
Towards Automatic Composition
of Multicomponent Predictive Systems

Manuel Martin Salvador(B), Marcin Budka, and Bogdan Gabrys

Data Science Institute, Bournemouth University, Poole, UK
{msalvador,mbudka,bgabrys}@bournemouth.ac.uk

Abstract. Automatic composition and parametrisation of multicompo-
nent predictive systems (MCPSs) consisting of chains of data transfor-
mation steps is a challenging task. In this paper we propose and describe
an extension to the Auto-WEKA software which now allows to com-
pose and optimise such flexible MCPSs by using a sequence of WEKA
methods. In the experimental analysis we focus on examining the impact
of significantly extending the search space by incorporating additional
hyperparameters of the models, on the quality of the found solutions.
In a range of extensive experiments three different optimisation strate-
gies are used to automatically compose MCPSs on 21 publicly available
datasets. A comparison with previous work indicates that extending the
search space improves the classification accuracy in the majority of the
cases. The diversity of the found MCPSs are also an indication that fully
and automatically exploiting different combinations of data cleaning and
preprocessing techniques is possible and highly beneficial for different
predictive models. This can have a big impact on high quality predic-
tive models development, maintenance and scalability aspects needed in
modern application and deployment scenarios.

Keywords: KDD process · CASH problem · Bayesian optimisation ·
Data mining and decision support systems · Data preprocessing

1 Introduction

Performance of data-driven predictive models heavily relies on the quality and
quantity of data used to build them. However, in real applications, even if data is
abundant, it is also often imperfect and considerable effort needs to be invested
into a labour-intensive task of cleaning and preprocessing such data in prepara-
tion for subsequent modelling. Some authors claim that these tasks can account
for as much as 60–80 % of total time spent on development of a predictive
model [1,2]. Therefore, approaches and practical techniques that allow to reduce
this effort by at least partially automating some of the data preparation steps,
can potentially transform the way in which predictive models are typically built.

In many scenarios one needs to sequentially apply multiple preprocessing
methods to the same data (e.g. outlier detection → missing value imputation →
c© Springer International Publishing Switzerland 2016
F. Mart́ınez-Álvarez et al. (Eds.): HAIS 2016, LNAI 9648, pp. 27–39, 2016.
DOI: 10.1007/978-3-319-32034-2 3



28 M. Martin Salvador et al.

dimensionality reduction), effectively forming a preprocessing chain. Composi-
tion of a preprocessing chain is a challenging problem that has been addressed
in different fields (e.g. clinical data [3,4], historical documents [5] and process
industry [6]). Despite these works attempting to be as abstract as possible, the
frameworks they propose are optimised for a particular case study. Hence their
underlying approaches are lacking in the context of cross-domain generalisation,
and potentially require additional manual work to improve the results.

After the data has been pre-processed in an appropriate way, the next step
in a data mining process is modelling. Similarly to preprocessing, this step can
also be very time-consuming, requiring evaluation of multiple alternative models.
Hence automatic model selection has been attempted in different ways, e.g. active
testing [7], meta-learning [8] and information theory [9]. A common theme in the
literature is comparison of different models using data always pre-processed in
the same way. However, some models may perform better if they are built using
data specifically pre-processed with a particular model type in mind.

Hyper-parameter optimisation is an additional step which is usually per-
formed after the model has been selected (see e.g. [10–12]). However, the prob-
lem is in fact very similar to model selection since different parametrisations
of the same model (e.g. different kernels in an SVM, different structures of a
neural network) can be treated as different models. Therefore it makes sense to
approach both model and hyper-parameter selection problems jointly. The Com-
bined Algorithm Selection and Hyper-parameter optimisation (CASH) problem
was presented in [13]. A limitation of that study was the use of only two native
types of attributes (i.e. numerical and categorical). This paper extends the app-
roach presented in [13] to support complex categorical attributes, which consists
of a WEKA class and therefore can contain additional hyper-parameters.

We refer to a sequence of preprocessing steps followed by a machine learn-
ing model as a multicomponent predictive system (MCPS). The motivation for
automating composition of MCPS is twofold. In the first instance it will help to
reduce the amount of time spent on such activities and therefore allow to ded-
icate the human expertise to other tasks. The second motivation is to achieve
better results than a human expert could, given a limited amount of time. The
number of possible methods and hyperparameter combinations increases expo-
nentially with the number of components in an MCPS and in majority of cases
it is not computationally feasible to evaluate all of them.

This paper is organised as follows. The next section reviews previous work
in automating the CASH problem and available software. Section 3 describes
multicomponent predictive systems and the challenges related to automation of
their composition. In Sect. 4, our contributions to Auto-WEKA software, now
allowing to optimise additional hyperparameters, are presented. The methodol-
ogy used to automate MCPS composition is discussed in Sect. 5 followed by the
results in Sect. 6, and conclusions in Sect. 7.



Towards Automatic Composition of Multicomponent Predictive Systems 29

2 Related Work

The Combined Algorithm Selection and Hyper-parameter configuration (CASH)
problem [13] consists of finding the best combination of learning algorithm A∗

and hyperparameters λ∗ that optimise an objective function L (e.g. Eq. 1 min-
imises the k-fold cross-validation error) for a given dataset D. Formally, CASH
problem is given by:

A∗
λ∗ ∈ argmin

A(j)∈A,λ∈Λ(j)

1
k

k∑

i=1

L(A(j)
λ ,D(i)

train,D(i)
valid) (1)

where A = {A(1), . . . , A(k)} is a set of algorithms with associated hyper-
parameter spaces Λ(1), . . . , Λ(k). The loss function L takes as arguments an
algorithm configuration Aλ (i.e. an instance of a learning algorithm and hyper-
parameters), a training set Dtrain and a validation set Dvalid.

The CASH problem can be approached in different ways. One example is grid
search – an exhaustive search over all the possible combinations of discretized
parameters. Such technique can however be computationally prohibitive in large
search spaces or with big datasets. Instead, a simpler mechanism like random
search, where the search space is randomly explored in a limited amount of time,
has been shown to be more effective in high-dimensional spaces [12].

A promising approach that is gaining popularity in the last years is Bayesian
optimization [14]. In particular, Sequential Model-Based Optimization (SMBO)
[15] is a framework that incrementally builds a regression model using instances
formed of an algorithm configuration λ and its predictive performance c. Such a
model is then used to explore promising candidate configurations.

Examples of SMBO methods are SMAC (Sequential Model-based Algorithm
Configuration [15]) and TPE (Tree-structure Parzen Estimation [16]). SMAC
models p(c|λ) using a random forest, while TPE maintains separate models for
p(c) and p(λ|c). Both methods support continuous, categorical and conditional
attributes (i.e. attributes whose presence in the optimisation problem depend
on the values of some other attributes – e.g. Gaussian kernel width parameter
in SVM is only present if SVM is using Gaussian kernels).

Two other methods falling into the same category are ROAR (Random
Online Aggressive Racing [15]) which randomly selects the set of candidates
instead of using a regression model, and Spearmint [17] which uses Gaussian
processes to model p(c|λ) similarly to SMAC. However, due to their limitations
(it has been shown that SMAC outperforms ROAR [15], while Spearmint does
not support conditional attributes) we are not using these methods in this study.

Currently available software tools supporting SMBO methods are:

– SMAC1 [15] tool, which includes both SMAC and ROAR methods.
– Hyperopt2 [16] is a Python library including random search and TPE.

1 http://www.cs.ubc.ca/labs/beta/Projects/SMAC.
2 https://github.com/hyperopt/hyperopt.

http://www.cs.ubc.ca/labs/beta/Projects/SMAC
https://github.com/hyperopt/hyperopt


30 M. Martin Salvador et al.

– HPOLib3 [18] is a wrapper for SMAC, TPE and Spearmint methods.
– Auto-Sklearn4 [19] uses HPOLib and meta-learning to automate the selection

of scikit-learn methods.
– Auto-WEKA5 [13] allows to use either SMAC or TPE to automatically select

and optimise 39 classifiers and 24 possible feature selection methods included
in WEKA6.

3 MCPS Description

A multicomponent predictive system can be represented as a directed acyclic
graph, where the vertices correspond to data transformations and the edges
represent the flow of data between the components. In this study we focus on
MCPSs of the F = 〈f1, ..., fN 〉 form, which as shown in Fig. 1, are directed linear
graphs of length N . The components f1 to fN−1 are preprocessing methods while
component fN is either a predictive model or an ensemble of models. Although
post-processing methods can also be included as additional components, without
the loss of generality, we are not investigating such MCPSs here.

Fig. 1. N-component predictive system

The ith component is a function Di = fi(Di−1) that takes a data frame Di−1

as input and returns a data frame Di. Such data frames can have any size and
contain any type of data (e.g. continuous or categorical). However, values of a
single column are assumed to be of identical type.

The connection between components must be consistent, i.e. output of com-
ponent fn must be compatible with the input of fn+1. For example, if component
fn+1 cannot handle missing values, output from fn should not contain any.

Typically, the first component receives the raw data as input, and the last
component returns the predictions (i.e. a label in case of classification problems
or a continuous value in regression problems). The number of components in an
MCPS can vary from 1 (i.e. when no preprocessing is used) to N ∈ N>1. Some
flows in OpenML experiments repository7 contain up to 7 components, while
data mining tools like RapidMiner or Knime allow building even longer flows.

3 https://github.com/automl/hpolib.
4 https://github.com/mfeurer/auto-sklearn.
5 http://www.cs.ubc.ca/labs/beta/Projects/autoweka.
6 An open-source data mining package developed at the University of Waikato.
7 http://openml.org.

https://github.com/automl/hpolib
https://github.com/mfeurer/auto-sklearn
http://www.cs.ubc.ca/labs/beta/Projects/autoweka
http://openml.org


Towards Automatic Composition of Multicomponent Predictive Systems 31

An MCPS can be seen as a type of workflow that can be found in platforms
like Taverna8. However, we prefer to avoid such generic term in this paper in
order to highlight the predictive nature of this type of systems.

Building an MCPS is typically a manual process. Even though some efforts
are being made to automate such process (see e.g. [20] for a survey), a reliable
fully automated approach is still far from being available.

The main reason that makes MCPS composition a challenging problem is
the potentially huge size of the search space. To begin with, the undetermined
number of components can make the flow very simple or very complex. Secondly,
we do not know a priori the order in which the components have to be connected.
Also, the type of each hyper-parameter can be either continuous, categorical or
conditional. Therefore, defining a range for each of the hyperparameters is an
additional problem in itself.

The search space size can be reduced by applying constraints like limiting the
number of components, restricting the list of methods using meta-learning [21],
prior knowledge [22] or surrogates [23].

In this paper we use the predictive performance as a single optimisation
objective. We note however, that some problems may require to optimise several
objectives at the same time (e.g. error rate, model complexity and runtime [24]).

4 Contribution to Auto-WEKA

Auto-WEKA is a software developed by Thornton et al. [13] which allows algo-
rithm selection and hyper-parameter optimisation both in regression and clas-
sification problems. The current Auto-WEKA version is 0.5 and it provides an
interface for a CASH problem, where the search space is defined by WEKA
predictors and feature selection methods. Available optimisation strategies are
SMAC and TPE.

We have developed a new feature consisting of automatic expansion of WEKA
classes during the creation of the search space. That is, if a hyper-parameter is
a category formed of several WEKA classes, Auto-WEKA will now add the
hyperparameters of such class recursively. For example, the kernel of an SVM
classifier can be either NormalizedPolyKernel, PolyKernel, Puk, or RBFKernel;
and each of them contains different hyperparameters.

While the space restriction does not allow us to include more implementation
details, all the scripts for the analysis of the extended Auto-WEKA results such
as the creation of plots and tables have been also released in our repository9.

5 Methodology

The three main characteristics which define a CASH problem are: (a) the search
space, (b) the objective function and (c) the optimisation algorithm.

In this study we have considered two search spaces:
8 http://www.taverna.org.uk.
9 https://github.com/dsibournemouth/autoweka.

http://www.taverna.org.uk
https://github.com/dsibournemouth/autoweka


32 M. Martin Salvador et al.

– PREV: This is the search space used in [13] where predictors and meta-
predictors (which take outputs from one or more base predictive models as
their input) were considered (756 hyperparameters). Feature selection is also
performed as a preprocessing step before the optimisation process (30 hyper-
parameters). We use it as a baseline.

– NEW: This search space only includes predictors and meta-predictors. In con-
trast with PREV space, no preprocessing steps are involved. Instead, we take
into account that a categorical hyperparameter can be either simple or com-
plex (i.e. when it contains WEKA classes). In the latter case, we increase
the search space by adding recursively the hyperparameters of each method
belonging to such complex parameter (e.g. the ‘DecisionTable’ predictor con-
tains a complex hyperparameter whose values are three different types of
search methods with further hyperparameters). That extension increases the
search space to 1186 hyperparameters.

Table 1. Datasets, number of continuous attributes, number of categorical attributes,
number of classes, number of instances, and percentage of missing values.

Dataset Cont Disc Class Train Test %Miss

abalone 7 1 28 2924 1253 0

amazon 10000 0 50 1050 450 0

car 0 6 4 1210 518 0

cifar10 3072 0 10 50000 10000 0

cifar10small 3072 0 10 10000 10000 0

convex 784 0 2 8000 50000 0

dexter 20000 0 2 420 180 0

dorothea 100000 0 2 805 345 0

germancredit 7 13 2 700 300 0

gisette 5000 0 2 4900 2100 0

kddcup09app 192 38 2 35000 15000 69.47

krvskp 0 36 2 2238 958 0

madelon 500 0 2 1820 780 0

mnist 784 0 10 12000 50000 0

mnistrot 784 0 10 12000 50000 0

secom 590 0 2 1097 470 4.58

semeion 256 0 10 1116 477 0

shuttle 9 0 7 43500 14500 0

waveform 40 0 3 3500 1500 0

wineqw 11 0 11 3429 1469 0

yeast 8 0 10 1039 445 0



Towards Automatic Composition of Multicomponent Predictive Systems 33

The objective function guides the optimisation process. Since the datasets we
use in our experiments are intended for classification, we have chosen to minimise
the classification error averaged over 10 cross-validation folds.

Two SMBO strategies (SMAC and TPE) have been compared against two
baselines (WEKA-Def and random search). The following experimental scenarios
have been devised:

– WEKA-Def: All the predictors and meta-predictors are run using WEKA’s
default hyperparameter values. Filters are not included in this strategy,
although some predictors may perform specific preprocessing steps as part
of their default behaviour.

– Random search: The whole search space is randomly explored allowing 30
CPU-hours for the process.

– SMAC and TPE: An initial configuration is randomly selected and then the
optimiser is run for 30 CPU-hours to explore the search space in an intelligent
way, allowing for comparison with the random search.

In order to compare our results with the ones presented in [13] we have
replicated the experimental settings as closely as possible. We have evaluated
different optimisation strategies over 21 well-known datasets representing classi-
fication tasks (see Table 1). For each strategy we performed 25 runs with different
random seeds and a 30 CPU-hours optimisation time limit. In case a configura-
tion exceeds 30 min or 3 GB of RAM to evaluate, it is stopped and not considered
further. Once the optimisation process has finished, the returned configuration
is used to build a model using the whole training set and produce predictions
over the testing set.

6 Results and Discussion

Classification performance for each dataset are presented in Tables 2 and 3, which
show the 10-fold cross-validation error and the test error achieved by each strat-
egy, respectively. Random search, SMAC and TPE results have been calculated
using the mean of 100,000 bootstrap samples (i.e. randomly selecting 4 out of
the 25 runs and keeping the one with the lowest cross-validation error in order
to simulate a 4-core CPU), while only the lowest errors are reported for WEKA-
Def. PREV columns contain the values reported in [13], while NEW columns
contain the results of the strategies using extended search space investigated in
this paper. An upward arrow indicates an improvement when using extended
search space (NEW) in comparison to previous results (PREV) reported in [13].
Boldfaced values indicate the lowest classification error for each dataset.



34 M. Martin Salvador et al.

Table 2. 10-fold Cross Validation error (% missclassification). An upward arrow indi-
cates an improvement with respect to PREV space. Boldfaced values indicate the lowest
classification error for each dataset.

Dataset WEKA-DEF RANDOM SMAC TPE

PREV = NEW PREV NEW PREV NEW PREV NEW

abalone 73.33 72.03 72.53 71.71 72.21 72.14 72.01 ↑
amazon 43.94 59.85 45.72 ↑ 47.34 39.57 ↑ 50.26 40.27 ↑
car 2.71 0.53 0.47 ↑ 0.61 0.38 ↑ 0.91 0.21 ↑
cifar10 65.54 69.46 58.89 ↑ 62.36 56.44 ↑ 67.73 55.59 ↑
cifar10small 66.59 67.33 60.45 ↑ 58.84 57.90 ↑ 58.41 56.56 ↑
convex 28.68 33.31 25.02 ↑ 25.93 21.88 ↑ 28.56 23.19 ↑
dexter 10.20 10.06 7.54 ↑ 5.66 6.42 9.83 6.19 ↑
dorothea 6.03 8.11 6.25 ↑ 5.62 5.95 6.81 5.92 ↑
germancredit 22.45 20.15 21.31 17.87 19.65 21.56 19.88 ↑
gisette 3.62 4.84 2.30 ↑ 2.43 2.21 ↑ 3.55 2.35 ↑
kddcup09app 1.88 1.75 1.80 1.70 1.80 1.88 1.80 ↑
krvskp 0.89 0.63 0.42 ↑ 0.30 0.28 ↑ 0.43 0.31 ↑
madelon 25.98 27.95 19.20 ↑ 20.70 15.61 ↑ 24.25 16.03 ↑
mnist 5.12 5.05 3.78 ↑ 3.75 3.50 ↑ 10.02 3.60 ↑
mnistr 66.15 68.62 58.10 ↑ 57.86 55.73 ↑ 73.09 57.17 ↑
secom 6.25 5.27 5.85 5.24 6.01 6.21 5.85 ↑
semeion 6.52 6.06 4.82 ↑ 4.78 4.48 ↑ 6.76 4.28 ↑
shuttle 0.0328 0.0345 0.0121 ↑ 0.0224 0.0112 ↑ 0.0251 0.0104 ↑
waveform 12.73 12.43 12.50 11.92 12.33 12.55 12.43 ↑
wineqw 38.94 35.36 33.08 ↑ 34.65 32.64 ↑ 35.98 32.67 ↑
yeast 39.43 38.74 37.16 ↑ 35.51 36.50 35.01 36.17

As shown in the tables, in the majority of the cases, expanding the search
space has been beneficial for finding better solutions (i.e. NEW < PREV). The
potential negative impact on predictive accuracy by optimising many more para-
meters has not been observed. Although, we still found some cases with higher
classification error (i.e. NEW > PREV).

Figure 2 compares CV error and test error for all the runs. Although both
errors are in general consistent, we found some cases in which the model seems
to overfit. That is the case for example in ‘germancredit’ and ‘amazon’ datasets.
A possible explanation is given below, at the end of this section.

The best MCPSs found for each dataset are reported in Table 4. Each row of
this table represents a sequence of data transformations and predictive models.
It is not feasible to include all the hyperparameters in the table due to limited
space, but they do play a crucial role in the final performance. We can see that
all the MCPSs include at least one or more preprocessing steps.



Towards Automatic Composition of Multicomponent Predictive Systems 35

Fig. 2. CV vs Test error of all runs

Fig. 3. Range of CV errors for ‘amazon’

As shown in Table 4 the solutions found are quite diverse for different datasets
but they often also vary a lot across the 25 random seed runs performed for
each dataset. In order to better understand all of the observed differences in
the MCPSs found we have therefore also measured the average pairwise simi-
larity of the 25 MCPSs found for each dataset and the variance between their
performances. While in this paper there is no space for full analysis or explana-
tion of how the pairwise similarity was measured, below we have selected three
interesting cases for a brief discussion:

– Low error variance and high MCPS similarity. Most of the best solutions
found follow a very similar sequence of methods. Therefore similar classifi-
cation performance is to be expected. For example, a repeated sequence in
‘wineqw’ dataset with SMAC optimisation is RandomForest (22/25) → Mul-
tiClassClassifier (8/25).



36 M. Martin Salvador et al.

Table 3. Test error (% missclassification). An upward arrow indicates an improvement
with respect to PREV space. Boldfaced values indicate the lowest classification error
for each dataset.

Dataset DEF RANDOM SMAC TPE

PREV = NEW PREV NEW PREV NEW PREV NEW

abalone 73.18 74.88 72.92 ↑ 73.51 73.41 ↑ 72.94 73.04

amazon 28.44 41.11 39.22 ↑ 33.99 36.26 36.59 35.69 ↑
car 0.7700 0.0100 0.1300 0.4000 0.0526 ↑ 0.1800 0.0075 ↑
cifar10 64.27 69.72 58.23 ↑ 61.15 55.54 ↑ 66.01 54.88 ↑
cifar10small 65.91 66.12 59.84 ↑ 56.84 57.87 57.01 56.41 ↑
convex 25.96 31.20 24.75 ↑ 23.17 21.31 ↑ 25.59 22.62 ↑
dexter 8.89 9.18 8.29 ↑ 7.49 7.31 ↑ 8.89 6.90 ↑
dorothea 6.96 5.22 5.27 6.21 5.12 ↑ 6.15 5.25 ↑
germancredit 27.33 29.03 25.40 ↑ 28.24 25.42 ↑ 27.54 25.49 ↑
gisette 2.81 4.62 2.28 ↑ 2.24 2.34 3.94 2.37 ↑
kddcup09app 1.7405 1.74 1.72 ↑ 1.7358 1.74 1.7381 1.74

krvskp 0.31 0.58 0.34 ↑ 0.31 0.23 ↑ 0.54 0.36 ↑
madelon 21.38 24.29 19.10 ↑ 21.56 16.80 ↑ 21.12 16.91 ↑
mnist 5.19 5.05 4.00 ↑ 3.64 4.10 12.28 3.96 ↑
mnistr 63.14 66.4 57.16 ↑ 57.04 54.86 ↑ 70.20 56.31 ↑
secom 8.09 8.03 7.88 ↑ 8.01 7.87 ↑ 8.10 7.84 ↑
semeion 8.18 6.10 4.78 ↑ 5.08 5.10 8.26 4.91 ↑
shuttle 0.0138 0.0157 0.0071 ↑ 0.0130 0.0070 ↑ 0.0145 0.0069 ↑
waveform 14.40 14.27 14.26 ↑ 14.42 14.17 ↑ 14.23 14.34

wineqw 37.51 34.41 32.99 ↑ 33.95 32.90 ↑ 33.56 32.93 ↑
yeast 40.45 43.15 37.68 ↑ 40.67 37.60 ↑ 40.10 37.89 ↑

– Low error variance and low MCPS similarity. Despite having different solu-
tions, classification performance in a group of analysed datasets does not vary
much. This can mean that the classification problem is not difficult and a
range of different models can perform well on it. This is for instance the case
of the solutions found by using random search for the ‘secom’ dataset.

– High error variance and low MCPS similarity. In such cases, there are many
differences between both the best MCPSs found and their classification per-
formances. For instance, it is the case of ‘amazon’ dataset (with 50 different
classes) for which a high error variance was observed in all of the optimisation
strategies (see Fig. 3 for CV error and Fig. 2 for test error). We believe such
difference likely results from a combination of difficulty of the classification
task (i.e. high input dimensionality, large number of small classes) and/or an
insufficient exploration from the random starting configuration in a very large
search space.



Towards Automatic Composition of Multicomponent Predictive Systems 37

Table 4. Best MCPS for each dataset and its test error. MC = Remove instances
with missing class. MV = Remove/Replace instances with missing values. N2B =
NominalToBinary. NOR = Normalization. DIS = Discretize. FS = Random Feature
Selection. BAG = Bagging. BOOST = Boosting.

Dataset MC MV N2B NOR DIS FS BAG BOOST Predictor Meta-predictor Error

abalone • • • • MLP RandomCommittee 71.43

amazon • • • • SimpleLogistic RandomSubSpace 26.67

car • • • • • SMO AdaBoostM1 0.00

cifar10 • • • RandomForest MultiClassClassifier 52.28

cifar10small • • RandomTree MultiClassClassifier 54.48

convex • • • • RandomForest AdaBoostM1 18.47

dexter • • DecisionStump AdaBoostM1 5.00

dorothea • • • OneR RandomSubSpace 4.64

germancredit • • • • LogisticModelTree Bagging 23.33

gisette • NaiveBayes LWL 1.95

kddcup09app • ZeroR LWL 1.67

krvskp • • JRip AdaBoostM1 0.10

madelon • • REPTree RandomSubSpace 15.64

mnist • • • • SMO LWL 3.28

mnistr • • • RandomForest RandomCommittee 52.20

secom • • J48 AdaBoostM1 7.66

semeion • NaiveBayes LWL 3.98

shuttle • • • • RandomForest AdaBoostM1 0.0069

waveform • • • • • SMO RandomSubSpace 14.00

wineqw • • • • RandomForest AdaBoostM1 32.33

yeast • • • RandomForest Bagging 36.40

7 Conclusion and Future Work

We have shown that it is possible to automate the composition of a multicompo-
nent predictive system. Our contribution to Auto-WEKA demonstrates that a
lot of time and effort can be saved in the process of building predictive systems.

Extending the search space has led optimisation strategies to find solutions
that improve the predictive performance in the majority of cases. Results have
indicated that SMBO strategies perform better than random search giving the
same time for optimisation in most of the cases. While we have performed opti-
misation for each of the datasets starting with 25 random seeds, in the future
it would be interesting to investigate further how the best performance changes
over time while varying the number of starting seeds.

The datasets used in the study have been chosen primarily for the purpose
of comparison with previous work [13]. As it turned out, the datasets have been
relatively ‘clean’, hence not requiring much preprocessing. In future work we will
focus on datasets that require extensive preprocessing. Furthermore, the use of
custom preprocessing chains will allow optimising the data that is being used to
build predictive models.



38 M. Martin Salvador et al.

In addition, it would also be valuable to investigate if using a different data
partitioning like DPS [25] would make any difference in the optimisation process.
We believe that it could have a considerable impact in SMAC strategy since it
discards potential poor solutions early in the optimisation process based on the
performance on only a few folds. In case the folds used are not representative
of the overall data distribution, which as shown in [25] can happen quite often
in the case of cross-validation, this can have a detrimental effect on the final
solutions found.

At the moment, available SMBO methods only support single objective opti-
misation. However, it would be useful to find solutions that optimise more than
one objective, including for instance a combination of prediction error, model
complexity and running time as discussed in [24].

References

1. Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann, San Francisco
(1999)

2. Linoff, G.S., Berry, M.J.A.: Data Mining Techniques: For Marketing, Sales, and
Customer Relationship Management. Wiley (2011). ISBN: 978-0-470-65093-6

3. Teichmann, E., Demir, E., Chaussalet, T.: Data preparation for clinical data mining
to identify patients at risk of readmission. In: IEEE 23rd International Symposium
on Computer-Based Medical Systems, pp. 184–189 (2010)

4. Zhao, J., Wang, T.: A general framework for medical data mining. In: Future
Information Technology and Management Engineering, pp. 163–165 (2010)

5. Messaoud, I., El Abed, H., Märgner, V., Amiri, H.: A design of a preprocessing
framework for large database of historical documents. In: Proceedings of the 2011
Workshop on Historical Document Imaging and Processing, pp. 177–183 (2011)

6. Budka, M., Eastwood, M., Gabrys, B., Kadlec, P., Martin Salvador, M., Schwan,
S., Tsakonas, A., Žliobaitė, I.: From sensor readings to predictions: on the process
of developing practical soft sensors. In: Blockeel, H., van Leeuwen, M., Vinciotti,
V. (eds.) IDA 2014. LNCS, vol. 8819, pp. 49–60. Springer, Heidelberg (2014)

7. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active
testing. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 117–131. Springer,
Heidelberg (2012)

8. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast com-
bination. Neurocomputing 73(10–12), 2006–2016 (2010)

9. MacQuarrie, A., Tsai, C.L.: Regression and Time Series Model Selection. World
Scientific (1998). ISBN: 978-981-02-3242-9

10. Bengio, Y.: Gradient-based optimization of hyperparameters. Neural Comput.
12(8), 1889–1900 (2000)

11. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel LS-SVMs
hyper-parameter selection based on particle swarm optimization. Neurocomputing
71, 3211–3215 (2008)

12. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (2012)

13. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of the 19th ACM SIGKDD, pp. 847–855 (2013)



Towards Automatic Composition of Multicomponent Predictive Systems 39

14. Brochu, E., Cora, V.M., de Freitas, N.: A Tutorial on Bayesian Optimization of
Expensive Cost Functions with Application to Active User Modeling and Hierar-
chical Reinforcement Learning. Technical report, University of British Columbia,
Department of Computer Science (2010)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

16. Bergstra, J., Bardenet, R., Bengio, Y., Kegl, B.: Algorithms for hyper-parameter
optimization. In: Advances in NIPS, vol. 24, pp. 1–9 (2011)

17. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in NIPS, vol. 25, pp. 2960–2968 (2012)

18. Eggensperger, K., Feurer, M., Hutter, F.: Towards an empirical foundation
for assessing bayesian optimization of hyperparameters. In: NIPS Workshop on
Bayesian Optimization in Theory and Practice, pp. 1–5 (2013)

19. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.:
Methods for improving bayesian optimization for AutoML. In: ICML (2015)

20. Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent
assistants for data analysis. ACM Comput. Surv. 45(3), 1–35 (2013)

21. Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initialize
bayesian optimization of hyperparameters. In: Proceedings of the Meta-Learning
and Algorithm Selection Workshop at ECAI, pp. 3–10 (2014)

22. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In:
Advances in NIPS, vol. 26, pp. 2004–2012 (2013)

23. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-brown, K.: Efficient benchmark-
ing of hyperparameter optimizers via surrogates background: hyperparameter opti-
mization. In: Proceedings of the 29th AAAI Conference on Artificial Intelligence,
pp. 1114–1120 (2012)

24. Al-Jubouri, B., Gabrys, B.: Multicriteria approaches for predictive model genera-
tion: a comparative experimental study. In: IEEE Symposium on Computational
Intelligence in Multi-Criteria Decision-Making, pp. 64–71 (2014)

25. Budka, M., Gabrys, B.: Density-preserving sampling: robust and efficient alter-
native to cross-validation for error estimation. IEEE Trans. Neural Netw. Learn.
Syst. 24(1), 22–34 (2013)


	Towards Automatic Composition of Multicomponent Predictive Systems
	1 Introduction
	2 Related Work
	3 MCPS Description
	4 Contribution to Auto-WEKA
	5 Methodology
	6 Results and Discussion
	7 Conclusion and Future Work
	References


