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Abstract. Multi-objective optimization evolutionary algorithms have
been applied to solve many real-life decision problems. Most of them
require the management of trade-offs between multiple objectives. Ref-
erence point approaches highlight a preferred set of solutions in relevant
areas of Pareto frontier and support the decision makers to take more
confidence evaluation. This paper extends some well-known algorithms
to work with collective preferences and interactive techniques. In order
to analyse the results driven by the online reference points, two new
performance indicators are introduced and tested against some synthetic
problem.
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1 Introduction

Multi-objective optimization problems (MOPs) simultaneously optimize a set
of objective functions. Formally posed, a MOP can be defined as minF (x) =
{f1(x), . . . , fk(x)}, where x = 〈x1, . . . , xn〉 ∈ Ω is an n-dimensional vector of
decision variables. The solution of a MOP is a (possibly infinite) Pareto-optimal
set PS = {x ∈ Ω| � ∃y ∈ Ω : y ≺ x} that contains all the elements of Ω that
not Pareto-dominated (≺) by any other element [2]. Elements of PS represent
different trade-offs between the objective functions values. The projection of PS

through F () is known as the Pareto-optimal front, PF .
The application of evolutionary algorithms to MOPs has prompted the

creation of multi-objective optimization evolutionary algorithms (MOEAs) [2].
They approximate the PS as a discrete set of points.

Having a solution to a MOP, a decision maker (DM) must identify which of
those solutions are the ones that satisfy her/his preferences and would be realized
in practice. This task can be rather complex and requires in-depth knowledge
of the problem being solved, something that is impossible in many practical
situations.
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Reference points and interactive techniques can be used to mitigate these
inconveniences and support the DM in reaching a proper specification. These
approaches also allow the optimization algorithm to focus on areas of interest
and thus reaching satisfactory solutions at a lower computational cost.

In practice, however, optimization problems pose difficulties in defining a
priori reference points or preferences. In this regard, collective intelligence
reference points obtained by the interaction and aggregation of multiple opinions
can be used to produce an accurate representation of preferences and, hence, ref-
erence points. This approach can also eliminate the unilateral choice bias that
can be introduced by a single DM. Collective environments can improve MOEAs
with cognitive and subjective evaluation to find better solutions in more relevant
regions of PF .

This work incorporates online interactive collective preferences and inter-
active behaviour into three existing MOEAs: NSGA-II [6], SPEA2 [12] and
SMS-EMOA [1] and, therefore, introduces a collective intelligence version of
them. Similarly, while working in this task it became evident the lack of ade-
quate performance indicators that take into account preferences. Therefore, as
part of the paper are also introduced two new performance indicators that are
used to evaluate the quality of the PF approximation driven by the online
collective preferences.

The paper proceeds with Sect. 2 that covers some required formal founda-
tions regarding reference points and collective intelligence. Section 3 introduces
the novel interactive MOEAs. Subsequently, Sect. 4 presents the new perfor-
mance indicators that are to be used later on. After that, Sect. 5 analyzes the
performance of the algorithms when faced with benchmark problem. Finally,
conclusive remarks and future work directions are put forward.

2 Foundations

Preferences are user-defined parameters and denote values or subjective impres-
sions regarding the trade-offs points. It transforms qualitative feelings into quan-
titative values to bias the search during the optimization phase and restrict the
objective space. In this sense, a reliable preference vector improves the trade-off
answers obtained.

The reference point approach concentrates the search of Pareto non-
dominated solutions near a selected point. It is based on the achievement scalar-
izing function that uses a reference point to capture the desired values of the
objective functions. Let z0 be a reference point for an n-objective optimization
problem of minimizing F (x) = {f1(x), ..., fk(x)}, the reference point scalarizing
function can be stated as follows:

σ
(
z,z0,λ, ρ

)
= max

i=1,...,k

{
λi(zi − z0i )

}
+ ρ

k∑

i=1

λi

(
zi − z0i

)
, (1)

where z ∈ Z is one objective vector, z0 =
〈
z01 , ..., z

0
k

〉
is a reference point vector,

σ is a mapping from R
k onto R, λ = 〈λ1, ..., λk〉 is a scaling coefficients vector,
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and ρ is an arbitrary small positive number. Therefore, the achievement problem
can be rebuilt as: min σ

(
z,z0,λ, ρ

)
.

A subset X of Rn is convex if for any two pair of solutions x1, x2 ∈ X and
α ∈ [0, 1], the following condition is true: αx1 + (1 − α)x2 ∈ X. The intersection
of all the convex sets containing a given subset X of Rn is called the convex hull
of X. The convex hull of a set of points is the smallest convex set that contains
the points.

The convex hull of individual minima (CHIM) is the set of points in R
k that

are convex combinations of F ∗
i − F ∗:

H =

{

Φβ : β ∈ R
k,

k∑

i=1

βi = 1, βi ≥ 0

}

(2)

where x∗
i is the global minimizers of fi(x), ∀i ∈ {1, . . . , k}. Let F ∗

i = F (x∗
i ),∀i ∈

{1, . . . , k}; and Φ is a pay-off matrix k x k whose the ith column is F ∗
i − F ∗.

Since the beginning of 2000, the development of social network technologies
and interactive online systems has promoted a broader understanding of the
“intelligence” concept. A new phenomenon appeared based not only on the cog-
nition of one individual, but also placed on a network of relationships with other
people and the external world. The field known as collective intelligence (COIN)
[9] is defined as the self-organized group intelligence arisen from participatory
and collaboration actions of many individuals. Shared tasks or issues are handled
by singular contributions in such a manner that their aggregation process cre-
ates better results and solves more problems than each particular contribution
separately.

Inside collective environment, contributions come from different people. Clus-
tering algorithms distinguish the users with similar preferences to perform a
cooperative evolution or decision making choice. A mixture model is a proba-
bilistic model to reveal distributions of observations in the overall population.
Given a data set Y = {y1, . . . ,yN} where yi is a d-dimensional vector mea-
surement with the points created from density p(y), a finite mixture model is
defined as:

p (y|Θ) =
K∑

k=1

αkpk (y|zk, θk) (3)

Let K ≥ 1 be the number of components, pk (y|zk, θk) be the mixture com-
ponents where each k is a density or distribution over p (y) and parameters θk,
z = 〈z1, . . . , zk〉 be a K-ary random variable defining the identity of the mixture
component that produced y and αk = pk (zk) are the mixture weights represent-
ing the probability that y was generated by component k. Hence, the parameters
for a mixture model is Θ = {α1, . . . , αK , θ1, . . . , θK}, 1 ≤ k ≤ K.

The Central Limit Theorem [8], explains why many applications that are
influenced by a large number of random factors have a probability density func-
tion that approximates a Gaussian distribution. Let Y be a sequence of random
variables that are identically and independently distributed, with mean μ and
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variance σ2. The distribution of the normalised sum Sn = 1√
n
(y1 + . . . + yN )

approaches the Gaussian distribution, G(μ, σ2), as n → ∞.
In a Gaussian mixture model, each of the K components is a Gaussian density

with parameters θ = {μk, Σk}, y ∈ R
d and function as:

pk (y|θk) =
1

(2π)d/2 |Σk|1/2
e− 1

2 (y−µk)
tΣ−1

k (y−µk) (4)

3 Interactive Algorithms

Interactive genetic algorithms (IGA) were successfully applied to get feedbacks
of transitional results during the evolution process. IGA incorporates external
evaluation to support problems whose optimization objectives are complex to
be defined by a-priori exact functions. It employs users’ subjectivities as fitness
values to drive the search engine.

As the purpose of this study is the enhancement of MOEAs through the use
of the collective preferences, interactive genetic algorithms are an appropriate
technique to support this goal. The new algorithms are extensions of the classical
MOEAs: NSGA-II, SPEA2 and SMS-EMOA. The main changes on the original
methods are the incorporation of COIN into the selection procedure; the trans-
formation of the continuous evolutionary process into an interactive one; and
the adoption of reference points to drive the search towards relevant regions in
Pareto-optimal front.

3.1 CI-NSGA-II

One of the new algorithms is a variation of NSGA-II [6]. The NSGA-II is a non-
domination based genetic algorithm for multi-objective optimization. It adopts
two main concepts: a density information for diversity and a fast non-dominated
sorting in the population. The crowding distance uses the size of the largest
cuboid enclosing two neighboring solutions to estimate the density of points
in the front. The non-dominated sorting places each individual into a specific
front such that the first front τ1 is a non-dominant set, the second front τ2 is
dominated only by the individuals in τ1 and so on. Each solution inside the front
τn receives a rank equal to its non-domination level n.

The selection operator uses the rank (irank) and crowding distance (idist) in
a binary tournament. The partial order ≺c between two individuals i and j, for
example, prefers the minor domination rank if they are from different fronts or
otherwise, the one with higher values of crowding distance.

i ≺c j := irank < jrank ∨ (irank = jrank ∧ idist > jdist) (5)

In Algorithm 1, the new CI-NSGA-II converts the original NSGA-II into
an interactive process. The subroutine CollectiveContributions() suspends the
evolution progress and submits some individuals from population to the users’
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evaluation. In this research, the individuals received can be analyzed in two dif-
ferent ways: (a) a pairwise comparison allows the selection of the best candidate
between two or more individuals; (b) a dynamic game scenario stimulates the
participant creativity to improve or produce new individuals. Both approaches
discover online reference points.

Algorithm 1.The Collective Intelligence NSGA-II.

1: generation ← numgeneration
2: block ← subsetgeneration iteration interval
3: while i < generation do
4: while block do
5: offspring ← Tournament(pop)
6: offspring ← Crossover(offspring)
7: offspring ← Mutation(offspring)
8: pop ← COIN Selection(offspring)
9: i + +

10: end while
11: contributions ← CollectiveContributions(front)
12: pop ← contributions
13: Θ ← ExpectationMaximization(contributions)
14: pop ← ReferencePoint Distance(pop,Θ)
15: end while

Inside collective environment, the contributions come from different peo-
ple. Assuming the Central Limit Theorem [8], the inputs have a distribution
that is approximately Gaussian. Therefore, after each collective interaction,
the subroutine ExpectationMaximization() gets the users’ collaboration as a
Gaussian Mixture model to emulate the evaluation landscape of all participants’
preferences.

The expectation maximization approach creates online reference points (Θ)
for search optimization. Whether the user’s collaboration is a simple vote on
the best individual presented to him (pairwise comparison) or a complete re-
edited individual, the clustering algorithm distinguishes the users with similar
preferences to perform a cooperative evolution and a decision making choice
through the collective reference points.

The procedure ReferencePointDistance() calculates the minimum distance
from each point in the population to the nearest collective reference points in
Θ. This way, the point near the reference point is favoured and stored in the
new population. CI-NSGA-II develops a partial order similar to the NSGA-
II procedure, but replaces the crowding distance operator by the distance to
collective reference points (iref ).

i ≺c j := irank < jrank ∨ (irank = jrank ∧ iref < jref ) (6)

CI-NSGA-II prioritizes the points close to the online collective reference
point. The algorithm consumes preference information to explore satisfactory
solutions for DMs.

3.2 CI-SMS-EMOA

The SMS-EMOA [1] is a steady-state algorithm that applies the non-dominated
sorting as a ranking criterion and the hypervolume measure (S) as a selection
operator.
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After the non-domination ranking, the next step is to update the last front
population, Pworst. It replaces the member with the minimum contribution to
Pworst hypervolume by a new individual that increases the hypervolume covered
by the population.

The new algorithm CI-SMS-EMOA converts the original SMS-EMOA into
an interactive process. The CollectiveContributions() and ExpectationMaximiza-
tion() subroutines have the same purpose and work as the CI-NSGA-II.

The selection operation, performed by the COIN Selection() procedure,
prefers individuals with minor domination rank (irank). If they belong to the
same front, the one with the maximum contribution to the hypervolume of the
set and the closest reference point distance (iref ) is selected.

A procedure Hype-RefPoint Distance() gets the hypervolume contribution
(S) and calculates the minimum distance from each solution in the population
to the nearest collective reference points in Θ. This way, the point with high
hypervolume value and short reference point distance is favoured and stored in
the new population.

3.3 CI-SPEA2

The strength pareto evolutionary algorithm 2 (SPEA2) [12] developed a fitness
assignment strategy based on the number of individuals that one solution domi-
nates and it is dominated by. SPEA2 implements elitism by keeping an external
population (archive) of size N . The archive preserves the best solutions since the
beginning of the evolution.

The strength ST (i) for each individual i is the number of population members
it dominates: ST (i) = |{j : j ∈ Pt⊕P̄t∧i ≺ j}|; where ⊕ is the multiset union, Pt

and P̄t are the population and archive population at generation t, respectively.
The fitness F (i) for a individual i is given by the strength of its dominators:
F (i) =

∑
ST (j); where j ∈ Pt ∨ P̄t, j ≺ i. High values of F (i) means the

individual i is dominated by many others and F (i) = 0 corresponds to a non-
dominated individual.

SPEA2 uses a nearest density estimation technique, adapted from the kNN
method, to distinguish individuals having the same fitness values. This density
function is a function of the distance to the k-th nearest data point and it is
added to the fitness function F .

In the new algorithm CI-SPEA2, subroutine COIN Selection() computes the
strength of all individuals and the non-dominated members are copied to the
archive P̄t. The k-th nearest data point used to calculate the original density
function in SPEA2 was substituted by the collective reference points Θ. If the
archive | P̄t |≤ N , the algorithm chooses the nearest individuals to the collective
reference point until the archive size is reached. Otherwise, if | P̄t |> N , it
removes the more distant ones proportionally to the number of individuals in
each reference point cluster. This way, the archive keeps the same distribution
of points around its reference points.
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4 Performance Indicators

Several performance indicators are used to evaluate the outcome sets of MOEAs.
They measure the quality of the Pareto front approximation and allow compari-
son between different algorithms. There exist a variety of approaches that analyse
the distribution of points in objective function space and the accuracy in terms
of convergence.

The Pareto-optimal front coverage indicator, DS→PF
, is a proximity indicator

that defines the distance between an achieved approximation set S and their
closest counterpart in the current Pareto-optimal front:

DS→PF
(S) =

1
|S|

∑

x∈S

min
x′∈PS

{d (x,x′)} , (7)

where d is the Euclidean distance between two points. Small values of DS→PF

indicate proximity to the PF .
However, some others indicators like: coverage of two sets, diversity and the

hypervolume could not be employed in this study. Because their values depend on
the spread of solutions in the whole Pareto front and, on contrary, the proposed
algorithms aim to obtain subsets of solutions close to the collective reference
points. There is a lack of performance indicators that focus only on the propor-
tion of occupied area in PF . For that reason, the following subsection presents
two new ones.

4.1 Referential Cluster Variance Indicator

Instead of a good spread of solutions along PF , the method proposed in this
work wants to obtain subsets of solutions close to the collective reference point.
In this context, a small cluster variance means the individuals from the sample
Y = {y1, . . . ,yN} of size N are clustered closely around the population mean
(μ) or the reference point (z0). A low dispersion for a group of preferred points
in PF denotes a better efficiency of the approach tested. The referential cluster
variance indicator κ is represented as follows:

κ =
1
N

N∑

i=1

(yi − μ)2 (8)

In cases with more than one collective reference point (zj), the points are
clustered based on the closest distance to one of the reference points: Cj = {a ∈
R

k : ‖a−zj‖ ≤ ‖a−zi‖,∀i}. Cluster Cj consists of all points for which zj is the
closest. The referential cluster variance is calculated to each cluster separately.

4.2 Hull Volume Indicator

Convex hull is a well-known geometric object widely used in various fields such
as: shape analysis, pattern recognition, geographical information systems, image
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processing, etc. It has been also applied in the multi-objective optimization
scenario.

The Normal Boundary Intersection method (NBI) [4] projects elements of
the CHIM towards the boundary ∂Z of the objective space Z through a normal
vector N . The intersection point between ∂Z and N the normal pointing is
a Pareto optimal point, if the PF surface is convex. Mart́ınez and Coello [10]
introduced an archiving strategy based on the CHIM to find evenly distributed
points along the PF . Their convex hull multi-objective evolutionary algorithm
(CH-MOEA) uses an archiving mechanism that stores non-dominated solutions
which are orthogonal to each point of CHIM (h ∈ H). Likewise, Shan-Fan et al.
[11] presented a MOEA where the non-dominated solutions are picked out from
dominated solutions by the quick convex hulls algorithm.

The idea of convex hull can be borrowed and applied as a performance indi-
cator to measure the quality of the non-dominated points around the collective
reference points. Connecting the closest final points to each reference point will
produce a facet representation of the PF . The volume of the convex hull can be
used as a scalar indicator for the distribution of points in PF . Small values of
the hull volume (Ψ) indicate concentrate points.

Non-convex problems can use alpha shapes to determine a concave hull of
theirs points in PF . The alpha shape is a subgraph of the Delaunay triangulation.
The value of alpha (α) controls the geometric design of the shape. For large α
values the shape approaches to the boundary of the convex hull. On the other
hand, as α decreases the shape shows more cavities.

5 Experimental Results

This section presents some results of CI-NSGA-II, CI-SPEA2 and CI-SMS-
EMOA. The scalable multi-objective test problems from the ZDT, DTLZ and
WFG problem sets [2] have a known optimal front and can be used to benchmark
the outcome of the algorithms. Their features cover different classes of MOPs:
convex PF , non-contiguous convex parts, non-convex, multi-modal, etc. For those
reasons, the test problems subject the new algorithms to distinct optimization
difficulties and compare their results.

The experiment emulates the collectivity by developing some virtual DMs
(robots). Each robot has a predefined point in the objective space which will be
used to direct robots’ votes in a pairwise comparison between two individuals
from Pareto front. Therefore, the robot votes on a solution according to the
closest distance between its predefined point and each of the two candidates.
Figure 1 illustrates candidates c1 and c2 with their respectively distances to
the predefined point, d1 and d2. As d1 < d2, the robot would vote on c1. The
robots create the collective reference points with a better reasoning strategy than
simply random choice. It is important to notice that the collective reference point
is built on the similarity of answers (votes) after the Gaussian Mixture model
and cannot be confused with the robots’ predefined points.

Very few MOEAs consider more than one user for reference point selection
or evolutionary interaction. They neglect a collective scenario where many users
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Fig. 1. The robot’s predefined point will choose candidate c1 because the distance
d1 < d2.

Fig. 2. Indicators for WFG2 and DTLZ2 tests.

could actively interact and take part of the decision process throughout the opti-
mization. Furthermore, the new algorithms choose the reference points interac-
tively. The references are not defined a-priori, like the R-NSGA-II from Deb [7],
nor indicated by the DM as the middle point in the Light Beam approach [5].
Rather, all the references are discovered online with the support of a genuine
collective intelligence of many users.

In this experiment, the robots abstract the collectivity within a controlled
environment. So the algorithms can be tested, compared and better understood
in their working principles. The quantity of online reference points is directly
related to the number of k clusters in the Gaussian Mixture model.

The front coverage (DS→PF
), the referential cluster variance (κ) and the

hull volume (Ψ) indicators were used to measure the quality of the algo-
rithms. In addition to the Gaussian Mixture model, the K-means algorithm was
implemented to bring a different clustering technique into the analysis of the
algorithms. But the performance of Gaussian Mixture for these benchmarking
cases was consistently better.

After 30 independent executions per algorithm on each test problem, the box
plots were used to represent and support a valid judgment of the quality of the
solutions and how different algorithms compare with each other. Figure 2 shows
the distribution of the performance indicators for WFG2 and DTLZ2 problems
in the form of box plots.
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Table 1. Results of the Conover-Inman statistical hypothesis tests based on the mean
values. Green cells (+) denote cases where the algorithm in the row statistically was
better than the one in the column. Cells marked in red (−) are cases where the method
in the column yielded statistically better results when compared to the method in the
row.

ZDT1 ZDT2 ZDT3 ZDT4

CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA

CI-NSGA-II � + + � + + � + + � + +
CI-SPEA2 − � + − � + − � + − � −
CI-SMS-EMOA − − � − − � − − � − + �

ZDT6 DTLZ1 DTLZ2 DTLZ3

CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA

CI-NSGA-II � − + � + − � + + � + +
CI-SPEA2 + � + − � − − � + − � +
CI-SMS-EMOA − − � + + � − − � − − �

DTLZ4 DTLZ5 DTLZ6 DTLZ7

CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA

CI-NSGA-II � + + � − + � − − � + +
CI-SPEA2 − � + + � + + � − − � −
CI-SMS-EMOA − − � − − � + + � − + �

WFG1 WFG2 WFG3 WFG4

CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA

CI-NSGA-II � + + � + + � + − � + +
CI-SPEA2 − � + − � + − � − − � −
CI-SMS-EMOA − − � − − � + + � − + �

WFG5 WFG6 WFG7 WFG8

CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA CI-NSGA-II CI-SPEA2 CI-SMS-EMOA

CI-NSGA-II � − + � − − � − + � + −
CI-SPEA2 + � + + � − + � + − � −
CI-SMS-EMOA − − � + + � − − � + + �

Although box plots allow a visual comparison of the results, it is necessary
to go beyond reporting the descriptive statistics of the performance indicators
and apply a statistical hypothesis test. The Conover-Inman procedure [3] is a
non-parametric method for testing equality of population medians. It can be
implemented in a pairwise manner to determine if the results of one algorithm
were significantly better than those of the other. A significance level, α, of 0.05
was used for all tests. Table 1 contains the results of the statistical analysis for
all the test problems based on the mean values.

The process of discovering the best algorithm is rather difficult as it implies
cross-examining and comparing the results of their performance indicators.
Figure 3 present a more integrative representation by grouping their indicators.
A higher value of average performance ranking implies that the algorithm consis-
tently achieved lower values of the indicators being assessed. In this case, lower
values mean better convergence to PF and higher concentration around the col-
lective reference points. For a given set of algorithms A1, . . . , AK , a set of P test
problem instances Φ1, . . . , ΦP , the function δ is defined as:

δ (Ai, Aj , Φp) =

{
1 if Ai � Aj solving Φp

0 otherwise
(9)

where the relation Ai � Aj defines if Ai is better than Aj when solving the
problem instance Φp in terms of the performance indicators: DS→PF

, κ and Ψ .
Relying on δ, the performance index Pp(Ai) of a given algorithm Ai when solving

Φp is then computed as: Pp(Ai) =
K∑

j=1,j �=i

δ (Ai, Aj , Φp).
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Fig. 3. Average performance ranking across ZDT, DTLZ and WFG test problems.

The CI-NSGA-II with Gaussian Mixture model consistently outperformed
the others algorithms in most cases. Concerning the convergence indicator, CI-
NSGA-II was ranked best in 16 of 21 test functions, except for ZDT1, ZDTL6,
DTLZ1, WFG6 and WFG8. The CI-SPEA2 and CI-SMS-EMOA have a similar
performance on WFG tests. It is worth noticing that ZDT4 experiment demon-
strated a premature convergence around the online reference points. A better
control of the extent of obtained solutions must be investigated to avoid this
behaviour.

In summary, the interactive MOEAs and their collective reference points
proved to be well matched for the range of ZDT, DTLZ and WFG test problems.

6 Final Remarks

In this work we have introduced new algorithms to improve the successive
stages of evolution via dynamic group preferences. The interactive algorithms
can apprehend people’s heterogeneity and common sense to guide the search
through relevant regions of Pareto-optimal front.

The new approaches have been tested successfully in benchmarking prob-
lems. Two different performance indicators were presented with the intention to
measure the proportion of occupied area in PF .

Currently, we have been exploring different features of the evolutionary
process, such as: the usage of COIN as a local search for new individuals and
opening the population for users’ update to augment its quality. Replacing the
robots by human collaborators, this research has a simulated environment1 that
1 http://playcanv.as/p/1ARj738G.

http://playcanv.as/p/1ARj738G
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represents the facility location problem. In this context, individuals from the
evolutionary algorithm population are distributed to the participants who have
to fix and change the position arrangement or the resource distribution in the
scenario. This simulated environment promotes the collaboration and supports
rational improvements in the quality of the population. The algorithms (CI-
NSGA-II, CI-SMS-EMOA, CI-SPEA2) introduced and compared here are used
to iteratively refine the search parameters with collective preferences.

In the near future, we plan to work on creative solutions unfolded by the
participants and possibly explore non-explicit objectives hidden in more com-
plex scenario. Furthermore, we intent to apply directional information from the
collective reference points during the evolution process. This way, the technique
can extract the intelligence of the crowds and, at the same time, minimize the
interruptions of the algorithm.

Acknowledgments. This work was partially funded by CNPq BJT Project
407851/2012-7, FAPERJ APQ1 Project 211.500/2015, FAPERJ APQ1 Project
211.451/2015.
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