to 10 K. We compare
our implementation nvBTree with the STX B+-Tree without multi-versioning
and without explicit flushes and memory fences. Looking at the value size of
32 bytes, inserts into the nvBTree start at 1.7µs and then gradually taper to
1µs as the number of duplicate values per key increase. This pattern holds for
all the value sizes albeit at slightly higher latencies as the value size increase. The
reason behind the peaks with ten duplicate values per key is the write amplifi-
cation created during insertion due to node-internal sorting. If a key’s insertion
position happens to be between two existing keys in one leaf node, then the new
insert shifts all existing keys to the right, see Fig. 4. These shifts during insertion
create additional clflush operations, result in additional bandwidth usage and
also increase the average latency of inserts. However, as the number of duplicate
values per key increases, the write amplification is reduced because nodes are
internally sorted by keys but not by value. Therefore, inserts for existing keys
can be appended at the end of the existing values for the same key and require
fewer shift operations.

Figure 8b shows the memory bandwidth usage of nvBTree with 64 byte values
and a varied number of duplicates per key from 0 to 10 K. The experiment was
executed starting with an empty tree and inserting 10 million key-value pairs
using a single thread. We visualize the number of clflush operations per second
and the total memory bandwidth usage. The number of clflush operations per
second ranges from 9.8 million for unique keys in the tree to 6 million for 10 K
duplicate values per key. We varied the number of modified cache lines embedded
between two memory fences using the sfence instruction. As the number of cache
lines is increased, the latency per cache line decreases and flattens after 128 cache
lines with around 0.2µs. We conclude that our benchmark setup achieves the
optimal flush-latency per cache line with 128 cache lines, or 8 K of modified data,
embedded between two memory fences. We analyzed the distribution of flushes
triggered between two memory fences for inserting 10 million 4 KB-values into a
nvBTree. Almost 45 % of the time, a single cache line was flushed to update the
LCV of the tree. Flushing the actual data accounted for 40 % of the flushes and
flushed 73 cache lines in average, 64 data cache lines plus additional metadata.
The rest of the flushes have a varying number of cache lines, ranging from 1 to
225 and are triggered due to tree balancing. We draw two conclusions: (i) The
data structure layout of a key-sorted nvBTree directly determines the number of
cache lines changed per insert and hence impacts the overall latency. Optimizing
the layout for NVM should therefore be the prime design consideration in order
to minimize explicit flush operations. (ii) When explicitly flushing multiple cache
lines, applications should group as many cache lines between memory fences as
possible for better write latencies and throughput.

5 Related Work

Recent work evaluates emerging NVM technologies and how they can be lever-
aged in the context of database systems. DeBrabant et al. [6] present an

Hyrise-NV: Instant Recovery for In-Memory Databases 279

evaluation of using NVM for OLTP database systems and evaluate hybrid
DRAM-NVM architectures as well as NVM-only architectures using a hardware
emulator, concluding that neither of the two approaches is ideally suited for an
NVM-based storage hierarchy. In contrast to their work, we focus on a hybrid
architecture and leverage multi-versioning inside the database to avoid in-place
updates on NVM and to achieve an instant restart of the system.

Oukid et al. [19] present work similar to our approach, describing a prototyp-
ical storage engine that leverages full capabilities of NVM by removing the tradi-
tional log and updating the persisted data in-place. We describe how barriers are
placed in our system and explain the purpose and necessity of each. In addition
to being able to reproduce their results, we (1) provide further evaluations com-
paring Hyrise-NV against log- and checkpoint-based approaches, (2) show the
database’s performance with NVM using two different emulators, and (3) pro-
vide an estimation of the benefits of clwb. Höppner et al. [11] present a technique
for hybrid-memory scaling of columnar in- memory databases, focusing on NVM
as an additional storage tier and evaluating the performance implications when
storing the read-optimized main partitions of tables on NVM. Pelley et al. [20]
reconsider storage management with NVM to optimize recovery performance and
forward-processing throughput. In contrast to our approach, they focus on disk-
based databases and use NVM to store the log file instead of using a NVM-only
architecture. Additionally, their evaluation is using software-based emulation,
whereas we present a hardware-based evaluation. Fang et al. [8] describe an
optimized logging approach exploiting storage class memory achieving high per-
formance by a simplified system design and better concurrency support. Wang
and Johnson [28] present passive group commits as a scalable and distributed
logging technique using NVM and identify logging as a major source of overhead.
In contrast, we evaluate a log-free approach and store the primary persistence of
data directly on NVM. Narayanan and Hodson [17] outline a hardware supported
approach using a flush-on-fail mechanism that guarantees to flush volatile data
from processor registers and caches to NVM on failure, eliminating the need of
expensive flushes during runtime. Chatzistergiou et al. [1] propose a usermode
library approach to manage transactional updates to NVM.

Early work discusses persistent in-memory data-bases, e.g. Wu et al. [32] pro-
pose eNVy as a non-volatile, main memory storage system using flash memory
directly attached to the memory bus using a dedicated controller. Thatte [27]
presents a storage architecture for object-oriented database systems based on a
uniform memory abstraction using persistent memory. Venkataraman et al. [29]
present data structures designed for byte addressable NVM. They eliminate the
need for a write-ahead log by providing consistent updates of durable data struc-
tures. nvBTree builds on those mechanisms, integrating and evaluating them in
an in- memory database system. Chen et al. [3] present improved database algo-
rithms to reduce the execution time onPCMwhile increasingwrite endurance. Fur-
ther work [2] presents a Phase Change Memory-friendly B+-Tree structure with
unsorted leaf nodes and Yang et al. [34] propose a consistent and cache-optimized

280 D. Schwalb et al.

B+-Tree structure with reduced CPU cacheline flushes. These may be beneficial
in a database context and evaluation shall be subject to future work.

Additionally, multiple systems and techniques have been proposed to inte-
grate NVM into existing systems and simplify its usage. Mnemosyne [30] and
NV-Heaps [4] provide transactional semantics using software transactional mem-
ory. NVMalloc [31] addresses the challenges of allocating persistent memory and
deals with wear-leveling challenges. Specialized file systems are designed for the
characteristics of NVM like PMFS [7] or BPFS [5]. We see the discussed tech-
niques as orthogonal to the work presented in this paper, focusing on NVM as
the primary persistence in database systems.

6 Conclusion and Future Work

In this paper, we presented Hyrise-NV, a columnar in-memory database engine
using NVM as the primary persistence for tables and index structures. Our
architecture enforces atomicity and ordering guarantees and performs database
changes directly on NVM using multi-version data structures without requir-
ing a write-ahead log. We evaluate our approach using the TPC-C benchmark
and hardware emulated NVM by overwriting the SPD values of the DIMMs.
We report instant database recovery independent of the number of rows, com-
ing by the price of an architectural throughput overhead of up to 20 %. This
overhead can be reduced to 8 % with the upcoming clwb instruction. Future
work includes research on optimized data structures for NVM, reducing the
need to flush caches and to enforce barriers, and further evaluations using more
sophisticated emulations and real NVM hardware. Besides optimizing the per-
formance of NVM-backed databases, ensuring their correctness and preventing
durable errors is a challenge in itself. Possible approaches are theoretical models
to prove correctness or experimental methods with e.g. simulated fault injection
testing to test how well the database recovers after simulated system crashes.
The topics of high availability and disaster recovery are also of great interest,
raising the question if log structures are still required or if other mechanisms
are more appropriate, as log files are no more required for durability and atom-
icity purposes. Many in-memory databases already use replication on the peer
node’s DRAM for the dual purpose of availability and parallelism. With the pre-
dicted trends of decreasing latencies for high speed interconnects [18], this will
be increasingly adopted. For example, recent work by Zhang et al. [35] proposes
a system that provides reliability and availability based on the use of NVM.
With the emerging hardware and networking technologies for future data cen-
ters, this will be an attractive option for continuous availability for enterprise
applications.

Acknowledgments. We thank Konrad Büker, Jürgen Schrage and Ahmad Waizy
from Fujitsu and Rami Akkad, Bernhard Höppner and Jürgen Müller from the SAP
Innovation Center Potsdam for their support and hardware access. We also thank
Subramanya Dulloor from Intel Labs for access to the PMEP emulator.

Hyrise-NV: Instant Recovery for In-Memory Databases 281

References

1. Chatzistergiou, A., et al.: REWIND: recovery write-ahead system for in-memory
non-volatile data-structures. In: VLDB (2015)

2. Chen, S., Jin, Q.: Persistent B+-trees in non-volatile main memory. In: VLDB
(2015)

3. Chen, S., et al.: Rethinking database algorithms for phase change memory. In:
CIDR (2011)

4. Coburn, J., et al.: NV-Heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. SIGPLAN 46, 105–118 (2011)

5. Condit, J., et al.: Better I/O through byte-addressable, persistent memory. In:
SOSP (2009)

6. DeBrabant, J., et al.: A prolegomenon on OLTP database systems for non-volatile
memory. In: VLDB (2014)

7. Dulloor, S.R., et al.: System software for persistent memory. In: EuroSys (2014)
8. Fang, R., et al.: High performance database logging using storage class memory.

In: ICDE (2011)
9. Faust, M., et al.: Fast lookups for in-memory column stores: group-key indices,

lookup and maintenance. In: ADMS (2012)
10. Grund, M., et al.: HYRISE—a main memory hybrid storage engine. In: VLDB

(2010)
11. Höppner, B., et al.: An approach for hybrid-memory scaling columnar in-memory

databases. In: ADMS (2014)
12. Kallman, R., et al.: H-store: a high-performance, distributed main memory trans-

action processing system. In: VLDB (2008)
13. Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database

system based on virtual memory snapshots. In: ICDE (2011)
14. Krüger, J., et al.: Fast updates on read-optimized databases using multi-core CPUs.

VLDB 5, 61–72 (2011)
15. Malviya, N., et al.: Rethinking main memory OLTP recovery. In: ICDE (2014)
16. Mohan, C., et al.: ARIES: a transaction recovery method supporting fine- granu-

larity locking and partial rollbacks using write-ahead logging. In: TODS (1998)
17. Narayanan, D., Hodson, O.: Whole-system persistence. In: ASPLOS (2012)
18. Ongaro, D., et al.: Fast crash recovery in RAMCloud. In: SOSP (2011)
19. Oukid, I., et al.: Instant recovery for main-memory databases. In: CIDR (2015)
20. Pelley, S., et al.: Storage management in the NVRAM era. In: VLDB (2013)
21. Plattner, H., et al.: The impact of columnar in-memory databases on enterprise

systems. In: VLDB (2014)
22. Raman, V., et al.: DB2 with BLU acceleration: so much more than just a column

store. In: VLDB (2013)
23. Schwalb, D., et al.: Efficient transaction processing for hyrise in mixed workload

environments. In: IMDM (2014)
24. Schwalb, D., et al.: NVC-hashmap: a persistent and concurrent hashmap for non-

volatile memories. In: IMDM (2015)
25. Schwalb, D., et al.: nvm malloc: memory allocation for NVRAM. In: ADMS (2015)
26. Stonebraker, M., et al.: C-Store: a column-oriented DBMS. In: VLDB (2005)
27. Thatte, S.M.: Persistent memory: a storage system for object-oriented databases.

In: OODS (1991)
28. Tianzheng, W., Ryan, J.: Scalable logging through emerging non-volatile memory.

In: VLDB (2014)

282 D. Schwalb et al.

29. Venkataraman, S., et al.: Consistent and durable data structures for non-volatile
byte-addressable memory. In: FAST (2011)

30. Volos, H., et al.: Mnemosyne: lightweight persistent memory. In: ASPLOS (2011)
31. Wang, C., et al.: NVMalloc: exposing an aggregate SSD store as a memory partition

in extreme-scale machines. In: IPDPS (2012)
32. Wu, M., Zwaenepoel, W.: eNVy: a non-volatile, main memory storage system. In:

ASPLOS (1994)
33. Wust, J., et al.: Efficient logging for enterprise workloads on column-oriented in-

memory databases. In: CIKM (2012)
34. Yang, J., et al.: NV-Tree: reducing consistency cost for NVM-based single level

systems. In: FAST (2015)
35. Zhang, Y., et al.: Mojim: a reliable and highly-available non-volatile memory sys-

tem. In: ASPLOS (2015)

Triangle-Based Representative Possible
Worlds of Uncertain Graphs

Shaoying Song1, Zhaonian Zou1(B), and Kang Liu2

1 Harbin Institute of Technology, Harbin, China
znzou@hit.edu.cn

2 Harbin Engineering University, Harbin, China

Abstract. Uncertain graph data has been collected, processed and ana-
lyzed in a wide range of applications. Under the possible world model,
an uncertain graph represents a probability distribution over all its pos-
sible worlds. Each possible world is a deterministic graph in which the
uncertain graph may be present in practice. To deal with the hardness
of computations on uncertain graphs, Parchas et al. first proposed the
concept of a degree-based representative possible world. This approach
is distinguished from the sampling approach in that it computes on one
representative possible world instead of on a large number of possible
worlds sampled at random. However, the degree-based representative
possible world only tries to preserve vertex degrees. In this paper, we
are motivated by the fact that motif structures such as triangles can
affect the structural properties of graphs and propose the concept of a
triangle-based representative possible world. We also develop an algo-
rithm for finding the triangle-based representative possible world of an
uncertain graph. We conducted extensive experimental evaluations and
show that the triangle-based representative possible world outperforms
the degree-based representative possible world in preserving the struc-
tural characteristics of an uncertain graph in expectation.

1 Introduction

Graph is a general data structure for representing complicated relationships
between entities. Recently, vast amount of graph-structured data (graph data for
short) has been collected, processed and analyzed in a wide range of applications
such as social networks, biological networks, sensor networks and road networks.
In many of these applications, graph data may contain errors or may be incom-
plete [23] and therefore is inherently uncertain. Uncertainty of graph data is
usually caused by noisy measurements, data integration, prediction models, or
privacy preserving perturbation processes [9].

A graph with uncertainty is called an uncertain graph. In recent years, con-
siderable studies have been carried out on the representation, storage, query
processing, analysis and mining of uncertain graph data [4,19,20,22]. To express

This work was partially supported by the NSF of China (No. 61532015 and
No. 61173023) and the 973 Program of China (No. 2011CB036202).

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 283–298, 2016.
DOI: 10.1007/978-3-319-32049-6 18

284 S. Song et al.

the semantics of an uncertain graph, the possible world model [21] has been
proposed and widely used. Under this model, an uncertain graph essentially rep-
resents a probability distribution over all its possible worlds. A possible world is
a deterministic graph in which the uncertain graph may be present in practice.
An uncertain graph usually implies an exponentially large number of possible
worlds. This makes many graph querying and mining problems computationally
prohibitive on uncertain graphs, even though their counterparts on exact graphs
are solvable in polynomial time.

Sampling has been shown to be an effective approach to dealing with the
hardness of managing and mining uncertain graphs [7]. In general, for a problem
instance on an uncertain graph G, we first obtain N possible worlds of G indepen-
dently at random, where N is a large number. Then, we compute the problem
on each of these sampled possible worlds. Finally, we compute an approximation
of the exact solution by synthesising the results computed on all these sampled
possible worlds. To reduce the variance of the estimator, Jin et al. [5] take advan-
tages of the constraints of the problem they studied. Li et al. [8] use stratified
sampling to reduce the variance of the estimator. However, the sampling app-
roach generally has two major drawbacks: (1) Sampling a possible world takes
O(m) time, where m is the number of edges in the uncertain graph; (2) To guar-
antee that the approximation error exceeds ε with probability at most δ, we have
to sample O(1

ε2 ln 1
δ) possible worlds, where ε and δ are small numbers in [0, 1].

To deal with the above mentioned drawbacks of the sampling approach,
Parchas et al. [13] proposed the concept of a representative possible world. The
fundamental idea is to compute over one representative possible world instead
of on a large number of randomly sampled possible worlds, which can certainly
improve efficiency. Naturally, the representative possible world should best pre-
serve the structural characteristics of the uncertain graph. Parchas et al. [13]
found that by preserving the degree of each vertex, the representative possible
world well captures the essence of the underlying uncertain graph.

The notion of a representative possible world proposed by Parchas et al. [13]
only considers vertex degrees, so we designate their concept by the degree-based
representative possible world. In fact, besides vertex degrees, many motif struc-
tures such as triangles can affect the structural properties of graphs [1,2]. Motifs
are subgraphs that significantly repeat themselves in a specific graph. They are
of notable significance because they can reflect functional properties. Most net-
works display the tendency that two neighbors of the same vertex also tend to
be neighbors of one another, thus constituting a triangle [2,12,17]. Triangle is
a special network motif that occurs in almost all graphs, which is increasingly
prevalent for graph analytics for theoretical as well as practical reasons [3].

In this paper, we first introduce triangles in the formulation of a represen-
tative possible world and propose the concept of a triangle-based representative
possible world. In particular, the triangle-based representative possible world of
an uncertain graph is the possible world that minimizes the error of both vertex
degrees and triangle degrees, where the triangle degree of a vertex is the number
of triangles that contains this vertex.

Triangle-Based Representative Possible Worlds of Uncertain Graphs 285

It is hard to find the optimal triangle-based representative possible world
of an uncertain graph. In this paper, we propose an algorithm, called TRPW,
to approximate the triangle-based representative possible world of an uncertain
graph. The algorithm consists of two phrases. In the first phase, we generate a
seed possible world by selecting the expected number of edges at random. In the
second phase, we iteratively refine the possible world to decrease error.

We performed extensive experiments to verify the effectiveness of triangle-
based representative possible world. Our experimental results show that the
triangle-based representative possible world and the degree-based one have com-
parable performance in approximating the expected degrees and the triangle
degrees of vertices in an uncertain graph. However, the triangle-based representa-
tive method outperforms the degree-based one in approximating other structural
characteristics, including the expected number of triangles, the expected clus-
tering coefficients of vertices and the expected shortest-path distances between
pairs of vertices. It thus verifies that, by taking triangles into account, we can
find better representative possible world for an uncertain graph.

The contributions of this paper are summarized as follows.

1. We propose the concept of a triangle-based representative possible world.
2. We propose the TRPW algorithm for finding the triangle-based representative

possible world of an uncertain graph.
3. We carried out extensive experiments and verified that the triangle-based rep-

resentative possible world outperforms the degree-based representative possi-
ble world since it takes more meaningful motif structures into consideration.

2 Preliminaries

In this section we introduce the model of uncertain graphs and review the concept
of degree-based representative possible worlds.

Uncertain Graphs. An uncertain graph is a triple (V,E, P), where V is a set
of vertices, E is a set of edges, and P : E → (0, 1] is a function that assigns an
existence probability value in (0, 1] to every edge in E. The existence probability,
P (e), of an edge e = (u, v) is the probability that e exists between vertices u and v
in practice. As a convention, we denote an uncertain graph by a written letter,
e.g., G, and denote an exact graph by a printed letter, e.g., G. Moreover, we
use V (G), E(G) and PG to denote the vertex set, the edge set, and the existence
probability function of an uncertain graph G, respectively. Analogously, we use
V (G) and E(G) to denote the vertex set and the edge set of an exact graph G,
respectively.

An exact graph G is a possible world of an uncertain graph G if V (G) = V (G)
and E(G) ⊆ E(G). A possible world represents a deterministic structure in
which the uncertain graph may exist in practice. Clearly, there are totally 2|E(G)|

possible worlds for an uncertain graph G. We use G ⇒ G to denote the event that
an uncertain graph G exists in the form of one of its possible worlds G in practice.

286 S. Song et al.

Following the literature [23], we assume that the existence probabilities of edges
of an uncertain graph are independent. Therefore, the probability of G ⇒ G is

Pr(G ⇒ G) =
∏

e∈E(G)

PG(e)
∏

e∈E(G)\E(G)

(1 − PG(e)). (1)

Expected Semantics. Evaluating the structural characteristics of a graph,
e.g., degree distribution, diameter, or vertex centrality, is a fundamental issue in
graph mining, which encompasses many applications in the Internet, the WWW,
social networks, and so on. Note that there are significant differences between an
exact graph and an uncertain graph. The structural characteristics defined for
an exact graph cannot be applied to an uncertain graph. To bridge the gap, the
expected semantics for uncertain graphs has been proposed and widely adopted.

Without loss of generality, we illustrate the expected semantics by considering
the vertex-centric clustering coefficient metric. Let cG(v) denote the clustering
coefficient of a vertex v in an exact graph G. Normally, v has different clustering
coefficients in different possible worlds of an uncertain graph G. It is usually
inconvenient to manipulate the distribution of clustering coefficients of v across
all possible worlds of G. Under the expected semantics, we evaluate the expected
value of the clustering coefficients of v across all possible worlds of G, that is,∑

G:G⇒G dG(v) Pr(G ⇒ G).

Degree-Based Representative Possible Worlds. Since it is infeasible to
enumerate all possible worlds of a large uncertain graph G, people often estimate
the expected value of a structural characteristic metric on N possible worlds
chosen at random, where N � 2|E(G)|. At the extreme when N = 1, Parchars
et al. [13] proposed the concept of a representative possible world, which is based
on the fact that the vertex degree distribution of a graph has a great effect on
its topology properties [11]. Hence, a possible world is said to be representative
if it can well preserve the vertex degree distribution of the uncertain graph in
expectation. To be more precise, let dG(v) denote the degree of a vertex v in an
exact graph G and d̄G(v) the expected value of the degrees of vertex v across all
possible worlds of G. We call d̄G(v) the expected degree of v. More precisely,

dG(v) =
∑

G:G⇒G

dG(v) Pr(G ⇒ G). (2)

The degree-based representative possible world of an uncertain graph G is there-
fore the possible world whose vertex degrees best approximate the expected
degrees of the vertices of G. It is formally defined as follows.

Definition 1. The degree-based representative possible world of an uncertain
graph G is the possible world G∗ of G that minimizes

∑
v∈V (G) |dG∗(v) − dG(v)|.

3 Triangle-Based Representative Possible Worlds

The degree-based representative possible world of an uncertain graph only pre-
serves the expected degrees of vertices. In fact, many other structural properties

Triangle-Based Representative Possible Worlds of Uncertain Graphs 287

except vertex degrees can affect the underlying characteristics of a graph. Among
them, triangle plays an important role. For example, triangles are lying at the
heart of clustering coefficient and of transitivity ratio. Specifically, a triangle is
a cycle consisting of three vertices, which is an important structural motif that
has been frequently observed in a wide variety of real graphs. For example, in
a social network, two friends of a given person are highly likely to be friends
themselves, so the given person and its two friends constitute a triangle. Pre-
serving the distribution of triangles can be a promising approach to well capture
the structural characteristics of the graph. Therefore, we propose the novel con-
cept of a triangle-based representative possible world. Throughout this paper, we
denote a triangle with vertices u, v and w by Δ(u, v, w).

Definition 2. The triangle degree of a vertex v in an exact graph G, denoted
by DG(v), is the number of triangles in G that contains v. More formally,

tG(v) = |{Δ(v, u, w)|u ∈ V (G), w ∈ V (G)}|.
Definition 3. The expected triangle degree of a vertex v in an uncertain graph
G is the expected value of triangle degrees of v across all possible worlds of G.
More formally,

tG(v) =
∑

G:G⇒G

tG(v) Pr(G ⇒ G). (3)

The triangle-based representative possible world of an uncertain graph is the
possible world that best preserves the expected vertex degrees as well as the
expected triangle degrees of all vertices.

Definition 4. The triangle-based representative possible world of an uncertain
graph G is the possible world G∗ of G that minimizes∑

v∈V (G)

|dG∗(v) − dG(v)| +
∑

v∈V (G)

|tG∗(v) − tG(v)|. (4)

Figure 1(a) shows an uncertain graph G. The number beside every edge is the
existence probability of the edge. The pair of numbers beside each vertex are
the expected degree and the expected triangle degree of the vertex. Figure 1(b)
illustrates a possible world of G. The error of the possible world computed by
Eq. (4) is 4.48. The optimal triangle-based representative possible world is shown
in Fig. 1(c). The error of the optimal solution is 2.52. Intuitively, the optimal
solution better captures the structure of G in expectation.

4 Finding Triangle-Based Representative Possible Worlds

In this section we propose the algorithm for finding the triangle-based repre-
sentative possible world G∗ of an uncertain graph G. Section 4.1 presents the
methods for computing the metrics such as expected triangle degree that will be
used in the algorithm. Section 4.2 describes the algorithm.

288 S. Song et al.

v4

(1.7,0.56)

(2.1,0.56) (0.3,0)
v3

v1 v2
(1.5,0.56)

0.8

0.7

0.3

1.0

(a) Uncertain graph.

v4

(0.7,0.56)

(0.9,0.56) (0.7,0)
v3

v1 v2
(0.5,0.56)

(b) Possible world.

v4

(0.3,0.44)

(0.1,0.44) (0.3,0)
v3

v1 v2
(0.5,0.44)

(c) Optimal solution.

Fig. 1. Illustration of triangle-based representative possible worlds.

4.1 Basics

Reference [13] gives a method for computing the expected degree of a vertex in
an uncertain graph, which can be rephrased in the following lemma.

Lemma 1. The expected degree, dG(v), of a vertex v in an uncertain graph G
can be computed by

dG(v) =
∑

w:(v,w)∈E(G)

PG((v, w)). (5)

The expected triangle degree is a structural property that the triangle-based
representative possible world tries to preserve for every vertex of G. The following
lemma gives us a method for computing the expected triangle degree of a vertex.

Lemma 2. The expected triangle degree, tG(v), of a vertex v in an uncertain
graph G can be computed by

tG(v) =
∑

Δ(v,u,w)⊆G
PG((u, v))PG((v, w))PG((u,w)). (6)

Proof. Let Xu,v,w be a random variable such that Xu,v,w = 1 if the trian-
gle Δ(u, v, w) exists in practice and 0 otherwise. Then, we have E[Xu,v,w] =
PG((u, v))PG((v, w))PG((u,w)). Let Xv be the number of triangles containing v
that exists in practice. We have Xv =

∑
Δ(v,u,w)⊆G Xu,v,w. By the linearity of

expectation,

E[Xv] =
∑

Δ(v,u,w)⊆G
E[Xu,v,w] =

∑
Δ(v,u,w)⊆G

PG((u, v))PG((v, w))PG((u,w)).

Moreover, tG(v) = E[Xv]. Thus, the lemma holds. ��
Our algorithm for finding the triangle-based representative possible world

also relies on the expected number of edges and the expected number of triangles
across all possible worlds of uncertain graph G. Let m(G) be the expected number
of edges of G and t(G) be the expected number of triangles of G. Specifically,

m(G) =
∑

G:G⇒G

|E(G)|Pr(G ⇒ G) and t(G) =
∑

G:G⇒G

t(G) Pr(G ⇒ G),

Triangle-Based Representative Possible Worlds of Uncertain Graphs 289

where t(G) is the number of triangles in possible world G.
Reference [13] gives us a method for computing the expected number of edges

of G, which is rephrased in the following lemma.

Lemma 3. The expected number of edges in a random possible world of an
uncertain graph G is computed by

m(G) =
∑

e∈E(G)

PG(e). (7)

We also have the following lemma on the expected number of triangles.

Lemma 4. The expected number of triangles in a random possible world of an
uncertain graph G is

t(G) =
∑

Δ(v,u,w)⊆G
PG((u, v))PG((v, w))PG((u,w)). (8)

Proof. Let Xu,v,w be the random variable as defined in the proof of Lemma 2. We
have E[Xu,v,w] = PG((u, v))PG((v, w))PG((u,w)). Let X be the number of trian-
gles in a randomly chosen possible world of G. We have X =

∑
Δ(v,u,w)⊆G Xu,v,w.

By the linearity of expectation,

E[X] =
∑

Δ(v,u,w)⊆G
E[Xu,v,w] =

∑
Δ(v,u,w)⊆G

PG((u, v))PG((v, w))PG((u,w)).

Thus, the lemma holds. ��

4.2 Algorithm

We now propose the algorithm for finding the triangle-based representative pos-
sible world G∗ of an uncertain graph G. The algorithm consists of two phases.

1. Let i ← 0. Generate a seed graph G0 for the triangle-based representative
possible world G∗. Specifically, G0 consists of all the vertices of G and
m(G)�
edges selected at random from E(G), where m(G) is the expected number of
edges of G that can be computed by Eq. (5).

2. We adjust the structure of Gi to produce a new graph Gi+1 so that the value
of the loss function, i.e., Eq. (4), for Gi+1 is less than that for Gi. Then, we
increase i by 1 and continue to optimize the structure of the new Gi. This
phase terminates as long as no changes to Gi can decrease the loss any more
or i reaches a user-specified threshold.

The pseudocode of the algorithm is illustrated in Algorithm TRPW. We
describe the detailed steps of TRPW as follows.

Phase 1. The first phase corresponds to lines 1–8 of TRPW. For ease of notation,
let Ei be the set of edges of the possible world Gi constructed in the ith iteration

290 S. Song et al.

Algorithm 1. TRPW
Input: an uncertain graph G
Output: an approximate triangle-based representative possible world of G
1: i ← 0; E0 ← ∅
2: m(G) ←∑

e∈E(G) PG(e)

3: sort the edges in E(G) in non-increasing order of their existence probabilities
4: while |E0| < 	m(G)
 do
5: e ← an edge in E(G) \ E0 with the largest existence probability
6: r ← a random number in [0, 1]
7: if r ≤ PG(e) then
8: E0 ← E0 ∪ {e}
9: for i ← 1 to N do
10: pick an edge e1 = (u1, v1) from Ei uniformly at random
11: pick an edge e2 = (u2, v2) from E(G) \ Ei uniformly at random
12: d1 ← the value of Eq. (9)
13: d2 ← the value of Eq. (10)
14: if d1 + d2 < 0 then
15: Ei+1 ← (Ei \ {e1}) ∪ {e2}
16: pick an edge e3 = (u3, v3) from E(G) \ Ei uniformly at random
17: d3 ← the value of Eq. (11)
18: if d3 < 0 then
19: Ei+1 ← Ei+1 ∪ {e3}
20: return (V (G), Ei)

of TRPW. In phase 1, we first initialize E0 to be empty (line 1). Then, we add

m(G)� edges to E0 (lines 3–8). Particularly, we sort all edges of G in non-
increasing order of their existence probabilities (line 3). Then, we iteratively
select an edge e in E(G) \E0 with the largest existence probability and add e to
E0 with probability PG(e) (lines 4–8). Phase 1 is completed when |E0| =
m(G)�.
Phase 2. The second phase corresponds to lines 9–19 of TRPW, which are
executed in iterations. In the ith iteration, we revise the structure of Gi to get
a new possible world Gi+1 so that the error computed by Eq. (4) is decreased.
Particularly, we perform two kinds of operations to update the structure of Gi,
namely, edge substitution and edge insertion.

Operation 1 (Edge Substitution). In this operation, we try to substitute an
edge in Ei with an edge not in Ei to decrease total error. If the substitution can
decrease error, we confirm the substitution. The edge substitution operation is
carried out in lines 10–15 of TRPW. Particularly, we first select an edge e1 =
(u1, v1) from Ei and an edge e2 = (u2, v2) not in Ei both uniformly at random.
To determine whether e1 can be replaced by e2 or not, we need to compute
the change in the value of Eq. (4) supposing that e1 is substituted by e2 (lines
12–13). If the change is less than 0, we substitute e1 by e2 (line 15).

We now describe the computations in lines 12–13. For ease of notation, let
δGi

(v) = dGi
(v) − d(G) and τGi

(v) = tGi
(v) − t(G) for all v ∈ V (G). Suppose we

obtain Gi+1 after substituting e1 by e2. The removal of e1 only decreases the
degrees of u1 and v1, in turn only affecting the degree errors of u1 and v1. More
precisely, δGi+1(u1)−δGi

(u1) = |δGi
(u1)−1|−|δGi

(u1)| and δGi+1(v1)−δGi
(v1) =

|δGi
(v1) − 1| − |δGi

(v1)|.
The insertion of e2 only increases the degrees of u2 and v2, in turn only

affecting the degree errors of u2 and v2. More precisely, δGi+1(u2) − δGi
(u2) =

Triangle-Based Representative Possible Worlds of Uncertain Graphs 291

|δGi
(u2)+1|−|δGi

(u2)| and δGi+1(v2)−δGi
(v2) = |δGi

(v2)+1|−|δGi
(v2)|. For all

other vertices v �∈ {u1, v1, u2, v2}, we have δGi+1(v) = δGi
(v). Thus, the change

of total degree error in Eq. (4) after substituting e1 with e2 is

|δGi(u1) − 1| − |δGi(u1)| + |δGi(v1) − 1| − |δGi(v1)|
+ |δGi(u2) + 1| − |δGi(u2)| + |δGi(v2) + 1| − |δGi(v2)|.

(9)

Similarly, the removal of e1 decreases the triangle degrees of u1, v1 and all
vertices that are adjacent to both u1 and v1. Let c1 be the number of vertices
that are adjacent to both u1 and v1. We have τGi+1(u1) − τGi

(u1) = |τGi
(u1) −

c1| − |τGi
(u1)| and τGi+1(v1) − τGi

(v1) = |τGi
(v1) − c1| − |τGi

(v1)|. For every
vertex w that is adjacent to both u1 and v1, the removal of e1 decreases the
triangle degree of w by 1. Hence, τGi+1(w) − τGi

(w) = |τGi
(w) − 1| − |τGi

(w)|.
The insertion of e2 increases the triangle degrees of u2, v2 and all vertices that

are adjacent to both u2 and v2. Let c2 be the number of vertices that are adjacent
to both u2 and v2. We have τGi+1(u2) − τGi

(u2) = |τGi
(u2) + c2| − |τGi

(u2)|
and τGi+1(v2) − τGi

(v2) = |τGi
(v2) + c2| − |τGi

(v2)|. For every vertex w that is
adjacent to both u2 and v2, the insertion of e2 increases the triangle degree of w
by 1. Hence, τGi+1(w) − τGi

(w) = |τGi
(w) + 1| − |τGi

(w)|. For all other vertices
v �∈ {u1, v1, u2, v2} or v is not adjacent to both u1 and v1 or v is not adjacent to
both u2 and v2, we have τGi+1(v) = τGi

(v). Thus, the change of total triangle
degree error in Eq. (4) after replacing e1 by e2 is

|τGi(u1) − c1| − |τGi(u1)| + |τGi(v1) − c1| − |τGi(v1)|
+ |τGi(u2) + c2| − |τGi(u2)| + |τGi(v2) + c2| − |τGi(v2)|
+

∑

w∈NGi
(u1)∩NGi

(v1)

|τGi(w) − 1| − |τGi(w)|

+
∑

w∈NGi
(u2)∩NGi

(v2)

|τGi(w) + 1| − |τGi(w)|.

(10)

Consequently, the sum of Eqs. (9) and (10) is the change of Eq. (4) after
substituting e1 by e2. If the sum is less than 0, we confirm the substitution of
e1 by e2.

Operation 2 (Edge Insertion). In our experiments, we observe that the num-
ber of triangles in the degree-based representative possible world is far fewer than
the expected number of triangles in the uncertain graph. This is due to the lack
of edges, so this operation inserts new edges without increasing total error. The
edge insertion operation is carried out at lines 16–19. In this operation, we select
an edge e3 not in Ei uniformly at random (line 16) and try to add e3 to Gi. If
the insertion of e3 can decrease the value of Eq. (4), then we add e3 to Gi (line
19). Let e3 = (u3, v3) and c3 be the number of vertices that are adjacent to both
u3 and v3. The insertion of e3 changes the value of Eq. (4) by

|τGi(u3) + c3| − |τGi(u3)| + |τGi(v3) + c3| − |τGi(v3)|
+

∑

w∈NGi
(u3)∩NGi

(v3)

|τGi(w) + 1| − |τGi(w)|. (11)

292 S. Song et al.

If the value of Eq. (11) is less than 0, the insertion of e3 can decrease the error,
so we insert e3 to Gi (line 19).

When Phase 2 completes N iterations, we return the obtained graph GN as
an approximation of the optimal triangle-based representative possible world of
the input uncertain graph G.

Complexity Analysis. We now analyze the time complexity of the TRPW algo-
rithm. Let n = |V (G)| and m = |E(G)|. In Phase 1, computing m(G) requires
O(m) time. Sorting all edges of G in non-increasing order of their existence
probabilities takes O(m log m) time. Then, it takes O(m) time to compute the
expected degrees of all vertices. Moreover, it takes O(m1.5) time to compute the
expected triangle degrees of all vertices. Indeed, we can adapt the triangle count-
ing algorithm in [16] to compute the expected triangle degrees of all vertices.
Particularly, every time when we enumerate a triangle Δ(u, v, w), we accumu-
late PG((u, v))PG((v, w))PG((v, w)) to all of the expected triangle degrees of u,
v and w. Note that the time complexity of the triangle counting algorithm is
O(m1.5). Therefore, we can compute the expected triangle degrees of all vertices
in O(m1.5) time. In every iteration of Phase 2, it takes O(1) time to compute
Eq. (9). Let d be the average degree of vertices of G. It takes O(d) time to
compute both Eqs. (10) and (11). Since Phase 2 is carried out in N iterations,
where N is a large number. Thus, the time complexity of Phase 2 is O(dN).
Consequently, the running time of TRPW is O(m1.5 + dN).

5 Experimental Evaluation

We conducted extensive experiments to compare triangle-based representative
possible worlds with degree-based representative possible worlds and evaluated
the practical performance of the proposed algorithm TRPW.

Experimental Setting. We implemented the TRPW algorithm proposed in this
paper and the algorithms ADR and ABM proposed in [13]. We ran all experiments
on a machine with 4-core 3.10 GHz Intel Core i5 CPU and 8 GB of RAM, running
Windows 8. All experiments were conducted on three publicly available uncertain
graphs, namely Flicker, DBLP and BioMine [13].

– Flicker. This uncertain graph represents a social network, where users can
join common-interest groups and become friends. The probability of an edge
represents homophily, meaning similar interests manifest social bonds [14].
The number of vertices and edges are 24125 and 300836, respectively.

– DBLP. This uncertain graph represents a co-authorship network, where ver-
tices represent authors. If two authors co-authored a paper, there is an edge
between them. The larger the probability of the edge, the more papers the
corresponding two authors have co-authored in the past, and the more likely
they are to cooperate in the future [14]. The number of vertices and edges of
DBLP are 684911 and 2284991, respectively.

Triangle-Based Representative Possible Worlds of Uncertain Graphs 293

– BioMine. This uncertain graph represents a snapshot of biological interac-
tions of the BioMine project. Probabilities are labeled on edges representing
the reliability of interactions between vertices [15]. The number of vertices
and edges of BioMine are 1008201 and 6722503, respectively.

Experimental Results on Degree Distributions. In this experiment, we
compare the distribution of expected vertex degrees of an uncertain graph
with the distributions of vertex degrees of the degree-based representative pos-
sible world and the triangle-based representative possible world, respectively.
Figures 2(a)–(c) plot the distributions obtained on the datasets Flicker, DBLP
and BioMine. Specifically, Fig. 2(d)–(f) magnify the degree distributions within
interval [0, 10]. Figure 2 shows that the degree distribution computed by TRPW,
ADR and ABM are all very close to the distribution of expected degrees. Par-
ticularly, the degree distribution computed by TRPW is slightly closer to the
expected degree distribution. This verifies that the distribution of expected
degrees of an uncertain graph can be well preserved by the distribution of vertex
degrees of the triangle-based representative possible world.

(a) Flicker (b) DBLP (c) BioMine

(d) Flicker (magnified) (e) DBLP (magnified) (f) BioMine (magnified)

Fig. 2. Comparison of vertex degree distributions.

Experimental Results on Triangle Degree Distributions. Similar to the
previous experiment, we compare the distribution of expected triangle degrees
of an uncertain graph with the distributions of triangle degrees of the degree-
based representative possible world and the triangle-based representative pos-
sible world, respectively. Figures 3(a)–(c) show the distributions obtained on
the datasets Flicker, DBLP and BioMine. Figures 3(d)–(f) magnify the triangle
degree distributions within interval [0, 10]. From Fig. 3, we can see that the tri-
angle degree distribution computed by TRPW is closer to the expected triangle

294 S. Song et al.

degree distribution than those computed by ADR and ABM. Hence, the distrib-
ution of expected triangle degrees can be better preserved in the triangle-based
representative possible world.

(a) Flicker (b) DBLP (c) BioMine

(d) Flicker (magnified) (e) DBLP (magnified) (f) BioMine (magnified)

Fig. 3. Comparison of triangle degree distributions.

Experimental Results on Triangle Counts. In this experiment, we com-
pare the expected number of triangles in an uncertain graph with the number
of triangles in the degree-based representative possible world and that in the
triangle-based representative possible world. Figure 4 illustrates that, on all the
datasets Flicker, DBLP and BioMine, the number of triangles in the triangle-
based representative possible world computed by TRPW is significantly closer to
the expected number of triangles than the numbers of triangles in the degree-
based representative possible worlds computed by ADR and ABM.

(a) Flicker (b) DBLP (c) BioMine

Fig. 4. Comparison of triangle counts.

Experimental Results on Clustering Coefficients. In an exact graph G,
the clustering coefficient of a vertex v is defined by the ratio of the number

Triangle-Based Representative Possible Worlds of Uncertain Graphs 295

(a) Flicker (b) DBLP (c) BioMine

Fig. 5. Comparison of distributions of clustering coefficients.

(a) Flicker (b) DBLP (c) BioMine

Fig. 6. Comparison of distributions of shortest path distances.

of triangles that contain v to
(
dG(v)

2

)
, where dG(v) is the degree of v in G. In

an uncertain graph G, the expected clustering coefficient of a vertex v is the
expected value of the clustering coefficient of v across all possible worlds of G.

Figure 5 indicates that the distribution of clustering coefficients computed
by TRPW is significantly closer to the distribution of expected clustering coef-
ficients. Thus, the expected clustering coefficients of all vertices in an uncertain
graph can be well preserved by the triangle-based representative possible world.

Experimental Results on Shortest-Path Distances. Since shortest-path
distances involves all-pair shortest-path computations which leads to expensive
computational cost, we conducted experiments on subgraphs which were pro-
duced by forest fire [7]. Figure 6 shows that the distribution of shortest distances
computed by TRPW is significantly closer to the distribution of expected shortest
path distances than those computed by ADR and ADM. Thus, the distribution
of expected shortest distances between all pairs of vertices in an uncertain graph
can be well captured by the distribution of shortest distances between all pairs
of vertices in the triangle-based representative possible world.

6 Related Work

Uncertain Graph Management and Mining. In recent years many efforts
have been made on managing and mining uncertain graphs, e.g., subgraph search
[18], frequent pattern mining [23], reliability search [6], shortest path queries [5],
and graph clustering [10,24]. The possible world model of uncertain graphs has
been widely used to represent uncertainty in graphs. Under this model, an uncer-
tain graph encodes a probability distribution over all its possible worlds. The

296 S. Song et al.

exponential number of possible worlds often makes many querying processing
and mining problems computationally prohibitive on uncertain graphs.

To tame the hardness of managing and mining uncertain graphs, an effective
approach is sampling [7]. Among all the sampling methods, the Monte Carlo
method is the most widely used one. In this method, a possible world G is sam-
pled with probability Pr(G ⇒ G). To reduce the variance of the estimator, Jin
et al. [5] take advantage of the special constraints of the problem they studied.
Li et al. [8] use stratified sampling to reduce the variance of estimator. However,
the sampling approach generally has two major drawbacks: (1) Sampling a pos-
sible world takes O(m) time, where m is the number of edges in the uncertain
graph; (2) To guarantee that the approximation error exceeds ε with probability
at most δ, we have to sample O(1

ε2 ln 1
δ) possible worlds, where 0 < ε, δ < 1.

Representative Possible Worlds. To deal with the above mentioned draw-
backs of the sampling approach, Parchas et al. [13] proposed the concept of
a representative possible world. The basic idea is to process a query on one
representative possible world instead of on a large number of randomly sam-
pled possible worlds. To make query evaluation accurate, they argued that the
representative possible world should preserve the underlying characteristics of
the uncertain graph. Vertex degree distribution is one of the most fundamental
properties of graphs. Hence, they proposed to capture the intrinsic properties
of the uncertain graph by preserving the degree of each vertex in expectation.
However, they only consider vertex degrees. In this paper, we discover that we
can capture the structural properties even better by considering more complex
motif structures such as triangles.

Motif Structures. Network motifs are subgraphs that repeat themselves in a
specific graph or even among various graphs. They are of notable significance
because they may reflect functional properties [1,2]. Triangle is a special net-
work motif that occurs in almost all graphs. For example, in a social network,
two friends of a given person are highly likely to be friends themselves, so the
given person and its two friends constitute a triangle [17]. The estimation of the
clustering coefficient and the transitivity ratio can be translated to counting the
number of triangles. Newman [12] proposed a model which specified both the
number of edges and the number of triangles. Motivated by these discoveries, we
study how to extract better representative possible worlds by preserving both
vertex degrees and triangle counts.

7 Conclusions

In this paper we first introduce triangle motifs in the formulation of a repre-
sentative possible world and propose the concept of a triangle-based represen-
tative possible world. We propose the TRPW algorithm for finding the triangle-
based representative possible world of an uncertain graph. Our experimental
results verify that the triangle-based representative possible world outperforms
the degree-based representative possible world in preserving the structural char-
acteristics of an uncertain graph in expectation.

Triangle-Based Representative Possible Worlds of Uncertain Graphs 297

References

1. Becchetti, L., Boldi, P., Castillo, C., Gionis, A.: Efficient semi-streaming algorithms
for local triangle counting in massive graphs. In: KDD, pp. 16–24 (2008)

2. Dobrin, R., Beg, Q.K., Barabási, A.L., Oltvai, Z.N.: Aggregation of topological
motifs in the escherichia coli transcriptional regulatory network. BMC Bioinf. 5(1),
10 (2004)

3. Elenberg, E.R., Shanmugam, K., Borokhovich, M., Dimakis, A.G.: Beyond trian-
gles: a distributed framework for estimating 3-profiles of large graphs. In: KDD,
pp. 229–238 (2015)

4. Jin, R., Liu, L., Aggarwal, C.C.: Discovering highly reliable subgraphs in uncertain
graphs. In: KDD, pp. 992–1000 (2011)

5. Jin, R., Liu, L., Ding, B., Wang, H.: Distance-constraint reachability computation
in uncertain graphs. PVLDB 4(9), 551–562 (2011)

6. Khan, A., Bonchi, F., Gionis, A., Gullo, F.: Fast reliability search in uncertain
graphs. In: EDBT, pp. 535–546 (2014)

7. Leskovec, J., Faloutsos, C.: Sampling from large graphs. In: KDD, pp. 631–636
(2006)

8. Li, R., Yu, J.X., Mao, R., Jin, T.: Efficient and accurate query evaluation on
uncertain graphs via recursive stratified sampling. In: ICDE, pp. 892–903 (2014)

9. Liben-Nowell, D., Kleinberg, J.M.: The link-prediction problem for social networks.
JASIST 58(7), 1019–1031 (2007)

10. Liu, L., Jin, R., Aggarwal, C.C., Shen, Y.: Reliable clustering on uncertain graphs.
In: ICDM, pp. 459–468 (2012)

11. Mahadevan, P., Krioukov, D.V., Fomenkov, M., Dimitropoulos, X.A., Claffy, K.C.,
Vahdat, A.: The internet as-level topology: three data sources and one definitive
metric. Comput. Commun. Rev. 36(1), 17–26 (2006)

12. Newman, M.E.J.: Random graphs with clustering. Phys. Rev. Lett. 103(5), 058701
(2009)

13. Parchas, P., Gullo, F., Papadias, D., Bonchi, F.: The pursuit of a good possible
world: extracting representative instances of uncertain graphs. In: SIGMOD, pp.
967–978 (2014)

14. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: k-nearest neighbors in uncertain
graphs. PVLDB 3(1), 997–1008 (2010)

15. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery in
graphs derived from biological databases. In: Leser, U., Naumann, F., Eckman, B.
(eds.) DILS 2006. LNCS (LNBI), vol. 4075, pp. 35–49. Springer, Heidelberg (2006)

16. Chu, S., Cheng, J.: Triangle listing in massive networks. ACM Trans. Knowl. Disc.
Data 6(4), 3123 (2012)

17. Tsourakakis, C.E.: Fast counting of triangles in large real networks without count-
ing: algorithms and laws. In: ICDM, pp. 608–617 (2008)

18. Yuan, Y., Wang, G., Chen, L., Wang, H.: Efficient subgraph similarity search on
large probabilistic graph databases. PVLDB 5(9), 800–811 (2012)

19. Zou, Z., Gao, H., Li, J.: Discovering frequent subgraphs over uncertain graph data-
bases under probabilistic semantics. In: KDD, pp. 633–642 (2010)

20. Zou, Z., Li, J.: Structural-context similarities for uncertain graphs. In: ICDM, pp.
1325–1330 (2013)

21. Zou, Z., Li, J., Gao, H., Zhang, S.: Frequent subgraph pattern mining on uncertain
graph data. In: CIKM, pp. 583–592 (2009)

298 S. Song et al.

22. Zou, Z., Li, J., Gao, H., Zhang, S.: Finding top-k maximal cliques in an uncertain
graph. In: ICDE, pp. 649–652 (2010)

23. Zou, Z., Li, J., Gao, H., Zhang, S.: Mining frequent subgraph patterns from uncer-
tain graph data. IEEE Trans. Knowl. Data Eng. 22(9), 1203–1218 (2010)

24. Züfle, A., Emrich, T., Schmid, K.A., Mamoulis, N., Zimek, A., Renz, M.: Repre-
sentative clustering of uncertain data. In: KDD, pp. 243–252 (2014)

Efficient Query Processing with Mutual Privacy
Protection for Location-Based Services

Shushu Liu1, An Liu1(B), Lei Zhao1, Guanfeng Liu1, Zhixu Li1,2,
Pengpeng Zhao1, Kai Zheng1,2, and Lu Qin2

1 School of Computer Science and Technology, Soochow University, Suzhou, China
anliu@suda.edu.cn

2 School of ITEE, The University of Queensland, Brisbane, QLD, Australia
kevinz@itee.uq.edu.au

Abstract. Data privacy in location-based services involves two aspects.
The location of a user is a kind of private data as many sensitive infor-
mation can be inferred from it given some background knowledge. On
the other hand, the POI database is a great asset to the LBS provider
as its construction requires many resources and efforts. In this paper,
we propose a method of protecting mutual privacy (i.e., the location of
the user issuing a query and the POI database of the LBS provider)
for location-based query processing. Our approach consists of two steps:
data preparation and query processing. Data preparation is conducted by
LBS itself and is totally an offline computation, while query processing
involves some online computation and multiple rounds of communication
between LBS and the user. We implement the query processing by two
rounds of oblivious transfer extension (OT-Extension) on two small key
sets, resulting an immediate response even on some big POI databases.
We also theoretically prove the security and analyze the complexity of
our approach. Compared with two state-of-the-art methods, our app-
roach has several orders of magnitude improvement in response time, at
the expense of little and acceptable communication cost.

Keywords: Privacy · Query processing · Location-based services

1 Introduction

The prevalence of GPS equipped mobile devices and the fast development of
wireless communication technologies stimulate the emergence of location-based
services (LBS). A LBS receives a users’ location and provides that user with
information or services tailored to that location. For example, with the help of
LBS, a user can get answers to various location-based queries, such as the nearest
ATM, restaurant, or retail store to his/her current geographical position. LBS
has a wide range of promising applications [3,11,13,20,21,25,26], however, it
also poses significant privacy risks, as the location information collected from

The original version of this chapter was revised: The authors’ affiliations were
incorrect. This has been corrected. An erratum to this chapter can be found at
10.1007/978-3-319-32049-6 29

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 299–313, 2016.
DOI: 10.1007/978-3-319-32049-6 19

300 S. Liu et al.

users can reveal far more than a user’s latitude and longitude. Knowing where
a user is plus some background knowledge can infer many sensitive information
about individuals, such as home address, health condition, lifestyle habits, and
political attitude. To boost further development of LBS, user privacy must be
protected. On the other hand, a LBS provider typically holds a Points of Interest
(POI) database, based on which the location-based queries can be processed. The
POI database is a great asset to the LBS provider, as building such a database
generally requires many resources and is by no means a trivial task. It is therefore
expected that the privacy of a LBS provider, that is, its POI database, should
also be kept secret. That is, a LBS should only send necessary POI data to
authorized users as the answers to their location-based queries.

A variety of approaches can be used to provide a certain degree of privacy
preserving for location-based queries. Methods such as access control [1,22], mix
zone [2,6], k-anonymity [4,5,14] and dummy location [9,10,23] can prevent LBS
provider from learning the exact position of a user. Specifically, the first three
methods introduce a trusted third party who maintains all users’ location. When
a user wants to do a query, a cloaked area, instead of the exact location of the
user, is generated by the third party and sent to the LBS provider for subsequent
processing. Clearly, this kind of methods is vulnerable to misbehavior of the third
party. To overcome this shortcoming, the method of dummy location abandons
the trusted third party and fills a user’s query with both real and fake POIs. To
achieve a high level of security, however, a lot of extra POIs need to be send to
the LBS provider, resulting in heavy unnecessary communication cost. Besides,
all these approaches ignore the privacy requirement of the LBS provider.

Private Information Retrieval (PIR) is another popular privacy-preserving
technique for location-based queries. It allows a user to retrieve the data he/she
wants from a database, without disclosing the index of the data to the database
server.When simply applyingPIR to location-based queries, theLBSprovider can-
not know the location of the user, but the userwill getmorePOIs than the answer to
his/her query. To deal with this, Yi et al. [7] present a solution based on two encryp-
tion schemes, Paillier and Rabin, which only allows the user to get the exact POIs
to his/her query. Paulet et al. [18] also achieve this goal through a two-stage oper-
ation of Oblivious Transfer (OT) and PIR. However, it is remarkable that, these
approaches have a linear computation cost with the number of POIs, resulting in
a prohibitive long query processing time when the POI database is large.

Following the model presented in [18], we propose an efficient approach for
location-based queries with mutual privacy protection. Our approach has a signifi-
cant improvement in online performance by executing two rounds of OT extension
on two small key sets. To reduce online query processing cost, the LBS provider
constructs a private grid and a public grid index for its POI database. Every cell
in both grids is encrypted by a different symmetric key. During the online phase
of query processing, the user obtains the key of the cell of the public grid where
he/she is located. With this target cell, the user can get the key of the cell of the
private grid where he/she is located, and thus retrieves the required POIs eventu-
ally. Notice that in this procedure, the user can only obtain one specific key from
the LBS provider, so he can only decrypt the necessary POIs. Hence, our approach
guarantees data privacy for both the user and the LBS provider.

Efficient Query Processing with Mutual Privacy Protection 301

The rest of the paper is organized as follows. Section 2 discusses some
recent achievements in privacy preserving LBS. Section 3 presents our approach
for location-based queries processing with mutual privacy protection. Section 4
analyses the computation cost and the communication cost of our approach. We
report experimental results in Sect. 5 and conclude our work in Sect. 6.

2 Related Work

The public concern over privacy stimulated lots of research efforts in privacy pre-
serving LBS. And the privacy-preserving computation of trajectory [12] is an
extension of LBS. An early step in protecting user’s location privacy is notifying
and requesting user for the usage of their location. Information access control [1,22]
is a technique used to protect location information gathered by location tracking
systems. It requires the location of user are gathered and relies on LBS provider to
restrict access to stored location information through rule-based polices. But it’s
vulnerable when the third party who maintains all user locations misbehaves.

Mix zone [2,6], k-anonymity [4,5,14] and dummy location [9,10,23] solve this
problem by hiding user’s location into some bigger zone or more records so that
LBS provider can not locate the exact position of user. Both mix zone and k-
anonymity use a trusted third party which is in charge of user’s location and
assign user with cloaked query by which user can query LBS provider without
revealing the exact location of them. In this situation, k-anonymity is effected
heavily on the distribution and density of the users, which, are out of control
and the balance of privacy and precision is another difficult problem need to be
solved. Dummy location is completed by sending many random locations along
with user’s query, though dummy location does not rely on any third party, the
LBS provider still can restrict the user in a small space of the total domain,
which leads to a weak privacy.

Private information retrieval (PIR) [7,17,18] based LBS is a new scheme
which can provide a stronger cryptographic guarantees than former techniques.
Both access control, mix zone and k-anonymity are vulnerable for the employ
of third party who maintains all user locations. Also, k-anonymity is effected
heavily on the distribution and density of the users, which, are out of control.
LBS queries based on dummy locations in [23] incurs both computation and
communication overhead for client. However, most of issues overhead can be
solved by the introduction of PIR-based LBS queries. PIR is a technique which
allows a user to retrieve data from a database, without disclosing the index to
the database server. A PIR-based LBS queries usually require two stages. In
the first stage, the mobile user retrieves the index of his location from the LBS
provider. In the second stage, the mobile user retrieves the POIs according to
the index from the LBS provider.

In [7], Ghinita et al. used Computational PIR [8] which is based on the
Quadratic Residuosity Assumption which states that it is computationally hard
to find the quadratic residues in modulo arithmetic of large composite number
n where the factorization of n is unknown. The proposed method for nearest

302 S. Liu et al.

neighbors consists of two stages just as discussed before: determining the index
of a public grid and retrieving the value of target cell with PIR. It is a secure and
efficient approach for privacy preserving LBS queries if we only care about the
privacy of user, but it is not appropriate when we not only care about LBS’s not
learning anything about user’s query, but also want user not to learn anything
about other data in LBS’s database other than the one she queried. Since with
PIR scheme, client can also infer the data which in the same column with the
target item.

One way to deal with the problem of data leakage is to encrypt all the data
needed to be transferred. [24] proposed by Yi et al. accomplishes this objective by
the combination of Paillier Homomorphic encryption scheme [16] and the Rabin
encryption scheme [19]. Initially, LBS divides the location based database into
cells with the same size, and collects k nearest POIs in each cell.After that, user
just need to retrieval the data of target grid without compromising the privacy
of both user and LBS. At first, user generates an encrypted query with Paillier
and Rabin and sends it to LBS. LBS generates response by linearly computation
on all data and sends the encrypted response back. Then, user can and only can
get the target item decrypted with his private key. However, this method has a
big computation cost for the usage of two encryption scheme and is not practical.

Another way realized this goal is introduced by Paulet et al. in [18], same to [7],
this protocol is also organized according to two stages. In the first stage, the user
determines his/her location within a public grid, using oblivious transfer (OT)[15].
This data contains both the ID and associated symmetric key for the block of
data in the private grid. In the second stage, the user executes a communicational
efficient PIR, to retrieve the appropriate block in the private grid which can be
decrypted with the symmetric key obtained in the first stage. The property of
oblivious transfer and PIR preserved the privacy of user. The data privacy of LBS
can also be preserved, for all data of LBS are encrypted and user only has the key
for target block.

3 Privacy-Preserving Location-Based Query Processing

3.1 System Model

In this paper, we simply adopt the system model proposed in [18] as the foun-
dation of our work. As shown in Fig. 1, there are three types of entities in the
model: a set of users, a mobile service provider (SP), and a location server (LS).
LS holds a POI database and provides some location-based services that are con-
sumed by the users. The POI database consists of ρ POI records, each of which
gives the coordinate (i.e., longitude and latitude) of a position and a description
about what is at the position. SP is responsible for establishing and maintain-
ing the communication between LS and the users. We also take the reasonable
assumption made in [18] where SP is considered to be a passive entity that is
not allowed to collude with LS. This is because, if a user wants to consume some
LBS, he/she has to endow SP with the authority to collect the whereabouts of

Efficient Query Processing with Mutual Privacy Protection 303

Mobile Service Provider Location Server

User

Server

Fig. 1. System model

his/her mobile device. In this case, any method for user privacy protection will
be definitely overthrew provided that SP is allowed to collude with LS.

By excluding the possibility of collusion between SP and LS, we consider
only two possible adversaries. When LS is an adversary, he/she tries to get the
position of the users based on their location-based queries. When a user is an
adversary, he/she tries to obtain more POI data than the necessary answer to
his/her location-based queries. Hence, the objective of our work presented in
this paper is to design a method that can protect mutual privacy (i.e., the user’s
location and LS’s POI data) when processing location-based queries.

3.2 Approach Overview

Figure 2 gives an overview of our approach to the problem of location-based
query processing with mutual privacy protection. Our approach consists of two
steps: data preparation and query processing. Data preparation is conducted by
LS itself and is totally an offline computation, while query processing involves
some online computation and multiple rounds of communication between LS and
the user. Table 1 summarizes the notations in our paper.

Data preparation. LS first constructs a quadtree as the spatial index of his/her
POI database, based on which the quadtree subdivision of the whole region,
denoted as grid Q, can be made directly. Every leaf of the quadtree has at most
d POIs, which means every cell in Q has also at most d POIs. For these cells
having fewer than d POIs, LS adds dummy POIs as placeholders. Besides the
private grid Q, LS also generates a public grid P by dividing the whole region
into m × m cells where m = 2h−1 and h is the height of the quadtree. Clearly,
every cell Pi in grid P must be located in exactly one cell Qj in grid Q. Based
on this observation, every cell Pi in P stores the index j of its corresponding cell
Qj in Q. To keep his/her POI data secret, LS encrypts both the private grid Q
and the public grid P . In particular, every cell Qj (i.e., the d POIs in that cell) is
encrypted by a key QKj and every cell Pi (i.e., the index of its corresponding cell
in grid Q) is encrypted by a key PKi. More details about data encryption will be

304 S. Liu et al.

Fig. 2. Overview of privacy preserving location-based query processing

given in the next subsection. The two encrypted grids E(P) and E(Q), together
with m, are sent to all users who want to consume location-based services.

Query Processing. According to the value of m and his/her coordinates (note
that the coordinates are just the input of location-based queries), it is quite easy
for a user u to determine Pi, the cell of the public grid P where he/she is located

Efficient Query Processing with Mutual Privacy Protection 305

Table 1. Summary of notations

Notation Definition Notation Definition

P public grid Q private grid

M number of cells in gird P N number of cells in grid Q

E(P) encrypted public grid E(Q) encrypted private grid

α bit length of data in a cell of P β bit length of data in a cell of Q

PK keys to encrypt data in P QK keys to encrypt data in Q

d leaf capacity of quadtree φ log2 M + log2 N

in. Holding the index of cell Pi, the user is able to obtain the encryption key
PKi for Pi by running an oblivious key transfer protocol with LS. Note that,
this key is also the decryption key for Pi (more details will be discussed later),
so the user can immediately perform decryption locally and get the index of Qj ,
the cell of the private grid Q where he/she is located in. Once the index of cell
Qj is decided, the user performs the oblivious key transfer protocol again to get
the encryption key QKj for cell Qj . By decrypting E(Qj) with the key QKj , the
user can obtain the POIs contained in cell Qj , which is just the answer to his/her
location-based query. Note that, the oblivious key transfer protocol ensures LS
cannot learn the index of the cell where the user is located in, while the user
cannot obtain more keys than the one for the cell where he/she is located in,
thus protecting mutual privacy.

3.3 Protocol

Algorithm 1 shows our protocol of location-based query processing with mutual
privacy protection. Recall that grid P has M = m ∗ m cells, each of which
contains an α-bits integer PI , indicating the index of the corresponding cell in
the private grid Q. The number of cells in grid Q depends on the POI database
and is assumed to be N . Each cell in grid Q has d POIs (including dummy
POIs), and their information such as the coordinates is represented as a string
of bits, denoted as an β-bits integer QJ . To encrypt PI for 1 ≤ I ≤ M , LS
generates l random pairs of keys (PK0

1 , PK1
1), (PK0

2 , PK1
2), · · · , (PK0

l , PK1
l)

where l = log2 M . For a given I, its binary representation (i1, i2, · · · , il) is used
as the selection bits to select l keys from the l pairs of keys. The exclusive-OR of
the l selected keys,

⊗l
k=1 PKik

k , is given to a pseudorandom generator H (which
is typically implemented as secure hash function such as SHA-1) to produce an
α-bits pseudorandom string. The encryption of PI is completed by computing the
exclusive-OR of PI and the pseudorandom string. QJ can be likewise encrypted,
as seen from lines 6-7. The encrypted grids E(PI) and E(QJ) are sent to u when
u has a stable and fast network such as Wi-Fi, which completes the offline stage
of our protocol.

In the online stage, u can determine the cell in the public grid P where
he/she is located in based on his/her current coordinates. Based on the index of
the cell, u can obtain the l keys that are used to encrypt the cell by running an

306 S. Liu et al.

obvious key transfer protocol (see Algorithm 2), which is built on the oblivious
transfer extension protocol presented in [15]. The pseudorandom string used for
encryption can be reproduced by the same H function provided that the same
seed is given to H, so the decryption can be easily done after u gets these l keys.
Once the index of the cell where u is located in the private grid Q is known by
u, he/she can run the key transfer protocol again to get the keys for that cell,
based on which QJ can be decrypted to retrieve the POIs in that grid, which is
just the answer to u’s query.

Algorithm 1. Query Processing with Mutual Privacy Protection
Input: LS holds a POI database, user u holds his/her coordinates
Output: u gets a set of POIs which are close to his/her position

1: Offline:
2: LS constructs a quadtree based on the POI database
3: LS builds the private grid Q and public grid P based on the quadtree
4: LS generates l random pairs of keys (PK0

1 , PK1
1), (PK0

2 , PK1
2), · · · ,

(PK0
l , PK1

l) where l = log2 M
5: LS computes E(PI) ← H(

⊗l
k=1 PK

ik
k , α) ⊗ PI for 1 ≤ I ≤ M , where

(i1, i2, · · · , il) is the binary representation of I

6: LS generates l′ random pairs of keys (QK0
1 , QK1

1), (QK0
2 , QK1

2), · · · ,
(QK0

l′ , QK1
l′) where l′ = log2 N

7: LS computes E(QJ) ← H(
⊗l′

k=1 QKjk
k , β) ⊗ QI′ for 1 ≤ I ′ ≤ N , where

(j1, j2, · · · , jl′) is the binary representation of J
8: LS sends E(PI) and E(QJ) to u

9: Online:
10: LS and u run the key transfer protocol (see Algorithm 2) to let u get l keys

PKi1
1 , PKi2

2 , · · · , PK
il
l

11: u gets j by decrypting E(Pi), that is, computing H(
⊗l

k=1 PKik
k , α) ⊗ E(Pi)

12: LS and u run the key transfer protocol again to let u get l′ keys

QKj1
1 , QKj2

2 , · · · , QK
jl′
l′

13: u gets Qj (i.e., a set of POIs) by decrypting E(Qj), that is, computing
H(
⊗l

k=1 QK
ik
k , β) ⊗ E(Qj)

3.4 Correctness and Security Analysis

We first prove the utility of our proposed protocol which means the POIs user
obtained are exactly the nearest POIs to user. Then, we prove that our protocol
is secure for both user and LBS. LBS can not infer any information about user,
the same, user can get no more information about LBS than the POIs he/she
has requested.
Theorem 1 (Correctness). Assume that user and LBS follow Alogrithm 2
correctly. LBS holds l pairs of keys (K0

1 ,K1
1), (K0

2 ,K1
2), · · · , (K0

l ,K1
l) and user

Efficient Query Processing with Mutual Privacy Protection 307

Algorithm 2. Key Transfer
Input: LS holds l pairs of keys (K0

1 , K1
1), (K0

2 , K1
2), · · · , (K0

l , K1
l);

User u holds an index I whose binary representation is (i1, i2, · · · , il)

Output: (Ki1
1 , Ki2

2 , · · · , K
il
l) hold by u

Preliminaries: This algorithm operates over a group Zq of prime order. More
specifically, Gq can be a subgroup of order q of Z∗

p , where p is prime and q|(p − 1). Let
g be a generator group, for which the computational Diffie-Hellman assumption holds.

1: LS chooses a random element e ∈ Zq and sends it to u
2: u selects l random elements {γ1, γ2, · · · , γl}, where 1 ≤ γj ≤ q for 1 ≤ j ≤ l

3: u sets two keys K
ij
j = gγj and K

1−ij
j = e/K

ij
j for 1 ≤ j ≤ l

4: u sends all K0
j to LS, for 1 ≤ j ≤ l

5: LS chooses a random μ, and computes eμ and gμ

6: LS computes (K0
j)μ and (K1

j)μ = eμ/(K0
j)μ, for 1 ≤ j ≤ l

7: LS computes E0
j = H((K0

j)μ, β) ⊗ K0
j and E1

j = H((K1
j)μ, β) ⊗ K1

j , for 1 ≤ j ≤ l

8: LS sends gμ and the encrypted message Ej = (E0
j , E1

j) to u, for 1 ≤ j ≤ l

9: u decrypts K
ij
j = H((gμ)γj , β) ⊗ E

ij
j , for 1 ≤ j ≤ l

u holds an index I whose binary representation is (i1, i2, · · · , il), we will prove
that the result (Ki1

1 ,Ki2
2 , · · · ,Kil

l) which is obtained by user u according to
protocol is equal to (QKi1

1 , QKi2
2 , · · · , QKil

l) which is exactly the value user u
wants.
Proof. Firstly, according to line 9 of key transfer,

Kik
k = H((gμ)γk , β) ⊗ Eik

k

for the value of ik(1 ≤ k ≤ l), the binary representation of I, is either 0 or 1,
and we will discuss the process with two cases:

1:when ik = 0, the value user u wants is QKik
l = K0

k . Next, our job is to
prove that the value Kik

k which user obtained according to the protocol is K0
k

too. Firstly, user u sets the value of K0
k and K1

k as (line 3):

K0
k = gγk ,K1

k = e/K0
k

then u sends K0
k = gγk to LS (line 4), so we have H((gμ)γk , β) =

H((K0
k)μ), β), furthermore,

H((gμ)γk , β) ⊗ Eik
k = H((gμ)γk , β) ⊗ H((K0

k)μ), β) ⊗ K0
k

according to the property of exclusive,

H((gμ)γk , β) ⊗ H((K0
k)μ), β) ⊗ K0

k = K0
k

eventually, we have Kik
k = K0

k = QKik
k .

2:when ik = 1, the proof is just a copy to ahead, so we give the analytical
procedure directly:

Kik
k = H((gμ)γk , β) ⊗ Eik

k = H((gμ)γk , β) ⊗ H((K1
k)μ), β) ⊗ K1

k = K1
k = QKik

k

308 S. Liu et al.

It is proved that for the k-th query of I, Kik
k is the right response for either

ik = 0 or ik = 1. So, for all 1 ≤ k ≤ l, Kik
k = QKik

k .
Based on the correctness of key transfer, it’s easy to verify the correctness

of our proposed privacy preserving query processing. According to Algorithm1,
LBS sends both encrypted grids P and Q to u. If u gets the right key from LS to
decrypt the target grid within P , then he gets the index of Q. The same, right
key for Qj , guarantees that u can decrypt the right POI records, and get the
right POIs eventually.

Security Model. We assume that LS and client are both semi-honest, also
known as “honest but curious”. They run the protocol exactly as specified (no
deviations, malicious or otherwise), but may try to learn as much as possible
about the input of the other party from their views of the protocol.

It should be noted that though secure protocols against malicious adver-
saries exist, they are far too inefficient to implement and be used in practice.
Secure protocols against semi-honest adversaries, however, are not only useful in
practice but also the foundation of designing secure protocols against malicious
adversaries.As we mentioned ahead, by excluding the possibility of collusion
between SP and LS, we consider only two possible adversaries.

Security of u. When LS is an adversary, he/she tries to get the position of
the users based on their location-based queries. However, the privacy of u is
preserved, since the value that he/she sends to LS is out of distinguishing whether
it was chosen directly at random or as e/K0

j for random K1
j . LS gets no more

information than random value K0
j .

Security of LS. In the preliminaries, we have the requirement that u cannot
know the discrete logarithms of both K0

j and K1
j , since this would reveal to u the

discrete logarithm of e. Therefore, the Diffie-Hellman assumption implies that u
cannot predict any value of (K0

j)
μ and (K1

j)
μ too. Based on the random oracle

assumption, it ensures that u can not distinguish H((K0
j)

μ) either H((K1
j)

μ)
from random, and so is the encrypted message E0

j and E1
j . Thus u can get no

more POI data except the one he/she has required. The privacy of LS can be
preserved.

4 Performance Analysis

In this chapter, we analyze the computation and communication cost of our
approach. As the most expensive operations in our approach are modular expo-
nentiation (EXP) and hash functions (HASH), we focus on the number of times
they are required. Table 2 summarizes the performance of our approach where φ
equals to log2 M + log2 N .

4.1 Computation Cost

According to the protocol, our privacy preserving location-based query process-
ing consists of two steps, data preparation and query processing. In the step of

Efficient Query Processing with Mutual Privacy Protection 309

Table 2. Performance analysis of our protocol

Computation cost Communication cost

LS user Mα + Nβ + 2v + (2w + v)φ

Data Preparation N+M HASH, 4 EXP 0

Query Processing 2φ HASH, φ EXP φ HASH, 2φ EXP

data preparation, the main computation cost comes from the encryption of two
grids, P and Q. Recall that P and Q have M and N cells respectively, and each
cell is encrypted via a secure hash function. Therefore, the computation cost of
data preparation is M + N hashes.

The step of query processing requires two rounds of key transfer. To simplify
discussion, we first assume the query of user u can be represented by 1-bit
integer i. As seen from line 3 of Alogrithm 2, either K0 or K1 is set to gγ by
one exponentiation. After that, u sends the K0 to LS, and LS reconstructs the
key (K0)μ by one exponentiation (see line 6 of Alogrithm2). Next, 2 hashes are
used to encrypt original messages (K0,K1) by LS (see line 7 of Alogrithm 2).
To extract message Ki from Ei (see line 9 of Alogrithm 2), one exponentiation
is needed for the computation of (gμ)γ and one hash for key.

Recall that each grid of P and Q is represented by an α-bits and β-bits
integer, respectively. Consequently, the number of key pairs, l, of P is log2 M
and log2 N for Q. Hence, to transfer log2 M keys for P and log2 N keys for Q,
LS needs 4 exponentiations offline and φ exponentiations adds 2φ hashes online,
while u needs 2φ exponentiations and φ hashes, where φ = log2 M + log2 N .

4.2 Communication Cost

At the end of data preparation, LS sends the encrypted grids E(P) and E(Q)
to u (see line 8 in Algorithm 1). Since P has M grids with α bits for each
grid, and Q has N grids with β bits of each grid, the size of encrypted grids P
and Q are Mα and Nβ respectively. By taking advantage of hash function, the
length of encrypted grids E(P) and E(Q) remains Mα and Nβ. Therefore, the
communication cost of data preparation is Mα + Nβ.

Before discussing the communication cost of query processing, it is important
to distinguish between the length of the input element, and the length of group
element v (which is typically 1024 bits long). With l pairs of keys as the input,
the data from user to LS is composed of l group elements K0

j (1 ≤ j ≤ l) (see line
4 in Alogrithm 2), and the data from LS to user is composed of a group element
gμ and 2l encrypted messages E = (E0

j , E1
j) in the size of input (see line 8 in

Alogrithm 2).
In the two rounds of key transfer, the length of key which is used to encrypt

grid P and Q is set to w (which is typically 80 bits), which means the length
of input element is w bits. As the number of key pairs, l, during key transfer
is log2 M and log2 N , the communication cost is vφ bits from user to LS and
2v + 2wφ bits from LS to user.

310 S. Liu et al.

5 Experimental Evaluation

In this section, we present experimental evaluations of our approach on a syn-
thetic dataset. We implement the methods proposed in [18,24], and compare
them with our approach. All experiments are performed on a PC with 3.2 GHz
CPU, 8 GB RAM, JDK 7 and Win 7. The synthetic dataset is a 1000*1000
region with uniformly distributed POIs, each of which is represented by a 64-
bits integer. The key size to pseudo-random function H is set to 80. We have
two variables in the experiment, the number of POIs, N , and the leaf capacity
of quadtree d. d is set to 15 while N varies from 20k to 100k with a step of 20k.
N is set to 50k when d varies from 5 to 25 with a step of 5.

20k 40k 60k 80k 100k
 0

 5

 10

 15

 20

 25

Number of POI

Ti
m

e
(s

ec
)

Our Protocol
Paulet et al.
Yi et al.

5 10 15 20 25
 0

 5

 10

 15

 20

 25

 30

Leaf Capacity of QuadTree

Ti
m

e
(s

ec
)

Our Protocol
Paulet et al.
Yi et al.

Fig. 3. Online response time of three approaches

It is clear from Fig. 3 that our approach has the best performance in terms
of online response time. Using our approach, queries on all datasets can be
responded in less than 0.1 s, even for the biggest dataset with 100k POIs. In
contrast, though the method of Paulet et al. can return answers within 1 s on
the dataset with 20k POIs, it takes more time when N becomes bigger or d
becomes smaller. For example, when N = 50k and d = 5, it takes about 18 s
which is unacceptable in practice. The method proposed by Yi et al. needs 5 s
even on the smallest dataset with 20k POIs.

Clearly, with the increasing number of POIs or decreasing number of leaf
capacity, both grids Q and P have more cells, which results in the increase
of both computation and communication cost. However, our approach in the
phase of online computation works only on (log2M + log2N) pairs of keys, so
the increase of POIs can be largely overlooked which means our approach has a
good scalability. Besides, LS needs to send users the encrypted E(P) and E(Q)
whose size is linear with M + N . Hence, the increase of POIs or the decrease of
leaf capacity will both lead to a linear increase of communication cost.

Figure 4 shows the communication cost of three approaches. Clearly, the com-
munication cost of our approach is not the best, but it is the cost for a significant
improvement in online response time. Further, the increase of communication
cost is totally acceptable in practice. For example, for the biggest dataset with

Efficient Query Processing with Mutual Privacy Protection 311

20k 40k 60k 80k 100k
 0

 1

 2

 3

 4

 5

Number of POI

C
om

m
un

ic
at

io
n

(M
B)

Our Protocol
Paulet et al.
Yi et al.

5 10 15 20 25
 0

 2

 4

 6

 8

 10

 12

 14

Leaf Capacity of QuadTree

C
om

m
un

ic
at

io
n

(M
B)

Our Protocol
Paulet et al.
Yi et al.

Fig. 4. Communication cost of three approaches

100k POIs, the communication cost of our approach is only about 12 MB, which
is affordable in a stable and fast network such as Wi-Fi.

We also notice that our approach and the method of Paulet et al. both need
to encrypt some data beforehand to protect the data privacy of LS. Figure 5
shows the time of data preparation. Clearly, our approach needs less time than
the method of Paulet et al. In particular, our approach can be finished in 10 s
for a dataset with 100k POIs. That is, even with the time of data preparation,
a new user can get response in seconds using our approach.

20k 40k 60k 80k 100k
 0

 5

 10

 15

 20

Number of POI

Ti
m

e
(s

ec
)

Our Protocol
Paulet et al.

5 10 15 20 25
 0

 10

 20

 30

 40

Leaf Capacity of QuadTree

Ti
m

e
(s

ec
)

Our Protocol
Paulet et al.

Fig. 5. Data preparation cost

In conclusion, the empirical study shows that our approach based on two
rounds of OT transfer has a great improvement in online response time. Specif-
ically, our approach can provide mutual privacy protection for location-based
queries in less than 0.1 s with a communication cost less than 12 MB even for
a dataset of 100k POIs. Therefore, our protocol is both computational efficient
and communicational efficient.

312 S. Liu et al.

6 Conclusion

In this paper, we propose an efficient approach to protecting mutual privacy in
location-based queries. We achieve the goal by performing two rounds of OT
extension on two small key sets. We theoretically prove the security and ana-
lyze the complexity of our approach. Compared with state-of-the-art work, our
approach has several orders of magnitude improvement in online response time,
only at the expense of little and acceptable communication cost. Empirical study
shows that our approach is both computational efficient and communicational
efficient.

Acknowledgment. This work was partially supported by Natural Science Foundation
of China (Grant Nos. 61572336, 61572335, 61532018, 61402313, 61402312, 61303019),
and Natural Science Foundation of Jiangsu Province (Grant No. BK20151223).

References

1. Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-
vasive Comput. 2(1), 46–55 (2003)

2. Bettini, C., Wang, X.S., Jajodia, S.: Protecting privacy against location-based
personal identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol.
3674, pp. 185–199. Springer, Heidelberg (2005)

3. Bettini, S.M.C.: A comparison of spatial generalization algorithms for LBS privacy
preservation. In: MDM, pp. 258–262 (2007)

4. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries
in mobile environments with privacygrid. In: WWW, pp. 237–246 (2008)

5. Chow, C.Y., Mokbel, M.F., Liu, X.: A peer-to-peer spatial cloaking algorithm for
anonymous location-based service. In: SIGSPATIAL, pp. 171–178 (2006)

6. Gedik, B., Liu, L.: Location privacy in mobile systems: a personalized anonymiza-
tion model. In: ICDCS, pp. 620–629 (2005)

7. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.L.: Private queries
in location based services: anonymizers are not necessary. In: SIGMOD, pp. 121–
132 (2008)

8. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, p. 364 (1997)

9. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique
using dummies for location-based services. In: ICPS, pp. 88–97 (2005)

10. Krumm, J.: A survey of computational location privacy. Pers. Ubiquit. Comput.
13(6), 391–399 (2009)

11. Liu, G., Wang, Y., Orgun, M.A.: Optimal social trust path selection in complex
social networks. AAAI 10, 1397–1398 (2010)

12. Liu, A., Zhengy, K., Liz, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity
computation on encrypted trajectory data. In: ICDE, pp. 66–77 (2015)

13. Myles, G., Friday, A., Davies, N.: Preserving privacy in environments with location-
based applications. JPCC 2(1), 56–64 (2003)

14. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The new Casper: query processing for
location services without compromising privacy. In: VLDB, pp. 763–774 (2006)

15. Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)

Efficient Query Processing with Mutual Privacy Protection 313

16. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

17. Papadopoulos, S., Bakiras, S., Papadias, D.: Nearest neighbor search with strong
location privacy. PVLDB 3(1–2), 619–629 (2010)

18. Paulet, R., Kaosar, M.G., Yi, X., Bertino, E.: Privacy-preserving and content-
protecting location based queries. TKDE 26(5), 1200–1210 (2014)

19. Rabin, M.O.: Digitalized signatures and public-key functions as intractable as fac-
torization, MIT Lab for Computer Science, Technical report (1979)

20. Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: PNN query processing
on compressed trajectories. GEOINFORMATICA 16(3), 467–496 (2012)

21. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized
trajectory matching in spatial networks. VLDB J 23(3), 449–468 (2014)

22. Youssef, M., Atluri, V., Adam, N.R.: Preserving mobile customer privacy: an access
control system for moving objects and customer profiles. In: MDM, pp. 67–76
(2005)

23. Yiu, M.L., Jensen, C.S., Huang, X., Lu, H.: SpaceTwist: managing the trade-offs
among location privacy, query performance, and query accuracy in mobile services.
In: ICDE, pp. 366–375 (2008)

24. Yi, X., Paulet, R., Bertino, E., Varadharajan, V.: Practical k nearest neighbor
queries with location privacy. In: ICDE, pp. 640–651 (2014)

25. Zheng, K., Zheng, Y., Yuan, N.J., Shang, S., Zhou, X.: Online discovery of gath-
ering patterns over trajectories. TKDE 26(8), 1974–1988 (2014)

26. Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects.
VLDB J 21(5), 729–751 (2012)

Semantic-Aware Location Privacy Preservation
on Road Networks

Yanhui Li1(B), Ye Yuan1, Guoren Wang1, Lei Chen2, and Jiajia Li3

1 Northeastern University, Shenyang, China
yliboneu@gmail.com

2 Hong Kong University of Science and Technology, Hong Kong, China
3 Shenyang Aerospace University, Shenyang, China

Abstract. In this paper, we address the topic of location privacy preser-
vation of mobile users on road networks. Most existing techniques of
privacy preservation rely on structure-based spatial cloaking, but pay
little attention to location semantic information. Yet, location semantic
information may disclose sensitive information about mobile users. Thus,
we propose CloSed, a semantic-awareness privacy preservation model to
protect users’ privacy from violation. We design cloaked sets that should
cover different semantic regions of road networks as well as satisfy quality
of service (QoS). As the problem of calculating the optimal cloaked set
is NP-hard, we design a greedy algorithm that balances QoS and privacy
requirements. Extensive experiments evaluations demonstrate the effi-
ciency and effectiveness of our proposed algorithm in providing privacy
guarantees on large real-world datasets.

1 Introduction

Advances in positioning technologies along with the tremendous popularity of
mobile devices have resulted in the widespread adoption of location-based ser-
vices (LBS) on road networks. Examples of these applications include navigation
services, identification of points of interest (POIs), and receiving traffic alerts or
notifications. While enjoying the convenience of LBS, however, users also face
significant risks of privacy leakage [23]. Adversaries can exploit user location
information for such nefarious purposes as stalking, spamming, and inferring
political/religious affiliations or alternative lifestyles.

The state-of-the-art for protecting the positions of LBS users over road net-
works is based on the model of segment l-diversity [3,26]. In this model, the
actual user position is replaced by a set of segments, i.e., edges in a road net-
work, and the number of segments indicates the degree of diversity. Though this
solution can satisfy most privacy-preservation requirements, it cannot resist the
types of semantic homogeneity attacks illustrated by the following example.

Example 1. Consider a scenario in Fig. 1. A patient, named Bob, asks for services
through his GPS-enabled mobile phone from road e1. To prevent Bob’s location
from leakage, the approach based on segment l-diversity cloaks Bob’s walking
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 314–331, 2016.
DOI: 10.1007/978-3-319-32049-6 20

Semantic-Aware Location Privacy Preservation on Road Networks 315

e11

e3

e23

e15
e18

e21
e16

e14

e19

e22

e24

e12 e28

e10

e27

e30
e7

e29

e8

e6e31

e9

v5v1 v14

v2

v3

v4

v7

v8

v19

v16

v11

v6 v13

v12

v20
v10

e1 e2 e20

e17

e4
e5

e13

v15

v18
v17

e26

e25
v9

(a) Simplified Road Network

Edge id S _ label
e1 hospital
e2 bank

e3 school

e4 hospital

Edge id S _ label Edge id S _ label
e5 hospital e9 shop
e6 church e10 market

e7 police e11 church

e8 club

(b) Mapping Table

Fig. 1. Semantic road network

road with other nearby roads [3,26]. In our example, we assume that l = 3,
and then the cloaked set may be {e1, e4, e5}. Unfortunately, it is easy for an
adversary to infer that Bob is in the hospital, since all roads e1, e4, and e5 have
the homogeneous semantics, namely hospital. Hence, even though Bob’s location
is seemingly obfuscated, it can be inferred by a semantic homogeneity attack.

Although some techniques have been proposed to resist semantic homogene-
ity attacks [6,16,28] over road networks, they have different limitations. The
solutions proposed in [16] have a deterministic property for its cloaked areas, so
it is subject to reverse engineering attacks, e.g., a replay privacy attack [26]. The
offline approaches of [6,28] cannot support the privacy requirement update due
to their cloaked sets being generated a priori for a particular privacy require-
ment. Changes in mobile users’ privacy requirements are frequent, thus seriously
threatening the applicability of these approaches. The work [28] also presents an
online cloaking algorithm to protect sensitive semantic information. However,
the cloaking cost is expensive due to considering velocity-based linkage attacks
which is out of our scope.

To solve the problem highlighted in Example 1 and overcome the drawbacks of
methods above, we propose CloSed, a semantic-aware privacy-preserving model,
and design a new solution to protect the location privacy of mobile users on road
networks against semantic homogeneity attacks. We illustrate the model using
Example 1 as a running example throughout the paper. In our approach, instead
of cloaking Bob’s current road e1 with other nearby roads {e4, e5} of the hospital,
CloSed generates a cloaked road set consisting of Bob’s current semantic road
and other nearby semantic roads, e.g., the cloaked set is {e1, e2, e3}. In this
example, the semantic of Bob’s current road may be hospital, bank or school.
Therefore, the adversary can no longer infer the exact semantic of Bob’s location.

Our primary goal is to protect location privacy while guaranteeing the quality
of location-based services for snap-shot queries. Our strategy focuses on semantic
diversity, which guarantees that it would be difficult to associate a specific user
with a specific semantic with a high possibility. It also regards QoS as a critical
measure for designing privacy preservation solutions, and supports personalized
privacy requirements.

To achieve this goal, in CloSed, each mobile user can designate his loca-
tion privacy requirement as l-semantic diversity. That is, rather than l-segment

316 Y. Li et al.

diversity, we focus on the cloaked road set possessing at least l different seman-
tic types. Thus, mobile users can use location-based services without the need
to reveal their private location and location semantic information. To imple-
ment l-semantic diversity over road networks, our solution, named EIRank, con-
sists of two steps: pre-processing and online cloaking. The pre-processing phase
reduces the cloaked space by roughly grouping roads into different clusters, called
buckets, while the online cloaking phase generates the desirable cloaked set in
each bucket. In the pre-processing phase, to guarantee the efficient generation
of buckets, structure and semantic information should be integrated. The major
challenge lies in how to combine them together seamlessly. We propose the con-
cepts of edge interaction (EI) network and virtual nodes to embed structure and
semantic information together.

In designing our solution to the problem of privacy preservation for mobile
users on road networks, we thus make a number of contributions, as follows:

– CloSed’s semantic-aware model extends existing solutions by offering protec-
tion against semantic homogeneity attacks.

– CloSed’s approximation algorithm EIRank naturally balances privacy require-
ments with QoS.

– EIRank integrates structure and semantic information seamlessly by trans-
forming road networks into EI networks and leveraging the idea of virtual
nodes.

– EIRank’s evaluation over large real-world datasets demonstrate its efficiency
at cloaking the optimal road set and guaranteeing that exact location and
semantic information cannot be leaked.

The remainder of the paper is organized as follows. We introduce our road
network and privacy preservation model in Sect. 2. In Sects. 3 and 4, we describe
the technique and algorithm for location anonymization. In Sect. 5, we report
extensive experimental results. We briefly review the related work in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 Problem Definition

We begin this section by presenting the road network model. We then formally
define our privacy preservation model, and the goals of the associated techniques.
Finally, we present our algorithm framework.

2.1 Road Network

Definition 1 (Semantic Road Network). A road network is modeled as an
undirected graph G = (V,E, ξ) with a node set V and an edge set E, such that
(i) a node v ∈ V represents a road intersection or a location (e.g., hospital); (ii)
an edge e = (u, v) ∈ E, also called a segment, connects two nodes u and v;
and (iii) L represents a semantic function, i.e., for each edge e ∈ E, ξ(e) is the
sensitive semantic label of segment e.

Semantic-Aware Location Privacy Preservation on Road Networks 317

Example 2 (Semantic Road Network). Fig. 1(a) shows an example of a semantic
road network, in which each edge is associated with a semantic ID. Figure 1(b)
gives semantic labels corresponding to the IDs. Nodes v1, v4 and v5 in Fig. 1(a)
are different buildings within the same hospital. Edges e1, e4 and e5 connecting
these three nodes would then have the same sensitive semantic label “hospital”.
Thus, the area represented by the triangle (v1, v4 and v5) would indicate the
hospital.

2.2 Privacy Preservation Model

To resist against semantic homogeneity attacks as given in the introduction, we
propose the following privacy preservation model.

Definition 2 (Cloaked Set l-semantic diversity (CloSed)). A user’s pub-
lished cloaked segment set Sc={e1, e2, ..., ei, ...} is said to have l-semantic diver-
sity, if (i) Sc contains at least l different types of semantic labels, i.e., |ξ(Sc)| =
|⋃∀eεSc

ξ(e)| ≥ l, and (ii) the possibility of distinguishing a user’s semantic label
among other semantic labels in Sc does not exceed 1

l .

Returning to Example 1, to achieve CloSed, Bob’s published cloaked segment
set can be Sc = {e1, e2, e3} or Sc = {e1, e2, e6}. The cloaked segment set Sc =
{e1, e2, e3} indicates that Bob may be in a hospital, a bank or a school. The
cloaked segment set Sc = {e1, e2, e6} indicates that Bob may be in a hospital, a
bank or a church.

Architecture. Similar to existing works [2,4,10,13,20,26], we adopt the clas-
sical centralized privacy-preserving architecture. In this architecture, the loca-
tion anonymizer is a trusted entity that lies between mobile users and service
providers (SP), and performs location anonymization and result filtering oper-
ations. More specifically, the location anonymizer first removes identity labels
(e.g., id) and transforms the original query with an accurate location to another
query with a cloaked set, according to users’ privacy requirements. Next, SP com-
putes and forwards the produced candidate results to the location anonymizer.
At last, the location anonymizer extracts the exact answers from the candidate
results by adequately filtering false hit information.

Based on the processing framework, in the CloSed model, a mobile user
should specify his/her privacy profile (l, σt), where l indicates l-semantic diver-
sity and σt is the maximum temporal tolerance to guarantee QoS. To preserve
user privacy, we identify an important property that is sufficient for a cloaking
technique.

Definition 3 (Segment Oblivious). For a query user u in segment e, given
u’s profile (l,σt), his/her published cloaked segment set Sc satisfies the segment
oblivious property iff (i) Sc contains at least l semantic labels; (ii) e ∈ Sc; and
(iii) a query initiating in any segment of the cloaked set Sc will return the same
cloaked set Sc as the cloaked set for the given l.

318 Y. Li et al.

Fig. 2. Privacy-preserving architecture

Issue a query

...

e1 e 2 e n...

eq e n...ep e m...

Locate the segment Finish cloaking

ei e j...

Fig. 3. Algorithmic framework

From Definition 3, it can be shown that any solution to Definition 2 satisfies
the following theorem.

Theorem 1. A cloaking technique for a road network Gr can achieve l-semantic
diversity, if every cloaked set Sc published in Gr satisfies the segment oblivious
property.

Proof. According to Definitions 2 and 3, it is obviously to reach Theorem1.

In addition to the preservation of cloaked set l-semantic diversity, the other
objectives of our cloaking technique are that: (1) The cloaked set should not
reveal the exact segment of any user; and (2) The cloaking technique should not
compromise the QoS.

2.3 Algorithmic Framework of Anonymization

To achieve privacy preservation, in the location anonymizer (Fig. 2), the tech-
nique employed needs to blur the exact active segment of each mobile user to
a cloaked set that satisfies user’s privacy profile. A segment is marked as active
segment if it is associated with at least one query.

To meet the requirement of privacy (i.e., Theorem 1) and achieve high QoS,
our anonymization algorithm consists of two stages: an offline pre-processing
phase and an online cloaking phase, as shown in Fig. 3. In the offline pre-
processing phase, we allocate all segments of a road network to different buck-
ets, so that we can perform anonymization in one bucket rather than search the
entire road network in the cloaking process. In the online cloaking phase, we
locate the buckets of active segments and anonymize segments based on user
privacy profiles.

3 Segment Allocation

This section presents the offline pre-processing phase as introduced in the algo-
rithmic framework. Specifically, the segments of a road network are allocated to
different buckets according to users’ privacy requirements. To achieve most user
privacy requirements, we make the following observation.

Semantic-Aware Location Privacy Preservation on Road Networks 319

Observation 1: The location semantic privacy requirements L of user privacy
profiles follow a Gaussian distribution L ∼ N(μ, σ2), i.e., most user privacy
requirements fall in the middle range, and fewer have higher privacy require-
ments. The parameter μ is the mean of the distribution, and the parameter σ is
its standard deviation.

It follows that we can leverage the 3σ rule, also known as the 68-95-99.7
empirical rule, which states that about 99.7 % of values drawn from a Gaussian
distribution are within three standard deviations from the mean. We accord-
ingly set the semantic number of a bucket to μ + 3σ to satisfy all user location
anonymization in one bucket. Definition 4 states the goal of segment allocation.

Definition 4 (Segment Allocation). The segments of a road network G =
(V,E, ξ) are allocated to p buckets, G1, G2, ...Gp, where p > 1 and Gi =
(Vi, Ei, ξi), such that V =

⋃
1≤i≤p Vi, E =

⋃
1≤i≤p Ei, ξ(E) =

⋃
1≤i≤p ξi(Ei),

and the following conditions are satisfied.
(i) The segments of all buckets are disjoint, i.e., ∀1 ≤ i, j ≤ p, Ei ∩ Ej = φ.
(ii) The semantic number of a bucket must exceed the threshold μ + 3σ, i.e.,
|ξ(Ei)| = |⋃∀eεEi

ξ(e)| ≥ μ + 3σ.

In addition to protecting the location privacy of mobile users, the cloaking
algorithm should not compromise QoS, which mainly depends on communication
cost. We use the number of candidate results to measure communication cost,
which is formulated in Definition 5. Without loss of generality, we focus our
attention on k-nearest neighbors (kNN) queries.

Definition 5 (LBS Server Processing). [26] For a query q with associated
anonymous segment set Sc, the candidate results of q consists of two parts:
(1) the POIs on the segments of Sc, and (2) the results as q is issued on
the boundary nodes of the boundary set Sbn, where the boundary set is a
set of nodes whose some connected edges are not included in Sc. Formally,
CR(q, Sc) = (

⋃
s∈Sc

O(q, s))
⋃

(
⋃

v∈Sbn
O(q, v))

Based on this query processing model, it can be seen that the communi-
cation cost CR(q, Sc) is significantly influenced by parameters |Sc| and |Sbn|.
However, reducing |Sc| and |Sbn| imposes conflicting demands on CR(q, Sc).
This is explained by the fact that segments that are near each other tend to
possess similar semantic labels.

For a user privacy profile, our objective is to find the optimal cloaked set
which is minimized in terms of communication cost, while satisfying l-sematic
diversity. In summary, our problem is equivalent to the following optimization
problem:

Minimize CR(q, Sc), subject to |ξ(Sc)| = |⋃∀eεSc
ξ(e)| ≥ l.

According to the paper [27], the problem of computing an optimal cloaked
set is NP-hard.

Solution. Based on above analysis, we propose a greedy solution called EIRank.
Intuitively, cloaking adjacent segments with different semantic labels provides a

320 Y. Li et al.

compact structure and semantic preference simultaneously. In other words, we
prefer cloaking the segments exhibiting structure similarity and semantic label
dissimilarity. To measure the similarity of linkage structures and the dissim-
ilarity of semantic labels, we introduce two scoring functions: S(n1, n2) and
Diff (ep.ϕ, eq.ϕ), respectively.

In many applications, objects are considered similar if they are related to sim-
ilar objects. Based on this intuition, we adopt a general similarity metric called
SimRank to measure the similarity of linkage structures. SimRank is calculated
by Eq. 1.

S(n1, n2) =

{
1 n1 = n2

C
|In1 ||In2 |

∑
j∈In2

∑
i∈In1

S(i, j) n1 �= n2 (1)

where C refers to as a decay factor, is a constant between 0 and 1, and In

represents the set of neighbors of n. Note that Eq. 1 is defined to be 0 when
In1 = ∅ or In2 = ∅.

To evaluate the dissimilarity of semantic labels of segments, we use the
normalized edit distance. In this case, the dissimilarity of semantic labels
Diff (ep.ϕ, eq.ϕ) is measured by the edit distance between the semantic
labels with regard to the length of the semantic label. The edit distance,
Edit(ep.ϕ, eq.ϕ), between two semantic labels, ep.ϕ and eq.ϕ, is defined as the
minimum number of basic operations required to transform one semantic label
into the other. In this paper, the basic operations are defined as insertion, dele-
tion and substitution of symbols, which is formalized as follows.

Let Ts(b|a) represents the substitution of symbol a by symbol b (a �= b), Ti(a)
represents the insertion of symbol a, and Td(a) represents the deletion of symbol
a. Then,

Diff (ep.ϕ, eq.ϕ) =
Edit(ep.ϕ, eq.ϕ)

Max (|ep.ϕ|, |eq.ϕ|) (2)

where ep.ϕ denotes the label function of ep, and Max (|ep.ϕ|, |eq.ϕ|) represents a
function that computes the larger length of the two labels ep.ϕ and eq.ϕ.

To combine linkage structure and segment semantic information for segment
allocation, we propose a solution, called EIRank, for simultaneously represent-
ing link-based similarity and semantic-based dissimilarity. Our solution consists
of four steps: EI network construction, label clustering, Augmented EI Network
Construction and segment allocation. Next, we will discuss each step in details.

EI Network Construction. For simplicity, we assume that the semantic label
of each edge is unique. To integrate linkage structure and segment semantic,
the semantic road network is transformed into an edge interaction (EI) network.
An EI network node, called e-node, represents an edge in the original semantic
road network, and two e-nodes are adjacent if their corresponding edges share
a common node in the original semantic road network. The labels of e-nodes in
the EI network are given by the semantic labels of the corresponding edges in
the road network. For example, edges e1 and e2 share a common node v2 in the

Semantic-Aware Location Privacy Preservation on Road Networks 321

semantic road network (Fig. 4(a)), and thus e-nodes e1 and e2 are linked together
in the EI network (Fig. 4(b)). Since the segment id itself represents the semantic
label of the segment, we do not mark the labels of the e-nodes anymore in the
EI network.

v5

v3 v1

v4

v2

v8 v7

v6

e2 e1

e3 e9
e4 e8

e5

e6 e7

e10

 S - label Edge ID
 church
 club

 e 1- e 3
e4

 bar
 police

 e 5- e 7
e8- e 9

 e 10 park

e1

e2
e9

e4

e3

e7

e6

e8
e5

e10

e1

e2 e9

e4

e3

e7

e6

e8
e5

e10

O1

O2

(a) Semantic Road Network (b) EI Network (c) Augmented EI Network

Fig. 4. Example of EIRank strategy

Label Clustering. The problem of computing the dissimilarity of two segment
labels is equivalently converted into the one of computing the dissimilarity of
two e-node labels in the EI network. We use the method mentioned above to
achieve this goal. Take the labels of the two e-nodes e1 and e4 in Fig. 4(b) as an
example. By performing four basic operation Ts(l|h), Ts(b|r), Td(c) and Td(h),
the label of e-node e1 is transformed to the label of e-node e4. Therefore, the
dissimilarity of the two e-node labels is Diff (e1.ϕ, e4.ϕ) = 2

3 .
Based on the dissimilarity of the labels of e-nodes in the EI network, we

perform a generalized k-medians clustering [19] for the labels of the e-nodes in the
EI network. The result of label clustering for Fig. 4(b) is {church, police, park}
and {bar, club}.

Augmented EI Network Construction. In this step, we create a virtual
node for each cluster and connect the e-nodes whose labels are in the same
cluster to the virtual node. This new generated network is called augmented EI
network. The original e-nodes in a label cluster have higher structure similari-
ties by adding the virtual nodes. For example, Fig. 4(c) shows the updated EI
network corresponding to Fig. 4(b). Two virtual e-nodes o1 and o2 are added to
represent the clusters {church, police, park} and {bar, club}, respectively. Then,
the e-nodes in the set {e1, e2, e3, e8, e9, e10} are connected to the virtual node
o1. In the same manner, virtual node o2 is connected to the e-nodes in the set
{e4, e5, e6, e7}.

Segment Allocation. As stated above, the segments of a cloaked set needs to
have the structure similarity and semantic label dissimilarity. Based on the above
steps, the dissimilarity of the original e-node labels has been transformed to the
similarity of the linkage structure. This is consistent with the similarity of the

322 Y. Li et al.

Algorithm 1. Baseline Algorithm

Input: Semantic road network G = (V, E, ξ), Bucket scale Nl

Output: Buckets G1, G2, ..., Gp

1 Transform the G into EI network;
2 Execute the label clustering for e-nodes;
3 Compute S(ep, eq) for all e-node pairs;
4 Allocate(ep, eq, GS);
5 Merge buckets Gi where |ξ(Gi)| < Nl;
6 return non-empty buckets G1,G2,...,Gp;

linkage structure. Next, we use the function S(ep, eq) to measure the similarity
for every pair of non-virtual e-nodes.

To compute SimRank efficiently, we adopt the method in [7]. In this case,
the similarity of e-nodes is measured by Eq. 3, which states that the similarity
of two e-nodes is the expectation of the total time which is the time taken by
two random walkers starting from two different nodes to finally meet.

S(ep, eq) = E(Cτ(ep,eq)) (3)

Once the similarity has been computed for all e-node pairs, we use the single-
linkage hierarchical clustering [24] to perform the segment allocation. The func-
tion Allocate (ep, eq, GS) is used to describe this process.

The complete description of our EIRank strategy is given in Algorithm1.

4 Online Cloaking Phase

In the previous section, we have described the pre-processing phase of our app-
roach. Once partitioned buckets have been obtained, the remaining work is to
generate a cloaked set according to a user’s online request. Before detailing our
cloaking algorithm, we present several index structures, namely Ordered Locat-
ing Index (OLI), semantic-aware order preserving list (SOPlist), and cloaked
l-diverse segment set (Cloaked l-maplist), used in the online cloaking.

4.1 Index Structure

Ordered Locating Index. In order to quickly locate the position of a segment
in a segment allocation, we design a novel index structure called OLI based on
the hash table for organizing the segments in order. We keep a record of each
entry in the form of (Seg,Sid,Cid,Pointer) where Seg is the segment identifier,
Sid is the bucket identifier of the segment Seg, Cid is the position identifier of
segment Seg in bucket Sid, and Pointer is a pointer to the next entry. We use
Eq. 4 to compute the sequence of segment Seq(ei,j) in the ordered linked list to
obtain the Sid and Cid of ei,j . The first three entries of this equation are used

Semantic-Aware Location Privacy Preservation on Road Networks 323

to compute the number of segments before segment ei,j . Note that ei,j connects
the nodes i and j.

Seq(ei,j) =
i−1∑
k=1

degree(k) − |Soverlap|Soverlap={elt},t<i,l<i

+ |Sprior|Sprior={eip},i<p<j + 1

(4)

Set the segment e6,9 in Fig. 1 as an example. Using Eq. 4, we compute its
segment sequence Seq(e6,9) = degree(v1) + degree(v2) + degree(v3) + degree(v4)
+ degree(v5) - |{e1,2, e1,4, e1,5, e2,3, e4,5}|) + |{e6,7}| +1 = 3+3+2+3+4−5+
1 + 1 = 12. Then, searching for the 12th record in OLI which is shown in Fig. 5,
we get Sid = 1 and Cid = 2. We conclude that the segment e6,9 is in bucket 1,
at position 2.

SOPlist and Cloaked l-maplist. To facilitate the execution of the cloaking
algorithms, we also propose two other data structures. SOPlist is a 2-semantic
diversity index whose objective is to speed up the computation of the cloaked set.
Each record of SOPlist is represented as ((seman1, n1), (seman2, n2), Pointer),
where (seman1, n1) ((seman2,n2)) denotes n1 (n2) adjacent segments of semantic
label seman1 (seman2), while Pointer is a pointer to the next record.

The role of Cloaked l-maplist is to record the cloaked sets that have been
formed for distinct semantic requirements so far. This is achieved by re-using the
mapping between segments and cloaked sets. A basic cell of Cloaked l-maplist
is represented as(li, npointer, spointer) and li set, where li indicates li-semantic
diversity, npointer and spointer are pointers to the next basic cell and li set,
respectively, and li set records the last position of each cloaked set with regard
to semantic requirement li. li set is dynamically maintained to keep track of the
current maximum position of cloaked sets of semantic requirement li in a bucket.

Example 3 (SOPlist and Cloaked l-maplist). Suppose the content of a bucket is
{e23, e13, e22, e21, e17, e4, e1, e5, e18, e14, e19}. Then, Fig. 5 shows the SOPlist
and Cloaked l-maplist corresponding to the bucket.

4.2 The Cloaking Algorithm

We introduce our online cloaking algorithm, which is summarized in Algorithm2.
It mainly uses of the segment oblivious property which is stated in Definition 3.

The algorithm first initiates an empty cloaked set and computes the sequence
of specified segments to locate the position of the segment in the segment allo-
cation (lines 1–2). The algorithm then finds the maximum value lmax in Cloaked
l-maplist and compares the segment location Cid in the bucket with lmax (line
3). If the value lmax is larger than Cid, the algorithm simply searches for the
Cloaked l-maplist to find the range of the cloaked set (lines 4–5). In this case, it
means that the cloaked set has been computed. Otherwise, it is necessary to exe-
cute the operations of lines 6–12. Finally, the algorithm searches for the segments
in the bucket range from [x1, x2], and returns the corresponding cloaked set.

324 Y. Li et al.

(Seman 1 , n 1)

temple (1)

(Seman 2 , n 2)

church (1)

li npointer spointer

l= 3

l = 4 5 11

l= 5 11

l= 6 11

park (2) church (1) hospital (3) airport (1) zoo (1)) 1 (krap

Pointer

Cloaked l- maplist :

li- set

SOPlist :

3 6 11

L e1 , 2 2 3 e1 , 4 1 6 e1 , 5 1 7

e2 , 3 2 4 e6, 9 1 2 e18 , 19 4 6e17 , 18 4 4

Seg Sid Cid PointerOLI :

Fig. 5. Index structure

Example 4 (Online Cloaking). Continuing with Example 3, we assume that
l3 set={3}, lmax = 3, and two users u1 and u2 with the same privacy profile
(3, 1) located in segment e13 and e17, respectively. Since e13.Cid=2< lmax = 3,
we can compute x1 = 0, x2 = 3 according to Cloaked l-maplist and return
Sc ={e23, e13, e22}. Since e17.Cid=5> lmax = 3, we cannot compute the interval
[x1, x2] directly. So we continue to cloak from lmax + 1 = 4 in the SOPlist, and
obtain lmax = 6. When we checks the item zoo(1), we stops traversing in the
SOPlist. Then,we can conclude that the residual semantic number exceeds 3. So
we can safely set lmax = 6. As the condition e17.Cid < lmax is satisfied, we set
x1 = 3, x2 = 6, and obtain Sc={e21, e17, e4}.

5 Experimental Evaluation

In this section, we evaluate the performance of our proposed location
anonymization algorithms through extensive experiments. Our methods are
implemented on a machine with CPU Inter(R) Core(TM)i7-2600, 8.00 GB mem-
ory, 3.40 GHz frequency, 500 GB hard disk. All programs are coded in C++.

5.1 Experimental Setup

(1) Datasets. We use two real road network datasets1: California and Old-
enburg road networks. These datasets contain POIs of various categories, e.g.,
church, hospital, airport, which we used as query objects in our experiment.
Table 1 gives the parameters of the two real road networks.

(2) Query Generator. For each real dataset, we randomly pick 2000 query
points from the positions of trajectories. To simulate different traffic condition,
these trajectories are derived from real trajectories and synthetic trajectories
which are generated by a traffic simulator2. The parameters of queries are listed
in Table 2. In each experiment, we run 2000 queries and report the average result.
1 http://www.cs.utah.edu/∼lifeifei/SpatialDataset.htm.
2 http://www.fh-oow.de/institute/iapg/personen/brinkhoff.

http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://www.fh-oow.de/institute/iapg/personen/brinkhoff

Semantic-Aware Location Privacy Preservation on Road Networks 325

Algorithm 2. Online Cloaking

Input: Location(x, y)εei, Privacy profile(l, σt), OLI OSI, Soplist SL, Cloaked
l-maplist CL

Output: Cloaked set Sc

1 Initialize Sc = Φ ;
2 Compute Seq(ei) to acquire Sid0,Cid0 in OSI ;
3 Compute maximum value lmax of li set where li=l ;
4 if lmax ≥ Cid0 then
5 compute interval(x1, x2) in Cloaked l-maplist CL ;

6 else
7 while lmax < Cid0 do
8 lold−max = lmax;
9 update lmax=cloak(lmax+1,l, SL);

10 if residualsemantic(lmax, SL) < l then
11 update lmax=end position of Soplist SL ;

12 insert x2 into CL ;

13 x1 = lold−max, x2 = lmax ;

14 Sc=
⋃{ek}x1<ek.Cid≤x2,Seq(ek).sid=Sid0 ;

15 return Sc ;

Table 1. Real dataset parameters

Name of dataset Vertex count Edge count Semantic types count POIs count

OLdenburg (OL) road network 6,105 7,035 10 600

California (CA) road network 21048 21693 62 104,771

(3) Algorithms. We evaluate the following algorithms. (a) EIRank: The algo-
rithm is our proposed solution for protecting location privacy on road networks.
(b) SA: This is an algorithm proposed in [17]. To compare with our approach,
we modify this solution. That is, we don’t consider identity protection (k-
anonymity), and are only interested in protecting location and location seman-
tic information. More specially, the algorithm first achieves a Voronoi-partition
graph from the road network. Then, it determines the initial vertex’s Voronic-
partition according to the query user’s location. Next, it gradually merges neigh-
boring vertex’s Voronic-partitions until the semantic requirement is satisfied.

Table 2. Parameters setting

Parameters Default values Range

l: semantic diversity 5 [2,10]

k: kNN query 5 [2,10]

t: semantic type count 62 [62,100]

326 Y. Li et al.

(4) Metrics. In our experiments, we evaluate the following metrics. (a) Cloaking
Size: this metric measures the size of a cloaked set. It is defined as the count
of the segment that contains in a cloaked set. (b) Relative Semantic level: this
metric measures the achieved semantic diversity l′ for the cloaking algorithm
normalized by the user specified sematic diversity level l, i.e., l′

l . (c) Cloaking
Time: the cloaking time is used to measure the runtime of the cloaking algorithm.

Besides, we also use the following two metrics to measure QoS. (c) Query
Time (PT): this metric is measured by the execution time of processing a query
at the server side. (d) Communication Cost (CC): we use the size of the candidate
results set to measure the communication cost.

5.2 Experimental Results

In the first three experiments, we examine the efficiency of our cloaking algo-
rithms. In the last two experiments, we examine PT and CC.

Cloaking Size. Figure 6(a) shows the effect of varying semantic diversity on
the cloaking size. From the results, we can observe that with the increase of
semantic diversity, the cloaking sizes all increase. In addition, the cloaking size
of SA is always larger than that of EIRank. The main reason is that the cloaking
strategies of the two algorithms are different. EIRank performs segment-based
perturbation, which stops just after obtaining user specified semantic require-
ment. In contrast, SA performs vertex Voronoi-based perturbation. Based on
this difference, a cloaked set of SA contains more segments than that of EIRank.

Fig. 6. The efficiency of the cloaking algorithms on the California road network

Relative Semantic Level. Figure 6(b) shows the relative semantic level with
regard to semantic diversity. It can be seen that as the semantic diversity
increases, the relative semantic level of SA remains unchanged and that of
EIRank increases. This is because the semantic number of a cloaked set exactly
equals to the user-defined semantic diversity for SA algorithm. To resist reverse
engineering attacks, the lastest cloaked set of each bucket contains more than l
semantics for EIRank.

Cloaking Time. Figure 6(c) shows the impact of varying semantic diversity on
the cloaking time for the two algorithms. From the figure, we observe that with

Semantic-Aware Location Privacy Preservation on Road Networks 327

the increase of semantic diversity, the time cost of EIRank drops significantly
and the time cost of SA increases dramatically. It also can be seen that the
cloaking time cost of EIRank is always less than that of SA.

A large semantic diversity l results in a relative large cloaked set. For the
other segments other than query segment, the cloaked sets are generated by
searching the Cloaked l-maplist directly. As we do not need to reconstruct the
cloaked sets, which greatly decreases the cloaking time. In contrast, each cloaked
set of SA is generated completely dependently. With the increase of semantic
diversity, SA needs to search more vertex’s Voronoi-partition to achieve the
cloaked set, which increases the cloaking time. As the cloaked set of SA is larger
than that of EIRank, EIRank runs faster than SA.

Fig. 7. The efficiency of the cloaking algorithms on the Oldenburg road network

Figure 7 shows the performance of the cloaking algorithms on the Oldenburg
road network. We observe that the trendy is the same as that of California
road network. Based on this fact, in the following experiments, we just show the
performance of the algorithms on the California road network.

Query Processing Cost. Figure 8(a) illustrates the query time of the two algo-
rithms with different values of semantic diversity. From the results, it is clear
that the query time all increases as the semantic diversity increases. Further-
more, the query processing of SA run quite slowly in comparison to EIRank as
expected. The results above are reasonable, the query time mainly depends on
cloaking size. For the same semantic diversity, cloaking size of EIRank is smaller
than that of SA. The cloaked set becomes large for a big semantic diversity, and
hence the query time increases.

Fig. 8. Query time vs parameters l, k and t.

328 Y. Li et al.

Fig. 9. Communication cost vs parameters l, k and t

Figure 8(b) shows the effect of varying k on the query time. It can be seen
that with the increase of k, the query costs of two algorithms increase. We also
observe that the algorithm EIRank outperforms SA in most cases. The reasons
are as follows. On the one hand, based on our query processing model, a larger k
needs to search more segments to acquire the k-nearest neighbors for boundary
nodes. On the other hand, the cloaked set size of EIRank is far smaller than that
of SA.

Figure 8(c) shows the effect of semantic type count t on query time. As
observed, with the semantic type count increases, the query time of two algo-
rithms degrades. We also notice that the parameter t has stronger influence on
SA algorithms than on EIRank algorithms.

These phenomena are explained by the following facts: (1) With the increase
of semantic types, a part of semantic types are replaced by smaller granular-
ity semantic types. As cloaking of SA algorithm is based on vertex’s Voronoi-
partition, the size of cloaked sets is smaller than before. and (2) The parameter
t has little impact on the cloaked set size of EIRank, and hence it almost have
no effect on query time of EIRank.

Communication Cost. Figure 9 shows the impact of different parameters on
communication cost. As mentioned above, we measure communication cost indi-
rectly in terms of the size of the candidate results sets, since each result set must
be transmitted from server to location annoymizer. From these graphs, we can
see that the trend is the same as for query processing cost, and can be explained
in a similar way.

6 Related Work

Our work relates to two main streams of research, concerning location privacy
and location semantics, respectively.

Location privacy. Location anonymization has attracted much interest as a
solution to protect user location privacy in LBS. It mainly makes use of location
obfuscation techniques to hide an user’s exact location. Examples include space
transformation [2,9,25], fake location [14,29], mix-zones [21], and spatial cloak-
ing [1,5,8,11–13,20]. Among various anonymization techniques, spatial cloaking
is the prominent. It enlarges an user’s exact location to a cloaked region until

Semantic-Aware Location Privacy Preservation on Road Networks 329

some privacy conditions are satisfied, such as k-anonymity [8]. Unfortunately,
most existing cloaking techniques are no longer applicable in road networks,
because the area granularity of measurement tends to fail.

Recently, there exists several research on location privacy over road net-
works [3,15,16,18,26]. The most famous technique is based on the model of
segment l-diversity [3,26]. As mentioned above, this solution cannot prevent the
location semantic information leakage.

Location Semantics. In generally, the sensitive information is disclosed using
two kinds of published information: query semantics [22,27] and location seman-
tics. In the first case, it means that the query contents issued from a cloaked set
are at least l different types. Our paper concentrates on protecting the sensitive
information using location semantics over road networks.

Location l-diversity is first introduced in [1], However, it doesnt distinguish
the place type. Lee et al. [16] proposes mining the place semantics using Earth
Mover’s Distance to avoid location semantic leakages, but it does not consider the
road networks environment. Yigitoglu et al. [28] extends the semantic location
cloaking model [6] to protect semantic location in urban settings. Due to the
cloaked sets being generated a priori for a particular privacy requirement, this
approach cannot support the privacy requirement updating. As the limitations
mentioned above, we don’t make comparison with them. Li et al. [17] solves
the location semantic leakages in road networks based on the vertex Voronoi-
partition. Unfortunately, this solution is subject to reverse engineering attacks.
Our solution overcomes these drawbacks.

7 Conclusion

In this paper, we propose a semantic-aware privacy preservation model named
CloSed to preserve user privacy on road networks. In our model, the cloaked set
provides semantic protection without compromising QoS. To achieve this goal,
we design an advanced algorithm to balance the privacy requirement and QoS.
Extensive experiment evaluations show the efficiency and effectiveness of our
proposed algorithms on large-scale real datasets.

Acknowledgments. This research is supported by the National Natural Science
Foundation of China under Grant Nos. 61572119, 61173029, 61332006, 61332014,
61328202, 61502317 and U1401256.

References

1. Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting anonymous location queries
in mobile environments with privacygrid. In: WWW, pp. 237–246. ACM (2008)

2. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
IEEE Symp. Found. Comput. Sci. 45(6), 41–50 (1998)

3. Chow, C., Mokbel, M.F., Bao, J., Liu, X.: Query-aware location anonymization for
road networks. GeoInformatica 15(3), 571–607 (2011)

330 Y. Li et al.

4. Chow, C., Mokbel, M., Aref, W.: Casper*: query processing for location services
without compromising privacy. Trans. Database Syst. (TODS) 34(4), 24 (2009)

5. Chow, C., Mokbel, M., Liu, X.: A peer-to-peer spatial cloaking algorithm for anony-
mous location-based services. In: GIS, pp. 171–178 (2006)

6. Damiani, M., Silvestri, C., Bertino, E.: Fine-grained cloaking of sensitive positions
in location-sharing applications. Pervasive Comput. 10(4), 64–72 (2011)

7. Fogaras, D., Rácz, B.: A scalable randomized method to compute link-based simi-
larity rank on the web graph. In: Lindner, W., Fischer, F., Türker, C., Tzitzikas, Y.,
Vakali, A.I. (eds.) EDBT 2004. LNCS, vol. 3268, pp. 557–567. Springer, Heidelberg
(2004)

8. Gedik, B., Liu, L.: Location privacy in mobile systems: a personalized anonymiza-
tion model. In: Distributed Computing Systems, pp. 620–629. IEEE (2005)

9. Ghinita, G., Kalnis, P., Khoshgozaran, A., Shahabi, C., Tan, K.: Private queries in
location based services: anonymizers are not necessary. In: SIGMOD, pp. 121–132.
ACM (2008)

10. Ghinita, G., Zhao, K., Papadias, D., Kalnis, P.: A reciprocal framework for spatial
k-anonymity. Inf. Syst. 35(3), 299–314 (2010)

11. Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, pp. 31–42. ACM (2003)

12. Hu, H., Xu, J.: Non-exposure location anonymity. In: ICDE, pp. 1120–1131. IEEE
(2009)

13. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing location-based
identity inference in anonymous spatial queries. TKDE 19(12), 1719–1733 (2007)

14. Kido, H., Yanagisawa, Y., Satoh, T.: An anonymous communication technique
using dummies for location-based services. In: ICPS, pp. 88–97 (2005)

15. Ku, W., Zimmermann, R., Peng, W., Shroff, S.: Privacy protected query processing
on spatial networks. In: Data Engineering Workshop, pp. 215–220 (2007)

16. Lee, B., Oh, J., Yu, H., Kim, J.: Protecting location privacy using location seman-
tics. In: SIGKDD (2011)

17. Li, M., Qin, Z., Wang, C.: Sensitive semantics-aware personality cloaking on road-
network environment. Int. J. Secur. 8(1), 133–146 (2014)

18. Li, P., Peng, W., Wang, T., Ku, W., Xu, J., Hamilton, J., et al.: A cloaking algo-
rithm based on spatial networks for location privacy. In: Sensor Networks, Ubiq-
uitous and Trustworthy Computing, pp. 90–97 (2008)

19. Mart�lnez-Hinarejos, C.D., Juan, A., Casacuberta, F.: Generalized k-medians clus-
tering for strings. In: Perales, F.J., Campilho, A.J.C., de la Blanca, N.P., Sanfeliu,
A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 502–509. Springer, Heidelberg (2003)

20. Mokbel, M., Chow, C., Aref, W.: The new casper: query processing for location
services without compromising privacy. In: VLDB, pp. 763–774. VLDB Endowment
(2006)

21. Palanisamy, B., Liu, L.: Mobimix: protecting location privacy with mix-zones over
road networks. In: ICDE, pp. 494–505. IEEE (2011)

22. Pan, X., Wu, L., Piao, C., Xu, X.: P3RN:personalized privacy protection using
query semantics over road networks. In: Li, F., Li, G., Hwang, S., Yao, B., Zhang,
Z. (eds.) WAIM 2014. LNCS, vol. 8485, pp. 323–335. Springer, Heidelberg (2014)

23. Pedreschi, D., Bonchi, F., Turini, F., Verykios, V.S., Atzori, M., Malin, B., Moelans,
B., Saygin, Y.: Privacy protection: regulations and technologies, opportunities and
threats. In: Giannotti, F., Pedreschi, D. (eds.) Mobility, Data Mining and Privacy,
pp. 101–119. Springer, Heidelberg (2008)

Semantic-Aware Location Privacy Preservation on Road Networks 331

24. Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method.
Comput. J. 16(1), 30–34 (1973)

25. Stavros, P., Spiridon, B., Dimitri, P.: Nearest neighbor search with strong location
privacy. PVLDB 3, 619–629 (2010)

26. Wang, T., Liu, L.: Privacy-aware mobile services over road networks. PVLDB 2(1),
1042–1053 (2009)

27. Xiao, Z., Xu, J., Meng, X.: p-Sensitivity: a semantic privacy-protection model for
location-based services. In: MDMW 2008, pp. 47–54. IEEE (2008)

28. Yigitoglu, E., Damiani, M., Abul, O., Silvestri, C.: Privacy-preserving sharing of
sensitive semantic locations under road-network constraints. In: MDM, pp. 186–
195. IEEE (2012)

29. Yiu, M., Jensen, C., Huang, X., Lu, H.: Spacetwist: managing the trade-offs among
location privacy, query performance, and query accuracy in mobile services. In:
ICDE, pp. 366–375. IEEE (2008)

Advanced Applications(2)

An Efficient Location-Aware Top-k Subscription
Matching for Publish/Subscribe

with Boolean Expressions

Hanhan Jiang1, Pengpeng Zhao1,2(B), Victor S. Sheng3, Jiajie Xu1,2,
An Liu1,2, Jian Wu1,2, and Zhiming Cui1,2

1 School of Computer Science and Technology, Soochow University, Suzhou, China
ppzhao@suda.edu.cn

2 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Suzhou 215006, China

3 Computer Science Department, University of Central Arkansas, Conway, USA
ssheng@uca.edu

Abstract. Location-aware publish/subscribe (pub/sub) has attracted
a lot of attentions with the booming of mobile Internet technologies
and the rising popularity of smart-phones. Subscribers subscribe their
interests with their locations as subscriptions, and publishers publish
geo-information as events. Many state-of-art applications with a massive
amount of geo-information, such as location-aware targeted advertising
systems, face this situation. Existing related work mainly focuses on
unstructured geo-textual information. However, many online-to-offline
applications have enormous geo-information with different structured
descriptions. To handle such structured information, a new type of
location-aware pub/sub approach is needed. In this paper, we handle
these subscriptions using boolean expressions. Since the number of pub-
lishers and subscribers can be enormous, it is extremely important to
improve the matching effectiveness and efficiency of top-k query process-
ing. In this paper, we develop a novel solution named RRt-trees. RRt-
trees integrates Rt-tree and a predicate index structure together to return
top-k best matched subscriptions from a great number of events. Our
experimental results on synthetic and real-world datasets show that RRt-
trees achieve better performance than baseline methods.

Keywords: Location-aware pub/sub · Top-k · Boolean expressions

1 Introduction

With the rapid progress of mobile Internet technologies and the growing pop-
ularity of smart phones, a great amount of geo-information is generated at an
unprecedented scale. In social network applications (e.g., Facebook or Twitter),
there are a great number of users. Their personal information can be described

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 335–350, 2016.
DOI: 10.1007/978-3-319-32049-6 21

336 H. Jiang et al.

by a set of attribute-value pairs and their geo-locations revealed by GPS. In
a online-to-offline system, there are millions of users browsing products on the
system, such products can be described by a set of attribute-value pairs and
associated with geo-locations. In this paper, we refer to such data with both
attribute-value pairs and geo-location information as geo-tagged attribute-value
pair objects.

In a location-aware publish/subscribe system, subscribers subscribe their
interests and publishers publish events with geo-information. This kind of sys-
tems has many real-world applications. In a location-aware targeted advertis-
ing application system, advertisers are subscribers, who specify the proper-
ties of their interested users. For example, they can have a subscription like
(e.g.,“16� age�28,hobby∈{Tennis, basketball}”,“51.16145,0.14123”). The sys-
tem will display corresponding advertisements on users screens. This is a well-
known pushing advertising model. Users of social network systems (such as
Facebook, Twitter, etc.) act as publishers. Their personal information, such
as age, hobby and locations, becomes an event (e.g.,“age=20, sex=female,
hobby=tennis,school=Harvard”, “51.16515,0.14123”). Advertisements can be
displayed on these users screen if there is a high relevance between an event
and a subscription. This kind of information pushing model is useful for online-
to-offline commerce platforms, such as Groupon1, Sellers or service providers
in Groupon system are subscribers, who may want to accurately push their
advertisements to potential customers by specifying both users properties and a
series of their product information (e.g.,“hobby=smart-phone, item∈{Iphone6s,
Iphone6}, price�499$”, “51.25643, 0.14845”) as a subscription. Users of this
system are publishers. When a user click a product link, the information of this
product and the users properties can become an event(e.g.,“hobby=smart-phone,
item=Iphone6s, price=469”, “51.2612, 0.12545”). In such applications, only a
few advertisements can be displayed due to the limited screen size.

Existing unstructured location-aware publish/subscribe systems [1,3,5,8,19,
20] can support subscriptions with geo-textual descriptions very well. For exam-
ple, users of Twitter can register their interests with a geo-textual descrip-
tion (e.g.,“Cheapest iphone6s”, “31.4522,51.4451”). The system has to ensure a
timely delivery of relevant geo-textual objects to the user. However, this kind of
location-aware pub/sub systems cannot support geo-tagged attribute-value pair
objects, which need a structured description to capture attributes and values.
Existing structured location-aware pub/sub systems [5,13]use a boolean expres-
sion presenting a subscription. They can efficiently retrieve all matched informa-
tion. Therefore, a user may be overwhelmed. To address these issues, we propose
a new type of top-k subscriptions matching with boolean expressions, referred as
Location-aware Top-k Subscription Matching with Boolean Expressions(in short
TSMB-loc). The latest solution proposed for top-k subscription matching with
boolean expression [7] focused on fuzzy matches. We will develop a solution
ensuring strict boolean semantics of expressions.

1 http://www.Groupon.com.

http://www.Groupon.com

Publish/Subscribe with Boolean Expressions 337

There are two challenges on developing solutions for location-aware top-k
subscription matching with boolean expressions. First, how can we filter out the
candidates of top-k best subscriptions from millions of subscriptions with a large
amount of attributes, values and geo-locations. Second, it needs to retrieve the
top-k best subscriptions over tons of candidates. Thus, an efficient and effective
solution to cope with the TMSB-loc problem is necessary.

To efficiently and effectively process the TSMB-loc problem, we propose a
novel Rt-tree based index structure, ranked Rt-tree (called RRt-trees since then),
by integrating the Rt-tree [3] index structure with a predicate index structure
together and using a subscription partitioning scheme. When an event with loca-
tion information arrives, our method can quickly retrieve its top-k best matched
subscriptions. To summarize, we make the following contribution:

– We propose a new problem, location-aware top-k subscription matching with
boolean expressions(TSMB-loc).

– We propose a new index structure, called RRt-trees as the solution of TSMB-
loc, which can efficiently retrieve top-k best subscriptions from millions of
subscriptions.

– We conduct experiments on a synthetic dataset and a real-world dataset to
evaluate the performance of our proposed RRt-trees.

The remaining of this paper is organized as follows. In Sect. 2, we overview
related work. Then, we formalize the problem in Sect. 3. In Sect. 4, we propose
a baseline solution by extending a boolean expression index structure and a
state-of-the-art spatial index R-tree. In Sect. 5, we propose an advanced solution,
the RRt-trees index structure. In Sect. 6 we give the similarity upper bound of
RRt-trees. In Sect. 7, we present the matching algorithm of RRt-trees. Extensive
experimental results are reported in Sect. 8, and we conclude this paper in Sect. 9.

2 Related Work

This research topic is closely related to two main research branches: structured
pub/sub systems and location-aware unstructured pub/sub systems. We will
briefly review these two branches as follows.

Structured Pub/Sub. There are some researches on structured pub/sub with
boolean expressions [2,4,9,11,12,18,21]. Guo et al. [5] proposed a new location-
aware pub/sub system named Elaps. Elaps can continuously detect moving sub-
scriptions of users over event streams. Hu et al. [7] proposed a RI -tree for top-k
subscription matching over structured information. They are all different to our
problem since Elaps cannot maintain a top-k best matched subscriptions and
RI -tree is a partial matching in a boolean expression. To adapt to different work-
loads, Sadoghi and Jacobsen [10] presented BE*-tree index structure. BE*-tree
allows the values of attributes to be continuous. It combines a bi-directional
tree expansion mechanism with an overlap-free splitting strategy. D et al. [21]
proposed Op-index, which builds an inverted index over the pivot attributes

338 H. Jiang et al.

of subscriptions and developed a two-level partitioning scheme to handle sub-
scriptions with high dimensional attributes. However, BE*-tree does not make
the location dimension into consideration and Op-index can not return top-k
subscriptions.

Location-Aware Unstructured Pub/Sub. There are many related
researches on unstructured location-aware pub/sub over geo-textual data. [1,5,
6,8,14–17,19,20,22–24]. To study the location-aware pub/sub problem for para-
meterized spatio-textual subscriptions, Hu et al. [6] presented a filter-verification
framework by integrating prefix filtering and spatial pruning techniques together.
To efficiently filter geo-textual data, Li et al. [8] proposed Rt-tree,which loads the
selected token from subscriptions into different R-tree nodes. To support ranking
semantics, Yu et al. [20] make an extension of Rt-tree. These three works [6,8,20]
only focus on geo-textual information, which cannot retrieve top-k subscription
matching. Note that pub/sub focusing on geo-textual cannot support geo-tagged
attribute-value pair objects. We propose RRt-trees, which has two distinguish-
ing features. First, RRt-trees allows user to specify their interests in form of
boolean expressions. A boolean expression is much more expressive than that
of a textual content. Second, RRt-trees focus on retrieving top-k best matched
subscriptions.

3 Problem Definition

In this section we formally define the problem of location-aware top-k subscrip-
tion matching with boolean expressions.

Subscription: Subscribers register their interests as subscriptions. A subscrip-
tion s is consisted by three elements: s.B, s.loc, α, where s.B is a boolean
expression to describe the interests of subscribers, s.loc is the spatial location of
a subscriber, and α is a parameter to balance the relative importance between
spatial similarity and boolean expression similarity (we call it BE similarity since
then). The boolean expression is a combination of predicates in conjunctive nor-
mal form. A predicate is a constraint specified by users to represent the relation-
ship between an attribute and its value. A predicate contains three elements: an
attribute A, an operator fop, and a value v. That is, p(A,fop,v) denotes a predi-
cate p. The operator can be a relational operator (<,>,�,�,=,�=), or a set (∈,/∈).
Each predicate has a weight ωs, where

∑n
i=1 ωsi = 1. Thus, the subscription can

be modeled as follows:

s : {[(p1, ωs1) ∧ (p2, ωs2) ∧ (pi, ωsi) ∧ ... ∧ (pn, ωsn)], loc, α}
Event: An event e contains a collection of attribute-value pairs denoted as e.V
and a geo-position denoted as e.loc. The attribute-value pairs e.V are represented
in the form of conjunction of predicates with equality operator. That is, ν(A, v)
denotes an attribute-value pair ν. Each attribute-value pair has a weight ωe,
where

∑n
i=1 ωei = 1. Thus, an event can be denoted as follows:

e : {[(ν1, ωe1) ∧ (ν2, ωe2) ∧ (ν3, ωe3) ∧ ... ∧ (νn, ωen)], loc}

Publish/Subscribe with Boolean Expressions 339

The weight ωs is given by subscribers and is used to represent users’ prefer-
ence among predicates in a subscription. The weight ωe signifies the relevance
between value-pair and its predicate. It is generated according to the appearing
frequency of the attribute-value pair in the whole dataset.

Definition 1. (Predicate Match) Given an attribute-value pair ν, for a predicate
p appears in a subscription, we said that there is a predicate match if p.A = ν.A
and pi(νi.v)=true.

Definition 2. (Boolean Expression Match) A boolean expression s.B is said to
match a collection of attribute-value pairs e.V if each of the predicates in s.B
has a match in e.V.

Definition 3. (Similarity Function φ) Given an event e=e:{[(ν1, ωe1)∧ (ν2,
ωe2)∧(ν3, ωe3)∧...∧(νn, ωen)], loc} and a subscription s=s: {[(p1, ωs1)∧ (p2,
ωs2)∧ (pi,ωsi)∧...∧ (pn,ωsn)], loc, α}, we define the similarity function φ(e, s)
as follows:

φ(e, s) = s.α · ϕBE(e, s) + (1 − s.α) · ϕs(e, s) (1)

where ϕBE is a BE similarity function and the ϕS is a spatial similarity function.

ϕBE(e, s) =
n=s.ς∑

pj∈s,νi∈e,pj .A=νi.A,pi(νi.v)=true

ωsj · ωei (2)

where s.ς is the size of subscription s(number of predicates in a subscription).
The spatial similarity is given by:

ϕs(e, s) = 1 − distance(e.loc, s.loc)
MaxDistance

(3)

where distance(e.loc,s.loc) is the Euclidian distance between s and e, and the
MaxDistance is the maximum distance among subscriptions.

As shown in Fig. 1 for the event e={A=3(0.1)∧ B=3(0.5)∧ C=4(0.2)∧
F=2(0.2),e.loc}, the boolean expression subscription S1 matches the attribute-
value pairs of e according to Definition 2. However, the subscription boolean
expression S4 does not match attribute-value pairs of e as there is no attribute-
value pair in e that matches the predicate G�4. Based on Definition 3, the spatial
similarity ϕS(e,s1) is 0.35, and the BE similarity ϕBE(e,s1) is 0.25. Therefore, the
balanced similarity φ(e,s1) is 0.30. Similarly, since the spatial similarity ϕS(e,s9)
is 0.15, and the BE similarity is ϕBE(e,s9) is 0.18, φ(e,s9) is 0.18. Thus, if we
want to retrieve top-1 best subscription for event e, the answer is S1.

Location-Aware Top-k Subscription Matching: Given a set of subscrip-
tions S, TSMB-loc aims to finds the top-k most relevant strict matched sub-
scriptions Sk ∈ S. For any subscription s∈ Sk and s∗ ∈(S-Sk), φ(e,s∗)<φ(e,s).

340 H. Jiang et al.

Fig. 1. An example of subscriptions and events

4 A Baseline Solution

In this section, we extend two state-of-art index structures (Op-index and R-tree)
to cope with the TMSB-loc problem. These extensions will be used as baseline
solution to evaluate our advanced solutions proposed in Sect. 5.

Op-index is a well-known pub/sub index structure for boolean expressions,
which builds an inverted index structure over a pivot attribute2 and designs a two
level partitioning scheme to handle the pub/sub problem with high-dimensions
attribute. Based on op-index and a well-known spatial information index struc-
ture R-tree, we can integrate op-index with R-tree together (called OPR-tree
in short) to cope with the TSMB-loc problem. We first build an R-tree for all
the locations of subscriptions. When the subscriptions fall into leaf nodes of the
R-tree, we organize subscriptions inside each leaf node using the Op-index struc-
ture. The construction and the query processing of OPR-tree will be explained
in details.

OPR-Tree Construction: For each subscription s, we retrieve its leaf node n
in the R-tree using its spatial point information s.loc and then select its pivot
attribute δA. We partition subscriptions inside each leaf node into groups accord-
ing to their pivot attributes. We can present a list of subscriptions with the same
pivot attribute δA as a list denoted as L(n,δA). Each list (e.g., L(n,δA)) can be
further partitioned based on the operators (<,>,�,�,=,�=) of predicates. The
predicates with the same operator are organized into a sub-list. A sub-list of
L(n,δA) can be presented as L(n,δA,op), where op is a specific operator. For each
group of predicates L(n,δA,op), we use a signature segment to map the predi-
cates by a hash function. We compute the hash value of each predicate using
a hash function h(p.A) to select a bit from the signature segment and set this
bit to 1. Besides, there is a collection of counter arrays, corresponding with each
subscription list L(n,δA,op). The value of the counter array is initialed as the

2 The attribute with the least appearing frequency in the whole dataset becomes the
pivot attribute.

Publish/Subscribe with Boolean Expressions 341

size of the subscriptions. For each predicate in L(n,δA,op), there is a pointer to
point to its corresponding counter array value.

OPR-Tree Query Processing: For an event e, we search the R-tree using
the spatial point information e.loc to find a corresponding leaf node n. Then
we extract each candidate pivot attribute νi.A (νi∈ e.V) from the set of dis-
tinct attribute-value pairs e.V . If νi.A is indeed a pivot attribute, we extract
each attribute-value pair νi to search the predicate lists L(n,δA,op) in L(n,δA).
For each attribute-value pair νi, we first calculate the hash value of a candidate
attribute, i.e., h(νi.A). If the corresponding bit of the signature segment is 1,
we search the corresponding predicate list L(n,δA,op). Then, the BE similarity
ϕBE(e,s) is calculated if pj(νi.v=true), where pj∈ L(n,δA,op). If the correspond-
ing value of the counter array goes to 0, we calculate the spatial similarity
ϕS(e,s). The final balanced similarity φ(e,s) is calculated and added into the
temporary result set as a candidate top-k result. The upper bound of a given
leaf node n to a given event e is a balanced similarity between the minimum
Euclidian distance from e to n and the maximum weight of attribute-value in e.

OPR-tree partitions the subscriptions by the region of leaf nodes and orga-
nizes these subscriptions using Op-index. However, the region of a leaf node may
be very small, which results in a poor pruning ability in high spatial dimensions.
Therefore, OPR-tree is not very efficient. In order to avoid this problem, we
proposed RRt-trees method in the next section.

5 RRt-trees Solution

In this section, we present a framework that integrates Rt-tree and a predi-
cates index structure into a new index, named RRt-tree. Based on RRt-tree,
we develops a partitioning scheme to organize subscriptions into disjointed RRt-
trees. Finally, we introduce the upper bound of efficiently and effectively filtering
out top-k best subscriptions over this framework.

5.1 RRt-tree Index Structure

As we discussed in Sect. 4, OPR-tree is not very efficient to meet TSM-loc since
the poor pruning ability in spatial dimension.

Rt-tree [3] is an unstructured location-aware pub/sub index structure, which
integrates so-called high-quality representative tokens selected from subscrip-
tions into the nodes of R-tree. Based on Rt-tree, we propose a method, ranked
Rt-tree (RRt-tree) to cope with the TSMB-loc problem. The basic idea of RRt-
tree is to convert the tokens of Rt-tree into predicates of a subscription, which will
be loaded into the ancestor nodes of a leaf node in which a subscription locates.
Then, predicates in each node are indexed using a predicate index structure.

RRt-Tree Construction: We build an R-tree for all the locations of subscrip-
tions. For a given subscription s, we first extract the distinct predicate pi, con-
taining its weight, where pi ∈ s. Then, we load pi into different nodes at different
levels, which is determined by the spatial location s.loc of the subscription s.

342 H. Jiang et al.

Considering a built R-tree, its height is H, the size of a given subscription s is
s.ς. If s.ς>H, we directly insert the last s.ς - H+1 predicates. If s.ς<H, only the
ancestors in the first s.ς level contain the corresponding predicates of s. Letting
s.pi denote the i-th predicate in s, then s.pi is loaded in an ancestor node at
i-th level. For each node n on i-th level, there is a set of predicates denoted as
P . We build inverted lists over the attributes of the predicates in P to organize
predicates with the same attribute. To track the number of matched predicates
of a subscription during an event query processing, we assign a hash map M for
each subscription and initial each hash value M [s] to be 0. When a predicate pi

matches an attribute-value pair, we increase its corresponding hash value by 1.
Based on the number of matched predicates M [s], we can efficiently filter the
subscription. To explain this, we have the following lemmas.

Lemma 1. Consider an event e and a node n at the i-th level. If M[s]<i, s
cannot be a candidate top-k result.

Proof. As s appears in the i-th level, it contains at least i predicates. For each
node on path from the root to node n, s.B must have a predicate which cannot
match all attribute-value pairs in event e. According Definition 2, s cannot be the
candidate top-k result of e.

Lemma 2. Consider an event e and a node n at the i-th level, if M[s]=s.ς, s
must be a candidate top-k result

Proof. If M[s]=s.ς, all the predicates of s.B are matched by e. According to
Definition 2, s must be a candidate top-k subscription of e.

Lemma 3. Consider an event e and a node n at the i-th level, if M[s]=i<s.ς,
and n is a leaf node, s cannot be a candidate top-k result of e.

Proof. Since n is a leaf node, we have M[s]=i=H<s.ς. That is, the rest s.ς- H+1
predicates are loaded in the node n, which cannot match all attribute-value pairs
in event e. According to Definition 2, s cannot be the candidate top-k result of e.

Lemma 4. Consider an event e and a node n at the i-th level. For any pi.A ∈
pi ∈ P ∈ n, if pi.A does not appear in e, we can directly pruning the node n.

Proof. If pi.A does not appear in e, according to Definition 1, no predicate in
node n matches any attribute-value pair. According to Definition 2, subscriptions
on node n cannot be candidate top-k results of e.

Predicate Index Structure: In each node on RRt-tree, there are a set of
predicates P , a weight of each predicate, the maximum alpha value αmax and
minimum alpha value αmin. To efficiently retrieve matched predicates in P , we
design an index structure for P . We index the predicates of P in two partitioning
steps. In the first step, predicates are partitioned into disjointed predicate lists
based on attributes as follows:

P = L(A1) ∪ L(A2) ∪ L(Ai) ∪ ... ∪ L(An) (4)

For each predicate in list L(Ai), there is a pointer to point to the number of
matched predicates M[s] of its corresponding subscription. In second step, the

Publish/Subscribe with Boolean Expressions 343

R5 R6R3 R4

R1 R2

S1,S2,S5,S6 S3,S7 S4,S8 S9,S10

P1

P5

P2

P6P4

(a) RRt-tree Index Structure

D

A

C

M[6]

M[5]

αmax =0.7,αmin =0.5

<7,0.4>

M[2]

<3,0.4><2,0.4><5,0.4><5,0.1>

M[1]

<2,0.2>

(b) The predicates index structure
of P3

Fig. 2. An RRt-tree index for the subscriptions shown in Fig. 1

predicates list L(Ai) is further partitioned by their operators (we only use stan-
dard operators, such as ≤,≥,=) into its corresponding value list L(Ai, op) as
follows:

L(Ai) = L(Ai,≤) ∪ L(Ai,=) ∪ L(Ai,≥) ∪ ... ∪ L(An, op) (5)

Figure 2(a) shows the RRt-tree index structure for the subscriptions shown
in Fig. 1. Figure 2(b) shows the predicate index structure for P3.

5.2 RRt-trees Index Structure

Since the number of subscriptions can be very large, it is necessary to improve
the efficiency of RRt-tree. To address this problem, we partition subscriptions
according to their pivot attributes (discussed in Sect. 4) into N3 subscription lists
and organize the subscription lists using disjointed RRt-trees. We simply name
this method RRt-trees since then. Given a set of subscriptions S, we partition
these subscriptions according to their pivot attributes δA and organize them
using RRt-trees as follows

S = RRt−trees = RRt−tree(δA1)∪RRt−tree(δA2)∪...∪RRt−tree(δAn) (6)

From Definitions 1 and 3, we can conclude that if an event e matches a
subscription s, then all the attributes in s must appear in e. Obviously, if there
is an attribute in s but not in e, e wont be matched by s. Thus, given an
event e, we only consider the subscriptions whose pivot attributes appear in
e. Attributes with a low frequency in a whole dataset has low probabilities to
appear in subscriptions. Thus, we choose the lowest frequency attribute in a
subscription as the pivot attribute.

The index structure of RR-trees for the subscriptions shown in Fig. 1 is shown
in Fig. 3. According to the rule of selecting pivot attributes mentioned above, A,
D, E and G are selected as a pivot attribute respectively. Given an event e in
Fig. 1, subscriptions in both L(E)and L(G) don’t match e definitely.
3 The number of distinct attributes in a whole dataset.

344 H. Jiang et al.

A RRt-tree

D RRt-tree

E RRt-tree

G RRt-tree

 S1 A
 S2 D
 S3 E
 S4 G
 S5 G
 S6 E
 S7 E
 S8 A
 S9 E
 S10 A

Fig. 3. The index structure of RRt-trees

6 Similarity Upper Bound of RRt-tree and RRt-trees
Solution

After having described the RRt-tree and RRt-trees index structure, it is the
time to introduce the upper bound of similarity.

Definition 4. (UBBE(e, n)) For a given event e and a node n in RRt-tree,
the upper bound of the BE similarity UBBE(e, n) is defined as follows. The BE
similarity bound of a given event e to a node n is:

UBBE (e, n) = Max

{
s ∈ n.parent

[
i−1∑

1

ωsi · ωej + ω∗
emax ·

(
1 −

i−1∑

1

ωsi

)]}
(7)

where
∑i−1

1 ωsi · ωej is the total score of matched predicates of s appearing in
level 1 to level i-1 where i > 1, and ω∗

emax is the maximum weight of unmatched
attribute-value pairs in e for subscription s. And 1 − ∑i−1

1 ωsi is the remaining
total weights of unmatched predicates in subscription s.

Definition 5. (UBS(e, n)) For a given event e and a node n, the upper bound
of the spatial similarity UBS(e, n) is defined as follows:

UBS(e, n) = (1 − MinDistane(e.loc, n.MBR)

MaxDistance
) (8)

where MaxDistance is the maximum distance between subscriptions, n.MBR it
the minimum bounding rectangle of node n and MinDistance(e.loc, n.MBR) is
the minimum Euclidian distance between e.loc and any point on n.MBR.

Definition 6. (UB(e,n)) According to Eqs. 7 and 8, for a given event e and a
node n, the total upper bound UB(e,n) is defined as follows:

UB (e, n) = Max {∀α ∈ (αmin, αmax) min [1 − α, UBBE (e, n)] + α · UBS(e, n)} (9)

where αmin, αmax are the minimum and maximum α of subscriptions in node n.

According to Definition 6, we have the following lemma:

Publish/Subscribe with Boolean Expressions 345

Lemma 5. Given an event e and a node n whose MBR encloses a set of sub-
scriptions Sn. For any subscription s where s∈ Sn, there is:

φ(e, s) < UB (e, n) (10)

We omit the proof due to space constraints.

7 Matching Algorithm

How can we use RRt-tree to retrieve top-k best matched subscriptions with
boolean expressions? We show the processing of retrieving top-k best matched
subscriptions in Algorithm 1. We use a bound-queue to store the nodes that
have not been visited in the algorithm. The nodes in the bound-queue is ordered
by their UB(e, n) in a descending order, which is calculated according to Eq. 9
from its parent node. For the root node, the bound is 1. Given an event e, we
traverse all the RRt-tree(νi.A) in RRt-trees from the root node, where νi∈ e.
The algorithm will return candidate subscriptions for the top-k best matched
subscriptions. It will stop under two situations as follows.

– When k subscriptions are found and its minimum similarity is larger than the
maximum UB(e, n) in the bound-queue.

– When the bound-queue is empty.

8 Experiments

In this section, we will evaluate three indexes (OPR-tree, RRt-tree, RRt-trees)
on synthetic and real-world datasets. All the methods are implemented in java
(JDK7) and experiments are running on a machine with 3.2 GHz Intel(R) (TM)
Core i5-3470 CPU and 16 GB of RAM.

8.1 Experimental Setup

Two datasets are used in our experiments, one synthetic dataset and one real-
world dataset (eBay dataset), shown in Table 1. To generate the synthetic
dataset, we implement a data generator, which can generate attributes, oper-
ators and values. For the set operator ∈, /∈, we rewritten them into standard
operator =, ≥,≤. For the weights of attribute-value pairs in an event are gen-
erated base on this equation ωei = ν.f∑n

i=0 νi.f
, where νi.f is the frequency of an

attribute-value pair in the whole dataset. And n is the number of attribute-value
pairs in an event. We totally generate 5M synthetic subscriptions corresponding
with 10k events for event matching tests in the synthetic dataset. For the real-
world dataset (eBay), we generate 10M subscriptions and 10k events based on
10k product messages, and we extract the spatial information from Twitter to
generate final subscriptions and events.

346 H. Jiang et al.

Algorithm 1. Matching(e,k)
Input An event e and the value k1

Output Top-k best matched subscriptions S2

Initialize :a bound-queue,a hash map M, a candidate top-k subscription list R3

and a temporary similarity storage of subscriptions Temp
Extract each attribute-value pair νj from e4

for each RRt-tree(δAi) do5

if (νj .A == δAi) then6

Search RRt-tree(δAi);7

for each node n in RRt-tree(δAi) do8

if (n is a root node) then9

bound-queue.Push(n, 1);10

Visit bound-queue.Pop();11

for each predicate pi(νj .v)==true do12

Temp[s] =Temp[s] + ωsi · ωej ;13

if (+ + M [s] == s.ς) then14

φ(e, s) = (1 − s.α) · Temp[s] + s.α · ϕS(e, s);15

if (R.size < k) then16

R.add(s);17

else18

if φ(e, s) > R.min then19

R.add(s);20

if (+ + M [s] < L) then21

/*L is the i-th level*/22

Temp.remove(s);23

if (n is visited and node n is not a leaf node) then24

bound-queue.Push(n.child,UB(e,n.child));25

if (n is a leaf node) then26

Visit bound-queue.Pop();27

if (bound-queue.Empty or (R.min> bound-queue.Pop().UB and28

R.size=k)) then
Return R;29

8.2 Experimental Results

In this section, we will evaluate three indexes on synthetic datasets and real-
world datasets. For synthetic datasets we evaluate the performance of three
indexes from different perspectives, a varied number of subscriptions and dis-
tinct attributes, varied average size of subscriptions,varied average size of events,
varied parameter k and α.

Matching Time under Various k: The value of k is an important parameter
for the TSMB-loc problem. Figure 4 shows the performance of the three methods

Publish/Subscribe with Boolean Expressions 347

Table 1. Parameters and settings

Parameters Synthetic dataset eBay

Number of subscription 1M, 2M, 3M, 4M, 5M 2M, 4M, 6M, 8M, 10M

Average subscription size 4∼20 2∼10

Average event size 5 25 8

Max value of α 0.2, 0.4, 0.6, 0.8, 1.0 0.2, 0.4, 0.6, 0.8, 1.0

Number of distinct attribute 5k, 10k, 15k, 20k, 25k 10k

Top-k parameter 1, 5, 10, 20 10, 20

1 6 11 16 20
101

102

103

Varying value of k

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s)

OPR−tree

RRt−tree

RRt−trees

Fig. 4. Varying value of k
on ebay dataset

0.2 0.4 0.6 0.8 1
101

102

103

Varying value of α

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s)

OPR−tree

RRt−tree

RRt−trees

Fig. 5. Varying value of α
on eBay dataset

2M 4M 6M 8M 10M
101

102

103

Varying Number of Subscriptions

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s)

OPR−tree

RRt−tree

RRt−trees

Fig. 6. Varying number
of subscriptions on eBay
dataset

with the increment of k on ebay dataset. We can clearly see that the average
matching time of all the three methods increases with the increment of k. How-
ever, RRt-trees achieves the best performance because of its powerful pruning
ability. It is nearly 3 times faster than the next best method RRt-tree. OPR-tree
performs the worst, using the largest average matching time.

Matching Time under Various α: We also conduct several experiments to
investigate the impact of varying the maximum balance value α. Our experimen-
tal results are shown in Fig. 5. Figure 5 shows that the average matching time
of all the three methods grows slowly as the value of α increases. RRt-trees still
achieve the best performance over the real-world dataset.

Matching Time on Varying Number of Subscription: From Fig. 6, we
can see that all the three methods are sensitive to the number of subscriptions.
And RRt-trees achieves the lowest event matching time, followed by RRt-tree.
OPR-tree performs the worst, having the highest matching time. RRt-trees is
3.5 times faster than RRt-tree. This is because RRt-trees uses pivot attributes to
partition subscriptions. This causes that indexing the subscriptions using RRt-
trees much more efficient than that using a single RRt-tree. Furthermore, the
upper bounds over a small number of subscriptions are easier to calculate than
those over a larger scale of subscriptions, which causes the matching time of
RRt-trees grows much more smoothly than that of the other two methods.

348 H. Jiang et al.

5 10 15 20 25
101

102

103

Varying Average Sizes of Events

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s)

OPR−tree

RRt−tree

RRt−trees

Fig. 7. Average sizes
of events on synthetic
dataset

4 8 12 16 20
101

102

103

Varying Average Sizes of Subscriptions

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s) OPR−tree

RRt−tree

RRt−trees

Fig. 8. Average sizes of
subscriptions on ebay
dataset

5K 10K 15K 20K 25K
101

102

103

Varying Number of Distinct Attributes

A
ve

ra
ge

 E
ve

nt
 M

at
ch

in
g

Ti
m

e(
m

s)

OPR−tree

RRt−tree

RRt−trees

Fig. 9. Varying number of
distinct attributes on syn-
thetic dataset

Matching Time under Different Sizes of Events: Again, since the size of
each event in the real-world dataset eBay is fixed, we couldnt conduct these
experiments on the dataset eBay. We conduct experiments over the synthetic
dataset. The experimental results are shown in Fig. 7. We can see that the aver-
age matching time of the three methods increases with the increment of the size
of events. This is because the number of candidate subscriptions increases when
the size of events increases. RRt-trees scales much better than the other two
methods (RRt-tree and OPR-tree). It is about 3 times faster than the next best
method RRt-tree.

Matching Time under Different Sizes of Subscriptions: The size of sub-
scriptions can affect the matching performance. The average event matching
time on different sizes of subscriptions of the three methods on ebay dataset is
reported in Fig. 8. From this figure, we can see that all the three methods are
sensitive to the size of subscriptions. But, both RRt-trees and RRt-tree scale
better than OPR-trees. It is because than both in RRt-trees and RRt-tree, sub-
scriptions are pruned by each predicate on the nodes of R-tree, as we described
in Sect. 5. RRt-trees scales better than RRt-tree because of its pruning ability
of pivot attributes. However, OPR-tree only prunes subscriptions by the spatial
bounds.

Matching Time under Different Numbers of Distinct Attributes: Since
the number of distinct attributes is fixed in the real-world dataset eBay, we con-
duct experiments with various numbers of distinct attributes on our synthetic
dataset. As Fig. 9 shows, when the number of attributes increases, the average
matching time of both RRt-trees and OPR-tree decreases. However, RRt-tree
performs oppositely. With the increment of number of attributes, its average
matching time increases a little. RRt − trees deceases gradually, because it gen-
erates many more narrowed partitions when the number of distinct attributes
increases during partitioning subscriptions according to pivot attributes.

9 Conclusion

In this paper, we tackled the problem of location-aware top-k subscription match-
ing, which is significant for location-aware publish/subscribe systems with a

Publish/Subscribe with Boolean Expressions 349

stream of geo-tagged attribute-value pair objects. Facing the challenge of effi-
ciently and effectively delivering events to the top-k subscribers, we proposed
a novel index structure called RRt-trees, which integrates Rt-tree and a pred-
icate index structure. In addition, we developed an efficient filtering strategy
to reduce the searching space. Extensive experiments conducted in both syn-
thetic and real-world datasets demonstrate the effectiveness and efficiency of
our algorithms.

Acknowledgment. This work was partially supported by Chinese NSFC project
(61472263, 61402312, 61402311), and the US National Science Foundation (IIS-
1115417).

References

1. Chen, L., Cong, G., Cao, X., Tan, K.L.: Temporal spatial-keyword top-k pub-
lish/subscribe. In: 2015 IEEE 31st International Conference on Data Engineering
(ICDE), pp. 255–266 (2015)

2. Cugola, G., Margara, A.: High-performance location-aware publish-subscribe on
GPUs. In: Narasimhan, P., Triantafillou, P. (eds.) Middleware 2012. LNCS, vol.
7662, pp. 312–331. Springer, Heidelberg (2012)

3. Eugster, G.: Location-based publish/subscribe. In: 2013 IEEE 12th International
Symposium on Network Computing and Applications, pp. 279–282 (2005)

4. Fontoura, M., Sadanandan, S., Shanmugasundaram, J., Vassilvitski, S., Vee, E.,
Venkatesan, S., Zien, J.: Efficiently evaluating complex Boolean expressions. In:
Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data, pp. 3–14. ACM (2010)

5. Guo, L., Zhang, D., Li, G., Tan, K.L., Bao, Z.: Location-aware pub/sub system:
when continuous moving queries meet dynamic event streams. In: Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pp.
843–857. ACM (2015)

6. Hu, H., Liu, Y., Li, G., Feng, J., Tan, K.L.: A location-aware publish/subscribe
framework for parameterized spatio-textual subscriptions. ICDE 2015, 711–722
(2015)

7. Hu, J., Cheng, R., Wu, D., Jin, B.: Efficient top-k subscription matching for
location-aware publish/subscribe. In: Claramunt, C., Schneider, M., Wong, R.C.-
W., Xiong, L., Loh, W.-K., Shahabi, C., Li, K.-J. (eds.) SSTD 2015. LNCS, vol.
9239, pp. 333–351. Springer, Heidelberg (2015)

8. Li, G., Wang, Y., Wang, T., Feng, J.: Location-aware publish/subscribe. In: Pro-
ceedings of the 19th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 802–810. ACM (2013)

9. Machanavajjhala, A., Vee, E., Garofalakis, M., Shanmugasundaram, J.: Scalable
ranked publish/subscribe. Proc. VLDB Endow. 1(1), 451–462 (2008)

10. Sadoghi, M., Jacobsen, H-.A.: Relevance matters: Capitalizing on less (top-k
matching in publish/subscribe). In: 2012 IEEE 28th International Conference on
Data Engineering, pp. 786–797 (2012)

11. Sadoghi, M., Burcea, I., H.a.J: Gpx-matcher: A generic Boolean predicate-based
xpath expression matcher. In: EDBT 2011, pp. 45–56 (2011)

350 H. Jiang et al.

12. Sadoghi, M., Jacobsen, H.-A.: Be-tree: an index structure to efficiently match
Boolean expressions over high-dimensional discrete space. In: ACM Conference
on Management of Data, pp. 637–648 (2011)

13. Sadoghi, M., Jacobsen, H.A.: Location-based matching in publish/subscribe revis-
ited. In: Proceedings of the Posters and Demo Track, p. 9. ACM (2012)

14. Shang, S., Deng, K., Xie, K.: Best point detour query in road networks. pp. 71–80.
In: ACM (2010)

15. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajec-
tory search for trip recommendation. In: 15th International Conference on Extend-
ing Database Technology, EDBT 2012, pp. 156–167 (2012)

16. Shang, S., Ding, R., Zheng, K., Jensen, C.S., Kalnis, P., Zhou, X.: Personalized
trajectory matching in spatial networks. VLDB J. 23(3), 449–468 (2014)

17. Shang, S., Yuan, B., Deng, K., Xie, K., Zheng, K., Zhou, X.: PNN query processing
on compressed trajectories. Geoinformatica 16(3), 467–496 (2012)

18. Whang, S.E., Garcia-Molina, H., Brower, C., Shanmugasundaram, J., Vassilvitskii,
S., Vee, E., Yerneni, R.: Indexing Boolean expressions. Proc. VLDB Endow. 2(1),
37–48 (2009)

19. Xiang Wang, Y.Z., Xuemin Line, W.W.: Ap-tree: Efficiently support continuous
spatial-keyword queries over stream. In: 2015 IEEE 31st International Conference
on Data Engineering (ICDE), pp. 1107–1118 (2015)

20. Yu, M., Li, G., Wang, T., Feng, J., Gong, Z.: Efficient filtering algorithms for
location-aware publish/subscribe. IEEE Trans. Knowl. Data Eng. 27(4), 950–963
(2015)

21. Zhang, D., Chan, C.Y., Tan, K.L.: An efficient publish/subscribe index for e-
commerce databases. Proc. VLDB Endow. 7(8), 613–624 (2014)

22. Zheng, B., Yuan, N.J., Zheng, K., Xie, X., Sadiq, S., Zhou, X.: Approximate key-
word search in semantic trajectory database. In: 2015 IEEE 31st International
Conference on Data Engineering (ICDE), pp. 975–986. IEEE (2015)

23. Zheng, K., Huang, Z., Zhou, X., et al.: Discovering the most influential sites over
uncertain data: a rank based approach. IEEE Trans. Knowl. Data Eng. 99, 1 (2011)

24. Zheng, K., Zhou, X., Fung, P.C., Xie, K.: Spatial query processing for fuzzy objects.
VLDB J. 21, 729–751 (2012)

Predicting the Popularity of DanMu-enabled
Videos: A Multi-factor View

Ming He1,2, Yong Ge2, Le Wu3, Enhong Chen1(B), and Chang Tan4

1 University of Science and Technology of China, Hefei, China
mheustc@gmail.com, cheneh@ustc.edu.cn

2 University of North Carolina at Charlotte, Charlotte, USA
yong.ge@uncc.edu

3 Hefei University of Technology, Hefei, China
lewu.ustc@gmail.com

4 Anhui Radio and Television Information Network CO., LTD, Beijing, China
tanchang1986@gmail.com

Abstract. Recent years have witnessed the prosperity of a new type of
real-time user-generated comment, or so-called DanMu, in many recent
online video platforms. These DanMu-enabled video platforms present
scrolling marquee comments overlaid directly on top of the videos by syn-
chronizing these comments to specific playback times. In this paper, we
study the prediction of video popularity in these platforms, which may
benefit a lot of applications ranging from online advertising for web-
site holders to popular video recommendation for audiences. Different
from traditional online video platforms where only traditional reviews
are available, these DanMus make viewers easily see other viewers’ opin-
ions and communicate with each other in a much more direct way. Con-
sequently, viewers are easily influenced by others’ behaviors over time,
which is considered as the herding effect in social science. However, how
to address the unique characteristics (i.e., the herding effect) of DanMu-
enabled online videos for more accurate popularity prediction is still
under-explored. To that end, in this paper, we first explore and mea-
sure the herding effect of DanMu-enabled video popularity from mul-
tiple aspects, including the popular videos, the popular DanMus and
the newly updated videos. Also, we recognize that the uploaders’ influ-
ence and video quality affect the video popularity as well. Along this
line, we propose a model that incorporates the herding effect, uploaders’
influence and video quality for predicting the video popularity. An effec-
tive estimation method is also proposed. Finally, experimental results on
real-world data show that our proposed prediction model improves the
prediction accuracy by 47.19 % compared to the baselines.

1 Introduction

Recent years have witnessed the rapid development of online video platforms and
the prosperity of real-time user generated comment, or so-called DanMu, in many

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 351–366, 2016.
DOI: 10.1007/978-3-319-32049-6 22

352 M. He et al.

online video platforms such as Acfun1 and Bilibili2. Different from traditional
online reviews that are displayed in a separate space outside the video (e.g.,
Youtube.com3), DanMu as a new type of comment is overlaid directly on the top
of videos by synchronizing the comment to specific playback times. As a matter of
fact, the DanMu-enabled video has activated user’s behaviors, such as comments,
views and so on. For instance, a recent report by a leading Chinese DanMu-
enabled platform reveals that DanMu has improved the online user activity by
100 times4. Understanding DanMu-enabled video’s popularity growth is of great
importance for a broad range of services, such as online ads. in video platforms,
video recommendation for users, and other commercial opportunities.

In the literature, many efforts have been devoted to predict the popularity
of online videos. For example, some works have shown that the popularity of
online video is positively correlated to the historical views and the number of
comments generated by users [6,7]. Intuitively, a viewer could directly see oth-
ers’ interactions (e.g., views and comments) with videos, which makes whether
the viewer watches a particular video is easily affected by other users’ previous
interactions with this video. This phenomenon is known as the herding effect in
social science and it is widely studied in financial markets [1,10,12]. Generally,
the herding effect is defined as everyone doing what everyone else doing, even
when their private information suggests doing something quite different [3]. For
example, in the stock market, if few people begin to sell a certain type of stock,
it may lead to the overall crowd panic and selling spree. Similarly, in the online
video platforms, people’s decision on whether to watch a particular video is also
influenced by others’ behaviors, thus we argue that the herding effect should
play an important role for video popularity prediction.

In fact, there exists considerable works on predicting the popularity of videos
based on the herding effect, which empirically show that a video will attract
new views at a rate proportional to the number of views already acquired [8,16].
However, compared to traditional online videos, the DanMu makes the herd-
ing effect stronger and more dynamic, as the simultaneously displayed DanMu
comments convey interesting information about the content of videos and make
viewers communicate with each other in a much more direct way. Thus users
are more easily affected by other users to view videos or not on DanMu-enabled
video sites. However, few of existing approaches could be directly applied to this
prediction task due to the following two challenges caused by the unique charac-
teristics of DanMu-enabled videos. First, compared to traditional videos, people
interact with DanMu-enabled videos more frequently from various aspects, e.g.,
the views of videos and the DanMus associated with videos. In the meantime,
due to the temporal variation of these videos, the herding effect is dynamic and
changes from time to time. How to capture the dynamic herding effect from
multiple aspects? Second, how to combine the dynamic herding effect with other

1 http://www.acfun.tv/.
2 http://www.bilibili.com/.
3 http://www.youtube.com/.
4 http://digi.163.com/14/0915/17/A66VE805001618JV.html.

http://www.acfun.tv/
http://www.bilibili.com/
http://www.youtube.com/
http://digi.163.com/14/0915/17/A66VE805001618JV.html

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 353

features (e.g., the video quality and the uploaders’ characteristics) that may
influence the popularity of DanMu-enabled videos for the prediction?

To this end, as a pilot study, we aim at predicting the popularity growth
of DanMu-enabled videos by leveraging the unique characteristics of DanMu-
enabled videos. Specifically, we first propose a measurement to quantify the
herding effect from multiple aspects of DanMu-enabled videos, including the
popular videos, the popular DanMus and the newly updated videos. Then we
propose a prediction model to combine the herding effect with other factors that
may influence the video popularity. After that an efficient estimation method is
proposed to automatically learn the herding effect and other parameters. Finally,
we conduct experiments with a real-world data set collected from a DanMu-
enabled online video platform. The experimental results show that our proposed
model improves the prediction accuracy by 47.19 % compared to the baselines.

2 Related Work

To the best of our knowledge, no prior work has considered the dynamic herding
effect and DanMu information to predict the popularity of videos. However,
there have been considerable prior works on predicting the popularity of videos.

Many prior works have analyzed different aspects of video’s metrics such
as total views, total comments, total collects and so on [6,7]. Cha et al. [7]
analyzed the intrinsic statistical properties of video popularity distributions and
studied the popularity lifetime of videos and the relationship between requests
and video age. Mitra et al. [15] found the presence of “invariant” among video’s
characteristics, such as heavy-tailed total views distributions and the positive
correlation between total views and total ratings.

Some researchers made preliminary studies on predicting the popularity
growth of videos. For instance, Borghol et al. [5] developed a methodology that
was able to assess accurately, both qualitatively and quantitatively, the impacts
of various content-agnostic factors on video popularity. What’s more, there exist
some prediction models [8,16] based on the herding effect [4]. Such as Szabo et
al. [16] leveraged the observation that the total views received soon after a video
was uploaded provided a strong indication of its total future views to develop a
prediction model for video views; this method is applied by some works to build
predictive popularity based on applying regression to different feature spaces
[2,11,14,17]. Recently, Le et al. [13] presented an adoption model that consid-
ered multiple aspects for product adoption. Our model advances their work by
considering the unique characteristics of Danmu enabled videos.

Although there exist some works considering the herding effect in the popu-
larity growth model, none of them considered the dynamic herding effect from
multiple aspects over time. Especially, these works just suggested that a video
would attract new views at a rate proportional to the number of views already
acquired. They have not considered what the impact of the popular videos based
on different aspects’ herding effect to other videos over time.

To the emerging type of user-generated comment DanMu,some recent works
focused on this new DanMu phenomenon. Among them, there are only two works

354 M. He et al.

that have used DanMu data, but neither of them use the DanMu information to
predict the popularity growth of videos. Specifically, Wu et al. [19] leveraged the
textual content of DanMus to extract time-sync video tags automatically and
Wu et al. [20] investigated the co-relation between the volume of one particular
DanMu and popularity measures such as the number of replays and bookmarks
of videos. Our work differs from studies as we put emphasis on predicting the
popularity growth of DanMu-enabled videos.

In summary, in our work, we combine the unique nature of DanMu and the
dynamic herding effect from multiple aspects to predict the popularity of videos.
Besides using the DanMu information and the dynamic herding effect, we also
make use of video quality and uploaders’ influence to the proposed prediction
model, which makes the prediction model more accurate and effective.

3 Data and Statistics

In this section, we first illustrate the nature of DanMu comments in DanMu-
enabled websites and introduce the collected data set, and then present some
unique characteristics of this data set.

3.1 DanMu Illustration and Data Collection

In Fig. 1, we show two snapshots of a sample video5 that include several Chinese
DanMus on top of the video. We pick up four DanMus by different viewers,
translate them to English and show them at the bottom. The green axis at the
bottom indicates the video time, where the selected four DanMus are aligned
based on the associated video time. The DanMus “God, Norton” and “Edward
Norton” written by user A and user B are about the actor of the officer in
the snapshot, which are very close at the video time. Also we can observe that
previous DanMus have direct influence on future DanMus. For instance, after
users A and B mention the name of the actor in their DanMus, user C mentions
the movie “Fight Club” acted by the same actor, and then user D mentions
another movie (i.e., “Red Dragon”) acted by the same actor. From this example,
we can see that DanMu enables much more intensive communication among
users than traditional reviews.

We crawled a dataset from acfun.tv, a leading DanMu website in China of
each day, which makes that we can capture the dynamics of the dataset. The
collected dataset contains videos that are uploaded during early November to
the end of May, which lasts for about half a year. For each video, we collected
users’ behaviors of a video that include: Views (the number of views), DanMus
(the number of DanMus), TReviews (the number of traditional reviews), Col-
lects (the number of collects), and Coins (the number of coins). Specifically,
when a viewer thinks the video is valuable and interesting, she can give some
coins to the uploader by buying it from the website. Table 1 shows a summary of

5 Available at http://www.acfun.tv/v/ac1731008.

http://www.acfun.tv/v/ac1731008

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 355

Fig. 1. Two snapshots of a DanMu-enabled video (Color figure online).

Table 1. Video features.

Feature Total count Avg count

Videos 3,623 Null

Views 73,059,811 20187.85

DanMus 883,637 243.89

TReviews 60,956 16.84

Collects 308,448 85.23

Coins 220,578 60.95

Table 2. Uploader information.

Uploaders 745

Videos 3,623

Avg # of Videos per uploader 4.86

Followers 278,520

Avg # of followers per uploader 373.85

video features. As can be seen from this table, there are much more user activ-
ities on Views than other user behaviors. It is reasonable as the view behavior
does not need extra action from viewers compared to other features. And the
DanMu activities are more active than TReviews, Coins and Collects. All these
comparisons reflect that the DanMu function has attracted much more users’
contribution and that online viewers prefer to write DanMus rather than do
other behaviors for DanMu-enabled videos.

Also, for each video, we collected the uploader information as shown in
Table 2. We can find that some uploaders upload more than 1 video as the aver-
age number of videos per uploader is 4.86. And the average number of followers
per uploader is closed to 400, which confirms that there exists strong social
atmosphere in acfun.tv. It enhances that we need consider the social influence
in predicting the popularity growth in our model.

As a preliminary, we first provide the formal definition of the popularity for
videos. Intuitively, as the videos can be viewed by viewers anytime after they
are uploaded, views of videos at different time compose the popularity of videos.
Formally, we set vmt as the views of video m until day t and vt as the total views
of all videos until day t. For simplicity, we adopt the proportion of views as the
popularity of video m until day t denoted as pmt = vmt

vt
. Due to the herding

356 M. He et al.

effect towards to popular videos, then we provide the statement of the popular
videos. Similar to the traditional definition of popular videos, we define that the
popular videos are those videos which are more probably chosen by viewers. For
example, if a video has the largest number of views or DanMus, viewers choose
this video to view with a greater probability than other videos. Also, if a video
is newly uploaded, viewers prefer to choose this video to watch as well.

3.2 Volume Distributions

Video Features. Figure 2 shows the distribution of the number of views per
video. As can be seen from this figure, a few videos attract much more views,
which reflects that there is a strong herding effect on user’s viewing behavior
as most viewers toward to view few popular videos. We also draw histograms
of other four video statistics (i.e., TReviews, Collects, Coins and DanMus) in
Fig. 3. As depicted by this figure, about 71 % videos have less than 100 DanMus
and 85 % videos have less than 1000 DanMus. Compared to DanMu volume
distribution, nearly 99 % videos have less than 1000 TReviews, Collects and
Coins. Thus, we empirically conclude that DanMu behavior is more active than
other three behaviors.

Fig. 2. Histograms of views. Fig. 3. Histograms of other four
features.

To explore whether there are correlation between video popularity and other
video features, we represent each video feature statistics in a vector V Ff =
(V Ff1, · · · , V FfM) and the popularity in a vector V P = (V P1, · · · , V PM),
where V Ffm is the value of feature f for video m, and V Pm is the value of pop-
ularity for video m. Then we compute the correlation of V Ff and V P by using
Pearson correlation measure [9]. This measure is widely used to measure the liner
dependency between two vectors. Detailed Pearson correlation values of video
features and the video popularity is (TReviews,Collects, Coins,DanMus) =
(0.72, 0.75, 0.59, 0.70). We find that all Pearson values are non-negative and

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 357

larger than 0.55. Based on this observation, we can conjecture that the feature
statistics are positively correlated with the popularity of a video. Thus all of
these four features should be leveraged when modeling the popularity of videos.

Uploader Features. Also we demonstrate a simple correlation analysis
between the number of uploaded videos and followers as the correlation value
will more directly reflect the uploader’s activity and social influence. The Pear-
son correlation between the number of uploaded videos and followers is 0.47,
which enhances our conjecture that the uploader who has uploaded more videos
has stronger social influence.

4 The Proposed Model

As illustrated above, due to the unique characteristics of DanMu-enabled videos,
the popularity of videos has a large dynamic herding effect from multiple aspects.
In this section, we propose a model that utilizes the dynamic herding effect
to predict the popularity of videos. Also, to fully leverage all the factors that
influence a video’s popularity, we also consider DanMu information, video quality
and uploaders’ influence. Table 3 lists the notations used in this paper.

4.1 Dynamic Herding Effect from Multiple Aspects

As we know, compared with traditional online videos, the DanMu makes the
herding effect stronger and more dynamic, which means that users are more

Table 3. Mathematical notations.

Symbol Description

k The aspect of popular videos

HEmt A combination of herding effect from multi aspects of video m on day t

ok,t The center of aspect k’s popular videos on day t

dism,ok,t The distance between video m and ok,t

θk,t k-th aspect’s parameter of herding effect on day t

V Qm A vector representing video m’s quality

UIm A vector representing video m’s uploader’s influence

pmt The popularity of video m on day t

ai The coefficient of popularity between pmt and pm(t−i)

β The coefficient of herding effect

γ The coefficient vector of video quality

δ The coefficient vector of uploaders’ influence

Mt−1 The number of videos on day t − 1

vmt The number of views of video m until day t

vt The number of views of all videos until day t

358 M. He et al.

inclined to view popular videos and more easily affected by other users to view
videos or not on DanMu-enabled video sites. Specially, when viewers have no
specific videos to view, they usually rank the videos by the number of views and
choose top ranking videos to view. Therefore, we conjecture that the popularity
of videos is affected by the dynamic herding effect of views. Besides the dynamic
herding effect of views, we also find that more users tend to view newly uploaded
videos and popular videos ranked by the number of DanMus. Based on these
observations, we propose three types of dynamic herding effect: the dynamic
herding effect of views, the dynamic herding effect of DanMus and the dynamic
herding effect of uploaded date. Specifically, we set the aspect k as the type of
popular videos: k = 1 stands for the popular videos measured by the number of
views, k = 2 represents the popular videos measured by the number of DanMus
and k = 3 represents the popular videos measured by the uploaded date of
videos. And we set HEmt as a combination of dynamic herding effect from these
three aspects of video m on day t as HEm,t =

∏K
k=1 [1 + dism,ok,t

]−θk,t , where
ok,t is the popular videos’ center of aspect k on day t and θk,t stands for k-th
aspect’s parameter of herding effect on day t. Then we give details of dism,ok,t

,
which stands for the distance between video m and ok,t as follows:

dism,o1,t =
|vo1,t − vm(t)|

vo1,t

; dism,o2,t =
|do2,t − di(t)|

do2,t

; dism,o3,t =
|uo3,t − um(t)|

uo3,t

.

where vo1,t
is the average number of views of popular videos, do2,t

is the average
number of DanMus of popular videos and uo3,t

is the average uploaded date of
popular videos on day t.

4.2 Predicting Model on Videos

Except for the dynamic herding effect from multiple aspects, the generation of
a new video’s view is also driven by video quality and uploaders’ influence.

Video Quality. Intuitively, if the quality of a video is high, the popularity of this
video may be greater in the next time. So, we import a vector V Qm representing
video m’s quality. Based on our application, we choose five features for video
quality: V Qm1, total views; V Qm2, total TReviews; V Qm3, total collects; V Qm4,
total coins; V Qm5, total DanMus.

Uploaders’ Influence. We have found that many users choose videos uploaded
by influential uploaders to watch. In view of this observation, we conjecture that
the growth of popularity is also affected by the uploaders’ influence. Intuitively, if
an uploader has more followers, it means that the uploader has greater influence.
Similarly, the number of uploaded videos and the average views of uploaded
videos also have a positive correlation to the influence of the uploader. To this
end, we set the vector UIm as video m’s uploader’s influence and choose these
three features representing uploaders’ influence: UIm1, total uploaded videos;
UIm2, total followers; UIm3, the average views of uploaded videos.

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 359

While features’ values of video quality and uploaders’ influence are not in
same scale, so we use the transformation Max(f)−f

Max(f)−Min(f) to process the original
values of each feature to eliminate the extreme features’ influence.

Inspired by the model introduced in [18], which investigated the influence of
the prevailing consensus on current analysts’ recommendations’ choices (strong
buy, buy, hold, sell, and strong sell) in a stock, and predicted analysts’ recom-
mendations’ choices based on the herding effect of the prevailing consensus in
the stock by a new proposed statistical model (the prevailing consensus was
defined as popular recommendations’ choices), we can draw a close analogy to
the context in [18]: a user chooses a video to view, which is also affected by the
prevailing consensus (popular videos), and then we propose a general framework
to predict the popularity pmt for video m on day t as follows:

p̃mt =
I∑

i=1

ai

pm(t−i)(β ∗ HEm,t−i + γT ∗ V Qm,t−i + δT ∗ UIm,t−i)
Dt−i+1

, (1)

where Dt ensures that all videos’ popularity sum to 1, ai is the coefficient of
popularity between pmt and pm(t−i), β stands for the coefficient of herding effect,
γ stands for the coefficient vector of video quality, δ stands for the coefficient
vector of video uploader’s influence and Mt−1 represents the number of videos
on day t−1. The popularity pm(t−1) of video m on day t is equal to vm(t−1)/vt−1

and pmt is vmt/vt. While our application adds new videos over time, we adjust
the pmt = vmt

vt−vnew,t
to eliminate the effect of new adding videos, where vnew,t is

total views of new adding videos on day t.

Comparing to the original model [18]: pi,j(σ, τ) = pi,j(0)
{

[1+(j−τ)2]−σ

Di

}
,

where τ is the popular recommendation choice, σ is the parameter of herding
effect, we have improved the original model to our model Eq. 1 on four aspects:
First, the parameter of herding effect is dynamic and changes from time to time
in our model, while the parameter of herding effect is constant over time in
[18]. Second, we import the dynamic herding effect of multiple aspects (views,
DanMus and uploaded date), while the original model only adopted one aspect
(the popular recommendation choice). Third, the popularity for a video corre-
lates with several previous days in our work, while the proportion only correlates
with the only day before in [18]. Fourth, we combine five features (total views,
total TReviews, total collects, total coins and total DanMus) of video quality
and three features (total uploaded videos, total followers and the average views
of uploaded videos) of uploaders’ influence to predict the popularity of videos.
These improvements make our prediction model more effective and more gener-
alized.

4.3 Parameters Learning Algorithm

Optimizing Functions. The value of θk,t stands for the t-th day’s herding
effect of aspect k on other videos, if θk,t = 0, it means that the popular videos

360 M. He et al.

regarding aspect k have no effect on other videos. If θk,t > 0, it means that the
popular videos have a positive effect on other videos. And if θk,t < 0, it means
that the popular videos have a negative effect on other videos. As we know pmt,
V Qm, UIm and dism,ok,t−1 , we use the Eq. 2 to learn parameters as follows:

J = min
{θk,t−i,ai,β,γj,δu}

1

2

⎡

⎣
T∑

t=I+1

Mt−1∑

m=1

(pmt − p̃mt)
2
+

I∑

i=1

a
2
i + β

2
+

J∑

j=1

γ
2
j +

U∑

u=1

δ
2
u

⎤

⎦ (2)

where T is longevity of the dataset by day.
We use the gradient descent algorithm to learn all parameters, which is

very effective for learning parameters. For simplicity, we define symbols Cm,t−i,
dmk(t−i) as Eq. 3.

Cm,t−i = pm(t−i)(β ∗ HEm,t−i + γT ∗ V Qm,t−i + δT ∗ UIm,t−i)
dmk(t−i) = 1 + dis(m, ok,t−i)

(3)

At first, we calculate the partial derivatives of all parameters. For space limita-
tion, we omit the inferencing process of the partial derivatives and directly give
the partial derivatives’ equations of ai, β, γj , δu and θk,t−i as follows:

J (1)
ai

=
T∑

t=I+1

Mt−1∑
m=1

(p̃mt − pmt) ∗ Cm,t−i

Dt−i+1
+ ai (4)

J
(2)
β =

T∑
t=I+1

Mt−1∑
m=1

(p̃mt − pmt)
I∑

i=1

{ ai

D2
t−i+1

[Dt−i+1pm,t−iHEm,t−i

− Cm,t−i

Mt−i∑
m1=1

(pm1,t−iHEm1,t−i)] } + β (5)

J (3)
γj

=
T∑

t=I+1

Mt−1∑
m=1

(p̃mt − pmt)
I∑

i=1

{ ai

D2
t−i+1

[Dt−i+1pm,t−iV Qmj,t−i

− Cm,t−i

Mt−i∑
m1=1

(pm1,t−iV Qm1j,t−i)] } + γj (6)

J
(4)
δu

=
T∑

t=I+1

Mt−1∑
m=1

(p̃mt − pmt)
I∑

i=1

{ ai

D2
t−i+1

∗ [Dt−i+1pm,t−iUImu,t−i

− Cm,t−i

Mt−i∑
m1=1

(pm1,t−iUIm1u,t−i)] } + δu (7)

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 361

J
(5)
θk,t−i

=
T∑

t=I+1

Mt−1∑
m=1

(p̃mt − pmt)
ai

D2
t−i+1

[
Cm,t−i

Mt−i∑
m1=1

(βpm1,t−i ln dm1k(t−i)

dm1k(t−i)
−θk,t−i) − Dt−i+1βpm,t−idmk(t−i)

−θk,t−i ln dmk(t−i)

]
(8)

Updating Parameters. We have generated the partial derivatives of all para-
meters, then we obtain their update rules of ai, β, γj , δu and θk,t−i as follows:

(ai, β, γj , δu, θk,t−i)
(n+1) = (ai, β, γj , δu, θk,t−i)

(n) − η(J(1)
ai

, J
(2)
β , J(3)

γj
, J

(4)
δu

, J
(5)
θk,t−i

)(n)

(9)
where η is the learning rate.

Initialization. To set a proper starting point for learning, we set all features
equal value at start. Under this assumption, we have the following settings:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

βm = 1
θk,t−i = 1/K, where K is multible aspects;
ai = 1/I, where I is linear regression days;
γj = 1/J, where J is video′s featurs;
δu = 1/U, where U is uploader′s features;

(10)

After initialization, we iterate the learning algorithms updating parameters
until the objective function converges.

5 Evaluation

To evaluate the effectiveness of the proposed prediction model, we present an
empirical evaluation. We use the real video data introduced in Sect. 3.1 to vali-
date our proposed models.

5.1 Comparison Models

We compare the performance of our prediction model to five additional popu-
larity growth models:

(a) Constant Scaling model (CSM), which has been introduced in [16]. The
CSM leveraged the observation that the total views received soon after a
video was uploaded provided a strong indication of its total future views to
develop a prediction model for video popularity.

(b) Linear regression model about pmt (pmtREG). The pmtREG is linearly
correlated to previous I days’ popularity as p̃mt =

∑I
i=1 ai ∗ pm(t−i).

362 M. He et al.

(c) Linear regression model about video quality (qualityREG). The qualityREG
is linearly correlated to video quality as p̃mt =

∑N
n=1 λn ∗ V Qmn,t−1, where

λ1 stands for the coefficient of Views, λ2 stands for TReviews’ coefficient,
λ3 stands for Collects’ coefficient, λ4 stands for Coins’ coefficient and λ5

stands for DanMus’ coefficient.
(d) Fixed Herding Effect model (FM). The FM only adopts fixed herding effect,

which means that each day has the same herding effect about parameter θk,
without combining video quality and uploaders’ influence.

(e) Dynamic Herding Effect model (DM). The DM only uses dynamic herding
effect, which means that each day has different herding effect of parameter
θk, without combining video quality and uploaders’ influence, too.

We implemented all the methods in C# and conducted experiments on a
Windows 8 system with a 3.4 GHz Intel i7 CPU and 32 GB memory. For com-
paring the learning ability of growth models, we dynamically adjust the length
of training days including 80 days, 95 days, 110 days, 125 days and 140 days and
use the following days for testing.

5.2 Validating Popularity Growth Models

In this first step of experiment, we validate the effectiveness of different popular-
ity growth models. As we predict the popularity of the video m, the most direct
and efficient evaluation index is to compute the average absolute difference ratio

between observation values and prediction values as aadrt =
∑Mt

m=1
Abs(p̃mt−pmt)

pmt

Mt
.

The experimental results of aadr are exhibited in Fig. 4. We find that pop-
ularity growth models (e.g. DM, HVUM) adopting dynamic herding effect have
smaller aadr than other popularity growth models (e.g. CSM, FM) across all
training days, which reflects that the dynamic herding effect contributes signif-
icantly to reducing the prediction error of popularity growth. And as training
days increasing, the aadr of each growth models becomes decrease due to more
training information conduces to learn parameters of growth models accurately.

To exhibit the improvement and difference among different growth mod-
els clearly, we add the relative improvement of aadr (denoted as RelativeImp),
which calculates the rate of each model’s improvement compared to CSM been
extensively adopted in many previous popularity growth models. And Fig. 5
demonstrates the average values of aadr and RelativeImp. We observe that the
aadr 13.71 % of FM is the worst one among all growth models, which shows that
the fixed herding effect can not accurately capture the dynamics of popularity
growth. And regarding to RelativeImp, both linear regression models (pmtREG:
-30.58 %, qualityREG: -108.18 %) have no advantages on predicting popular-
ity dynamic growth compared to CSM. It is noticed that the HVUM has the
best prediction ability on popularity dynamic growth with the minimum 3.27 %
of aadr and the maximum 47.19 % of RelativeImp. Particularly, our proposed
model HVUM has improved 5 % accuracy compared to DM on RelativeImp,
which demonstrates that the video quality and the uploaders’ influence con-
tribute to improving the prediction accuracy on popularity dynamic growth.

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 363

Fig. 4. aadr with training days. Fig. 5. Average aadr and RelativeImp.

We can thus conclude that the HVUM faithfully captures the growth dynam-
ics of video popularity with rich and insufficient training information.

5.3 Impact of Different Video Features

Next, we take a deep analysis about the training values of video quality’s coef-
ficients γ1 = 0.0015, γ2 = −0.0055, γ3 = −0.0036, γ4 = 0.0029, γ5 = −0.0017 to
explore the impact of different features of video quality. We find that the next
day’s popularity is most relevant to previous day’s Coins as γ4 = 0.0029, which
reflects that the only paid feedback Coins is the most relevant feature to the
dynamic growth of popularity among all features. And the feature Views also
plays an important role in predicting the next day’s popularity as γ1 = 0.0015.
While the DanMus’ coefficient γ4 equals to -0.0017, it shows that the feature of
DanMus plays a significantly negative effect on predicting the dynamic growth
of popularity. Nevertheless, in previous works, none work adopts the DanMu
information to improve the accuracy of popularity models.

5.4 Describing Herding Effect

In Sect. 5.2, the dynamic herding effect contributes significantly on improving
the accuracy of popularity growth models. In this section, we take an in-depth
analysis about fixed and dynamic herding effect respectively.

At first, we give training values of (θ1, θ2, θ3) = (−0.0036,−0.0076, 0.0077)
of FM to analyze different aspects’ fixed herding effect. We find that both θ1
and θ2 are less than 0, which shows that the popular videos measured by the
aspects of views and DanMus have a negative effect on other videos. However,
θ3 is larger than 0, which shows that each day’s new videos excite users to view
other videos. Based on these two observations, we know that the popular videos
according to the number of views and DanMus inhibit users to view other videos

364 M. He et al.

Fig. 6. Herding effect parameters’ dynamic change.

and if the website holders add new videos to their owning websites everyday, the
traffic of videos’ services will be improved.

At the end, we demonstrate the training values of HVUM to explore the effect
of the dynamic herding effect of different aspects on predicting the popularity
growth in Fig. 6. Based on Fig. 6, we can draw several implications: First, the
popular videos according to each aspect have different effect on other videos on
different days. For example, to the dynamic herding effect of the views aspect, the
popular videos have a positive effect on other videos on the day 1 as θ11 = 0.34,
while the popular videos have a negative effect on other videos on the day 6 as
θ16 = −1.94. Second, at the initial few days, the fluctuation of parameters is
stronger than subsequent days. The main reason of this observation is that the
videos are not enough to learn the accurate value of θ at first few days. Third,
over time, we find that the values of herding effect parameters are stable as the
training videos are sufficient.

6 Conclusions

In this paper, we introduced a model for predicting the popularity growth of
DanMu-enabled videos, which combines the dynamic herding effect, DanMu
information, video quality and uploaders’ influence. We collected a large set
of data from a DanMu-enabled online video system (i.e., acfun.tv) that includes
3,623 videos, 73,059,811 views, 883,637 DanMus and 745 uploaders of each day.
We first analyzed the distributions of video features and uploader features over
time. Then we proposed to measure the herding effect of DanMu-enabled video
popularity from multiple aspects, including the popular videos, the popular
DanMus and the newly updated videos. We also recognized that the upload-
ers’ influence and video quality affect the DanMu-enabled video popularity as
well. Therefore, we combined the dynamic herding effect, uploaders’ influence
and video quality in a unified framework to predict the popularity of DanMu-
enabled videos. After that, we designed an efficient estimation method to auto-
matically learn the herding effect and other parameters. Finally, experimental
results demonstrated the effectiveness of our prediction model. We believe that
the successful prediction of video popularity provides valuable commercial and
technical implications to improve various online video-based services.

Predicting the Popularity of DanMu-Enabled Videos: A Multi-factor View 365

Acknowledgements. This research was partially supported by grants from the
National Science Foundation for Distinguished Young Scholars of China (Grant No.
61325010), the National High Technology Research and Development Program of China
(Grant No. 2014AA015203) and the Fundamental Research Funds for the Central
Universities of China (Grant No. WK2350000001). This research was supported
in part by NIH (1R21AA023975-01), NSFC (71571093, 71372188, 61572032), and
National Center for International Joint Research on E-Business Information Processing
(2013B01035). Truly appreciate Jinmei Lin’s help and suggestions in user experience
on DanMu-enabled videos.

References

1. Andersson, M., Lee, C., Hedesström, T.M., Gärling, T.: Effects of reward system
on herding in a simulated financial market. Interaction on the Edge, pp. 12 (2006)

2. Bandari, R., Asur, S., Huberman, B.A.: The pulse of news in social media: fore-
casting popularity. In: ICWSM, pp. 26–33 (2012)

3. Banerjee, A.V.: A simple model of herd behavior. The Quarterly J. Econ. 107,
797–817 (1992)

4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

5. Borghol, Y., Ardon, S., Carlsson, N., Eager, D., Mahanti, A.: The untold story
of the clones: content-agnostic factors that impact YouTube video popularity. In:
Proceedings of the 18th ACM SIGKDD, pp. 1186–1194. ACM (2012)

6. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., Moon, S.: I tube, you tube, every-
body tubes: analyzing the world’s largest user generated content video system. In:
Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement,
pp. 1–14. ACM (2007)

7. Cha, M., Kwak, H., Rodriguez, P., Ahn, Y.-Y., Moon, S.: Analyzing the video pop-
ularity characteristics of large-scale user generated content systems. IEEE/ACM
Trans. Networking (TON) 17(5), 1357–1370 (2009)

8. Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of informa-
tion propagation in the flickr social network. In: Proceedings of the 18th interna-
tional conference on World wide web, pp. 721–730. ACM (2009)

9. Cohen, J., Cohen, P., West, S.G., Aiken, L.S.: Applied multiple regres-
sion/correlation analysis for the behavioral sciences. Routledge (2013)

10. Hey, J.D., Morone, A.: Do markets drive out lemmingsor vice versa? Economica
71(284), 637–659 (2004)

11. Hogg, T., Lerman, K.: Social dynamics of digg. EPJ Data Sci. 1(1), 1–26 (2012)
12. Hsieh, S., Tai, Y.Y., Vu, T.B.: Do herding behavior and positive feedback effects

influence capital inflows? evidence from asia and latin america. Int. J. Bus. Finance
Res. 2(2), 19–34 (2008)

13. Le, W., Qi, L., Chen, E., Xie, X., Chang, T.: Product adoption rate prediction: A
multi-factor view

14. Lerman, K., Hogg, T.: Using a model of social dynamics to predict popularity of
news. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 621–630. ACM (2010)

15. Mitra, S., Agrawal, M., Yadav, A., Carlsson, N., Eager, D., Mahanti, A.: Char-
acterizing web-based video sharing workloads. ACM Trans. Web (TWEB) 5(2), 8
(2011)

366 M. He et al.

16. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. ACM
Commun. 53(8), 80–88 (2010)

17. Tsagkias, M., Weerkamp, W., de Rijke, M.: News comments:exploring, modeling,
and online prediction. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S.,
Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993,
pp. 191–203. Springer, Heidelberg (2010)

18. Welch, I.: Herding among security analysts. ACM Commun. 58(3), 369–396 (2000)
19. Wu, B., Zhong, E., Tan, B., Horner, A., Yang, Q.: Crowdsourced time-sync video

tagging using temporal and personalized topic modeling. In: Proceedings of the
20th ACM SIGKDD, pp. 721–730. ACM (2014)

20. Wu, Z., Ito, E.: Correlation analysis between user’s emotional comments and popu-
larity measures. In: IIAI 3rd International Conference on Advanced Applied Infor-
matics (IIAIAAI), pp. 280–283. IEEE (2014)

Integrating Human Mobility and Social Media
for Adolescent Psychological Stress Detection

Li Jin1,2(B), Yuanyuan Xue1,2, Qi Li1,2, and Ling Feng1,2

1 Tsinghua National Laboratory for Information Science and Technology (TNList),
Department of Computer Science and Technology,

Tsinghua University, Beijing 100084, China
l-jin12@mails.thu.edu.cn

2 Centre for Computational Mental Healthcare Research,
Institute of Data Science, Tsinghua University, Beijing 100084, China
{xue-yy12,liqi13}@mails.thu.edu.cn, fengling@tsinghua.edu.cn

Abstract. Leveraging social media to detect psychological stress is an
emerging research topic, as it addresses one of the most common men-
tal health issues. One of the notable challenges in this area, however, is
data sparsity: users with high stress level tend to reduce their activities
on social networks. While teenagers’ mobility behavior always appears
some outliers for stress release in physical world, a question arises: can
we identify the stress-related outlier features from daily trajectories to
facilitate stress detection? In this paper, we propose a co-training-based
semi-supervised learning approach that consists of two separated classi-
fiers. One classifier is conditional random field (CRF), which takes out-
lier features from GPS trajectories as input to model the daily moving
behavior correlation of stress. The other classifier is deep neural network
(DNN) involving tweet features to model the social media behavior cor-
relation of stress. We evaluate our approach with an over 6-month user
study on 57 teenagers from Beijing, and demonstrate effectiveness of the
proposed model compared to state-of-the-art methods .

Keywords: Stress detection · Co-training · Human mobility · Social
media

1 Introduction

Due to the growing pace of modern life in the competitive society, psychological
stress has become one of the major factors causing health problems, especially
for teenagers who are not mature enough to deal with it properly and effec-
tively. An online survey1 of 1018 U.S. teens (aged 13–17) made by the American
Psychological Association in 2013 found that teens were suffering from stress
in all areas of their lives, from school to friends, work and family, where more
than a quarter (27 %) said they experienced “extreme stress” during the school
year. Adolescence is a critical period for teens’ growth and development. Bearing
1 http://www.apa.org/news/press/releases/stress/2013/.

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 367–382, 2016.
DOI: 10.1007/978-3-319-32049-6 23

http://www.apa.org/news/press/releases/stress/2013/

368 L. Jin et al.

too much stress without being released timely hurts teens both physically and
mentally, leading to clinical depressions, insomnia, and even suicide. Currently,
about 20 % of teens have psychological illness around the world2. According to
China’s Center for Disease Control and Prevention, suicide has become the top
cause of death among Chinese youth3, and excessive stress is considered to be a
major factor of suicide. Therefore, it is of great significance to detect and deal
with stress before it causes severe consequence.

Leveraging social media to develop stress detection tools has drawn many
research interests in recent years. Previous work [9,10,19] detects psychological
stress through the tweets and posting patterns from microblog. However, limi-
tations exist in tweet-based stress detection. Firstly, tweets are limited to max-
imally 140 characters on social microblog platforms, and teens do not always
express their stressful states directly in tweets. Secondly, users with high stress
level may exhibit low activeness on social networks, as reported by a recent
study from the Pew Research Center4. These phenomena incur the inherent
data sparsity and ambiguity problem, which may hurt stress detection perfor-
mance. Besides social media behavior, teens’ mobility behavior always appears
some outliers for stress release in physical world. The increasing availability of
GPS-enabled devices motivates us to expand the tweet-wise investigation scope
by incorporating useful cues from recorded GPS trajectories.

In this paper, we propose a co-training-based stress detection model based on
teens’ daily GPS trajectories and microblog data. Rather than treating stress-
related features equally from cross-domain data sources, we explore how to incor-
porate these heterogeneous features into a data analytics model effectively in
view of limited labeled data. The contribution can be summarized as follows:

• We propose a co-training-based semi-supervised learning approach, which
leverages unlabeled data to improve the detection accuracy. Additionally, the
approach consists of two classifiers respectively modeling the teens’ trajectory
outlier features and tweet features that correlate to the stress.

• We identify positional and temporal outlier features from teens’ daily trajec-
tories to facilitate stress detection. To the best of our knowledge, this is the
first attempt in the literature to investigate and model the inner relationship
between psychological stress and trajectory outliers.

• We build a system called T-Sensor, and conduct an over 6-month user study
on 57 teens from Beijing to demonstrate its effectiveness.

The rest of our paper is organized as follows. In Sect. 2, we discuss the related
work. Then we formulate the stress detection problem and present the framework
of T-Sensor in Sects. 3 and 4. We describe the stress-related feature extraction
and detail the learning model in Sects. 5 and 6. Finally, we show our experimental
results in Sect. 7, and draw a conclusion in Sect. 8.
2 http://learning.sohu.com/s2012/shoot/.
3 http://theweek.com/articles/457373/rise-youth-suicide-china.
4 http://www.pewinternet.org/files/2015/01/PI Social-media-and-stress 0115151.

pdf.

http://learning.sohu.com/s2012/shoot/
http://theweek.com/articles/457373/rise-youth-suicide-china
http://www.pewinternet.org/files/2015/01/PI_Social-media-and-stress_0115151.pdf
http://www.pewinternet.org/files/2015/01/PI_Social-media-and-stress_0115151.pdf

Integrating Human Mobility and Social Media 369

2 Related Work

Psychological stress detection techniques can be divided into three main kinds
based on different analysis methods [14]. The first kind uses subjective ques-
tionnaires (e.g., Perceived Stress Scale [1]) or individual/group meetings with
psychologists to analyze users’ stress situations. This kind of methods requires
high cooperation from users and sometimes relies on people’s ability to recall
their experiences. Observing human’s physiological and physical signals change
with the variation of psychological stress status, many researchers use various
sensors to objectively monitor the changes of physiological and physical signals.
For example, [4] found skin conductivity and heart rate metrics have close cor-
relations with driver’s stress level, and integrated multiple physiological signals
(i.e., skin conductance, electromyogram, electrocardiogram, and respiration) to
detect stress. [8] measured mental stress by observing physical signals changes
caused by head and mouth movements as well as eye movements including eye
gaze, eye blink, and pupil dilation. [11] treated smartphone as a kind of sen-
sor to detect people’s mental stress by analyzing their voice variation in diverse
conversational situations. Compared with these body contact and invasive stress
measurements, the social media (e.g., BBS, Facebook and Microblog) arises as
another low-cost sensing channel to obtain people’s self-expressed contents and
behaviors, where some emotional signals could be captured and analyzed. For
example, [15] constructed a two-stage supervised learning framework to iden-
tify potential depression candidates, based on the content and temporal features
extracted from their write-ups on BBS. [12] adopted negative binomial regression
analysis to evaluate college students’ Facebook disclosures which met DSM5 cri-
teria for a depression symptom or a major depressive episode. [19] investigated a
number of teens’ typical tweeting behaviors that might reveal adolescent stress,
and applied five classifiers to detect teens’ stress. [9,10] trained a deep sparse
neural network to detect users’ stress from cross-media microblog.

3 Problem Formulation

In this section, we firstly give some preliminary concepts, and then present a
formal definition of the problem.

Definition 1. Trajectory: A spatial trajectory tr is a sequence of time-ordered
spatial points, tr : p1 → p2 → . . . → pn, where each point consists of a latitude,
longitude and a time stamp, e.g., p = {lat, long, t}.

Definition 2. POI: A point of interest POI is a venue (like a school and shop-
ping mall) in the physical world, having a name, address, coordinates, category,
and other attributes.

5 https://en.wikipedia.org/wiki/Diagnostic and Statistical Manual of Mental
Disorders.

https://en.wikipedia.org/wiki/Diagnostic_and_Statistical_Manual_of_Mental_Disorders
https://en.wikipedia.org/wiki/Diagnostic_and_Statistical_Manual_of_Mental_Disorders

370 L. Jin et al.

Definition 3. Road Network: A road network RN is a directed graph
G(V,E), where E is a set of edges defining the road segments, and V is a set of
vertices defining the intersections and terminal points for E.

Definition 4. Psychological Stress: The psychological stress of a teen at time
t is represented as a triple (s, c, t) (or briefly st

c), where s ∈ {0, 1} is a binary
value indicating stressed or non-stressed, c ∈ C is the stress category.

Problem Definition. Given a sequence of a teen’s tweets Tw and daily GPS
trajectories Tr within a time period I = {t1, t2, . . . , tn}, the objective is to learn
a stress mapping function f : ({Tw, Tr, I}) → {st1

c , st2
c , . . . , stn

c } to determine a
teen’s stress existing period.

4 Framework Overview

Fig. 1 presents the framework of our T-Sensor system, which consists of three
major layers: (1) feature extraction, (2) stress detection model; (3) service pro-
viding. We will detail the first two layers in the following sections respectively.

5 Feature Extraction

In this section, we define and extract several stress-related features from daily
GPS trajectories and tweets based on previous psychological principles [6].

5.1 Trajectory Outlier Feature Space

Our approach to extract stress-related outlier features from daily GPS trajec-
tories consists of three main steps. We firstly calibrate the raw trajectory data
using road network and POIs. Then we partition teens’ historical trajectories to
discover their regular lifestyle. Finally, we model the stress-related anomalous
behavior and conduct feature extraction on teens’ trajectory outliers.

Fig. 1. Framework of T-Sensor system

Integrating Human Mobility and Social Media 371

Fig. 2. GPS log, segment and change point

Considering efficient map-matching of teens’ daily trajectories, we adopt the
anchor-based calibration system [16] after partitioning the road network using
grid. Inspired by the change point-based segmentation method, inference model
and graph-based post-processing algorithm proposed by [20], we then conduct
a two-level trajectory partitioning strategy to identify teens’ mobility patterns
as shown in Fig. 2. In the first level, we cluster the stay points from the same
region in coarse granularity. If the Euclidean distance d among a set of time-
ordered spatial points pi → pi+1 → . . . → pj is less than a threshold τd = 200m,
we cluster them and partition trajectory tr into static and moving state. In
the second level, we partition the moving sub-trajectories based on different
motion modes (e.g., walking, running, taking a bus and riding a bicycle) in fine
granularity. Each partitioned segment can be represented by a feature vector
f = (ts, te, σ,m,R, P), where ts and te are the start and end time stamp, σ
identifies the static or moving state, m corresponds to the motion mode, R and
P are the passed regions and POIs.

To discover teens’ regular lifestyle, a frequent segment mining algorithm [3]
is conducted on partitioned trajectory dataset L, and the support of the ith

segment li can be calculated by S(li) = |{l|s(l,li)>τs,l.σ=li.σ,l.m=li.m,l∈L}|
k , where

k is the number of days; s(l, li) is the similarity between two segments; and τs is
the threshold. Considering feature vector f, we adopt a linear weighted formula
to define the similarity function s(l, li) as follows:

s(l, li) = wt · γt(l, li) + wR · γR(l, li) + wP · γP (l, li) (1)

where γt(l, li) = [l.ts,l.te]
⋂
[li.ts,li.te]

[l.ts,l.te]
⋃
[li.ts,li.te]

is the time overlap ratio; γR(l, li) = |l.R⋂ li.R|
|l.R⋃ li.R|

is the region overlap ratio; γP (l, li) = |l.P ⋂ li.P |
|l.P ⋃ li.P | is the POI overlap ratio;

wt, wR and wP are the weight parameters. Given a threshold τL, we can
further choose the frequent segments at different time of day with the sup-
port ≥ τL to constitute the regular lifestyle Γ . We initially set the weights
wt = wR = wP = 1

3 , the thresholds τs = 0.8, and τL = 0.7. The adjust-
ment for the parameters to determine Γ is detailed in Sect. 6.2. For the ith
frequent segment li in Γ , we describe its feature vector f by Gaussian distribu-

tion f(li.x) ∼ N(μ(li.x), σ(li.x)2), where the mean μ(li.x) =
∑Ni

j=1 lji .x

Ni
and the

standard deviation σ(li.x) =
√

1
Ni

∑Ni

j=1 (lji .x − μ(li.x)) are calculated based on
Ni similar fragments from L.

372 L. Jin et al.

To model the stress-related anomalous behaviors, we design a psychologi-
cal questionnaire and call for 620 teens to fill in it online by SOJUMP web-
site6. Through asking questions like “what do you often do when suffering from
stress?”, 46.3 % of teens choose to change the surrounding environment and go
to some unusual places (e.g., park, bookstore, cinema, shopping mall); 37.9 %
of teens choose to stay at familiar places and do something to relax (e.g., sleep,
cry, exercise, play computer games). In addition, 88.2 % of teens express that
they get confused about how to deal with serious stress properly, which always
hinder them in the current work. Based on the empirical investigation, we study
to extract stress-related outliers from teens’ mobility behaviors, which refer to
a partitioned segment that is grossly different from or inconsistent with the cor-
responding segment from teens’ regular lifestyle Γ . In this paper, we mainly
consider two stress-related outliers, which can be defined as follows:

• Positional outlier feature: Fp. The passed regions of segment l do not
belong to the τp confidence interval of f(l.R) ∼ N(μ(l.R), σ(l.R)2) in Γ ,
which is represented by Fp = (l.R, τp, Γ).

• Temporal outlier feature: Ft. The occurring time interval of segment l
does not belong to the τt confidence interval of f(l.t) ∼ N(μ(l.t), σ(l.t)2) in
Γ , which is represented by Ft = (l.ts, l.te, τt, Γ).

5.2 Tweet Feature Space

Compared with other user groups, teens exhibit different microblog behaviors
in tweeting/retweeting content when suffering from stress. Besides using short
linguistic sentences, young teens many times like to add some pictorial emoticons
(like laughing, shy, angry, and crazy symbols) to vividly express their minds, or
use multiple exclamation and question marks for emphasis purpose. In addition,
a majority of teens are fond of posting and forwarding multi-media information
like music, pictures, etc.

To incorporate different features from the cross-media microblog data to
enhance stress detection, we extract a set of features from the tweets including
words from texts, colors from images, and the frequency of social actions. The
definitions are as follows:

• Linguistic features: Fl. Based on the psycholinguistic dictionary LIWC [2],
we extract 5 features (11 dimensions) defined in [19] consisting of linguistic
association between stress category and negative emotion words (1 dimen-
sion), number of positive and negative emotion words/emoticons (4 dimen-
sions), punctuation marks with associated emotion words (4 dimensions),
emotional degree (1 dimension) and shared music genres (1 dimension) to
describe the stress-related tweeting text.

• Visual features: Fv. Images convey emotions like excitement and sadness,
and psychological experiments have shown that color themes are crucial for

6 http://www.sojump.com/.

http://www.sojump.com/

Integrating Human Mobility and Social Media 373

the recognition of emotions. Based on previous work on affective image clas-
sification [17,18] and color psychology theories7, we extract 5 features (21
dimensions) consisting of five-color theme (15 dimensions), saturation (2
dimensions), brightness (2 dimensions), warm or cool color (1 dimension),
clear or dull color (1 dimension) as visual representation for the tweeting
images when teens are suffering from stress.

• Social features: Fs. Besides the text and image of a tweet, some additional
features like comments, retweets and likes indicate the tweet’s social attention
from teens’ friends. Considering an apparently stressful tweet may attract
more attention from teens’ friends in microblog, we extract the number of
comments, retweets and likes (3 dimensions) of a tweet to measure its social
attention degree into social features.

6 Model and Learning

In this section, we firstly introduce a co-training-based stress detection model to
leverage the extracted trajectory outlier features and tweet features, then respec-
tively detail trajectory-based CRF classifier and tweet-based DNN classifier.

6.1 Co-Training

Co-training is a semi-supervised learning technique that requires two views of
the data. It applies to datasets that have a natural separation of their features
into two disjoint sets, which provide different and complementary information
for an instance. Ideally, the two feature sets of each instance are conditionally
independent given the category, and each set of features is sufficient for classifi-
cation. Co-training can generate a better inference result as one of the classifiers
correctly labels data that the other classifier previously misclassified [13].

According to the co-training framework, we propose a trajectory-based CRF
classifier (CRF-Tr) to model the daily moving behavior correlation and a tweet-
based DNN classifier (DNN-Tw) to model the social media behavior correlation
of psychological stress. The two models are integrated into a co-training-based
learning framework presented in Algorithm1. As shown in line 4 and 5, we firstly
train the two classifiers with trajectory outlier features (i.e., Fp and Ft) and tweet
features (i.e., Fl, Fv and Fs). The trained CRF-Tr and DNN-Tw classifier are
then used to infer unlabeled stress values iteratively, adding the most confidently
classified instances to the labeled dataset Sl for the next round of training, until
Su becomes empty or the number of rounds has reached to the threshold θ. When
the iterative process ends, CRF-Tr and DNN-Tw classifier are returned. At the
inference time, we apply two classifiers to the corresponding features separately,
determining the daily stress state by the product of the two probability scores.

7 https://en.wikipedia.org/wiki/Color psychology.

https://en.wikipedia.org/wiki/Color_psychology

374 L. Jin et al.

Algorithm 1. T-Sensor Co-Training
input : A set of features (Fp, Ft, Fl, Fv, Fs), some labeled stress values Sl, and

a set of unlabeled stress values Su, a threshold θ controlling the rounds
output: CRF-Tr and DNN-Tw

1 begin
2 i ← 0;
3 while i < θ && Su �= ∅ do
4 CRF-Tr ← CRF.Learning(Fp, Ft, Sl);
5 DNN-Tw ← DNN.Learning(Fl, Fv, Fs, Sl);
6 Apply trained CRF-Tr and DNN-Tw on Su;
7 foreach ε ∈ Su do
8 ε.c = argci∈CMax(Proci

CRF × Proci
DNN);

9 Add ni self-labeled stress values with highest probability to Sl;
10 i++;

11 return CRF-Tr and DNN-Tw;

6.2 Trajectory-Based CRF Classifier

The trajectory-based CRF classifier is a discriminative undirected probabilistic
graphical model to infer teens’ daily stress state. The primary advantage of CRFs
over hidden Markov models is the conditional nature, resulting in the relaxation
of the independence assumptions to ensure tractable inference. Additionally,
CRFs avoid the label bias problem, a weakness exhibited by maximum entropy
Markov models [5]. We adopt the graphical structure G from a linear-chain CRF,
which consists of two kinds of nodes G = (X ,Y) as shown in Fig. 3. The gray
nodes Y = {Y1, Y2, . . . , Yn} represent hidden state variables to be inferred given
the sequence of observations denoted by white nodes X = {X1,X2, . . . , Xn},
where Xi = {Fp, Ft, t} corresponds to trajectory outlier features. Considering
the weights (i.e., wt, wR and wP) and the thresholds (i.e., τs and τL) determine
the observing outliers Fp and Ft, we iteratively assign different initial values to
calculate the optimal parameters based on detection performance of CRF-Tr
classifier. Meanwhile, the outlier features with the same time stamp t (i.e., day)
are aggregated together. The Yi ∈ Y is structured to form a chain with an edge
connecting each Yi−1 and Yi, as well as having the labeled stress values belonging
to C. When conditioned on X , the random variable Yi obey the Markov property
regarding the graph G:

p(Yi|X , Yj , i �= j) = p(Yi|X , Yj , i ∼ j) (2)

where i ∼ j means that Yi and Yj are neighbors in G.
The probability of a particular label sequence Y given observation sequence

X is defined as a normalized product of potential functions as follows:

exp(
∑

j
λjtj(Yi−1, Yi,X , i) +

∑
k
μksk(Yi,X , i)) (3)

Integrating Human Mobility and Social Media 375

Fig. 3. The graphic presentation of the trajectory-based CRF classifier

where tj(Yi−1, Yi,X , i) is a transition feature function of the entire observation
sequence and the labels at positions i and i − 1; sk(Yi,X , i) is a state feature
function of the label at position i and the observation sequence; λj and μk are
parameters to be estimated from training data.

By writing s(Yi,X , i) = s(Yi−1, Yi,X , i), we can simply transform Eq. (3) to:

p(Y|X , λ) =
1

Z(X)
exp(

∑
j

∑n

i=1
λjfj(Yi−1, Yi,X , i)) (4)

where Z(X) is a normalization factor; fj(Yi−1, Yi,X , i) is either a state function
s(Yi−1, Yi,X , i) or a transition function t(Yi−1, Yi,X , i).

Given k sequences of training data {X (k),Y(k)}, the parameters λ can be
determined by maximum likelihood learning p({Y(k)}|{X (k)}, λ) as follows:

L(λ) =
∑

k
[log

1
Z(X (k))

+
∑

j

∑n

i=1
λjfj(Y

(k)
i−1, Y

(k)
i ,X (k), i)] (5)

where λ can be identified using gradient-based methods. Finally, we can combine
observed features X and λ to determine the probability of a certain value for Yi.

6.3 Tweet-Based DNN Classifier

The tweet-based DNN classifier is designed to learn the stress values by incorpo-
rating the cross-media features from tweets. We firstly define and extract a set of
low-level features based on psychological and art theories: linguistic features Fl

from tweeting text, visual features Fv from tweeting image, and social features
Fs from comments, retweets and favorites as input. To solve the problem of miss-
ing modalities in cross-media tweet data, we use a cross auto-encoder (CAE) [9]
to learn the modality-invariant representation of each single tweet with different
modalities, which can be formulated as follows:{

u = f(wlFl + wvFv + wsFs + b)
(F̃l, F̃v, F̃s) = f(w̃lu + w̃vu + w̃su + b̃)

(6)

where u is the modality-invariant representation; wl, wv, ws and b are parameters
in the encoder, whereas w̃l, w̃v, w̃s and b̃ are parameters in the decoder; f(·) is

376 L. Jin et al.

Fig. 4. Framework of the tweet-based DNN classifier

the activation function. We use a sigmoid activation function f(ϕ) = 1
1+exp(−ϕ)

in our model. F̃l, F̃v and F̃s are the reconstructed input modalities.
The basic idea of CAE is to force the model to reconstruct missing modalities

in the training stage and to learn cross-modality correlation from the data. While
training the cross auto-encoder, we choose training data that contains all the
three modalities. We then adopt the stochastic gradient descent to train the
CAE with a cropped set of data {Fl, Fv, Fs} that inputs from one or two
modalities are absent, while requiring it to reconstruct all the three. Through
denoting all the parameters in the CAE as θ, the energy function is defined as
follows:

J (Fl, Fv, Fs; θ) =
1

2
(
∑

σ∈{l,v,s}
||F̃σ − Fσ||2) +

λ

2
(
∑

σ∈{l,v,s}
||F̃σ||2 + ||Fσ||2) (7)

where the first term measures the reconstruction accuracy; the second term is the
weight decay regularization term that prevents parameters in the model from
diverging arbitrarily; λ is the regularization weight. Using data with different
modalities as input, the CAE can be trained and learn a modality-invariant
representation u in Eq. (6).

The features of tweets, which come from a teenager’s daily tweets in timeline,
form a time series. To model teens’ tweeting behavior to describe daily stress
state, we apply convolutional neural networks (CNNs) [7], which focus on learn-
ing the stationary local features from series like images (pixel series), audio, and
other time series. CNNs have a large learning capacity, but much fewer connec-
tions and parameters to learn than similar-size standard network layers. We use
a 1-dimension CNN in our model, where the CAE units are used as filters and
convolute over the sequence of tweets to form modality-invariant feature maps.
Based on mean-over-time (MOT) pooling operations, we summarize the feature
maps into fewer feature instances by summing up the activations since they are
sampled in the same length of time (i.e., day). Finally, the teens’ daily stress is
classified by a logistic regression unit. A 5-layer architecture is used in this paper.
Figure 4 demonstrates the overall framework of tweet-based DNN classifier.

Integrating Human Mobility and Social Media 377

7 Experiments

In this section, we first describe the datasets collected by T-Sensor system, then
evaluate the performance of co-training-based stress detection model.

7.1 Experiment Setting

We calls for 57 teenagers from middle/high school of Beijing to conduct an over
6-month user study (Mar-Sep, 2015), where each teenager wear a smartband
provided by us to connect with T-Sensor system installed on their smartphones.
By default T-Sensor runs in the background of smartphone to collect GPS tra-
jectories. Meanwhile, T-Sensor is permitted to crawl teens’ posting tweets from
microblog (i.e., Sina Weibo8) as described in DB1. To avoid the cold-start prob-
lem, we pre-train DNN by crawling 1014 teens from Sina Weibo with a tag
named “The Generation After 96s” to establish a weibo-stress dataset, where
we manually label the stress value of each tweet as described in DB2. For efficient
map-matching of teens’ daily trajectories, we use the road networks and POIs
of Beijing. The statistics of dataset is shown in Table 1.

Table 1. Statistics of dataset

Data duration Mar-Sep, 2015

Teenagers # of high school students 37

of middle school students 20

Trajectories # of effective days 169

Avg. time of recording 13.6 hours/day

DB1: Sina Weibo # of tweets 26247

DB2: Sina Weibo # of teenagers 1014

of tweets 448,324

Road Networks # of road segments 162,246

of road nodes 121,771

POIs # of POIs 369,668

of categories 602

Comparison Methods. We compare the following classification methods for
user-level psychological stress detection, with our co-training model respectively.

• Naive Bayes (NB): it is a simple probabilistic classifier based on the Bayes
theorem with strong (naive) independent assumptions.

8 http://open.weibo.com/.

http://open.weibo.com/

378 L. Jin et al.

• Support Vector Machine (SVM): it tries to find a hyperplane that divides
training samples into their classes with maximum margin. In our problem we
use SVM with RBF kernel which can handle most nonlinear binary classifi-
cations better.

• Random Forest (RF): it is an ensemble learning method by building a set
of decision trees with random subsets of features and bagging them for final
classification results.

• Gradient Boosted Decision Tree (GBDT): it trains a gradient boosted
decision tree model with features associated with each user. GBDT is an
ensemble method, which constructs an additive regression model, utilizing
decision trees as the weak learner.

• We employ scikit-learn9 to implement the above comparison methods, where
the trajectory outlier thresholds are initially set to τp = τt = 0.95.

Evaluation Measures. We evaluate effectiveness of the methods by compar-
ing the performance metrics Accuracy, Recall, Precision and F1-Measure. In
the following experiments, we adopt 5-fold cross validation over 10 randomized
experimental runs, where DNN is trained by NVIDIA TESLA K20 GPU.

7.2 Experimental Results

Comparison of Detection Performance. To evaluate effectiveness of our
model, we first conduct a test using different models based on the collected tra-
jectory and microblog dataset by T-Sensor system. In this experiment, we use
all the features that are described in previous section: trajectory outlier features
(i.e., Fp and Ft) and tweet features (i.e., Fl, Fv and Fs). For comparison meth-
ods, we respectively use conditional random field (CRF) and deep neural network
(DNN) to run all the features, denoted as CRF-All and DNN-All. Table 2 shows
the experimental results, and the results are significant due to the large amount
of instances for evaluation. We see that co-training performs the best with an
accuracy of 88.92 % and F1-Measure of 91.09 % against other comparison meth-
ods. DNN-ALL gains better performance than CRF-ALL with an improvement
of 4.33 % in accuracy and 3.87 % in F1-Measure because it is more suitable to
process the cross-media features from tweets. NB and SVM do not work well
with an lower accuracy < 76 % and F1-Measure < 81 % since it is inappropriate
for them to learn local features from our time-series data. The results demon-
strate that our proposed model can effectively leverage the human mobility and
social media behaviors for stress detection. We further perform t-test and all the
p-values are < 0.01, which indicates that the improvement of co-training over
the comparison methods are statistically significant.
Co-Training Process Analysis. Figure 5 further reveals the co-training
progress of our approach, where we add an instance into the training data when
it fulfills one of following conditions: (1) CRF-Tr and DNN-Tw predict it as a
class with a probability score > 0.7; (2) the probability score of the instance is

9 http://scikit-learn.org.

http://scikit-learn.org

Integrating Human Mobility and Social Media 379

Table 2. Comparison results of effectiveness using different models (%)

Method Accuracy Precision Recall F1-Measure

NB 74.60 76.23 80.61 78.36

SVM 75.16 78.08 83.14 80.53

RF 78.44 81.63 85.09 83.32

GBDT 80.68 84.17 81.40 82.76

CRF-ALL 80.22 82.35 84.63 83.47

DNN-ALL 84.55 86.02 88.71 87.34

Co-Training 88.92 90.04 92.16 91.09

ranked in the top 10 results. The unlabeled data gradually improves the detection
performance, justifying the ability of the co-training-based learning framework
in dealing with data sparsity. When the number of iterations reaches to 90,
co-training has the indication of convergence in precision and recall.

Fig. 5. Learning progress of co-training

Feature Contribution Analysis. To evaluate the contribution of different fea-
tures in stress detection, we test the proposed model by respectively removing
one of the pre-defined features: positional outlier feature Fp, temporal outlier fea-
ture Ft, linguistic features Fl, visual features Fv and social features Fs, denoted
as Co-POF, Co-TOF, Co-LF, Co-VF and Co-SF. The results of this experiment
are shown in Fig. 6. Considering trajectory outlier feature space, we see that Co-
POF drops to 79.76 % in comparison with 81.27 % of Co-TOF in F1-Measure,
which is consistent with the online questionnaire results by SOJUMP website
in Sect. 5.1. More teens prefer to change the surrounding environment and go
to some unusual places for stress release compared to stay at familiar environ-
ment. Considering tweet feature space, we see that Co-LF drops to 69.54 % in

380 L. Jin et al.

Fig. 6. Feature contribution Fig. 7. Data scale analysis

F1-Measure because linguistic features of tweets is the main sensing channel to
obtain teens’ self-expressed contents concerning the stress. In case of removing
visual features, Co-VF drops to 83.11 % in F1-Measure although not every post-
ing tweet contains images. Meanwhile, Co-SF drops to 86.85 % in F1-Measure,
which verifies the effect of social attention for stress detection.
Co-Training Data Scale Analysis. To evaluate the data scalability of the
proposed model, we train the model with different scales of training data, and
compare the final detection performance in F1-Measure. In this test, we use all
the features as input to the model. Figure 7 shows the trend of detection perfor-
mance with different proportions (i.e., 10 %-90 %) of training data. It is clear that
when adopting approximately 30 % of all training data, our model can obtain a
competitive performance of 84.68 % in F1-Measure. Moreover, the performance
keeps increasing given more training data. These results verify that our model
can leverage unlabeled data to improve the detection performance when there is
limited training data.

8 Conclusion

In this paper, employing real-world GPS trajectory data as the basis, we mainly
study the correlation between teens’ psychological stress states and their mobil-
ity behaviors. Based on the discovered patterns, we propose a co-training-based
stress detection model which combines CRF-Tr classifier with DNN-Tw classi-
fier: (1) Firstly, we model the stress-related anomalous behavior based on psycho-
logical theories and our empirical investigations; (2) We then define and extract
a set of trajectory outlier features and tweet features as input to each classi-
fier; (3) Finally, we construct a co-training-based learning framework to leverage
the extracted features for stress detection. With T-Sensor system installed on
the smartphones, we conduct an over 6-month user study of 57 teenagers from
Beijing by providing them the smartbands to wear. The results demonstrate
effectiveness of our proposed model based on teens’ daily GPS trajectories and
microblog data.

Integrating Human Mobility and Social Media 381

Acknowledgement. The work is supported by National Natural Science Foundation
of China (61373022, 61532015, 71473146) and Chinese Major State Basic Research
Development 973 Program (2015CB352301).

References

1. Cohen, S., Kamarck, T., Mermelstein, R.: A global measure of perceived stress. J.
Health Soc. Behav. 24, 385–396 (1983)

2. Gao, R., Hao, B., Li, H., Gao, Y., Zhu, T.: Developing simplified chinese psycholog-
ical linguistic analysis dictionary for microblog. In: Imamura, K., Usui, S., Shirao,
T., Kasamatsu, T., Schwabe, L., Zhong, N. (eds.) BHI 2013. LNCS, vol. 8211, pp.
359–368. Springer, Heidelberg (2013)

3. Han, J., Kamber, M., Pei, J., Mining, D.: Concepts and Techniques. Morgan
Kaufmann Publisher, San Francisco (2011)

4. Healey, J., Picard, R.: Detecting stress during real-world driving tasks using phys-
iological sensors. IEEE Trans. Intell. Transp. Syst. 6(2), 156–166 (2005)

5. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic
models for segmenting and labeling sequence data. In: Proceedings of ICML (2001)

6. Lazarus, R.S.: Stress and Emotion: A New Synthesis. Springer Publisher, New
York (2006)

7. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp.
255–258. MIT Press, Cambridge (1995)

8. Liao, W., Zhang, W., Zhu, Z., Ji, Q.: A real-time human stress monitoring system
using dynamic bayesian network. In: Proceedings of CVPR Workshop (2005)

9. Lin, H., Jia, J., Guo, Q., Xue, Y., Huang, J., Cai, L., Feng, L.: Psychological stress
detection from cross-media microblog data using deep sparse neural network. In:
Proceedings of ICME (2014)

10. Lin, H., Jia, J., Guo, Q., Xue, Y., Li, Q., Huang, J., Cai, L., Feng, L.: User-level
psychological stress detection from social media using deep neural network. In:
Proceedings of MM (2014)

11. Lu, H., Rabbi, M., Chittaranjan, G., Frauendorfer, D., Mast, M., Campbell, A.,
Gatica-Perez, D., Choudhury, T.:Stresssense: detecting stress in unconstrained
acoustic environments using smartphones. In: Proceedings of UbiCompp (2012)

12. Moreno, M., Jelenchick, L., Egan, K., Cox, E., Young, H., Gannon, K., Becker,
T.: Feeling bad on facebook depression disclosures by college students on a social
networking site. Depression Anxiety 28(6), 447–455 (2011)

13. Nigam, K., Ghani, R.: Analyzing the effectiveness and applicability of co-training.
In: Proceedings of CIKM (2000)

14. Sharma, N., Gedeon, T.: Objective measures, sensors and computational tech-
niques for stress recognition and classification: a survey. Comput. Methods Pro-
grams Biomed. 108(3), 1287–1301 (2012)

15. Shen, Y.-C., Kuo, T.-T., Yeh, I.-N., Chen, T.-T., Lin, S.-D.: Exploiting temporal
information in a two-stage classification framework for content-based depression
detection. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD
2013, Part I. LNCS, vol. 7818, pp. 276–288. Springer, Heidelberg (2013)

16. Su, H., Zheng, K., Wang, H., Huang, J., Zhou, X.: Calibrating trajectory data for
similarity-based analysis. In: Proceedings of SIGMOD (2013)

17. Wang, X., Jia, J., Liao, H., Cai, L.: Affective image colorization. J. Comput. Sci.
Technol. 27(6), 1119–1128 (2012)

382 L. Jin et al.

18. Wang, X., Jia, J., Yin, J., Cai, L.: Interpretable aesthetic features for affective
image classification. In: Proceedings of ICIP (2013)

19. Xue, Y., Li, Q., Jin, L., Feng, L., Clifton, D.A., Clifford, G.D.: Detecting adolescent
psychological pressures from micro-blog. In: Zhang, Y., Yao, G., He, J., Wang, L.,
Smalheiser, N.R., Yin, X. (eds.) HIS 2014. LNCS, vol. 8423, pp. 83–94. Springer,
Heidelberg (2014)

20. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.: Understanding mobility based on
GPS data. In: Proceedings of UbiCompp (2008)

Collaborative Learning Team Formation:
A Cognitive Modeling Perspective

Yuping Liu1, Qi Liu1, Runze Wu1, Enhong Chen1(B), Yu Su2,
Zhigang Chen1, and Guoping Hu3

1 University of Science and Technology of China, Hefei 230026, China
{liuyup,wrz179}@mail.ustc.edu.cn,

{qiliuql,cheneh}@ustc.edu.cn, zgchen@iflytek.com
2 Anhui University, Hefei, China

yusu@iflytek.com
3 Anhui USTC IFLYTEK Co., Ltd., Hefei, China

gphu@iflytek.com

Abstract. With a number of students, the purpose of collaborative
learning is to assign these students to the right teams so that the pro-
motion of skills of each team member can be facilitated. Although some
team formation solutions have been proposed, the problem of extract-
ing more effective features to describe the skill proficiency of students
for better collaborative learning is still open. To that end, we provide a
focused study on exploiting cognitive diagnosis to model students’ skill
proficiency for team formation. Specifically, we design a two-stage frame-
work. First, we propose a cognitive diagnosis model SDINA, which can
automatically quantify students’ skill proficiency in continuous values.
Then, given two different objectives, we propose corresponding algo-
rithms to form collaborative learning teams based on the cognitive mod-
eling results of SDINA. Finally, extensive experiments demonstrate that
SDINA could model the students’ skill proficiency more precisely and
the proposed algorithms can help generate collaborative learning teams
more effectively.

1 Introduction

Collaborative learning is the instructional use of small heterogeneous group of
students who team together (e.g., 5 to 8 students [10]) to work on a structured
activity. Over the past decades, many researches have confirmed the effective-
ness of this type of learning [23]. By maximizing the promotion of skills of stu-
dents, collaborative learning can not only help stdd,ents exhibit higher academic
achievement, but also can reduce the workload of instructors [22].

Indeed, the success of collaborative learning can be only guaranteed by assign-
ing each student to the right team. Generally speaking, two types of solutions,
based on manual decisions or automatical algorithms, have been studied for this
team formation problem. In manual approaches, students may select their own
teammates [11], or teams are assigned by instructors [20]. Unfortunately, by

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 383–400, 2016.
DOI: 10.1007/978-3-319-32049-6 24

384 Y. Liu et al.

self-selecting best students tend to cluster and leave weak ones to shift for them-
selves. By instructors-assigning, it is almost impossible for instructors to assign
all students effectively. Thus, it is necessary to form learning teams automati-
cally. Based on students’ specific characteristics, some researchers focus on gen-
erating heterogenous teams which mix students of different levels [14], while oth-
ers try to form teams which can quantize and maximize the gain of students [1].
Usually, characteristics of students in these studies are directly extracted from
the biographical data, simple performance attributes or personality traits [27].
Meanwhile, without the real-world data, simulated values on these characteris-
tics are used to design the team formation algorithms [2,12,13,18,27]. In spite of
the importance of the existing research, features in these studies are too simple
to capture students’ skill proficiency very well, and thus, the performance of the
corresponding team formation solutions could be further improved. Actually, one
of the best ways to get the skill proficiency of students is to model the cognitive
information of them, e.g., from their performance in the exams [4,8]. However,
there are still two challenges to be addressed for exploiting cognitive diagnosis.
Firstly, how to precisely quantify the skill proficiency of students? Secondly, how
to design the appropriate algorithms to automatically get collaborative learning
teams based on this type of feature?

To conquer these two challenges, we propose a two-stage framework to apply
cognitive diagnosis for collaborative learning team formation. Specifically, in the
first stage we propose a novel cognitive diagnosis model Soft-DINA (SDINA).
Compared to the existing diagnosis model DINA [4,21], which quantifies the
students’ skill proficiency in binary values (either 0 or 1), SDINA is able to
model students with continuous values. Then, the output of SDINA is further
exploited to generate collaborative learning teams in the second stage. Following
the views that students in the same team should be diverse and the improvement
of each student should be maximized, we consider two optimization objectives –
dissimilarity based objective and gain based objective, and we propose effective
algorithms to generate collaborative learning teams for each of these objectives.
Finally, the results of extensive experiments demonstrate that (1) SDINA could
model the students’ skill proficiency by predicting their performance (i.e., exam
scores) more precisely, and (2) the proposed algorithms can help generate col-
laborative learning teams effectively under several evaluation metrics. The main
contributions of this paper could be summarized as:

– To the best of our knowledge, this is the first comprehensive attempt for the
problem of collaborative learning team formation by introducing cognitive
diagnosis to extract features of students’ skill proficiency.

– We propose a novel cognitive diagnosis model SDINA, which improves exist-
ing model DINA. SDINA automatically quantifies students’ skill proficiency
in continuous values for more accurate analysis of students.

– Given students’ skill proficiency, we propose two objectives following the exist-
ing research achievements, and then we design effective algorithms to generate
collaborative learning teams for each of these objectives.

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 385

2 Related Work

In this section, we will introduce the related studies in two categories.

2.1 Student Modeling

Here we focus on team formation-oriented student modeling methods. In tradi-
tional collaborative team formation problems, the students were modeled by fea-
tures extracted directly from biographical data like age, gender, or some simple
performance attributes like grades, self-evaluation, peer-assessment, or personal-
ity traits like learning styles [27]. For instance, Hwang et al. [15] considered the
number of already known concepts and scores of a pre-test to model students.

Though few of existing team formation studies explored examination records,
this kind of data has been widely used for other student modeling tasks, e.g.,
performance prediction. Many data mining efforts have been conducted, for
instance, matrix factorization (MF) technique [19] has been adopted by con-
sidering student as user, problem as item, and student’s score on a problem
as rating. E.g., Toscher et al. [25] utilized singular value decomposition (SVD)
to model and predict students. But, latent factors of students inferred by MF
are unexplainable which limits the applicability of MF in scenarios where the
explanation of skills need to be specified.

To model students with examination data in an interpretative way, psycho-
metricians in education psychology have developed a series of cognitive diagnosis
models (CDMs) [8]. By capturing the students’ cognitive characteristics, CDMs
can predict students’ performance and obtain targeted remedy plan for each
student. Generally speaking, there are two main categories of CDMs: continuous
ones and discrete ones. The fundamental continuous CDMs are item response
theory (IRT) models [9], which characterize a student by a continuous variable,
i.e., latent trait. However, IRT is unable to get the latent cognitive character like
students’ skill proficiency. For discrete CDMs, the basic method is determinis-
tic inputs, noisy “and” gate model (DINA) [4,21]. DINA describes a student
by a latent binary vector variable which denotes whether she masters the skills
required by the exam or not. And the specific relationship between problems and
skills is a prior knowledge given by education experts (e.g. the exam designer).
E.g., based on fuzzy system, Runze Wu et al. [26] proposed a solution for cogni-
tive examinee modeling from both objective and subjective problems.

2.2 Team Formation

Existing studies on collaborative learning team formation can be broadly split into
two basic types. The first type focuses on forming heterogenous or homogeneous
teams considering multiple student characteristics. E.g., authors in [18] designed
an algorithm named SPOS to form heterogeneous teams. Similarly, the fuzzy c-
means and random selection algorithm were used in [2] for formulating homoge-
nous and heterogeneous teams. Unfortunately, all these works implemented their
algorithms based on simulated student characteristics. The second type focuses on

386 Y. Liu et al.

forming teams which can maximize the gain of students. E.g., Rakesh et al. [1] pro-
posed a framework for grouping students in order to maximize the overall gain of
students. Given specific objectives, there are also researches which formed teams
through optimization methods. E.g.,Virginia et al. [27] proposed a deterministic
crowing evolutionary algorithm to form teams. However, few of the existing team
formations exploit cognitive diagnosis results as features to better model students.
Therefore, the problem of how to apply this type of feature to design more suitable
team formation solutions is still open.

Besides collaborative learning team formation, the traditional team forma-
tion problem usually focused on forming a team from a large set of candidates
of experts such that the resulting team is best suited to perform the assign-
ment. This kind of team formation entails set-cover and is modeled by experts’
skills and their collaboration network [16]. In contrast, the collaborative team
formation problem is a partition problem rather than a set-cover one.

3 Collaborative Learning Team Formation

We will introduce details of our two-stage framework in this section. The flow-
chart is shown in Fig. 1. Given students’ examination results, we propose a cog-
nitive diagnosis model SDINA to automatically quantify the skill proficiency
of students. Then, we propose two objectives with heuristic algorithms to form
collaborative learning teams which can facilitate the promotion of all students.

Team
formation

Teams

0
0.2
0.4
0.6
0.8

1
Skill proficiency

Student
modeling

Exam Students

Gain
based

objec ve
Team formation

Algorithms

Dissimilarity
based

objec ve

Input

Stage1

Stage2

Output

Cognitive
diagnostic model

(SDINA)

Fig. 1. Our two-stage framework.

S1
S2

S3

S4

S5

S6S7

S8

S9

S10

S11

1

2

Fig. 2. Example of students’ pro-
ficiency in skills S1 to S11.

3.1 Cognitive Modeling of Students’ Skill Proficiency

In the following, we assume there are U students P = {P1, P2, . . . , PU}, partic-
ipating in the same course, e.g., math. We also assume S ={S1, S2, . . . , SV } to
be a universe of V skills in this course, e.g., skills in a math course may include
math concepts like set, formulas like computing sphere volume, process skills

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 387

like calculation or induction. After cognitive modeling, each Pi will be associ-
ated with a vector of skill proficiency αi = {αi1, αi2, . . . , αiV }, where αij ranges
from 0 to 1 and represents that Pi’ proficiency in Sj is αij . We summarize the
proficiency of all students in all skills as α = {α1, α2, . . . , αU}, which need to
be evaluated according to an examination. Actually, Fig. 2 shows the proficiency
of 2 real-world students in skills S1 to S11, which is the output by our SDINA.
Although the two students have similar average abilities (about 0.5), there are
still distinctively differences in their proficiency in certain skills. If these two
students are put into a same team, they can learn from others’ strong points to
offset their own weakness. We will first briefly review the traditional cognitive
diagnosis model DINA, and then show the way to get α by our SDINA.

DINA Review. DINA [4] (the deterministic inputs, noisy and gate model)
assumes that each problem in an exam is involved with multiple predefined skills
(tagged by education experts in advance), and then it characterizes a student
by a binary vector variable, which denotes whether she has mastered the skills
required in the exam. Specifically, for an exam designed to assess V skills of
students, given a problem l, a student i, we observe a dichotomous response
which is a binary variable Ril with a value in {0, 1}. The response indicates
the correctness of the answer provided by the student i to the problem l, i.e., 1
represents true and 0 represents false. Then, DINA is defined as:

P (Ril = 1|αi, sl, gl) = (1 − sl)ηilg1−ηil

l . (1)

Here, student i is characterized by a latent binary vector variable αi =
(αi1, αi2, . . . , αiV), i.e., αij = 1 represents that student i has mastered skill j
and vice versa, and problem l is characterized by two parameters: sl represents
carelessness or slipping; gl is a guessing parameter. ηil is a latent variable that
indicates whether student i is able to solve the problem l, and is defined as
ηil =

∏V
j=1 α

qlj

ij where qlj indicates whether problem l requires skill j. It means
student i is disable to solve problem l unless all of the skills required for problem
l have already been mastered by her. As for parameter estimation, we could
maximize the marginalized likelihood of Eq. (1), which can be implemented
using EM algorithm [3]. Then, with the estimated parameters ŝ1, ŝ2, · · · , ŝZ and
ĝ1, ĝ2, · · · , ĝZ (Z is the number of problems), αi can be determined via maxi-
mizing the posterior probability given student i’s response vector:

α̂i = argmaxαP (α|Ri) = argmaxαL(Ri|α, ŝl, ĝl)P (α)
= argmaxαL(Ri|α, ŝl, ĝl) = argmaxα

∏Z
l=1 P (Ri|α, ŝl, ĝl),

(2)

Thus, for an exam with V skills, α has 2V possible patterns and each pattern
is assumed to be with an equal prior distribution without loss of generality.

Soft-DINA. In DINA, binary skill vector αi of each student i can be found by
maximizing the posterior probability. Though it is intuitive, this binary repre-
sentation of students’ skill proficiency is too coarse to characterize the mastery

388 Y. Liu et al.

degree (cognitive level) of students. For instance, a student with a mastery degree
of 0.9 in a specific skill and a student with 0.6 may have the same binary value
of 1 based on DINA, while the significant difference is missing. For the sake of
keeping as much information of vectors of proficiency as possible, we propose
another cognitive model Soft-DINA or SDINA for short, which is an improve-
ment of DINA, to get vectors of proficiency with continuous values.

Specifically, considering the 2V kinds of α from all zeros (0, 0, . . . , 0) to all
ones (1, 1, . . . , 1) and given the responses of a student i, Ri, each of these α is
involved with one posterior probability P (α|Ri), DINA only chooses the specific
skill vector α which can maximize the posterior probability. To precisely measure
the probability that the student i masters a specific skill j, we propose to consider
the posterior probability from all the possible α. Formally, in SDINA, we redefine
the estimated skill vector α̃i and calculate the posterior probability that student
i masters skill j as follows:

α̃ij = P (αij = 1|Ri) =
∑

αxj=1 P (αx|Ri)
∑2V

x=1 P (αx|Ri)

=
∑

αxj=1 L(Ri|αx,ŝl,ĝl)P (αx)
∑2V

x=1 P (αx|Ri)
=
∑

αxj=1
∏Z

l=1 L(Ril|αx,ŝl,ĝl)P (αx)
∑2V

x=1 P (αx|Ri)
,

(3)

where x = 1, 2, . . . , 2V , represents the 2V kinds of possible αi, and the numerator
part computes the probability of αij = 1 in these 2V kinds of possible αx. To
simplify the formulation, we also assume each αx has an equal prior probability,
then the equation above can be rewritten as follows:

α̃ij =

∑
αxj=1

∏Z
l=1 L(Ril|αx, ŝl, ĝl)∑2V

x=1

∏Z
l=1 L(Ril|αx, ŝl, ĝl)

. (4)

In this way, we get α̃i = (α̃i1, α̃i2, . . . , α̃iV), a vector of continuous values between
0 and 1, where α̃ij represents student i’s proficiency(i.e. probability) in skill j.
That is to say, α̃ij = 1 means i has fully mastered skill j, and α̃ij = 0 means i
has not mastered skill j at all.

Note that, although the skills accessed by each problem are manually labeled,
it is feasible and commonly used in pedagogy [8]. In fact, to construct an exami-
nation, designers must clearly delineate the assement purpose, specically describe
what skills are measured and develop proper assessment tasks1.

3.2 Collaborative Learning Team Formation

In this subsection, we show the way to form teams based on α. Assume G =
{G1, G2, . . . , GM} to be a set of M teams. We will put students into teams, with
two basic constraints. Firstly, only one team is assigned to a student, making
sure that a student only belongs to one team. Secondly, the team size is better
to be equal, with a difference of no more than one student, to ensure fairness and
1 There are also studies about the automatic labeling of skills [7], which is beyond the

scope of our research.

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 389

team balance. Formally, given the students’ skill proficiency, the collaborative
learning team formation problem can be formulated as follows.

Problem 1 (Collaborative Learning Team Formation): Given a set of students
P, each student Pi’s proficiency αi = (αi1, αi2, . . . , αiV), and a set of teams
G = {G1, G2, . . . , GM}. Under the following constraints,

Gk1

⋂
Gk2 = ∅,

−1 ≤ |Gk1 | − |Gk2 | ≤ 1,
k1, k2 = 1, 2, . . . ,M, k1 �= k2

(5)

assign every student Pi to a team Gk, Pi ⊆ Gk, k = 1, 2, . . . ,M . In order that,
the promotion of all students in these V skills can be facilitated.

With this definition, we should first clarify the measurements/objectives of a
good team, and then, the specific algorithms to generate effective collaborative
learning teams in terms of these objectives could be designed. Generally, there
are two types of different objectives in existing studies, i.e., the skill proficiency
of students in the same team should be heterogeneous [14] and the improvement
of each student should be maximized [1]. In terms of these objectives and our
extracted feature, we propose a dissimilarity based objective to form teams by
maximizing the average dissimilarity of students within a team and a gain based
objective to form teams by maximizing the average gain of students, respectively.

Dissimilarity Based Objective. According to [13], in a reasonably hetero-
geneous group student-scores reveal a combination of low, average and high
student-scores. However, this measurement is limited to 3 discrete classes of
only one attribute value (student-score). Indeed, a better mechanism is to use
continuous values of several attributes, e.g., the continuous value of students’
proficiency in several skills. Inspired by the heterogeneity definition in [12], we
also use the average dissimilarity between team members as the metric of het-
erogeneous degree. Without loss of generality, the difference between Pi1 and
Pi2 in the proficiency of Sj , Dj(Pi1 , Pi2), is defined as |αi1j − αi2j |. Thus, the
heterogeneity of Gk consisting of N students with respect to Sj , is defined as

HGk(Sj) =
∑N

i=2
Dj(Pi, Pi−1). (6)

Here, the students in Gk have been sorted by values of skill proficiency in Sj ,
i.e., α1j ≤ α2j ≤ . . . ≤ αNj . Then, the heterogeneity of Gk is computed as

HGk =
∑V

j=1
HGk(Sj). (7)

One step further, the heterogeneity of the solution G is the average of the het-
erogeneity of all teams in the solution, i.e.,

HG(G) =

∑
Gk∈G HGk

|G| . (8)

390 Y. Liu et al.

Since not only heterogeneity but also the team balance, i.e., the difference of the
heterogeneity among the teams, should be considered for the quality of the team
formation solutions [18], we also define the balance of the solution G as

B(G) = V ariance({HGk|∀Gk ∈ G}). (9)

That is, the teams in each solution should be as balanced as possible to ensure
the fairness. Overall, the higher the solution heterogeneity is and the lower the
solution balance is, the better the team formation result is.

Given this dissimilarity based objective, consisting of both solution hetero-
geneity HG(G) and solution balance B(G), we utilize the idea of clustering to
solve the team formation problem. Intuitively, students could be first clustered
using clustering algorithm, e.g., k-means [17], where features are their skill profi-
ciency vectors. Then students of same cluster will be assigned to different teams.
However,clusters under the classical k-means settings are often of different size,
and this will have a negative effect on the team’s heterogeneity. For instance,
if there is a cluster with a very large size, which is bigger than the number of
teams, according to the pigeon-hole principle , at least two students in the same
cluster will be assigned to the same team. To address this problem, we think of
an improved clustering method called uniform k-means to get uniform clusters
with the same size. More specifically, in the process of k-means, the number of
clusters is set to be � U

M 	. Then, for every object(student), after calculating the
distance between it and the center of every cluster, this student will be put into
cluster which is not merely with shortest distance but also is not full, i.e., size
of this cluster is no larger than M . After this, students are equally divided into
� U

M 	 clusters. Next, students in same cluster should be assigned into M different
candidate teams. In this way, as students with similar skill proficiency will be
put into different teams, the dissimilarity based objective can be easily achieved.
The Uniform K -means Based algorithm (UKB), is summarized in Algorithm 1.

Algorithm 1. UKB: the uniform k-means based algorithm
Require:

The set of U students P = {P1, P2, . . . , PU}; The number of teams M ;
Ensure:

The set of teams G = {G1, G2, . . . , GM};
1: Divide U students into � U

M
� clusters using uniform k-means;

2: Determine the size of teams, each one with student number of � U
M

� or � U
M

� + 1;
3: Calculate the number of students that every team still needs;
4: for each cluster c do
5: while c is not empty do
6: Put one student into every not-full team;
7: Calculate the number of students that every team still needs;
8: end while
9: end for

10: return G;

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 391

Gain Based Objective. In addition to the dissimilarity based objective,
another intuitive approach of measuring the quality of a team is to quantize
the promotion of every student. Inspired by [1], we define a gain function to
measure the promotion of students in terms of their skill proficiency.

In collaborative learning teams, the students can promote their skills through
mutual exchanges and emulations. As a general rule, there are two factors which
can influence the students’ promotion. The first factor is the proficiency of each
student, i.e., a student with higher proficiency is easier to promote than a student
with lower proficiency. Another factor is the gap between her and the other
students in the team, i.e., a student who collaborates with more capable team-
mate can get more knowledge. According to these facts, we define a student’s
promotion in a skill as follows.

Suppose there is a non-empty team Gk with N students Gk = {P1, P2, . . . ,
PN}. Gk has a vector of maximum proficiency in every skill ak = {ak1, ak2, . . . ,
akV }, akj is the maximum proficiency in Sj among the students in Gk, i.e.,
akj = MAX(α1j , α2j , . . . , αNj). Then the leader of Gk in Sj , namely Lkj is the
student with maximum proficiency in Sj ,

Lkj = {Pi|αij = akj , i = 1, 2, . . . , N}. (10)

Now, we put a new student Pi into Gk, if Pi is not the leader in Sj , i.e., αij < akj ,
then Pi’s promotion in Sj , Qj(Pi, Gk), is defined as:

Qj(Pi, Gk) = (akj − αij) · αij . (11)

Here, (akj −αij) is as the gap between Pi and Lkj , which is always positive. The
definition is in conformity with the actual situation. For instance, there is a team
with a leader who has a proficiency of 0.9 in a certain skill, suppose we put three
new students A, B, C with proficiency of 0.2, 0.5, 0.8 respectively in the team.
According to our definition, the promotions of them will be 0.14, 0.20, 0.08.
A gets a small promotion of 0.14 because A has a low proficiency which brings
bad influence for the promotion, C only gets 0.08 because there is only a little
gap between C and the leader. Only B gets a big promotion of 0.20 due to B’s
higher proficiency and the bigger gap between B and the leader. For simplicity,
we ignore the leader’s promotion in her leading skill. Then, we define Q(Pi, Gk),
the gain of Pi as the overall promotion in every skill,

Q(Pi, Gk) =
∑V

j=1Qj(Pi, Gk)
= (ak − αi) · αT

i .
(12)

Next,the average gain of Gk will be:

Q(Gk) =

∑
Pi∈Gk

Q(Pi, Gk)
|Gk| . (13)

Here, |Gk| is the number of students in Gk. Finally, the average gain of a solution
G, Q(G), can be defined as the average gain of all the teams,

Q(G) =

∑
Gk∈G Q(Gk)

|G| . (14)

392 Y. Liu et al.

We use the solution gain Q(G) as the evaluative criterion for the quality of team
formation solutions. We also propose a team formation algorithm which consists
of two steps: First, the leader in each skill is chosen for each team; Then, all the
non-leader students are put into teams according to their gains.

Specifically, Q(G) is a monotone-increasing function of akj , so for maximizing
Q(G), the leader in each skill for each team should have proficiency as greater
as possible. Given a set of U students and the number of teams M , the leader-
choosing process is as follows. For each skill Sj , firstly we pick out M students
P = {P1, P2, . . . , PM} with maximum proficiency. Secondly, for every student
Pi ∈ P, if Pi has been a leader in a team, then Pi will be the leader in Sj of this
team; Otherwise, we choose a team Gk which still has no leader in Sj , and if Gk

is not full, then Pi will be the leader in Sj of Gk, or else, a student in Gk with
the maximum proficiency in Sj will be picked out as the leader.

After the leaders have been chosen, we show the way to put all non-leader
students into teams. Assume all teams have the same size of λ, and the λ students
in team Gk are presented by Pki, i = 1, 2, . . . , λ. Then Q(G) will be

Q(G) =
∑

Gk∈G Q(Gk)

|G|
= 1

|G|·λ · ∑
Gk∈G

∑λ
i=1Q(Pki, Gk).

(15)

Obviously, Q(G) will only be determined by
∑

Gk∈G
∑λ

i=1 Q(Pki, Gk) since
1

|G|·λ is a constant. Also, Q(G) increases with Q(Pki, Gk). As one student can only
belong to one team, it is naturally to put Pi to Gk which can maximize Q(Pi, Gk).
In addition, since size of teams is limited, students with higher proficiency should
be put into teams in priority. However, such team formation result violates the
principle of heterogeneity because students with higher proficiency tend to be put
into teams with higher maximum proficiency. To avoid this unbalanced result,
we propose an algorithm which takes both the gain of students and the average
level of teams into consideration, to get balanced teams.

To be specific, there are two factors determining the selection of groups for
non-leader students. One is the gain of this student, another is the average level
of the team. Here, we define LPi, the level of a student Pi, as the average of
Pi’s proficiency in every skill, and LGk, the average level of a team Gk, as the
average level of all the students in team Gk,

LPi =

∑V
j=1 αij

V
, LGk =

∑
Pi∈Gk

LPi

|Gk| .

Then we define a balanced gain vector BGi = {BGi1, BGi2, . . . , BGiM}, where
BGik is called the balanced gain of Pi if putting her to Gk,

BGik =
Q(Pi, Gk)

LGk
. (16)

With the above definition, the entire process of Balanced Gain Based algo-
rithm (BGB), is shown in Algorithm 2. In summary, we first choose the leaders

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 393

Algorithm 2. BGB: the balanced gain based algorithm
Require:

The set of U students P = {P1, P2, . . . , PU}; The number of teams M ;
Ensure:

The set of teams G = {G1, G2, . . . , GM};
1: Determine the size of teams, each one with student number of � U

M
� or � U

M
� + 1;

2: Select the leaders in every skill for each team.
3: Sort all the non-leader students by their levels LP in descending order;
4: for each sorted students Pi do
5: Calculate the balanced gain vector BGi;
6: Put student Pi in a not-full team Gk with maximum BGik;
7: end for
8: return G;

in each skill for each team, and then sort all the non-leader students by their
levels LP in descending order. Next, for each sorted student Pi we put her into
a not-full team Gk with maximum BGik. In this way, the higher level students
will be put into relatively low level teams and vice versa, getting her a relatively
high gain and keeping the heterogeneity of the teams, simultaneously.

4 Experiments

Firstly, we use the prediction of students’ scores to evaluate the effectiveness
of SDINA. Secondly, we make an expert evaluation to explore the effectiveness
of features extracted by SDINA. At last, we evaluate the performance of our
proposed team formation algorithms from various aspects.

4.1 Experimental Setup

Our experiments are conducted on three real-world datasets and two simulated
ones. The real-world datasets contain two real private datasets and a public
online dataset. The public dataset is Tatsuoka’s fraction subtraction dataset [5],
consisting of scores from middle school students on fraction subtraction prob-
lems. The two private datasets2 are from two final math exams for high school
students. Each of these three datasets is represented by a score matrix and also
has multiple predefined skills. We denote these datasets as FrcSub, Math1 and
Math2. The brief summary is shown in Table 1. Figure 3 gives a brief preview
of these datasets, where each column for each subfigure stands for a problem
and each row for a student. The black element means the student is wrong in
the problem, while white one means right. The two simulated datasets are made
up of 500 and 1,000 students with 10 features3. The value of each feature is

2 They will be publicly available after the paper acceptance.
3 Unlike the real-world datasets, the simulated ones only consist of students with

values between 0 and 1 on some features rather than students’ test scores.

394 Y. Liu et al.

generated by random sampling from a uniform distribution of 0 to 1. We denote
these two datasets as SiData1 and SiData2.

All experiments are implemented by Matlab on a Core i5 3.10 Ghz machine
with Window 7 and 4 GB memory.

Table 1. Datasets Summary.

Dataset #Student #Skill #Problem

FrcSub 536 8 20

Math1 4,206 11 12

Math2 3,907 16 12

FrcSub

10 20

100

200

300

400

500

Math1

2 4 6 8 10 12

1000

2000

3000

4000

Math2

2 4 6 8 10 12

1000

2000

3000

Fig. 3. The preview of the datasets.

4.2 Evaluation on Student Modeling

To demonstrate the effectiveness of SDINA on modeling students’ skill profi-
ciency, we conduct experiments of predicting students’ scores (right as 1 and
wrong as 0) on each problem. We perform 5-fold cross validation on the real-
world datasets, i.e., 80 % of the students are randomly selected for training while
the rest for testing. We consider two baseline approaches:

– DINA [4]: a cognitive diagnosis model which is detailed in Sect. 3.1.
– PMF [19]: a latent factor model, widely used in recommending system.

We record the best performance of each method by tuning their parameters, e.g.,
the latent dimension of PMF is set to be 10. As this task is actually a binary
classification problem, Accuracy and F1-measure are used as evaluation metrics.

The experimental results are shown in Fig. 4. SDINA performs better than
DINA and PMF in both Accuracy and F1 over all datasets. In Accuracy DINA
performs better than PMF but in F1 PMF performs better than DINA. As a
cognitive diagnosis model, SDINA is effective in modeling students’ skill profi-
ciency.

4.3 Evaluation on Feature Selection

After evaluating SDINA’s effectiveness on student modeling, to demonstrate
SDINA’s effectiveness on team formation, first the performance of three different
kinds of features on team formation are evaluated by educational experts, then
teams based on these features are visually displayed for better illustration.

Specifically, we compare reasonablity of teams formed with the same algo-
rithm based on three kinds of features, i.e., the continuous skill proficiency
inferred by SDINA, the binary skill proficiency inferred by DINA and the raw
examination scores4. Since conducting large-scale in-classroom experiments are
4 The latent factor getting by PMF has not been used here since it’s unexplainable.

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 395

DataSets

A
cc

ur
ac

y

0.55

0.6

0.65

0.7

0.75

0.8 SDINA
DINA
PMF

DataSets
FrcSub Math1 Math2 FrcSub Math1 Math2

F
1

0.5

0.6

0.7

0.8
SDINA
DINA
PMF

Fig. 4. Performance on score prediction.

Table 2. Gold standard evaluation.

Feature HR

Raw score 0.066

DINA 0.267

SDINA 0.667

currently impractical, we choose to collect a Gold Standard [24] to evaluate effec-
tiveness of team formation by various features. As educational experts, teach-
ers are obviously able to give a relatively fair and convincing assessment with
decades of educating experience. We will first specify the process of collecting a
gold standard and then compare the performance of three kinds of teams.

To construct a gold standard, we simulate the team formation on real dataset
and then ask corresponding teachers who are familiar with the chosen students,
to evaluate the effectiveness of different methods. Specifically speaking, due to
the labour cost of manual assessment, we first randomly draw five classes with
283 students in total, then we form teams with a fixed size (e.g. 5) by three
different features based on UKB. And for each class, we randomly draw three
formed teams for each method, that is, nine teams will be chosen and randomly
ordered. Subsequently, we ask teachers of the five classes to pick three most
reasonable teams for each class out of their understanding of students. So, nine
of the forty-five formed teams are chosen and regarded as most effective.

Taking the gold standard as ground truth, we compute hit rate (HR) [6] for
each method. Here this metric measures how closely the output of a method is to
the gold standard and is defined as HRi = |Ti∩GS|

|GS| . Here, HRi is the HR of the
ith team formation method, Ti represents the teams formed by the ith method
and GS means the teams picked by the gold standard. As is shown in Table 2,
the effectiveness of team formation by SDINA greatly outperforms DINA and
Raw score methods by a quantitative and more accurate cognitive diagnosis, and
at the meanwhile DINA obtains more satisfying results than Raw score method.

S5S4S3S2S1(a)
SD-Stu5

SD-Stu4
SD-Stu3

SD-Stu2
SD-Stu1

1

0

0.5

P
ro

fic
ie

nc
y

S5S4S3S2S1(b)
DI-Stu5

DI-Stu4
DI-Stu3

DI-Stu2
DI-Stu1

0.5

1

0

P
ro

fic
ie

nc
y

P5P4P3P2P1(c)
SC-Stu5

SC-Stu4
SC-Stu3

SC-Stu2
SC-Stu1

0

0.5

1

S
co

re

Fig. 5. An example of teams by using three kinds of features.

396 Y. Liu et al.

One step further, for better illustration about the difference between teams
formed by three kinds of features, Fig. 5 shows a toy visualized example. We use
UKB to form five-students teams on public dataset FrcSub. Figure 5(a) shows
a team formed through continuous skill proficiency output by SDINA. Here,
SD-Stu1 to SD-Stu5 represent five students and S1 to S5 represent five skills.
Figure 5(b) shows a team formed through binary skill proficiency output by
DINA. DI-Stu1 to DI-Stu5 represent students and S1 to S5 represent skills which
are the same with Fig. 5(a). Figure 5(c) shows a team formed directly using
students’ score on every problem. P1 to P5 represent five problems respectively.
Only five skills or problems are shown for better visualization. We can observe
that team in Fig. 5(a) contains different levels of students, SD-Stu1 and SD-
Stu2 are of highest ability. Others can promote skills following the lead of them.
Since proficiency of students in each skill is also of great difference, students can
promote their skills through learning from each other. Compared with other two
kinds of features team formation using SDINA has better explanation. SDINA
not only can support automatic team formation but also can provide guidance
for manually forming teams.

4.4 Evaluation on Team Formation

In this subsection, we first fix features as continuous skill proficiency inferred
by SDINA and evaluate performance of UKB and BGB on real-world datasets.
Then, to demonstrate that UKB is not just effective with features of SDINA’s
output, we evaluate its performance on two simulated datasets. Quality of team
formation solutions is evaluated with Heterogeneity, Balance and Gain, which
are defined in Sect. 3.2. For Heterogeneity and Gain, higher value is better while
for Balance, lower value is better. Our algorithms are compared with:

– SPOS : short for Semi-Pareto Optimal Set, which is proposed in [18].
– RANDOM : a standard random algorithm to form heterogeneity teams [2].

We should note that the algorithm in [1] is not chosen as a baseline, because it
can only be applied to form teams for students with 1-dimensional ability.

Firstly, we perform team formation experiments on three real-world datasets
and use the output of SDINA as input features for all the algorithms, to make
sure grouping algorithms will be comparable. Figure 6 shows the experimental
results. The subfigures in row 1 to row 3 represent three datasets and columns
represent three measurements. The X-axis in each subfigure represents team size
from 5 to 8 since the optimal team for collaborative learning should contain 5 to
8 students [10]. Please note that, if the student number is not evenly divisible by
the team size, then actually team size here represents the basic student amount
in every team, and there is at least one team which has one more student.
The result shows the effectiveness of our proposed algorithms. In terms of the
dissimilarity based objective, i.e., Heterogeneity and Balance, UKB outperforms
the two baselines among all the team sizes in three datasets, and among the
baselines, SPOS has a relatively good performance. Similarly, in terms of the
gain based objective, BGB outperforms the two baselines in all cases.

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 397

F

rc
S

ub
-

H

et
er

og
en

ei
ty

5.5

6

6.5

(a)

B
al

an
ce

0.5

1

1.5

(b)

G
ai

n

0.75

0.8

0.85

(c)

M

at
h1

-

H

et
er

og
en

ei
ty

2.4

2.6

2.8

3

3.2

(d)

B
al

an
ce

0.2

0.3

0.4

0.5

(e)

G
ai

n

0.5

0.6

0.7

(f)

Team Size

M

at
h2

-

H
et

er
og

en
ei

ty

4

4.5

5

(g)
Team Size

B
al

an
ce

0.6

0.8

1

1.2

(h)
Team Size

7 8 8 5 6 7 8

7 8 8 5 6 7 8

7 8

5 6 5 6 7

5 6 5 6 7

5 6 5 6 7 8 5 6 7 8

G
ai

n

1

1.2

1.4

1.6

(i)

UKB BGB SPOS RANDOM

Fig. 6. Collaborative team formation performance on three real-world datasets.

Team Size

S
iD

at
a1

-

H

et
er

og
en

ei
ty

7

7.5

8

(a)
Team Size

S
iD

at
a1

 -
B

al
an

ce

0.35

0.4

0.45

0.5

0.55

(b)
Team Size

8 8 8

S
iD

at
a2

-

H

et
er

og
en

ei
ty

7

7.5

8

(c)
Team Size

7 7 5 6 75 6 5 6 5 6 7 8

S
iD

at
a2

-
B

al
an

ce

0.4

0.5

0.6

(d)

UKB SPOS RANDOM

Fig. 7. Collaborative team formation performance on simulated datasets.

Table 3. Runtime(seconds).

Datasets UKB BGB SPOS RANDOM

FrcSub 1.936 0.174 1.811 0.122

Math1 595.2 16.89 750.3 22.7

Math2 664.2 10.73 620.4 19.5

Secondly, to demonstrate that UKB is not just effective with features of
SDINA’s output, we perform team formation experiments on datasets with sim-
ulated features. We can see from Fig. 7 that UKB has larger Heterogeneity and
lower Balance among all team sizes on both datasets. We don’t test BGB as it
only focuses on features of students’ skill proficiency.

Moreover, Table 3 shows runtime of each method to form five-students teams.
BGB and RANDOM run much faster in general. For our methods UKB run faster
than SPOS on Math1, BGB run faster than RANDOM on Math1 and Math2.

398 Y. Liu et al.

5 Discussion

The experimental results demonstrate that SDINA could better model students
with continuous skill proficiency. Through more accurate analysis on students
and following the existing research achievements, UKB and BGB could generate
more effective collaborative learning teams for dissimilarity based objective and
gain based objective. In the meanwhile, the team formation results are explain-
able, which makes the framework has more practical value.

Both stages of this general framework may be further improved. Firstly, we
can employ SDINA on more data (e.g., the homework data) for feature extrac-
tion. Secondly, relationship between these two objectives could be studied and
maybe the trade-off between them can be researched. Optimization methods
should be tried to formulate an optimization problem for maximizing gain and
heterogeneity, and minimizing balance. Thirdly, we plan to design more efficient
solutions than UKB and we would like to consider more influence factors to get
a more reasonable definition of students’ promotion in BGB. Finally, we plan
to apply this theoretical research in the real-world teaching and learning, e.g.,
we already served high schools where we collected the data. Indeed, given that
modeling students’ cognitive skills for collaborative learning has largely been
neglected, there are many research directions remain to be explored.

6 Conclusion

In this paper, we designed a two-stage framework to exploit cognitive diagnosis
for collaborative learning team formation. Firstly, we proposed a cognitive diag-
nosis model SDINA, which can automatically quantify students’ skill proficiency
in continuous values. Secondly, we proposed two objectives, the dissimilarity
based objective and the gain based objective with heuristic algorithms to solve
the team formation problem. At last, extensive experiments on several datasets
demonstrated that our SDINA could model the students’ skill proficiency more
precisely and the proposed algorithms can help generate collaborative learning
teams more effectively. We hope this work could lead to more future studies.

Acknowledgements. This research was partially supported by grants from the
National Science Foundation for Distinguished Young Scholars of China (Grant No.
61325010), the Natural Science Foundation of China (Grant No. 61403358) and the
Science and Technology Program for Public Wellbeing (Grant No. 2013GS340302). Qi
Liu gratefully acknowledges the support of the Youth Innovation Promotion Associa-
tion of CAS and acknowledges the support of the CCF-Intel Young Faculty Researcher
Program (YFRP).

Collaborative Learning Team Formation: A Cognitive Modeling Perspective 399

References

1. Agrawal, R., Golshan, B., Terzi, E.: Grouping students in educational settings. In:
SIGKDD, pp. 1017–1026. ACM (2014)

2. Christodoulopoulos, C.E., Papanikolaou, K.: Investigation of group formation using
low complexity algorithms. In: Proceeding of PING, Workshop, pp. 57–60 (2007)

3. De La Torre, J.: Dina model and parameter estimation: a didactic. J. Educ. Behav.
Stat. 34(1), 115–130 (2009)

4. De La Torre, J.: The generalized dina model framework. Psychometrika 76(2),
179–199 (2011)

5. DeCarlo, L.T.: On the analysis of fraction subtraction data: the dina model, clas-
sification, latent class sizes, and the q-matrix. APM (2010)

6. Deshpande, M., Karypis, G.: Item-based top-N recommendation algorithms. ACM
Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

7. Desmarais, M.C.: Mapping question items to skills with non-negative matrix fac-
torization. ACM SIGKDD Explor. Newsl. 13(2), 30–36 (2012)

8. DiBello, L.V., Roussos, L.A., Stout, W.: 31a review of cognitively diagnostic assess-
ment and a summary of psychometric models. Handb. Stat. 26, 979–1030 (2006)

9. Embretson, S.E., Reise, S.P.: Item response theory for psychologists. Psychology
Press, New York (2013)

10. Gall, M.D., Gall, J.P.: The discussion method. The psychology of teaching methods,
(75 ppt 1), pp. 166–216 (1976)

11. Gibbs, G.: Learning in teams: a tutor guide. Oxford Centre for Staff and Learning
Development (1995)

12. Gogoulou, A., Gouli, E., Boas, G., Liakou, E., Grigoriadou, M.: Forming homo-
geneous, heterogeneous and mixed groups of learners. In: Proceeding ICUM, pp.
33–40 (2007)

13. Graf, S., Bekele, R.: Forming heterogeneous groups for intelligent collaborative
learning systems with ant colony optimization. In: Ikeda, M., Ashley, K.D., Chan,
T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 217–226. Springer, Heidelberg (2006)

14. Hooper, S., Hannafin, M.J.: Cooperative cbi: The effects of heterogeneous versus
homogeneous grouping on the learning of progressively complex concepts. J. Educ.
Comput. Res. 4(4), 413–424 (1988)

15. Hwang, G.-J., Yin, P.-Y., Hwang, C.-W., Tsai, C.-C., et al.: An enhanced genetic
approach to composing cooperative learning groups for multiple grouping criteria.
Educ. Technol. Soc. 11(1), 148–167 (2008)

16. Lappas, T., Liu, K., Terzi, E.: Finding a team of experts in social networks. In:
Proceedings of the 15th SIGKDD, pp. 467–476. ACM (2009)

17. Li, Q., Wang, P., Wang, W., Hu, H., Li, Z., Li, J.: An efficient K-means Clustering
Algorithm on MapReduce. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee,
M.L., Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421,
pp. 357–371. Springer, Heidelberg (2014)

18. Mahdi, B., Fattaneh, T.: A semi-pareto optimal set based algorithm for grouping
of students. In: ICELET, pp. 10–13. IEEE (2013)

19. Mnih, A., Salakhutdinov, R.: Probabilistic matrix factorization. In: Advances in
neural information processing systems, pp. 1257–1264 (2007)

20. Ounnas, A., Davis, H., Millard, D.: A framework for semantic group formation. In:
ICALT, pp. 34–38. IEEE (2008)

21. Ozaki, K.: Dina models for multiple-choice items with few parameters considering
incorrect answers. In: APM (2015)

400 Y. Liu et al.

22. Slavin, R.E.: Cooperative learning: theory, research, and practice, vol. 14. Allyn
and Bacon, Boston (1990)

23. Smith, K.A., Sheppard, S.D., Johnson, D.W., Johnson, R.T.: Pedagogies of engage-
ment: classroom-based practices. JEE 94(1), 87–101 (2005)

24. Štajner, T., Thomee, B., Popescu, A.-M., Pennacchiotti, M., Jaimes, A.: Automatic
selection of social media responses to news. In: 19th ACM SIGKDD, pp. 50–58.
ACM (2013)

25. Toscher, A., Jahrer, M.: Collaborative filtering applied to educational data mining.
In: KDD Cupp (2010)

26. Wu, R., Liu, Q., Liu, Y., Chen, E., Su, Y., Chen, Z., Hu, G.: Cognitive modelling
for predicting examinee performance. In: Proceedings of the 24th International
Conference on Artificial Intelligence, pp. 1017–1024. AAAI Press (2015)

27. Yannibelli, V., Amandi, A.: A deterministic crowding evolutionary algorithm to
form learning teams in a collaborative learning context. Expert Syst. Appl. 39(10),
8584–8592 (2012)

Advanced Applications(1)

Popular Route Planning with Travel Cost
Estimation

Huiping Liu, Cheqing Jin(B), and Aoying Zhou

School of Computer Science and Software Engineering, Institute for
Data Science and Engineering, East China Normal University, Shanghai, China

hpliu@stu.ecnu.edu.cn,{cqjin,ayzhou}@sei.ecnu.edu.cn

Abstract. With the increasing number of GPS-equipped vehicles, more
and more trajectories are generated continuously, based on which some
urban applications become feasible, such as route planning. In general,
route planning aims at finding a path from source to destination to meet
some specific requirements, i.e., the minimal travel time, fee or fuel con-
sumption. Especially, some users may prefer popular route that has been
travelled frequently. However, the existing work to find the popular route
does not consider how to estimate the travelling cost. In this paper, we
address this issue by devising a novel structure, called popular traverse
graph, to summarize historical trajectories. Based on which an efficient
route planning algorithm is proposed to search the popular route with
minimal travel cost. The extensive experimental reports show that our
method is both effective and efficient.

1 Introduction

Route planning is important not only for our daily life, but also for business map
engines like Google and Bing Maps [1–4]. Although the shortest/fastest paths are
used commonly, they may be insufficient in some situations, while the popular
route that refers to a path being travelled frequently is sometimes important.
For example, drivers who travel in an unfamiliar city may prefer a popular path
which may be safer with better traffic condition and road quality, and a taxi
passenger may want to travel along a popular path in case of a roundabout
trip. Moreover, people care more about the travel cost, i.e., how long it takes
or how much it costs. An accurate travel cost estimation will improve people’s
satisfaction. In practice, there are several popular paths with different travel
cost from source to destination, so a popular route with the minimal travel cost
which saves resource consumption (such as time, money, fuel) is a better choice.

Route planning or driving direction planning has been studied in recent years
and some influential works have been published. [3] proposes a framework to find
out the practically fastest route at a given departure time based on a landmark
graph learned from a large number of historical taxi trajectories. However, the
fastest route is not always popular, some shortcuts may reduce the travel time
but increase the risk and uncertainty of a trip. The work performs a two-stage
routing algorithm based on the graph to find the fastest route. The first stage
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 403–418, 2016.
DOI: 10.1007/978-3-319-32049-6 25

404 H. Liu et al.

is to find the rough route represented by a sequence of landmarks whose travel
time can be estimated by their model and the second stage is to find a practically
detailed fastest route in the road network based on speed constraints. But the
travel time of the detailed fastest route may be different from the estimated travel
time at the first stage. Since there may exist several different paths between two
landmarks and the estimated travel time is just the mean travel time of all
possible paths. In most cases, the travel time of the detailed fastest route is
less than the estimated travel time, which will cause an inaccurate travel time
estimation of the route. Moreover, the model proposed in [5] to estimate the
travel time of a given path by using the optimal route concatenation cannot be
applied to route planning directly.

In this paper, we aim at finding the popular route with minimal travel cost
from source to destination and estimating the travel cost for this route. We
propose a framework to achieve this goal. Firstly, we construct a popular traverse
graph based on the historical trajectories, where each node is a popular location,
and each edge is a popular route between two locations. Subsequently, for each
popular route in this graph, we use the minimum description length (MDL)
principle [6] to model the travel cost of the routes. Finally, based on the graph,
given a source-destination pair and a leaving time, we find the fastest popular
route in consideration of the optimal route concatenation [5] for an accurate
travel cost estimation. The contributions of this paper are summarized below.

– We propose a novel structure, called popular traverse graph, from trajectories
without road network information, which contains the popular routes between
locations.

– We present a parameter-free method using the minimum description length
(MDL) principle to model the travel cost on each popular route in the graph.

– We devise an efficient routing algorithm which combines optimal route con-
catenation with route planning on the popular traverse graph.

– We have conducted extensive experiments upon a real dataset of millions of
trajectories generated by more than 10000 taxis over a month in Beijing. The
results show that our method is both effective and efficient.

The remainder of the paper is organized as follows. Section 2 reviews the
related work. Section 3 describes some preliminary knowledge. Section 4 illus-
trates the popular traverse graph, and a way to model the travel cost for each
popular route. Section 5 details the routing algorithm. Section 6 reports the eval-
uation and a brief conclusion is given in Sect. 7.

2 Related Work

Route planning has been widely investigated in recent years, including popular
route planning and the fastest route planning.

Popular Route Planning with Travel Cost Estimation 405

Popular Route Planning: [7,8] discover the top-k possible popular routes
that sequentially pass given locations from historical uncertain trajectories. [9]
studies how to discover the most popular route between any two locations. The
authors introduce a transfer network model by exploiting intersections and the
popularity of transfer nodes on the transfer network. They infer the most popular
routes according to the turning probability of each intersection on the network.
[10] tries to find the time period-based most frequent path. It firstly constructs
a footmark graph which is used to calculate the frequencies of candidate paths,
then they retrieve the most frequent path in arbitrary time periods specified by
the users on this graph. All the above studies try to find the popular routes
without considering the travel cost, whereas our focus is to find a popular route
with the minimal travel cost.

The Fastest Route Planning: [11] proposes a fundamental algorithm (Dijk-
stra’s algorithm) to find the shortest path between two nodes in a graph and the
A∗ algorithm proposed by [12] boosts the searching performance with a heuris-
tic estimation. In [1,2,13], the authors study how to find the fastest path on
a time-dependent graph. [14] computes the fastest path on a road network by
considering speed and driving patterns. Yuan et al. proposed a framework to find
the fastest route from taxi trajectories [3,4]. In [3], they construct a landmark
graph and based on which, a two-stage routing algorithm is performed to find
the fastest route. In [4], traffic prediction is employed for optimization. However,
the estimated travel time is not actually the travel time of the practical fastest
route as [3,4] recommended. [15] studies stochastic skyline route queries in road
networks with multiple travel costs. The authors provide the travel cost distrib-
ution given a source-destination pair with a leaving time. [5] proposes a model to
estimate the travel time of a given path in a road network, but it’s unsuitable for
route planning from a source to a destination. Our work significantly differs from
the above methods, because we aim at finding the popular route and estimating
the travel cost.

3 Preliminary

We define some terms and the problem addressed in this paper.

Definition 1 (Trajectory). A Trajectory Tr is a time-ordered sequence of points
generated by a moving object. Each point p consists of a geographic location
p.l and a timestamp p.t, i.e., Tr : p1 → p2 → ... → pn, where pi+1.t > pi.t
(1 ≤ i < n).

The trajectory [16,17] is a real reflection of the travelling behaviour of the
moving object and provides us a possible path from the start to the end location
if no road network information is provided.

Definition 2 (Popular Route). A Popular Route is a path with alternative con-
dition holds: (1) A path that has been traversed at least τ times, where τ is a

406 H. Liu et al.

pre-defined threshold; (2) A path consists of multiple sub-paths and each sub-
path satisfies condition (1).

A popular route is always a candidate for a trip, because most of people
have chosen it. However, not all source-destination pair have a direct popular
route (condition 1). For instance, a long route as a whole may not be frequently
passed. In this case, it can still be treated as a popular route if all its sub-paths
are popular routes (condition 2) [9].

Fig. 1. An example of route concatenation

Definition 3 (Popular Traverse Graph). A Popular Traverse Graph (PTG) G
= (V, E) is a directed graph where V is a set of popular locations and E is a set
of popular routes between locations.

Since each edge in PTG is a popular route, the path between any two nodes
is also popular by Definition 2.

Definition 4 (Concatenation of Route). Let r : n1 → n2 → ... → ni denotes
a route in the popular traverse graph G, where nk (1 ≤ k ≤ i) is a node in
G. Denote |r| as the size of r which is the number of nodes it contains. Route
r∗ : n1 → ... → ni is a concatenation of r if |r∗| ≤ |r|.

The concatenation of a route means some consecutive road segments in the
route are frequently traversed as a whole, and we can regard the consecutive
road segments as a united road segment when we estimate the travel cost of this
route. Since the united road segment covers the entire path, it reflects the traffic
conditions of this whole path, including intersections, traffic lights and direction
turns, which will improve the accuracy of the travel cost estimation.

Example 1. Figure 1 is a route on PTG. For a sub-route r : A → B → C → D, if
r is travelled frequently as a whole, then r is a popular route due to the condition
(1) in Definition 2. We call r the non-trivial popular route. Then r∗ : A → D
is a concatenation of r (there are 4 in total for r). Obviously, only non-trivial
popular route has different concatenations and each non-trivial popular route r
has |r| > 2. Moreover, every sub-route r′ of r with |r′| > 2 is also a non-trivial
popular route, such as A → B → C and B → C → D.

The next issue is how to find an optimal one from different concatenations for
a route. [5] finds the optimal concatenation of a path by making an object func-
tion minimized. In this paper, we apply the object function:

∑k
i=1

1
nsi

V ar(csi),
where si is the ith segment of the path, V ar(csi) is the variance of the travel
costs on si, and nsi is the number of trajectories that travelled on si.

Popular Route Planning with Travel Cost Estimation 407

Problem Definition: Given a popular traverse graph G and a route planning
query with a source s, a destination d and a departure time t, we find the popular
route with minimal travel cost in regard to the optimal route concatenation.

4 Popular Traverse Graph

This section first describes how to construct a popular traverse graph from tra-
jectories without road network information, and then details the travel cost
modelling of popular routes.

4.1 Constructing the Popular Traverse Graph

As the road network may be unavailable in some situations [8,9], it is infeasi-
ble to compute the travelling frequency of the roads to find the popular routes.
Fortunately, it is still feasible to find the popular locations (been visited fre-
quently) from the trajectories, so that the transitions between locations can be
extracted. Finally, we discover the popular routes on each transition to construct
the popular traverse graph. The major processes are listed below.

Popular locations mining. Since the trajectories consist of points, the popular
locations come from the points of trajectories. To reduce the size of points, we
only consider the end points of the trajectories which can reflect the locations
where people usually start from or go to. Thus, the query source or destination
has a high probability to locate at the locations. To find the popular locations,
we first partition the points into different zones and then the DBSCAN clustering
algorithm [18] is invoked to generate clusters for the points in each zone. Finally,
k clusters with the maximal number of points are chosen as the popular locations.

Transitions extraction. We then search the transitions between locations by scan-
ning the trajectory dataset. For each trajectory tr, we first map it to the popular
locations, then the trajectory can be represented as tr: l1 → l2 → ... → ln, where
li (1 ≤ i ≤ n) is a popular location. For each li → li+1 (1 ≤ i < n), we generate
a transition from li to li+1 if it does not exist, and we also keep the segment of
tr belongs to this transition for popular routes discovering.

Popular routes discovering. There may exist several different paths for a transi-
tion that connects two popular locations. In order to get the popular paths on
the transitions, we cluster the trajectory segments pertaining to the transition.
As a result, the cluster with at least τ trajectories is treated as popular route. To
tackle the ununiform rate trajectories, we apply Edit Distance with Projections
(EDwP) proposed in [19] to measure the similarity between trajectories, and we
use the density-based method [20] to cluster the trajectories.

Note that trajectory clustering can not only discover the popular routes but
also detect the outliers in the trajectory set (i.e., the roundabout trips), which
helps to improve the accuracy of the travel cost estimation.

408 H. Liu et al.

4.2 Modeling Travel Cost Using the MDL Principle

It is challenging to estimate the travel cost for an arbitrary path [3,15,21], since
the cost of a route at different time varied a lot. The major difficulty is how
to partition the travel costs into different time slots. [15,21] divide the time
slots statically. The VE-Clustering algorithm [3] attempts to partition a day
into different time slots according to the travel costs by two clustering methods,
namely V-clustering and E-clustering, and each with a threshold. However, it is
hard to set the values of such global thresholds for all routes. We note that a
good partition for the travel costs should meet the following two requirements:
(1) homogeneity: stable travel costs in each time slot, and (2) conciseness: the
significant difference (i.e., distribution) between two adjacent time slots, other-
wise, there is no need to split them apart. Fortunately, although challenging, the
minimum description length (MDL) principle [6] which is widely used in informa-
tion theory is suitable to solve this problem. Hence, we propose a parameter-free
algorithm by integrating the MDL principle.

Let’s review MDL briefly [6]. The MDL cost consists of two components:
L(H) and L(D|H), where L(H) is the length of the description of the hypothesis,
and L(D|H) is the length of the description of data under the hypothesis, both
in bits. To get the best hypothesis H to explain the data D, the value of L(H)+
L(D|H) must be minimized. In our work, H refers to the time partition and D
is the set of travel costs along the popular route. Hence, L(H) and L(D|H) are
defined formally below.

L(H) = log2(num) +
num∑
i=1

�log2 span(sloti)� (1)

L(D|H) =
num∑
i=1

{�log2(N(sloti) + 1)� + Ent(sloti)} (2)

where Ent(sloti) = −∑numcla

k=1
Nk(sloti)
N(sloti)

log2
Nk(sloti)
N(sloti)

. Equation (1) encodes the
hypothesis of a partitioning, the first term describes the number of partitions
(num) on time, the second term describes the span of each time slot (sloti).
Equation (2) describes data under the hypothesis. The first term encodes the
number of the travel costs in sloti

1. The second term computes the information
entropy to describe the stability of the slot, which needs to map the travel costs
to different class first, each with a different cost level. For example, in travel
time cost, the costs in seconds can map to minute level, that is costs from 0 to
120 s correspond to two classes, which are (0,60] and (60,120].

Obviously, L(H) stands for conciseness and L(D|H) for homogeneity. The
more homogenic and concise, the better. However, conciseness and homogeneity
are contradictory, hence we need to find the optimal trade-off by minimizing
L(H) + L(D|H). As it is expensive to compute the minimal value of L(H) +
L(D|H) due to too many potential partitionings, we devise an approximate
1 To avoid the case that N(sloti) = 0, we increase the value by 1.

Popular Route Planning with Travel Cost Estimation 409

Algorithm 1. approPartition(D)
1 S ← {[t1, t2]}, where t1 and t2 are the earliest and latest time in D;
2 minCost ← MDL(S) // MDL(S) = L(H) + L(D|H);
3 while true do
4 s[t1, t2] ← a slot in S with the maximal value of Ent(·);
5 t ← arg mint∈[s.t1,s.t2]

(Ent([s.t1, t]) + Ent([t, s.t2]));

6 S′ ← (S − {s}) ∪ {[s.t1, t], [t, s.t2]}, newCost ← MDL(S′);
7 if newCost < minCost then
8 minCost ← newCost, S ← S′;

9 else
10 return S;

solution instead, as shown in Algorithm 1. This algorithm accepts a travel costs
set D as input. Initially, a set S only contains one time slot that covers the
whole data set D (at line 1). Let minCost denote the MDL cost of the current
situation. We then probe the dataset S in greedy manner (at lines 3–10). At each
time, we find a time slot s in S with the maximal entropy to split. Subsequently,
the optimal splitting point t (t ∈ [s.t1, s.t2]) is found by minimizing the sum
of entropies. Hence, the original time slot s in S is replaced by two new slots
[s.t1, t] and [t, s.t2]. The iteration will stop when newCost ≥ minCost.

The time complexity of Algorithm 1 is O(n · k), where k is the number of
time slots and n is the size of the dataset D, since it computes the MDL cost by
scanning the whole dataset at each iteration. In this paper, we use the average
travel cost in each time slot to represent the cost of it.

Example 2. Figure 2 illustrates an example of the popular traverse graph. The
nodes A,B,C,D,E are popular locations and solid lines are the popular routes
between them. The dash lines stand for the non-trivial popular routes mined from
the trajectory dataset (see Sect. 5.2). For simplicity, we use a static number to
represent the cost on each popular route and we assume that only one popular
route exists on each transition.

Fig. 2. An example of PTG

410 H. Liu et al.

5 Route Planning on the Popular Traverse Graph

In this section, we introduce how to find the popular route with the minimal
travel cost in consideration of the optimal route concatenation on the time-
dependent popular traverse graph.

5.1 Routing Algorithm

Recall that we consider the optimal concatenation of route for accurate travel
cost estimation, therefore the result route for a query should satisfy two condi-
tions: (1) it’s travel cost should be the cost of its optimal concatenation, (2) it
spends minimal travel cost under condition (1). That is the route we expected
has the optimal concatenation with the minimal travel cost.

Example 3. We show an example of route planning on PTG illustrated by Fig. 2.
Suppose the non-trivial popular routes are also the optimal concatenations. Then
the cost of route A → C → D should be 32, since its optimal concatenation
A → D costs 32, the same to B → D → E which costs 50. So, the expected
route from A to E should be A → B → D → E which has the minimal travel cost
59. An interesting observation is that the cost of sub-route on A → B → D → E
may not be the minimal. For example, A → B → D costs more than A → C → D
from A to D. That is the major difference from the shortest route planning.

A naive solution is to find all routes with optimal concatenation from source
to destination, and choose the one with minimal travel cost. However, it’s infea-
sible to enumerate all the possible routes with optimal concatenation, the cost
of it is prohibitive. Instead, we propose a method to return the expected route
more efficiently, as listed in Algorithm 2.

Given a PTG G = (V,E) and the query q = (s, d, t), Algorithm 2 returns
the expected route. We use cost, route and routeSet for each node to keep the
minimal cost, the optimal route and the routes have been considered from s
respectively. In addition, we maintain a priority queue Q for nodes on PTG
sorted by cost in ascending order. Initially we set n.cost to maximum, n.route
to null and n.routeSet to empty except for the source node s, and add s to Q
(lines 1–3). Then we keep searching until Q is empty or the destination node d
is settled (lines 4–14). At each iteration, we get the head node n of Q and find
its outgoing popular routes set where each route is either an outgoing edge of n
on PTG or a non-trivial popular route (line 6). For each outgoing route of n, we
consider the entire route from s to v passed n. If the route has not been checked,
we then find its optimal concatenation and the corresponding travel cost. We
keep the route in v.routeSet to avoid verifying twice (lines 7–11). If the new cost
of v is less than its current cost, then we update v’ cost and its route, and add
v to Q if it’s not in it (lines 12–14). In this way, we will get the route whose
optimal concatenation has minimal travel cost by Lemma1.

Lemma 1. Algorithm 2 can return the expected route on popular traverse graph
G = (V,E) for a query q = (s, d, t) if the route exists.

Popular Route Planning with Travel Cost Estimation 411

Algorithm 2. routePlanning (G = (V,E), s, d, t)
1 foreach For each n in V do
2 n.cost ← ∞, n.route ← null, n.routeSet ← ∅;

3 s.cost ← 0, s.route ← s;
4 Create a new priority query Q, Q.enqueue(s);
5 while n ← Q.dequeue() and n �= NULL do
6 return d.route if n = d;
7 S ← {r : n → ... → v|v is not settled and r is a non-trivial popular route or

an outgoing edge of n};
8 foreach route r : n → ... → v in S do
9 r′ ← n.route + r;

10 if r′ /∈ v.routeSet then
11 r∗ ← the optimal concatenation of r′;
12 v.routeSet ← v.routeSet ∪ {r′};
13 if r∗.cost < v.cost then
14 v.cost ← r∗.cost, v.route ← r′;
15 Q.enqueue(v) if v is not in Q;

Proof. It is obvious that only the cost of optimal concatenations can be con-
sidered by Algorithm 2, and then we need to prove that the route returned by
Algorithm 2 has minimal travel cost. We prove it by contradiction. Suppose there
is a route whose optimal concatenation is r′ : s → ... → ni → d has less travel
cost than the route r∗ returned by Algorithm 2. Then the route s → ... → ni

must cost less than r∗, too. That is ni must have been settled before returning
r∗, hence r′ has been checked (by line 6). Since we choose the less cost optimal
route concatenation, that is r∗ has less cost than r′, which is a contradiction.
Thus the lemma is proved.

Example 4. We take Fig. 2 as the input PTG, and we find the expected route
from A to E by Algorithm 2. We begin with A, and we check A → B and
A → C whose optimal concatenation is themselves and A → C → D with
optimal concatenation A → D. Then the cost of B, C and D will be 9, 10 and
32 respectively. We next settle B and check its outgoing routes, then the cost
of E will be 59 with route A → B → D → E. For C, since A → C → D has
been checked, we move to D whose cost is 32 with route A → C → D. Then we
consider A → C → D → E whose cost is 61. Finally, we get the expected route
A → B → D → E with cost 59.

Although Algorithm 2 can return the right route, the complexity is relatively
high, especially in line 6 and line 10 when finding the non-trivial popular routes
and computing the optimal concatenation of a route. We improve the procedures
by introducing a suffix tree.

412 H. Liu et al.

5.2 Indexing for Non-trivial Popular Routes

In this sub-section, we describe how to construct a suffix-tree-based index from
trajectories dataset to quickly retrieve the non-trivial popular routes between
nodes on PTG. For a route r : n1 → n2 → ... → nk, we define prefix route of
r as the route r′ : n1 → ... → ni(1 < i < k), and suffix route of r as the route
r∗ : ni → ... → nk(1 < i < k)

For each trajectory, we first map it to a string of nodes on PTG, i.e., tr:
n1 → n2 → ... → nk. For each ni → ni+1(1 ≤ i < k), if it’s not a popular
route on PTG, then we know that ni → ni+1 won’t be a popular route or be
a part of popular route, hence it will be deleted from tr. Now tr is split into
several segments. For each segment s : ni → ... → nj , if |s| > 2, then it could be
a non-trivial popular route. We create a path on the suffix-tree for each suffix
route of s: no → ... → nj(i ≤ o ≤ j − 2) if it’s not exists in the tree, otherwise,
we increase its support. By this way, any path p with |p| > 2 in the suffix-tree
whose support is no less than the threshold τ will be a non-trivial popular route.
To reduce the size of the suffix-tree, we remove the paths with support less than
τ . Given a starting node, we can find all the non-trivial popular routes in O(1)
with the reduced suffix-tree.

Fig. 3. An example of constructing suffix-tree

Example 5. Figure 3 shows an running example of constructing a reduced suffix-
tree based on the PTG and trajectories dataset with threshold τ = 2. As we can
see, there are two non-trivial popular routes in total which are A → B → C and
B → C → D.

5.3 Computing the Optimal Concatenation

As mentioned above, it is time-consuming when finding the optimal concate-
nation of a route with many different concatenations. In this paper, we pre-
compute the optimal concatenations of the non-trivial popular routes on the
reduced suffix-tree to improve the efficiency. For a non-trivial popular route
r : n1 → ... → nk, there exist 2k−2 possible concatenations, we compute its
optimal concatenation by using dynamic programming solution with complexity

Popular Route Planning with Travel Cost Estimation 413

O(k2). That is we calculate the minimal object function value (mentioned in
Sect. 3) for each node by opti = arg min1≤j<i(optj + (nj → ni).obj)(1 < i ≤ k)
with opt1 = 0, where opti is the minimal object function value of each node, and
obj is the object function value of the route.

With the optimal concatenations of non-trivial popular routes in the reduced
suffix-tree, we compute the cost of the optimal concatenation of a route on
the PTG, which is described in Algorithm 3. For each node in the route, we
define ocCost as the cost of the optimal concatenation from the source. We
maintain a priority queue for the nodes by their order in the route. For each
node ni from the queue, we only consider the node nj that ni can reach as far as
possible on the route through r′, where r′ is a non-trivial popular route whose
optimal concatenation has been found or an outgoing edge of ni whose optimal
concatenation is itself, then we refine nj by r′ using Algorithm 4 and add it to
the queue (lines 5–6). For the nodes (except for ni and nj) in r′, we refine the
nodes that can reach beyond r′ by a non-trivial popular route and add them to
the queue (lines 7–10). Finally, We return the result until we get to the ending
node. By using the pre-computed results of non-trivial popular routes, we save
lots of computing while refining the nodes. The complexity of Algorithm 3 will
be O(|r|) since the worst case is that every node on the route is in the queue.

Algorithm 3. ocOnPTG (r : n1 → ... → nk)
1 n1.ocCost ← 0, n1.opt ← 0, ni.opt ← ∞ for 1 < i ≤ k;
2 Initialize a priority queue Q, Q.enqueue(n1);
3 while ni ← Q.dequeue() and ni �= NULL do
4 return ni.ocCost if ni = nk;
5 r′ ← arg maxi<j≤k|r : ni → ... → nj |, where r is either a non-trivial popular

route or an outgoing edge of ni;
6 Refinement(r′), Q.enqueue(nj);
7 foreach o = i + 1 ... j − 1 do
8 if rp : no → ... → np(j < p ≤ k) is a non-trivial popular route then
9 refinement(ni → ... → no);

10 refinement(rp), Q.enqueue(np);

Algorithm 4. refinement (r : ni → ... → nj)

1 obj ← ni.opt + r.opt;
2 if obj < nj .opt then
3 nj .opt ← obj, nj .ocCost ← ni.ocCost + r.ocCost;

Example 6. Take Fig. 1 as an example. The nodes in the queue will be D, E,
and F when compute the cost of the optimal concatenation from A to F .

414 H. Liu et al.

6 Experiments

We report some experimental results in this section. Without loss of generality,
in our experiments, we focus on travel time cost. All codes are written in Java,
run at a computer with dual core 2.00 GHz CPU and 16 GB main memory.

We use a real-life dataset containing 7,122,320 paid trajectories generated by
13,007 taxicabs in Beijing from Oct. 1 to Oct. 31, 2013. The sampling rate is
about 1 point per minute. The dataset is divided into two parts. The first part
(the first 21 days) is used to construct a popular traverse graph (τ = 100). The
final PTG has 5,000 nodes and 33,357 popular routes, and the suffix-tree based
on the PTG contains 210,338 different non-trivial popular routes. Such steps are
implemented offline. The second part (the last 10 days) is used for evaluation.
We randomly choose 30,000 trajectories from the dataset as the queries and
regard the travel time as the ground truth. The length of the trajectories ranges
from 3 km to 18 km, and the travel time varies from 3 min to 60 min.

As T-drive [3] is known to find the fastest route between two points at a depar-
ture time, we use it on PTG as the baseline method. Moreover, MDL+Dijkstra
refers to our basic method that applies MDL to model the travel cost and Dijk-
stra algorithm on TPG to search route, and MDL+OC refers to our method that
applies MDL and the optimal route concatenation.

6.1 Effectiveness

We use mean absolute error (MAE) and mean relative error (MRE) to measure
the effectiveness of our method. Equation (3) describes the common definitions,
where yi is an estimate, ŷi is the ground truth and n is the number of samples.

MAE =
∑n

i=1 |yi − ŷi|
n

, MRE =
∑n

i=1 |yi − ŷi|∑n
i=1 ŷi

(3)

Effectiveness of MDL. Table 1 compares MAE and MRE between
MDL+Dijkstra and T-drive. Recall that T-drive needs to set two parameters in
advance, one for V-Clustering and the other for E-Clustering. We consider 12
different parameter settings, and in the best case, MAE = 74.9 s and MRE =
0.224. Note that MDL+Dijkstra has MAE of 71.8 s and MRE of 0.214. Obvi-
ously, MDL+Dijkstra outperforms T-drive, since the MDL method we proposed
can find an approximate optimal trade-off between homogeneity and concise-
ness on every popular route, which guarantees a good result. We use the best
parameter setting which is 50 and 30 for T-drive in the following experiments.

Overall Effectiveness. We generate three groups of queries, each with top
10,000, 20,000 or 30,000 queries according to the length of trajectories in descend-
ing order, as shown in Table 2. Figure 4 shows the performance for these groups.
Clearly, MDL+Dijkstra and MDL+OC behave better than T-drive, since MDL
principle is suitable for travel cost modelling. Moreover, the performance gain

Popular Route Planning with Travel Cost Estimation 415

Table 1. Comparison of MDL+Dijkstra and T-drive

Table 2. Statistics of three query groups

Group Size Avg time (s) Avg length (m)

A 10,000 435 6,226

B 20,000 369 5,266

C 30,000 335 4,751

of MDL+OC rises when the query distance increases. Since MDL+OC considers
the optimal concatenation while routing and the longer the distance is, the more
concatenations of the route we can find, which will benefit the travel time esti-
mation. Although our method performs better on long distance query comparing
to baselines, we cannot make sure that all queries follow the same route as we
found, and the longer the distance is, the higher probability the real path will
choose a different route. That’s why the MRE increases with the increment of
query distance.

(a) MAE of different methods (b) MRE of different methods

Fig. 4. Comparison of different methods on query groups

An interesting finding is that around 60–70 % queries follow the same route
as we found in each group. Hence, we refine each group, and only reserve the
ones along the same route as we returned, and generate three new groups (see
Table 3). Figure 5 shows the performance on these groups. Compared with Fig. 4,
the performance gain of our method rises. Clearly, MDL+OC outperforms all the
baselines in terms of the two metrics, and it has significant advantage over the
baselines in each query group. Figure 5(a) illustrates the MAE of different meth-
ods. As the length decreases, the MAE decreases, too. Conversely, in Fig. 5(b),

416 H. Liu et al.

Table 3. Statistics of refined query groups

Group Size Avg time (s) Avg length (m) Percentage (%)

D 6,238 416 6,163 62.38

E 13,691 357 5,109 68.46

F 20,930 327 4,629 69.77

(a) MAE of different methods (b) MRE of different methods

Fig. 5. Comparison of different methods on refined query groups

the MRE of all methods increases as the length of query decreases. This is
because the shorter a path is, the more unstable its travel time could be, since
the traffic conditions will have a big influence on it. On the other hand, a long
distance means more concatenations, it helps to find a “better” optimal concate-
nation, therefore MDL+OC behaves better when the length increases.

(a) Average runtime w.r.t. distance (b) Runtime w.r.t. query size

Fig. 6. Runtime of different methods

6.2 Efficiency

Figure 6 shows the runtime on different query distance and query size. Since
MDL+Dijkstra does not need to find the optimal concatenation, it runs much

Popular Route Planning with Travel Cost Estimation 417

more faster than MDL+OC. Figure 6(a) shows that the runtime of MDL+OC
increases as the query distance rises, since large distance will increase the num-
ber of concatenations and the non-trivial popular routes to be checked while
routing. However, MDL+OC can return the result very quickly, far less than 1 s.
Figure 6(b) illustrates the runtime of MDL+OC grows linearly as the query size
increases.

7 Conclusion

In this paper, we propose a framework to find the popular route in consideration
of travel cost estimation. We firstly construct a popular traverse graph by discov-
ering the popular routes from historical trajectories, and then use MDL principle
to model the travel cost on each popular route. Finally, we devise an efficient
routing algorithm to find the popular route with minimal travel cost in terms
of optimal concatenation. We evaluate our methods with extensive experiments,
showing that our methods are both effective and efficient.

Acknowledgment. Our research is supported by the 973 program of China (No.
2012CB316203), NSFC (61370101, U1401256 and 61402180), Shanghai Knowledge
Service Platform Project (No. ZF1213), Innovation Program of Shanghai Municipal
Education Commission (14ZZ045), and Natural Science Foundation of Shanghai (No.
14ZR1412600).

References

1. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on A road network
with speed patterns. In: Proceedings of ICDE (2006)

2. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large
graphs. In: Proceedings of EDBT, pp. 205–216 (2008)

3. Yuan, J., Zheng, Y., Zhang, C., Xie, W., Xie, X., Sun, G., Huang, Y.: T-drive:
driving directions based on taxi trajectories. In: Proceedings of SIGSPATIAL
(2010)

4. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: Proceedings of KDD (2011)

5. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse tra-
jectories. In Proceedings of KDD (2014)

6. Grünwald, P.D., Myung, I.J., Pitt, M.A.: Advances in Minimum Description
Length: Theory and Applications. MIT Press, Cambridge (2005)

7. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate
trajectories. In: Proceedings of ICDE (2012)

8. Wei, L.-Y., Zheng, Y., Peng, W.-C.: Constructing popular routes from uncertain
trajectories. In: Proceedings of KDD (2012)

9. Chen, Z., Shen, H.T., Zhou, X.: Discovering popular routes from trajectories. In:
Proceedings of ICDE (2011)

10. Luo, W., Tan, H., Chen, L., Ni, L.M.: Finding time period-based most frequent
path in big trajectory data. In: Proceedings of SIGMOD (2013)

418 H. Liu et al.

11. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

12. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

13. Kenneth, K.L., Halsey, E.: The shortest route through a network with time-
dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

14. Gonzalez, H., Han, J., Li, X., Myslinska, M., Sondag, J.P.: Adaptive fastest path
computation on a road network: a traffic mining approach. In: Proceedings of
VLDB (2007)

15. Yang, B., Guo, C., Jensen, C.S., Kaul, M., Shang, S.: Stochastic skyline route
planning under time-varying uncertainty. In: Proceedings of ICDE (2014)

16. Mao, J., Song, Q., Jin, C., Zhang, Z., Zhou, A.: Tscluwin: trajectory stream clus-
tering over sliding window. In: Proceedings of DASFAA (2016)

17. Duan, X., Jin, C., Wang, X., Zhou, A., Yue, K.: Real-time personalized taxi-
sharing. In: Proceedings of the DASFAA (2016)

18. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Proceedings of KDD
(1996)

19. Ranu, S., Deepak, P., Aditya, D. Telang, A., Deshpande, P., Raghavan, S.: Indexing
and matching trajectories under inconsistent sampling rates. In: Proceedings of
ICDE (2015)

20. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and-group
framework. In: Proceedings of SIGMOD (2007)

21. Balan, R.K., Nguyen, K.X., Jiang, L.: Real-time trip information service for a large
taxi fleet. In: Proceedings of MobiSys (2011)

ETCPS: An Effective and Scalable Traffic
Condition Prediction System

Dong Wang, Wei Cao, Mengwen Xu, and Jian Li(B)

Institute for Interdisciplinary Information Sciences, Tsinghua University,
10084 Beijing, BJ, China

{wang-dong12,cao-w13,xmw12}@mails.tsinghua.edu.cn,
lijian83@mail.tsinghua.edu.cn

Abstract. Real-time prediction of the traffic condition is an important
ingredient for a variety of applications. In this paper, we propose an
Ensemble based Traffic Condition Prediction System (ETCPS) for pre-
dicting the traffic conditions of any roads in a city based on the cur-
rent and historical GPS data collected from floating vehicles. We have
observed two useful correlations in the traffic condition time series, which
are the bases of our design. In order to exploit these two correlations
for prediction, we propose two different models called Predictive Regres-
sion Tree (PR-Tree) and Spatial Temporal Probabilistic Graphical Model
(STPGM). Our best quality prediction is achieved by a careful ensemble
of the two models. Our system provides high-quality prediction and can
easily scale to very large datasets. We conduct extensive experimental
evaluations with a large GPS data set collected from more than 12,000
taxis in Beijing during two months. The experimental results demon-
strate the effectiveness, efficiency, and scalability of our system.

1 Introduction

Real-time prediction of the traffic condition becomes increasingly important.
A well-performed traffic condition prediction system is the fundamental ingre-
dient of various real applications. Examples include the traffic management [6],
routing service [13], taxi ride sharing [8] etc. Such problem has been widely
studied in recent years [1,10,11,15]. Generally, given the current and historical
traffic conditions of the road network, our goal is to predict the traffic condition
of each road after a few minutes or hours.

Most prior works on traffic condition prediction are based on the data gen-
erated by the road side loop sensors. However, such loop sensors are usually
expensive and only embedded in highways and part of urban main roads. Alter-
natively, ubiquitous location based services enable us to collect a large volume
of traffic data from GPS-embedded devices. Such GPS data provides valuable
information for analyzing and predicting the traffic conditions. Despite there
exist several researches and products for traffic prediction based on the GPS
data, most of them only focused on the arterial roads and did not consider the
urban roads.
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 419–436, 2016.
DOI: 10.1007/978-3-319-32049-6 26

420 D. Wang et al.

In this paper, we study the efficient and scalable models for traffic condition
prediction based on the GPS data collected from floating vehicles (taxis in our
data). To make our exposition more concrete, we first illustrate several challenges
in our problem.

– Large volume of GPS data has been generated routinely, especially for some
metropolises such as New York or Beijing. Most prior works are based on
probabilistic graphical models [3,5,9]. The state spaces explode in these algo-
rithms under very large scale datasets. Thus, it takes a very long time to run
the algorithms.

– The traffic conditions and their transition patterns (i.e., the patterns in which
the traffic condition varies) for each road vary significantly under different
time intervals. For example, if the traffic is in a jam during a peak hour,
it usually lasts for a long time. However, if such congestion happens in a
non-peak hour, the traffic usually become light soon. Such traffic pattern is
changing over time. Prior works based on the Markov Chain and Hidden
Markov Model (HMM) [5,9,11] can not capture such feature since the states
of transition matrices are not related with time.

– The taxis sometimes slow down or even stop for picking or attracting the
passengers. It is hard to distinguish whether such low travel speed is due to
the congestion of the traffic. Such records may lead to erroneous estimations
of the traffic condition.

To address the above challenges, we propose the Ensemble based Traffic Con-
dition Prediction System (ETCPS). Our system combines two different models
called Predictive Regression Tree (PR-Tree) and Spatial Temporal Probabilistic
Graphical Model (STPGM). We summarize our technical contributions below:

– We present two useful observations in the traffic condition time series which
are the bases of our design. We first present the correlations between the gaps
of the traffic condition and its expected traffic condition. Then, we show the
autocorrelations in the first order difference of the traffic condition series (See
Sect. 2).

– We propose a regression tree based model called PR-Tree. PR-Tree can effec-
tively capture the proposed correlations and thus predict the traffic conditions
with a high accuracy. PR-Tree is very efficient on large scale datasets. Given
a training set with 105 roads, it only takes 3.26 min to train a PR-Tree and
the prediction of PR-Tree is real-time (See Sect. 5).

– We propose a probabilistic graphical model called STPGM. STPGM can cap-
ture the correlations between adjacent roads. It formulates the state transi-
tions in different time intervals separately. Thus, the state space for STPGM
is much smaller than the prior works [3,5,9]. On the other hand, STPGM
captures different traffic patterns in different time intervals. We show that in
the experiment STPGM is more efficient and accurate than the algorithms in
prior works (See Sect. 6).

– We propose a prediction system called ETCPS which combines PR-Tree and
STPGM. We evaluate our model with real dataset which consists of GPS

ETCPS: An Effective and Scalable Traffic Condition Prediction System 421

points generated by over 12,000 taxis collected in two months. It provides an
experimental evidence that ETCPS is efficient, scalable in terms of supporting
large size road networks, and achieves a high-quality prediction (See Sect. 7).

2 Preliminary

Road Network. We are given a data set consisting of GPS records of taxis.
The GPS records of the j-th taxi is represented by Trj = {p1, p2, . . . , p|Trj |}.
Each pi represents a GPS record (cid, time, location, speed) indicating the id
of the j-th car, the time stamp when the record is generated, the latitude and
longitude of the current location and the instantaneous speed respectively. We
define a real urban road network as a directed graph G = (V,E) where V is the
set of nodes representing the terminal points of road segments and E is the set
of road segments. A road segment ri is a directed edge associated with a start
point vs, an end point ve with length li. See Fig. 1 for an illustration. Utilizing
the technique of map-matching [7], each GPS record pi on the trajectory Trj

can be located to a road segment ri in which the car j is traveling on.

Fig. 1. Time cost

Table 1. Time cost (Million seconds)

Time Road Speed Time Road Speed
Traj Traj

(Intv) segment (km/h) (Intv) segment (km/h)

Tr1 34 r1 56 Tr2 34 r1 60

Tr1 35 r2 60 Tr2 35 r2 58

Tr1 35 r3 61 Tr2 35 r4 58

Tr3 35 r2 15 Tr2 36 r5 60

Tr3 35 r3 60

Traffic Condition. We define the traffic condition for a road segment ri during
a specific period as below. Given a GPS data set collected during D days, we
split the period of D days into several intervals, and each time interval spans λ
minutes. We assume that the traffic condition of a specific road segment remains
unchanged in one interval. Such assumption is widely used in the transportation
literature [11,15].

As each day has M = 60·24
λ time intervals, for a GPS data set collected during

D days, there are T = M · D time intervals. The t-th interval is [t · λ, (t + 1) · λ).
For example, if we set λ = 15,D = 31, then we have M = 96, T = 2976, and
the interval 34 is a time period from 8 : 30 to 8 : 45 in the first day.

By mapping each GPS record to a road segment, we consider the average
speed of all the records observed in the t-th interval on a road segment. For
example, in Table 1, the observed average speed for r2 in the 35-th interval is
(60 + 58 + 15)/3. However, some taxis may run at a very low speed or even

422 D. Wang et al.

stop for boarding or balling when the road is not congested. We regard such
records as the noise which is eliminated in the pre-processing stage (see Sect. 8
for details). Then, the traffic condition of a road segment ri in the t-th interval is
defined as the average speed of all the GPS records observed in this road segment
during the t-th interval, denoted as oi

t. Note that for some road segments, there
may not exist any GPS record in the t-th interval and thus we can not define
the corresponding traffic condition. We explain how we deal with such case in
Sect. 8. Currently, we simply assume oi

t is well-defined for all i and t. Moreover,
we use Orgi = {oi

1, . . . , o
i
T } to denote the traffic condition time series of road

segment ri.

Expected Traffic Condition. Note that the traffic conditions usually have
the “daily pattern”. For example, a road segment is usually in a jam during
6:00–9:00 each day whereas from 9:00 to 11:00 it is usually light. For the t-th
interval, we define t mod M as its daily index, i.e., it is the t mod M -th interval
in its corresponding day. For example, if we set M = 96, then the 226-th interval
represents the time period from 8 : 30–8 : 45 in the third day and its daily index
is 226 mod 96 = 34. Let Ai

t = {oi
t′ |t′ ≡ t mod M} be the set of traffic conditions

observed in road segment ri during the t mod M -th interval for all days. For
example, in Table 1, the 34-th interval is a time period from 8 : 30 to 8 : 45 on
the first day. Then, Ai

34 is the set of traffic conditions of the road segment ri in
all days from 8 : 30 to 8 : 45. We call the mean of Ai

t the expected traffic condition
of ri in time interval t, denoted as ai

t =
∑

a∈Ai
t
a/|Ai

t|. Essentially, the expected
traffic condition ai

t indicates the value that traffic conditions are usually around,
in the t mod M -th interval of a day. We use Avgi = {ai

1, . . . , a
i
T } to denote the

expected traffic condition time series of the road segment ri. Note that Avgi is
a periodic series and once we have the training data, ai

t is always available for
all t ∈ Z.

Problem Definition. Given the historical traffic conditions before time interval
T , Orgi = {oi

1, . . . , o
i
T } for all i, our goal is to predict the traffic condition on the

T +1-th interval oi
T+1 or even longer for each road segment ri. For convenience,

for any t, we use pt to denote the predicted traffic condition in the time interval t.

3 Useful Observations

Most of prior works predict the future traffic conditions directly based on the
traffic condition time series. However, it is difficult to extract the patterns in
the traffic condition time series Orgi. We find that by transforming the Orgi

into two different forms of time series, the new time series reveal very strong
autocorrelations. We hope these observations can provide useful insight in further
study of the travel condition prediction problem and related problems.

Expectation-Reality Gap. The traffic condition time series of the same road
segment in each day usually exhibits strong periodic pattern which we refer to
as the “daily pattern”. We eliminate the daily pattern from the traffic condition
series by subtracting the corresponding expected traffic condition from each of

ETCPS: An Effective and Scalable Traffic Condition Prediction System 423

the traffic conditions. Specifically, we set gi
t = oi

t − ai
t and we thus obtain a new

series Gapi = {gi
t|t = 1, . . . , T}. Intuitively, if gt < 0, it means that the traffic

condition in the time interval t is more congested than usual. We find that there
exists a strong correlation between gt+1 and gt. Figures 2 and 3 show the scatter
diagram of (ot, ot+1) and (gt, gt+1) of a specific road segment respectively. As we
can see, by transforming the traffic condition series Orgi to the gap series Gapi,
we essentially extract the “pattern” of the traffic condition series.

Fig. 2. ot and ot+1 Fig. 3. gt and gt+1 Fig. 4. ACF of Diff(Org)

First Order Difference of Traffic Condition Series. We use δi
t = oi

t−oi
t−1 to

represent the first order difference of traffic condition series, denoted as Diff(Org).
We use ACF (Auto Correlation Function) to analyze the autocorrelation in the
time series of δi

t. The autocorrelation of a random process describes the correla-
tion between values of the process at different times with a time lag τ . Given a
time series and time lag, ACF returns a value between +1 (total positive correla-
tion) and −1 (total negative correlation) inclusive. If the absolute value of ACF
is beyond ±0.05, we usually think the time series is autocorrelated at time lag τ .
In Fig. 4, we show the ACF value of the time series δt of a random road segment.
The horizontal axis represents the time lag τ , and vertical axis represents the
ACF value at lag τ . As the ACF value at lag τ = 1 is far beyond the threshold
−0.05, we conclude that there exists a correlation between δt and δt+1.

4 System Overview

The framework of our proposed traffic condition prediction system is illustrated
in Fig. 5. We develop a system that utilizes the historical and real time taxi
GPS records to estimate the current travel condition and predict the travel
conditions in the next time intervals. It is composed of four major components:
Pre-processing, Predictive Regression Tree Model (PR-Tree), Spatial Temporal
Probabilistic Graphical Model (STPGM) and Ensemble.

In the pre-processing phase, first, we map match the GPS trajectories to
road networks using the ST-Matching algorithm [11]. Then, we eliminate the

424 D. Wang et al.

Map-Matching

Road Network

Data Cleaning

Taxi GPS Records

Spatial Temporal
Probabilistic

Graphical Model

1. Pre-processing

Avg

Org

Predictive
Regression Tree

Model

Ensemble
(Regression)

Prediction
Result

Sparse Processing

2. PR-Tree

3. STPGM

4. Ensemble

Fig. 5. Overview of system framework.

records which are under boarding or balling state. We then deal with the spar-
sity issure that no GPS record is observed for some roads during some time
intervals. With the pre-processing, we thus obtain two time series Org and Avg
as defined in Sect. 2. The details are presented in the experiment part (Sect. 8).
Next, in Sect. 5, we use a regression tree based model called PR-Tree to pre-
dict the future traffic conditions based on our observed correlations. We further
adopt a probabilistic graphical model called STPGM in Sect. 6 which captures
both our observations and the correlations between the road segments. Finally,
we combine two models in the ensemble stage as shown in Sect. 7. We show
that combining two different models enhances the accuracy of the prediction in
Sect. 8.

5 Predicting the Traffic Condition with PR-Tree

In this section, we define a regression tree based model called PR-Tree to predict
the traffic condition of each road segment individually. We first describe the
structure of PR-Tree in detail and how we predict the traffic condition on this
tree in Sect. 5.1. Then in Sect. 5.2, we present the training algorithm of PR-Tree.

5.1 Description of PR-Tree

Recall that the time series Gap shows a strong autocorrelation as we claimed
in Sect. 3. We can thus approximate gt+1 by an estimation ĝt+1 based on gt

and predict the traffic condition in the t + 1-th interval by pt+1 = at+1 + ĝt+1

(the expected traffic condition at+1 is always available as we claimed in Sect. 2).
From Fig. 3, it is reasonable to set ĝt+1 = θ ·gt since the scatter diagram shows a
nearly linear correlation. However, we find that the ratio gt+1/gt varies when gt

takes different values. For example, if gt is closed to −10, gt+1 is usually around
1.2 times gt whereas if gt is closed to −8, gt+1 is usually around 1.4 times gt.
Motived by this, instead of estimating gt+1 by θ · gt, we use a proper function
R(gt) and estimate gt+1 by gt · R(gt).

Structure. To learn a proper function R, we propose a regression tree based
model called PR-Tree. Specifically, PR-Tree splits the input space into several

ETCPS: An Effective and Scalable Traffic Condition Prediction System 425

subspaces. Each subspace is associated with an output parameter θ. Given the
input gt, we find the subspace corresponding to gt and return the corresponding
θ as R(gt). Formally, each inner node of PR-tree has a splitting value and each
leaf node has a output parameter θ. To find the corresponding subspace of gt, we
search on PR-Tree as follows. Initially, the current node is the root of PR-Tree.
If gt is less than or equal to the splitting value of the current node, we search
the left child recursively. Otherwise, we search the right child. We perform such
search until it reaches a leaf node and return the corresponding θ on the leaf
node as R(gt). For simplicity, we use R to represent the corresponding PR-Tree.

Fig. 6. An example of PR-Tree

We show an example of a PR-Tree in Fig. 6. The PR-Tree contains four
inner nodes (the splitting value of these nodes are {4, 11, 16, 23}), and five leaf
nodes (their values are {0.4, 0.7, 0.6, 1.1, 0.7}). We take gt = 5 as the input. As
the splitting value of the root node is 16 and gt ≤ 16, we search its left child
recursively and finally reach a leaf node with output parameter θ = 0.7.

Prediction. To predict the traffic condition in the time interval t+1, we simply
set ĝt+1 = R(gt) · gt and predict ot+1 by pt+1 = at+1 + R(gt). Figure 6 shows
an example. Given the current traffic condition ot = 45, assuming the expected
traffic condition on t and t + 1 are at = 40, at+1 = 43, we get gt = ot − at = 5.
By taking gt as the input of PR-Tree, we get R(gt) = 0.7. Then, we estimate
ot+1 by at+1 + R(gt) · gt = 46.5.

5.2 Training PR-Trees

First, we present the objective for training PR-Trees. Recall that we predict ot+1

as pt+1 = at+1 + R(gt) · gt. Given the training set Orgi = {oi
1, . . . , o

i
T }, our goal

is to minimize the squared error
∑

t∈[1,T) (pt+1 − ot+1)2. Equivalently, we need
to find an optimal PR-Tree (function R∗) that

R∗ = argmin
R

∑
t∈[1,T)

(gt+1 − R(gt) · gt)2 (1)

426 D. Wang et al.

Algorithm 1. PR-Tree Splitting (Split)
Require: Node root, Training sequence TR, cross validation sequence CV
Ensure: Update the PR-Tree.
1: eTR = f(TR, out(TR))
2: emin = ∞
3: for i = 1, . . . , |TR| − 1 do
4: TRl ← first i elements in TR
5: TRr ← T\TRl

6: if f(TRl, out(TRl)) + f(TRr, out(TRr)) < emin then
7: emin = f(TRl, out(TRl)) + f(TRr, out(TRr))
8: TR∗

l = TRl , TR∗
r = T\TR∗

l � update the best TRl

9: end if
10: end for
11: If emin > eS − γ return
12: root.lc ← a new node corresponds to TR∗

l � split root
13: root.rc ← a new node corresponds to TR∗

r � split root
14: if bestCV > Q(CV) then � qualify the splitted PR-Tree
15: bestCV = Q(CV) � update the global best value
16: Split(root.lc, TR∗

l , CV), Split(root.rc, TR∗
r , CV)

17: set the splitting value of root as maxs∈TR∗
l

s.u � inner node
18: else
19: root.lc = None, root.rc = None
20: set the output value of root as out(TR) � leaf node
21: return
22: end if

Our training algorithm is slightly different from the standard regression
tree training algorithm. To train the PR-Tree, given the time series Gap =
{gi

1, . . . , g
i
T }, we construct another sequence S = {(u, v)|u = gt, v = gt+1,∀t =

[1, T)}. Each element s ∈ S indicates a pair of values (gt, gt+1). We use s.u to
denote the first value in pair s and s.v to denote its second value. We sort S
by increasing order of s.u. For any subsequence Sx ⊂ S and any PR-Tree R, we
define the cost of Sx as Q(Sx) =

∑
s∈Sx

(s.v − R(s.u) · s.u)2, which represents
the squared error if we use PR-Tree R to fit the set Sx.

Our training algorithm works as follows. During the training phase, each
node corresponds to a subsequence of Sx ⊂ S. For a specific node, if it is an
inner node, we use Sl, Sr to denote the corresponding subsequences of its left
child and its right child respectively. Then, its splitting value is maxs∈Sl

s.u.
Otherwise, it is a leaf node. We define f(Sx, α) =

∑
s∈Sx

(s.v − α · s.u)2. The
output θ of this leaf node is argminα f(Sx, α), denoted as out(Sx).

Initially, we have a singleton tree. There is the only one node which corre-
sponds to S. We split the PR-Tree recursively. For each node, there is a best
splitter S∗

l , i.e.,

S∗
l = argmin

Sl

{f(Sl, out(Sl)) + f(S\Sl, out(S\Sl)}.

ETCPS: An Effective and Scalable Traffic Condition Prediction System 427

We enumerate the first i elements of Sx as Sl (Sr = S\Sl) to search the best
splitter S∗

l (line 3 to line 10 in Algorithm1). Note that since S is sorted and
f(Sl, α) is the sum of quadratic terms which is still quadratic. To obtain the
best splitter S∗

l , we can maintain the coefficients of f(Sl, α) and the minimum
of the quadratic term can be calculated in O(1) time. Each time when we enu-
merate a new subsequence, we only need to update the coefficients. Thus, we
can obtain the best splitter in O(|S|) time efficiently. We denote S∗

r = Sx\S∗
l . If

f(S∗
l , out(S∗

l)) + f(S∗
r , out(S∗

r)) < f(Sx, out(Sx)) − γ, we split the current node
into two child nodes with subsequences S∗

l and S∗
r respectively where γ is a

threshold to be specified. Otherwise, we terminate the recursion.
The readers may notice that such splitting procedure may cause a serious over-

fitting problem, i.e., the PR-Tree keeps splitting until each node only contains a
very short subsequence. To remedy this issue and reduce the generalization error,
we split S into two parts, the training part TR and the cross validation part CV .
We use TR to train PR-Tree, each time when a node is split, we qualify the current
PR-Tree on the cross-validation set CV and check whether if Q(CV) decreases. If
the qualification on CV does not decrease, we undo the splitting operation (line
19 to line 21) and terminate the recursion. Otherwise, we split its children nodes
recursively (line 14 to line 17). See Algorithm 1 for the pseudo code.

6 Predicting Traffic Condition with STPGM

Despite that the PR-Tree performs well in most of our data (which we show in
Sect. 8), it does not consider the correlations between the road segments. Some
roads are easily affected by its neighbors, the congestions of its neighbors usually
lead to the congestion of its self in the next few time intervals. For such roads,
PR-Tree does not perform well. Motivated by this, we propose a probabilistic
graphical model called STPGM which is used in combination with the PR-Tree
in our system.

We first construct a spatial temporal probabilistic graph (STPG) Gp which
corresponds to a road network G. If a vehicle can travel from the road segment
ri to the road segment rj (or from rj to ri) directly, we say that ri and rj are
adjacent. We construct a vertex vi in Gp which corresponds to a road segment
ri in G. We add an edge between vi and vj if and only if the road segments ri

and rj are adjacent. For a specific vi, we use Neib(vi) to denote all the adjacent
vertices of vi. Intuitively, the adjacent road segments affect each other much more
significantly than the other road segments. Thus, each edge in Gp represents a
“strong effectiveness” in the road network.

6.1 States of STPGM

We first discretize the traffic conditions into different states. Recall that as we
claimed in Sect. 1, the traffic conditions and the transition patterns are very
different not only at different road segments, but also at different time intervals.

428 D. Wang et al.

However, for a specific road segment, we find that the traffic conditions and
transition patterns are usually similar for the time intervals with the same daily
index. For example, if the traffic is congested in 8 : 00, it usually stays congested
in next several time intervals. However, if the traffic is congested in 10 : 00, the
traffic becomes light in the next few minutes with a large probability. Motivated
by this, we consider different time intervals separately and use the same state
sets for the time intervals with the same daily index.

For a specific road segment ri, instead of clustering all of its traffic conditions
in series Orgi (which are widely used in the prior works [3,5,11,13]), we consider
the traffic conditions under different daily index separately. Formally, we consider
a specific daily index l ∈ [M]. Recall that Ai

l = {oi
t|t ≡ l mod M}. We cluster the

traffic condition set Ai
l into k clusters with K-Medoids where k is a parameter to

be specified (see Sect. 8 for details). For example, if the daily index l corresponds
to 8 : 30–8 : 45 in a day, then we cluster the traffic conditions for all days during
8 : 30–8 : 45. We use the center ci

x,l of each cluster to represent a state, and
denote the set of the centers as Ci

l = {ci
1,l, . . . , c

i
k,l}. The state of the traffic

condition in the time interval t is represented by its nearest center in Ci
[t mod M],

denoted as si
t. We show an example of a random selected road segment ri where

Ci
25 = {44, 48, 52, 58} and Ci

74 = {15, 25, 32, 38} (km/h). The time interval 25
corresponds to 6 : 00–6 : 15 where the traffic is usually light and the time interval
74 corresponds to 18 : 30–18 : 45 where the traffic is usually heavy.

6.2 Parameter Learning

We predict the traffic condition of a specific vertex (corresponds to a road seg-
ment) vi based on the historical traffic conditions of itself and its neighbors. We
assume that the traffic condition of vi in the time interval t + 1 is only related
with the traffic conditions of vi and Neib(vi) in the time interval t.

Formally, consider a vertex vi. Let {vi} ∪ Neib(vi) = {vi1 , . . . , vin} and the
corresponding states in time interval t are {ci

xi,t, c
i1
xi1 ,t, c

i2
xi2 ,t, . . . , c

in
xin ,t}. Our goal

is to learn the transition probability for all the possible states in Ci
(t+1) mod M , i.e.,

P (si
t+1 = ci

xi,t+1|si1
t = ci1

xi1 ,t, s
i2
t = ci2

xi2 ,t, . . . , s
in
t = cin

xin ,t)

=
P (si

t+1 = cxi
i,t+1, s

i1
t = ci1

xi1 ,t, , . . . , s
in
t = cin

xin ,t)

P (si1
t = ci1

xi1 ,t, . . . , s
in
t = cin

xin ,t)
(2)

For the prediction, it is unnecessary to compute the denominator, which
we show in Sect. 6.3. As for the numerator, the state space in Eq. 2 explodes
exponentially whereas the training data is relatively limited. It is not sufficient
to estimate the numerator precisely. Thus, we approximate the numerator of
Eq. 2 by

P (si
t+1 = cxi

i,t+1)
n∏

j=1

P (st
ij = c

xij

ij ,t|si
t+1 = ci

xi,t+1) (3)

ETCPS: An Effective and Scalable Traffic Condition Prediction System 429

where P (st
ij

= c
xij

ij ,t|si
t+1 = ci

xi,t+1) indicates that given the observed state in the

time interval t + 1, the probability that the previous state of vij is c
xij

ij ,t.
We define the indicator function I(si

t, c
i
x,t) which indicates that whether the

state of the road segment ri in the time interval t equals ci
x,t. We use N =∑

t′≡t mod M I(si
t′ , ci

x,t) to represent the total days that the state of the road
segment ri in the t mod M -th interval of each day is ci

x,t. Then, we calculate the
probability P (si

t = ci
x,t) by the frequency P (si

t = ci
x,t) = N/D. Similarly, for the

term P (st
ij

= c
xij

ij ,t|si
t+1 = ci

xi,t+1), we have

P (st
ij = c

xij

ij ,t|si
t+1 = ci

xi,t+1) =

∑
t′≡t mod M (I(si

t′+1, c
i
xi,t+1) · I(sij

t′ , c
ij
xij

,t))∑
t′≡t mod M I(sij

t′+1, c
ij
xij

,t+1)
.

(4)
Thus, we get the approximation of the numerator of Eq. 2.

6.3 Prediction

Suppose the traffic conditions of the road network in time interval t are observed.
We first construct the states for each road segment ri. To predict the traffic
condition of a road segment ri, after obtaining the states of vi and Neib(vi) in
the time interval t, we use Eq. 2 to infer the probability of each state for vi in
the time interval t + 1. Then, we select the state with the largest probability as
the predicted state and the corresponding cluster center as the predicted traffic
condition. Note that as the denominator of Eq. 2 is a constant value when the
states of vi and Neib(vi) in the time interval t are given, it is actually unnecessary
to compute this denominator.

7 Model Extensions

Ensemble. We find that in the experiment, the performances of PR-Tree and
STPGM differ in different roads. Some roads are rarely affected by their neigh-
bors, such as the arterial roads. For such roads, PR-Tree outperforms STGPM.
However, as PR-Tree does not consider the correlations of the roads, STPGM
performs better than PR-Tree for the roads which are highly affected by its
neighbors, especially the roads that only few GPS records are observed. Our
prediction for traffic condition in the t + 1-th interval is a linear combination
of the previous traffic condition oi

t, the prediction obtained by PR-Tree and
STPGM. The weights of the linear combination is obtained by linear regression.
We show that in the experiment, by combining the models, our system achieves
a higher accuracy for the prediction.

Alternate of the Input Series.In fact, both the PR-Tree and STPGM are the
models which capture the correlations in a time series. Recall that in the PR-Tree
model, we use the time series Gap as the input. In STPGM, we use the traffic
condition time series Org as the input. Essentially, we can use the any time series

430 D. Wang et al.

related with the traffic as the input of both models and predict the traffic condi-
tion in a proper way. For example, if we use the Org as the input of a PR-Tree,
we actually try to approximate oi

t+1 by oi
t · θ(oi

t) and we predict the traffic con-
dition directly use θ(oi

t). Similarly, we can use the Gap as the input of STPGM.
Besides the proposed two series, we can also use the first order difference of Org
(i.e., Diff(Org) as defined in Sect. 2) as our input or the traffic conditions filtered
with Kalman filtering. The details are presented in Sect. 8.

8 Experimental Study

In this section, we evaluate the effectiveness and efficiency of the proposed models.

8.1 Experiment Setting

Data Set. In all experiments, we use the real dataset which consists of GPS
records collected from 12,000 taxis from November 1st to December 31st in
20121. The GPS data are map matched [7,14] to road network2 of Beijing. We
evaluate our algorithms on the data of November and December respectively.
For each month, we divide the data set into the training set (1st - 24th), and the
test set (25th - the last day). We distinguish two cases in our experiments: the
standard case and the sparse case. For the standard case, we select 10812 road
segments which contains more than 140 GPS records per day in average. In the
sparse case, we select 101672 road segments in which the GPS records occurred
in more than 10 time intervals per day in average. In all experiments, we focus
on the time period from 6 : 00 to 24 : 00 in each day since there are only few
GPS records observed during 00 : 00 to 6 : 00.

Measurement. We evaluate the performances of our models on the test
data set by Mean Absolute Error (MAE), Mean Relative Error (MRE) and
Mean Squared Error (MSE), i.e., MAE = 1

|E|
∑|E|

i=1

∑T
t=1 |pi

t − oi
t|, MRE =

1
|E|

∑|E|
i=1

∑T
t=1 |pi

t − oi
t|/oi

t, MSE = 1
|E|

∑|E|
i=1

∑T
t=1 (pi

t − oi
t)

2. Recall that we
evaluate our algorithms on the datasets of November and December respec-
tively. For convenience, for each model, we use the mean of the errors on the
two months as the final error. All the experiments are implemented parallelly
with Python 2.7 and run on a service on Open Stack (Intel Xeon E312 CPU of
16 cores with 2.1 GHz for each core and 32 GB memory on Ubuntu 14.04 LTS
operate system).

1 This data can be downloaded in http://www.datatang.com/data/45888.
2 This data can be downloaded in http://www.datatang.com/data/45422.

http://www.datatang.com/data/45888
http://www.datatang.com/data/45422

ETCPS: An Effective and Scalable Traffic Condition Prediction System 431

8.2 Pre-processing

Data Cleaning. In the data cleaning phase, we eliminate the GPS records for
taxis which slow down or even stop for picking or attracting passengers. We
distinguish two cases of such records. One is boarding, i.e., the passengers get on
or get off the taxi. The other is balling, i.e., the taxis slow down or stop to attract
guests who need taxis. For the boarding state, the speed of the taxi usually varies
sharply in a short time. Therefore, once we detect such sharp variation of the
speed, we eliminate such GPS records. To handle the balling state, for a specific
road, we check the speeds of all taxis in this road in a specific time t. If the
speeds of most taxis are relatively high, only few of the taxis are driving at a
very low speed, we think such taxis are on the balling state and we eliminate
the corresponding GPS records.

Deal with Sparsity. Recall that as we claimed in Sect. 2, some road segments
may not contain any GPS record during the time interval t for some t ∈ [T].
Thus, the corresponding traffic condition oi

t is not defined. To solve this issue,
for the road segment ri, if the GPS record set observed in the time interval t
is not empty, we define ōi

t as the average speed of the GPS records in the t-th
interval. Otherwise, we have ōi

t = −1. Let Ai
t = {ōi

t′ |t′ ≡ t mod M ∧ ōi
t′ 	= −1}

indicate the traffic conditions during the t mod M -th interval in each day. We
define āi

t as the mean of Ai
t and the series Bias = {bt = ōi

t − āi
t|∀ōi

t 	= −1}. Then,
for each pair of adjacent elements in Bias, we perform the linear interpolation to
obtain the undefined bi. For example, if Bias = {b1 = 3, b4 = 4.5, b7 = 10.5}, we
obtain a series {b1 = 3, b2 = 3.5, b3 = 4, b4 = 4.5, b5 = 6.5, b6 = 8.5, b7 = 10.5}
after performing linear interpolation. Finally, we have that the traffic condition
oi

t is obtained by oi
t = āi

t + bt.

8.3 Performance Evaluation

Performances of Different Models. We present the evaluations of our mod-
els. We first compare our model with the baseline Avg, i.e., predict the traf-
fic condition oi

t by its expected value ai
t. Furthermore, in the recent work,

Yang et al. [11] proposed STHMM for traffic condition prediction which is based
on a spatial temporal hidden markov model. We compare STHMM with our
models as well.

The results are shown in Fig. 7a, b. As we can see, the baseline (Avg) performs
worst in both cases. Despite that STHMM outperforms Avg in both cases, both
of our models PR-Tree and STPGM perform better than STHMM in our data
set. Moreover, in the standard case, PR-Tree performs better than STPGM
as shown in Fig. 7a whereas in the sparse case STPGM performs better. By
combining PR-Tree and STPGM, our system ETCPS achieves the best performs
in both two cases.

Verifying the Observed Patterns. Recall that as we claimed in Sect. 7, any
time series related with traffic can be taken as the input of both PR-Tree and
STPGM, and predict the traffic condition in the proper way. To illustrate the

432 D. Wang et al.

(a) All models (standard) (b) All models (sparse) (c) PR-Tree (standard)

(d) STPGM (standard) (e) STPGM (sparse) (f) Predict longer

Fig. 7. Performance analysis.

effects of the observations which we proposed in Sect. 3, we design four different
experiments with different time series and evaluate each experiment on PR-Tree
and STPGM respectively. The first two time series are Org and Gap = Org−Avg,
as we used in Sects. 5 and 6. Then, we use the first order difference of Org as
the input time series, denoted as Diff(Org). The t-th element in Diff(Org) is
ot+1 − ot. Furthermore, since the raw GPS records usually contain the noise
such as the GPS drift, we use Kalman filtering to process the traffic condition
series Org. We take the first order difference of the processed time series as the
input as well, denoted as Diff(Kal).

We show the experimental results in Fig. 7c–e. Both PR-Tree and STPGM
perform badly if we use Org as input directly. However, by using Diff(Org) and
Gap instead, the performances improve significantly which verifies our observa-
tions.

Predict Longer Time Intervals. The PR-Tree model can be also used to
predict the traffic conditions in the longer term. Given observations in interval
t denoted as ot, we first obtain the predicted traffic condition pt+1 and we take
pt+1 as the “true traffic condition” in the time interval t + 1 and obtain pt+2.
Iteratively, we obtain the prediction after m time intervals pt+m. In Fig. 7, we
show the performance of PR-Tree in predicting the traffic condition in the next 0
to 60 min and comparing with the Avg method. As m increases, the performance
becomes worse, but it is still better than Avg.

Effects of Time and Road Length. Figure 8 shows the effectiveness of our
prediction across time. We plot the average mean squared error of travel speed

ETCPS: An Effective and Scalable Traffic Condition Prediction System 433

Fig. 8. MSE varies over day Fig. 9. RMAE varies over road length

(MSE) for the baseline Avg, STHMM and ETCPS respectively during differ-
ent hours for all days. The result shows that our system outperforms both the
baseline and STHMM.

To illustrate the effectiveness of the road length, in the Fig. 9, we show the
relation between MAE and the length of road segments. The result shows that
the road segments with longer length tend to have smaller MAE, i.e., our pre-
diction performs better for the road segments with longer lengths.

Running Time. Since the predictions of both PR-Tree and STPGM are simple
which can be done in real time, we only present the running time for training
our models in Fig. 10 and Table 2. From Table 2, we can see that the training
time cost of PR-Tree is very small. It takes only 3.26 min to process 105 roads.
However, STPGM takes a much longer time to train as shown in Table 2. Espe-
cially for the state formulation phase, clustering the traffic conditions is time
costing. It takes 176.6 min to process the state formulation phase for 105 roads.
We stress that SHTMM applies a complicated state formulation algorithm and
the state space is much larger than STPGM. In our data set, the time consuming
of SHTMM is 1718 ms per road whereas even for STPGM, it only takes 13.3 ms
per road to train the model.

Fig. 10. Time cost

Table 2. Time cost (Minutes)

Size PR-Tree State Formulation Parameter learning

103 0.04 1.72 0.22

104 0.46 17.46 2.09

5 ∗ 104 2.14 88.1 10.09

105 3.26 176.6 19.61

434 D. Wang et al.

9 Related Work

In this section, we review the related existing works. Most of prior works use the
probabilistic models to predict the traffic conditions. Hunter et al. [4] formulated
the traffic condition prediction in the arterial network to a maximum likelihood
problem and estimated the travel time distributions based on the observed route
travel times. Yeon et al. [12] estimated traffic conditions on a freeway using
Discrete Time Markov Chains (DTMC). However these works assumed that the
travel times on different road segments are independent without considering the
correlation between the traffic conditions on different roads which may lead to
incorrect prediction in the urban area [9].

To capture the correlations between road segments, Hofleitner et al. [3] formu-
lated the transitions between states among adjacent road segments as a dynamic
Bayesian network model and predicted the traffic conditions by an EM approach.
However, it did not consider the efficiency on the large scale data. Yuan et al.
[13] built a landmark graph based on the trajectories of taxis, where each node
(entitled a landmark) indicates a road segment each edge indicates the aggrega-
tion of taxis commutes between two landmarks. They formulated the correlations
and estimated the edge travel time distributions based on the landmark graph.
However, as the landmarks are selected from the top-k frequently traversed road
segments, many of road segments with sparse records can not be predicted.

The most related work with our model was proposed by Yang et al. [11]. They
proposed an algorithm called STHMM which is a spatio temporal hidden markov
model. They further presented an effective method to deal with the sparsity in
the data. However, they did not consider the heterogeneity of transition patterns
in different time intervals. In our experiment section (Sect. 8), we show that our
model outperform STHMM in both the efficiency and accuracy. We stress that
Chu et al. [2] considered the transition patterns in different time intervals and
proposed a time-vary dynamic network. However their goal is to reveal the causal
structure in a ring road system which differs from ours.

Furthermore, we stress two recent related works [1,10]. Wang et al. [10] pre-
sented an efficient algorithm to estimate the travel time of any path, based on
sparse trajectories generated by taxi in recent time slots and in history, by using
the tensor decomposition. Instead of predicting the traffic conditions, they stud-
ied the estimation of travel time for given travel paths in the current time slot.
Asghari et al. [1] estimated the travel time distributions based on the historical
sensor data. As their work studied the algorithm to find the most reliable route
for the travel planning, it has a related but different scope.

10 Conclusion

We study the effective and scalable methods for traffic condition prediction.
We propose an Ensemble based Traffic Condition Prediction System (ETCPS)
which combines two novel models called Predictive Regression Tree (PR-Tree)
and Spatial Temporal Probabilistic Graphical Model (STPGM). Our model is

ETCPS: An Effective and Scalable Traffic Condition Prediction System 435

based on two useful observed correlations in the traffic condition data. Our sys-
tem provides high-quality prediction and can easily scale to very large datasets.
We conduct extensive experiments to evaluate our proposed models. The exper-
imental results demonstrate that comparing with the existing methods, ETCPS
is more efficient and accurate.

In the future, we plan to infer the traffic conditions by incorporating more
features from heterogeneous data sources, such as the weather condition, POI
information etc. Next, we will focus on the efficient way to deal with road seg-
ments which have extremely sparse trajectory records. Furthermore, we plan
to try different ensemble methods to combine the different models in order to
enhance the performance of the prediction.

Acknowledgment. This work was supported in part by the National Basic Research
Program of China grants 2015CB358700, 2011CBA00300, 2011CBA00301, and the
National NSFC grants 61033001, 61361136003.

References

1. Asghari, M., Emrich, T., Demiryurek, U., Shahabi, C.: Probabilistic estimation of
link travel times in dynamic road networks. In: ACM SIGSPATIAL (2015)

2. Chu, V.W., Wong, R.K., Liu, W., Chen, F.: Causal structure discovery for spatio-
temporal data. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L.,
Muliantara, A., Thalheim, B. (eds.) DASFAA 2014, Part I. LNCS, vol. 8421, pp.
236–250. Springer, Heidelberg (2014)

3. Hofleitner, A., Herring, R., Abbeel, P., Bayen, A.: Learning the dynamics of arterial
traffic from probe data using a dynamic Bayesian network. IEEE Trans. Intell.
Transp. Syst. 13(4), 1679–1693 (2012)

4. Hunter, T., Herring, R., Abbeel, P., Bayen, A.: Path and travel time inference from
GPS probe vehicle data. NIPS Anal. Netw. Learn. Graphs 12(1) (2009)

5. Kwon, J., Murphy, K.: Modeling freeway traffic with coupled HMMs. Technical
report, University of California, Berkeley (2000)

6. Leontiadis, I., Marfia, G., Mack, D., Pau, G., Mascolo, C., Gerla, M.: On the
effectiveness of an opportunistic traffic management system for vehicular networks.
IEEE Trans. Intell. Transp. Syst. 12(4), 1537–1548 (2011)

7. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 352–361. ACM (2009)

8. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing
service. In: 2013 IEEE 29th International Conference on Data Engineering (ICDE),
pp. 410–421. IEEE (2013)

9. Ramezani, M., Geroliminis, N.: On the estimation of arterial route travel time
distribution with Markov chains. Transp. Res. Part B: Methodol. 46(10), 1576–
1590 (2012)

10. Wang, Y., Zheng, Y., Xue, Y.: Travel time estimation of a path using sparse tra-
jectories. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 25–34. ACM (2014)

436 D. Wang et al.

11. Yang, B., Guo, C., Jensen, C.S.: Travel cost inference from sparse, spatio tem-
porally correlated time series using Markov models. Proc. VLDB Endow. 6(9),
769–780 (2013)

12. Yeon, J., Elefteriadou, L., Lawphongpanich, S.: Travel time estimation on a freeway
using discrete time Markov chains. Transp. Res. Part B: Methodol. 42(4), 325–338
(2008)

13. Yuan, J., Zheng, Y., Xie, X., Sun, G.: T-drive: enhancing driving directions with
taxi drivers’ intelligence. IEEE Trans. Knowl. Data Eng. 25(1), 220–232 (2013)

14. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.Z.: An interactive-voting based map
matching algorithm. In: Proceedings of the 2010 Eleventh International Conference
on Mobile Data Management, pp. 43–52. IEEE Computer Society (2010)

15. Zheng, W., Lee, D.H., Shi, Q.: Short-term freeway traffic flow prediction: Bayesian
combined neural network approach. J. Transp. Eng. 132(2), 114–121 (2006)

Species Distribution Modeling via Spatial
Bagging of Multiple Conditional Random Fields

Danhuai Guo, Yuanchun Zhou(B), Yingqiu Zhu, and Jianhui Li

Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
{guodanhuai,zyc,lijh}@cnic.cn, zhuyingqiu15@mails.ucas.ac.cn

Abstract. Satellite tracking technologies enable scientists to collect
data of animal migrations and species habitats on a large scale. Modeling
distributions of wild animals is of considerable use. It helps researchers to
understand important ecological phenomena such as the spread of bird
flu and climate changes. Species distribution modeling has been stud-
ied for a long time, however, most existing work provide solutions in
a point-wise manner, ignoring the relevance between adjacent habitats,
which may reflect an important dependency between nearby places. In
this paper, we take the relevance into consideration, and then propose a
novel method to model species habitats and predict possible distribution
of wild animals by applying the Spatial Bagging of Multiple Conditional
Random Fields(SBMCRFs) on remote-sensing data. To access the usabil-
ity of our method, several experiments are implemented on a real world
dataset of migratory birds from Qinghai Lake Reserve. The experiment
results show that SBMCRFs outperforms the baselines significantly, and
the relevance between nearby places is demonstrated to be an important
factor in species distribution modeling.

Keywords: Species distribution modeling · Conditional random fields ·
Ensemble methods

1 Introduction

With the development of satellite tracking technology, geo-location and global
positioning systems(GPS), many researchers apply them to find useful movement
patterns. In biological research, tracking technology is used to observe animal
migrations and collect a huge amount of detailed information of long-distance
migratory species. Through analysis on collected datasets, many unanticipated
patterns are found, which are proven to be of biological significance.

Due to the increasing size of trajectory data, it is difficult for ecologists
to mine valuable patterns from the big size data. To help biologists, systems
like MoveMine (Li et al. 2011) are developed to record and analysis the long-
distance migration of wild animals. Moreover, several machine learning algo-
rithms, including logistic regression and max entropy model are adopted to
model the species distribution using the ecological niche features and position
features. Researchers extract environmental features of each place and predict
c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 437–450, 2016.
DOI: 10.1007/978-3-319-32049-6 27

438 D. Guo et al.

the probability that animals may stay there. However, they model habitats in a
point-wise manner and fail to take the dependencies between nearby places into
considerations. As flocks moving between different habitats quite frequently, the
suitable living places should be spatially correlated. In order to solve this prob-
lem, Conditional Random Fields(CRFs) is an optional method to model the
spatial distribution of migratory animals.

CRFs is an undirected discriminative probabilistic graphical model and per-
forms well in structured prediction. It combines the idea of graphical models
and discriminative models and exploits the long dependent interactions. We
first transform the geospatial space into a collection of grids separated by lon-
gitudinal and latitudinal parallel lines with equal cell size. The computation of
prediction is implemented according to the grids. By using CRFs, both the eco-
logical information of an individual grid and the relevance between grids are
exploited. As the grids are not directed, it will be confusing to manually choose
a direction to transform the grids in to a sequence. In this work, each direction
has a corresponding separate model and the final result is an aggregation of all
models. Finally, a regression model is introduced to better balance the weight of
each CRFs.

The main contributions of our paper lies in two aspects:
Species Distribution Modeling: We propose a novel method, using SBMCRFs

to solve the problem of species distribution modeling, which integrate the infor-
mation from both a specific habitat and the relevance between nearby habitats
to support the prediction.

Real evaluation: We evaluate our methods using a large-scale real GPS
dataset. The experimental results demonstrate that CRFs improves the pre-
diction accuracy and outperforms several baselines. Moreover, experiments on
behavior prediction prove that both the richness and the utilities of environmen-
tal resources are useful for training the classifiers.

The remaining of the paper is organized as follows: In Sect. 2, we present
some related work such as modeling movement patterns of wild species and
applications of CRFs. The preliminary process of our method is introduced in
Sect. 3. And the proposed distribution prediction method is described in Sect. 4.
Detail descriptions about CRFs and our species distribution model are given
in this section. Then relevant features the model used are listed in Sect. 5. In
Sect. 6, the experiments are illustrated to show the effectiveness of the proposed
methods. Finally, Sect. 7 concludes the paper and introduces possible future
work.

2 Related Work

Pearson (2007) and Elith et al. (2009) surveyed a series of distribution model-
ing algorithms. The most cited works related to species distribution modeling
are the methods proposed by Phillips et al. (2006), which adopted the Maxi-
mum Entropy (Maxent) model to predict the probability of a place to be the
habitat. Caruana et al. (2006) proposed to select the most important environ-
mental features to understand the species distribution. Various models including

Species Distribution Modeling via SBMCRFs 439

Fig. 1. a. Remote Sensing Image and Species Distribution in Qinghai-Tibet Plateau
Area, where the white points indicate the places which have been visited by animals.
The data are obtained from a GPS dataset recording the migration of Bar-headed
goose from Mar 2007 to Oct 2007; and b. The Ruddy Shelduck from Mar 2008 to Oct
2008

Zheng et al. (2010), Li et al. (2011), Tang et al. (2009) and Tang et al. (2010)
are proposed to analyze the movement patterns based on the trajectory data
mining. They focus on mining the moving patterns from observation data and
fail to make a prediction on the moving routes if the outside condition changes.
Environmental features, which have a significant impact on moving objects, are
not taken into their consideration. In this paper, we incorporate environmental
features extracted from remote sensing data into the trajectory dataset to find
potential habitats for wild species.

Conditional Random Fields(CRFs) is a discriminative graphical model which
has been proven to be useful in a wide range of applications including natural
language processing (Lafferty et al. 2001), computer vision (Phillips et al. 2006),
text mining and bio-informatics. CRFs can perform better than traditional
Hidden Markov Model(HMM) or Max-Entropy Model(MEMM), because it takes
neighbor relationships and long distant dependent information into considera-
tion. The discriminative model can obtain decision boundaries without calculat-
ing prior probabilities, which are hard to confirm.We apply CRFs to the species
distribution prediction to make full use of information from neighbouring habi-
tats. In addition, we use the graph structure in the discriminative condition
model (Kumar and Hebert, 2006) for our 2-D graphical model.

3 Preliminary

Figure 1 illustrates the distribution of Bar-headed goose and the Ruddy Shelduck
while they were breeding in Qinghai Lake. It can be observed that in some places,
like left lakeshore of the Qinghai Lake, bird appears denser than the rest of the
places. If these areas can be predicted in advance, scientists would gain more
access to wild animals and make full preparation for wild animal protection.
A challenge is that it is hard to predict these areas point by point, since the

440 D. Guo et al.

Fig. 2. Example of 2-D geographic model

scale of the distribution is too large while the dense parts take only a small
portion of the whole district. Considering the sparseness, we divide the map into
a set of rectangular grids as displayed in Fig. 2.

The remote sensing data on the specific area can be divided according to
geographic grids. Certain longitudes and latitudes are set to define grids. The
grid size is not fixed and various settings are tested in the experiments.

In Fig. 2, the first figure illustrates the grids divided by the longitudinal and
latitudinal parallel lines. Then we calculate the number of bird occurrences in
each grid. The second figure shows the statistical results. The calculation is
repeated with a defined time interval and the time interval is from July 2007 to
September 2007 in this case. The third figure shows labels that the prediction
requires after preprocessing. First we set a threshold to classify whether a specific
area is dense or sparse in terms of migration activities. Then grids with counts
larger than the threshold are labeled as positive (+1) while the rest labeled as
negative (-1).

4 Proposed Approach

Different from most existing work which only focus on the features of the point
to be predicted, in this work, we leverage the dependencies of labels between the
neighbouring grids. Meanwhile, the distribution modeling is transformed from a
point-wise prediction to a sequence prediction. However, there is not an original
sequence order between different grids, so we need find a direction to build the
sequence. Obviously, the choosing of direction counts much in the prediction.

Figure 3 illustrates a toy example. Since the grids are divided by the longitu-
dinal and latitudinal parallel lines, a grid can be viewed as a successive node of
a sequence that have eight possible directions. As shown in the example, when
computing the probability of point p, sequential dependencies from a → p, b → p,
c → p, d → p, e → p, f → p, g → p and h → p are considered. Here we turn to
statistical learning techniques to solve the problem. A separate model is trained
for each direction, then we linearly integrate individual models. Furthermore,
the eight models are combined by voting.

Species Distribution Modeling via SBMCRFs 441

Fig. 3. A toy example. A grid can be viewed as a successive node of a sequence that
have eight possible directions.

4.1 Individual Conditional Random Fields

In this section, we will describe the individual Conditional Random Fields in our
model. Here we define X as the random variable over the observations and Y
as the labels to be predicted. In this work, Y can take only two values, positive
and negative, indicating a place is frequently visited by birds or not.

The CRFs model is an undirected graphical model, firstly proposed for text
sequence segmentation and labeling (Lafferty et al. 2001). Let G = (V,E) be an
undirected graph where the node set E can be divided into two parts, X contains
the observations and Y contains the corresponding labels. V is the vertex set
of the graph. With the predefined graph structure G, the CRFs can model the
conditional possibility p(y|x) by

P (y|x) =
1
Z

∏
c∈C

ϕc(xc, yc) (1)

where C is the set of cliques in the graph G, xc and yc is the set of x and y in
the clique. ϕc denotes the potential function with positive value and Z is the
normalization factor where

Z =
∑
y

∏
c∈C

ϕc(xc, yc) (2)

Traditionally, the potential feature function can be constructed in any form
fk(x, y) for different applications. Each feature function fk(x, y) denotes a
numeral feature on cliques c. So the P (y|x) can be expressed as

P (y|x) =
exp(

∑
k λkfk(x, y))∑

y exp(
∑

k λkfk(x, y))
(3)

where the parameter λ is the weight for the corresponding feature function.
The feature functions are association potential functions. Each feature function
reflects an specific influence on label yi from feature x, or influences from labels
of neighbor grids Ni. Thus, we have

P (y|x) =
1

Z(x)
exp{

∑
i

βg(x, yi) +
∑
i∈S

∑
j∈Ni

γfij(yi, yj , x)} (4)

442 D. Guo et al.

where the parameters β, γ balance the relative contribution of the two feature
functions. gi(x, y) denotes the effect from x while fij denotes that from neighbor
grids. The potential feature functions can be in different forms. In this work,
logistic function is adopted since the ecological variables are in high dimensions
and correlated. We defined the feature function as

g(x, yi) = log(σ(yiwTφi(x))) (5)

fij(yi, yj , x) = log σ((yiyj)uTφi(μij)) (6)

where σ is the logistic sigmoid function. The φi(x) is the basis function, and
gaussian form is chosen in this paper. The μij(φi(x), φj(x)) is a new feature
vector, which is concatenated by [φi(x), φj(x))]. w and u are the parameter for
the correspond logistic feature function. The parameter of our CRF model are
Θ = {w, u, γ, β}

4.2 Model Inference with Constraint

With a given set of label data (xl, yl)n1 , the model parameter Θ can be learned by
maximizing the regularized log-loss of the training data using iterative searching
algorithms, such as gradient descent. But the key problem in both learning and
inference is the computation of the normalization factor Z. A simple measure is
using the pseudolikelihood to reduce the computation cost (Kumar et al. 2006).
However, the max-pseudolikelihood methods often cause over-fitting. Thus we
add the L2 regularization term for parameter w, u. Finally, the model learning
problem is to find the parameters maximizing the pseudolikelihood, i.e.,

Θ = argmaxL(y|x) =
n∑
l

∑
i∈S

ln P (yl
i|yl

Ni
, xl) − λ1

2
wTw − λ2

2
uTu (7)

where the

P (yl
i|yl

Ni
, xl) =

1
zi

exp{βgi(x, y) +
∑
j∈Ni

γfij(yi, yj , x)} (8)

and new normalization factor is

zi =
∑

yi∈{−1,+1}
exp{βgi(x, y) +

∑
j∈Ni

γfij(yi, yj , x)} (9)

Another problem is that pseudolikelihood function is not convex. Moreover,
initial values are needed in searching global maximum for w, u. Here we first
assume that the feature function g, f are independent. Then the initial value
for the parameters are computed though traditional maximum log-likelihood
method. For example, the log-likelihood for association potential gi(x, y) can be
expressed as

L1(y|w, x) =
n∑
l

∑
i∈S

log(σ(yl
iw

Tφi(xl))) (10)

Species Distribution Modeling via SBMCRFs 443

we then can get its second deviant hessian as

�2 L1 =
n∑
l

∑
i∈S

yl
i

2
φi(xl)φi(xl)σ(yl

iw
Tφi(xl)(1 − σ(yl

iw
Tφi(xl)) (11)

Now w reaches global maximum though Newton’s methods. The value of u
can be obtained in a similar way. After getting initial values, equations listed
below can be used to compute the Θ by gradient descent method.

∂L

∂w
=

n∑
l

∑
i∈S

{βm1 −
∑

y m1 exp(Ei(xl, yl
i))

Zi
} − λ1w (12)

∂L

∂u
=

n∑
l

∑
i∈S

{γm2 −
∑

y m2 exp(Ei(xl, yl))
Zi

} − λ2u (13)

∂L

∂β
=

n∑
l

∑
i∈S

{gi(xl, yl) −
∑

y βαi(xl, yl) exp(Ei(xl, yl))
Zi

} (14)

∂L

∂γ
=

n∑
l

{m3 −
∑

y m3 exp(Ei(xl, yl))
Zi

} (15)

where
Ei(xl, yl) = gi(xl, yl) +

∑
j∈Ni

fij(yl
i, y

l
j , x) (16)

m1 = yl
iφi(xl)(1 − σ(yl

iw
Tφi(xl))) (17)

m2 =
∑
j∈Ni

yl
iφi(μl

ij)(1 − σ(yl
iy

l
ju

Tφi(μl
ij))) (18)

m3 =
∑
i∈S

∑
j∈Ni

fij(yl
i, y

l
j , x

l) (19)

Thus, the task is to find the most possible label for the given observation
data with the conditional possibility defined above, i.e.,

yopt = argmax
∑
i∈S

exp{βgi(x, y) +
∑
j∈Ni

γfij(yi, yj , x)} (20)

It is obvious that we need to compute the expectation of features over the
models and search over all possible assignments of the label to reach the max-
imum. A simple exhaustive search would be prohibitively expensive. There are
two major approaches to compute the marginal probability or conditional prob-
ability i.e., exact inference method and approximate inference method. In this
work, we use an iterative technique named iterated conditional modes (ICM,
Besag 1986) to solve the problem, which is an application of coordinate-wise

444 D. Guo et al.

gradient ascent. Finally, the label serves as a reference for distribution predic-
tion. A grid with a positive label means that animals have a relatively high
possibility to gather in the corresponding area. Furthermore, the combination
of labels of nearby grids reveals the most probable moving direction of animal
species, which also contributes to biological researches.

5 Features

In order to model the species distribution of wild animals, ecological niche fea-
tures are extracted to characterize habitats. In this paper, a set of ecological
features are compiled, as described in Table 1.

Table 1. List of ecological features from the satellite remote sensing data

Feature Source Unit Resolution

Temperature MODIS(MOD11A2) ◦C 1 km

NDVI MODIS(MOD13A2) 1 km

Elevation SRTM-DEM meter 0.09 km

Distance(Water) MODIS(MOD12Q1) meter 1 km

Distance(Grassland) MODIS(MOD12Q1) meter 1 km

Distance(Forest) MODIS(MOD12Q1) meter 1 km

Distance(Wetland) MODIS(MOD12Q1) meter 1 km

Distance(Farmland) MODIS(MOD12Q1) meter 1 km

Distance(Bareland) MODIS(MOD12Q1) meter 1 km

Distance(Ice) MODIS(MOD12Q1) meter 1 km

Distance(Bush) MODIS(MOD12Q1) meter 1 km

In addition, several open data sources are employed in this work. We
first refine the remote-sensing images with the Geospatial Data Abstraction
Library (GDAL) and the ArcGIS 9.2 Dataset proposed by Environmental Sys-
tems Research Institute. The Moderate Resolution Imaging Spectroradiometer
(MODIS) dataset and Shuttle Radar Topography Mission (SRTM) dataset are
adopted to obtain ecological features, including temperature, Normalized Differ-
ence Vegetation Index (NDVI), elevation and the richness of water, grassland,
forests, wetland, farmland, bareland, ice and bushes. A detailed description is
given below.

5.1 Temperature

Temperature is derived from the MODIS Land Surface Temperature (LST) prod-
uct (MOD11A2).

Species Distribution Modeling via SBMCRFs 445

5.2 NDVI

Normalized Difference Vegetation Index (NDVI) is derived from the MODIS
product which is named as MOD13A2. The value denotes whether a specific
region is covered with living vegetation. Generally, NDVI represents the vegeta-
tion condition for regions. The value ranges from -1.0 to +1.0, where a negative
value indicates a lack of plants while a positive one indicates the prosperity of
vegetables.

5.3 Elevation

Elevation is from the dataset of SRTM, which is the digital topographic database
of Earth with resolution of 90 m.

5.4 Distance

In this work, we calculate the distance between the center of a specific grid
and the nearest water, wetland, farmland, grassland, bare land, forests, ice and
bushes. Here distance measures the richness of the natural resources for a specific
grid area. The information is obtained from MOD12Q1 product of MODIS.

6 Experiment

In this section, we will describe our dataset and settings of our experiments.
Experiment results are illustrated and discussed later.

6.1 Dataset

The dataset is collected from an on-site study conducted at the Qinghai Lake
National Nature Reserve, Qinghai Province, China, from March 2007 to Decem-
ber 2009. By equipping transmitters on birds, the satellite tracks the positions
of migratory birds. Until 2010, over one million migration records were collected.
The data from Bar-Headed goose, Ruddy-shelduck and Great Black-headed Gull
are used in the experiments.

6.2 Experiment Settings

Two experiments are performed in this work. The first one is a compar-
ison between our model and several existing baselines including BIOCLIM
(Busby, 1991), DOMAIN (Carpenter et al. 1993), MAHAL (Etherington et
al. 2009), Generalized Linear Model Logistic Regression (GLM logistic), Gen-
eralized Linear Model Poisson Regression (GLM Poisson), Generalized Addi-
tive Model (GAM), Maximum Entropy (Maxent), Support Vector Machine
(SVM), Random Forest and Boost Regression Tree (BRT, Elith et al. 2008).

446 D. Guo et al.

Area Under Curve (AUC, Pencina et al. 2008) is adopted to measure the effec-
tiveness of models above.

The baseline models are given with the same data and features as our model.
For each baseline model, the original data is inputted after several preprocessings
that are aimed at satisfying the requests and constrains of the model. Several
common prediction methods, such as Logistic Regression, which is widely used in
both research fields and industry, are included in the baseline models. Moreover,
classifiers like binary SVM are exploited to provide comparable performances.
For an individual area on the map, the prediction of species distribution can be
considered as a classification problem, namely to classify whether there would
appear a large mount of animals at the specific time or not.

After the first experiment, performances of all models on the same geograph-
ical and ecological data are obtained. Each model outputs a set of labels cor-
responding to areas on the map, which describes the possible distribution. To
access the effects of the models, we conduct an evaluation on their performances
mainly using AUC as the measurement.

As the grid size is manually set and may influence the performance of the
models, the second experiment is implemented to investigate its impact. We
choose five algorithms and vary the grid size. Changes of results are recorded.

6.3 Results

Figure 4 shows the results of the models on different kinds of birds. Our proposed
model outperforms the baselines on the Bar-headed Goose data and Ruddy
Shelduck data. The Maxent algorithm provide the best performance on average.
Our method can be viewed as a maximum entropy prediction on sequence data,
and the result proves that the spatial bagging is useful on identification of the
habitats and distribution prediction.

Fig. 4. The experimental results in terms of AUC of different models

Species Distribution Modeling via SBMCRFs 447

Fig. 5. The AUC of different models with a varying cell size

Figure 5 illustrates the performance of models with different grid sizes. For
the simplicity of computation, the grid is set as squares. And decision tree is
added in the experiment. The random forest is significantly better than decision
tree, which proves that the ensemble of multiple models is more effective on this
task. But the AUC of the proposed model is not stable as is shown in the figure,
a smooth method may be needed to improve the effectiveness.

Fig. 6. Results of Species Distribution Prediction using SBMCRFs. From left to right,
first two columns are the predicated spatial distribution of Bar-headed goose in 2008
and 2009. And last two columns are the predicated spatial distribution of Ruddy
Shelducks

As is shown in Fig. 5, the size of grid actually has an impact on the perfor-
mance of the model. Consider the sparsity of species distribution provided by
the given data, the manually set grid size is acceptable and provides preferable
effects.

448 D. Guo et al.

Figure 6 shows an example of the prediction results. In the first row there are
four maps displaying the predicated species distribution. The maps illustrate the
spatial distribution of bar-headed geese and Ruddy Shelducks. On each map, the
white spots denote that wild animals would gather in the corresponding areas
with considerable possibilities. With labels provided by our model, areas where
species are possible to appear are highlighted. As is shown in the map, animals
are likely to gather near the lake, which is consistent with the real situation.
The prediction results may provide some interesting findings for biologists. The
results can imply several unexpected areas where animals gather, which are
significant for biological research. The second row consists of maps that display
the density distribution of the prediction. The density distribution represents a
more detailed description.

7 Conclusion and Future Works

In this work, we propose a novel method to model habitats and predict species
distribution using Spatial Bagging of Multiple Conditional Random Fields. Con-
ditional Random Fields is introduced to extract auxiliary information from
neighbouring habitats, which positively supports the prediction. In practice of
biological researches, we divided maps into grids and label them according to
a serious of computations as illustrated above. Based on those labels, we iden-
tify the possible habitats and potential moving direction of animal species. The
experimental results show that the proposed method provide better performance
than baselines. Moreover, the introduction of relevance between nearby areas is
demonstrated to be of significance.

Although our method performs well on the given data, there remains some
processings to be improved. In order to expand our method to a general method,
the most important phase is the selection of the grid size. During the processing
on the original geographical and ecological data, the size of a grid cell has a
significant impact on the distribution of calculated values. The attributes of grid
cells are influenced and limited by the grid size. Either too large or too small of
a grid would lead to an apparent loss of accuracy of the modeling. To fit differ-
ent dataset, a hierarchical size set can provide improvements on both effect and
efficiency. Instead of using an uniform size, we can set large sizes for the sparse
parts of the data while set samll sizes for the dense parts. For further optimiza-
tion, techniques such as krigging and spatio-temporal variograms can be used. It
is predictable that they can provide access to higher precision of measurements
on geographical and ecological data. In the future, we will continuously test our
method with different datasets and improve the effectiveness though constant
optimizations.

Acknowledgments. This work is partly supported by the Natural Science Founda-
tion of China (NSFC) under Grant No. 41371386 and 91224006.

Species Distribution Modeling via SBMCRFs 449

References

Busby, J.: BIOCLIM a bioclimate analysis and prediction system. Plant Prot. Q., 6
(1991)

Carpenter, G., Gillison, A.N., Winter, J.: DOMAIN: a flexible modelling procedure
for mapping potential distributions of plants and animals. Biodivers. Conserv. 2(6),
667–680 (1993)

Etherington, T.R., Ward, A.I., Smith, G.C., Pietravalle, S., Wilson, G.J.: Using the
Mahalanobis distance statistic with unplanned presence only survey data for bio-
geographical models of species distribution and abundance: a case study of badger
setts. J. Biogeogr. 36(5), 845–853 (2009)

Elith, J., Leathwick, J.R., Hastie, T.: A working guide to boosted regression trees. J.
Anim. Ecol. 77(4), 802–813 (2008)

Pencina, M.J., D’Agostino, R.B., Vasan, R.S.: Evaluating the added predictive ability
of a new marker: from area unde the ROC curve to reclassification and beyond. Stat.
Med. 27(2), 157–172 (2008)

Zheng, V.W., Zheng, Y., Xie, X., Yang, Q. Collaborative location, activity recommen-
dations with GPS history data. In: Proceedings of the 19th International Conference
on World Wide Web, pp. 1029–1038. ACM (2010)

Li, Z., Han, J., Ji, M., Tang, L.A., Yu, Y., Ding, B., Kays, R.: Movemine: mining
moving object data for discovery of animal movement patterns. ACM Trans. Intell.
Syst. Technol. (TIST) 2(4), 37 (2011)

Tang, M., Zhou, Y., Li, J., Wang, W., Cui, P., Hou, Y., Yan, B.: Exploring the wild birds
migration data for the disease spread study of H5N1: a clustering and association
approach. Knowl. Inf. Syst. 27(2), 227–251 (2011)

Tang, M.J., Zhou, Y.C., Cui, P., Wang, W., Li, J., Zhang, H., Hou, Y.S., Yan, B.P.:
Discovery of migration habitats and routes of wild bird species by clustering and
association analysis. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X.
(eds.) ADMA 2009. LNCS, vol. 5678, pp. 288–301. Springer, Heidelberg (2009)

Tang, M.J., Wang, W., Jiang, Y., Zhou, Y., Li, J., Cui, P., Liu, Y., Yan, B.: Birds bring
flues? mining frequent and high weighted cliques from birds migration networks. In:
Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol.
5982, pp. 359–369. Springer, Heidelberg (2010)

Pearson, R.G.: Species distribution modeling for conservation educators and practition-
ers. Lessons in Conservation (LinC) Developing the capacity to sustain the earth’s
diversity, 54 (2007)

Elith, J., Leathwick, J.R.: Species distribution models: ecological explanation and pre-
diction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009)

Caruana, R., Elhawary, M., Munson, A., Riedewald, M., Sorokina, D., Fink, D.,
Hochachka, W.M., Kelling, S.: Mining citizen science data to predict orevalence
of wild bird species. In: Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 909–915. ACM, NewYork
(2006)

Kumar, S., Hebert, M.: Discriminative random fields. Int. J. Comput. Vision 68(2),
179–201 (2006)

Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields,: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth
International Conference on Machine Learning, ICML 01, pp. 282–289. CA, USA,
Morgan Kaufmann Publishers Inc, San Francisco (2001)

450 D. Guo et al.

Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of species
geographic distributions. Ecol. Model. 190(3), 231–259 (2006)

Besag, J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. Ser. B
(Methodol.) 48(3), 259–302 (1986)

Real-Time Personalized Taxi-Sharing

Xiaoyi Duan1, Cheqing Jin1(B), Xiaoling Wang1, Aoying Zhou1, and Kun Yue2

1 School of Computer Science and Software Engineering,
Institute for Data Science and Engineering,

East China Normal University, Shanghai, China
dollyxiaoyi@gmail.com, {cqjin,xlwang,ayzhou}@sei.ecnu.edu.cn

2 School of Information Science and Engineering,
Yunnan University, Kunming, China

kyue@ynu.edu.cn

Abstract. Taxi-sharing is an efficient way to improve the utility of taxis
by allowing multiple passengers to share a taxi. It also helps to relieve
the traffic jams and air pollution. It is common that different users may
have different attitudes towards the taxi-sharing scheduling plan, such
as the fee to be paid and the additional time to the destination. How-
ever, this property has not been paid enough attention to in the tradi-
tional taxi-sharing systems – the traditional focus is how to decrease the
travel distance. We study the problem of personalized taxi-sharing in this
paper, with the consideration of each passenger’s preference in payment,
travel time and waiting time. We first define the satisfaction degree of
each party involved in the scheduling plan, based on which two goals
are defined to evaluate the overall plan, including MaxMin and MaxSum.
Subsequently, we devise a two-phase framework to deal with this prob-
lem. The statistical information gathered during the offline phase will be
used to hasten query processing during the online phase. Experimental
reports upon the real dataset illustrate the effectiveness and efficiency of
the proposed method.

1 Introduction

The rapid increment of vehicles in large cities brings with some serious social
issues, such as traffic jams and air pollution [1–3]. Taxi is an important means
of transport because it is convenient for people to go to the destination quickly.
However, the benefits of taxi have not been fully exploited since one taxi is
allowed to take only one passenger or one group of passengers, leaving some
seats unoccupied. Consequently, it is meaningful to devise a taxi-sharing system
that allows more than one group of passengers to share one taxi, so as to relieve
the effects of traffic jams and air pollution.

Actually, some attempts have been made to fulfill the idea of vehicle sharing.
For example, some Web sites (e.g., AApinche) allow uses to publish their travel
plan or to find a matched partner from the existing posts. However, it usually
takes a long time before users can find their matches [4,5]. Recently, some works

c© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, pp. 451–465, 2016.
DOI: 10.1007/978-3-319-32049-6 28

452 X. Duan et al.

focus on devising a ride-sharing strategy, which allows multiple groups of pas-
sengers sharing one vehicle [6,7]. The T-share system aims at finding a plan to
minimize the total travel distance for each request [8]. Unfortunately, none of
the above works consider the customized preference of each user. Our pruning
rules fully take account of users’ preferences.

In general, a successful schedule plan should satisfy each party in this plan.
Otherwise, this plan may not go into reality. There are three parties in a taxi-
sharing plan: driver, taxi rider, and waiting passenger. Taxi rider is the passenger
who has already ridden on the taxi, and waiting passenger is the one who is
hailing a taxi [9]. Each user has personalized requirement about the satisfaction.
Someone is sensitive to the fee, but insensitive to the driving time, while someone
else may be insensitive to the fee but wants to go to the destination as soon as
possible. Therefore, a customized taxi-sharing plan needs to fully consider users’
preferences and then we designed the plan.

However, it is challenging to deal with personalized taxi-sharing due to the
following reasons. (i) Real-time service requirement. It is critical to send the
response to users as soon as possible. However, it is non-trivial to achieve the
goal due to the huge amount of taxis and the dynamic properties of taxis.
(ii) Personalized preference. Similar route is not the only factor to be con-
cerned in taxi sharing, because customers’ service preferences are too diverse to
compose a sharing plan, such as sharing purpose and requirements to partners.
(iii) Different route matching. As most users in our system tend to have different
origins and destinations, it is not likely to find a taxi rider with the same origin
and destination. In order to enhance the sharing chance, we need to relax the
matching condition. To handle the aforementioned challenges, we propose a novel
framework in this paper, which contains two phases: offline and online. The goal
of the offline phase is to compute some statistical information to support online
computation. For example, we can estimate the upper and lower bounds of the
driving time between two points. During the online phase, some pruning rules
are devised to hasten query processing.

The contributions are summarized below.

– We formalize the personalized taxi-sharing issue which fully considers users’
preferences. We define satisfaction degree of a person (driver, waiting passen-
ger, or taxi rider) and two global targets, MaxSum and MaxMin, to measure
the quality of the overall plan.

– We deal with the real-time taxi-sharing issue efficiently to support the sce-
nario with huge number of taxis and passengers. To hasten query processing
of online phase, we precompute several operators during offline phase and use
pruning rules to save significant part of computations.

– We conduct extensive experiments on the real trajectory dataset to validate
the effectiveness and efficiency of the proposed method.

The remainder of this paper is organized as follows. Section 2 introduces the
preparatory work of data model and problem statement. Section 3 introduces
the framework of our new method. Section 4 describes the offline phase that pre-
compute some statistics. Section 5 describes the online phase to process queries

Real-Time Personalized Taxi-Sharing 453

efficiently by using pruning rules. Section 6 reports experimental results upon
real data sets. Section 7 reviews related work. A brief conclusion is given in the
last section.

2 Preliminaries

Data Model: A typical taxi-sharing system involves three parties, including
taxi driver (shorten as TD), taxi rider (shorten as TR), and waiting passenger
(shorten as WP)1. Since TR and WP may have different origins and destinations,
taxi sharing plans can be diverse. Assuming a WP plans to go from O to D, and
a TR is traveling from A to B, there exist two possible scheduling plans to share
this taxi, namely WPF (Waiting Passenger First) and TRF (Taxi Rider First).
As illustrated in Fig. 1, the route in WPF plan is AODB, as the taxi goes to D
at first after picking up WP at O, while the route in TRF plan is AOBD, as
the taxi goes to B at first instead. In this paper, we focus on the scenario that a
taxi is shared by at most two groups of passengers, and leave the scenario that
multiple groups sharing one taxi as a piece of future work.

(a) WPF plan (b) TRF plan

Fig. 1. Taxi-sharing Plans (WPF and TRF)

Pricing Strategy: The pricing strategy varies a lot in different cities, e.g., the
unit price may change by different time and places. Here, we consider a model
for the illustration purpose where the per-kilometer price is fixed, denoted as k.
The detail of pricing strategy is described below.

Let
−→
DWPF = (rdis(A,O), rdis(O,D), rdis(D,B)) denote a distance vector in

the WPF plan, where rdis(l1, l2) denotes the road network distance between two
locations l1 and l2. Let −→p1 = k · (p11, p12, p13) and −→q1 = k · (q11, q12, q13) (∀i,
p1i, q1i ∈ [0, 1]) denote the payment share for WP and TR in the WPF plan
respectively (see Fig. 1(a)). Then, the payment for WP (denoted as MWP), TR
(denoted as MTR), and the income for TD (denoted as MTD) are computed as:
MWP = −→p1 · −→

DWPF , MTR = −→q1 · −→
DWPF , and MTD = MWP + MTR. To ensure

TD always gets more income, the parameters satisfy: ∀i, p1i + q1i ≥ 1.

1 Note that TR or WP can also be a group of people rather than one person.

454 X. Duan et al.

Symmetrically, let
−→
DTRF = (rdis(A,O), rdis(O,B), rdis(B,D)) denote the

distance vector in the TRF plan. Let −→p2 = k · (p21, p22, p23) and −→q2 = k ·
(q21, q22, q23) (∀i, 0 ≤ p2i, q2i ≤ 1) denote the payment share for WP and TR
respectively (see Fig. 1(b)). Accordingly, MWP = −→p2 ·−→DTRF , MTR = −→q2 ·−→DTRF ,
and MTD = MWP + MTR.

Example 1. Table 1 illustrates a pricing strategy for Fig. 1. For example, in the
WPF plan, the payments of WP and TR are computed as: MWP = 2 × (0.5 ×
2 + 0.6 × 5 + 0.5 × 1) = 9, MTR = 2 × (0.6 × 2 + 0.6 × 5 + 0.6 × 1) = 9.6.

Table 1. An example of pricing strategy based on Fig. 1

Plan −→p −→q MWP MTR MTD

WPF 2 × (0.5, 0.6, 0.5) 2 × (0.6, 0.6, 0.6) 9 9.6 18.6

TRF 2 × (0.5, 0.6, 1) 2 × (0.6, 0.6, 0) 10.8 7.2 18

Note: k is 2 RMB/km.

Preference and Satisfaction: The personalized preference of each user (either
WP or TR) is defined below.

Definition 1 (Preference). The preference of a user (either WP or TR) is
defined as (α, β), where α controls user preference to the time cost, and β controls
user preference to the payment. α ≥ 0, β ≥ 0, and α + β = 1.

Furthermore, we use (αWP , βWP) and (αTR, βTR) to denote the preference
of WP and TR respectively. If αWP > βWP , WP prefers to save more time.
If αTR < βTR, TR prefers to save money, even though the travel time may be
extended.

Generally, the “satisfaction” degree of each party (either TR or WP) must
reflect the change with/without taxi-sharing.

Definition 2 (Satisfaction). For passengers (WP or TR), satisfaction is
defined as S = αΔT +βΔP , where ΔT denotes the time difference between shar-
ing taxi ans non-sharing taxi, and ΔP denotes the payment difference between
sharing and non-sharing. For drivers (TD), satisfation is defined as income dif-
ference between sharing taxi and non-sharing taxi.

Specifically, the satisfaction degrees of WP (SWP), TR (STR) and TD (STD)
are computed as:

– WP’s Satisfaction: SWP = αwΔT + βwΔP , where (αw, βw) denotes WP’s
preference in time and payment.

– TR’s Satisfaction: STR = αrΔT + βrΔP , where (αr, βr) denotes TR’s
preference in time and payment.

Real-Time Personalized Taxi-Sharing 455

– TD’s Satisfaction: STD = (I − I
′
), where I is the real gain in taxi-sharing,

and I ′ is the gain when only carrying with one passenger along the same
route.

A user is satisfied with this plan only if satisfaction is greater than zero. Note
that there exists a bit difference when computing ΔT and ΔP between TR and
WP. Originally, TR can go to the destination without carrying WP. But in a
taxi-sharing plan, he must pick up WP at first, so that the time is extended.
Under such situation, ΔT < 0. Different from TR, WP has two choices, either
sharing a taxi with WP, or just waiting for a new taxi. But it is unclear whether
a new taxi will come there quickly or not. We use the average waiting time to
estimate the time of the second choice by using historical statistics. Under such
a condition, the value of ΔT is definitely not negative.

The satisfaction degrees defined above illustrate how a party treats the
scheduling plan. A scheduling plan is valid only when all of three parties feel
satisfied with that plan, i.e., STR ≥ 0 ∧ SWP ≥ 0 ∧ STD ≥ 0. This condition can
also be shorten as STR ≥ 0 ∧ SWP ≥ 0 since STD ≥ 0 always holds.

Query Definition: The final task is to select a best choice out of all
valid scheduling plans. Let’s consider two valid plans with satisfactions as
(STR, SWP , STD) and (S′

TR, S′
WP , S′

TD). If (STR ≥ S′
TR ∧SWP ≥ S′

WP ∧STD ≥
S′
TD), the former is better. Otherwise, there exists no clear winner. Hence, we

define two queries for this issue, including MaxSum and MaxMin.

Definition 3 (MaxSum Query). Given a set of scheduling plans, return a
valid plan with maximal value of the sum of satisfactions.

Definition 4 (MaxMin Query). Given a set of scheduling plans, return a
valid plan with maximal value of the minimal satisfaction among three.

Example 2. Consider the satisfaction degrees in Table 2. The MaxSum query will
return the WPF plan, while the MaxMin query will return the TRF plan.

Table 2. An example of MaxSum and MaxMin

Plan STR SWP STD MaxSum MaxMin

WPF 1.68 12.62 2.8 17.1 1.68

TRF 2.48 11.24 2 15.72 2

3 The Framework

A typical taxi-sharing system manages a large number of taxis. The position
of each taxi will be reported to the system continuously. When a WP sends
a request to the system, the system will select a most suitable taxi for WP
immediately.

456 X. Duan et al.

Fig. 2. Framework of real-time personalized taxi sharing

Figure 2 illustrates the framework, which contains two phases, offline phase
for statistics and online phase for query processing. With the help of statistical
information stored in the offline phase, the query processing can be significantly
improved, avoiding comparing all taxis running in the system.

Offline Phase. This phase aims at providing statistical information to support
pruning rules. Recall that the satisfaction is actually the tradeoff of the traveling
distance and the travel time, but to compute the road network distance and
travel time precisely is infeasible. Hence, we attempt to estimate them in the
offline manner. The road network helps to compute the distance between two
points. Their travel time and waiting time of a road are estimated based on taxi
trajectory records. More details will be presented in Sect. 4.

Online Phase. The goal of this phase is to select a taxi most suitable for a
request launched by a WP. Given all taxis that are willing to join sharing, we
devise several pruning rules so that the candidate taxis to be further evaluated
are significantly smaller than the original set of taxis. By using the statistics
generated from the offline phase, each pruning rule can be evaluated in O(1)
time. In comparison, the cost to evaluate a taxi needs to find the shortest path
between two points, which is expensive when the distance between these two
points is far. See Sect. 5 for the details about this phase.

4 Offline Phase

During the offline phase, we generate statistical information to support the prun-
ing rules (to be introduced in the next section). The road network is divided into
cells with equal sizes. We need to compute the following five operators based on
historical trajectories. The first four operators use cells of source point and the
destination point as input, while the last one is for a pick-up or drop-off point

Real-Time Personalized Taxi-Sharing 457

in the space. Each operator returns a value that is pre-computed and stored in
the system.

– minD(c, c′). It returns a value no greater than the minimal distance of the
shortest path between two points in two cells, c and c′, respectively.

– maxD(c, c′). It returns a value no smaller than the maximal distance of the
shortest path between two points in two cells, c and c′, respectively.

– minT(c, c′). It estimates the minimal travel time between two arbitrary points
in two cells, c and c′, respectively.

– maxT(c, c′). It estimates the maximal travel time between two arbitrary points
in two cells, c and c′, respectively.

– wtime(p). It returns the average waiting time for the road segment where the
pick-up or drop-off point p locates, which is calculated by the average time
intervals between two unoccupied taxis passing by.

For any two cells c and c′, the shortest path between them must start and
end at the border of each cell. Let P (c) and P (c′) denote the sets of the points
that intersect with roads on the border of cells c and c′ respectively. Then,
minD is computed as minp∈P (c),p′∈P (c′) rdis(p, p′), where rdis(p, p′) denotes the
road network distance of the shortest path between two points p and p′. The
common ways to implement rdis(p, p′) includes Dijkstra’s algorithm [10] and the
A* algorithm [11].

To compute maxD precisely is more complex than minD, since the starting
and ending points for the corresponding path may be located inside of two cells,
no longer at the borders. Let d(c, p) denote the maximal distance of the shortest
path from point p to any point in c. In general, computing d(c, p) is cheap since
cell c is set small. In this way, we return minp∈P (c),p′∈P (c′)(rdis(p, p′) + d(c, p) +
d(c′, p′)).

It is infeasible to predict minT or maxT precisely only based on road net-
work. It is affected by some other factors, such as the number of traffic lights
in the path. Moreover, it is inaccurate to use the maximal allowed speed to
estimate minT, since in most cases the driving speed is lower than the maximal
allowed speed. Hence, we attempt to use the historical trajectory database. Let
ttime1(c, c′, tr) denote the travel time during trajectory tr leaving c and enter-
ing c′. We return mintr ttime1(c, c′, tr) for the minT operator. For the case where
there exists no historical trajectory passing through c and c′, we can (i) search
for another cell c′′, and return minc′′,tr,tr′(ttime1(c, c′′, tr) + ttime1(c′′, c′, tr′)),
or (ii) return the time by using the maximal allowed speed.

We return maxtr ttime2(c, c′, tr) to estimate maxT based on historical trajec-
tories. It records the time when tr first comes in c and finally leaves c′. Compared
with maxtr ttime1(c, c′, tr), this new subroutine considers the travel time in each
cell. For the case when there exists no historical trajectory passing through
c and c′, we return: minc′′(maxtr ttime2(c, c′′, tr) + maxtr′ ttime2(c′′, c′, tr′)).

The goal of the last operator, wtime, is to estimate the average time to
wait for a vacant taxi. We match the pick-up point p to the road, and then
compute the average number of unoccupied taxis passing during a certain period.

458 X. Duan et al.

For example, if 10 unoccupied taxis have gone through the road in one hour, it
costs approximately 3 = (60

10×2) min to wait for a vacant taxi in average.

5 Online Phase

The goal of the online phase is to select one taxi to match a WP’s request.
To enhance the performance, some pruning rules are devised to avoid expensive
computation. The following contents are organized as below. We first introduce
the bound analysis for two plans in Sects. 5.1 and 5.2. Subsequently, three prun-
ing rules, along with the overall algorithm, are described in Sect. 5.3.

5.1 Bound Analysis of the WPF Plan

We first study the WPF plan (Fig. 1(a)). Assume a WP wants to go from O to
D, and a TD happens to be at A, taking a TR to B at that time. The route
in the WPF plan will be AODB. We analyze the lower and upper bounds of
satisfactions for three parties below.

Waiting Passenger. WP’s satisfaction is defined as: SWP = αwΔT +
βwΔP (Definition 2), where ΔT represents the time difference between wait-
ing for an unoccupied taxi at O and waiting for the taxi traveling from A
to O. The first item is estimated by wtime(O), while the second item is
within (minT(A,O),maxT(A,O)). Hence, ΔT is in a range of (wtime(O) −
maxT(A,O),wtime − minT(A,O)).

ΔP is computed as: ΔP = k · rdis(O,D)−MWP , where k · rdis(O,D) denotes
the WP’s payment from O to D without sharing, and MWP is the payment
with taxi-sharing, i.e., MWP = p11rdis(A,O) + p12rdis(O,D) + p13rdis(D,B).
Note that WP may also need to pay for the segment DB though he will
leave at D according to our pricing strategy. For any two points P and P ′,
minD(P, P ′) ≤ rdis(P, P ′) ≤ maxD(P, P ′). Hence, the upper bound of the
payment is UMWP

= p11maxD(A,O) + p13maxD(D,B), and the lower bound
is LMWP

= p11minD(A,O) + p13minD(D,B). Accordingly, the upper bound
(Uw

WPF) and the lower bound (Lw
WPF) of a WP’s satisfactions are defined below.

Uw
WPF = αwwtime(O) + βw(k − p12)rdis(O,D) − αwminT(A,O) − βwLMWP

Lw
WPF = αwwtime(O) + βw(k − p12)rdis(O,D) − αwmaxT(A,O) − βwUMWP

Taxi Rider. TR’s satisfaction is defined as: STR = αrΔT + βrΔP (Defin-
ition 2). ΔT is the difference of travel time between the original route AB
and the new route AODB. Hence, the lower bound of ΔT is minT(A,B) −
maxT(A,O) − maxT(O,D) − maxT(D,B), and the upper bound of ΔT is
maxT(A,B)−minT(A,O)−minT(O,D)−minT(D,B). ΔP = k·rdis(A,B)−MTR,
where k · rdis(A,B) denotes the payment for the segment AB without shar-
ing, and the payment for sharing is MTR = q11rdis(A,O) + q12rdis(O,D) +
q13rdis(D,B). Similar to those of WP, the upper and lower payment bounds of

Real-Time Personalized Taxi-Sharing 459

TR are computed as UMTR
= q11maxD(A,O) + q12rdis(O,D) + q13maxD(D,B),

LMTR
= q11minD(A,O)+q12rdis(O,D)+q13minD(D,B). Accordingly, the upper

bound (Ur
WPF) and the lower bound (Lr

WPF) of a TR’s satisfactions are defined
below.

Ur
WPF = αrmaxT(A,B) + kβrmaxD(A,B)

−αr[minT(A,O) + minT(O,D) + minT(D,B)] − βrLMTR
(1)

Lr
WPF = αrminT(A,B) + kβrminD(A,B)

−αr[maxT(A,O) + maxT(O,D) + maxT(D,B)] − βrUMTR
(2)

Taxi Driver. TD’s satisfaction is defined as I − I ′ (Definition 2). If launching
taxi-sharing, the driver’s income is the sum of TR’s payment and WP’s payment,
i.e., I = MTR + MWP , and I ′ = k · (rdis(A,O) + rdis(O,D) + rdis(D,B)) when
he travels along the same route. Thus, the upper bound (Ud

WPF) and the lower
bound (Ld

WPF) of a driver’s satisfactions are defined below.

Ud
WPF = λ1maxD(A,O) + λ2rdis(O,D) + λ3maxD(D,B) (3)

Ld
WPF = λ1minD(A,O) + λ2rdis(O,D) + λ3minD(D,B) (4)

where λ1 = p11 + q11 − k, λ2 = p12 + q12 − k, and λ3 = p13 + q13 − k.

5.2 Bound Analysis of the TRF Plan

Assuming a WP wants to go from O to D, and a TD is at A, taking a TR to B
at that time. The route in the TRF plan will be AOBD. We analyze the lower
and upper bounds of satisfactions for the three parties.

Waiting Passenger. First, ΔT for WP is the time difference between her orig-
inal travel time of OD (plus the waiting time wtime(O)) and the new travel
time of AOBD. Second, ΔP is the payment difference between k · rdis(O,D)
and MWP = p21rdis(A,O) + p22rdis(O,B) + p23rdis(D,B). The upper and lower
bounds of payment are UMWP

and LMWP
. Thus, the upper bound (Uw

TRF) and
the lower bound (Lw

TRF) of a WP’s satisfactions are defined below.

Uw
TRF = αw[wtime(O) + maxT(O,D)] + kβwrdis(O,D)

−αw[minT(A,O) + minT(O,B) + minT(B,D)] − βwLMWP
(5)

Lw
TRF = αw[wtime(O) + minT(O,D)] + kβwrdis(O,D)

−αw[maxT(A,O) + maxT(O,B) + maxT(B,D)] − βwUMWP
(6)

Taxi Rider. The route for TR changes from AB to AOB, so that ΔT rises. In
addition, the payment change ΔP is computed as: MTR − k · rdis(A,B), where
MTR = rdis(A,O)q21−rdis(O,B)q22. Let UMTR

and LMTR
denote the upper and

lower bounds of payment. Thus, the upper bound (Ur
TRF) and the lower bound

(Lr
TRF) of a TR’s satisfactions are defined below.

Ur
TRF = αrmaxT(A,B) + kβrmaxD(A,B)

−αr(minT(A,O) + minT(O,B)) − βrLMTR
(7)

Lr
TRF = αrminT(A,B) + kβrminD(A,B)

−αr(maxT(A,O) + maxT(O,B)) − βrUMTR
(8)

460 X. Duan et al.

Algorithm 1. Schedule(w)
1 C ← ∅, τ ← 0, C′ ← ∅;
2 foreach registered taxi r do
3 WPFvalid ← false; TRFvalid ← false;
4 if min(Uw

WPF , Ur
WPF) > 0 then

5 WPFvalid ← true;

6 if min(Uw
TRF , Ur

TRF) > 0 then
7 TRFvalid ← true;

8 if WPFvalid or TRFvalid then
9 C ← C ∪ {r}, α1 ← 0, α2 ← 0, β1 ← 0, β2 ← 0;

10 if WPFvalid = true then

11 α1 ← min(Lw
WPF , Lr

WPF , Ld
WPF); β1 ← Lw

WPF + Lr
WPF + Ld

WPF ;

12 if TRFvalid = true then

13 α2 ← min(Lw
TRF , Lr

TRF , Ld
TRF); β2 ← Lw

TRF + Lr
TRF + Ld

TRF ;

14 if the query is MaxMin and max(α1, α2) > τ then
15 τ ← max(α1, α2);

16 else if the query is MaxSum and max(β1, β2) > τ then
17 τ ← max(β1, β2);

18 foreach registered taxi r ∈ C do
19 if the query is MaxMin and

(min(Uw
WPF , Ur

WPF , Ud
WPF) > τ || min(Uw

TRF , Ur
TRF , Ud

TRF) > τ) then
20 C′ ← C′ ∪ {r};

21 if the query is MaxSum and

(Uw
WPF + Ur

WPF + Ud
WPF > τ || Uw

TRF + Ur
TRF + Ud

TRF > τ) then
22 C′ ← C′ ∪ {r};

23 foreach candidate taxi r ∈ C′ do
24 Compute the satisfactions of three parties;

25 return a taxi with the biggest minimal (total) satisfaction to MaxMin (MaxSum);

Taxi Driver. The route for TD is AOBD. Thus, the upper bound (Ud
TRF) and

the lower bound (Ld
TRF) of a TD’s satisfactions are defined below.

Ud
TRF = λ1maxD(A,O) + λ2maxD(O,B) + λ3maxD(B,D) (9)

Ld
TRF = λ1minD(A,O) + λ2minD(O,B) + λ3minD(B,D) (10)

where λ1 = p21 + q21 − k, λ2 = p22 + q22 − k, and λ3 = p23 + q23 − k.

5.3 Pruning Rules and Query Processing

We then design some pruning rules. In any feasible plan, the satisfaction degrees
for all three parties must be positive. Note that TD’s satisfaction is always
positive under our pricing strategy settings. Hence, the rule is as below.

Real-Time Personalized Taxi-Sharing 461

Pruning Rule 1. One taxi with min(Uw
WPF , Ur

WPF) < 0 or min(Uw
TRF , Ur

TRF)
< 0 is improper.

All improper taxis can be filtered out by using Pruning Rule 1. However,
the computation cost is still high if there exist a large number of suitable taxis.
Therefore, we propose other two pruning rules to filter a significant part of
suitable taxis, which respectively correspond to MaxMin and MaxSum queries.
According to the bound analysis, the upper and lower bounds of two target sat-
isfaction values are max(Uw

WPF , Ur
WPF , Ud

WPF) and min(Lw
WPF , Lr

WPF , Ld
WPF)

respectively. Hence, let τ denote the maximal lower bound for all taxis. Then,
any taxi with the upper bound below τ can be filtered safely. The same filtering
process is used for TRF strategy. The pruning rule is defined formally below.

Pruning Rule 2. The MaxMin query returns a taxi with the greatest minimal
satisfaction among all of three parties. A taxi with min(Uw

WPF , Ur
WPF , Ud

WPF) <
τ or min(Uw

TRF , Ur
TRF , Ud

TRF) < τ can be pruned safely.

Pruning Rule 3. The MaxSum query returns a taxi with the greatest sum of
satisfactions. A taxi with min(Uw

WPF + Ur
WPF + Ud

WPF) < τ or min(Uw
TRF +

Ur
TRF + Ud

TRF) < τ can be pruned safely.

Algorithm 1 describes details on selecting the most suitable taxi by using
the above pruning rules. At first, the algorithm scans all registered taxis to
construct a candidate set C by using Pruning Rule 1. In addition, the threshold
τ is computed for further pruning (at lines 2–17). Subsequently, it scans all
candidate taxis in C to construct C ′ by using Pruning Rules 2 and 3 (at lines
18–22). At last, it scans each taxi in C ′ to obtain the final result (at lines 23–24).
The most proper plan for each kind of query is returned to WP (at lines 25).

6 Experiments

We report some experimental results in this section. The offline phase is con-
ducted on a Hadoop cluster. All codes for online processing are written in Java,
and run on a computer with 16 GB RAM and Intel Xeon 2.00 GHz CPU.

Road Network: We utilize the road network of Beijing, which is in the range
of 30,000 m in width and length. It is partitioned into 30 * 30 cells, each with
1,000 m in width and length.

Taxi Trajectory: We use a real taxi trajectory set containing 13,000 Beijing
taxis over one month (October 2013). The number of occupied/unoccupied taxis
varies a lot in time and place. We sample every hour within a day to count all
taxis and occupied taxis. About 4,000 taxis in average are occupied during the
rush hours, and 90 % of occupied taxis move around urban districts, while around
1,000 taxis are occupied at mid-night. We assume that all occupied taxis join
taxi-sharing. Therefore, the number of occupied taxis (TR) varies from 1,000 to
4,000 in the experiments. Since the requests are processed in order, the number
of passengers does not affect the query time. The parameter setting of the pricing
strategy are listed in Table 1.

462 X. Duan et al.

1000 2000 3000 4000

10

20

30

40

50

60

T
im

e
(m

in
ut

e)

#Taxi

 WP(NS) WP(TS)
 TR(NS) TR(TS)

Fig. 3. Time comparison

1000 2000 3000 4000

10

20

30

40

P
ay

m
en

t (
R

M
B

)

#Taxi

 WP(NS) WP(TS)
 TR(NS) TR(TS)
 TD(NS) TD(TS)

Fig. 4. Payment/income comparison

6.1 Effectiveness

We evaluate the effectiveness of the proposed taxi-sharing method. First, we
compare the travel time and payment between taxi-sharing (TS) and non-sharing
(NS) methods after randomly selecting requests from the trips in the real dataset.
The number of TRs ranges from 1,000 to 4,000, and the number of WPs is set to
1,000. The preferences of TRs and WPs are generated uniformly in (0,1). Figure 3
illustrates the average time for WP/TR with and without sharing taxi. Figure 4
compares payment of WP/TR and income of TD in TS and NS methods. Note
that the travel time for WP in two methods contains the waiting time. When
using TS strategy, the travel time for WP is reduced even if WP plans to wait
for TR, because WP’s waiting time decreases. WP may pay more money in taxi-
sharing scenario, the average payment for WPs is less than NS as the amount of
TRs rises. Although TR spends more time on traveling, the average payment is
significantly reduced. In addition, more occupied taxis make WP and TR both
save more time or money. TDs’ income rises by more than 15 % compared to NS
in all situations, due to the payment sharing strategy (Table 1). In fact, TD can
earn more if any of the parameters in Table 1 rises.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-10

0

10

20

30

40

WP

 WP TR

(a) ΔT for WP and TR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-2

0

2

4

6

8

WP

 WP TR

(b) ΔP for WP and TR

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10
TR

WP

 TD

0.2

0.4

0.6

0.8

1.0

TR

(c) Average ΔI for TD

Fig. 5. Parameter settings comparison

Real-Time Personalized Taxi-Sharing 463

We then evaluate the influence of preference parameters, assuming there are
2,000 TRs. αWP and αTR are generated uniformly in (0,1). We compare the
average travel time difference (ΔT), average payment difference (ΔP) from NS
to TS for WP/TR, and TD’s average income difference (ΔI) from TS to NS,
as reported in Fig. 5. In Fig. 5(a), higher αWP results in more ΔT for WP,
which means WP saves more time in TS. In Fig. 5(b), lower αWP leads to more
ΔP , which indicates WP saves more money. Figure 5(c) illustrates two metrics:
(1) TD’s average ΔI. For all preference settings, TD can earn more in TS com-
pared to NS. Moreover, biased preferences of passengers lead to more income.
(2) Average αTR. If WP and TR have the opposite preferences in time (money),
they are more likely to share one taxi. For example, the time-preferred WP is
matched with the payment-preferred TR.

0 1500 3000 4500 6000 7500 9000
0

50

100

150

200

250

300

#C
an

di
da

te

#Taxi Rider

 WPF+TRF
 MaxMin
 MaxSum

Fig. 6. Pruning effects

0 1000 2000 3000 4000 5000 6000 7000
0.1

1

10

100

1000

10000

100000

R
un

ni
ng

 T
im

e(
se

co
nd

)

#Taxi Rider

 MaxSum+all
 MaxSum+one
 NoPruning

(a) For MaxSum

0 1000 2000 3000 4000 5000 6000 7000
0.1

1

10

100

1000

10000

100000

R
un

ni
ng

 T
im

e(
se

co
nd

)
#Taxi Rider

 MaxMin+all
 MaxMin+one
 NoPruning

(b) For MaxMin

Fig. 7. Efficiency comparison

6.2 Efficiency

We then evaluate the performance of pruning rules. Figure 6 illustrates the per-
formance of three pruning rules, including WPF+TRF (Rule 1), MaxMin (Rule 2),
and MaxSum (Rule 3). Recall that WPF+TRF is the basis of MaxMin and
MaxSum. By WPF+TRF, approximately 97 % of taxis are safely filtered, e.g., the
number of candidates is around 250 when there are nine thousand taxi riders.
After employing MaxMin or MaxSum, 36 % or 60 % more candidates are removed
safely, e.g., only 160 or 95 candidates are left when |TR| = 9, 000. Moreover, the
pruning power will be strengthened when the number of taxi riders increases.
For example, when |TR| = 3, 000, around 2 % of taxis (60) are left for processing.
But when |TR| = 9, 000, around 1 % of taxis (90) are left.

The use of pruning rules deeply influences the running time of the proposed
methods. Since computing the shortest path for each candidate costs much time,
we use two schemes to fulfill this goal. The first is to precisely compute the satis-
factions for all candidates (+all). The second is to randomly choose a candidate
every time, and try to evaluate whether this one satisfies the requirement or
not (+one). If not, we repeat to choose another one. Figure 7(a) and (b) show
that MaxMin and MaxSum pruning methods both scale significantly better than
NoPruning method, because NoPruning method needs to precisely compute each
taxi. Note that MaxMin+one and MaxSum+one methods can answer the query
in a second.

464 X. Duan et al.

7 Related Work

The problem of ride-sharing has been studied intensively in recent years. There
are several popular methods for ride-sharing, mainly including mobile applica-
tions (e.g., Uber), and the agencies providing ride-sharing service (e.g., Lyft).
[12] proposes the dynamic ride-sharing problem. [13] discusses the dynamic slug-
ging problem with the vehicle-capacity and delay bounded constraints. However,
they require drivers’ original routes not to be changed and trips to be arranged
in advance. Later works propose new ride-sharing problems. The work [14] sum-
marizes different optimization goals for ride-sharing: to minimize system-wide
vehicle-miles, to minimize system-wide travel time and to maximize the number
of participants. [15] creates a dynamic ride-sharing community service architec-
ture, which combines ITS, ride-sharing and social network. We also develop a
passenger matching system [16] to find passengers with similar locations and esti-
mate additional time and payment. [17] proposes a scheme that allows detours
and four sharing patterns. Existing ride-sharing methods [12,13,15] apply to
some of them, but our work contains all of them.

Taxi sharing is a more popular way of ride-sharing in realtime service.
Research efforts on analysis of taxi-sharing have been made to address the objec-
tive issue by considering different constraints. For example, [18] considers the
vehicle capacity constraint, [19] considers the waiting time constraint, and [8]
considers time and money constraints. Our work considers all these constraints
and the pricing strategy of [8] can be considered as a special case of our pric-
ing method. Other works focus on how to schedule passengers. [20] builds a
dynamic and distributed taxi-sharing system which processes every passenger’s
request on each end of taxi. [19] allows more than two groups of passengers shar-
ing one taxi, but it simply filters out taxis outside the waiting time constraint.
[8] aims to obtain global minimal additional incurred travel distance which is an
NP-complete problem. So it utilizes a greedy algorithm to find taxi-sharing can-
didates by predicting taxis’ future positions, which is a very uncertain task. To
the best of our knowledge, our work first takes into account of different people’s
customized preferences for taxi-sharing, in purpose of saving time and payment.

8 Conclusion

We have studied the taxi-sharing problem on a parameterized real-time taxi-
sharing system for user satisfaction. We develop a method to maximize people’s
satisfaction with their personalized needs. Experimental results show the effi-
ciency and effectiveness of our method. Future work includes: (1) allowing more
than two groups of passengers to share one taxi, (2) creating indexes for passen-
gers’ moving positions to speedup online processing, and (3) making estimation
of travel time more accurate by using probability distribution function instead
of scalar.

Real-Time Personalized Taxi-Sharing 465

Acknowledgement. Our research is supported by the 973 program of China (No.
2012CB316203), NSFC (U1401256, 61370101, U1501252, 61402180 and 61472345),
Shanghai Knowledge Service Platform Project (No. ZF1213), Innovation Program of
Shanghai Municipal Education Commission(14ZZ045), and Natural Science Founda-
tion of Shanghai (No. 14ZR1412600).

References

1. Brunekreef, B., Holgate, S.T.: Air pollution and health. Lancet 360, 1233–1242
(2002)

2. Morency, C.: The ambivalence of ridesharing. Transportation 34, 239–253 (2007)
3. Chan, N.D., Shaheen, S.A.: Ridesharing in North America: past, present, and

future. Transp. Rev. 32, 93–112 (2012)
4. Baldacci, R., Maniezzo, V., Mingozzi, A.: An exact method for the car pooling

problem based on Lagrangean column generation. Oper. Res. 52, 422–439 (2004)
5. Attanasio, A., Cordeau, J., Ghiani, G., Laporte, G.: Parallel tabu search heuristics

for the dynamic multi-vehicle dial-a-ride problem. Parallel Comput. 30, 377–387
(2004)

6. Gidofalvi, G., Pedersen, T.B., Risch, T., Zeitler, E.: Highly scalable trip grouping
for large-scale collective transportation systems. In: EDBT, pp. 678–689 (2008)

7. Ferguson, E.: The rise and fall of the American carpool: 1970–1990. Transportation
24, 349–376 (1997)

8. Ma, S., Zheng, Y., Wolfson, O.: T-share: a large-scale dynamic taxi ridesharing
service. In: ICDE, pp. 410–421 (2013)

9. Song, L., et al.: TaxiHailer: a situation-specific taxi pick-up points recommendation
system. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara,
A., Thalheim, B. (eds.) DASFAA 2014, Part II. LNCS, vol. 8422, pp. 523–526.
Springer, Heidelberg (2014)

10. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

11. Zeng, W., Church, R.L.: Finding shortest paths on real road networks: the case for
a*. IJGIS 23, 531–543 (2009)

12. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Sustainable passenger trans-
portation: dynamic ride-sharing. Technical report, ERIM Report Series Research
in Management (2010)

13. Ma, S., Wolfson, O.: Analysis and evaluation of the slugging form of ridesharing.
In: SIGSPATIAL/GIS, pp. 64–73 (2013)

14. Agatz, N., Erera, A., Savelsbergh, M., Wang, X.: Optimization for dynamic ride-
sharing: a review. EJOR 223, 295–303 (2012)

15. Fu, Y., Fang, Y., Jiang, C., Cheng, J.: Dynamic ride sharing community service
on traffic information grid. In: ICICTA, vol. 2, pp. 348–352. IEEE (2008)

16. Duan, X., Jin, C., Wang, X.: POP: a passenger-oriented partners matching system.
In: 31st IEEE ICDE Workshops 2015, pp. 117–118 (2015)

17. Furuhata, M., Dessouky, M., et al.: Ridesharing: the state-of-the-art and future
directions. Transp. Res. Part B Methodol. 57, 28–46 (2013)

18. Tao, C.C.: Dynamic taxi-sharing service using intelligent transportation system
technologies. In: 2007 WiCOM, pp. 3209–3212 (2007)

19. Huang, Y., Jin, R., Bastani, F., Wang, X.S.: Large scale real-time ridesharing with
service guarantee on road networks. CoRR abs/1302.6666 (2013)

20. d’Orey, P., Fernandes, R., Ferreira, M.: Empirical evaluation of a dynamic and
distributed taxi-sharing system. In: ITSC, pp. 140–146 (2012)

Erratum to: Database Systems for Advanced
Applications

Shamkant B. Navathe1(&), Weili Wu2, Shashi Shekhar3,
Xiaoyong Du4, X. Sean Wang5, and Hui Xiong6

1 Georgia Institute of Technology, Atlanta, GA, USA
sham@cc.gatech.edu

2 University of Texas at Dallas, Richardson, TX, USA
3 University of Minnesota, Minneapolis, MN, USA

4 Renmin University, Beijing, China
5 Fudan University, Shanghai, China

6 Rutgers, The State University of New Jersey, New Brunswick, NJ, USA

Erratum to:
S.B. Navathe et al. (Eds.)
Database Systems for Advanced Applications
DOI: 10.1007/978-3-319-32049-6

In an older version of the papers starting on p. 149 and 299 of the DASFAA
proceedings (LNCS 9643), the authors’ affiliations were incorrect. This has been
corrected.

The updated original online version for this book can be found at 10.1007/978-3-319-32049-6

© Springer International Publishing Switzerland 2016
S.B. Navathe et al. (Eds.): DASFAA 2016, Part II, LNCS 9643, p. E1, 2016.
DOI: 10.1007/978-3-319-32049-6_29

http://dx.doi.org/10.1007/978-3-319-32049-6_29
http://dx.doi.org/10.1007/978-3-319-32049-6

Author Index

Abdessalem, Talel I-3
Agrawal, Divyakant II-113
Ahamed, Athiq I-463
Assent, Ira I-164

Berning, Tim II-267
B.K., Girish Kumar II-267
Bressan, Stéphane I-3

Cai, Zhihua I-229
Cai, Zhipeng II-82
Cao, Wei II-419
Chan, Chee-Yong II-201
Cheema, Muhammad Aamir II-98
Chen, Enhong I-258, II-351, II-383
Chen, Guihai II-18
Chen, Hsinchun I-481
Chen, Lei II-314
Chen, Qun II-249
Chen, Wei II-3
Chen, Weikeng I-18
Chen, Wenping I-277
Chen, Xinhuan I-481
Chen, Yan I-364
Chen, Zhigang II-383
Cheng, Siyao I-67
Chu, Yan II-113
Cui, Tong II-181
Cui, Zhiming II-335

Deshmukh, Parag II-267
Dreseler, Markus II-267
Du, Cuilan I-432
Duan, Xiaoyi I-381, II-451

E, Haihong I-348
EI Abbadi, Amr II-113

Fan, Qi II-201
Fang, Chao II-249
Fang, Yili I-33
Faust, Martin II-267
Feng, Jianhua I-415

Feng, Ling I-297, II-367
Fu, Yanjie I-242

Gao, Hong I-67, I-82, II-49, II-82
Gao, Ming I-133
Gao, Xiaofeng II-18
Ge, Yong II-351
Gu, Binbin I-51, I-117
Guo, Danhuai II-437
Guo, Hao I-396
Guo, Haoming II-149

Haller, Armin I-533
Han, Ming I-297
He, Ming II-351
He, Zhenying II-67
Hohl, Adolf II-267
Hong, Xiaoguang I-313
Hosseini, Saeid I-330
Hu, Guoping II-383
Huai, Jinpeng I-33
Huang, Yan II-33
Hwang, Seung-won I-447

Ives, Zachary G. II-249

Jensen, Christian S. II-181
Jiang, Hanhan II-335
Jin, Cheqing II-133, II-403, II-451
Jin, Li II-367
Jin, Peiquan II-181

Kong, Chao I-133
Kulkarni, Pratima I-463

Lang, Bo I-242
Le, Anh I-164
Li, Bing I-197
Li, Deying I-277
Li, Guoliang I-33, I-51, I-415
Li, Haifeng I-149
Li, Hong I-258
Li, Jiajia II-314

Li, Jian II-419
Li, Jianhui II-437
Li, Jianzhong I-67, I-82, II-49, II-82
Li, Juanzi I-101
Li, Junpeng I-101
Li, Lei Thor I-330
Li, Lin I-364
Li, Peishan I-432
Li, Qi II-367
Li, Xiao-Li I-101, I-214
Li, Xin I-364
Li, Yangxi I-432
Li, Yanhui II-314
Li, Zhanhuai II-249
Li, Zhixu I-51, I-117, II-149, II-299
Liang, Jiaqing I-447
Liu, An I-117, II-299, II-335
Liu, Chengfei I-197, I-501
Liu, Guanfeng I-117, II-299
Liu, Guiquan I-364
Liu, Huiping II-403
Liu, Junming I-242
Liu, Kang II-283
Liu, Ling II-234
Liu, Qi I-258, I-396, II-383
Liu, Qing I-3
Liu, Shushu II-299
Liu, Yanchi I-242
Liu, Yu I-517
Liu, Yuping II-383
Liu, Zhi II-33
Lofi, Christoph I-463

Ma, Jiansong I-381
Mai, Son T. I-164
Makkar, Gaurav II-267
Mao, Jiali II-133

Ng, Wilfred I-18
Niu, Hongting I-242

Paik, Hye-young I-533
Peng, Zhaohui I-313
Peng, Zhiyong I-180
Plattner, Hasso II-267

Qian, Weining I-133
Qian, Zhihu II-149
Qin, Jianbin II-98
Qin, Lu II-299

Rastan, Roya I-533

S., Anusha II-267
Sabinasz, Daniel II-165
Sateesh Babu, Giduthuri I-214
Schwalb, David II-267
Seidl, Thomas II-165
Sha, Chaofeng I-381
Sheng, Victor S. II-335
Shepherd, John I-533
Shi, Yao I-101
Song, Junde I-348
Song, Meina I-348
Song, Qiuge II-133
Song, Shaoying II-283
Song, Wei II-98
Su, Yu II-383
Sun, Chao II-67
Sun, Hailong I-33
Sun, Wei II-149
Suo, Bo II-249

Tan, Chang II-351
Tan, Kian-Lee II-113, II-201
Tan, Zhaowei II-18
Tang, Shaojie II-18
Thakkar, Ravi I-463
Theodoratos, Dimitri I-180

Uysal, Merih Seran II-165

Wang, Bin I-197, I-501
Wang, Dong II-419
Wang, Guoren II-314
Wang, Hongzhi I-67, I-82, II-49
Wang, Jiang I-277
Wang, Jiaying I-501
Wang, Keqiang I-381
Wang, Qian II-181
Wang, Shan II-234
Wang, Wei I-447, II-98
Wang, Xiaoling I-381, II-451
Wang, Xinyu I-18
Wang, Yaxuan II-49
Wang, Yongcai I-277
Wang, Zhengkui II-113, II-201
Wang, Zhigang I-101
Wang, Zhuo II-249
Wei, Jinmao I-517

468 Author Index

Wei, Yang I-517
Wu, Huayu I-3
Wu, Jia I-229
Wu, Jian II-335
Wu, Le II-351
Wu, Runze II-383
Wu, Xiaoying I-180

Xiao, Yanghua I-447
Xie, Qing I-51
Xing, Chunxiao I-481
Xu, Bo I-447
Xu, Chen I-133
Xu, Guangdong I-364
Xu, Jennifer I-481
Xu, Jiajie II-149, II-335
Xu, Mengwen II-419
Xu, Tong I-396
Xu, Yang I-313
Xue, Yuanyuan II-367

Yan, Yan II-18
Yang, Guang I-313
Yang, Qiang I-117
Yang, Xiaochun I-197, I-501
Yang, Zhenglu I-517
Ye, Chen I-67
Yin, Dan II-82
Yu, Philip S. I-313
Yuan, Ye II-314
Yuan, Zihong I-3
Yue, Kun II-451

Zhang, Jiangtao I-101
Zhang, Meifan I-82
Zhang, Ning I-149

Zhang, Peng I-229
Zhang, Richong I-33
Zhang, Shile II-67
Zhang, Xiangliang I-51
Zhang, Xiangling I-432
Zhang, Xiao II-234
Zhang, Yi I-447
Zhang, Yong I-481
Zhang, Yongshan I-229
Zhang, Zhigang II-133
Zhao, Hongke I-258
Zhao, Lei I-117, II-3, II-299
Zhao, Peilin I-214
Zhao, Pengpeng I-117, II-299, II-335
Zhao, Xiangyu I-396
Zhao, Zhou I-18
Zheng, Cong I-348
Zheng, Kai II-149, II-299
Zhong, Zhuojian I-415
Zhou, Aoying I-133, I-381, II-133, II-403,

II-451
Zhou, Chuan I-229
Zhou, Jian I-51
Zhou, Ningnan II-234
Zhou, Rui I-197
Zhou, Xiaofang II-3
Zhou, Xuan II-234
Zhou, Yuanchun II-437
Zhu, Feida II-3
Zhu, Hengshu I-258
Zhu, Jia I-51
Zhu, Yan I-258
Zhu, Yingqiu II-437
Zhu, Yuqing I-277
Zhuang, Yan I-415
Zou, Zhaonian II-82, II-218, II-283

Author Index 469

	Preface
	Organization
	Contents – Part II
	Contents – Part I
	Social Networks
	When Peculiarity Makes a Difference: Object Characterisation in Heterogeneous Information Networks
	1 Introduction
	2 Related Work
	2.1 Heterogeneous Information Networks Analysis
	2.2 User Linkage and Entity Resolution
	2.3 Mining of Discriminative Features

	3 Problem Statement
	4 Baseline Method of COHIN
	4.1 Calculation of Feature Paths
	4.2 Measure Similarity

	5 Optimization
	6 Feature Score Based Prune Strategy
	7 Experiments
	7.1 Datasets
	7.2 Summary of Objects
	7.3 Performance on Entity Match
	7.4 Query Efficiency

	8 Conclusion
	References

	STH-Bass: A Spatial-Temporal Heterogeneous Bass Model to Predict Single-Tweet Popularity
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Problem Statement
	3.2 Data Analysis

	4 The Heterogeneous Bass Model
	5 Experiments
	5.1 Predicting Trends
	5.2 Predicting Popularity

	6 Conclusion
	References

	Closeness and Structure of Friends Help to Estimate User Locations
	1 Introduction
	2 Related Work
	3 Network Structure and Geographic Features
	3.1 Friend Distribution of an Individual
	3.2 Friend Distribution of Connected Pairs
	3.3 Structure of an Individual's Friends in a City

	4 Social Closeness and Social Structure-Based Model (SoSS)
	4.1 Iteration with Confidence-Based Improvement
	4.2 Complexity

	5 Experiments
	5.1 Methods
	5.2 The Results of Experiment

	6 Conclusion
	References

	Efficient Influence Maximization in Weighted Independent Cascade Model
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 WIC Model and Its Greedy Algorithm
	2.1 Problem Definition
	2.2 The Basic Greedy Algorithm

	3 Weight Reset Algorithm
	3.1 Pre-treatment
	3.2 Node Selection
	3.3 Bounded Weighted Reset Algorithm

	4 Experiments
	4.1 Experimental Settings
	4.2 Comparison Between IC and WIC
	4.3 Comparison of Algorithms
	4.4 The Impact of

	5 Conclusion
	References

	Complex Queries
	ListMerge: Accelerating Top-k Aggregation Queries Over Large Number of Lists
	1 Introduction
	2 Related Works
	3 Preliminaries
	3.1 Data Model
	3.2 Threshold Algorithm

	4 Merge Strategy for TA-style Algorithms
	5 Cost Model
	5.1 Cost Model for TA-style Algorithms Using Merge Strategy
	5.2 Merge Cost
	5.3 Algorithm Execution Cost

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Performance Study

	7 Conclusion
	References

	Approximate Iceberg Cube on Heterogeneous Dimensions
	1 Introduction
	2 Preliminaries
	2.1 Heterogeneous Information Networks
	2.2 Meta-path
	2.3 Cuboid
	2.4 Iceberg Cube

	3 Optimal Model for Strict Case
	3.1 Iceberg Cube

	4 A General Approximate Algorithm
	5 Pruning Strategy
	5.1 Prune 1
	5.2 Prune 2

	6 Experiments
	6.1 Datasets
	6.2 Experiments on DBLP Dataset
	6.3 Scalable Experiments on Synthetic Networks

	7 Related Work
	8 Conclusions
	References

	Pre-computed Region Guardian Sets Based Reverse kNN Queries
	1 Introduction
	2 Related Works
	3 Techniques
	3.1 Computing Guardian Set of a Rectangular Region
	3.2 Partition Universe
	3.3 Region R's Guardian Set w.r.t k is Compatible for k' s.t. k'K

	4 Query Processing
	5 Experimental Study
	5.1 Experimental Setup
	5.2 Evaluating Query Performance
	5.3 Evaluating Pre-computation Algorithm
	5.4 PRE is Efficient Whatever I/O Penalty Charged

	6 Conclusion
	References

	HaCube: Extending MapReduce for Efficient OLAP Cube Materialization and View Maintenance
	1 Introduction
	2 HaCube: The Big Picture
	2.1 Architecture
	2.2 Computation Paradigm

	3 Cube Materialization
	3.1 Cuboid Computation Sharing
	3.2 Plan Generator
	3.3 Implementation of CubeGen

	4 View Maintenance
	4.1 Supporting View Maintenance in MR
	4.2 HaCube Design Principles
	4.3 Supporting View Maintenance in HaCube

	5 Performance Evaluation
	5.1 Cube Materialization Evaluation
	5.2 View Maintenance Evaluation

	6 Related Work
	7 Conclusion
	References

	Similarity Computing
	TSCluWin: Trajectory Stream Clustering over Sliding Window
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 General Framework of TSCluWin
	4.1 Maintenance of EFs
	4.2 Elimination of Expired Records and Merging of EFs
	4.3 Macro-Cluster Creation
	4.4 Performance Analysis

	5 Experiments
	5.1 Dataset
	5.2 Effectiveness
	5.3 Execution Time
	5.4 Memory Usage

	6 Conclusion
	References

	On Efficient Spatial Keyword Querying with Semantics
	1 Introduction
	2 Preliminaries and Problem Definition
	2.1 Probabilistic Topic Model
	2.2 Problem Definition

	3 Baseline Algorithms
	3.1 Quadtree Based Algorithm
	3.2 MHR-tree Based Algorithm

	4 NIQ-tree Based Algorithm
	5 Experiment Study
	5.1 Experiment Settings
	5.2 Performance Evaluation

	6 Related Work
	7 Conclusion
	References

	Approximation-Based Efficient Query Processing with the Earth Mover's Distance
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Approximations for the EMD-based Query Processing
	5 Experiments
	6 Conclusion
	References

	Effective Similarity Search on Indoor Moving-Object Trajectories
	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Indoor Space
	2.2 Similarity Search in Indoor Spaces

	3 Indoor Trajectory Similarity
	3.1 Critical Point Based Spatial Similarity
	3.1.1 Critical Point
	3.1.2 Indoor Distance

	3.2 Hierarchical Semantic Similarity
	3.2.1 Semantic Classification Tree
	3.2.2 Hierarchical Semantic Patterns
	3.2.3 Semantic Similarity

	4 Experiment
	4.1 Experimental Setup
	4.2 Results
	4.2.1 Precision
	4.2.2 Average Distance
	4.2.3 Time Performance
	4.2.4 Impact of Parameter a
	4.2.5 Comparison with Cosine Similarity

	5 Related Work
	6 Conclusions
	Acknowledgement
	References

	Graph Databases
	Towards Neighborhood Window Analytics over Large-Scale Graphs
	1 Introduction
	2 Problem Formulation
	3 Dense Block Index
	3.1 Query Processing Using DBIndex
	3.2 DBIndex Construction

	4 Experimental Evaluation
	4.1 Index Construction Optimization
	4.2 Comparison Between DBIndex and EAGR

	5 Related Work
	6 Conclusion
	References

	Bitruss Decomposition of Bipartite Graphs
	1 Introduction
	2 Related Work
	3 Bitruss Decomposition Problem
	4 Bitruss Decomposition Algorithm
	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusions
	References

	An I/O-Efficient Buffer Batch Replacement Policy for Update-Intensive Graph Databases
	1 Introduction
	2 Related Work
	2.1 Data Organization
	2.2 Computational Model
	2.3 Buffer Manager on Database

	3 Batch Replacement Buffer Manager
	3.1 Problem Formulation
	3.2 Overview
	3.3 Segment Tree Based Buffer Manager

	4 Experiment
	4.1 Experimental Setting
	4.2 Performance Comparison
	4.3 Property of Batch Replacement

	5 Conclusion
	References

	Parallelizing Maximal Clique Enumeration Over Graph Data
	1 Introduction
	2 Preliminaries
	2.1 Definition: Clique and Maximal Clique
	2.2 Background: MapReduce
	2.3 Existing Parallel Solutions

	3 Sequential Solution
	3.1 Idea: Graph Partitioning
	3.2 Sequential Algorithm

	4 Parallel Solution
	4.1 Parallel Algorithm
	4.2 MapReduce Implementation

	5 Experimental Evaluation
	5.1 Evaluation of Sequential Algorithms
	5.2 Evaluation of Parallel Solution

	6 Related Work
	7 Conclusion
	References

	Miscellaneous
	Hyrise-NV: Instant Recovery for In-Memory Databases Using Non-Volatile Memory
	1 Introduction
	2 HYRISE Architecture
	3 Hyrise-NV: Adding NVM-support to Hyrise
	3.1 Modifications to Transaction Handling
	3.2 nvBTree: An Index Structure for NVM
	3.3 Recovery from NVM

	4 Experimental Evaluation
	4.1 Recovery Time
	4.2 Runtime Performance
	4.3 Hardware Emulation
	4.4 Index Micro Benchmarks

	5 Related Work
	6 Conclusion and Future Work
	References

	Triangle-Based Representative Possible Worlds of Uncertain Graphs
	1 Introduction
	2 Preliminaries
	3 Triangle-Based Representative Possible Worlds
	4 Finding Triangle-Based Representative Possible Worlds
	4.1 Basics
	4.2 Algorithm

	5 Experimental Evaluation
	6 Related Work
	7 Conclusions
	References

	Efficient Query Processing with Mutual Privacy Protection for Location-Based Services
	1 Introduction
	2 Related Work
	3 Privacy-Preserving Location-Based Query Processing
	3.1 System Model
	3.2 Approach Overview
	3.3 Protocol
	3.4 Correctness and Security Analysis

	4 Performance Analysis
	4.1 Computation Cost
	4.2 Communication Cost

	5 Experimental Evaluation
	6 Conclusion
	References

	Semantic-Aware Location Privacy Preservation on Road Networks
	1 Introduction
	2 Problem Definition
	2.1 Road Network
	2.2 Privacy Preservation Model
	2.3 Algorithmic Framework of Anonymization

	3 Segment Allocation
	4 Online Cloaking Phase
	4.1 Index Structure
	4.2 The Cloaking Algorithm

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	References

	Advanced Applications(2)
	An Efficient Location-Aware Top-k Subscription Matching for Publish/Subscribe with Boolean Expressions
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 A Baseline Solution
	5 RRt-trees Solution
	5.1 RRt-tree Index Structure
	5.2 RRt-trees Index Structure

	6 Similarity Upper Bound of RRt-tree and RRt-trees Solution
	7 Matching Algorithm
	8 Experiments
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Conclusion
	References

	Predicting the Popularity of DanMu-enabled Videos: A Multi-factor View
	1 Introduction
	2 Related Work
	3 Data and Statistics
	3.1 DanMu Illustration and Data Collection
	3.2 Volume Distributions

	4 The Proposed Model
	4.1 Dynamic Herding Effect from Multiple Aspects
	4.2 Predicting Model on Videos
	4.3 Parameters Learning Algorithm

	5 Evaluation
	5.1 Comparison Models
	5.2 Validating Popularity Growth Models
	5.3 Impact of Different Video Features
	5.4 Describing Herding Effect

	6 Conclusions
	References

	Integrating Human Mobility and Social Media for Adolescent Psychological Stress Detection
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Framework Overview
	5 Feature Extraction
	5.1 Trajectory Outlier Feature Space
	5.2 Tweet Feature Space

	6 Model and Learning
	6.1 Co-Training
	6.2 Trajectory-Based CRF Classifier
	6.3 Tweet-Based DNN Classifier

	7 Experiments
	7.1 Experiment Setting
	7.2 Experimental Results

	8 Conclusion
	References

	Collaborative Learning Team Formation: A Cognitive Modeling Perspective
	1 Introduction
	2 Related Work
	2.1 Student Modeling
	2.2 Team Formation

	3 Collaborative Learning Team Formation
	3.1 Cognitive Modeling of Students' Skill Proficiency
	3.2 Collaborative Learning Team Formation

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation on Student Modeling
	4.3 Evaluation on Feature Selection
	4.4 Evaluation on Team Formation

	5 Discussion
	6 Conclusion
	References

	Advanced Applications(1)
	Popular Route Planning with Travel Cost Estimation
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Popular Traverse Graph
	4.1 Constructing the Popular Traverse Graph
	4.2 Modeling Travel Cost Using the MDL Principle

	5 Route Planning on the Popular Traverse Graph
	5.1 Routing Algorithm
	5.2 Indexing for Non-trivial Popular Routes
	5.3 Computing the Optimal Concatenation

	6 Experiments
	6.1 Effectiveness
	6.2 Efficiency

	7 Conclusion
	References

	ETCPS: An Effective and Scalable Traffic Condition Prediction System
	1 Introduction
	2 Preliminary
	3 Useful Observations
	4 System Overview
	5 Predicting the Traffic Condition with PR-Tree
	5.1 Description of PR-Tree
	5.2 Training PR-Trees

	6 Predicting Traffic Condition with STPGM
	6.1 States of STPGM
	6.2 Parameter Learning
	6.3 Prediction

	7 Model Extensions
	8 Experimental Study
	8.1 Experiment Setting
	8.2 Pre-processing
	8.3 Performance Evaluation

	9 Related Work
	10 Conclusion
	References

	Species Distribution Modeling via Spatial Bagging of Multiple Conditional Random Fields
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Proposed Approach
	4.1 Individual Conditional Random Fields
	4.2 Model Inference with Constraint

	5 Features
	5.1 Temperature
	5.2 NDVI
	5.3 Elevation
	5.4 Distance

	6 Experiment
	6.1 Dataset
	6.2 Experiment Settings
	6.3 Results

	7 Conclusion and Future Works
	References

	Real-Time Personalized Taxi-Sharing
	1 Introduction
	2 Preliminaries
	3 The Framework
	4 Offline Phase
	5 Online Phase
	5.1 Bound Analysis of the WPF Plan
	5.2 Bound Analysis of the TRF Plan
	5.3 Pruning Rules and Query Processing

	6 Experiments
	6.1 Effectiveness
	6.2 Efficiency

	7 Related Work
	8 Conclusion
	References

	Author Index
	420200_1_En_29_Chapter_OnlinePDF.pdf
	Erratum to: Database Systems for Advanced Applications
	Erratum to: S.B. Navathe et al. (Eds.) Database Systems for Advanced Applications DOI: 10.1007/978-3-319-32049-6

